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Abstract

Many of the existing approaches in Software Comprehension focus on program pro-
gram structure or external documentation. However, by analyzing formal informa-
tion the informal semantics contained in the vocabulary of source code are over-
looked. To understand software as a whole, we need to enrich software analysis with
the developer knowledge hidden in the code naming. This paper proposes the use
of information retrieval to exploit linguistic information found in source code, such
as identifier names and comments. We introduce Semantic Clustering, a technique
based on Latent Semantic Indexing and clustering to group source artifacts that use
similar vocabulary. We call these groups semantic clusters and we interpret them
as linguistic topics that reveal the intention of the code. We compare the topics
to each other, identify links between them, provide automatically retrieved labels,
and use a visualization to illustrate how they are distributed over the system. Our
approach is language independent as it works at the level of identifier names. To
validate our approach we applied it on several case studies, two of which we present
in this paper.
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(Stéphane Ducasse), girba@iam.unibe.ch (Tudor Gı̂rba).
1 We gratefully acknowledge the financial support of the Swiss National Science
Foundation for the project “Recast: Evolution of Object-Oriented Applications”
(SNF 2000-061655.00/1)
2 We gratefully acknowledge the financial support of the french ANR for the project
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1 Introduction

Acquiring knowledge about a software system is one of the main activities
in software reengineering, it is estimated that up to 60 percent of software
maintenance is spent on comprehension [1]. This is because a lot of knowl-
edge about the software system and its associated business domain is not
captured in an explicit form. Most approaches that have been developed fo-
cus on program structure [2] or on external documentation [3,4]. However,
there is another fundamental source of information: the developer knowledge
contained in identifier names and source code comments.

The informal linguistic information that the software engineer deals with is not
simply supplemental information that can be ignored because automated tools do
not use it. Rather, this information is fundamental. [. . . ] If we are to use this
informal information in design recovery tools, we must propose a form for it,
suggest how that form relates to the formal information captured in program source
code or in formal specifications, and propose a set of operations on these structures
that implements the design recovery process [5].

Languages are a means of communication, and programming languages are no
different. Source code contains two levels of communication: human-machine
communication through program instructions, and human to human commu-
nications through names of identifiers and comments. Let us consider a small
code example:

public boolean isMorning(int hours,int minutes,int seconds) {
if (!isDate(hours, minutes, seconds)) throw Exception(”Invalid input: not a time value.”)
return hours < 12 && minutes < 60 && seconds < 60; }

When we strip away all identifiers and comments, from the machine point of
view the functionality remains the same, but for a human reader the meaning
is obfuscated and almost impossible to figure out. In our example, retaining
formal information only yields:

public type 1 method 1(type 2 a, type 2 b, type 2 c) {
if (!method 2(a, b ,c)) throw Exception(literal 1).
return (a < A) && (b < B) && (c < C); }

When we keep only the informal information, the purpose of the code is still
recognizable. In our example, retaining only the naming yields:

is morning hours minutes seconds is date hours minutes
seconds invalid time value hours 12 minutes 60 seconds 60

In this paper, we use information retrieval techniques to derive topics from the
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vocabulary usage at the source code level. Apart from external documentation,
the location and use of source-code identifiers is the most frequently consulted
source of information in software maintenance [6]. The objective of our work is
to analyze software without taking into account any external documentation.
In particular we aim at:

• Providing a first impression of an unfamiliar software system. A
common pattern when encountering an unknown or not well known software
for the first time is “Read all the Code in One Hour” [7]. Our objective is
to support this task, and to provide a map with a survey of the system’s
most important topics and their location.

• Revealing the developer knowledge hidden in identifiers. In prac-
tice, it is not external documentation, but identifer names and comments
where developers put their knowledge about a system. Thus, our objective
is not to locate externally defined domain concepts, but rather to derive
topics from the actual use of vocabulary in source code.

• Enriching Software Analysis with informal information. When ana-
lyzing formal information (e.g., structure and behavior) we get only half of
the picture: a crucial source of information is missing, namely, the seman-
tics contained in the vocabulary of source code. Our objective is to reveal
components or aspects when, for example, planning a large-scale refactoring.
Therefore, we analyze how the code naming compares to the code structure:
What is the distribution of linguistic topics over a system’s modularization?
Are the topics well-encapsulated by the modules or do they cross-cut the
structure?

Our approach is based on Latent Semantic Indexing (LSI), an information re-
trieval technique that locates linguistic topics in a set of documents [8,9]. We
apply LSI to compute the linguistic similarity between source artifacts (e.g.,
packages, classes or methods) and cluster them according to their similar-
ity. This clustering partitions the system into linguistic topics that represent
groups of documents using similar vocabulary. To identify how the clusters are
related to each other, we use a correlation matrix [10]. We employ LSI again
to automatically label the clusters with their most relevant terms. And finally,
to complete the picture, we use a map visualization to analyze the distribution
of the concepts over the system’s structure.

We implemented this approach in a tool called Hapax 3 , which is built on
top of the Moose reengineering environment [11,12], and we apply the tool
on several case studies, two of which are presented in this work: JEdit 4 and
JBoss 5 .

3 The name is derived from the term hapax legomenon, that refers to a word oc-
curring only once a given body of text.
4 http://www.jedit.org/
5 http://www.JBoss.org/
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This paper is based on our previous work, in which we first proposed semantic
clustering [13]. The main contributions of the current paper are:

• Topic distribution analysis. In our previous work we introduced semantic
clustering to detect linguistic topics given by parts of the system that use
similar vocabulary. We complement the approach with the analysis of how
topics are distributed over the system using a Distribution Map [14].

• Improvement of the labeling algorithm. One important feature of semantic
clustering is the automatic labeling – i.e., given a cluster we retrieve the
most relevant labels for it. We propose an improved algorithm that takes
also the similarity to the whole system into account.

• Case studies. In our previous work, we showed the results of the clustering
and labeling on different levels of abstraction on three case studies. In this
paper we report on other two case studies.

Structure of the paper. In the next section we describe the LSI technique. In
Section 3 we show how we use LSI to analyze the semantics of the system and
how we can apply the analysis at different levels of abstraction. In Section 4
we present our approach to analyze the distribution of the semantic clusters
over the structure of the system. In Section 5 we present the results of two
case studies. We discuss the approach in Section 6. In Section 7 we outline the
related work and Section 8 concludes and presents the future work.

2 Latent Semantic Indexing

As with most information retrieval techniques, Latent Semantic Indexing (LSI)
is based on the vector space model approach. This approach models documents
as bag-of-words and arranges them in a term-document matrix A, such that
ai,j equals the number of times term ti occurs in document dj.

LSI has been developed to overcome problems with synonymy and polysemy
that occurred in prior vectorial approaches, and thus improves the basic vector
space model by replacing the original term-document matrix with an approx-
imation. This is done using singular value decomposition (SVD), a principal
components analysis (PCA) technique originally used in signal processing to
reduce noise while preserving the original signal. Assuming that the original
term-document matrix is noisy (the aforementioned synonymy and polysemy),
the approximation is interpreted as a noise reduced – and thus better – model
of the text corpus.

As an example, a typical search engine covers a text corpus with millions of
web pages, containing some ten thousands of terms, which is reduced to a
vector space with 200-500 dimensions only. In Software Analysis, the number

4



of documents is much smaller and we typically reduce the text corpus to 20-50
dimensions.

Even though search engines are the most common uses of LSI [15], there is
a wide range of applications, such as automatic essay grading [16], automatic
assignment of reviewers to submitted conference papers [17], cross-language
search engines, thesauri, spell checkers and many more. In the field of software
engineering LSI has been successfully applied to categorized source files [18]
and open-source projects [19], detect high-level conceptual clones [20], recover
links between external documentation and source code [21,22] and to compute
the class cohesion [22]. Furthermore LSI has proved useful in psychology to
simulate language understanding of the human brain, including processes such
as the language acquisition of children and other high-level comprehension
phenomena [23].

Figure 1 schematically represents the LSI process. The document collection
is modeled as a vector space. Each document is represented by the vector
of its term occurrences, where terms are words appearing in the document.
The term-document-matrix A is a sparse matrix and represents the document
vectors on the rows. This matrix is of size n × m, where m is the number of
documents and n the total number of terms over all documents. Each entry
ai,j is the frequency of term ti in document dj. A geometric interpretation of
the term-document-matrix is as a set of document vectors occupying a vector
space spanned by the terms. The similarity between documents is typically
defined as the cosine or inner product between the corresponding vectors. Two
documents are considered similar if their corresponding vectors point in the
same direction.
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Fig. 1. LSI takes as input a set of documents and the terms occurrences, and returns
as output a vector space containing all the terms and all the documents. The sim-
ilarity between two items (i.e., terms or documents) is given by the angle between
their corresponding vectors.

LSI starts with a raw term-document-matrix, weighted by a weighting function
to balance out very rare and very common terms. SVD is used to break down
the vector space model into less dimensions. This algorithm preserves as much
information as possible about the relative distances between the document
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vectors, while collapsing them into a much smaller set of dimensions.

SVD decomposes matrix A into its singular values and its singular vectors,
and yields – when truncated at the k largest singular values – an approxima-
tion A′ of A with rank k. Furthermore, not only the low-rank term-document
matrix A′ can be computed but also a term-term matrix and a document-
document matrix. Thus, LSI allows us to compute term-document, term-term
and document-document similarities.

As the rank is the number of linear-independent rows and columns of a matrix,
the vector space spanned by A′ is of dimension k only and much less complex
than the initial space. When used for information retrieval, k is typically about
200-500, while n and m may go into millions. When used to analyze software
on the other hand, k is typically about 20−50 with vocabulary and documents
in the range of thousands only. And since A′ is the best approximation of A
under the least-square-error criterion, the similarity between documents is
preserved, while in the same time mapping semantically related terms on one
axis of the reduced vector space and thus taking into account synonymy and
polysemy. In other words, the initial term-document-matrix A is a table with
term occurrences and by breaking it down to much less dimension the latent
meaning must appear in A′ since there is now much less space to encode the
same information. Meaningless occurrence data is transformed into meaningful
concept information.

3 Semantic Clustering: Grouping Source Documents

The result of applying LSI is a vector space, based on which we can com-
pute the similarity between both documents or terms. We use this similarity
measurement to identify topics in the source code.
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Fig. 2. Semantic clustering of software source code (e.g., classes, methods).

Figure 2 illustrates the first three steps of the approach: preprocessing, ap-
plying LSI, and clustering. Furthermore we retrieve the most relevant terms
for each cluster and visualize the clustering on a 2D-map, thus in short the
approach is:
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(1) Preprocessing the software system. In Section 3.2, we show how we break
the system into documents and how we build a term-document-matrix
that contains the vocabulary usage of the system.

(2) Applying Latent Semantic Indexing. In Section 3.3 we use LSI to compute
the similarities between source code documents and illustrate the result
in a correlation matrix [10].

(3) Identifying topics. In Section 3.4 we cluster the documents based on their
similarity, and we rearrange the correlation matrix. In Section 3.1 we
discuss that each cluster is a linguistic topic.

(4) Describing the topics with labels. In Section 3.5 we use LSI again to re-
trieve for each cluster the top-n most relevant terms.

(5) Comparing the topics to the structure. In Section 4 we illustrate the dis-
tribution of topics over the system on a Distribution Map [14].

We want to emphasize that the primary contribution of our work is semantic
clustering and the labeling. The visualization we describe are just used as a
means to convey the results and are not original contributions of this paper.

3.1 On the Relationship between Concepts and Semantic Clustering

In this paper we are interested in locating concepts in the source code. How-
ever, our concern is not to locate the implementation of externally defined
domain concepts, but rather to derive the implemented topics from the vo-
cabulary of source code. We tackle the problem of concept location on the very
level of source code, where we apply information retrieval to analyze the use
of words in source code documents. The clusters retrieved by our approach
are not necessarily domain or application concepts, but rather code-oriented
topics.

Other than with domain or application concepts in Software Analysis [24],
it is not uncommon in information retrieval to derive linguistic topics from
the distribution of words over a set of documents. This is in accordance with
Wittgenstein who states that “Die Bedeutung eines Wortes ist sein Gebrauch
in der Sprache—the meaning of a word is given by its use in language” [25].
Unlike in classical philosophy, as for example Plato, there is no external def-
inition of a word’s meaning, but rather the meaning of a word is given by
the relations it bears with other terms and sentences being used in the same
context. Certainly, there is a congruence between the external definition of a
word and its real meaning, since our external definitions are human-made as
well, and thus, also part of the language game, but this congruence is never
completely accurate.

In accordance with [5] we call our clusters linguistic topics since they are
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derived from language use. Certainly, some linguistic topics do map to the
domain and others do map to application concepts, however, this mapping
is never complete. There is no guarantee that semantic clustering locates all
or even any externally defined domain concept. But nonetheless, our case
studies show that semantic clustering is able to capture important domain
and application concepts of a software system. Which does not come as a
surprise, since it is well known that identifer names and comments are one
of the most prominent places where developers put their knowledge about a
system.

3.2 Preprocessing the Software System

When we apply LSI to a software system we partition its source code into
documents and we use the vocabulary found therein as terms. The system
can be split into documents at any level of granularity, such as packages or
classes and methods. Other slicing solutions are possible as well, for example
execution traces [26], or we can even use entire projects as documents and
analyze a complete source repository [19].

To build the term-document-matrix, we extract the vocabulary from the source
code: we use both identifier names and the content of comments. Natural
language text in comments is broken into words, whereas compound identifier
names are split into parts. As most modern naming conventions use camel
case, splitting identifiers is straightforward: for example FooBar becomes foo
and bar.

We exclude common stopwords from the vocabulary, as they do not help to
discriminate documents. In addition, if the first comment of a class contains a
copyright disclaimer, we exclude it as well. To reduce words to their morpho-
logical root we apply a stemming algorithm: for example entity and entities
both become entiti [27]. And finally, the term-document matrix is weighted
with tf-idf to balance out the influence of very rare and very common terms
[28].

When preprocessing object-oriented software systems we take the inheritance
relationship into account as well. For example, when applying our approach on
the level of classes, each class inherits some of the vocabulary of its superclass.
If a method is defined only in the superclass we add its vocabulary to the
current class. Per level of inheritance a weighting factor of w = 0.5 applies to
the term occurrences, to balance out between the abstractness of high level
definitions and concrete implementations.
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3.3 Using Latent Semantic Indexing to Build the Similarity Index

We use LSI to extract linguistic information from the source code, which re-
sults in an LSI-index with similarities between source documents (i.e., pack-
ages, classes or methods). Based on the index we can determine the similarity
between source code documents. Documents are more similar if they cover the
same topic, terms are more similar if they denote related topics.

In the vector space model there is a vector for each document. For example, if
we use methods as documents, there is a vector for each method and the cosine
between these vectors denotes the semantic similarity between the methods.
In general cosine values are in the [−1, 1] range, however when using an LSI-
index the cosine between its element never strays much below zero. This is
since the LSI-index is derived from a term-document matrix that contains
positive occurrence data only.

First matrix in Figure 3. To visualize similarities between documents we map
them to gray values: the darker, the more similar. The similarities between
elements are arranged in a square matrix called correlation matrix or dot plot.
Correlation matrix is a common visualization tool to analyze patterns in a set
of entities [10]. Each dot ai,j denotes the similarity between element di and
element dj. Put in other words, the elements are arranged on the diagonal and
the dots in the off-diagonal show the relationship between them.

Fig. 3. From left to right: unordered correlation matrix, then sorted by similarity,
then grouped by clusters, and finally including semantic links.

3.4 Clustering: Ordering the Correlation Matrix

Without proper ordering the correlation matrix looks like television tuned
to a dead channel. An unordered matrix does not reveal any patterns. An
arbitrary ordering, such as for example the names of the elements, is generally
as useful as random ordering [29]. Therefore, we cluster the matrix to put
similar elements near each other and dissimilar elements far apart of each
other.

A clustering algorithm groups similar elements together and aggregates them
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into clusters [30]. Hierarchical clustering creates a tree of nested clusters, called
dendrogram, which has two features: breaking the tree at a given threshold
groups the elements into clusters, and traversing the tree imposes a sort order
upon its leaves. We use these two features to rearrange the matrix and to
group the dots into rectangular areas.

Second and third matrix in Figure 3. Each rectangle on the diagonal represents
a semantic cluster: the size is given by the number of classes that belong to a
topic, the color refers to the semantic cohesion [22] (i.e., the average similarity
among its classes 6 ). The color in the off-diagonal is the darker the more similar
to clusters are, if it is white they are not similar at all. The position on the
diagonal is ordered to make sure that similar topics are placed together.

The clustering takes the focus of the visualization from similarity between
elements to similarity between clusters. The tradeoff is, as with any abstrac-
tion, that some valuable detail information is lost. Our experiments showed
that one-to-many relationships between an element and an entire cluster are
valuable patterns.

Fourth matrix in Figure 3. If the similarity between an element dn from a
cluster and another cluster differs more than a fix threshold from the average
similarity between the two clusters, we plot dn on top of the clustered matrix
either as a bright line if dn is less similar than average, or as a dark line if
dn is more similar than average. We call such a one-to-many relationship a
semantic link, as it reveals an element that links from its own topic to another
topic.

Figure 4 illustrates an example of a semantic link. The relationship between
cluster A and cluster B is represented by the rectangle found at the intersection
of the two clusters. The semantic link can be identified by a horizontal (or
vertical) line that is darker than the rest of the rectangle. In our example, we
find such a semantic link between two clusters. Please note that the presence
of a link does not mean that the element in A should belong to B, it only
means that the element in A is more similar to B then the other elements in
A.

6 Based on the similarity sim(a, b) between elements, we define the similarity be-
tween cluster A and cluster B as 1

|B|×|A|
∑∑

sim(am, bn) with a ∈ A and b ∈ B
and in the same way the similarity between an element a0 and a cluster B as
1
|B|

∑
sim(a0, bn) with B ∈ B.
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Semantic linkCluster A

Cluster B

Fig. 4. Illustration of a semantic link. A semantic link is a one-to-many relation: A
document in cluster A that is more similar than its siblings in A to cluster B.

3.5 Labeling the Clusters

With the clustering we partitioned the source documents by their vocabulary,
but we do not know about the actual vocabulary that connects these docu-
ments together. In other words, what are the most important terms for each
cluster? In this section we use LSI to retrieve for each cluster the top-n list
with its most relevant terms. We use these lists to label the topics.

The labeling works as follows. As we already have an LSI-index at hand, we use
it as a search engine [15]. We reverse the usual search process where a search
query of terms is used to find documents, and instead, we use the documents in
a cluster as search query to find the most similar terms. To label a cluster, we
take the top-n most similar terms, using a top-7 list provides a useful labeling
for most case studies.

To compute the relevance of a term, we compare the similarity to the current
cluster with the similarity to all other clusters. This raises better results than
just retrieving the top most similar terms [13]. Common terms, as for example
the names of custom data structures and utility classes, are often highly similar
to many clusters. Thus, these terms would pollute the top-n lists with non-
discriminating labels if using plain similarity only, whereas subtracting the
average lowers the ranking of such common terms. The following formula ranks
high those terms that are very similar to the current cluster but not common
to all other clusters.

rel(t0, A0) = sim(t0, A0)−
1

|A|
∑

An∈A
sim(t0, An)

Term t0 is relevant to the current cluster A0, if it has a high similarity to
the current cluster A0 but not to the remaining clusters An ∈ A. Given the
similarity between a term t and a cluster A as sim(t, A), we define the relevance
of term t0 according to cluster A0 as given above.

Another solution to avoid such terms, is to include the common terms into a
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custom stopword list. However this cannot be done without prior knowledge
about the system, which is more work and contradicts our objectives. Further-
more, this ranking formula is much smoother than the strict opt-out logic of
a stopword list.

4 Analyzing the Distribution of Semantic Clusters

The semantic clusters help us grasp the topics implemented in the source code.
However, the clustering does not take the structure of the system into account.
As such, an important question is: How are these topics distributed over the
system?

To answer this question, we use a Distribution Map [31,14]. A Distribution
Map visualizes the distribution of properties over system parts i.e., a set of
entities. In this paper, we visualize packages and their classes, and color these
classes according to the semantic cluster to which they belong.

For example, in Figure 5 we show an example of a Distribution Map represent-
ing 5 packages, 37 classes and 4 semantic clusters. Each package is represented
by a rectangle, which includes classes represented as small squares. Each class
is colored by the semantic cluster to which it belongs.

package 1 package 2 package 3

package 4package 5

Fig. 5. Example of a Distribution Map.

Using the Distribution Map visualization we correlate linguistic information
with structural information. The semantic partition of a system, as obtained by
semantic clustering, does generally not correspond one-on-one to its structural
modularization. In most systems we find both, topics that correspond to the
structure as well as topics that cross-cut it. Applying this visualization on
several case studies, we identified the following patterns:

• Well-encapsulated topic – if a topic corresponds to system parts, we call this
a well-encapsulated topic. Such a topic is spread over one or multiple parts
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and includes almost all source code within those parts. If a well-encapsulated
topic covers only one part we speak of a solitary topic.

• Cross-Cutting topic – if a topic is orthogonal to system parts, we call this a
cross-cutting topic. Such a topic spreads across multiple parts, but includes
only one or very few elements within each parts. As linguistic information
and structure are independent of each other, cross-cutting identifiers or
names do not constitute a design flaw. Whether a cross-cutting topic has to
be considered a design smell or not depends on the particular circumstances.
Consider for example the popular three-tier architecture: It separates ac-
cessing, processing and presenting data into three layers; where application
specific topics – such as e.g., accounts, transactions or customers – are de-
liberately designated to cross-cut the layers. That is, it emphasizes on the
separation of those three topics and deliberately designates the others as
cross-cutting concerns.

• Octopus topic – if a topic dominates one part, as a solitary does, but also
spreads across other parts, as a cross-cutter does, we call this an octopus
topic. Consider for example a framework or a library: there is a core part
with the implementation and scattered across other parts there is source
code that plug into the core, and hence use the same vocabulary as the
core.

• Black Sheep topic – if there is a topic that consists only of one or a few
separate source documents, we call this a black sheep. Each black sheep
deserves closer inspection, as these documents are sometimes a severe design
smell. Yet as often, a black sheep is just an unrelated helper class and thus
not similar enough to any other topic of the system.

5 Case studies

To show evidence of the usefulness of our approach for software comprehension,
in this section we apply it on two case studies. Due to space limitations, only
the first case study is presented in full length.

First, we exemplify each step of the approach and discuss its findings in the
case of JEdit, a text editor written in Java. This case study is presented in
full length. Secondly, we present JBoss, an application-server written in Java,
which includes interesting anomalies in its vocabulary.

Figure 6 summarizes the problem size of each case study. It lists for each
case study: (lang) the language of the source code, (type) the granularity of
documents, (docs) the number of documents, (terms) the number of terms,

7 The Moose case study in [13] did not use stemming to preprocess the text corpus,
hence the large vocabulary.
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Case Study language type docs terms parts links rank sim

Ant Java Classes 665 1787 9 – 17 0.4

Azureus Java Classes 2184 1980 14 – 22 0.4

JEdit Java Classes 394 1603 9 53 17 0.5

JBoss Java Classes 660 1379 10 – 16 0.5

Moose 7 Smalltalk Classes 726 11785 – 137 27 –

MSEModel Smalltalk Methods 4324 2600 – – 32 0.75

Outsight Java Classes 223 774 10 – 12 0.5

Fig. 6. The statistics of sample case studies, JEdit and JBoss are discussed in this
work, for the other studies please refer to our previous work [13,32].

(parts) the number of found topics, (links) the number of found semantic
links, (rank) the dimension of the LSI-index, and (sim) the threshold of the
clustering.

5.1 On the Calibration of Parameters and Thresholds

Our approach depends on several parameters, which may be difficult too
choose for someone not familiar with the underlying technologies. In this sec-
tion we present all parameters, discuss their calibration and share our experi-
ence gained when performing case studies using the Hapax tool.

Weighting the term-document-matrix. To balance out the influence of
very rare and very common terms, it is common in information retrieval to
weight the occurrence values. The most common weighting scheme is tf-idf,
which we also use in the case studies, others are entropy or logarithmic weight-
ing [28].

When experimenting with different weighting schemes, we observed that the
choice of the weighting scheme has a considerable effect on the similarity
values, depending on the weighting the distance within the complete text
corpus becomes more compact or more loose [33]. Depending on the choice
of the weighting scheme, the similarity thresholds may differ significantly: as
a rule of thumb, using logarithmic weighting and a similarity threshold of
δ = 0.75 is roughly equivalent to a threshold of δ = 0.5 with tf-idf weighting
[34].

Dimensionality of the LSI-space. As explained in Section 2, LSI replaces
the term-document matrix with a low-rank approximation. When working
with natural language text corpora that contain millions of documents and
some ten thousands of terms, most authors suggest to use an approximation
between rank 200 and 500. In Software Analysis the number of documents is
much smaller, such that even ranks as low as 10 or 25 dimensions yield valuable
results. Our tool uses rank r = (m ∗n)0.2 by default for an m×n-dimensional
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text corpus, and allows customization.

Choice of clustering algorithm. There is a rich literature on different clus-
tering algorithms [30]. We performed a series of experiments using different
algorithms, however as we cannot compare our results against an a priori
known partition, we cannot measure recall in hard numbers and have to rely
on human judgment of the results. Therefore we decided to use a hierarchi-
cal average-linkage clustering as it is a common standard algorithm. Further
studies on the choice of clustering algorithm are open for future work.

Breaking the dendrogram into clusters. Hierarchical clustering uses a
threshold to break the dendrogram, which is the tree of all possible clusters,
into a fix partition. Depending on the objective, we break it either into a fixed
number of clusters (e.g., for the Distribution Map, where the number of colors
is constrained) or at a given threshold (e.g., for the correlation matrix). In
the user interface of the Hapax tool, there is a slider for the threshold such
that we can immediately observe the effect on both correlation matrix and
Distribution Map interactively.

Detecting semantic links. As explained in Section 3.4, a semantics link is
an element in cluster A with a different similarity to cluster B than average.
Typically we use a threshold of δ = ±20% to decide this, however, our tool
supports fixed thresholds and selecting the top-n link as well. When detecting
traceability-links, a problem which is closely related to semantic links, this has
been proven as the best out if these three strategies [21].

5.2 Semantic Clustering applied on JEdit

We exemplify our approach at the case of JEdit, an open-source Text editor
written in Java. The case study contains 394 classes and uses a vocabulary of
1603 distinct terms. We reduced the text corpus to an LSI-space with rank
r = 15 and clustered it with a threshold of δ = 0.5 (the choice of parameters
is discussed in Section 5.1).

In Figure 7, we see nine clusters with a size of (from top right to bottom left)
116, 63, 26, 10, 68, 10, 12, 80, and 9 classes. The system is divided into four
zones: (zone 1) the large cluster in the top left, (zone 2) two medium sized and
a small clusters, (zone 3) a large cluster and two small clusters, and (zone 4)
a large and a small cluster. The two zones in the middle that are both similar
to the first zone but not to each other, and the fourth zone is not similar to
any zone.

In fact, there is a limited area of similarity between the Zone 2 and 3. We
will later on identify the two counterparts as topics Pink and Cyan, which are

15



related to text buffers and regular expression respectively. These two topics
share some of their labels (i.e., start, end, length and count), however they
are clustered separately since LSI does more than just keyword matching, LSI
takes the context of term usage into account as well, that is the co-location of
terms with other terms.

This is a common pattern that we often encountered during our experiments:
zone 1 is the core of system with domain-specific implementation, zone 2 and 3
are facilities closely related to the core, and zone 4 is an unrelated component
or even a third-party library. However, so far this is just an educated guess
and therefore we will have a look at the labels next.

Figure 8 lists for each cluster the top-7 most relevant labels, ordered by rele-
vance. The labels provide a good description of the clusters and the tell same
story as the correlation matrix before. We verified the labels and topics by
looking at the actual classes within each cluster.

• Zone 1: topic Red implements the very domain of the system: files and users,
and a user can load, edit and save files.

• Zone 2: topic Green and Magenta implement the user interface, and topic
Pink implements text buffers.

• Zone 3: topic Cyan is about regular expressions, topic Yellow provides XML

Zone 1

Zone 2

Zone 3

Zone 4

Link 2

Link 3

Link 4

Link 1

Link 7Link 6Link 5

Fig. 7. The correlation matrix of JEdit.
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support and topic DarkGreen is about TAR archives.
• Zone 4: topic Blue and Orange are the BeanShell scripting framework, a

third-party library.

user, run, load, message, file, buffer, util 

property, AWT, edit, show, update, sp, set

start, buffer, end, text, length, line, count

action, box, component, event, button, layout, GUI

start, length, integer, end, number, pre, count 

XML, dispatch, microstar, reader, XE, register, receive
current, buffer, idx, review, archive, endr, TAR

BSH, simple, invocation, assign, untype, general, arbitrary 

maximum, label, link, item, code, put, vector

Fig. 8. The semantic clusters of JEdit and their labels.

All these labels are terms taken from the vocabulary of the source code and
as such they do not always describe the topics in generic terms. For example,
event though JEdit is a text-editor, the term text-editor is not used on the
source code level. The same applies for topic Cyan, where the term regular
expression does not shop up in the labels.

Next are the semantic links, these are the thin lines on the correlation matrix.
If a line is thicker than one pixel, this means that there are two or more similar
classes which are each a semantic links. The analysis detected 53 links, below
we list as a selection all links related to the scripting topic (these are the link
annotated on Figure 7). For each link we list the class names and the direction:

• Link 1: AppelScriptHandler and BeanShell link from topic Red to scripting.
• Link 2: Remote and ConsoleInterface link from topic Red to scripting
• Link 3: VFSDirectoryEntryTable and JThis link from the UI topic to script-

ing.
• Link 4: ParseException, Token TokenMgrError and BSHLiteral link from

the regular expressions topic to scripting.
• Link 5: ClassGeneratorUtil and ClasspathError link from scripting to topic

Red.
• Link 6: ReflectManager and Modifiers link from scripting to the UI topic.
• Link 7: NameSource and SimpleNode link from scripting to the regular

expressions and the XML topic.

Evaluating semantic links is similar to evaluating traceability links [21]. We
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inspected the source code of each link. Some of them are false positives, for
example link 4 and 5 are based on obviously unrelated use of the same iden-
tifers. On the other hand, link 1 points to the main connector between core
and scripting library and link 7 reveals a high-level clone, the implementation
of the same datatype in three places: XML uses nodes, and both BSH and
regular expressions implement their own AST node.

Figure 9 shows the distribution of topics over the package structure of JEdit.
The large boxes are the packages (the text above is the package name), the
squares are classes and the colors correspond to topics (the colors are the same
as on Figure 8).

Fig. 9. The Distribution Map of the semantic clusters over the package structure of
JEdit.

For example, in Figure 9 the large box on the right represents the package
named bsh, it contains over 80 classes and most of these classes implement the
topic referred to by Blue. The package boxes are ordered by their similarity,
such that related packages are placed near to each other.

Topic Red, the largest cluster, shows which parts of the system belong to the
core and which do not. Based on the ordering of the packages, we can conclude
that the two UI topics (e.g., Green and Yellow) are more closely related to
the core than for example topic Cyan, which implements regular expressions.

The three most well-encapsulated topics (e.g., Orange, Blue and Cyan) imple-
ment separated topics such as scripting and regular expressions. Topic Yellow
and Pink cross-cut the system: Yellow implements dockable windows, a cus-
tom GUI-feature, and Pink is about handling text buffers. These two topics
are good candidates for a closer inspection, since we might want to refactor
them into packages of their own.
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5.3 First Impression of JBoss: Distribution Map and Labels

This case study presents the outline of JBoss, an application-server written
in Java. We applied semantic clustering and partitioned the system into ten
topics. The system is divided into one large cluster (colored in red), which
implements the core of the server, and nine smaller clusters. Most of the small
clusters implement different services and protocols provided by the application
server.

Fig. 10. The Distribution Map of the semantic clusters over the package structure
of JBoss.

Color Size Labels

red 223 invocation, invoke, wire, interceptor, call, chain, proxy, share

blue 141 jdbccmp, JDBC, cmp, field, loubyansky, table, fetch

cyan 97 app, web, deploy, undeployed, enc, JAR, servlet

green 63 datetime, parenthesis, arithmetic, negative, mult, div, AST

yellow 35 security, authenticate, subject, realm, made, principle, sec

dark magenta 30 expire, apr, timer, txtimer, duration, recreation, elapsed

magenta 20 ASF, alive, topic, mq, dlq, consume, letter

orange 20 qname, anonymous, jaxrpcmap, aux, xb, xmln, WSDL

purple 16 invalid, cost, September, subscribe, emitt, asynchron, IG

dark green 15 verify, license, warranty, foundation, USA, lesser, fit

Fig. 11. The labels of the semantic clusters of JBoss.

The Distribution Map is illustrated in Figure 10, and the top-7 labels are
listed in figure Figure 11 in order of relevance. This is the same setup as in
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the first case study, except the correlation matrix and semantic links are left
out due to space restrictions. We verified the clustering by looking the source
code, and present the results as follows.

Topic Red is the largest cluster and implements the core functionality of the
system: is labeled with terms such as invocation, interceptor, proxy and share.
Related to that, topic Cyan implements the deployment of JAR archives.

The most well-encapsulated topics are DarkGreen, Orange, Green and Blue.
The first three are placed apart from Red, whereas Blue has outliers in the
red core packages. The labels and package names (which are printed above
the package boxes in the Distribution Map) show that DarkGreen is a bean
verifier, that Orange implements JAX-RPC and WDSL (e.g., web-services),
that Green implements an SQL parser and that Blue provides JDBC (e.g.,
database access) support. These are all important topics of an application
server.

The most cross-cutting topic is Yellow, it spreads across half of the system.
The labels reveal that this the security aspect of JBoss, which is reasonable
as security is an important feature within a server architecture.

Noteworthy is the label loubyansky in topic Blue, it is the name of a developer.
Based on the fact that his name appears as one of the labels, we assume that
he is the main developers of that part of the system. Further investigation
proved this to be true.

Noteworthy as well are the labels of topic DarkGreen, as they expose a failure
in the preprocessing of the input data. To exclude copyright disclaimers, as for
example the GPL licence, we ignore any comment above the package statement
of a Java class. In the case of topic DarkGreen this heuristic failed: the source
files contained another licence within the body of the class. However, repeating
the same case study with an improved preprocessing resulted in nearly the
same clustering and labeled this cluster as RMI component: event, receiver,
RMI, RMIiop, iiop, RMIidl, and idl.

The topics extracted from the source code can help improving the compre-
hension. If a maintainer is seeking information, semantic clustering helps in
identifying the related code. This is similar to the use of a search engine, for
example if the web-service interface has to be changed, the maintainer can im-
mediately look at the Orange concept, and identify the related classes. Much
in the same way, if one has to maintain the database interface, he looks at the
Blue concept.
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6 Discussion

In this section we evaluate and discuss success criteria, strengths and limita-
tions of the proposed approach. We discuss how the approach stands and fails
with the quality of the identifer naming. Furthermore we discuss the relation
between linguistic topics and domain or application concepts.

6.1 On the Quality of Identifier Names

In the same way as structural analysis depends on correct syntax, semantic
analysis is sensitive to the quality of the naming. Since we derive our topics
solely based on the use of identifer names and comments, it does not come as
a surprise that our approach stands and fails with the quality of the source
code naming.

Our results are not generalizable to any software system, a good naming con-
vention and well chosen identifiers yields best results, whereas bad naming
(i.e., too generic names, arbitrary names or cryptic abbreviations) is one of
the main threats to external validation. The vocabulary of the case studies
presented in this work is of good quality, however, when performing other
case studies we learned of different facets that affect the outcome, these are:

On the use of naming conventions. Source following state-of-the-art nam-
ing conventions, as for example the Java Naming Convention, is easy to pre-
process. In case of legacy code that uses other naming conventions (e.g., the
famous Hungarian Notation) or even none at all, other algorithms and heuris-
tics are to be applied [35,36].

On generic or arbitrary named identifiers. However, even the best pre-
processing cannot guess the meaning of variables which are just named temp
or a, b and c. If the developers did not name the identifiers with care, our
approach fails, since the developer knowledge is missing. Due to the strength
of LSI in detecting synonymy and polysemy, our approach can deal with a cer-
tain amount of such ambiguous or even completely wrong named identifiers –
but if a majority of identifiers in system is badly chosen, the approach fails.

On abbreviated identifier names. Abbreviated identifers are commonly
found in legacy code, since early programming languages often restrict the
discrimination of identifer names to the first few letters. But unlike generic
names, abbreviations affect the labeling only and do not threat our approach
as whole. This might come as a surprise, but since LSI is solely based on
analyzing the statistical distribution of terms across the document set, it is
not relevant whether identifiers are consistently written out or consistently
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abbreviated.

However, if the labeling task comes up with terms such as pma, tcm, IPFWDIF
or sccpsn this does not tell a human reader much about the system. These
terms are examples taken from a large industry case study, which is not in-
cluded in this paper, where about a third of all identifiers where abbreviations.
In this case the labeling was completely useless. Please refer to [36] for ap-
proaches on how to recover abbreviations.

On the size of the vocabulary. The vocabulary of source code is very small,
smaller than that of a natural language text corpus. Intuitively explained: LSI
is like a child learning language. In the same way as a human with a vocab-
ulary of 2000 terms is less eloquent and knowledgeable than a human with
a vocabulary of 20,000 terms, LSI performs better the larger the vocabulary.
Whereas, the smaller the vocabulary the stronger the effect of missing or in-
correct terms. In fact, LSI has been proven a valid model of the way children
acquire language [23].

On the size of documents. In average there are only about 5-10 distinct
terms per method body, and 20-50 distinct terms per class. In a well com-
mented software system, these numbers are higher since comments are human-
readable text. This is one of the rationales why LSI does not perform as accu-
rate on source code as on natural language text [21], however the results are
of sufficient quality.

On the combination of LSI with morphological analysis. Even tough
the benefits of stemming are not without controversy, we apply it as part of
the preprocessing step [37]. Our rational is: analyzing a software system at the
level of methods is very sensitive to the quality of input, as the small document
size threatens the success of LSI. Considering these circumstances, we decided
to rely on stemming as it is well known that the naming of identifers often
includes the same term in singular and plurals: for example setProperty and
getAllProperties or addChild and getChildren.

6.2 On using Semantic Clustering for Topic Identification

One of our objectives is to compare linguistic topics to domain and application
concepts [24]. As discussed in Section 3.1, we derive linguistic topics from the
vocabulary usage of source code instead from external definitions. In this sec-
tion we clarify some questions concerning the relation between derived topics
and externally defined concepts:

On missing vocabulary and ontologies. Often the externally defined con-
cepts are not captured by the labeling. The rational for this is as follows.
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Consider for example a text editor in whose source code the term text-editor
is never actually used, but terms like file and user. In this case our approach
will label the text-editor concepts with these two terms, as a more generic
term is missing. As our approach is not based on an ontological database, its
vocabulary is limited to the terms found in source code and if terms are not
used our approach will not find accurate labels. We suggest to use ontologies
(i.e., WordNet) to improve the results in these cases.

On the congruence between topics and domain. When starting this
work, one of our hypotheses was that semantic clustering will reveal a sys-
tem’s domain semantics. But our experiments disproved this hypothesis: most
linguistic topics are application concepts or architectural components, such
as layers. In many experiments, our approach partitioned the system into
one (or sometimes two) large domain-specific part and up to a dozen domain-
independent parts, such as for example input/output or data storage facilities.
Consider for example the application in Figure 12, it is divided into nine parts
as follows:

Fig. 12. The Distribution Map of Outsight, a webbased job portal application [32].

Only one topic out of nine concepts is about the system’s domain: job ex-
change. Topic Red includes the complete domain of the system: that is users,
companies and CVs. Whereas all other topics are application specific compo-
nents: topic Blue is a CV search engine, topic DarkGreen implements PDF
generation, topic Green is text and file handling, topic Cyan and Magenta pro-
vide access to the database, and topic DarkCyan is a testing and debugging
facility. Additionally the cross-cutting topic Yellow bundles high-level clones
related to time and timestamps.

On the congruence between topics and packages. In section Section 4
we discussed the relation between topics and packages. Considering again the
case study in Figure 12 as an example, we find occurrences of all four patterns:
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Topic DarkGreen for example is well-encapsulated, whereas topic Yellow cross-
cuts the application. Then there is topic Blue, which is an octopus with the
conditions package as its body and tentacles reaching into six other packages,
and finally we have in the logic package an instance of a black sheep.

On source documents that are related to more than one topic. If we
want to analyze how the topics are spread across some type of documents (e.g.,
packages, classes or methods) we have to break the system into documents
one level below the target level. For example, if we want to analyze the topic
distribution over packages, we break the system into classes and analyze how
the topics of classes are spread over the packages.

7 Related Work

The use of information retrieval techniques for reverse engineering dates back
to the late eighties. Frakes and Nejmeh proposed to apply them on source
code as if it would be a natural language text corpus [38]. They applied an IR
system based on keyword matching, which allowed to perform simple searches
using wildcards and set expressions.

Antoniol et al. have published a series of papers on recovering code to docu-
mentation traceability [39,4]. They use information retrieval as well, however
with another approach. They rely on external documentation as text corpus,
then they query the documentation with identifiers taken from source code to
get matching external documents.

Maletic and Marcus were the first to propose using LSI to analyze software
systems. In a first work they categorized the source files of the Mosaic web
browser and presented in several follow-ups other applications of LSI in soft-
ware analysis [18]. Their work is a precursor of our work, as they proved that
LSI is usable technique to compare software source documents. They apply
a minimal-spanning-tree clustering and report on class names and average
similarity of selected clusters. We broaden the approach by providing a vi-
sual notation that gives an overview of all the clusters and their relationships,
and we provide the automatic labeling that takes the entire vocabulary into
account and not only the class names.

LSI was also used in other related areas: Marcus and Maletic used LSI to
detect high-level conceptual clones, that is they go beyond just string based
clone detection using the LSI capability to spot similar terms [20]. They select
a known implementation of an abstract datatype, and manually investigate all
similar source documents to find high-level concept clones. The same authors
also used LSI to recover links between external documentation and source
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code by querying the source code with queries from documentation [40].

Kawaguchi et al. used LSI to categorize software systems in open-source soft-
ware repositories [19]. Their approach uses the same techniques as ours, but
with a different set up and other objectives. They present a tool that cate-
gorizes software projects in a source repository farm, that is they use entire
software systems as the documents of their LSI space. They use clustering to
provide an overlapping categorizations of software, whereas we use clustering
to partition the software into distinct topics. They use a visualization of they
results with the objective to navigate among categorizations and projects, sim-
ilar to the Softwarenaut tool [41], whereas we use visualizations to present an
overview, including all documents and the complete partition, at one glance.

Marcus et al. employed LSI to detect concepts in the code [9]. They used the
LSI as a search engine and searched in the code the concepts formulated as
queries. Their work is about concept location of externally defined concepts,
whereas we derive our concepts from the vocabulary usage on the source-code
level. Their article also gives a good overview of the related work. Marcus et al.
also use LSI to compute the cohesion of a class based on the semantic similarity
of its methods [22]. In our work, we extend this approach and illustrate on
the correlation matrix both, the semantic similarity within a cluster and the
semantic similarity between clusters.

De Lucia et al. introduce strategies to improve LSI-based traceability detection
[21]. They use three techniques of link classification: taking the top-n search
results, using a fix threshold or a variable threshold. Furthermore they create
separate LSI spaces for different document categories and observe better re-
sults that way, with best results on pure natural language spaces. Lormans and
Deursen present two additional links classification strategies [42], and discuss
open research questions in traceability link recovery.

Di Lucca et al. also focus on external documentation, doing automatic as-
signment of maintenance requests to teams [43]. They compare approaches
based on pattern matching and clustering to information retrieval techniques,
of which clustering performs better.

Huffman-Hayes et al. compare the results of several information retrieval tech-
niques in recovering links between document and source code to the results of
a senior engineer [44]. The results suggest that automatic recovery performs
better than human analysis, both in terms of precision and recall and with
comparable signal-to-noise ratio. In accordance with these findings, we auto-
mate the “Read all the Code in One Hour” pattern using information retrieval
techniques.

Čubranić et al. build a searchable database with artifacts related to a soft-
ware system, both source code and external documentation [45]. They use a
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structured meta model, which relates bug reports, news messages, external
documentation and source files to each other. Their goal is the support soft-
ware engineers, especially those new to a project, with a searchable database of
what they call “group memory”. To search the database they use information
retrieval, however they do not apply LSI and use a plain vector space model
only. They implemented their approach in an eclipse plug-in called Hipikat.

8 Conclusions

Source code bears the semantics of an application in the names of identifiers
and comments. In this paper we present our approach to retrieve the topics
present in the source code vocabulary to support program comprehension. We
introduce semantic clustering, a technique based on Latent Semantic Indexing
and clustering to group source documents that use similar vocabulary. We call
these groups semantic clusters and we interpret them as linguistic topics that
reveal the intention of the code. As compared to our previous approach, we
go a step forward and use Distribution Maps to illustrate how the semantic
clusters are distributed over the system.

We applied the approach on several case studies with different characteristics,
two of which are presented in this paper. The case studies give evidence that
our approach provides a useful first impression of an unfamiliar system, and
that we reveal valuable developer knowledge. The Distribution Map together
with the labeling provides a good first impression of the software’s domain.
Semantic clustering captures topics regardless of class hierarchies, packages
and other structures. One can, at a glance, see whether the software covers just
a few or many different topics, how these are distributed over the structure,
and – due to the labeling – what they are about.

When starting this work, one of our hypotheses was that semantic clustering
would reveal a systems domain semantics. However, our experiments showed
that most linguistic topics relate to application concepts or architectural com-
ponents. Usually, our approach partitions a system into one (or sometimes two)
large domain-specific clusters and up to a dozen domain-independent clusters.
As part of our future work, we plan to investigate more closely the relationship
between linguistic topics and both domain and application concepts.

In the future we would also like to investigate in more depth recall and pre-
cision of the approach. For example, we would like to compare the results of
the semantic clustering with other types of clustering. Furthermore, we would
like to improve the labeling with other computer linguistic techniques.
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