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ABSTRACT
Modern IDEs such as Eclipse offer static views of the source code,
but such views ignore information about the run-time behavior
of software systems. Since typical object-oriented systems make
heavy use of polymorphism and dynamic binding, static views will
miss key information about the run-time architecture. In this pa-
per we show by means of a controlled experiment with 30 profes-
sional developers that for typical software maintenance tasks inte-
grating dynamic information into the Eclipse IDE yields a signif-
icant 17.5% decrease of time spent while significantly increasing
the correctness of the solutions by 33.5%. Furthermore, we de-
scribe several enhancements to the Eclipse IDE that integrate static
and dynamic information, with the goal of better supporting typi-
cal software maintenance activities. We elaborate on a case study
which further highlights the usefulness of dynamic information
for performance optimizations. We also report on several impor-
tant efficiency improvements to our dynamic information collection
framework, and we present benchmarks evaluating the overhead of
our approach.

Keywords
dynamic analysis, development environments, program compre-
hension, software maintenance, empirical experiments

1. INTRODUCTION
In many object-oriented systems, conceptually related code is

scattered over the entire source space. As this space can be very
large, developers have difficulties to locate the code relevant for
a particular software maintenance task. This problem is further
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exacerbated by object-oriented language features such as inheri-
tance, interface types or polymorphism that often obscure the actual
run-time behavior. The primary tool used by software developers,
the IDE, does usually not help them better understand source code
relying on polymorphism as it just shows the statically declared
types. Moreover, high-level collaborations are often inaccurately
presented by the IDE, which is only aware of which classes imple-
ment a given interface, not which ones are actually used at run-time.

To improve the understanding for Java-based software sys-
tems employing polymorphism or abstract types, we extended the
Eclipse IDE to integrate dynamic information. Such informa-
tion enables the programmer to explore and understand the inter-
procedural control flow of a system or to see also the run-time types
in the source code views that are, for example, sub-types of the stat-
ically defined types. Our extensions exploit behavioral information
to better understand and navigate the source space in a prototype
Eclipse plugin called Senseo about which we reported in previous
work [20]1.

However, this previous work was considerably limited and had
several flaws: (i) dynamic information was just integrated locally
in the source code views on a method level, thus there was no
overview of the entire system, (ii) dynamic collaboration between
source artifacts, such as packages or classes, was not made visible,
and (iii) gathering of dynamic information such as run-time types
was inefficient. Thus, we contribute in this paper several significant
extensions to Senseo such as a collaboration view presenting all dy-
namic collaborators of source artifacts on a package or class level
to make explicit the dynamic dependencies between entire source
artifacts. Another enhancement, called Calling Context Ring Chart
(CCRC), a navigable visualization of the system’s Calling Context
Tree (CCT) [1], is useful for efficiently spotting performance bot-
tlenecks. The CCT is a runtime data structure for calling context
profiling. Each node in the CCT conveys the measured dynamic
metrics for that calling context. We also significantly reduced the
overhead of gathering the dynamic information.

We previously motivated the usefulness of Senseo purely with
anecdotal evidence. To validate our claims, we conduct a con-
trolled user experiment with 30 professional Java developers to ob-

1http://scg.unibe.ch/download/Senseo.pdf
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tain reliable quantitative and qualitative feedback about the impact
on developer productivity contributed by Senseo and the dynamic
information it integrates in Eclipse. We ask the subjects to solve
five typical software maintenance tasks in an unfamiliar, medium-
sized software system. We split the 30 subjects into two groups, an
experimental and a control group. The only difference in treatment
between these two groups is that the control group is provided with
the standard Eclipse IDE while the experimental group additionally
can use the Senseo plugin. Analyzed variables are time required to
solve the tasks and correctness of the answers. Evaluating the ob-
tained results yields a significant decrease in time of 17.5% and a
significant increase in correctness of 33.5%.

In this paper we make the following contributions: (i) validat-
ing the impact of the availability of dynamic information and their
presentation in Eclipse on developer productivity during software
maintenance by conducting a controlled experiment with 30 pro-
fessional Java developers, (ii) integrating higher-level means in the
IDE to visualize and present dynamic information such as the col-
laboration or the CCRC view, (iii) a case study reporting specifi-
cally on the usefulness of the CCRC, and (iv) improving the effi-
ciency of our aspect-based dynamic information collection frame-
work called MAJOR and a thorough performance evaluation.

This paper is structured as follows: In Section 2 we describe
the background of our work on integrating dynamic information
in IDEs. Section 3 illustrates enhancements to Senseo. Section 4
introduces the controlled user experiment, discusses its design, re-
sults and threats to validity. In Section 5 we present a case study,
validating Senseo’s CCRC view. Section 6 thoroughly elaborates
on the important efficiency issue of the employed dynamic infor-
mation collection technique. Finally, Section 7 highlights related
work in the areas of dynamic analysis, IDEs and empirical studies
in software engineering while Section 8 concludes the paper.

2. BACKGROUND
In a previous publication [20], we introduced a prototype of

Senseo integrating dynamic information in Eclipse about receiver,
argument and return value types of message sends. Senseo presents
this information in tooltips appearing when the mouse hovers over
method declarations or invocations in source code. For a method,
the tooltip shows the calling methods, the methods called in the
method body, the concrete argument, receiver, and return value
types. That is, if the statically declared type refers to an abstract
or interface type, the tooltip shows the type actually occurred at
run-time (see Figure 1, (1)).

Furthermore, the former Senseo prototype also visualizes three
dynamic metrics2 [8], the number of method invocations, the num-
ber of object allocations, and the allocated bytes. In the Senseo
prototype we presented such metrics in the ruler columns next to
the source code editor (Figure 1, (2) and (3)) and in the package
tree (Figure 1, (4)). Source artifacts heavily contributing to the cur-
rently selected metric, such as methods creating many objects, are
displayed in red in package tree and ruler columns while artifacts
with lower activity are colored in blue. This means Senseo follows
a heatmap coloring scheme with a color gradient from blue to red.

The analyzed application runs in a separate JVM in which MA-
JOR [22] weaves a data gathering aspect in the application code,
while the Eclipse IDE including Senseo runs in another JVM. The

2In this paper, the term dynamic metrics refers to numerically rep-
resented dynamic information, such as the number of method invo-
cations, the number of object allocations, or the number of executed
bytecodes. The term dynamic information subsumes dynamic met-
rics as well as information on run-time types.

aspect woven with MAJOR creates the CCT and collects the dy-
namic information. Such an aspect-based approach for dynamic in-
formation gathering is highly flexible as the aspect code is compact
and easy to extend and customize. Furthermore, MAJOR enables
us to gather dynamic information for the entire bytecode used by a
system, including the Java class library and dynamically loaded or
generated code.

Senseo aggregates the collected dynamic information of multi-
ple executions of the program, thus the information presented in
the IDE is not bound to a specific execution as for instance in a
debugger or a profiler. In comparison with debuggers or profilers,
Senseo supports a wider range of software maintenance tasks and
the aggregated information is not volatile, but rather permanent and
aggregated. Hence Senseo’s approach to dynamic analysis suffers
less from typical problems of behavioral analysis, such as cover-
age or completeness of the information, as the dynamic informa-
tion stemming from various different system executions is typically
more reliable and complete, depending on the executed scenarios.

While the former Senseo prototype and the dynamic information
it provided were already helpful to better understand systems heav-
ily relying on polymorphic message sending or abstract interface
types [20], we realized that there were several types of software
maintenance tasks these extensions could not well support:

i. Understanding higher-level concepts, such as application lay-
ers, models, or separation of concerns.

ii. Identifying collaboration patterns, that is, how various source
artifacts communicate with each other at run-time.

iii. Locating design flaws, design “smells”, performance bottle-
necks, and other code quality issues, such as classes heav-
ily coupled to classes in other packages or classes residing in
wrong packages.

iv. Gaining an overview of control flow and execution complexity,
for instance to quickly locate performance bottlenecks.

In the next section we discuss how we enhanced Senseo to sup-
port these kind of tasks by providing visualizations or other means
to use various dynamic information directly in Eclipse. The user
experiment presented in Section 4 shows how these enhancements
actually help developers performing such tasks.

3. ENHANCEMENTS TO SENSEO
This section discusses enhancements and new features integrated

in Senseo, which were not available in the prototype presented
in [20]. Whereas this earlier prototype of Senseo showed dynamic
information only close to the source code and locally to specific
source artifacts (for instance, by extending the tooltip appearing
when the mouse hovers over methods), the new version greatly
improves the integration of behavioral information with additional
means such as the collaboration view which makes explicit depen-
dencies between different source entities or the CCRC which gives
an overview of the system’s calling context tree in order to support
developers in software maintenance tasks, such as those mentioned
in Section 2. Senseo now supports an additional metric, the number
of executed bytecodes, which is useful for program optimizations
(see Section 5)

Collaboration View. In a separate view next to the source code
editor (Figure 1, (6)), Senseo presents all dynamic collaborators
for the currently selected artifact. For instance, if a method has
been selected, the collaboration view shows the collaborators at
the package, class, or method level; that is, it lists all packages
or classes invoking methods of the package or class in which the
selected method is declared (callers). Furthermore, the collabora-
tion view shows all packages or classes with which the package or
class declaring the method is actively communicating (callees). For
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Figure 1: Overview of Senseo and all its techniques to integrate dynamic information in Eclipse

the method itself, the collaboration view lists all direct callers and
callees.

Calling Context Ring Chart (CCRC). The CCRC, first intro-
duced in [15]3, offers a condensed visualization of a Calling Con-
text Tree (CCT) and provides navigation mechanisms to locate and
explore subtrees of interest for the software maintenance task at
hand. In a CCRC, the CCT root is represented as a circle in the cen-
ter. Callee methods are represented by ring segments surrounding
the caller’s ring segment. A CCRC can display all calling contexts
of a CCT in a single view, correctly preserving the caller/callee re-
lationships conveyed in the CCT. For a detailed analysis of certain
calling contexts, CCT subtrees can be visualized separately and the
number of displayed tree layers can be limited. In order to reveal
hot calling contexts with respect to a chosen dynamic metric, ring
segments can be sized proportional to the aggregated metric contri-
bution of the corresponding CCT subtree.

Senseo integrates a CCRC view of the CCT (Figure 1, (5)),
which is interlinked with the static source view. The chart in the
figure shows a subtree whose root has been selected by double-
clicking on a calling context. For a selected calling context in
the CCRC, the developer can switch to the corresponding method
source. Vice versa, for a method in the source view, the methods’
occurrences in the CCT (if any) can be highlighted and automati-
cally selected one after the other.

While the CCRC implementation described in [15] visualizes
only a single, aggregated dynamic metric, the new CCRC version
integrated in Senseo supports visualization of a second dynamic
metric (which may be aggregated for CCT subtrees or not) by col-
oring each ring segment according to the calling context’s “hot-
ness” with respect to the selected metric, as seen in Figure 1, (5)
(note the CCRC displayed in this figure does not use proportional
ring segment sizing). For instance, if the chosen dynamic metric for
coloring is the number of method invocations (not aggregated), the
most frequently invoked calling contexts are colored in red. Visual-
izing two different dynamic metrics within the same CCRC is par-
ticularly useful for program optimization. For example, sizing ring
segments proportional to the number of executed bytecodes in a

3http://inf.usi.ch/projects/ferrari/ccrc.pdf

CCT subtree and coloring them according to the number of method
invocations, reveals hot calling contexts (i.e., large ring segments)
and highlights whether a calling context is hot because the corre-
sponding method is invoked frequently (i.e., hot color red) or be-
cause of the method’s (or its callees’) internal complexity (i.e., cold
color blue). In the former case, optimizations should aim at reduc-
ing the number of method invocations, whereas in the latter case,
optimizations should try reducing the complexity of the computa-
tion represented by the calling context. A concrete optimization
performed with CCRC is illustrated as a case study in Section 5.

Dynamic Bytecode Metric. The new version of Senseo gathers
an additional dynamic metric, the number of executed bytecodes in
each calling context. The aggregation of this metric for a CCT sub-
tree relates to the complexity of the corresponding computation;
it is well suited for sizing ring segments in the CCRC visualiza-
tion. In contrast to CPU time, the number of executed bytecodes is
a largely platform-independent metric that can be easily collected
without significant measurement perturbations [3, 4, 8].

In order to count the number of executed bytecodes without mod-
ifying the JVM, it is necessary to intercept the execution of each
basic block of code, increasing a bytecode counter by the number
of bytecodes in each executed basic block [3]. Because prevailing
aspect frameworks such as AspectJ do not support pointcuts at the
level of basic blocks of code, we extended MAJOR with a new basic
block pointcut designator.

4. CONTROLLED USER EXPERIMENT
We conducted a controlled experiment with 30 professional Java

developers to measure the expected impact of Senseo [20] enhanced
with the contributions discussed in Section 3. We now describe the
experimental design, the subjects, the evaluation procedure and the
final results (including qualitative feedback) as well as threats to
validity.

4.1 Experimental Design
This experiment aims at quantitatively evaluating the impact of

Senseo and the dynamic information it integrates in the Eclipse IDE
on developer productivity in terms of efficiently and correctly solv-
ing typical software maintenance tasks. We therefore analyze two
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variables in this experiment: time spent and correctness. This ex-
periment also reveals which kind of tasks benefit the most from the
availability of dynamic metrics in the IDE. The experimental de-
sign we opted for is similar to the one applied in the study of Cor-
nelissen et al. [5] which evaluated a trace visualizing tool called
EXTRAVIS.

Study Hypotheses. We claim that the availability of the Senseo
plugin reduces the amount of time it takes to solve software main-
tenance tasks and that it increases the correctness of the solutions.
Accordingly, we formulate the following two null hypotheses:

• H10: Having available Senseo does not impact the time for
solving the maintenance tasks.

• H20: Having available Senseo does not impact the correct-
ness of the task solutions.

Congruently, we formulate these two alternative hypotheses:
• H1: Having available Senseo reduces the time for solving the

maintenance tasks.
• H2: Having available Senseo increases the correctness of the

task solutions.
We test the two null hypotheses by assigning each subject to ei-

ther a control group or an experimental group. While the experi-
mental group has Senseo available for answering typical software
maintenance tasks and questions, the control group uses a standard,
unextended Eclipse IDE; otherwise there is no difference in treat-
ment between the two subject groups. As both groups have nearly
equal expertise, differences in time or solution correctness can be
attributed to the availability of Senseo.

Study Participants. We asked 30 software developers working
in industry (24) or with former industrial experience in software
development (6) to participate in our experiment. Participation was
voluntary and unpaid. All subjects answered a questionnaire asking
for their expertise with Java, Eclipse and specific skills in software
engineering, such as how often they work with unfamiliar code or
how often they apply dynamic analysis. Most subjects (25) are
mainly working with Java on their job, the others (5) mainly use
another language but rely on Java at least in some of their profes-
sional projects. All participants are familiar with the Eclipse IDE.

The subjects have between one and 25 years of professional ex-
perience as a software engineer (average 4.8 years, median 4 years).
27 subjects have a university degree in computer science (Bache-
lors or Masters from 18 different universities) while three subjects
either studied in another area or learned software engineering on
the job. The subjects are very heterogeneous and thus fairly repre-
sentative (seven different nationalities, working for eight different
companies). In a Likert scale from 0 (no experience) to 4 (expert)
subjects rated themselves on a level of 2.93 for Java experience,
2.73 for Eclipse experience and 2.72 for experience in working with
unfamiliar code. All these ratings refer to “very experienced”. With
an average rating of 2.20, experience in applying dynamic analysis
is slightly lower, but this rating is still considered as “quite experi-
enced”. Note that no subject claimed to have no experience in any
of these four areas.

To assign the 30 subjects to either the experimental or the con-
trol group, we used the obtained expertise information to build two
groups with equal expertise. To assess the expertise we considered
four variables as given by the subjects: number of years of profes-
sional experience in software engineering, experience with Java,
Eclipse and with maintaining unfamiliar code. For each subject we
searched for a pair with similar expertise concerning these variables
and then randomly assigned these two persons to either of the two
groups. This leads to a very similar overall expertise in both groups
as shown in Table 1.

Subject System and Tasks. As a subject system we have chosen

Table 1: Average expertise in control and experimental group
Expertise variable Control group Exper. group
Years of experience 4.73 4.40
Java experience [0..4] 2.93 2.80
Eclipse experience [0..4] 2.80 2.67
Unfamiliar code exp. [0..4] 2.73 2.73
Mean 3.30 3.15

jEdit4, an open-source text editor written in Java. JEdit consists of
32 packages with 5275 methods in 892 classes totaling more than
100 KLOC. We opted for jEdit as a subject system as it is medium-
sized and representative for many software projects found in indus-
try. JEdit has a long history of development spanning nearly ten
years and involving more than ten developers. Even though it has
been refactored several times, a careful analysis of the code quality
revealed several design flaws, such as the use of deprecated code,
tight coupling of many source entities to package-external artifacts,
or lack of cohesion in almost all packages, which makes jEdit hard
to understand. We expect many industrial systems to have similar
quality problems, thus we consider jEdit to be a well-suited subject
application fairly typical for many industrial systems developers
come across on their job. Furthermore, the domain of a text ed-
itor is familiar to everyone, thus no special domain-knowledge is
required to understand jEdit.

The tasks we gave the subjects are concerned with analyzing
and gaining an understanding for various features of jEdit. While
choosing the tasks, our main goal was to select tasks representative
for real maintenance scenarios. Furthermore, these tasks must not
be biased towards dynamic analysis. To assure that these criteria
are met we selected the tasks according to the framework proposed
by Pacione et al. [16]. They identified nine principal activities for
reverse engineering and software maintenance tasks covering both
static and dynamic analysis. Based on these activities they propose
several characteristical tasks including all identified activities. We
thus design our tasks following this framework to respect all nine
principal activities, which avoids a potential bias towards Senseo.

This leads us to the definition of five tasks, each divided into two
subtasks, resulting in ten different questions we asked to the sub-
jects. Table 2 outlines all five tasks and their subtasks and explains
which of Pacione’s activities they cover. Task five is a special case
since we use it as a “time sink task” to avoid ceiling effects [2].
Subjects that can answer the questions quickly might spend consid-
erably more time on the last task when they notice that there is still
much time available, thus the addition of a time-consuming task at
the end which is not considered in the evaluation makes sure that
subjects have a constant time pressure for all relevant tasks. The
first four tasks also cover all of Pacione’s activities.

All questions are open, that is, subjects cannot select from mul-
tiple choices but have to write a text in their own words. We graded
the subjects answers by assigning scores from zero to four for each
question. Before starting with the experiments, the two experi-
menters (who are also authors of this paper) answered all prepared
questions. We compared and combined both solutions to form an
answer model which we then used to grade the subjects’ answers.

Experimental Procedure. We conducted the experiment with
up to four subjects at the same time. We gave the subjects a short
five minute introduction to the experiment setup. Subjects from
the experimental group additionally received an introduction to the
Senseo plugin lasting for 20 minutes. This introduction followed
a script we prepared to ensure that every subject receives the same
4http://www.jedit.org/
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Table 2: The five software maintenance tasks
Task Activities Description
1.1 A 1, 9 Feature understanding on a high

architectural level
1.2 A 1, 4 ,5 Describing package collaborations in

this feature
2.1 A 8 Assessing quality of three classes in

terms of their external dependencies
2.2 A 4, 5, 6, 8 Describing coupling between the

packages of these three classes
3.1 A 1, 3, 4, 5 Reporting about message sending and

control flow in a class
3.2 A 1, 3, 5, 7 Locating clients of this class and

analyzing their communication paths
4.1 A 4, 5, 8, 9 Comparing two features on a fine-grained

method level to locate a defect
4.2 A 2 Correcting this defect by changing one

feature to work similar as the other
5.1 A 4, 5, 6, 7 Exploring an algorithm in a specific class

and report on its execution patterns
5.2 A 5, 6, 7, 8 Comparing this algorithm to another,

similar algorithm in terms of efficiency

information about Senseo. Furthermore, we provided the Senseo
subjects with a short description and a screenshot highlighting and
explaining the core features of Senseo. This documentation served
as a reference during the experiment.

Afterwards, we started the experiment. We supervised all sub-
jects during the entire experiment and recorded the time they took
to answer each question. Concerning infrastructure, each sub-
ject obtained the same pre-configured Eclipse installation we dis-
tributed in a virtual image. The only difference between the control
group and the experimental group was the availability of Senseo,
otherwise the Eclipse IDE was configured in exactly the same way.
We provided the Senseo group with pre-recorded dynamic infor-
mation obtained by running several features of jEdit, including all
features and parts of the system covered by the five tasks. For
the experiment the subjects used computers that meet the follow-
ing minimum hardware requirements: 2.16 GHz Intel Core 2 Duo
processors, 2 GB RAM, screen resolution of at least 1280x800.

Variables and Evaluation. The two dependent variables we
study in this experiment are time the subjects spend to answer the
questions, and correctness, that is, how correct are their answers
to the tasks we pose. Keeping track of the answer time is straight-
forward as we prohibited going back to previously answered ques-
tions. We simply record the time span between the starting time of
one question and the next. Correctness is measured using a score
from 0 to 4 that expresses how closely the subject’s answer tallies
with the model answer.

The only independent variable in our experiment is whether the
Senseo plugin is available in the Eclipse IDE to the subjects during
the experiment.

We apply the parametric, one-tailed Student’s t-test to test our
two hypotheses at a confidence level of 95% (α=0.05). To validate
that the t-test can be used, we first apply the Kolmogorov-Smirnov
test to verify normal distribution and then Levene’s test to verify
equality of variances in the sample.

4.2 Results and Discussion
In this section we analyze the results obtained in the experiment.

First, we evaluate the results for time and correctness. Second, we

Table 3: Statistical evaluation of the experimental results
Group Mean Stdev. Diff K.-S. Lev F t p
Time [m]:
Eclipse 114.80 20.62 0.27
Senseo 94.73 12.41 -17.5% 0.18 3.06 3.23 0.0016
Correctness (points):
Eclipse 11.33 2.58 0.31
Senseo 15.13 2.10 +33.5% 0.24 0.22 4.42 0.0001

identify for which types of tasks the availability of dynamic infor-
mation in the IDE is most useful. Finally, we evaluate the qualita-
tive feedback we gathered by means of a debriefing questionnaire.

Three subjects could not complete the time sink task (task 5) in
the two hours we allotted, but all subjects started with this task,
thus everybody finished the four relevant tasks.

Time Results. On average, the Senseo group spent 17.5% less
time solving the maintenance tasks. The time spent by the two
groups is visualized as a box plot in Figure 2, (1).

To statistically verify whether Senseo has an impact on the time
to answer the questions, we test the null hypothesisH10 which says
that there is no impact. We successfully applied the Kolmogorov-
Smirnov and the Levene test on the time data (see Table 3), thus
we are able to apply Student’s t-test to evaluate H10. The applica-
tion of the t-test allows us to reject the null hypothesis and instead
accept the alternative hypothesis, which means that the time spent
is statistically significantly reduced by the availability of Senseo
as the p-value is with 0.0016 considerably lower than α=0.05 (see
Table 3).

We attribute this result to several factors: (i) the availability of
dynamic information in the source code views helps developers to
more quickly gain an understanding how source artifacts commu-
nicate with each other, (ii) the visualizations of dynamic metrics
such as number of method invocations shown in ruler columns and
package tree enable developers to quickly spot which source ele-
ments are executed and how often, and (iii) as the collaboration
view accurately presents all source artifacts that are related or col-
laborating to a selected source entity such as a package, class or
method, developers can more quickly navigate to code relevant for
a specific task. Note that Senseo was an unfamiliar plugin for all
subjects, thus the results would be even better if participants had
used Senseo in their daily work before doing the experiment.

Correctness Results. The Senseo group’s answers for the four
maintenance question are 33.5% more correct, which is also shown
in the box plot in Figure 2, (2).

To test the null hypothesis H20, which suggests that there is no
effect of the availability of Senseo on answer correctness, we are
also allowed to use the Student’s t-test as the Kolmogorov-Smirnov
and the Levene test succeeded for the correctness data (compare
Table 3). As the t-test gives a p-value of 0.0001 which is clearly
below α=0.05, we reject the null hypotheses and accept the alter-
native hypothesis H2, which means that having available Senseo
during software maintenance activities supports developers to more
correctly solve maintenance tasks.

The availability of Senseo increases the correctness of answers
probably due to the following reasons : (i) accurate overviews of
collaborating artifacts or of calling contexts supports developers in
exploring all relevant parts of the system to completely address a
task, (ii) precise information about run-time collaboration or exe-
cution paths enables developers to accurately navigate to dependent
artifacts, and (iii) information about execution complexity (number
of method calls or number and size of created objects) eases the
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Figure 2: Box plots comparing time spent and correctness be-
tween control and experimental group

Table 4: Task individual performance concerning time re-
quired and correctness.

Task Time [m] Correctness (points)
Eclipse Senseo Eclipse Senseo

Task 1 511 425 (-16.8%) 38 53 (+39.5%)
Task 2 388 340 (-12.4%) 58 79 (+36.2%)
Task 3 437 291 (-33.4%) 52 69 (+32.7%)
Task 4 386 365 (-5.4%) 22 26 (+18.2%)

correct identification of inefficient code.
Task-dependent Results. We also analyzed the two variables,

time spent and correctness, for each task individually to reveal
which kind of task benefit most from dynamic information inte-
grated in Eclipse. Table 4 presents the aggregated results for time
spent and correctness for each subject group and each task individ-
ually. Tasks 1, 2 and 3 benefit significantly from the availability of
Senseo both in terms of time required to solve them and the cor-
rectness of the solution. However, for task 4 the benefit of Senseo
is less pronounced. Coming back to the kind of tasks introduced in
Section 2 that we wanted to support with Senseo, we can conclude
that we successfully enhanced Senseo to aid developers performing
such tasks. The experimental task 1 refers to task type (i), task 2
to type (ii) and (iii), and task 3 to type (iv), while for task 4 we
consider lower level information as more relevant, for instance in-
formation on a method body level.

Qualitative Feedback. In the experiment we also collected
qualitative feedback by means of a questionnaire to for instance
evaluate the impact of particular parts of Senseo on specific kinds of
maintenance tasks. This evaluation yields answers to the question
which kind of dynamic information is actually relevant or useful in
what kind of software maintenance tasks.

In Table 5 we illustrate for which tasks the subjects used which
dynamic information integrated by Senseo, and Table 6 presents
how useful subjects rated each technique of Senseo in a Likert scale
from 0 (useless) to 4 (very useful).

From the evaluation asking for the use of dynamic information in
specific tasks, we draw the conclusion that there are basically three
kinds of tasks whose solving process is very well supported by the
availability of dynamic information in IDEs: (i) tasks requiring de-
velopers to understand how different source artifacts collaborate or

Table 5: Percentage of subjects using specific dynamic infor-
mation in particular tasks

Dynamic Information Task 1 Task 2 Task 3 Task 4
Run-time types (Tooltip) 33% 47% 47% 20%
Number of invocations 53% 67% 40% 27%
Number of created objects 33% 47% 27% 13%
Number of exec. bytecodes 27% 33% 20% 7%
CCRC 7% 7% 0% 0%
Dynamic collaborators
(callers, callees) 53% 80% 73% 33%

Table 6: Mean ratings of the subjects for each feature of Senseo

Dynamic Information Mean rating [0..4]
Tooltip showing run-time types 3.6
Ruler column incl. dynamic metrics 3.2
Overview ruler column incl. dyn. metrics 3.0
Package tree incl. dynamic metrics 2.4
CCRC 2.1
Collaboration view 3.7

depend on each other, (ii) tasks in which developers have to assess
how often code is executed or how complex it is, and (iii) tasks
that require the developer to understand which code is related to
a given feature. This conclusion agrees with the quantitative re-
sults discussed earlier where we revealed that task 1 (feature and
collaboration understanding), task 2 (quality assessment) and task
3 (control flow understanding) benefited most from the availability
of Senseo while for task 4 (low level defect correction) dynamic
information was less useful.

From the results evaluating the different Senseo concepts, we
conclude that developers particularly benefit from the availability
of the collaboration views and run-time type information in source
code. Also considered useful are visualizations of dynamic metrics
in the source code columns such as the presentation of number of
invoked methods in a method or class. The aggregated dynamic
metrics presented in the package tree are perceived as less useful
by the developers, probably because it is not meaningful to study
run-time complexity on a high package level. The subjects also
could not benefit from the CCRC as this visualization serves the
rather specialized task of performance optimization which has not
been directly covered by the maintenance tasks of the experiment.
Thus we elaborate in a separated case study in Section 5 on the
CCRC’s usefulness for performance optimizations.

4.3 Threats to Validity
In this section we discuss several threats to validity concerning

this experiment. We distinguish between (i) construct validity, that
is, threats due to how we operationalized the time and correctness
measures, (ii) internal validity, that is, threats due to inferences be-
tween treatment and effect during the analysis, and (iii) external
validity which refers to threats concerning the generalization of the
experiment results.

Construct Validity. Due to the operationalization of the time
and correctness variables, the results might not hold in real, non-
experimental situations. For instance, subjects could have been
more attentive than they would be in their daily job, or they might
have guessed the experimental goal and acted accordingly, or were
more anxious as they were observed and could have assumed that
their personal performance was evaluated. In general, the testing of
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the treatment, the (un)availability of Senseo, could have influenced
the outcome of the experiment. However, we consider this threat to
be negligible as the experimental goal was not revealed to subjects.
At the same time we made clear that we do not evaluate their per-
sonal performance (we anonymised their answers), and tried to use
a familiar, non-artificial atmosphere by conducting the experiment
with most subjects in their own office using their own computer if
it fulfilled the requirements for the experiment, see Section 4.1.

Internal Validity. Some threats to internal validity originate
from the subjects. First, subjects might not have the required exper-
tise to properly solve the maintenance tasks. This threat is largely
eliminated by preliminary assessing subject’s expertise concerning
their Java, Eclipse, or software maintenance skills. Additionally,
we required them to not have expert knowledge in developing jEdit.
Second, the experimental group might have had more knowledge
than the control group. This threat is tackled by assigning the sub-
jects in a randomized manner to the two groups in a way that both
groups have nearly equal expertise (see Table 1).

Other threats to internal validity stem from the maintenance tasks
we prepared. First, the tasks could have been too difficult or time-
consuming to solve. This threat is refuted by the fact that nearly all
subjects from both groups could solve all tasks in time (except two
from the control group and one from the Senseo group). Moreover,
each question was answered fully correctly by at least one person
from each group. Additionally, we asked subjects in the question-
naire directly how they judged the time pressure and the difficulty.
On average, the ratings were 2.8 for time pressure (representing
“felt no time pressure”) and 3.1 for average difficulty of all tasks
(which means “appropriately difficult”). Second, the threat that
we formulated tasks favoring Senseo is largely limited as we used
Pacione’s established framework [16] to find the tasks used in the
experiment. Third, a threat for the correctness evaluation is that the
experimenters might have favored Senseo while grading subjects’
answers. By initially building an answer model according to which
the subjects answers were graded, we mitigated this threat. For the
obtained answers the experimenters gave points as pre-defined in
the answer model which in turn has been formulated and validated
by two persons individually.

External Validity. Generalizing the results of the experiment
could be unjustified due to the selection of tasks, subjects, or the
application used in the experiment. This threat is mitigated since
we selected the maintenance tasks carefully to follow Pacione’s
framework [16] of representative maintenance tasks. We further-
more asked open questions to the subjects to better model industrial
reality than would be possible with multiple choice questions.

The literature suggests avoiding experimental groups consisting
of only students [17]. We therefore selected subjects who all have
professional experience in industry as software developers as men-
tioned in Section 4.1. As the subjects also work for different com-
panies and have a high variety of education profiles, the study par-
ticipants should be fairly representative for professional software
developers and thus not impose a threat to generalization.

In Section 4.1 we described several reasons why jEdit is rep-
resentative for many industrial systems. Additionally, we asked
subjects at the end of the experiment how comparable in terms of
maintainability they consider jEdit to be to systems they daily work
with. On average, they gave on a Likert scale from 0 (totally dif-
ferent) to 4 (very representative) a rating of 3.1, which refers to
“many similarities”. Hence we are confident to have found with
jEdit a system representative for most industrial applications.

5. CCRC CASE STUDY
The CCRC is especially useful for locating performance bottle-

necks. As such a task was not directly part of our user experiment,
we present here a case study inspired by [4], concerned with a per-
formance optimization task using CCRC. In this case study, we il-
lustrate how CCRC helps locate a performance problem in the lex-
ical analyzer generator JLex [11], which is afterwards optimized.
We use the aggregated number of executed bytecodes as dynamic
metric for sizing ring segments; in the CCRC, the ring segments
are ordered counterclockwise by their corresponding metric contri-
bution.

Figure 3 (top) shows a CCRC representing the execution of
the original, unmodified JLex for a sample grammar included in
the JLex distribution. Looking at the aggregated bytecodes and
navigating through the different elements of the call stack, we
immediately locate a hot calling context, an invocation of the
sortStates(...) method. This method executes a high num-
ber of bytecodes, contributing 23.6% of the overall executed byte-
codes. The large ring segment corresponding to this calling context
is highlighted in Figure 3 (top).

The sortStates(...) method uses a primitive selection
sort algorithm of complexity O(n2). In order to optimize the
code, we replace it with the merge sort algorithm of complexity
O(n log n). Figure 3 (bottom) shows the resulting CCRC after the
optimization. The number of executed bytecodes in the previously
hot calling context representing the sortStates(...) method
is reduced to 10.86% of the overall executed bytecode. Comparing
the top and bottom CCRCs in Figure 3 shows that the ring segment
corresponding to the sorting functionality, which before had the
largest contribution of executed bytecodes, is shifted counterclock-
wise after the optimization, since another ring segment has a higher
contribution. In contrast to the primitive selection sort used in Fig-
ure 3 (top), the merge sort algorithm visualized in Figure 3 (bot-
tom) uses recursion, which explains the different shape of the cor-
responding sub-segments of the sortStates(...) method.

In order to confirm that our optimization based on the number
of executed bytecodes also results in a speedup in execution time,
we run both versions of JLex (original and optimized) on an Intel
Core 2 Duo 2.33 Ghz computer with 2 GB RAM (Linux Fedora 10),
using Sun JDK 1.6.0_12. Regarding the execution time, we take
the median of 15 runs. The original JLex executes 20,393,685 byte-
codes in 37.04ms, whereas the optimized JLex executes 16,955,185
bytecodes in 27.7ms. In the bytecode metric, the optimized version
is 20.3% “faster”, while in the CPU time metric, the optimized ver-
sion is 33.7% faster. While the number of executed bytecodes is ex-
actly reproducible in each run, the measured execution time varies
considerably, but the optimized version is consistently faster.

6. PERFORMANCE
The prototype of Senseo [20] suffered from excessive overhead,

because it used a naive, non-optimized aspect for collecting dy-
namic information and always transmitted the complete CCT to the
Eclipse plugin with Java’s standard serialization mechanism. Al-
ready for medium-sized applications, serialization introduced long
latencies and yielded transmission data of several gigabytes.

The new version of Senseo includes two essential optimizations.
First, we optimized the aspect that gathers dynamic information.
Wherever run-time type information can be statically inferred, the
new aspect avoids expensive access to dynamic context information
through AspectJ’s reflection API. For example, if all formal method
arguments are of a primitive or final type, the actual argument types
cannot vary at run-time and therefore need not be collected.

Second, we hand-crafted an optimized serialization mechanism
that transmits the CCT in an incremental way, sending only those
nodes where some dynamic information has changed since the pre-
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Figure 3: CCRCs for JLex with the original (top) and opti-
mized (bottom) sort algorithm

vious transmission. In addition, we optimized the data structures
that store dynamic information, since they are accessed extremely
frequently. Thanks to the principle of locality, typically only a
small subset of the CCT nodes is transmitted. Thus, it is now pos-
sible to frequently update the dynamic information in the Eclipse
plugin, such as once per second. Our new serialization format in-
cludes a name table (types, methods, signatures), as well as com-
pact representations of the CCT nodes and the gathered dynamic
information using only integer arrays.

In order to validate that the new Senseo version offers sufficient
performance for coping with real-world workloads, we evaluated
the different sources of overhead and analyzed the amount of trans-
mitted data for the DaCapo benchmarks5. For our measurements,
we use MAJOR6 version 0.6 with AspectJ7 version 1.6.5 and the
SunJDK 1.6.0_13 Hotspot Server Virtual Machine. We execute
the benchmarks on a quadcore machine running CentOS Enterprise
Linux 5.3 (Intel Xeon, 2.4GHz, 16GB RAM).

Figure 4 shows the overhead for CCT creation, collection of dy-
namic information (including the number of method invocations,
the number of object allocations, the estimated allocated bytes,
the number of executed bytecodes, and the run-time receiver, ar-
gument, and return value types), as well as serialization and data
transmission to the Eclipse plugin, including processing of the re-
5http://dacapobench.org/
6http://www.inf.usi.ch/projects/ferrari/
7http://www.eclipse.org/aspectj/
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Figure 4: Senseo overhead for the DaCapo benchmarks

ceived data by the plugin. In this measurement setting, each bench-
mark is executed 15 times and the median execution time is taken
for computing the overhead. For each run of each benchmark,
the CCT and the gathered dynamic information are serialized and
transmitted once upon benchmark completion. To this end, we
modify the DaCapo benchmark harness in order to delay the end
of a measurement until the transmitted data have been received and
processed by the Eclipse plugin. Figure 4 also shows the average
overhead (geometric mean) for the DaCapo suite.

On average (geometric mean), CCT creation alone causes an
overhead of factor 2.68. CCT creation and collection of dynamic
information result in an overhead of factor 9.07. The total over-
head, including serialization/transmission, is of factor 9.47. For
all benchmarks, the larger part of the overhead is due to the col-
lection of dynamic information, where the collection of run-time
type information is particularly expensive. Serialization/transmis-
sion causes only minor overhead, because in these measurement
settings serialization/transmission happens only once upon bench-
mark completion.

We also measured the speedup of the new Senseo version relative
to the former prototype presented in [20] in the same settings used
for Figure 4 (i.e., collection of all dynamic information, one seri-
alization/transmission upon benchmark completion).8 On average
(geometric mean for DaCapo), the new Senseo version is 31 times
faster than the previous prototype.

Thanks to the incremental serialization mechanism in the new
Senseo version, it is possible to frequently transmit CCT and dy-
namic information from a running application to the Eclipse plugin.
Figure 5 illustrates the size of successively transmitted data pack-
ets (including name table, CCT nodes, and dynamic information)
for a single run of DaCapo’s ‘eclipse’ benchmark with a serializa-
tion/transmission rate of 1.25 packets per second.9 Such a high se-
rialization/transmission rate ensures that the developer always sees
up-to-date dynamic information in the IDE, refreshed more than
once per second, while the application under maintenance is run-
ning in the MAJOR JVM. In total, 370 packets are sent, that is, the
total run-time of ‘eclipse’ is about 296s in this setting (causing an
overhead factor of 14.8, whereas a single serialization/transmission
upon benchmark completion induces an overhead of factor 7.9 as
shown in Figure 4). For each packet, Figure 5 differentiates be-
tween the size of the transmitted CCT nodes (including the name

8Note that the measurements of the former prototype reported
in [20] are not comparable, because they excluded the collection
of run-time type information as well as serialization/transmission.
9Here we evaluate the size of transmitted packets only for ‘eclipse’,
which has the longest execution time in the DaCapo suite in our
measurement environment. Due to space limitations, figures show-
ing packet sizes for the other benchmarks cannot be presented here.
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Figure 5: Size of transmitted data packets for ‘eclipse’. Serial-
ization/transmission rate: 1.25 packets per second

table) and the size of the sent dynamic information.
While most packets are rather small, below 1MB, some packets

are considerably larger, reaching up to 9MB. The packets 60–79 ap-
pear as a major peak in the figure. We found that these packets con-
vey dynamic information collected while the ‘eclipse’ benchmark
is compiling some projects. The minor peak in Figure 5 (packets
227–232) corresponds to some XML data processing. The initial
packets, collecting during the startup phase of ‘eclipse’, are very
small. This can be explained by the fact that the startup phase
is IO-intensive and involves much class-loading and just-in-time
compilation by the JVM, which are mostly implemented in native
code and are therefore not amenable to MAJOR’s instrumentation.

We conclude that the new Senseo version is fast enough to cope
even with large-sized applications, and it is possible to frequently
transmit the collected dynamic information to the Eclipse plugin,
continuously providing up-to-date dynamic information to the soft-
ware developer.

7. RELATED WORK
First, we report on related work in the area of dynamic analysis.

Second, several IDE enhancements to improve software navigation
are not based on dynamic analysis but employ different techniques
such as relating source artifacts to each other based on navigation
patterns. We briefly describe and compare these related works to
our approach. Third, we discuss controlled experiments conducted
by other researchers in a similar area as ours.

Dynamic information gathering. In [8], Dufour et al. present
a variety of dynamic metrics for Java programs. They introduce a
tool called *J [9] for metrics measurement. *J relies on the Java Vir-
tual Machine Profiler Interface (JVMPI), which is known to cause
high performance overhead and requires profiler agents to be writ-
ten in native code. In contrast, our aspect-based approach enables
high-level specification of instrumentations, which is flexible, fully
portable and introduces moderate overhead.

Profiling capabilities have been integrated in IDEs such as the
NetBeans Profiler10 and Eclipse’s Tracing and Profiling Project
(TPTP)11. The NetBeans Profiler uses JFluid technology [7]. JFluid
exploits dynamic bytecode instrumentation and code hotswapping
to collect dynamic metrics. JFluid uses a hard-coded, low-level in-
strumentation to collect gross time for a single code region and to
build a Calling Context Tree (CCT) augmented with accumulated

10http://profiler.netbeans.org/
11http://www.eclipse.org/tptp/performance/

execution time for individual methods. In contrast, we use a flexi-
ble, high-level, aspect-based approach to specify CCT construction
and dynamic metrics collection, which eases customization and ex-
tension. Similar to Senseo, JFluid runs the application under in-
strumentation in a separate JVM, which communicates with the
visualization part through a socket and also through shared mem-
ory. JFluid is a pure profiling tool, whereas Senseo was designed to
support program understanding and maintenance.

Dynamic analyses based on tracing mechanisms traditionally fo-
cus on capturing a call tree of message sends, but existing ap-
proaches do not bridge the gap between dynamic behavior and the
static structure of a program [10, 23]. Our work aims at incorpo-
rating the information obtained through dynamic analyses into the
IDE and thus connecting the static structure with the dynamic be-
havior of the system. At the same time, we aggregate the informa-
tion of multiple program executions and feed back the results in the
IDE, corresponding to inductive program analysis in [24].

IDE enhancements. Other works also visualize software dy-
namics, but usually these approaches are integrated in a separate
tool and not directly in the IDE. Reiss [19] for instance developed
a tool visualizing the behavior of Java programs in real-time. Löwe
et al. [14] merges both, information from static and dynamic anal-
ysis to generate visualizations in a dedicated tool. Lanza et al. [13]
contributed CodeCrawler, a stand-alone tool to analyze statics and
dynamics of programs.

To help developers navigating software systems, several works
rely on other techniques than program analysis. For instance, Nav-
Tracks [21] exploits the navigation history of software develop-
ers to form associations between related source files and presents
a recommendation list of entities related to the current selected
source file. Mylyn [12] computes a degree-of-interest value for
each source artifact by analyzing navigation history. The relative
degree-of-interest of artifacts is highlighted using colors — inter-
esting entities are assigned a “hot” color. We also use heat colors
to denote the degree of participation in a particular dynamic metric
such as number of invocations. Fluid source code views [6] present
related code (for instance an invoked method) directly in the cur-
rent source code view in an additional widget. Such a view recog-
nizes the separated but linked nature of source artifacts. However,
fluid source code views statically link separated source artifacts to-
gether and may thus identify wrong or unrelated candidate methods
at polymorphic call sites.

Controlled experiments in software engineering. Other re-
searchers also conducted controlled experiments to validate tools
supporting software maintenance tasks: Cornelissen et al. [5] eval-
uated a trace visualizing tool with 24 student subjects. Quante et
al. [18] evaluated with 25 students the benefits of Dynamic Object
Process Graphs (DOPGs) for program comprehension.

8. CONCLUSIONS
In this paper we present the Eclipse plugin Senseo which in-

tegrates various dynamic information in the Eclipse IDE, such as
run-time types in the source code views, dynamic metrics (e.g., the
number of executed bytecodes) in package tree and ruler columns,
a collaboration view presenting all dynamic collaborators of a se-
lected source artifact (package, class, or method), and the CCRC,
a navigable visualization of the Calling Context Tree enriched with
dynamic metrics that help quickly locate hot spots in programs.

We carefully evaluate the impact of Senseo on the productivity of
developers performing software maintenance tasks by conducting
a controlled experiment with 30 professional developers. This ex-
periment reveals that the participants spend 17.5% less time on the
maintenance tasks while at the same time providing 33.5% more
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correct answers. Furthermore, we present a case study illustrating
how the CCRC is used for optimizing an application. A thorough
performance evaluation with the DaCapo benchmarks confirms that
Senseo is able to cope with large-sized applications and enables a
high refresh rate for displaying dynamic information on a running
application in Eclipse.

While Senseo currently focuses on the inter-procedural control
flow represented by the Calling Context Tree, our ongoing research
aims at capturing also the intra-procedural control flow, which will
offer additional support for program optimization. Moreover, we
are integrating other dynamic analyses, such as memory leak and
data race detectors. Thanks to our aspect-oriented approach, the de-
velopment and integration of such advanced features will be com-
pleted shortly.
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