
Supporting task-oriented navigation in IDEs with configurable HeatMaps

David Röthlisberger
Software Composition Group

University of Bern, Switzerland

Oscar Nierstrasz
Software Composition Group

University of Bern, Switzerland

Stéphane Ducasse
INRIA-Lille Nord Europe

France

Damien Pollet
University of Lille 1

France

Romain Robbes
University of Lugano

Switzerland

Abstract

Mainstream IDEs generally rely on the static structure
of a software project to support browsing and navigation.
Previous research has shown that other forms of informa-
tion, such as evolution of the software artifacts, historical
information capturing how previous developers have navi-
gated the code, or runtime behavior of the application, can
be much more useful than the static structure of the software
to direct developers to parts of the code relevant to a task-
at-hand. These different kinds of information, however, are
not uniformly accessible from the IDE, so the developer may
have to struggle with heterogeneous tools and visualizations
to find the relevant artifacts. We propose HeatMaps, a sim-
ple but highly configurable technique to enrich the way an
IDE displays the static structure of a software system with
additional kinds of information. A HeatMap highlights soft-
ware artifacts according to various metric values, such as
bright red or pale blue, to indicate their potential degree
of interest. HeatMaps can be dynamically configured to re-
flect different kinds of information relevant to a given task-
at-hand. We present a prototype system that implements
HeatMaps, and we describe an initial study that assesses
the degree to which different HeatMaps effectively guide de-
velopers in navigating software.

Keywords: software analysis, dynamic analysis, static
analysis, development environments, visualizations, pro-
gram comprehension

1 Introduction

Conventional IDEs enable the exploration of a software
system principally by providing views and mechanisms
based on the static structure of the source code. Object-
oriented language characteristics such as inheritance and
polymorphism can lead to conceptually related code be-

ing scattered over many different source artifacts [2, 19].
This can lead to an unfocused, undirected navigation of the
source space, resulting in the same entities being browsed
several times in the same working session. Empirical ex-
periments have shown that during a one day coding session,
developers browsed 95% of all visited methods more than
once [9].

IDEs offer little support to efficiently navigate the source
space aside from the static system structure. Information
about previous navigation, about the system’s dynamics or
its evolution, is not exploited. Previous research efforts such
as NavTracks [16] and Mylar [6] show that this additional
information provides useful insights to a developer explor-
ing a system or relocating previously browsed entities. If
a developer has for instance access to historical informa-
tion about her own navigation or that of other developers,
she will be able to locate previously navigated entities more
quickly [16, 6].

Although gathering additional information about navi-
gation, history, or even the dynamics of a system may not
be particularly challenging in itself, representing and dis-
playing the vast amount of information gathered in the con-
strained IDE space is inherently difficult. In this paper we
tackle the following research question: “Is there a unify-
ing mechanism to represent the complex information that
developers face in the context of a constrained IDE space
while working on a development task?” This question is
then further divided in the following issues:

• How can a uniform mechanism represent various kinds
of complex information in an IDE?

• What different kinds of information are of use to a de-
veloper while performing various tasks on a large soft-
ware system?

In this paper we introduce a simple and uniform mech-
anism, called HeatMaps, to represent complex information
in an easily understandable way in any IDE. A HeatMap



maps all source artifacts presented in the IDE to colors rang-
ing from red (“hot”) to blue (“cold”). Hot entities contribute
heavily to a given property while cold ones contribute lit-
tle or nothing. HeatMaps represent a simple and uniform
mechanism as we can apply them to very different prop-
erties of software, such as how recently a source artifact
has been navigated or modified, how many versions or au-
thors an entity has, or even how much space is allocated
to a method invocation. Different HeatMaps may be more
suitable than others for a given task-at-hand, so the devel-
oper can configure the IDE dynamically to apply a selected
HeatMap. A HeatMap can also be defined as a combination
of existing HeatMaps, to simultaneously display different
kinds of information.

In Section 2 we motivate the need for a uniform approach
to represent various kinds of information in the IDE. In Sec-
tion 3 we present the HeatMaps mechanism in detail. We
assess the efficiency and accuracy of various HeatMaps for
several case studies using a data set spanning 20 months
of IDE navigation in Section 4. Section 5 discusses the
strengths and weaknesses of this approach while Section 6
concludes the paper with some remarks on future work.

2 Information overflow in IDEs

Development environments present vast amounts of in-
formation to developers, usually reflecting the static struc-
ture of the code. For example, in the Eclipse IDE1 there are
more than ten different types of projects, there is a huge icon
set with more than a thousand different icons, and a large
number of source code entities are distinguished, includ-
ing packages, classes, interfaces, class hierarchies, meth-
ods, attributes, inner classes, and aspects. This vast range
of information can easily overwhelm developers, making it
difficult for them to focus on the particular entities relevant
to a task, such as classes working together at runtime, or
methods changing in tandem in every new version.

We therefore argue that there is a need for a configurable
mechanism to ease navigation by highlighting software ar-
tifacts of special relevance to a given task.

Next we present a typical use case that could clearly ben-
efit from such a mechanism.

2.1 Motivating Use Case

As developers we face the task of correcting a defect
in a large, unfamiliar web application written in an object-
oriented language. This defect occurs in a feature that has
been previously implemented by another developer who has
left the team. Due to our lack of knowledge about this sys-
tem, we cannot easily identify the entities responsible for

1http://www.eclipse.org

the broken feature. Our IDE has recorded the development
actions performed by the developer while building this par-
ticular feature, so we can exploit this information. How-
ever, it is not clear how this historical information can be
presented in the IDE to help us with this task. In addition
to the historical navigation data, we also have access to the
change logs, containing data about previous versions, com-
mits, and authors. It is known that this kind of information
can also be useful to direct the developers to software arti-
facts likely to contain defects [3, 4, 17, 21]. Besides cor-
recting the mentioned defect, we are required to also boost
the performance of this feature in general. We hence want
to see directly in the IDE hints about the execution behavior
in terms of execution time.

In our case we could benefit from the availability of three
very different kinds of information directly in the IDE: (i)
information about previous navigation and possibly modifi-
cations performed by developers in the past, (ii) information
about the system’s evolution, and (iii) information about the
runtime behavior of the subject system.

2.2 Development Driven Information

There is a large range of information that is orthogonal to
the static structure of a software system, but which may be
of use for various development tasks. We consider several
program comprehension tasks that developers are typically
faced with, and we list, in each case, several of the kinds of
non-structural information that can be helpful for the task-
at-hand.

• Exploiting navigation and modification activities. The
history of navigation and modification of source arti-
facts can be exploited to provide hints to developers
where they may want to navigate to or what to modify
in order to perform a development task [16].

– Recently browsed.
– Recently modified.
– Frequency of browsing.
– Frequency of modification.
– Modified by me, i.e., the degree to which an ar-

tifact has been modified by the current author,
measured by number of methods or versions con-
tributed.

– Extent of modification, i.e., how many lines or
methods changed in a method or class.

– Inclusion in search results, i.e., how often an en-
tity appears in the results of submitted searches.

• Exploiting evolution history. Change logs contain a
great deal of information that can help the developer to
understand how the system has evolved [3, 7, 10, 21].

2

http://www.eclipse.org


– Number of different authors or versions.

– Age.

• Exploiting execution. Dynamic information helps de-
velopers to reason about issues occurring at runtime,
such as performance bottlenecks [1, 5, 18, 14].

– Memory consumption.
– Execution time.

Given the potential value of these very different kinds
of information to help developers quickly navigate to soft-
ware artifacts relevant to particular task, the challenge is to
present this information in the IDE in such a way that does
not further overload an already complex and busy user in-
terface. With this question in mind, we now briefly review
related work in the field of representing information orthog-
onal to the system’s static structure in order to highlight en-
tities potentially relevant to a given developer task.

2.3 Related Work

In the context of development environments, in particu-
lar FEAT [13], NavTracks [16] and Mylar [6] aim at a sim-
ilar goal as our proposal. However, there are several limita-
tions to these approaches and differences to our proposal.

FEAT [13] applies a concern graph to visualize scattered
but conceptually related code elements together in order to
navigate concerns. However, in the original FEAT tool, de-
velopers had to manually create this concern graph. Ro-
billard et al. [12] enhanced FEAT to automatically infer
concerns, however, users still have to accept or decline the
inferred concerns; our approach does not require any ex-
plicit user action.

NavTracks [16] exploits the navigation history to recom-
mend files related to the file the developer is currently look-
ing at. This approach works at the granularity of files, hence
does not take into account specific methods or classes. A se-
vere limitation of this approach is that it only takes into ac-
count one single data source, namely the recency of brows-
ing in the navigation history, to assess the relatedness of
artifacts. Other sources or even combinations of different
sources, such as combining frequency and recency of mod-
ification and navigation of entities, could lead to much bet-
ter results. Furthermore, a recommendation list helps little
to obtain an overview over the whole system; the devel-
oper just sees a list of artifacts possibly related to a spe-
cific artifact, but does not see all interesting entities in a
“big picture” view. These recommendations are always rel-
ative to a selected artifact, that is, dependent on what the
developer has currently selected, while our goal is to gener-
ally guide the developer through the source space, indepen-
dent of a concrete selection. The exchange of data sources
recorded by different developers is also not supported with

NavTracks as its model is built on the client side in this spe-
cific environment.

Mylar [6] computes a degree-of-interest value for each
source artifact based on the historical selection or modi-
fication of the artifact. The background color of the arti-
facts highlights their relative degree-of-interest in the con-
text of the current task — interesting entities are assigned
a “hot” color. We apply a similar approach to highlighting
important artifacts, but the importance is assessed differ-
ently. While the degree-of-interest model is fixed in Mylar,
the developer can choose between different models in our
approach and can even combine various models with each
other to obtain better results depending on the exact nature
of the task. In Mylar the information used to compute the
interest value is relatively simple: selecting and editing an
artifact increases the interest; if no further event occurs the
interest decreases over time. In our approach we propose to
also take into account more complex information, including
runtime information, and evolutionary information, such as
how many different developers worked on the artifact in the
history. For many tasks, information about previous naviga-
tion or modification is not sufficient to accurately determine
the degree-of-interest, while dynamic or evolutionary infor-
mation is likely to give better results. For example, when
addressing a software regression, taking into account evolu-
tionary information about who changed what in the system
gives good hints to developers about what they should nav-
igate. For this reason we provide in our approach sugges-
tions what information, including combinations of different
kinds of information, gives best results for which tasks.

HeatMaps also visualize evolutionary information about
software systems, that is, information obtained by mining
software repositories. Other researchers also exploited soft-
ware repositories to improve task-oriented navigation, in
particular by studying how source artifacts have frequently
changed together. Shirabad et al. [15] or Moonen [8] use
information about artifacts with common change patterns
to recommend developers to also change the related enti-
ties when working on an artifact. Our approach differs as it
applies historical information as a measure for general im-
portance of source artifacts with respect to the task-at-hand.

Xie et al. [20] also show a complete picture of evolu-
tionary data extracted from CVS repositories, but these vi-
sualizations are outside of the IDE and thus of limited use
while working with the static system structure.

3 HeatMaps

We now introduce HeatMaps and explain our approach
in detail. In particular we explore how IDEs can use
HeatMaps to display the different kinds of information seen
in Section 2.2 with a uniform mechanism.

3



Figure 1. A color gradient from light blue to
light red representing heat.

A HeatMap2 employs the metaphor of heat to color arti-
facts: colors range from blue (cold) to red (hot) as Figure 1
illustrates. The “hotter” an artifact is colored, the more rel-
evant it is meant to be for the task-at-hand. A HeatMap
thus guides the developer and provides additional informa-
tion about the relative importance of different source arti-
facts. In a large unknown system consisting of thousand of
classes and methods, the hot artifacts are readily visible and
can serve as a starting point to explore the system further.
Figure 2 illustrates two examples where source artifacts are
highlighted (i) based on the number of versions and (ii) how
recently they have been browsed.

Figure 2. Two HeatMaps highlighting number
of versions of source artifacts, top left, and
recently browsed artifacts, bottom right.

HeatMaps can be seamlessly integrated in all tradi-
tional tools of the IDE. With the help of a dedicated in-
terface, developers choose the kind of information that the
HeatMap displays, and they can also configure how differ-
ent HeatMaps are combined. The HeatMap for the cho-
sen information then appears in all views and tools in the

2NB: “HeatMaps” (in italics) refers to the prototype tool, while
“HeatMap” (unemphasized) refers to an individual map.

IDE, for example, in the package browser hierarchically
presenting all system entities, as well as in the hierarchy
browser focusing on the class hierarchy of a selected class.
Source artifacts that appear in the data history for the se-
lected HeatMap, such as artifacts that have been browsed
or modified while correcting a defect, are assigned a back-
ground color representing their heat; artifacts not in the his-
tory are still displayed but not colored. HeatMaps do not
replace or alter the display of the system’s source code in
any tool of the IDE, except by adding a background color
to the display of source artifacts such as packages, classes,
or methods. Our prototype runs in Squeak Smalltalk3 but
could easily be ported to other IDEs such as Eclipse, as the
technique does not depend on any Smalltalk-specific idiom.

Typically, the navigation history, indicating how fre-
quently entities have been browsed in the past, is a good
guide to the importance of source artifacts. For a spe-
cific maintenance task other, more task-related information
might lead to a better assessment of the relative importance
of different artifacts. HeatMaps are freely configurable by
developers. Depending on the exact nature of the task, the
system’s evolutionary information might give better results
than, say, information about historical navigation.

As the different HeatMaps to visualize the heat of an en-
tity are based on very different kinds of information, we
briefly describe the way in which heat is computed for two
classes of HeatMaps, namely Time-based HeatMaps and
Metrics-based HeatMaps.

Time-based HeatMaps. HeatMaps highlighting re-
cently browsed or modified entities are used to reason about
the time at which the navigation or modification of entities
occurred. The interest in an entity usually steadily decreases
after it has been navigated or edited. In Figure 3 we can see
how with a time-based HeatMap a cold entity is associated
with an early time while a hot entity is close to the cur-
rent time. We assume that the interest in an entity decreases
steadily as time passes by, thus an entity’s color constantly
“cools down”. We experimented with several mechanisms
to cool down an entity (cf. Section 4) and got best results
when gradually cooling the entity as time passes by. There
is a lower bound of entities’ time values to take into account,
determined by the size of the available history and the time
passed by between now and the recorded time for an arti-
fact. This means that if artifacts have not been covered by
a relevant event for a long time, they drop out and will not
be colored in this particular HeatMap. When reusing old
navigation data, as in the use case described in Section 2.1),
HeatMaps take the highest time value in the recorded data
set as the current time to color the most recent items red.

Metrics-based HeatMaps. Frequency of browsing or
modification of an artifact, and the number of develop-
ers having altered it are two examples of metrics-based

3http://squeak.org/

4

http://squeak.org/


Figure 3. Time-based color gradient

HeatMaps. Such HeatMaps are used to reason about met-
rics associated with each artifact in the system. The higher
the metric value the more important the artifact becomes.
Metric values are linearly mapped to heat colors in metrics-
based HeatMaps, as illustrated in Figure 4. To make sure
that HeatMaps meaningfully highlight particularly impor-
tant source artifacts, we introduce a threshold if the data
set contains a wide range of different ordinal metric values.
Hence we often associate cold not with the minimum value
in the data set but with the threshold value (cf. Figure 4).
We determine the threshold based on the system size, the
size of the data set, and the distribution of the data.

Figure 4. Metrics-based color gradient

Combined HeatMaps. We assume that combining dif-
ferent kinds of information leads to a more accurate estima-
tion for the source artifacts’ importance than just exploit-
ing one kind of information. Combining for example re-
cently with frequently browsed HeatMaps is supposed to
better assess the developer’s interest in an artifact. We of-
fer two different means to combine several HeatMaps: (i)
weighted linear combination of the color values of different
HeatMaps and (ii) exponential decay when combining one
time-based with one metrics-based HeatMap. Combining
two HeatMaps linearly means that an entity once colored in
blue and once in red is assigned an in-between color, if the
two HeatMaps are equally weighted. It often makes sense to
weight one HeatMap more than the other(s). For instance,
if we combine recently browsed with recently modified, we
weight the color value from the recently modified map with
a weight of 2 (or even higher), as modification is rare and
thus most likely increases the interest in an entity more than
its navigation does. In the exponential decay combination
we assume that the interest in an entity exponentially de-
creases over time. Obviously we are most interested in an
artifact at the moment when we browse it. This event is ad-
ditionally weighted with the number of times we previously
browsed the same entity. From this point on, the interest
in that artifact decays exponentially, similar to radioactive
decay. Such a combination has the advantage that entities

not having experienced any action for a long time are still
colored if they once had been very important.

How to gather the information for the HeatMaps. For
many time-based HeatMaps we instrument the IDE itself
to gather information about the navigation, modification, or
deletion of source entities. Most metrics-based HeatMaps
initially obtain their information by executing a batch pro-
cess that analyzes all system artifacts to extract information
such as number of versions or authors of specific artifacts.
HeatMaps used to visualize behavioral information require
the developer to instrument and exercise the application to
gather execution time or memory usage data [14].

Storing, caching, updating, and exchanging the infor-
mation. We store the data used by HeatMaps in a simple
file format. With some HeatMaps the underlying data sets
quickly grow in size, so we cache the results of color com-
putations. This is particularly important for aggregate enti-
ties such as packages or classes as they aggregate the color
value from their child elements (e.g., single methods), ren-
dering their color computation more time-consuming. Usu-
ally HeatMaps are based not on an imported data set but on
the data generated by the current developer in the current
development session; in such cases we update the caches
whenever an event occurs that is relevant to the currently
selected HeatMap. These caching mechanisms make sure
that HeatMaps are displayed efficiently even when their un-
derlying data grows with the ongoing development session.
The HeatMap data is easily exchangeable (e.g., to append it
to a bug report) as it is stored in files. Thus we can easily
import the navigation data generated by the developer in our
use case (Section 2.1) to correct this defect.

4 Validation

HeatMaps are intended to help developers to more
quickly navigate to software artifacts relevant to the task-
at-hand. To be successful, HeatMaps have to fulfill at least
two requirements: They need to be (i) efficient, so updating
and displaying should not slow down the IDE, and (ii) ac-
curate, that is, they should assess entities’ importance prop-
erly, actually highlighting what is relevant for developers.
We performed initial experiments to validate these two re-
quirements by (i) benchmarking the efficiency of updating
and rendering HeatMaps, and (ii) testing HeatMaps against
an available navigation and modification history spanning
nearly two years to verify whether the various HeatMaps
would haven given accurate hints to the developer. Finally,
we report on an informal user experiment we conducted
with developers using HeatMaps.

5



4.1 Efficiency of HeatMaps

We tested the performance of the recently browsed
HeatMap by observing the time it takes to add new el-
ements to the database, including updating all dependent
HeatMaps, refreshing all involved caches and updating the
visualization, and we measured the time to actually color all
artifacts for a particular HeatMap in the whole system. The
system we used is the Squeak Smalltalk system itself, con-
sisting of 3180 classes and 57400 methods. We measured
the display of HeatMaps in the system browser that shows
all system entities. Updating the HeatMaps database upon
navigation activities causes a non-measurable slowdown in
the range of some milliseconds. Coloring the whole system
with a new map affecting more than half of all entities took
less than a second. Thus we consider HeatMaps as a an
efficient means to visualize information in IDEs.

4.2 Accuracy of HeatMaps

In this section we evalute the accuracy of various
HeatMaps and their combinations using a benchmark.

Procedure. In a nutshell, the benchmarking procedure
we implemented replays a recorded sequence of interac-
tions, and measures the color of each element that was
interacted with (in sequence) according to the HeatMap.
The warmer the element is, the more accurate the map is.
The sequence of interactions we replay consists of nearly
90’000 navigation and modification events recorded in an
IDE while developing and maintaining a medium-sized sys-
tem (consisting of 7000 methods in 700 classes) used to
analyze software evolution over the course of 20 months.
Benchmarks have the advantage of being easily replicable,
ease the comparison of results, and can be used to test a re-
stricted functionality, such as the effect of the weight used in
the combination of different HeatMaps. The same approach
has been used by other researchers to evaluate similar works
such as code completion engines [11].

We implemented two variants of the benchmark, corre-
sponding to two distinct use cases for HeatMaps:

1. In the Monitoring Use Case the developer uses
HeatMaps in her daily work. Information used in a
HeatMap is continuously gathered and displayed in the
IDE, so when she navigates to a new artifact, the re-
cently browsed HeatMap immediately takes this event
into account.

2. In the Historical Use Case the developer does not
record events about her own development but imports
a recorded history of another development session,
for example, a session recorded by another developer
while implementing a feature. This historical data is

assumed to be read-only, that is, newly created events
are not added to the HeatMaps database.

Evaluation. To simulate the first use case we create an
initial database with the first 500 records in the history, test
for all following elements the color value they would be as-
signed in a particular HeatMap, and add the tested element
itself to the HeatMaps database. The second use case is
similarly simulated; here we vary the records added from
the history to the HeatMaps database starting at the begin-
ning of the history with a database size of 500. We then test
the 100 elements following next in the history. Afterwards
we create a new database with the next 500 elements after
the 100 tested elements, test the 100 subsequent elements,
and so on.

Testing a single artifact means computing its color value
for the currently active HeatMap, then computing the dis-
tance to red as a percentage value, so “red” is a 100% fit,
“blue” and not colored a 0% fit, and values in-between are
interpolated. This procedure assumes that if the developer
in the history selected an artifact and a HeatMap colored it
red, then the HeatMap would have successfully guided the
developer to the right artifact. The percentage values are
aggregated for all tested elements to form an average result
for the whole HeatMap using the given history. We compute
accuracy for the Monitoring Use Case as follows:

Accuracy =
∑n

i=d dist(CV (xi), RED)
n− d

where d represents the size of the initial database, n is the
final size of the database, xi is the ith element, CV (x) is
the color value assigned to element x, and dist(cvi, cvj) is
the distance between two colors.

Evaluated HeatMaps. In this experiment we test six
different HeatMaps: recently browsed, frequently browsed
(how often the artifact has been visited), recently modified
(created, update, moved, renamed, or deleted), frequently
modified, age of artifact, and number of versions (how of-
ten the artifact has been committed). Furthermore, we com-
bine different HeatMaps to test whether combined informa-
tion yields better results. We combined these maps using
the weighted linear combination approach and weighted the
second map with a factor of 2. As stated in Section 3 we
can give different weights to the individual HeatMaps when
combining them; in this validation each HeatMap is as-
signed the same weight in the combinations we tested. Fi-
nally, we did a best of everything experiment, that is, we
computed for each tested artifact the maximum accuracy
achieved under all tested HeatMaps. This final experiment
thus leads to the maximum accuracy rate we possibly obtain
with our approach and this data set.

Table 1 (Monitoring Use Case) and Table 2 (Histori-
cal Use Case) show the various accuracy rates for different
HeatMaps we tested using the recorded developer activities.

6



HeatMap Accuracy

Recently browsed 74.48%
Frequently browsed 21.08%
Recently modified 34.52%
Frequently modified 4.01%
Artifacts’ age 43.12%
Number of versions < 1%
Recently and frequently browsed combined 73.24%
Recently and frequently modified combined 39.17%
Recently browsed, recently modified combined 74.48%
Recently browsed and age combined 48.56%
“Best of everything” 75.91%

Table 1. Accuracy rates of different HeatMaps
in the Monitoring Use Case

Discussion of the results. From these results we con-
clude that HeatMaps perform similarly well for both use
cases, that is, when continuously used in a development
session, or when imported from a recorded history and used
without taking into account events generated thereafter. The
recently browsed HeatMap is the best performing single
metric, which comes as no surprise since the past naviga-
tion actions are most likely to be a good basis to predict fu-
ture navigation actions; thus our motivating use case (Sec-
tion 2.1) should be easier to support by a HeatMap that gives
us hints about what the developer browsed while originally
developing the broken feature.

Modification actions lead to significantly less accurate
results compared to navigation actions, as do frequency-
based HeatMaps compared to recency-based HeatMaps.
This is intriguing as other researchers reported higher ac-
curacy rates for models based on modification activities
[6, 16]. We explain our contradicting results by the fact
that the used data set contains much fewer modification than
navigation activities (84000 navigation events compared to
4000 modification events); thus many browsed entities have
never been modified, which means that those entities are
not colored by modification-based maps. We performed an-
other experiment which tests modification-based maps only
with those entities that indeed have been modified. In this
experiment we obtain accuracies of 67.49% for recently
modified and 31.08% for frequently modified. The really
low accuracy for the number of versions map is explained
by the fact that just a very small percentage of methods con-
tains more than one version. For systems with more evolu-
tionary information available we expect much better results
for maps based on such data.

Combining different HeatMaps does not in general in-
crease the accuracy, although in some cases the combination
of recently with frequently browsed HeatMaps does. Study-
ing the “best of everything” test reveals that in nearly three
quarters of all cases the recently browsed HeatMap gives
the best value, but for one quarter of all elements the com-
bination of recently and frequently browsed yields a better

HeatMap Accuracy

Recently browsed 68.27%
Frequently browsed 18.14%
Recently modified 39.02%
Frequently modified 3.62%
Artifacts’ age 21.93%
Number of versions < 1%
Recently and frequently browsed combined 63.81%
Recently and frequently modified combined 39.02%
Recently browsed, recently modified combined 65.48%
Recently browsed and age combined 37.41%
“Best of everything” 70.36%

Table 2. Accuracy rates of different HeatMaps
in the Historical Use Case

result.
To assess the fitness of this experiment we also con-

stantly studied the ratio of entities colored by the evaluated
HeatMap and all system entities. This ratio was varying
between 5% and 38% throughout all experiments with an
average at 17%, hence colored entities clearly stand out.

Threats to validity. There are several threats to valid-
ity in the experiment we performed. Firstly, the data set we
used contains all navigations and modifications occurring
in one single application, thus we cannot generalize our re-
sults to other systems as well (threat to external validity).
However, we consider this data set as being fairly typically
for other applications of similar (medium) size. The system
experienced several extensions, changes, and refactorings.
It also contained several defects that had to be addressed,
thus the recorded development history covers all the typical
tasks we want to support with HeatMaps.

Secondly, the observed navigation and modification pat-
terns have not necessarily been effective or even optimal,
for instance, if developers didn’t navigate themselves di-
rectly to the right artifacts. Since HeatMaps should guide
developers effectively to the entities they have to understand
or modify in the context of a specific task, the HeatMaps
should make close to optimal suggestions. The recorded
data set most likely does not represent an optimal naviga-
tion in all cases, thus it is likely that HeatMaps performing
well in the simulated study are not necessarily optimal for
the task-at-hand (threat to external validity). However, as
we know that the developers generating this data set have
been involved in the system’s development from the start
and have thus been very familiar with it, we assume that
their navigation patterns are generally very directed to what
they were actually looking for. The results of the experi-
ment would have been different if we had assumed that not
the navigation but the actual modifications performed indi-
cate an optimal pattern. In that case an optimal navigation
directly opens the entities to modify in order, for instance,
to correct a defect. Under this assumption, the recently and
frequently modified maps give much better results, namely

7



72.25% and 47.81%, respectively. Neither assuming that
the navigation nor the modification patterns are optimal in
the available data set, is fully correct. We opted for the for-
mer assumption because navigation activities are, of course,
much more frequent while working in an IDE [9] than mod-
ification activities. The reliability of test results is usually
higher when based on larger data sets.

Thirdly, in this experiment we did not yet distinguish
between different tasks. We are going to analyze the per-
formance of HeatMaps with respect to the task-at-hand
in the subsequent experiment. We performed this exper-
iment under the assumption that the recorded data repre-
sents one large task during which developers navigated op-
timally (threat to construct validity). A separation by differ-
ent development sessions, however, would make sure that
a history of one session, for example, in which a bug was
fixed, does not influence the suggestions for navigation in
a completely different session dedicated, say, to refactor-
ing. However, this implicit knowledge would have rather
increased the accuracy, as using only the history of a simi-
lar session to generate the HeatMaps is very likely to give
better results.

Task-dependent HeatMaps. The data set with which
we performed this validation also contains information
about the nature of the task that has been performed at the
moment in which the navigation data has been recorded.
In another experiment, we use this information to compare
the performance of different HeatMaps for different specific
tasks, to reveal whether some HeatMaps are better suited
for one kind of development task than for another. We ex-
tracted four types of major development tasks from the data
set: defect correction, new feature implementation, refac-
toring, and navigation tasks (tasks which do not change the
system, probably performed purely to gain understanding).

In Table 3 we report on how often a particular HeatMap
most accurately directed the developer to the desired en-
tities. For these four types of tasks, the recently browsed
map, for defect correction and feature implementation com-
bined with the recently modified map, performs best. We
attribute this to the fact that in particular bug correcting ac-
tivities often occur after a system has been frequently mod-
ified, thus the frequently modified combined with the re-
cently browsed map gives best results. Refactoring and in
particular navigation tasks often occur after navigation ac-
tivities in which developers have spotted issues or interest-
ing code segments to be investigated further. Hence visu-
alizing previous navigation efforts helps developers to find
the entities to refactor or analyze in more detail. The results
in Table 3 serve as a guideline: when working on a task in
one of these four areas, developers obtain best results when
using the suggested HeatMap. We make use of this knowl-
edge in HeatMaps to suggest well-performing HeatMaps to
the developer based on the task-at-hand (cf. Section 5). We

did not test how the HeatMaps visualizing dynamic infor-
mation would have performed as there is no recorded run-
time data about this system available. We expect such maps
to outperform others for specific bug corrections.

HeatMap Defect Feature Refactor. Navig.

Recently browsed 49.48% 50.90% 64.27% 75.19%
Frequently browsed 19.07% 20.28% 22.99% 24.82%
Recently modified 45.20% 31.73% 38.03% 28.39%
Frequently mod. 32.98% 9.64% 17.62% 11.88%
Rec. brow. & rec. mod. 54.31% 51.14% 63.00% 72.04%
Freq. brow. & freq. mod. 32.78% 44.01% 29.22% 61.76%

Table 3. Performance of different HeatMaps in
specific tasks

4.3 User feedback

In addition to the benchmark validation we also gathered
feedback from developers using HeatMaps in practice. Four
developers used HeatMaps over a period of several hours
up to a week while performing various kinds of tasks such
as maintaining a known system. We also asked one devel-
oper to gain an initial understanding for a unfamiliar system
we developed; we provided him with HeatMaps visualizing
our navigation history in this system. The developers us-
ing HeatMaps generally appreciated their presence during
their work. They considered this navigational aid to be use-
ful; in particular they liked that fact that HeatMaps are easy
to understand and that the maps apply to a wide range of
different kinds of information. The colors we have chosen
as background color for the source artifacts are considered
to be non-intrusive (we opted to use a color gradient from
light blue to light red to obtain soft colors). All partici-
pants stressed the importance of suggesting task-dependent
HeatMaps; although the IDE should suggest, based on the
developer’s characterization of the task-at-hand, the best
suited HeatMap, the engineers still want to be able to cus-
tomize the automatic suggestion.

After using HeatMaps for a while, one developer con-
sidered the frequency and recently browsed HeatMaps to be
most useful when he was interested in understanding the
system in general; for addressing a specific maintenance
task, he opted for HeatMaps focusing more on that task,
such as HeatMaps showing evolutionary information about
a specific part of the system or information involving fre-
quency of modification, or the number of versions, not just
navigation.

These early user comments offer a promising feedback
about how useful HeatMaps can be in practice; performing
a full-fledged user experiment we leave as future work.

8



5 Discussion

Next we discuss several important aspects of our pro-
posal: (i) combining or aggregating different information
from single HeatMaps, (ii) task-dependent or goal-oriented
usage of HeatMaps, and (iii) studying its limitations.

Information aggregation. From the validation in Sec-
tion 4.2 we learn that combining HeatMaps does not ap-
pear to have a significant positive effect on the accuracy
of a HeatMap. The accuracy of combinations heavily de-
pends on the HeatMaps used, on their weighting, and on the
data set of recorded activities. As the experiment study-
ing the task-dependency of HeatMaps reveals, combined
HeatMaps can outperform single maps for specific goals or
tasks, as it was the case for defect correction and implemen-
tation of new features (cf. Section 4.2), where a combina-
tion of the recently browsed with the recently modified map
performed best, also better than the recently browsed map
alone. Instead of combining HeatMaps we could also al-
ready take into account the different actions performed by
the user when initially building a single HeatMap. Mylar
[16] for instance creates a degree-of-interest model in which
not only navigation but also each keystroke performed dur-
ing the modification of an artifact directly increases the in-
terest value.

As one of our primary goals with this approach is to
freely combine, exchange, and distribute the underlying
data for HeatMaps, as well as to have a uniform approach to
display very different information efficiently in the IDE, we
deliberately keep the information used in single HeatMaps
as simple as possible, even though gathering this informa-
tion is often complex or time-consuming, as is the case
for HeatMaps presenting dynamic information. This en-
ables the developer to select from a wide range of informa-
tion that which best fits the specific task-at-hand; the IDE
supports the developer hereby by offering suggestions for
proven combinations.

Task-dependency, Goal-orientation. A navigational
aid such as HeatMaps should ultimately guide the devel-
oper towards her goal, for example, the entity she actually
needs to modify to correct a defect. In software mainte-
nance the goals can be very diverse — gaining an under-
standing for the software is usually a prerequisite to attain
any goal when maintaining software. HeatMaps contribute
to program comprehension by highlighting entities accord-
ing to their importance. As an artifact’s importance depends
highly on the programmer’s task and on the concrete goal
she is pursuing, HeatMaps can visualize a wide range of
information and propose suggestions what configuration or
combination of different HeatMaps are most useful for a
specific task. Developers can further refine the suggestions
given by the IDE.

For many tasks and goals it may be obvious what infor-

mation is likely to be most useful for identifying the im-
portant entities. For example, to optimize performance,
a HeatMap highlighting heavy computations is a natural
choice. Not only the HeatMap itself but also the nature
or age of the data it visualizes influences the accuracy.
From our experience we know that when starting a new
task, the data for the HeatMaps should either be freshly
recorded from scratch or originate from a similar task, oth-
erwise the assessment of the entities’ relevance is not accu-
rate enough to properly guide the developer. For this rea-
son HeatMaps provide the means to easily store the used
data for later reuse in another, similar task (as done for the
running use case in Section 2.1). Particularly useful is sav-
ing the HeatMaps data used while correcting a bug together
with the bug report, thus giving other developers in the team
the opportunity to view the HeatMaps of the original devel-
oper who addressed this particular bug [16].

As mentioned in Section 4.2 we also provide best prac-
tice guidelines to suggest which HeatMaps are most useful
for which kind of task. For developers correcting defects
different entities may be important than for new team mem-
bers trying to gain an initial understanding for a large soft-
ware system. In the future, we want to perform empirical
user studies with different HeatMaps with respect to how
well they perform for various tasks. Of particular interest is
the impact of HeatMaps on initial program understanding,
such as when a new developer joins a team.

Limitations. HeatMaps are limited in their expressive-
ness, since they can, by definition, only display one ordered
set of values at a time. We can circumvent this limitation
to some degree by combining different HeatMaps. How-
ever, it is unclear whether we could display more than one
HeatMap at the same time in the IDE by, say, coloring ar-
tifacts in several colors, or whether we could use discrete
colors to visualize discrete values, such as authors, but still
show the degree of realization for a variable, for example,
how much an author contributed to an artifact, by displaying
a gradient around each discrete color. Abusing HeatMaps
to visualize too complex information is likely to erode their
main advantage, that is, being easily understandable.

6 Conclusions and Future Work

In this paper we addressed the research question whether
there is a uniform means to guide developers working on
various development tasks through a large software space
directly in the IDE. We proposed HeatMaps, a uniform ap-
proach to visualize various kinds of information orthogonal
to the static system structure in the IDE. Evolutionary infor-
mation, information about the historical navigation, modifi-
cations performed in the IDE, or dynamic information about
a large software system, can direct developers to software
entities important for a specific goal. As software develop-

9



ers and maintainers face very diverse tasks, HeatMaps of-
fer a flexible and configurable means to visualize different
kinds of information relevant to these tasks. In particular,
we provide predefined configurations of HeatMaps that are,
according to our evaluations, best suited to direct develop-
ers when solving problems such as navigating a system to
gain an initial or deeper understanding, correcting defects,
implementing new features, or refactoring a system.

In the future we plan to further explore three main direc-
tions: (i) which kinds of information provide the most ac-
curate support for which kinds of tasks, (ii) which combina-
tions of HeatMaps perform better than individual HeatMaps
for a given class of tasks, and (iii) more detailed case studies
to validate the performance of HeatMaps for different kinds
of applications and tasks. Future validation will also include
formal user-based experiments to evaluate how developers
benefit of HeatMaps in their daily work.

Acknowledgments. We gratefully acknowledge the financial
support of the Swiss National Science Foundation for the project
“Bringing Models Closer to Code” (SNF Project No. 200020-
121594, Oct. 2008 - Sept. 2010) and the INRIA support for the
REMOOSE Associated team.

References

[1] W. De Pauw, R. Helm, D. Kimelman, and J. Vlissides. Vi-
sualizing the behavior of object-oriented systems. In Pro-
ceedings of International Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOP-
SLA’93), pages 326–337, Oct. 1993.

[2] A. Dunsmore, M. Roper, and M. Wood. Object-oriented
inspection in the face of delocalisation. In Proceedings of
ICSE ’00 (22nd International Conference on Software Engi-
neering), pages 467–476. ACM Press, 2000.

[3] T. Gı̂rba, S. Ducasse, and M. Lanza. Yesterday’s Weather:
Guiding early reverse engineering efforts by summarizing
the evolution of changes. In Proceedings of 20th IEEE Inter-
national Conference on Software Maintenance (ICSM’04),
pages 40–49, Los Alamitos CA, Sept. 2004. IEEE Computer
Society.

[4] A. Hassan and R. Holt. Predicting change propagation
in software systems. In Proceedings 20th IEEE Inter-
national Conference on Software Maintenance (ICSM’04),
pages 284–293, Los Alamitos CA, Sept. 2004. IEEE Com-
puter Society Press.

[5] D. Jerding, J. Stasko, and T. Ball. Visualizing message pat-
terns in object-oriented program executions. Technical Re-
port, Georgia Institute of Technology, 1996.

[6] M. Kersten and G. C. Murphy. Mylar: a degree-of-interest
model for ides. In AOSD ’05: Proceedings of the 4th in-
ternational conference on Aspect-oriented software devel-
opment, pages 159–168, New York, NY, USA, 2005. ACM
Press.

[7] M. Lanza. The evolution matrix: Recovering software evo-
lution using software visualization techniques. In Proceed-

ings of IWPSE 2001 (International Workshop on Principles
of Software Evolution), pages 37–42, 2001.

[8] L. Moonen. Exploring software systems. In Proceedings
International Conference on Software Maintenance (ICSM
2003), pages 276–280. IEEE Computer Society, 2003.

[9] C. Parnin and C. Görg. Building usage contexts during pro-
gram comprehension. In Proceedings of the 14th IEEE In-
ternational Conference on Program Comprehension, pages
13–22, Los Alamitos CA, 2006. IEEE Computer Society.

[10] M. Pinzger, H. Gall, M. Fischer, and M. Lanza. Visualizing
multiple evolution metrics. In Proceedings of SoftVis 2005
(2nd ACM Symposium on Software Visualization), pages 67–
75, St. Louis, Missouri, USA, May 2005.

[11] R. Robbes and M. Lanza. How program history can im-
prove code completion. In Proceedings of ASE 2008 (23rd
International Conference on Automated Software Engineer-
ing, pages 317–326, 2008.

[12] M. P. Robillard and G. C. Murphy. Automatically inferring
concern code from program investigation activities. In Pro-
ceedings of the 18th International Conference on Automated
Software Engineering, pages 225–234, Oct. 2003.

[13] M. P. Robillard and G. C. Murphy. Feat: A tool for locat-
ing, describing, and analyzing concerns in source code. In
Proceedings of 25th International Conference on Software
Engineering, pages 822–823, May 2003.

[14] D. Röthlisberger, O. Greevy, and O. Nierstrasz. Exploit-
ing runtime information in the IDE. In Proceedings of the
16th International Conference on Program Comprehension,
pages 63–72, Los Alamitos, CA, USA, 2008. IEEE Com-
puter Society.

[15] J. S. Shirabad, T. C. Lethbridge, and S. Matwin. Mining the
maintenance history of a legacy software system. In Interna-
tional Conference on Software Maintenance (ICSM 2003),
pages 95–104, 2003.

[16] J. Singer, R. Elves, and M.-A. Storey. NavTracks: Support-
ing navigation in software maintenance. In International
Conference on Software Maintenance (ICSM’05), pages
325–335, Washington, DC, USA, sep 2005. IEEE Computer
Society.

[17] A. Tarvo. Mining software history to improve software
maintenance quality: A case study. IEEE Software,
26(1):34–40, Jan. 2009.

[18] R. J. Walker, G. C. Murphy, J. Steinbok, and M. P. Robillard.
Efficient mapping of software system traces to architectural
views. In CASCON ’00: Proceedings of the 2000 confer-
ence of the Centre for Advanced Studies on Collaborative
research, page 12. IBM Press, 2000.

[19] N. Wilde and R. Huitt. Maintenance support for object-
oriented programs. IEEE Transactions on Software Engi-
neering, SE-18(12):1038–1044, Dec. 1992.

[20] X. Xie, D. Poshyvanyk, and A. Marcus. Visualization of
CVS repository information. In WCRE’06: Proceedings of
the 13th Working Conference on Reverse Engineering, pages
231–242, Washington, DC, USA, 2006. IEEE Computer So-
ciety.

[21] T. Zimmermann and P. Weißgerber. Preprocessing CVS data
for fine-grained analysis. In Proceedings 1st International
Workshop on Mining Software Repositories (MSR 2004),
pages 2–6, Los Alamitos CA, 2004. IEEE Computer Society
Press.

10


	Introduction
	Information overflow in IDEs
	Motivating Use Case
	Development Driven Information
	Related Work

	HeatMaps
	Validation
	Efficiency of HeatMaps
	Accuracy of HeatMaps
	User feedback

	Discussion
	Conclusions and Future Work

