
Package Reference Fingerprint:
a Rich and Compact Visualization to Understand Package Relationships

Hani Abdeen 1∗ Ilham Alloui 2 Stéphane Ducasse 1† Damien Pollet 3 Mathieu Suen 1

1 ADAM team, LIFL

INRIA Lille-Nord Europe

UMR CNRS 8022–France

2 Université de Savoie

France

3 University of Lugano

Switzerland

Abstract

Object-oriented languages such as Java, Smalltalk, and
C++ structure their programs using packages, allowing
classes to be organized into named abstractions. Maintain-
ers of large applications need to understand how packages
are structured and how they relate to each other, but this task
is very complex because packages often have multiple clients
and different roles (class container, code ownership...). Co-
hesion and coupling are still among the most used metrics,
because they help identify candidate packages for restructur-
ing; however, they do not help maintainers understand the
structure and interrelationships between packages. In this
paper, we present the package fingerprint, a 2D visualization
of the references made to and from a package. The proposed
visualization offers a semantically rich, but compact and
zoomable visualization centered on packages. We focus on
two views (incoming and outgoing references) that help users
understand how the package under analysis is used by the
system and how it uses the system. We applied these views
on three large case studies: JBoss, Azureus, and ArgoUML.

This paper uses colors in the figures. Please read a
colored printout of this paper .

Index Terms Software packages, Visualization.

1 Introduction

To cope with the complexity of large object-oriented soft-

ware, developers organize classes into packages or modules.

This organization usually follows the conceptual interrela-

tionships between classes, but as a system evolves, its mod-

ular structure may change and require maintenance. In this

context, it is useful to understand the concrete organization

of packages and their interrelationships. Ideally, packages

∗hani.abdeen@inrai.fr
†We gratefully acknowledge the financial support of the french ANR

(National Research Agency) for the project “COOK: Réarchitecturisation

des applications industrielles objets” (JC05 42872) and ESUG the European

Smalltalk User Group for its sponsoring.

should be kept as less coupled and as much cohesive as pos-

sible [3]. Following previous overviews [16, 13, 1, 15], we

distinguish two main design approaches. The first approach

relates the cohesion of a package to the interconnections

between its internal classes. The second approach relates

the cohesion of a package to how the system uses this pack-

age’s internal classes, i.e., if two classes of a package are

used from a same client module, then they are considered

as conceptually related, regardless of the explicit relation-

ships that exist between them [15]. This second approach

is more meaningful to us, because we consider a package

as a functionality provider and not only a structural group-

ing of coupled classes. Many metrics of package cohesion

have been defined [3, 13, 1, 15] and help to determine pack-

ages that are candidates for restructuring during maintenance.

However, those approaches do not help maintainers of large

applications when they face the problem of understanding

how packages are structured in general and how packages

are in relation with each other in their provider/consumer

roles.

Several previous works in software visualization provide

information on packages and their relationships, by visu-

alizing software artifacts or metrics about their structure

or evolution [5, 6, 12, 14, 17, 18]. However, while these

approaches are valuable, they fall short of providing a fine-

grained view of packages that would help understanding

the structure of packages, their interrelationships within the

system, and help identifying their roles within an application.

Contribution. In this article, we present the Package Ref-

erence Fingerprint: a compact, rich and zoomable visual-

ization supporting the understanding of a package and its

relationships. We propose two complementary variations of

the Package Reference Fingerprint, structured around the

distribution of references from or to the classes of the an-

alyzed package: the incoming fingerprint shows how the

system uses the package’s classes, and highlights the cohe-

sion of the analyzed package, as defined in [15]; the outgoing
fingerprint shows how the package’s classes use the system.

1

P2
P1

P3

A1

B1

C1

D1 E1

client
packages

In-Interface

A2

A3

P4

A4
B4

F1

H1

I1

G1

P5

A5
B5

P6

A6

B6

C6

provider
packages

Out-Interface

package under analysis

(a) The analyzed package P1 is composed of nine

classes among which only four are involved in inter-

nal references (A1 with F1 and E1 with C1). Both In-

Interface and Out-Interface of P1 contain five classes,

with C1 in common.

P1

A1

B1

C1 D1 E1

client
packages In-Interface

… and from
P4 and P3

classes referenced
from P2 only

… from P3 and P2

P2

P3

P4

(b) Grouping the classes of the In-Interface of P1 by

common client packages. Similarly, we group classes

in the Out-Interface by common provider packages.

Figure 1. Defining our terminology: an exam-
ple of references between packages.

In Section 2, we first describe the challenges that soft-

ware engineers face when trying to understand packages.

Section 3 presents the Package Reference Fingerprint and

its basic principles. Section 4 presents how a fingerprint

works in practice. Section 5 presents a coarser level of detail

of the fingerprint, and shows what information it provides.

Section 6 presents the outgoing fingerprint. In Section 7

we list the most common patterns we identified during our

experimentation. In Section 8 we discuss our visualization

and we report on related work before concluding.

Vocabulary. Figure 1(a) illustrates the terminology we use

in the rest of the paper. First, by reference, we mean that a

package P1 refers to an another P2 if P1 contains a class C1

that invokes methods of an another class C2 packaged in P2.

In the same vein, we say that P1 refers to C2, C1 refers to

P2, P2 exports C2 for P1, and P2 is referenced by C1 and

by P1. By language abuse, when we say that a package P

refers to another package Q, we mean that classes contained

in P refer to classes of Q. We name In-Interface of P the set

of classes of P which are referenced by classes packaged

outside P. Similarly, we name Out-Interface of P the set of

classes of P that refer to classes packaged outside P.

2 Challenges in Understanding Packages

Although languages such as Java model dependencies

between packages (i.e., via the import statement), developers

lack tool support to really understand packages within their

context. Indeed, packages are complex entities that have

different usage patterns, often depending on the clients that

use them, e.g., code ownership, feature containment. This

makes it difficult to understand the inter-packages communi-

cation or even to quickly identify the clients or providers of

a package [7].

To understand the structure and the roles of packages

within a system, we need both quantitative information (the

size of elements and their relationships), and qualitative

information (coupling and cohesion). In this section, we

summarize the information that a solution supporting pack-

age understanding should provide. It is complementary to

the list described in [7]. Note that this list is not exhaustive

and that our approach does not cover all the points raised

hereafter.

Quantitative information. What is the general size of a

package in terms of classes, inheritance definitions, internal

and external class references, imports, exports to other pack-

ages? Is there only a few classes communicating with the

rest of the system?

The size of the package Out-Interface gives maintainers a

quantified information about the dependency of the package

on other packages, while the number of referenced packages

shows its dependence on the system. The size of the pack-

age In-Interface gives maintainers a quantified information

about the dependency of the system on the package, and the

number of referencing packages shows its importance for

the system.

Qualitative information: cohesion and coupling. Good

packages should group conceptually coupled classes, i.e.,
which are needed for the same task [15], and they should

have a few clear dependencies to other packages [3, 11]. In

such a context, cohesion and coupling are among the most

used metrics during perfective maintenance [13, 1, 16].

To understand the multiple facets of a package, we try to

group its classes according to their usage by other packages.

Figure 1(b) shows referenced classes of P1 grouped into

clusters as well as the references that point to those clusters.

Clustering the In-Interface and Out-Interface like that helps

identifying the dependencies that the system has with P1,

and thus which classes are conceptually coupled and which

classes are not; at a higher level of abstraction, it helps

answering the following questions: What functionality does

P1 provide? To which packages?

P3 P1
�

P2 P1

P3 P1
�

P4 P1

P2 P1
�

P4 P1

P2 P1
�

P3 P1

P4 P1
�

P2 P1

P4 P1
�

P3 P1

P1 P3 P4 P2

P3

P4

P2

P3 P1

P4 P1

P2 P1

Diagonal
 distribution of references from P2
over classes in In-Interface of P1

Borders
packages referencing P1 sorted by
number of referenced classes in P1

Analyzed
package

P2's
references to

P1

P2 P1
�

P3 P1

Co-Using
 classes in In-Interface of P1
used from both P2 and P3

P3 P1
P3 refers to P1

Figure 2. Incoming Fingerprint skeleton.

The other indicator of package design quality that we

consider here is coupling. It is generally defined as: if chang-
ing one package in a program requires changing another
package, then coupling between these two packages exists
[2, 8]. In this paper we say that a package P is coupled with

a package Q if P refers to Q, i.e., at least one class of P refers

to one class of Q. Figure 1(a) shows that P1 is coupled with

P5 and P6.

3 Package Reference Fingerprint

According to the requirements mentioned in Section 2,

we propose two complementary views for incoming and

outgoing references: the Package Reference Fingerprints

(fingerprints for short).

The incoming fingerprint shows how the package under

analysis is used by the system and how this use is distributed

over its classes. The outgoing fingerprint shows how the

package under analysis uses the remainder of the system.

For space reasons, and since we use the same approach

for both views, we only present the incoming fingerprint

in details. Fingerprints have the four following properties:

they are compact (only the references are shown), zoomable
(different levels of information are proposed), entity-based
in the sense that they describe one package, and semantically
rich since they present multiple information at a glance.

3.1 Fingerprint Skeleton

Figure 2 depicts the key visualization principles of a Pack-

age Reference Fingerprint with P1 from Figure 1 as the pack-

age under analysis. In the context of an incoming fingerprint,

the skeleton of the layout is the following:

Analyzed Package. The top left corner cell indicates global

information about the package under analysis (here P1): the

size of its In-Interface and the internal references between

its classes.

Referring Packages. The cells at the borders of the finger-

print, i.e., the leftmost column and the topmost raw, both

represent the referring packages. We sort these packages by

order of importance: the most references a package does,

the closer it is to the top left corner. Figure 2 shows the

three packages that refer to P1 in Figure 1: P3, P4, and P2,

making respectively four, three, and two references to P1.

To order packages that make the same number of refer-

ences, we group them by similarity; in an incoming finger-

print, we define the similarity of referencing packages as

the number of shared referenced classes. For example, in

the Figure 1(b) we consider that P4 is more similar to P3

(3 referenced classes in common) than to P2 (no referenced

class in common). Symmetrically, we define the similarity

of referenced classes by the number of referencing packages

they share. Figure 1(b) shows that C1 and D1 (2 common

referencing packages) is higher than the similarity between

C1 and B1 (1 common referencing package). In any case, the

ordering algorithm we have implemented always respects

the number of references prior to similarity.

Cells. The body cells of an incoming fingerprint, i.e., all

cells except those in the leftmost column or the topmost row,

each represent a subset of the In-Interface of the package

under analysis. This subset contains the classes that are ref-

erenced by both packages placed at the heads of the cell’s

row and column. For a package P that is referenced by

P1, . . . , Pn, a cell on line i and column j, cell(i, j), repre-

sents the subset of classes of P that are referenced by both

Pi, and Pj (i.e., cell(i, 1) and cell(1, j)). Two situations

occur: either a cell is on the main diagonal or not.

• The main diagonal, it presents the distribution of the

In-Interface on the using packages. Figure 3 shows that

cell(3, 3) contains the classes (C1, D1, E1) referenced

by P4, i.e., cell(3, 1) and cell(1, 3).

• The other cells present the classes accessed in common
by both packages represented by the row and column

heads, as just explained. Figure 3 shows that cell(2, 4)
contains the class B1, referenced by both P3 and P2.

We define the size of a cell as the number of classes it

contains. Hence in Figure 3, cell(2, 2) has a size of 4 and

cell(3, 3) a size of 3: both cells represent the classes C1, D1,

and E1, but the cell(2, 2) represents also the class B1.

3.2 Enriching the Fingerprint Skeleton Layout

We enrich the skeleton of Figure 2 to convey extra in-

formation such as the amount of referenced classes in the

analyzed package. For this purpose we use color intensity of

cells, cell borders, and the position of classes within cells.

We selected those visual properties according to several

research works that address the characteristics of efficient

visualizations [19, 20]. Particularly, as our focus is on pro-

viding a first impression of a package and its context, we

want to exploit preattentive processing 1 as much as possible

to help spotting important information [9, 20].

Cell Internals. Inside a cell, we show the package’s refer-

enced classes as small filled squares.

To enable pre-attentive processing [9], we give each class

a fixed place which is the same for all the cells of a fin-

gerprint. When a cell represents that a package refers to a

class of the analyzed package, the location of this class is

colored: in Figure 3, since the class B1 is referred to by the

packages P3 and P2, the position corresponding to the class

B1 is colored in the cell(2, 4). This way all the cells will

have the same geometrical size (i.e., height and width), but

the number of classes represented by the cell is given by the

number of the colored squares inside that cell.

Internal information. Information on internal references

between classes of the analyzed packages are visualized on

the top left corner. In Figure 3 we see that among the six

referenced classes of P1, only F1 and C1 are referenced

internally. Additionally, since not all classes will appear in

all cells, we use this corner cell to show all the placeholders

for the classes that have incoming references, as bordered

squares.

Colors. Colors are used in a fingerprint to distinguish be-

tween different entities (e.g., classes, packages), and to give

more information about the references. The colors are: (1)

shades of grey for all the cells of a fingerprint except the

top left corner, (2) blue for the classes (3) red for the top

left corner and to highlight the borders of the main diagonal

cells and to highlight the fingerprint borders, (4) to highlight

packages that are outside the scope of the application under

analysis (called stubs thereafter), we use a gold border, and

we use the gold color also to highlight selected cells. (5) to

highlight the selected classes we use the green color.

1Researchers in psychology and vision have discovered a number of

visual properties that are preattentively processed. They are detected imme-

diately by the visual system: viewers do not have to focus their attention on

a specific region in an image to determine whether elements with the given

property are present or absent. An example of a preattentive task is detect-

ing a filled circle in a group of empty circles. Commonly used preattentive

features include hue, curvature, size, intensity, orientation, length, motion,

and depth of field. However, combining them can destroy their preattentive

power. Some of the features such as motion are not relevant in our context.

Figure 3. Showing the Incoming Fingerprint
of P1 (Figure 1 (b)) with the classes involved
in the relations inside each cell.

Color Intensity. We vary the color intensity to give more

information about the visualized entity: (1) for the top left

corner, the darker the package, the bigger its In-Interface

is; (2) for the borders, the darker a referencing package, the

more classes it references in the analyzed package; (3) for

the body, on a given line, the darker the cell, the more classes

it contains. The darkness of a cell is calculated relatively to

the size of the diagonal cell of that line. As a consequence

the cells of the diagonal are black.

Figure 3 shows that P3 is darker than P4: the first package

refers to 4 classes in P1 while P4 refers to 3 classes in P1.

The color of the top left corner is based on an In-Interface’s

size ratio: the size of the In-Interface of P1 is 5 while the

size of P1 itself is 9 (Figure 1). Thus the color intensity of

this cell equals to 5/9.

In Figure 3, cell(2, 3) is darker than cell(2, 4), because

the first contains three classes while the latter contains only

one; cell(4, 3) is white (i.e., the color’s intensity is zero)

because it is empty. cell(3, 2) is darker (it is black) than

cell(2, 3) while both contain the same set of classes, but the

darkness of the first is relative to cell(2, 2) while the darkness

of the second is relative to cell(3, 3). This darkness relativity

allows us to know: for P1, all the classes referenced by P4

are referenced also by P3 but some classes referenced by P3

are not referenced by P4.

Interfaces that are for
the rendering

of some graphical items (e.g., Page, Window, etc.)

Interfaces that are for
the rendering "context"

of some graphical items (e.g., Page, Window, etc.)

C

render P5

P2

B

D

DB

DB

No internal
references

P2

P5

tag::basic

P1

P1

P

stubs

CD

CB

CD CB

impl::render::
dynamic

tag P8

P8

P3

P3

P4

P6

P7

P4 P6 P7

Figure 4. The Incoming Fingerprint of ren-
der.renderer package of the them subsystem.

4 Decorticating a Fingerprint

In the following we present an example that illustrates

how a fingerprint is used for analyzing package references.

Figure 4 shows the incoming fingerprint of the JBoss ren-
der.renderer package, visualized in the context of the subsys-

tem named them. Jboss is composed of 499 packages; them
is composed of 119 classes distributed over 15 packages.

No Internal Reference. In Figure 4, none of the small

squares on the top left corner cell (P) are filled, which means

that there is no internal references within the considered

package. This package only contains interfaces.

Big Number of External incoming References. Many

classes in the package have external incoming references.

The fill color of P is dark red, thus we conclude that most

of the classes of renderer package have external incoming

references. By looking at the number of squares in P we can

estimate the size of the In-Interface (here it is equal to 11).

Small Number of Referencing Packages. The finger-

print has a relatively small size: 8 packages are referencing

classes of the package under analysis. Only two among them

are stubs (P4 and P7, they have a gold border color). By

moving the cursor over these packages, a fly-by-help shows

their names: test::them and test::them::renderer. Thus we

guess that they should include test classes. Also we un-

derstand that P is used only by a few packages within the

subsystem them and it does not have a direct role outside

this subsystem. Thus the it is a peripheral package.

C

P5

P2

B

D

DB

DB

P2

P5P1

P1

P

CD

CB

CD CB

P8

P8

P3

P3

P4

P6

P7

P4 P6 P7

Selected cell

Figure 5. The Fingerprint in Figure 4: P5 is
marked in Yellow and the cell C is selected
(gold). Thus, all the classes of C are selected
(green). In consequence, each cell that repre-
sents only a subset of those classes is also
selected.

Dominant Package. As P1 is the topmost package, we

know that it is the most referencing package to P. Also we

see that the most cells of the column of P1 are black, which

means that the most referencing packages (P3, P4, P6, P7,

and P8) refer to subsets of the classes that are referenced by

P1: P1 is a dominant referencer of P.

Also to help the user to detect quickly the information

we introduce an interaction mechanism to the visualization.

Figure 5 shows that the selecting C automatically selects

of all cells in the body, except B, D and their intersection

DB. Thus we know that the classes that are referenced by

P1 represent all the referenced classes in P, except those

that are referenced by P5 and P2. The color intensity of

a selected cell is relative to how many selected classes it

contains. We see then how the classes referenced by P1

spread on the fingerprint. To quickly detect the occurrences

of given packages in other fingerprints, the user can mark

arbitrary packages by different colors.

Commonly Referenced Classes. The black cells in the

lines of P6 and P7 highlight commonly referenced classes.

Here we see that three classes are often accessed together.

The fact that the classes keep their positions in every cell

help spotting such patterns.

Classes with different responsibilities. Glancing at the

fingerprint’s body we see that it looks filled up: only one cell

of the main diagonal (B) breaks the fill and causes a white

line/column within it. A white cell shows that there is no

shared reference to P between the packages. Here there is

no shared reference between P1 and P5, P3 and P5, . . .

The cell (B) contains five classes: the classes referenced

by the package (P5). Cell DB represents the non empty inter-

section of cell D with cell B, i.e., the four classes referenced

from both P5 (cell B) and P2 (cell D).

Going further into the details, we see that the referencing

package (P1) is the one that depends most on the package

under analysis, because it is the closest to the top left corner.

This package refers to six classes: they are the classes rep-

resented by the main diagonal cell (C). Also all the cells in

the column of P1, i.e., the second column in the fingerprint,

are black except two cells (CD and CB). Thus we know that

all the referencing packages refer to classes that belong to

the set represented by C, except P2 that refers to only two

classes of this set (CD) and P5 does not refer to any class of

this set.

Thus we assume that the analyzed package contains two

collections of classes: the first one with 6 classes (C) refer-

enced by all the referencing packages except P5; this last

with 5 classes (B). P2 refers to classes of both collections,

but it refers to 4 classes among B classes (DB) and just two

among C classes (CD). Based on that, we can already sus-

pect that it is possible to re-modularize the package under

consideration.

Inspecting B classes we learned that they represent the in-

terfaces of item renderings (e.g., PageRenderer, WindowRen-
derer, etc.) while C classes are the interfaces of item ren-

dering contexts (e.g., PageRendererContext, WindowRender-
erContext, etc.). C interfaces are referenced by the package

render, within its class renderContext that implements the

facade pattern. This latter is responsible of the communi-

cation with different objects whose types are declared via

the interfaces (e.g., PageRenderer, WindowRenderer, etc.).
The package impl::render::dynamic contains classes that

implement some of the interfaces of B.

Reading the code, reinforced the difference in the usage

of both interface collections reinforced our estimation of a

necessary re-modularization.

5 Reading the Fingerprint From Far Away

We introduce two levels of zoom-outs so that the visual-

ization remains compact and scalable over a number of ref-

erencing packages or the size of the interface, and supports

global visual patterns as listed in Section 7, while minimiz-

ing information loss compared to the details presented in

Section 4:

1. We do not visualize the cell internals. We visualize,

only in the main diagonal, the size of each cell, i.e., the

number of referenced classes that are represented by it.

2. We can also visualize the fingerprint without the cell

internals and the size of main diagonal’s cells.

Figure 6 shows the fingerprint of the renderer package, il-

lustrated in Figure 4, zoomed-out twice. In the first zoom-out

Zoom-Out 1 Zoom-Out 2

Figure 6. The Incoming Fingerprint of renderer
package (Figure 4) zoomed-out twice.

we do not see the information about the classes represented

by cells, but we can estimate the size of any cell using its

darkness and the size of the main diagonal’s cell which is

located on its line. This last information is hidden in the sec-

ond zoom-out. To help the user find it we have introduced,

in addition to the selection and marking mechanisms repre-

sented in Section 4, a new interaction with the fingerprint:

by moving the cursor over any cell a fly-by-help shows us

the size of the cell and the set of the classes it represents.

Reading the Fingerprint We believe that the package fin-

gerprint, as described in Section 4, helps developers to under-

stand and to analyze a given package, while the fingerprint

zoom-outs helps visualizing a big number of packages, eas-

ily navigate in the system and detect global information (e.g.,
patterns, anomalies, etc.). To understand and analyze any

package in detail, the developer can select it and zoom to its

full fingerprint at any time.

Figure 7 shows the incoming fingerprint of the package

utils of the subsystem plugins, taken from Azureus applica-

tion. In the following we illustrate how to read this incoming

fingerprint, and which relevant information we can get out.

At first glance, the size (i.e., width or height) of the fin-

gerprint is relatively large and all referencing packages are

golden bordered. That means the utils package is referenced

by a big number of packages that all are located outside the

subsystem plugins.

The top left cell (P) is dark red, which means that most

of the package’s classes are referenced from the outside, i.e.,
the size of its In-Interface is big.

The fingerprint’s fill shows that some cells on the main

diagonal (circled in green) are isolated within their row: i.e.,
the row are nearly completely white. These cells identify ser-

vices provided by the analyzed package for only a couple of

packages. Classes represented by those cells are considered

as lightly coupled in the context of the package, and their

presence degrades the package cohesion.

Figure 7. The Incoming Fingerprint of utils
package, from Azureus.plugins subsystem.

Furthermore, the fingerprint fill shows a black filled rect-

angle Z3 at the intersection of the rows and columns of the

packages Pkgs3. This indicates that the cells within Z3

represent the same collection of classes that are referenced

together by Pkgs3. In the same way, we can deduce that

those classes are also referenced together by the packages

Pkgs2 and Pkgs1: see the black filled rectangles Z3,2 and

Z3,1. These set of classes are referenced together from most

of the referencing packages: they are highly coupled within

the package under analysis. Furthermore, the presence of

dark/black rectangles within the fingerprint’s body is indica-

tor on the package cohesion: the more black space, the more

cohesive the package is.

Comparing black filled rectangles according to their size

also provides us with useful information: the larger a rect-

angle size is, the higher the coupling between the classes

represented by it. For example, classes in the rectangle Z2

are less coupled than the classes of Z3.

The fingerprint’s body is not symmetric in terms of dark-

ness. While the classes that are referenced by the packages

Pkgs1 and Pkgs3 are represented by both the rectangles

Z1,3 and Z3,1, the fills of those rectangles have different

darkness: Z1,3 is light grey and Z3,1 is black. We deduce

then that the classes referenced by Pkgs3 form a small por-

tion of the classes referenced by Pkgs1. Thus we say that the

dissymmetrical darkness of the fingerprint’s body is relative

to the size of the In-Interface of the package under-analysis.

It also prefigures that class usage is not homogeneous from

the package perspective: some referencing packages refer to

a big number of classes and other packages refer only to a

few classes.

Top Right Corner

Right Border

Top B
order

M
ain Diagonal

1

2

2
3

UserEventBridge

UserEventIntercepter

Pkgs1

Pkgs2

Pkgs2

Figure 8. The Outgoing Fingerprint of
impl::api::user package, from Jboss.core.

6 Outgoing Fingerprint

Until here we limited our presentation to incoming ref-

erences; we also propose the symmetrical view to help un-

derstanding how the package under analysis uses the rest of

the application. The principles we described above are used

exactly in the same way, except that we take into account

outgoing references instead of incoming ones: the referenced

packages and the Out-Interface of the package under anal-

ysis. To help the software engineer to always know which

fingerprint he is reading, in a outgoing fingerprint, the pack-

age under analysis is located on the top right most corner,

i.e., the top right corner, and the diagonal is crossing in the

other direction. Also the referenced packages form the right
border of the package outgoing fingerprint.

Figure 8 shows the outgoing fingerprint of impl::api::user
package. The fingerprint shows two important pieces of

information: (1) there are two distinct groups of packages

(Pkgs1 and Pkgs2 on the figure) been referenced by the

classes of the analyzed package – since the cells are black,

all the referenced packages are accessed consistently, and

(2) there are two classes in the package’s Out-Interface since

each group has a most one referencing class. The view also

reveals the input source for each class, we can then coarsely

evaluate the potential impact of changes on the package.

7 Relevant Visual Patterns

While applying Package Reference Fingerprints to large

applications (Azureus, Jboss, ArgoUML) we identified some

visual patterns. We present here the most frequent ones,

knowing that several patterns could occur within a single

fingerprint. For space reason, we describe each pattern only

in the context of Incoming Fingerprints.

Black Fill. This pattern occurs when all the package

In-Interface classes are conceptually coupled: all the In-

Interface classes are referenced together by every referenc-

S: StateDiagramGraphModel

Figure 9. The Incoming Fingerprint of
uml::diagram::state package, from ArgoUml.

S1: PortletInvocation

S2: S1 & ActionInvocation

S3: S2 & RenderInvocation

Pkgs1

Pkgs2

Pkgs3

P
k
g
s
1

P
k
g
s
2

P
k
g
s
3

Figure 10. The Incoming Fingerprint of invoca-
tion package, from Jboss.portlet subsystem.

ing package. In our case studies, this pattern occurs when

the size of the In-Interface of the package under analysis

is very small, particularly when it exports only one class,

or when the package is referenced by a small number of

packages. Peripheral packages often present this pattern. In

this pattern, all the classes of the package’s In-Interface are

referenced always together as a single service. Thus such a

package is often characterized by a high degree of cohesion

because all its classes are related to fulfill a single service.

Variation. The package metadata, shown in Figure 10, il-

lustrates a variation of this pattern: the fingerprint fill appears

as gray layers: under the main diagonal the cells are black

and above it, they are in progressively lighter shades of gray.

The classes in the last lines represent the most important

classes because they are referenced by all the referencing

packages: in Figure 10, the class PortletInvocation (S1) is

the most referenced one (S1 is referenced by Pkgs1, Pkgs2

and Pkgs3). S2 is referenced by Pkgs2 and Pkgs3. S3 is

only referenced by Pkgs3. This pyramid shows that there is

a layering in the terms of the use of the services. Figure 9

shows that state package provides only one service (S).

Broken. In this pattern the fingerprint’s fill contains white

cells. Some cells are isolated within their line and column

(i.e., no other dark cell within their line). The packages utils
(Figure 7), and render::renderer (Figure 4) exhibit this pat-

tern. In some cases these cells form together a small square

S1: ProjectMemberTodoList

S2: UmlTodoItem

S3: ChildGenFind

p1
p2
p3
p4
p5

Figure 11. The Incoming fingerprint of the
uml::cognitive package in ArgoUml application.

around the principal diagonal. Such isolated cells represent

particular classes in the context of the package from a client

perspective: they offer specific services that are accessed

by few clients. This pattern represents a shortcoming in

the package’s design, and the question of re-factoring the

breaking classes, for improving the package cohesion or/and

reducing its coupling, takes an important place.

Arrow. The only non white cells in the fingerprint’s fill

are the diagonal’s cells, making the fingerprint look like

an arrow. In this case, the package provides non-coupled

services to the system.

Variation. The strict occurrence of this pattern appears

when there is one client per service and that the services are

not mixed. A frequent variation is when the arrows’s body

is composed of small squares. These squares represent the

clients of a given services provided by the package. Again

the presence of squares only on the diagonal, is a good indi-

cation that the functionality of the packages is not cohesive

from the client point of view. Note that the width of the

square still conveys an estimate of the cohesion based on

client usage.

Figure 11 shows an example of a package that provides

three services (S1, S2 and S3), in it S1 and S2 are more

important than S3: S1 and S2 are both used by two packages

but S3 is used by only one package. These patterns show

that we could easily re-modularize the package to improve

its contextual cohesion or/and reduce its coupling.

Unbalanced. This pattern occurs when an incoming or

outgoing fingerprint appears clearly bigger than its coun-

terpart. The Unbalanced-Incoming Fingerprint pattern indi-

cates that the analyzed package plays a server role within the

system, rather than a client role. The Unbalanced-Outgoing

Fingerprint pattern indicates the reverse case.

Two variants of this general patterns have special interest:

• Giant Incoming Fingerprint. This variant reveals

core/central and utility packages that provide basic ser-

vices for the system. Figure 7 shows that plugins.utils
applies this pattern.

• Empty-Outgoing Fingerprint. The outgoing fingerprint

is empty, i.e., the package under analysis does not refer

to any package in the system. This occurs for pack-

ages that include only abstract classes or/and interfaces.

Such packages are not impacted by the system and

could be reused in other applications.

Golden Border-Side. This patterns occurs when all the

referencing packages are stubs (i.e., are not part of the sys-

tem under analysis). Thus, this pattern only occurs when

the clients of the package under consideration do not belong

to the analyzed subsystem (e.g., Plugins within Azureus).

Such packages represent the output of the analyzed subsys-

tem. This pattern is a good sign because it indicates that the

application under analysis tends to be well layered.

8 Discussion and Evaluation

8.1 Discussion

Fingerprints are not magic; they show, albeit in a con-

densed form, the existing situation of the code. When pack-

ages are not well-designed the patterns are less apparent, still

the visualization conveys the situation and the information

about the use of the package by its clients. Our approach

has worked well on our case studies and we have been able

to locate many conceptual bugs and to spot several visual

patterns. It should be noted that we were not familiar with

the case studies before applying our approach.

Position Choices. A reader often pays more attention to

the top elements than to the bottom ones. Therefore, we

grouped the internal references at the top corner of the pack-

age fingerprint, then ordered the related packages from the

most related one at the top to the least at the bottom.

Seriation. We ordered referencing packages that make the

same number of references by similarity; this way, the reader

can see which packages access the same groups of classes.

We tried ordering packages differently, e.g., by similarity

regardless of how many references they make, but each

time we lost important information i.e., the position of the

most/least referencing packages.

Impact of Boundaries. We colored the border of pack-

ages that do not belong to the application under-analysis in

gold. We found it really effective to color entities so that

the user can interactively mark entities on which he wants to

focus; this increases the usability of the tool.

Zooming. We introduced two levels of zoom-outs with

minimal information loss, so that the visualization remains

compact and scalable over the number of the related pack-

ages or the size of the interface. This way, the user can

visualize large applications, navigate in the system, spot

global patterns and conceptual anomalies. Then he can focus

on any package by zooming in to the detailed fingerprint.

However, during our experiments, we found that detailed

fingerprints have do not scale as well as the zoomed-out

views. Detailed fingerprints expose a lot of information,

which makes it difficult to spot patterns or gather general

information about the visualized package; this is especially

true for giant packages whose interface and number of re-

lated packages are very large. In fact, in such cases, no

detailled view that we applied has scaled well. We think

that zooming mechanisms are very important in software

visualization to solve this problem.

Placeholders. The placeholders in cell internals are essen-

tial to make preattentive processing work and thus to help

users see quickly which classes are coupled and where they

are coupled. The negative impact of this principle is that all

cells should be large enough to contain all possible classes

in the package’s interface. This is one of the reason why the

detailed fingerprints do not scale so well.

Fingerprints Limitations. Package fingerprints focus on

the package’s contextual cohesion, afferent and efferent cou-

pling, and co-use of internal classes. However, they do not

provide a good map for internal dependencies; our aim is

to support understanding packages through their interfaces,

regardless what happens inside them. Similarly, we consider

related packages (e.g., referencing packages in an incoming

fingerprint) as black boxes; we only care about a package’s

classes while we look at its fingerprint.

8.2 Related Work

Sangal et al. adapted the dependency structure matrix

from the domain of process management to analyze archi-

tectural dependencies in software [17]; they presented a

consistent visualization by focusing on all the system at a

time, thus the visualization does not scale well over large

systems; they used only numbers to visualize the quantified

information. Package fingerprints are based on similar prin-

ciples but provide more visual information and help identify

groups of packages with similar dependencies. A fingerprint

exploits pre-attentive processing using color, contrast, and

the principle of placeholders. In addition, a fingerprint by

focusing on a package at a time qualifies in a finer-grained

way the dependencies.

A Package Blueprint [7] presents a condensed map of a

package. It shows dependencies on a per-class basis, but it

does not help compare and group the client/provider pack-

ages in terms of their dependencies to the package under

analysis.

Several works explore packages and their structure but

few of them reveal information on their relationships and

dependencies. In Softwarenaut, Lungu et al. help system

discovery by guiding exploration of nested packages based

nesting and dependencies [12]. Storey et al. also worked on

system exploration, but their views do not scale very well

with the number of relationships [18]. Kuhn et al. used

information retrieval to exploit linguistic information, he

introduced semantic clustering to group source artifacts that

use similar vocabulary. He based on linguistic topics to

reveal the intention of the code and the similarity between

its artifacts, then he provide a consistent visualization [10].

A number of approaches give summarized information

on package relationships and their evolution: the Butterfly

by Ducasse et al. gives a high-level client/provider trend of

package dependencies [6]; Pzinger et al. show the evolution

of package metrics using Kiviat diagrams [14]; Chuah and

Eick use rich glyphs to characterize software artifacts and

their evolution (number of bugs, number of deleted lines,

kind of language...) [4]. In particular, the timewheel exploits

preattentive processing, and the infobug presents many dif-

ferent data sources in a compact way; finally, D’Ambros et
al. reveal package coupling by showing evolutions that are

correlated in time [5].

Those approaches, while valuable, do not provide a fine-

grained view of packages that helps understanding the con-

textual coupling and cohesion inside packages, and that re-

veals possible remodularisations.

9 Conclusion

In this paper, we tackled the problem of understanding the

details of package relationships. We described the package

fingerprints, and their use as a visual approach for under-

standing package relationships, contextual cohesion, and the

conceptual coupling of their classes. While designing Pack-

age Reference Fingerprint, we exploited pre-attentive pro-

cessing using color properties and saving placeholders prin-

ciple. We also introduced interactivity and multi-selection

mechanism to help the user during the analysis task.

We successfully applied the visualization to several large

applications and we have been able quickly to point out

badly designed packages, and to extract relevant patterns.

While applying Package Reference Fingerprints to large

applications that contain radically different packages in

terms of internal size and package references, the visual-

ization scaled well and the detection of different presented

patterns was always possible.

We plan to apply our approach for creating other views

(e.g., the inheritance relationships) and to validate the visual-

ization usability with independent software maintainers.

References

[1] F. B. Abreu and M. Goulao. Coupling and cohesion as modu-

larization drivers: Are we being over-persuaded? In Proceed-
ings of CSMR’01, 2001.

[2] L. C. Briand, J. W. Daly, and J. Wüst. A Unified Frame-

work for Cohesion Measurement in Object-Oriented Systems.

Empirical Software Engineering: An International Journal,
3(1):65–117, 1998.

[3] L. C. Briand, J. W. Daly, and J. K. Wüst. A Unified Frame-

work for Coupling Measurement in Object-Oriented Systems.

IEEE Transactions on Software Engineering, 25(1):91–121,

1999.

[4] M. C. Chuah and S. G. Eick. Information rich glyphs for

software management data. IEEE Computer Graphics and
Applications, 18(4):24–29, July 1998.

[5] M. D’Ambros and M. Lanza. Reverse engineering with log-

ical coupling. In Proceedings of WCRE’06, pp. 189 – 198,

2006.

[6] S. Ducasse, M. Lanza, and L. Ponisio. Butterflies: A vi-

sual approach to characterize packages. In Proceedings of
METRICS’05), pp. 70–77. IEEE Computer Society, 2005.

[7] S. Ducasse, D. Pollet, M. Suen, H. Abdeen, and I. Alloui.

Package surface blueprints: Visually supporting the under-

standing of package relationships. In Proceedings of ICSM
’07, 2007.

[8] M. Fowler. Reducing coupling. IEEE Software, 2001.

[9] C. G. Healey, K. S. Booth, and E. J. T. Harnessing preattentive

processes for multivariate data visualization. In Proceedings
of GI ’93, 1993.

[10] A. Kuhn, S. Ducasse, and T. Gı̂rba. Semantic clustering:

Identifying topics in source code. Information and Software
Technology, 49(3):230–243, 2007.

[11] M. Lanza and R. Marinescu. Object-Oriented Metrics in
Practice. Springer-Verlag, 2006.

[12] M. Lungu, M. Lanza, and T. Gı̂rba. Package patterns for

visual architecture recovery. In Proceedings of CSMR’06, pp.

185–196, 2006. IEEE Computer Society Press.

[13] H. Melton and E. Tempero. The crss metric for package

design quality. In Proceedings of ACSC’07, 2007.

[14] M. Pinzger, H. Gall, M. Fischer, and M. Lanza. Visualizing

multiple evolution metrics. In Proceedings of SoftVis’05, pp.

67–75, St. USA, 2005.

[15] L. Ponisio and O. Nierstrasz. Using context information to re-

architect a system. In Proceedings of SMEF’06, pp. 91–103,

2006.

[16] L. Rising and F. W. Calliss. Problems with determining

package cohesion and coupling. Software - Practice and
Experience, 22(7):553–571, 1992.

[17] N. Sangal, E. Jordan, V. Sinha, and D. Jackson. Using depen-

dency models to manage complex software architecture. In

Proceedings of OOPSLA’05, pp. 167–176, 2005.

[18] M.-A. D. Storey, K. Wong, F. D. Fracchia, and H. A. Müller.

On integrating visualization techniques for effective software

exploration. In Proceedings of InfoVis’97, pp. 38–48. IEEE

Computer Society, 1997.

[19] E. R. Tufte. The Visual Display of Quantitative Information.

Graphics Press, 2nd edition, 2001.

[20] C. Ware. Information Visualization. Morgan Kaufmann,

2000.

