
Laboratory LISTIC∗Université de Savoie

Advisors Stéphane Ducasse, Vincent Chauvet

Master report

Package Blueprints

Visualisation de packages

Mathieu Suen

2006 - 2007

Keywords. Object-oriented programming, Visualization,
Package, Program understanding, Refactoring.

Mots clés. Programmation orientée objets, Visualisation,
Package, Compréhension d’applications, Refactoring.

∗Laboratoire d’Informatique, Systèmes, Traitement de l’Information et de la Connais-
sance

Résumé

Ce master preésente une visualisation compacte appelée Package Surface Blueprint.
Cette visualisation montre les relations que les packages ont entre eux. Il est
courant que les applications de grande envergure soient composées de nombreux
packages. De plus les packages jouent différents rôles (c.-à-d. conteneurs de
classes, entités de développement, structures de base, éléments architecturaux).
C’est pourquoi les mainteneurs d’applications ont besoin d’outils pour analyser
et comprendre comment les packages sont structurés. La vue Package Surface
Blueprint montre les relations entre packages à l’aide de la notion de surfaces.
Les surfaces sont des groupes de relations entre le package analysé et les packages
référencés. Deux vues seront montrées. Une vue sera spécifique a la relation de
référence tandis que l’autre montrera la relation d’héritage. Nous avons appliqué
ces vues sur plusieurs larges études de cas : ArgoUML et Squeak.

4

Abstract

This master presents a compact visualization, named Package Surface Blueprint,
that qualifies the relationships that a package has with its neighbors. Large object-
oriented applications are structured over a large number of packages. Packages
are important but complex structural entities that may be difficult to understand
since they play different development roles (i.e. class containers, code ownership,
basic structure, architectural elements...). Maintainers of large applications face
the problem of understanding how packages are structured in general and how
they relate to each other. A Package Surface Blueprint represents packages around
the notion of package surfaces: groups of relationships according to the packages
they refer to. We present two specific views: one stressing the references made
by a package, and another showing the inheritance structure of a package. We
applied the visualization on two large case studies: ArgoUML and Squeak.

Contents

1 Introduction 7

2 Visualization to Understand Packages 9
2.1 Understanding packages . 9
2.2 Visualization Challenges . 10
2.3 Selected State of the Art . 11

3 Package Surface Blueprints 14
3.1 Basic Principles . 14
3.2 Detailed Explanation . 15

3.2.1 Internal references . 16
3.2.2 Position . 16
3.2.3 Color . 16

3.3 The case of inheritance . 17

4 Case study: The Network Subsystem 18
4.1 Packages Within Their Application 19

4.1.1 Inheritance package blueprint Overview 19
4.1.2 Interactively Querying the Blueprint 22

4.2 Striking Shapes . 23
4.2.1 Shapes of Packages and Surfaces 24
4.2.2 Shapes of Classes . 25

5 Usability-Study 26
5.1 The Case Study: Squeak Compiler 26
5.2 Setup . 26

6 Evaluation and Discussion 28
6.1 Evaluation . 28
6.2 Discussion . 29

7 Related Works 31

8 Conclusion 32

A Smalltalk syntax 37

6

1 Introduction

Large software is hard to maintain. A large part of the development cost goes to
maintenance. 50% to 75% of the overall cost of a software system is devoted to
it. Software professionals spend at least half their time reading and analyzing
software [Dav95]. Visualization takes part of this process ; used correctly, it
provides a fast way to analyze software [DL01]. The main purpose of using
Package Surface Blueprint visualization is to help understanding and refactoring
the package.

Software maintenance. To cope with the complexity of large software systems,
applications are structured in subsystems or packages. It is now frequent to have
large object-oriented applications structured over a large number of packages.
Ideally a package should contain highly cohesive classes and be as less coupled as
possible with the rest of the application. This helps to maintain the application.
If coupling between deployment units decrease, then you can easily remove
them from the system and deploy them for other people [PN06, BDW99]. But
as systems inevitably become more complex, their modular structure must be
maintained. It is thus useful to understand the concrete organization of packages
and their relationships. Packages are important but complex structural entities
that can be difficult to understand since they play different development roles
(e.g. class containers, code ownership basic structure, architectural elements...).
Packages provide or require services. They may play a core role or contain
secondary code features. Maintainers of large applications face the problem of
understanding how packages are structured in general and how packages are in
relation with each other in their provider/consumer roles. In addition, packages
refactoring is based on remodularization algorithms [AL99, MMCG99, MM06].
They succeed in producing alternative views to refactor the system. But proposed
changes remain difficult to understand and assess. There is a good support for
the algorithmic parts but little support to understand their results. Hence it is
difficult to decide how to apply the changes.

Visualization in the Reengineering Process. Several previous works provide
information on packages and their relationships, by visualizing software artifacts,
metrics, structure or evolution [LLG06, DLP05, CE98, DL06, PGFL05, SWFM97,
FD04]. Metrics can be somehow difficult to understand. They are project
dependent and subject to change.

7

1 Introduction

However, while these approaches are valuable, they fall short of providing a
fine-grained view of packages that would help understanding the package shapes
(the number of classes it defines, the inheritance relationships of the internal
classes, how the internal class inherit from external ones,...) and help identifying
their roles within an application.

Contribution. In this master, we propose the Package Surface Blueprint, a
compact visualization revealing package structure and relationships. A package
blueprint is structured around the concept of surface, which represents the
relationships between the observed package and its provider packages. The
Package Surface Blueprint reveals the overall size and internal complexity of a
package, as well as its relations with other packages, by showing the distribution
of references to classes within and outside the observed package. We show to the
user a direct mapping to the source code. No computation is done. We want to
show a raw view to help in understanding how a package should be refactored.
We applied the Package Surface Blueprint to several large case studies namely
Squeak the open-source Smalltalk comprising more than 2000 classes, ArgoUML
and Azureus.

This master presents the work I have made during four months at the LISTIC
laboratory. During these months I wrote a paper [DPS+07] for ICSM the Inter-
national Conference on Software Maintenance. This master is mainly based on
this paper. I also wrote a paper for the FAMOOSr workshop [SDP+07].

Chapter 2 presents the challenges that exist to support package understanding, it
also summarizes the properties that a visualization should satisfy to be effective.
Chapter 3 presents the structuring principles of a package blueprint which are
then declined to support a reference view and an inheritance view in Section 3.2.
In Chapter 4 we took an example and describe how we use our visualization. In
Section 4.2 some striking shapes are present. In Chapter 6 and Chapter 7, we
discuss our visualization and position it w.r.t. related work before concluding.

8

2 Visualization to Understand Packages

2.1 Understanding packages

Although languages such as Java offer a language mechanism for modelling the
dependencies between packages (i.e. via the import statement), this mechanism
does not really support all the information that is important to understand a
package. I present a coarse list of useful information to understand packages.
The goal here is to identify the challenges that maintainers are facing and not to
define a list of all the problems that a particular solution should tackle.

Size. What is the general size of a package in terms of classes, inheritance
definition, internal and external class references, imports, exports to other
packages? For example, do we have only a few classes communicating with
the rest of the system?

Cohesion and coupling. Transforming an application will follow natural bound-
aries defined by coupling and cohesion [BDW99, ABF04]. Assessing these
properties is then important.

Central vs. Peripheral. Two correlated pieces of information are important: (1)
whether a package belongs to the core of an application or if it is more
peripheral, and (2) whether a package provides or uses functionality.

Developers vs. Team. Knowing who are the developers and maintainers of the
application and packages helps in understanding the architecture of the
application and in qualifying package roles [GKSD05, PDP+07]. Approaches
such as the distribution map may help in this task [DGW06].

Changes, Bugs and Co-changes. It is valuable to know which packages changed
recently and together, or which ones contain more bugs.

In addition, packages reflect several organizations: they are units of code de-
ployment, units of code ownership, can encode team structure, architecture and
stratification. Good packages should be self-contained, or only have a few clear
dependencies to other packages [BDW99, ABF04, LM06]. A package can interact
with other ones in several ways: either as a provider, or as a consumer or both.
In addition a package may have either a lot of references to other packages or
only a couple of them. If it defines subclasses, those can form either a flat or deep
subclass hierarchy. It can contain subpackages.

9

2 Visualization to Understand Packages

A1

B1

C1

D1

A2

B2

A3

C2

D2

P1

P4

(a)

A1

B1

C1

D1

A2

B2

A3

C2

D2

P1

P4

(b)

A1

B1

C1

D1

A2

B2

A3

C2

D2

P1 P2 P3

P4

(c)

A1

B1

C1

D1

A2

B2

A3

C2

D2

P1

P4

(d)

Figure 2.1: Different package configurations over the same number of classes.

Figure 2.1 shows situations where the same group of classes can be dispatched.
Note that for the purpose of illustration, Figure 2.1 only shows references but the
same idea holds for inheritance between classes distributed in several packages.
In both cases (a) and (b), there are only two packages but in case (a) most of
the classes of P4 inherit directly from a class in P1 while in case (b) all the
classes of P4 inherit internally from B2 which is a root of an inheritance hierarchy.
Revealing this difference is important since we want to understand if we can
change the relationships between P1 and P4 during a refactoring process. In
cases (a) and (c), we have exactly the same relationships between classes but
the package structure changed. As mentioned by R. Martin, importing a class
equals importing the complete package [Mar00], therefore importing two classes
from the same package is quite different from importing them from two different
packages since in the latter case we import all the classes of the two packages.

Note that understanding packages is also important in the context of remod-
ularization approaches [AL99, MMCG99, MM06]. In this case it is important
to understand how the proposed remodularisation compares with the existing
code. This problem is particularly stressed in presence of legacy applications that
consist of thousands of classes and hundreds of packages.

2.2 Visualization Challenges

I researched the characteristics that an efficient visualization should hold [Ber74,
Tuf01, War00]. As our focus were on providing a first impression of a package and
its context, I want to exploit the gestalt principles of visualization and preattentive
processing1 as much as possible to help spotting important information [Tre85,

1Researchers in psychology and vision have discovered a number of visual properties that are
preattentively processed. They are detected immediately by the visual system: viewers do not
have to focus their attention on a specific region in an image to determine whether elements
with the given property are present or absent. An example of a preattentive task is detecting
a filled circle in a group of empty circles. Commonly used preattentive features include hue,
curvature, size, intensity, orientation, length, motion, and depth of field. However, combining
them can destroy their preattentive power (in a context of filled squared and empty circle, a

10

2.3 Selected State of the Art

Hea92, HBT93, War00].

To support the understanding of packages, I want the visualization to highlight
the characteristics of a package in terms of its internal size, internal and external
references. In particular I want to spot classes or dependencies that stand out
in a given package. Our visualization should take into account the following
properties:

Good mapping to reality. The visualization should offer a good representation
of the situation that the maintainer can trust and from which it can draw
and validate hypothesis.

I want the visualization to highlight the general tendency of a package in
terms of its internal size, internal and external references. In particular I
want to spot classes or dependencies that stand out in a given package.

Scalability and simple navigation. The maintainer should easily access the infor-
mation. The visualization should scale i.e. we should be able to have system
overview as well as focusing on a particular package. We want a visualization
that scales well with the number of packages and of dependencies, so we
prefer to avoid depicting dependencies with graphs. Given that the graph
will contain more than thousands of nodes and much more edges, this will
result a unusable view [Her00].

Low visual complexity. By being regular and well structured, i.e. reusing the
same conventions of color or position, the visualization should help the
maintainer to learn it and understand it. In addition, while the visualization
should offer a lot of information, it should not be complex to analyze.

2.3 Selected State of the Art

Langelier et al. [LSP05] propose a 3D view for mapping metrics (Figure 2.2). We
can easily identify design violation in the treemap or sunburst layout. But it is
hard to understand relation between packages. The number of classes make it
hard to follow package outline. It is then difficult to make conclusion on the code
quality.

Lanza et al. [LLG06] proposed a way to recover architecture by visualizing
relationship but do not provide a fine grained view. He proposes also Package
Patterns for Visual Architecture Recovery [LLG06] which shows incoming and
outgoing dependencies map into the hierarchy of packages and classes (Figure 2.3).
This visualization is interesting as it helps understanding packages and provides
good mapping to the reality but fails to give a fine-grain view.

filled circle is usually not see preattentively). Some of the features are not adapted to our
needs. For example, we do not consider motion as applicable.

11

2 Visualization to Understand Packages

Figure 2.2: A 3D treemap of packages and classes. Red squares are classes strongly
coupled according to the selected threshold.

Figure 2.3: Each node of the tree is a package and each leaf is a class. The tree
shows the hierarchy of the packages. For each node, red outline shows
incoming dependencies while circle fill with green show outgoing
dependencies. This figure represents variants of a typical pattern
called Iceberg. Iceberg is when the rest of the system knows only the
root package

An other visualization, proposed by Ducasse et al., called Distribution Map
[DGK06] shows the packages and the distribution of properties on the classes
they contain. You only see the package structure but you do not see relationship.
The view gives us answer to two main questions.

Spread: how much does a property spread across the reference partition: is
it local or global?

Focus: how close does a property match the reference partition: is it well-
encapsulated or cross-cutting?

The interesting thing is that you can map every properties you want. In Figure 2.4
we see the distribution of linguistic concepts.

Apart from Lanza et al. there are some other 3D visualizations like the one
from Marcus et al. [MFM03]. They represent lines of code by square boxes in
a 3D space and map properties to the height, width and color. In this case the

12

2.3 Selected State of the Art

Figure 2.4: Distribution Map of linguistic concepts over the packages of JEdit

occlusion disturb the reader by hiding some part of the system. They try to solve
the problem by adding blending but it makes the view more complex and so less
readable.

13

3 Package Surface Blueprints

A package blueprint represents how the package under analysis references other
packages. Figure 3.1 presents the key principles of a Package Blueprint. These
principles will be realized slightly differently when showing direct class references
or inheritance relationships.

A1

B1

C1

D1

P2 P3 P4

P1: analyzed package
E1

A2 A3 A4 B4

(a) Analyzed package

P1surface between
P1 and P4

P4

P3

P2 P1

P1

P1

(b) Stacked sur-
faces

P1

A2 A1

A3 B1

A4 C1

B4 D1 E1

classes
in P1

external
classes

(c) With classes

Figure 3.1: Consider P1 that references four classes in three other packages (a).
A blueprint shows the surfaces of the observed package as stacked
subdivisions (b). In (c), small boxes represent classes, either in the
observed package (right white part) or in referenced packages (left
gray part).

3.1 Basic Principles

The package blueprint visualization is structured around the “contact areas”
between packages, that we name surfaces. A surface represents the conceptual
interaction between the observed package and another package. In Figure 3.1 (a)
the package P1 is in relation with three packages P3, P2, and P4, via different
relationships between its own classes and the classes present in the other packages,
so it has three surfaces.

A package blueprint shows the observed package as a rectangle which is vertically
subdivided by each of the package’s surfaces. Each subdivision represents a
surface between the observed package and a referenced package, and will be more
or less tall, depending on the strength of the relation between the two packages.

14

3.2 Detailed Explanation

P1

C1

A1

B1

P2

A2

B2

D1

P3

A3

E1

B3

F1

P4

I1

G1

H1

A4

Package under analysis
P1

most—least
internal referencing classes external—internal

referenced classes

A4 G1F1

I1H1

B1C1

A2 A1

B2 D1

E1

A1

G1

A3 E1

B3 F1 G1

D1C1

D1 E1

ex
te

rn
al

 r
ef

er
en

ce
s

in
te

rn
al

re
fe

re
nc

es head
body

Figure 3.2: Surface package blueprint detailed view.

In Figure 3.1, the package blueprint of P1 is made from three stacked boxes
because P1 references three other packages. The box of the surface between P1
and P4 is taller because P1 references more classes in P4 than in P2 or P3.

In each subdivision, we show the classes involved in the corresponding surface.
By convention, we always show the classes in the referenced packages in the left
most gray-colored column of each surface, and the classes of the observed package
on the right. In Figure 3.1, the topmost surface shows that class A1 references
class A2.

If many classes reference the same external class, we show them all in an horizontal
row; we can thus assess the importance of an external class by looking at how
many classes there is in the row: in Figure 3.1, the row of B4 stands out because
the two referring classes D1 and E1 make it wider.

3.2 Detailed Explanation

To convey more information, we add variations to the basic layout described
above, as illustrated in Figure 3.2.

15

3 Package Surface Blueprints

3.2.1 Internal references

To support the understanding of references between classes inside the observed
package, we add a particular (red bordered) surface at the top of the blueprint.
We name this surface the head of the blueprint and the rest its body. Since this
surface displays internal references, its left gray column for external classes will
remain empty. In addition, the first column represents the internal classes that
are referenced from within the package itself: here A1 and G1 are the classes
referenced respectively by B1 and C1 and H1 and I1. The height of the red surface
indicates the number of classes referenced within the package.

3.2.2 Position

Internal classes are arranged by columns: each column (after the first one of the
red surface) refers to the same internal class for all the surfaces. The width of
the surface indicates the number of referencing classes of the package. Figure 3.2
shows that class C1 internally references A1, and externally references A3 and B3.

We order classes in both horizontal and vertical direction to present important
elements according to the (occidental) reading direction. In the horizontal direc-
tion, we sort classes from left to right according to the number of external classes
they reference from the whole package. Hence classes referencing the most occupy
the leftmost columns in the white area of the package blueprint.

We apply the same principle for the vertical ordering, both of surfaces within a
blueprint, and of rows (i.e. external classes) within a surface. Within a package, we
position surfaces that reference the most classes the highest. Within a surface, we
order external classes from the most referenced at the top, to the least referenced
are at the bottom of the surface. This is why in Figure 3.2 the surface with P3 is
the highest and why the surface with P2 is above P4 (since there are more classes
references from P2 than from P4.

3.2.3 Color

We want to distinguish referenced classes depending on whether they belong to a
framework or the base system, or are within the scope of the application under
study. When a referenced class is not part of the application we are currently
analyzing, we color its border in cyan. In addition the color intensity of a node
conveys the number of references it done: the darker the more references. Both
intensity and horizontal position represent the number of references, but position
is computed relative to the whole package, while intensity is relative to each
surface. Thus, while classes on the left of surfaces will generally tend to be dark,

16

3.3 The case of inheritance

a class that makes many references in the whole package but few in a particular
surface will stand up in this surface since it will be light grey.

3.3 The case of inheritance

Up to now we only discussed references, but inheritance is a really important
structural relationship in object-oriented programming. We adapt the Package
Surface Blueprint to offer a view specific to inheritance, as shown in Figure 3.3. In
this variation there is no red surface because we consider only single inheritance,
so we display all classes and subclasses transitively inheriting from external classes
on the same row. We distinguish the direct subclasses of external classes by
showing them with an orange border (the others are black-bordered). In addition
root classes such as Object are filled in cyan and abstract classes in blue. In
Figure 3.3 A1 inherits from A2 defined in package P2, while B1, C1 and D1 inherits
from A1.

The fill color of classes in the inheritance view represents the number of references,
relative to the package. This makes it possible to correlate inheritance and
references. For instance, the top-right view in Figure 4.1 shows that most
references come from a subclass (Socket) of Object; in other cases, references
might come from classes that are lower in the hierarchy as HTMLInput in Figure 4.2.

A2

A3

A4

B4

A1

E1

C1

F1

G1

P2 P3 P4

P1
D1

B1

P1

Ex
te

rn
al

 c
la

ss
es

Package under analysis

Internal classes

A2 A1

A3 E1

A4 F1

B4 G1

B1 C1 D1

Figure 3.3: Inheritance package surface blueprint. Orange bordered classes inherit
from external classes.

17

4 Case study: The Network Subsystem

We are now ready to have a deeper look at an example. The Squeak Network
subsystem contains 178 classes and 26 packages — this package contains on the
one hand a library and a set of applications such as a complete mail reader. The
blueprint on the left in Figure 4.1 shows the references package blueprint of the
Network-Kernel package in Squeak.

Glancing at it we see that the package blueprint of the Network-Kernel package
has nearly a square top-red surface indicating that most internal classes are
referenced internally. This conveys a first impression of the package’s cohesion
even if not really precise [BDW99]. Contrast it with the package blueprint of the
Telnet-Wordnet package which clearly shows little internal references.

We see that Network-Kernel is in relation with thirteen other packages. Most of
the referenced classes are cyan, which means that they are not part of the network
subsystem. What is striking is that all except one of the referenced classes are
classes outside the application (see (HTTPSocket) in Figure 4.1). However, since
the package is named kernel, it is strange that it refers to other classes from
the same application, and especially only one. We see that half of the referred
packages have strong references (indicated by their dark color).

Using the mouse and pointing at the box shows using a fly-by-help the class and
package names (indicated in italics in Figure 4.1). The Tools-Menus surface indi-
cates some improper layering. Indeed it shows that Network-Kernel is referencing
UI classes via the package Tools-Menus which seems inappropriate. We learn
that the class making the most internal references is named OldSocket; this same
class also makes the most external references, to three packages (Collection-String,
Tools-Menus, and Kernel-Chronology). The second most referencing class is named
OldSimpleClientSocket. It is worth to notice that OldSocket is only referencing
itself and that even OldSimpleClientSocket does not refer to it, so it could be
removed from this package without problems. The third most referencing class is
Socket. Having two classes named Socket and OldSocket clearly indicates that the
package is in a transition phase where a new implementation has been supplanting
an old one. We learn that the most internally referenced class is NetNameResolver
and the second most is Socket. So this is a sign of good design since important
domain classes are well used within the package.

The inheritance package blueprint shows that the Network-Kernel package is bound
to three external packages containing the three superclasses Object, Error, and

18

4.1 Packages Within Their Application

Network-Kernel
Inheritance

Error
Object

Stream

Telnet-Wordnet
References

Network-Kernel
References

OldSocket

NetNameResolver
Socket

Socket
OldSimpleClientSocket

Collection-String

Kernel-Chronology

Tools-Menus

InternetConfiguration

Kernel-Process

System-Support

HttpSocket

Socket

Figure 4.1: Analysing the Network-Kernel Package.

Stream. In addition the package, while inheriting a lot from external packages, is
inheriting from the same class, here Object. The difference between the two main
surfaces is interesting to discuss: the topmost surface shows that most of the
classes are directly inheriting from one external superclass (here Object), while
the second one shows that errors are specialized internally to the package. All in
all, this makes sense and provides a good characterization of the package.

4.1 Packages Within Their Application

Understanding a package in isolation (mainly as a consumer) is interesting but its
lacks information about the overall context i.e. is a selected class used by other
packages? which packages is a selected surface about? As shown in the following
subsections, our approach also supports the understanding of the situation of a
class/package within the context of a complete application.

4.1.1 Inheritance package blueprint Overview

Overviewing all the package blueprints of an application gives a first impression
of how the packages were built and structured. During our case studies, we
identified a few remarkable usage patterns: a package can mainly contain big
inheritance hierarchies (potentially a single one); classes in a package may inherit

19

4 Case study: The Network Subsystem

HTMLEntity OldSimpleClientSocketHTMLInputFileInput

Figure 4.2: Inheritance global view in Network

from superclasses within the application itself or from frameworks or the base
system; or a package can specialize functionality and have few internal inheritance
relationships.

First Case: Network. For example, Figure 4.2 shows all the package blueprints
of the Network subsystem in Squeak, which groups library and application classes.
It shows that there are only two places where classes inherit from classes within the
Networksubsystem scope: HTMLEntity and OldSimpleClientSocket. Note however
that OldSimpleClientSocket has a lighter shade of gray than HTMLEntity; this
indicates that the former is not referencing other classes as much as the latter.

Clicking on the HTMLEntity box, we can see that it is defined in the Network-
HTML-Parser package, away of all its subclasses, and then directly consider that
it is defined in the wrong package. We can immediately spot that some packages
are heavily structured around inheritance, like the package Network-HTML-Parser
Entities or Network-Mail Reader-Filters which define a single hierarchy.

The overview also shows classes doing a lot of references (indicated as black
boxes) such as HTMLEntity, FileInput and HTMLInput. However, in the context
of inheritance, we should pay attention to the fact that all the subclasses of a
class inherit its behavior and references. While we can spot classes doing a lot of

20

4.1 Packages Within Their Application

Browser

Inspector

DictionaryInspector

MessageSet

Figure 4.3: Inheritance global view in Tools

references, the view does not convey the tree ordering so it is difficult to evaluate
the subclasses of a given class. The case of FileInput is interesting: while it is a
leaf in the inheritance tree, it makes a lot of direct references, indicating that the
class is complex.

While the views are simple, they convey powerful information. If we analyze a
bit, we can see that the percentage of black-bordered boxes reveals the amount
of internal reuse. Orange-bordered classes that inherit from a cyan class indicate
reuse of functionality from outside the application. Note that this is different
from many orange-bordered classes inheriting from a black-bordered one (like
with HTMLEntity in HTML-Parser Entities), since a lot of classes inherit from
Object and indeed do not share the same domain. In contrast, inheriting from
HTMLEntity clearly reuses its domain.

Second Case: Tools. Figure 4.3 shows the blueprints of the Tools packages
which contain all the Squeak development tools: code browsers, debuggers...
Without going into details, we immediately see different shapes. Here, the
blueprints are thinner but often higher, showing that there is less internal reuse
than in Network. Note that even if the Tools packages contain a large set of
development tools, inheritance is actually to reuse abstractions: The blueprint of
Tools-Browser shows that the class Browser, even if it defines a tool, is inherited
several times. Other tools reuse the abstraction of Browser: for instance, its
subclass MessageSet allows one to browse a group of methods and is reused and
extended in Tools-Debugger.

The blueprint of Tools-Debugger shows an interesting shape: it is narrow and has
a nearly flat inheritance hierarchy. Moreover, all its classes are inheriting from

21

4 Case study: The Network Subsystem

ServerDirectory

HTTPSocket

Url

Figure 4.4: In this view, the Network-Kernel package was selected in red, surfaces
with Collections-Strings annotated in yellow, and class HTTPSocket
selected in blue.

classes outside the package. Note that this behavior makes sense because the
package aggregates functionality defined elsewhere, and the view easily reveals
it. The package Tools-FileList defines a tool to browse external files and shows a
similar shape.

4.1.2 Interactively Querying the Blueprint

The maintainer can also query the system by clicking either on a class or on a
surface. This highlights in red all occurrences of the class, or all surfaces referring
to the same package. In addition, colors can be assigned to a surface to help the
maintainer identify all the surfaces communicating with the same packages.

22

4.2 Striking Shapes

Figure 4.4 shows the blueprints of all the Network packages referencing and
defining HTTPSocket. It is striking to see that HTTPSocket is a central class of
the package Network-Protocols as it refers to most of the classes referred by that
package. In addition, the surface referencing the package Collections-Strings is
annotated in yellow and we see how all the packages refer to this package.

By clicking on the head surface, it gets colored in red and shows the package
usage by coloring the surfaces referencing it in red. Figure 4.4 shows how the
package Network-Kernel is used within the application.

4.2 Striking Shapes

While applying blueprints to large applications we identified some striking shapes
that the blueprint, a surface or a class within a blueprint would produce. We
present here the most frequent ones.

Facade
Model

Large
Application

Surface

Large
External
Surface

Figure 4.5: A Sumo Blueprint: the Critics package in ArgoUML.

23

4 Case study: The Network Subsystem

Figure 4.6: A Tower Blueprint: Peer in Azureus

4.2.1 Shapes of Packages and Surfaces

Sumo Package. A very large and tall reference blueprint denotes a package
that makes a lot of references from many classes. Figure 4.5 shows an example:
the package Critics of ArgoUML that defines all the rules for assessing the quality
of models.

Small House Package. A small inheritance blueprint with only a couple of
surfaces and few inheritance hierarchies often denotes a package that offers a well
packaged functionality, like Tools-Debugger or Tools-FileList (Figure 4.3). These
blueprints are usually taller than larger.

Flat Head Package. A reference blueprint with a wide but flat head indicates
limited internal references. Network-TelNet WordNet and Network-HTML-Parser
Entities in Figure 4.4 are flat head blueprints.

Exclusive External Referencer Package. When the first column in a blueprint
is almost or completely cyan, the package makes most or all of its external
references to classes outside the scope of the analyzed application. These packages
typically extend a framework or a core library; Network-Kernel in Figure 4.4 is an
example.

Loner Package. A loner is a package that contains only a couple of classes.
It often contains a single test case class. The blueprint Network-Kernel-Tests
in Figure 4.4 or Network-Mail Reader-Categorizer, Network-UUID, Network-Mail
Reader-Spam of Figure 4.2 are loners. Some of these packages are clearly good
candidates for remodularisation.

24

4.2 Striking Shapes

Large External Surface. When the topmost external surfaces are really large,
like the four surfaces below the head in Figure 4.5, they identify packages that
we must pay attention to, because changes in these external packages will very
probably impact the package under analysis.

Square Head Package. A package that references all its own classes will have
a blueprint with a square internal surface; this denotes a package that is quite
cohesive. In Figure 4.4, Network-Kernel has a square head and appears to be
relatively well packaged.

Tower Package. A reference blueprint with a small head and a thin body
denotes a package with few internal references but that makes many external
references. This package may not be cohesive but highly coupled with the external
packages. The package peer in Azureus is an extreme of this shape, as shown in
Figure 4.6. In Figure 4.4, Network-RemoteDirectory has a more cohesive head and
three classes intensively referencing external packages.

4.2.2 Shapes of Classes

Main Referencer Class. A vertical alignment of dark squares in the body of a
blueprint denotes a class that is responsible for many references to classes in other
packages. The classes HTTPSocket and ServerDirectory are the main referencers
in packages Network-Protocols and Network-RemoteDirectory; they are candidates
to be central package classes (Figure 4.4).

Main Internal Referencer Class. When vertical alignments are limited to the
head, they reveal classes doing many internal and few external references. These
classes often define the abstraction of the application. In Figure 4.4, the class Url
only references classes within Network-Url.

Omnipresent Referenced Class. Classes of this kind are referenced by almost
all the internal classes, and easily identifiable by filled rows in a surface. This
makes sense for a facade class if it occurs a few times, but in ArgoUML we see
this shape in most packages for Facade and Model (see Figure 4.5); we may thus
assess that the Facade pattern is misused.

25

5 Usability-Study

To prove the intention of our visualization we conduct a survey. This survey has
been done over 7 people with different programming skills. We have tested the
visualization on the Squeak compiler.

5.1 The Case Study: Squeak Compiler

We chose this case because of our background. We are familiar with the Squeak
compiler and developed the next compiler so we can better appreciate the informa-
tion that the view provides. Compilers are system that every one has knowledge
on even if there are limited, so it is easier for the tester to make hypothesis. They
also contains some interesting patterns and is not to small or to big.

5.2 Setup

We first explain the visualization to the tester and give them the paper [DPS+07]
with slides. Then we show them how to use it for detecting pattern in the Network
application. The demo help the user to learn how to use the view. The demo is
necessary because we spend time to learn how to get informations fast from the
view.

To define the questions we have tested them to know if they are understandable
and meaningful. The list of questions is:

1. Can you identify the main abstractions/classes of each package? With
this question we want to know if the reader can quickly identify the main
entities, and learn if they make sense. the user can also assess whether they
are misplaced.

2. Can you identify how these main classes interact within the package and
within the application? Are there classes doing most of the internal/external
references? This question helps to focusing on the understanding of rela-
tionship between packages. The user learns how to select classes and look
for if they are referenced or if they make references.

26

5.2 Setup

3. How would you qualify the references from MessageNode ? Compare it to
MethodNode? When we were looking at the ParserNode package we noticed
that the class making most of the references where MessageNode. But
MethodNode is the root of the syntax tree of the source code. It should
then make more references. There is also ParserNode which is an abstract
class for all the parser nodes. It should then define common abstraction for
all the nodes and makes more reference then the other nodes.

4. Do you identify some misplaced dependencies with packages outside the
compiler application? By looking the view we noticed several misplaced
dependencies and we would like to know whether or not the user can find
them.

5. Under the assumption that a package containing classes that are referred to
by other packages should be loaded first, can you identify a load order for
the application? We also noticed that the three packages of the compiler
application depend on each other cyclicly, this just by clicking on each of
them in the view.

6. How would you qualify the cohesion of Compiler-Support? When we get the
habit we can see directly the package with no head and we can assess that
cohesion in a such package is low. We want to know if the person could
assess the same thing in a first look.

7. Using the hierarchical view, what can you say about the shape of the
Compiler-ParseNode package? The parser nodes classes belong to the
same hierarchy tree and are defined in one package. This is the common
way of declaring a parser tree. It allow to define visitors to browse the tree
and it is easier to annotate it.

8. Can you tell us something about the ParseNode hierarchy? We took the
strangest things in the hierarchical view of the compiler to see whether
the user can spot it out or not. All nodes inherit from ParserNode except
for PrimitiveNode. This is not a good design since the node should be
polymorphic to ParserNode.

9. Do you think that you would have got the answer that you wrote down about
the application without the help of visualization? We want to know if the
user finds our views handy to understand the compiler application. We also
want to have suggestion to improve the usability of the view.

The results are not yet available. They will be published in a Software journal
(Transaction of Software Engineering or Journal of Software Maintenance).

27

6 Evaluation and Discussion

6.1 Evaluation

The Package Surface Blueprint shows the internal number of classes as well as the
number of classes externally referenced. Hence it conveys whether the package is
using a lot of information or not.

Size. The Package Surface Blueprint shows the complexity of the observed
package in several dimensions. The height of the body indicates the amount of
external classes referenced, whereas the number of surfaces shows the number
of referenced packages. The height of each individual surface shows how many
classes are referenced in the corresponding package. This gives us an estimate
of the coupling between the package and this surface; to further evaluate the
coupling strength, we should also look at the intensity of referencing classes in
the surface because it represents the number of references. In addition, the width
of the surface indicates the number of referencing classes.

Those visual properties combine to give a quick impression not just about the
visualized package, but also concerning its classes: a thin package with a long
body depends on a lot of classes because of few internal classes. Moreover if
the blueprint is heavily lined, i.e. it references a lot of packages, so some of its
referencing classes may be complex and fragile.

Central or Peripheral. By looking at the border color of external classes (cyan
or black), we can easily see if a package depends a lot on the framework or on
the application. Also, by using the selection mechanism, we can interactively see
if a package is imported by different subsystems (central) or just by specific ones
(peripheral).

Cohesion and Coupling. The package blueprint also makes it possible to roughly
compare how several packages are coupled with the observed one: larger surfaces
indicate coupling to more classes and are positioned nearer to the head surface,
while surfaces with more darker class squares represent packages which are more
coupled in term of sheer number of references. We can also estimate cohesion by

28

6.2 Discussion

comparing internal coupling (size and overall intensity of the head surface) and
external coupling.

Co-changes and Impact Analysis. Because the package blueprint details how
packages depend on each other, it hints at the fragility of the observed package to
changes. Selecting a package or a class highlights surfaces or classes that reference
the selected entity and are thus sensitive to its changes.

6.2 Discussion

Our approach has worked well on our case studies. We have been able to locate
many conceptual bugs; for instance we found some clearly unwanted dependencies,
like the package Network-Telnet WordNet referencing a class in the user interface
framework. However one of our future works is to perform a user evaluation. The
Package Surface Blueprint answers the main challenges proposed in Section 2.1
and in Section 2.2; we further intend to address some remaining challenges.

Position Choices. We grouped the internal references at the top of the package
blueprint, then ordered the surfaces from the ones having the most external
references at the top to the least at the bottom; inside a surface, we also ordered
the rows from the most referencing ones to the least. This way, we do not force
the reader to scroll through big visualizations, and use the fact that the reader
pays more attention to the top elements than to the bottom ones. We also tried
to layout surfaces compactly so that we can easily move them.

Seriation. Rows within a surface are sorted according to the number of references
they contain. In an earlier version we applied the dendrogram seriation algorithm
[JMF99] to group lines having similar referencing classes. However the resulting
views were not as meaningful as with a simple ordering. We plan to use seriation
to group packages having similar surfaces i.e. packages using similar packages.

Properties. Instead of the number of references, we could map different prop-
erties to the color of classes and surfaces. This can create new striking shapes,
adapted to a specific maintenance problem.

29

6 Evaluation and Discussion

Impact of Boundaries. We color classes that do not belong to the application
in cyan; this is a bit limiting since we do not distinguish well the true root classes

—e.g. Object or Model in Squeak— from the classes of a domain library that the
analyzed application would extend. We found it really effective to color surfaces
so that the user can interactively mark entities on which he wants to focus; this
increases the usability of the tool and speeds up understanding packages.

Shapes. For the time being we represent the classes with squares only. We
could convey more information by using several visually distinct shapes. But it is
not clear which ones and how efficient results will be.

Package Nesting. Currently we do not support the nesting of packages. A
solution like the one proposed by Lungu et al. seems complementary to our
approach and interesting to deal with package nesting [LLG06]. We also consider
two types of relationships between packages (direct reference and inheritance);
therefore we can extend our approach to other types of relationships like method
invocation.

Other Views. So far we only presented blueprints to understand how a package
was referencing or inheriting from other packages and classes. However we
developed the reverse view: blueprints that present incoming references made
by external classes on the observed package. Due to space limitation we did
not present it. This information is useful when supporting package splitting or
merging.

30

7 Related Works

Several works are trying to provide information on packages. Lungu et al. guide
exploration of nested packages based on patterns in the package nesting and in the
dependencies between packages [LLG06]; their work is integrated in Softwarenaut
and adapted to system discovery.

Sangal et al. adapt the dependency structure matrix from the domain of process
management to analyze architectural dependencies in software [SJSJ05]; while
the dependency structure matrix looks like the package blueprint, it has no visual
semantics.

Storey et al. offer multiple top-down views of an application, but these views do
not scale very well with the number of relationships [SWFM97].

Ducasse et al. present Butterfly, a radar-based visualization that summarizes
incoming and outcoming relationships for a package [DLP05], but only gives a
high-level client/provider trend.

In a similar approach, Pzinger et al. use Kiviat diagrams to present the evolution
of package metrics [PGFL05].

Chuah and Eick use rich glyphs to characterize software artifacts and their
evolution (number of bugs, number of deleted lines, kind of language...) [CE98].
In particular, the timewheel exploits preattentive processing, and the infobug
presents many different data sources in a compact way.

D’Ambros et al. propose an evolution radar to understand the package coupling
based on their evolution [DL06]. The radar view is effective at identifying outliers
but does not detail structure.

Those approaches, while valuable, fall short of providing a fine-grained view of
packages that would help understanding the package shapes (the number of classes
it defines, the inheritance relationships of the internal classes, how the internal
classes inherits from external ones,...) and support the identification of their roles
within an application.

31

8 Conclusion

In this master, I tackled the problem of understanding the details of package
relationships. We described the Package Surface Blueprint, a visual approach for
understanding package relationships. While designing Package Surface Blueprint,
we tried to exploit gestalt visualization principles and preattentive processing.

We successfully applied the visualization to several large applications and we have
been able to point out badly designed packages. To help users interpret views, we
identified a list of recurrent striking blueprint shapes. We also introduced interac-
tivity to help the user focus and navigate within the system. We were however
rather knowledgeable about both the visualization and the studied systems. We
have validated the package blueprint usability with several independent software
maintainers. In future work I plan to apply the visualization with some clustering
algorithm.

32

Bibliography

[ABF04] Erik Arisholm, Lionel C. Briand, and Audun Foyen. Dynamic cou-
pling measurement for object-oriented software. IEEE Transactions
on Software Engineering, 30(8):491–506, 2004.

[AL99] Nicolas Anquetil and Timothy Lethbridge. Experiments with Clus-
tering as a Software Remodularization Method. In Proceedings of
WCRE ’99 (6th Working Conference on Reverse Engineering), pages
235–255, 1999.

[BDW99] Lionel C. Briand, John W. Daly, and Jürgen K. Wüst. A Unified
Framework for Coupling Measurement in Object-Oriented Systems.
IEEE Transactions on Software Engineering, 25(1):91–121, 1999.

[Ber74] Jacques Bertin. Graphische Semiologie. Walter de Gruyter, 1974.

[CE98] Mei C. Chuah and Stephen G. Eick. Information rich glyphs for soft-
ware management data. IEEE Computer Graphics and Applications,
18(4):24–29, July 1998.

[Dav95] Alan Mark Davis. 201 Principles of Software Development. McGraw-
Hill, 1995.

[DGK06] Stéphane Ducasse, Tudor Gı̂rba, and Adrian Kuhn. Distribution map.
In Proceedings of 22nd IEEE International Conference on Software
Maintenance (ICSM ’06), pages 203–212, Los Alamitos CA, 2006.
IEEE Computer Society.

[DGW06] Stéphane Ducasse, Tudor Gı̂rba, and Roel Wuyts. Object-oriented
legacy system trace-based logic testing. In Proceedings of 10th
European Conference on Software Maintenance and Reengineering
(CSMR’06), pages 35–44. IEEE Computer Society Press, 2006.

[DL01] Stéphane Ducasse and Michele Lanza. Towards a methodology for
the understanding of object-oriented systems. Technique et science
informatiques, 20(4):539–566, 2001.

[DL06] Marco D’Ambros and Michele Lanza. Reverse engineering with logical
coupling. In Proceedings of WCRE 2006 (13th Working Conference
on Reverse Engineering), pages 189 – 198, 2006.

[DLP05] Stéphane Ducasse, Michele Lanza, and Laura Ponisio. Butterflies: A
visual approach to characterize packages. In Proceedings of the 11th

33

Bibliography

IEEE International Software Metrics Symposium (METRICS’05),
pages 70–77. IEEE Computer Society, 2005.

[DPS+07] Stéphane Ducasse, Damien Pollet, Mathieu Suen, Hani Abdeen, and
Ilham Alloui. Package surface blueprints: Visually supporting the
understanding of package relationships. In ICSM ’07: Proceedings of
the IEEE International Conference on Software Maintenance, 2007.

[FD04] Jon Froehlich and Paul Dourish. Unifying artifacts and activities in
a visual tool for distributed software development teams. In ICSE
’04: Proceedings of the 26th International Conference on Software
Engineering, pages 387–396, Washington, DC, USA, 2004. IEEE
Computer Society.

[GKSD05] Tudor Gı̂rba, Adrian Kuhn, Mauricio Seeberger, and Stéphane
Ducasse. How developers drive software evolution. In Proceedings of
International Workshop on Principles of Software Evolution (IWPSE
2005), pages 113–122. IEEE Computer Society Press, 2005.

[HBT93] C. G. Healey, K. S. Booth, and Enns J. T. Harnessing preattentive
processes for multivariate data visualization. In GI ’93: Proceedings
of Graphics Interface, 1993.

[Hea92] C. G. Healey. Visualization of multivariate data using preatten-
tive processing. Master’s thesis, Department of Computer Science,
University of Bristish Columbia, 1992.

[Her00] Martin Hermann. Erstellung einer zentralen Kundendatenbank bei
Firma W. Gassmann AG Biel. Informatikprojekt, University of Bern,
June 2000.

[JMF99] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review.
ACM Computing Surveys, 31(3):264–323, 1999.

[LLG06] Mircea Lungu, Michele Lanza, and Tudor Gı̂rba. Package patterns
for visual architecture recovery. In Proceedings of CSMR 2006 (10th
European Conference on Software Maintenance and Reengineering),
pages 185–196, Los Alamitos CA, 2006. IEEE Computer Society
Press.

[LM06] Michele Lanza and Radu Marinescu. Object-Oriented Metrics in
Practice. Springer-Verlag, 2006.

[LSP05] Guillaume Langelier, Houari A. Sahraoui, and Pierre Poulin.
Visualization-based analysis of quality for large-scale software systems.
In ASE, pages 214–223, 2005.

[Mar00] Robert C. Martin. Design principles and design patterns, 2000.
www.objectmentor.com.

[MFM03] Andrian Marcus, Louis Feng, and Jonathan I. Maletic. Compre-
hension of software analysis data using 3d visualization. In IWPC

34

Bibliography

’03: Proceedings of the 11th IEEE International Workshop on Pro-
gram Comprehension, page 105, Washington, DC, USA, 2003. IEEE
Computer Society.

[MM06] Brian S. Mitchell and Spiro Mancoridis. On the automatic modular-
ization of software systems using the bunch tool. IEEE Transactions
on Software Engineering, 32(3):193–208, 2006.

[MMCG99] Spiros Mancoridis, Brian S. Mitchell, Y. Chen, and E. R. Gansner.
Bunch: A Clustering Tool for the Recovery and Maintenance of Soft-
ware System Structures. In Proceedings of ICSM ’99 (International
Conference on Software Maintenance), Oxford, England, 1999. IEEE
Computer Society Press.

[PDP+07] Damien Pollet, Stéphane Ducasse, Löıc Poyet, Ilham Alloui, Sorana
Ĉımpan, and Hervé Verjus. Towards a process-oriented software
architecture reconstruction taxonomy. In René Krikhaar, Chris Ver-
hoef, and Giuseppe Di Lucca, editors, Proceedings of 11th European
Conference on Software Maintenance and Reengineering (CSMR’07).
IEEE Computer Society, March 2007. Best Paper Award.

[PGFL05] Martin Pinzger, Harald Gall, Michael Fischer, and Michele Lanza.
Visualizing multiple evolution metrics. In Proceedings of SoftVis 2005
(2nd ACM Symposium on Software Visualization), pages 67–75, St.
Louis, Missouri, USA, May 2005.

[PN06] Laura Ponisio and Oscar Nierstrasz. Using contextual information to
assess package cohesion. Technical Report IAM-06-002, University
of Berne, Institute of Applied Mathematics and Computer Sciences,
2006.

[SDP+07] Mathieu Suen, Stéphane Ducasse, Damien Pollet, Hani Abdeen,
and Ilham Alloui. Package surface blueprint: A software map. In
FAMOOSr, 1st Workshop on FAMIX and Moose in Reengineering,
2007.

[SJSJ05] Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson. Using
dependency models to manage complex software architecture. In
Proceedings of OOPSLA’05, pages 167–176, 2005.

[SWFM97] Margaret-Anne D. Storey, Kenny Wong, F. D. Fracchia, and Hausi A.
Müller. On integrating visualization techniques for effective software
exploration. In Proceedings of IEEE Symposium on Information
Visualization (InfoVis ’97), pages 38–48. IEEE Computer Society,
1997.

[Tre85] Anne Treisman. Preattentive processing in vision. Computer Vision,
Graphics, and Image Processing, 31(2):156–177, 1985.

[Tuf01] Edward R. Tufte. The Visual Display of Quantitative Information.
Graphics Press, 2nd edition, 2001.

35

Bibliography

[War00] Colin Ware. Information Visualization. Morgan Kaufmann, 2000.

36

A Smalltalk syntax

The table A.1 show the different syntaxe element of Smalltalk

. period separates statements.
:= affectation.
ˆ returns statement ; exit the method where it appears.

’a string’ singles quotes delimit strings.
[statements] square brackets delimit closures (AKA block).

[:arg1 :arg2 Š bloc] block can tack argument.
Š tmpVar1 tmpVar2 Š the pipes is use to declare temporary variable. the scope

is limited to the method
”commented” double quotes denote comments.

$a a character instance of Character.
#symb symbol instance of ByteSymbol.
#(a b) array containing a and b instance of Array.

Table A.1: Basic syntactic elements

In Smalltalk we have 6 pseudo variables. They are given in the Table A.2.

true and false boolean instance of True and False respectively.
nil value given to undefined variable.

self current object. self have the same semantic than this in Java.
super current object. Lookup have to start in the super class where super is used.

thisContext stack of the execution.

Table A.2: Pseudo Variables

Smaltalk have only methods. We can define method in 3 way:

As unary messages. messages that do not take any arguments.

aCollection removeAll.

As binary messages. messages that take one argument and they are written
with special token(’,’ ’+’ ’-’. . .).

37

A Smalltalk syntax

1 + 3.
”Hello ”, ”world !”

As keyword messages.. messages that can take as many parameters as you
want. Keyword are compose of token ended by a semi column. Each argument
are written after each of the token.

aCollection replaceFrom: 1 to: 6 with: anOtherCollection.

”Equivalent in Java to:”
aCollection.replaceFromToWith(1, 6, anOtherCollection);

Message sending priority. When the compiler parses the statement, it read it
with the following priority:

1. Unary messages ;

2. Binary messages ;

3. Keyword messages.

For example:

5 factorial + 5 gcd: 5

Should be read as:

((5 factorial) + 5) gcd: 5

Thus mathematics operation order are not preserved. So 3 + 4 * 3 is equal to
21 and not 15. You should write 3 + (4 * 3) if you want to give priority to the
multiplication.

Cascades. You also can send several messages to the same object. To do so,
you use the ’;’ operator.

aCollection
add: anObject;
add: anOtherObject;
add: aThirdObject.

Remark Is common to see messages begining by a #. This convention
help to read them in a plain text.

Methods definition are written as the following example:

38

String>>lineCount
”Answer the number of lines represented by the receiver (a string), where every
carriage return (cr) adds one line.”

Š count Š
count := 1.
self do:

[:c Š (c == Character cr)
ifTrue: [count := count + 1]].

ˆ count

The above code should be read as:

1. new method call lineCount is defined in the String class.

2. the new token is a comment explaining the purpose of this method.

3. new count temporary is declare and initialized to 1.

4. message #do: is sent to the current object (self). It takes a block as
argument, the block should be written to accept one argument. It will be
evaluated for each character of the current object.

The #do: send is equivalent to foreach in C# or to mapcar in Common Lisp.

5. block tack c as argument. c will contain each of the character of the current
string.

6. body of the block starts by comparing the current character with a line feed.
In Smalltalk line feed is given by calling the #cr message on Character.

7. result of the comparison is true or false.

8. true and false understand the message #ifTrue:. #ifTrue: take a black as
argument. The block is evaluate only if the receiver is true.

9. if c is a line feed the argument of #ifTrue: is evaluated and count is increased
by 1.

10. at the end, the #lineCount method return the number of line feed count in
the receiver string.

39

	Introduction
	Visualization to Understand Packages
	Understanding packages
	Visualization Challenges
	Selected State of the Art

	Package Surface Blueprints
	Basic Principles
	Detailed Explanation
	Internal references
	Position
	Color

	The case of inheritance

	Case study: The Network Subsystem
	Packages Within Their Application
	Inheritance package blueprint Overview
	Interactively Querying the Blueprint

	Striking Shapes
	Shapes of Packages and Surfaces
	Shapes of Classes

	Usability-Study
	The Case Study: Squeak Compiler
	Setup

	Evaluation and Discussion
	Evaluation
	Discussion

	Related Works
	Conclusion
	Smalltalk syntax

