
Detection of Unreachable C++ Code

Yih-Farn R. Chen, Emden R. Gansner, Eleftherios Koutso�os
AT&T Labs - Research, 180 Park Ave., Florham Park, NJ 07932, USA

fchen,erg,ekg@research.att.com
http://www.research.att.com/info/fchen,erg,ekg

July 28, 1997

Abstract

Detecting unreachable code in C++ programs is fre-

quently necessary in large software projects to help re-

move excess software baggage, select regression tests,

and support software reuse studies. The language

complexity introduced by class inheritance, friend-

ships, and template instantiations in C++ requires

a carefully-designed model to catch all necessary de-

pendencies for correct reachability analysis while re-

maining practical for large systems. We describe such

a C++ model with the granularity of top-level decla-

rations and discuss our experiences in applying reach-

ability analysis tools based on this model to industrial

C++ code.

1 Introduction

Reachability analysis and dead code detection are two

tasks frequently needed in large software projects.

Such analyses are used to remove excess software

baggage[8], select regression tests[5], and support soft-

ware reuse studies[4]. We assert that designing the un-

derlying data model is crucial to how e�ectively these

tasks can be performed. In particular, the model must

be broad enough to capture all of the relevant depen-

dencies, but not so broad as to make the analysis of

very large systems intractable.

Complex, object-oriented languages such as C++

further complicate the construction of adequate data

models for reachability analysis. In addition to the

entities and relationships found in typical procedural

languages, C++ introduces such additional relation-

ships as inheritance, friendship, access adjustments

and template instantiation, which a�ect the analysis

in various and subtle ways. We present the essentials

of a C++ data model and examples to show how ef-

fective the model supports dead code detection.

2 A C++ Data Model

Our C++ data model is formulated using Chen's

entity-relationship modeling[1] and it supports both

the C and C++ programming languages. We con-

sider a C or C++ program as a collection of source

entities referring to each other, an entity representing

a static, syntactic construct such as a macro, a type,

a function or a variable. Since our focus is on creat-

ing a complete data model that supports reachability

analysis and dead code detection, we need to provide

a clear de�nition on completeness:

Completeness: A data model M on a pro-

gramming language L is considered complete

if, for any two entities a and b in the model, a

dependency relationship a! b also exists in

M when one of the following two conditions

holds:

� C1 : if the compilation of the entity a

depends on the existence of a declara-

tion of the entity b.

� C2 : if the execution of the entity a de-

pends on the existence of the entity b.

For example, if a is a source �le that includes a

header �le b, then a! b should be captured according

to C1. Similarly, if a is a variable initialized with

a macro b, or a class that inherits from class b, or

a template class instantiated from class template b,

then a ! b should exist as well because a cannot be

compiled without a declaration of b.

On the other hand, if a function a calls or refers to

a function b, even if b is not declared (as is allowed in

some C programs and shell scripts), then a! b should

exist in the model according to C2. For a more com-

plete discussion on conditions required (well-de�ned

memory and well-bounded pointer) for static analysis

1



tools to capture such relationships, directly or indi-

rectly, refer to the TestTube paper[5].

A model that satis�es the completeness criterion al-

lows us to de�ne Reachable Entity Set and Dead Entity

Set in the following way:

Reachable Entity Set: A reachable entity set

R(e) is the set of entities reachable from an

entity a through standard closure computa-

tions on the dependency relationships in the

model.

Source Entity Set: A source entity set S is

simply the set of all entities in a program

according to the model.

Dead Entity Set: A dead entity set D(e) is

simply the di�erence between R(e) and S,

where r is the entity that serves as the start-

ing point of the program execution. D(e)

is the set of program entities that are not

needed for the compilation or execution of

the program.

The �rst design choice we have to make in design-

ing a complete model is the entity granularity. The

granularity can be as coarse as a source module or as

�ne as expressions and tokens.

Our model uses the granularity of top-level decla-

rations. This includes entities for types, functions,

variables, macros and �les. It captures the principal

structural artifacts of a program, especially those used

across modules and classes, and allows us to perform

the vast majority of reachability analyses pertaining

to issues of software engineering. On the other hand,

any �ner granularity typically imposes a cost of one

or two orders of magnitude on the size of the resulting

databases, making such models much less useful for

large software systems.

Since the focus on this paper is on reachability anal-

ysis, we'll discuss only relevant relationships in the

model. For a more complete treatment of the model,

refer to the ESEC paper[3]. There are several possi-

ble relationships in C++: inheritance, friendship, con-

tainment, instantiation, and reference relationships.

We examine each relationship brie
y and explain how

it a�ects reachability analysis.

2.1 Inheritance Relationship

If class A inherits from class B, then class A depends

on class B for compilation. An inheritance relation-

ship can be private, protected, or public and each in-

heritance relationship can be virtual. These two pieces

of information are also recorded in the database and

are useful for some variants of reachability analysis

(such as visibility analysis).

2.2 Friendship Relationship

There is a friendship relationship from class A to class

B if class B declares class A as a friend. The relation-

ship direction is set this way because members in class

A may access members in class B and therefore de-

pend on class B as far as the direction of reachability

analysis is concerned.

2.3 Containment Relationship

There is a containment relationship between every

parent class or struct and each member that it con-

tains. Containment relationships may or may not

be walked through depending on the purpose of the

reachability analysis. We shall elaborate on this in

the next section.

2.4 Instantiation Relationship

An instantiation relationship exists if entity A is

an instance of template B. A depends on B for

compilation and linking. For example, the tem-

plate class set<int> is an instance of the class

template <class T>set and the template func-

tion sort(String *,int) is an instance of <class

T>sort(T* arry, int sz).

2.5 Reference Relationship

Formally, a reference relationship exists between en-

tity A and entity B if (a) it is not one of the above

relationships, and (b) entity A refers to entity B in its

declaration or de�nition.

3 Detection of Unreachable

Code

Many large software projects su�er from a syndrome

called excess baggage that has one or more of the fol-

lowing symptoms:

� unnecessary include �les: Many declarations in

the header �les are never used, but are compiled

repeatedly for the source �le that includes them.

� dead program entities: Due to program evolu-

tion, many program entities usually become obso-

lete, but programmers either cannot locate them

2



or are afraid to delete anything because they can-

not predict the consequences.

To remove excess baggage, we start from the entry

points of a program and �nd the closure set of entities

reachable. Containment relationships do not have to

be expanded if we want to detect dead member entities

for a particular application. This is sometimes critical

for applications with strict memory requirements. As

described previously in the de�nition of Dead Entity

Set, by comparing the closure set against the complete

set of program entities in the database, we get a list of

unused program entities. Usually, the user is only in-

terested in dead entities in their own code and ignore

dead ones in system header �les. Our dead code detec-

tion tool creates a database of dead program entities;

queries can be used to �lter out or focus on particular

subsets.
As an example, we applied our analysis tool to a

C++ program written by Andrew Koenig that illus-
trates the concept of dynamic binding[7]. One of the
key classes is Tree:

class Tree {

public:

Tree(int);

Tree(char*,Tree);

Tree(char*,Tree,Tree);

Tree(const Tree& t) { p = t.p; ++p->use; }

~Tree() { if (--p->use == 0) delete p; }

void operator=(const Tree& t);

private:

friend class Node;

friend ostream& operator<< (ostream&, const Tree&);

Node* p;

};

Now we would like to determine if the sample test
program (shown below) exercises all member entities
in the Tree class.

main()

{

Tree t = Tree ("*", Tree("-", 5), Tree("+", 3, 4));

cout << t << "\n";

t = Tree ("*", t, t);

cout << t << "\n";

}

While it may not be immediately obvious for some

users, this small test program does exercise all member

functions of Tree, including the destructor and copy

constructor. On the other hand, if we replace the test

driver with the following piece of code:

main()

{

Tree t = Tree (5);

cout << t << "\n";

}

then the dead code analysis tool reports that the

following three member functions of Tree are not ex-

ercised by the new test driver:

Tree::Tree(const Tree &)

Tree::Tree(char *, Tree)

Tree::Tree(char *, Tree, Tree)

In the case of dead code detection, computing the

simple transitive closure (excluding containment re-

lationships) is appropriate; however, in some other

tasks, such as packaging existing components for soft-

ware reuse, the task also requires computing certain

indirect relationships by doing selective reverse reach-

ability computations. For example, class member dec-

larations cannot exist on their own for compilation and

therefore we must also capture the containing parent

declarations. In general, our model explicitly or im-

plicitly contains complete reachability information, so

that indirect relationships can be generated using ap-

propriate queries over the database.

Note also that the reachability analysis supported

by our model is conservative, in that the set of enti-

ties returned may be a superset of the minimal clo-

sure based on the actual source. This follows from

the fact that we are only capturing static syntactic

information concerning top-level declarations. For ex-

ample, an analysis of a program at the expression level

may indicate that a call to a function only occurs in a

branch that is never executed, and hence the function

is never called, whereas our model would consider the

function as needed.

We have implemented a system called Acacia that

implements such a data model for C++. This sys-

tem consists of a collection of tools for analyzing C++

source, plus an instantiation of the CIAO software vi-

sualization system[2] based on our C++ model. To

�nd out how scalable Acacia is in supporting reacha-

bility analysis, we applied it to a C++ software sub-

system of a telecommunications project. The software

subsystem was merged from two previous and similar

projects and is expected to have a signi�cant amount

of unnecessary code.

The system consists of 202 source �les and a total

of 41,821 lines of C++ code. The C++ database we

generated consists of 2,878 C++ functions, 3,208 vari-

ables, and 791 types, which include 276 C++ classes.

There are no templates used in this project. The pro-

gram database consists of 7,649 entity records (de�ni-

tions and declarations), and 9,260 relationships. The

size of the database is only 1.02 MB. The database

generation time from the Acacia parser is roughly

equivalent to that of our C++ complier; both are

based on EDG[6]'s compiler frontend.

3



We picked a user-de�ned class that deals with alarm

transmission and ran the reachability analysis tool to

see how large its closure set can be. The result shows

that it can reach 241 entities, including 92 functions,

20 types, and 117 variables, de�ned or declared in 11

separate source �les. All these entities must be col-

lected just for the alarm transmission class to compile

if it is to be reused in a di�erent project. On the other

hand, all other entities are considered irrelevant for the

purpose of alarm transmission. The closure computa-

tion took only 1.58 CPU seconds to run on a desktop

SGI Indy (150 MHZ R4400 processor) running IRIX

5.3.

Based on this and our previous experiences on

incl [8] and TestTube [5], two C analysis tools using

a similar model and applied to million-line telecom-

munications projects, the granularity of top-level dec-

larations appears to be reasonable for typical software

enginering tasks and allows fast analysis even on large

and complex code.

4 Summary and Future Work

The growing number and size of C++ projects have

been presenting challenging maintenance tasks in the

software engineering community. Reachability analy-

sis is a fundamental process that supports many com-

plex maintenance tasks such as dead code detection,

software reuse, and selective regression testing. We

have presented a C++ data model that has shown

to be e�ective in performing reachability analysis on

large, real-world C++ projects.

Future work will involve adopting the evolving fea-

tures of the C++ language, such as namespaces and

exceptions. In addition, we feel this approach can be

applied to similar object-oriented languages such as

Java, Ei�el and Ada 95.

References

[1] P. P. Chen. The Entity-Relationship Model { To-

ward a Uni�ed View of Data. ACM Transactions

on Database Systems, 1(1):9{36, Mar. 1976.

[2] Y.-F. Chen, G. S. Fowler, E. Koutso�os, and R. S.

Wallach. Ciao: A Graphical Navigator for Soft-

ware and Document Repositories. In International

Conference on Software Maintenance, pages 66{

75, 1995.

[3] Y.-F. Chen, E. Gansner, and E. Koutso�os. A

C++ Data Model Supporting Reachability Anal-

ysis and Dead Code Detection. In Sixth European

Software Engineering Conference and Fifth ACM

SIGSOFT Symposium on the Foundations of Soft-

ware Engineering, Sept. 1997.

[4] Y.-F. Chen, B. Krishnamurthy, and K.-P. Vo. An

Objective Reuse Metric: Model and Methodology.

In Fifth European Software Engineering Confer-

ence, 1995.

[5] Y.-F. Chen, D. Rosenblum, and K.-P. Vo. Test-

Tube: A System for Selective Regression Testing.

In The 16th Internation Conference on Software

Engineering, pages 211{220, 1994.

[6] Edison Design Group. http://www.edg.com.

[7] A. Koenig. An Example of Dynamic Binding in

C++. Journal of Object-Oriented Programming,

1(3), Aug. 1988.

[8] K.-P. Vo and Y.-F. Chen. Incl: A Tool to Analyze

Include Files. In Summer 1992 USENIX Confer-

ence, pages 199{208, June 1992.

4


