
Grouping

Oliver Ciupke

July 27, 1997

Abstract

Reengineering requires modelling and understanding a system on many

levels of abstraction. Grouping is a concept for building abstract views on

object-oriented systems. Grouping is de�ned formally based on graph theory.

Visualizing a system containing groups and manipulating a corresponding

model by tools can be de�ned straight forward.

1 The problem

During reengineering of large systems, it is necessary to be able to perform analysis

and manipulation also on higher levels of abstraction. For larger systems, the

standard views on a system (e.g. the class structure or a message trace diagram)

are not abstract enough and often get crowded with too many details which are not

needed to understand the system as a whole.

Some problems of software design themselves are located on higher levels than

at which they are normally taken into consideration. E.g. the design on the class

structure may look well designed, but there are too many dependencies between

di�erent packages.

2 Concept

When analyzing a system, we must have an exact way to come from elementary

views to more abstract ones. They must be formally sound, so it is exactly known,

what the meaning of an abstraction is and that it is possible to build tools dealing

with abstractions.

What we need is a way to exactly describe how to come from a detailed descrip-

tion of a system to a more abstract one. We call this method grouping. Grouping

means putting entities describing a common abstract concept into one more abstract

entity, called a group.

If a system is represented as a graph, the entities and relationships between

them are represented by nodes and edges. In this case, grouping means replacing

nodes or edges by a node or edge representing the group.

Formally, grouping and related terms are de�ned as follows. Terms taken from

graph theory are de�ned e.g. in [SS89], [Har69].

� A group is a subset of all entities under consideration (including groups them-

selves).

� A grouping is a surjective graph homomorphism, mapping the elements of a

group to a single node (or a single edge).

� If the di�erence matters, one can distinguish node groups and edge groups or

node groupings and edge groupings.

1



� The trivial grouping is the identity.

� The cardinality of a group may introduce a weight to the representing node

or edge.

3 Examples

In principle, every set of entities under consideration can be grouped together. The

same way, every entity can in principle be split up into further detailed parts of

a system. But there are several groupings which are more often needed and most

applicable to reach frequently useful abstractions. Examples for those are grouping

� Classes to packages

� Packages to packages of higher granularity, (in general packages may be grouped

hierarchical, but in practice packages of di�erent levels have often di�erent

names given, e.g. subsystems, program blocks, service blocks etc.)

� Objects to classes (or types)

� Dynamic method calls to pair of calling and called object (interval may e.g.

be given by call and return of a surrounding call)

� Dynamic method calls within a certain interval of time

� Classes to �les

� Files to directories

� Objects to processes

and many more.

4 Types of groups

Every entity has a type (e.g. class, object, method, �le). These are types on the

meta-level and not to be confused with the types declared in the program or in the

speci�cation of the programming language.

The type of a group is determined by the possible types of entities it can hold

(which may be more than one).

A group may be represented by an entity of di�erent type. The group of objects

of a certain class is not this class, but it may be represented by it.

5 Operations on groups

There are special operations available on groups:

collapse: replace the set of entities contained in the same group by a representation

of this group (e.g. in a certain view)

expand: replace the group by its elements (e.g. in a certain view)

When supported by a tool, those operations are often performed interactively by

the user.

To perform an operation on each single element of a group or to �lter a subset

of elements from a group ful�lling certain properties (i.e. a predicate) there are

operations well known from functional programming [BW88]:

2



map: takes an operation o and a set (or group) s and performs o on each element

of s1

�lter: takes a predicate p (a function returning a boolean) and a set (or group) s

and returns a set s0 containing those elements x of s, for which p(x) is true

6 Visualization and tool support

Groups that are collapsed are shown as a node replacing the elements contained in

the group. Relations of those elements are propagated to the group as required by

grouping as a graph homomorphism.

Groups can also be visualized when they are not collapsed to a single node but

expanded and all their elements are still visualized. This must be possible especially

when groups are de�ned interactively. Possibilities for such visualizations are

� Drawing a shape (e.g. a box) around the elements to be grouped. This

requires all elements of a group to be localized near each other.2

� Drawing all the entities contained in a group in the same way, e.g. in the

same color or with the same shape.

� The group is shown as an additional node which is connected to its elements

by its de�ning containment relation.

7 Future work

� De�ne problem patterns of reengineering related to grouping

� Specify requirements for tool support for grouping

� Enhance grouping capabilities of existing prototype tools

References

[BW88] Richard Bird and Philip Wadler. Introduction to Functional Programming.

International Series in Computer Science. Prentice Hall, 1988.

[Har69] Frank Harary. Graph Theory. Series in Mathematics. Addison, 1969.

[SS89] Gunther Schmidt and Thomas Str�ohlein. Relationen und Graphen. Math-

ematik f�ur Informatiker. Springer-Verlag, 1989.

1some times "map" is referred as "foreach", but this term is often used with a di�erent meaning

in the area of concurrent programming
2This is the solution de�ned in the UML for packages.

3


