
Tool-support for Reengineering

of object-oriented systems

Position paper on the FAMOOS-project

Udo Gleich Thomas Kohler

Juli 1997

Abstract

Searching for methods and ways to transform
object-oriented legacy systems into new framework-
based applications is the main intention of the ES-
PRIT project FAMOOS. The partners involved ex-
pect a tremendous increase in software
exibility
from this approach. This results in the understand-
ing that e�ective reengineering of large-scale appli-
cations is not feasible without su�cient tool sup-
port. At this time there are already a few consid-
erations about what tool support for reengineering
should look like. This paper gives an overview of
the work at Daimler-Benz regarding this. It starts
with a short summary of the di�erent tasks that
could be related to the term reengineering. Subse-
quently, a generic proposal for a possible tool ar-
chitecture is given. Finally the paper introduces a
few tool-prototypes which are currently being de-
veloped at Daimler-Benz.

Contents

1 Introduction 1

2 A reengineering environment 1

2.1 Overview 1

2.2 A Repository for Reengineering . . . 2

2.3 Tools for reengineering 2

3 Implemented tool prototypes 3

3.1 Tools for ADA-Systems 4

3.1.1 ADA-Analysator 4

3.1.2 ADAlyzer 4

3.2 A Browsing Tool for class relationship 6

4 Summary 7

1

1 Introduction

The goal of the FAMOOS Project is to develop
methods and tools for the reengineering of object-
oriented legacy systems. Such software, mainly
�rst-generation oo-systems, should be migrated to
a modern framework-based architecture.

A legacy system is a software system which can-
not be adapted to new requirements with the usual
maintenance costs, although the new requirements
are near or within the problem domain of the soft-
ware. An object-oriented legacy system mainly
contains code in an object-oriented or object-based
programming language. Non-object-oriented code
could also be included in a software like this.

We can say that a lack in
exibility is the main
characteristic of a legacy system. Flexibility can-
not be achieved for all conceivable dimensions of an
application, and it is not sensible to ask for abso-
lute
exibility in a rather complex system. Flexi-
bility should be achieved for the parts of a software
which have to be changed during the evolution of
a system. Naturally, it is not easy to �nd these
potentially changing components. The objective of
a software system may vary during its evolution,
therefore the
exibility requirements do not remain
the same as in the very beginning. Consequently, a
certain level of legacy easily comes into a complex
system.

The main reason for maintenance problems is re-
lated to the preceding topic. It is the uncontrolled
development of a software system. New features
are brought into a program without adapting the
application model to the new requirements. That
leads to solutions which do not �t into the existing
system.

Another property of legacy systems which of-
ten occurs is the poor or even missing documen-
tation. Documentation comprises not only analy-
sis and design documents, but also the comments
in the source code. Nonexistent documentation
leads to maintenance problems through the non-
understanding of the software. In addition to this,
badly-documented systems are in most cases also
badly structured. Evolutionary growing systems
which are not consequently documented from the
very beginning are promising canidates for reengi-
neering. Undocumented systems arise if no soft-
ware engineering approach is followed, and there-
fore no analysis and design documents are created.

Early object-oriented software projects were of-
ten a�icted with these problems, because the
methods and tools were, as a rule undeveloped and
the programmers inexpierienced. Now we are fac-
ing the problem of reengineering this software.

2 A reengineering environ-

ment

2.1 Overview

A focus here at Daimler-Benz lies on the tool sup-
port for reengineering. Ideas for an environment
for tools and data for reengineering are currently
under development.

A reengineering environment should support the
whole reengineering life cycle of reverse and forward
engineering. The objective of reverse engineering is
the redocumentation and �nally the understanding
of the software and its problems. During forward
engineering the software is restructured to ful�ll the
new
exibility requirements.
A reengineering tool should also have an open

architecture in order to integrate third party tools
and to adapt it to di�erent approaches to the
reengineering life cycle. The tool has to be adapt-
able to various needs. These are:

� Scaleability

{ to application size

{ to reengineering needs (part of applica-
tion, whole application)

� Adaptability to reengineering goal

{ changing of functionality

{ inserting of new functionality

{ integration of several systems

{ paradigm change

{ port to another platform

A reengineering environment should include the
following components:

� a repository to store all information, which is
created during the reengeneering life cycle

� four categories of tools, which are:

1

{ reverse engeneering tools

{ problem detection tools (metrics, heuris-
tics)

{ browsers/viewers

{ forward engineering tools

The initial idea of an architecture for a reengi-
neering environment is shown in �gure 2.1 which
will be described in the following sections.

2.2 A Repository for Reengineering

A reengeneering repository should support di�erent
abstraction levels for a software system. These are:

� source code information

� language independent symbolic information

� subsystems (groups, clusters1) of elements
such as classes, methods etc.

� informal documentation

The database has to control matching between
the abstraction levels. It has to be possible to �nd
all documentation or subsystems from code or the
according code from a higher level. It should be
possible to store formal and informal information
referring to each other. It should be possible to as-

sign informal documentation to every item on every
abstraction level.

The basis of a reengineering repository should
be an adequate complete meta model for object-
oriented and non-object-oriented software struc-
tures. A database which implements this model
shoud include three parts:

� the representation of the source-code in a form
independent of any programming language,

� language dependent plug-ins and

� groups and clusters of the underlying software
structure in order to divide the system into
understandable pieces

1the term \grouping" is currently used within the

FAMOOS-project for this issue

Currently, a UML-repository for an object-
oriented database which will be used for the
FAMOOS-project is under development here at
Daimler-Benz.
The next abstraction layers should be groups or

clusters of symbolic information from the database.
The best approach for this is probably a graph
description language capable of graph-subgraph-
relationships.
The informal documentation of the software sys-

tem is created during reengineering or it is already
availabe. Therefore, it is neccesary to integrate var-
ious forms of documentation formats. It should also
be possible to attach informal documentation to ev-
ery item on every abstraction level. Consequently,
the best way would probably be to organize the
documentation in hypertext-based form.

2.3 Tools for reengineering

The �rst step in reengineering is reverse engineer-
ing. The goal of this part is the understanding of
the software system.
The understanding of a software system can fol-

low three basic cognitive models for problem solv-
ing. The top-down approach starts with a general
idea about the system functionality and goes on
to associate functionality with components. The
bottom-up approach tries to group parts of the
code and to assign concepts to those groups. The
third approach is to create a set of hypotheses and
to adapt them until they are consistent [Doe97].

Tools for reverse engineering should support these
approaches.

Parsers and debuggers are needed to take
the step from the source code to a language
independent-representation. The creation of static
information is a solved problem for most program-
ming languages. Dynamic information can be re-
ceived through code instrumentation or via debug-
gers. Only one debugger which can handle a pro-
gram on the level of objects and messages is known
to the authors - Look! by OST [loo]. A mixture of
newly developed tools and the integration of avail-
able solutions would be the proper way here.
Symbolic information should be divided into un-

derstandable pieces. This could be done automat-
ically or by hand by a domain expert. The aris-
ing subsystems will be adapted and documented to
recover the software design. The rules for the cre-

2

Figure 1: Reengineering Environment

ation of clusters and groups are a current research
issue in the FAMOOS-project. Metrics and heuris-
tics for object-oriented systems would be useful for
this and for the problem detection in the software
as well.

Browsers and viewers for the various abstraction
levels are important tools for software understand-
ing. Therefore, they are an integral part of a reengi-
neering environment. Such tools include text edi-
tors, hypertext viewers and tools for graph visual-
ization. They are possibly already available, which
means they only have to be integrated into the
environment, or they have to be developed from
scratch. There should also be tool integration so
that the browsers and viewers get a deeper (verti-
cal) view into a smaller part of a software on dif-
ferent abstraction levels (see �gure 2.1).

The tools for forward engineering include the or-
dinary solutions for software engineering required
to do the work for analysis, design and implementa-
tion of the new system. Special restructuring tools
to convert a legacy system into a \repaired" one
are unique to reengineering. It is conceivable that

such tools could work on di�erent abstraction lev-
els, on the source code as well as on higher levels.
It is very likely that the restructuring can only be
done semi-automaticallywhich means using human
intervention. Pattern-based restructuring opera-
tions are under research in the FAMOOS project.
The methods are in an early phase of development.
Tools will hopefully be developed in parallel.

Successful software maintenance is based on a
good administration of the new variants of the soft-
ware system. Therefore, the integration of version
control tools is an important task, patricularly in
multi-user environments.

3 Implemented tool proto-

types

After this common description how a tool ar-
chitecture could look like, we will introduce the
tool-prototypes developed at Daimler-Benz for the
FAMOOS-project. The tools mainly support the
early phases of reengineering. There are two proto-

3

types processing Ada-code and vizualizing package
dependencies. The third tool shows class depen-
dencies using symbolic information of C++-code.
It allows browsing through a class diagram.

3.1 Tools for ADA-Systems

One case study provided by Daimler-Benz for the
FAMOOS project is a large software assembly for
space-travel operations, which is implemented in
ADA83. Currently at Daimler-Benz there are two
separate approaches to the analysis of ADA pro-
grams. The main di�erence between these ap-
proaches is the

At this time we use these distinct approaches
to evaluate the applicability and usefulness of two
di�erent concepts. The main di�erence between
these concepts is the usage of di�erent parsing-
components for the tools. In future we will
only pursue further one of these approaches af-
ter an accurate comparision of the various advan-
tages/disadvantages.

In the following sections these approaches (tool-
prototypes) will be called ADA-Analysator and
ADAlyzer.

3.1.1 ADA-Analysator

The origin of ADA-Analysator in its current shape
is a diploma thesis [Nar97] done for Daimler-Benz.
This program is an Analysis-Framework with the
basic functionality of static source-code analysis.
The tool can be customized, especially to extend
the scope of the analysis as desired. The main part
of the framework consists of a syntax-analyzer ca-
pable of analyzing ADA83-code. It is based on an
object-oriented C++ class hierarchy, which is re-
sponsible for the construction of a temporary lan-
guage.

The syntax-analyzer is hereby generated with the
compiler-generator COCO-2 [DP90]. The great-
est advantage of COCO-2 is the possibility of de-
scribing both the lexical structure and the syn-
tax/semantics of a given source language commonly
in one document.

This syntax-analyzer now controls the construc-
tion of a dynamic data-structure, the temporary
language which is a �rst abstraction (in the given
scope) from the source-code. This data-structure
serves as a basis for the following analysis. At

this time a small set of such examinations has al-
ready been implemented. For example it is possi-
ble to show the structure and the interrelationships
(WITH relations) of ADA-Packages. It is also pos-
sible to group together all instances of the same
generic.

The operation of the tool and the visualisation
of the results is realized via a graphical user inter-
face (GUI). A screen-shot of the running program
is shown in �gure 3.1.1. Hereby currently the struc-
ture and interrelationships of packages are shown.
Additionally, it is possible to export these package-
relations to an EXCEL-chart.

Due to the fact that the GUI is implemented with
Borland OWL, the ADA-Analysator is currently
only available on a Win95/NT-platform. Since the
interface is completely implemented separate from
the rest of the program, it could be ported to other
platforms without greater problems.

In summary, the ADA-Analysator represents
a solid basis for the development of own tools.
The desired scope of the analysis could easily be
adapted by making slight changes in the code. Nev-
ertheless, in parallel to the ADA-Analysator there
is a second approach at Daimler-Benz which is de-
scribed in the following section.

3.1.2 ADAlyzer

The working method of the ADAlyzer is quite sim-
ilar to that of the ADA-Analysator which is de-
scribed above. There is also a parsing-component
which controls the construction of a dynamic data-
structure representing the code. As before, the
data-structure could be reused by subsequent anal-
ysis routines.

The ADAlyzer is also implemented in C/C++,
but here the parsing-component is based on
a LEX/YACC-parser which uses an ADA95-
grammar. The advantage of this is that a basis
for this new language standard already exists. Due
to ADA95s extensive downward-compatibility to
ADA83, it is possible as a rule, to analyze ADA83
programs, too. There were no problems in that re-
spect during the analysis of the DASA case study.

The parser builds a C++ data-structure from
the analyzed code. Due to the fact that it has a
tree structure, it is called Abstract Syntax Tree
(AST) in this case. For the construction of such
an AST, we assume that the root-node of the tree

4

Figure 2: Ada Analysator

corresponds to the whole system being analyzed.

A system consists of at least one or more
data-�les. In an AST they are represented
as nodes which are located one level higher
than the root node. Every (ADA) �le con-
tains a set of Context-Clauses (With-Clause, Use-
Clause) and/or Compilation-Units (Packages, Sub-
programs, ...). Again these elements represent the
next level of the AST, although in such a way that
they can be related to the �le they are de�ned in
(one AST-level below). The single Compilation-
Units generally de�ne, on their part, a namespace
in which di�erent ADA elements, such as packages,
type-de�nitions, etc. can be rede�ned. The main
di�erence between these elements is that they form
either an entity on their own, or that they rede�ne
a (nested) namespace which can itself contain vari-
ous elements. According to their nesting-level, the
single elements are assigned to their corresponding
AST levels. This series continues iteratively until
the maximal nesting-level of a Compilation-Unit is
reached. The division of a system into di�erent lev-
els is a special kind of implicit Clustering (Group-

ing).

Together with special iterator and search algo-
rithms, such a data-structure forms the basis for
all of the subsequent higher-level analysis tasks and
assessments. At this time it is possible to gener-
ate a Dependence-Graph from a system of multi-
ple �les. This graph could be visualized with the
layout-toolkit VCG, which is already in use by a
number of the FAMOOS-partners.

An example of the dependency relationships of
approximately 300 ADA �les is shown in �gure
3.1.2. Every �le is represented by a small square.
The single �lenames are displayed by clicking on
the corresponding square. The arrows between the
squares show the dependencies between the di�er-
ent �les. One �le depends on another, if it imports
Compilation-Units from this �le via With-Clauses,
or if it contains an implementation and the corre-
sponding speci�cation is located in the other �le.

In �gure 3.1.2 the simple user-interface of the
ADAlyzer (behind the VCG-window) is shown too.
Due to the fact that this interface is implemented
with the portable GUI-Framework V [Wam97], the

5

Figure 3: ADAlyzer

ADAlyzer is already available for both WIN95/NT
and UNIX.
In summary it is possible to say that the ADA-

lyzer is a further foundation (especially for ADA)
for a more extensive Analysis-, or Re-Engineering-
Tool.

3.2 A Browsing Tool for class rela-

tionship

The goal of the development of this tool is to achive
a focused view into an object-oriented software.
Various types of relationships between classes, such
as inheritance, has-relations and uses-relations,
should be representable in one diagram. The tool
should enable showing the whole system, but also
browsing interactively through the software.
SNiFF+ was used for the realization [sni]

SNiFF+ is a programming environment for
C/C++ and other languages by TakeFive Software.
It provides a programming interface for the extrac-
tion of symbolic information from C++ code. Un-
fortunately, the Sni�+ programming interface only
o�ers information about the inheritance and the

has-relations. Therefore, the capabilities of the
tool are limited. As the data sructure provided
by Sni�+ is very in
exible, classes for graph rep-
resentation were developed. The graph is shown
via the VCG tool. The graph data-structures are
converted into a text �le with the graph descrip-
tion for VCG. The VCG tool itself is controled by
the browsing program. The classes which are to be
shown are chosen from a list. There are two options
how the classes are represented:

� the selected classes only and

� the selected and the related classes

A new graph is extracted from the whole system
according to the selection and the data is forwarded
to VCG. An illustration for this is given in �gure
3.2.
Future work is focused on integrating another,

language independent, layer (probably a UML
repository) into the tool architecture. The graph
classes are not su�cient to represent software struc-
tures, since a graph, as it is used here, is only one
possible view into a real system. Another issue is

6

Figure 4: Browser for object-oriented systems

to include more, especially dynamic, information
into the generation of views. The major problem
here is not \How to get more data?", but \How to
use the provided information?". Furthermore, the
graph data-structures have to be extended using
subgraph relations in order to support grouping of
classes or other items.

4 Summary

In this document we presented our ideas for reengi-
neering with the focus on tool support. The �rst
steps for the implementation of prototypes have
been accomplished. The developed tools mainly
support the earlier stages of reverse engineering.
Future work should take a step into the later phases
of the reengineering life cycle. Another task within
the FAMOOS project is the better integration of
the methodology and the respective tools, since the
acceptance of these methods in the future by the
potential users depends on an extensive tool sup-
port.

References

[Doe97] Markus Doebele. Erkenntnis als Vorraus-
setzung erfolgreichen Wandels. OBJEK-
Tspektrum, pages 41{51, April 1997.

[DP90] H. Dobler and K. Pirkelbauer. Coco-2,
A New Compiler Compiler. ACM SIG-

PLAN Notices, 25(5), 1990.

[loo] Look! - C++ Visualisation and Debug-
ging. http://www.objectivesoft.com.

[Nar97] Wolfgang Narzt. Analyse-Framework f�ur
Ada-Programme. Master's thesis, Uni-
versit�at Linz, May 1997.

[sni] SNiFF+ The industrial-strength
programming environment for
Unix C and C++ development.
http://www.take�ve.com.

[Wam97] Bruce E. Wampler. V - A C++

GUI Framework, January 1997.
http://www.cs.unm.edu/ wampler.

7

