
Reengineering of C/C++ Programs using

Generic Components

Georg Trausmuth and Roland Knor

Distributed Systems Group
Technical University of Vienna

Argentinierstrasse 8/184-1, A-1040 Vienna, Austria

fg.trausmuth,r.knorg@infosys.tuwien.ac.at

Abstract

Complex data structures such as lists and trees are di�cult to im-

plement in C in a way that programmers have little or no di�culties to

maintain and reuse the source code. Thus, converting such data structures

into instances of generic C++ components to increase the maintainability

of the code is a reasonable task. Replacing data structures with instances

of generic data structures is a non-trivial issue; handling dependencies

accordingly causes even more e�ort in the conversion. This paper points

out the issues of replacing data structures with instances of generic com-

ponents provided by libraries. We brie
y describe the transformation

process, related issues and give an outlook on future activities in this

area. This paper shows the bene�ts of generic source code components

for reengineering and maintenance activities.

1 Introduction

The ideas in this paper originate in the attempt of converting an application1

from C to C++ with emphasize on applying generic components as provided by

STL[Stepanov95]. The motivation was to reduce the complexity and simulta-

neously increase the maintainability of the source code by this transformation.

Data structures like the following were the starting point for our work:

struct aclEntry {

int aclTarget;

int aclSubject;

int aclResources;

// ...

struct aclEntry *reserved;

struct aclEntry *next;

};

Similar data structures that can also be replaced by their STL equivalent,

had to be found, transformed and syntactically adjusted. Data structures like

1An SNMP-library, which includes the main routines to run the Simple Network Manage-

ment Protocol.

1



the one above were found in a number of modules. The code looked almost the

same except for some adaptations to store di�erent attributes. The reuse of the

code fragments was obviously based on the copy-paste paradigm.

STL as a basic library contains generic de�nitions of data structures, algo-

rithms, and related concepts. This structure was also re
ected in our attempt

to port the software. The conversion of data-structures and related algorithms

was divided into two sub-tasks: �rst, changing the de�nition of a data structure,

and, second, handling dependencies.

2 Change the de�nition of a data structure

After some preparations2, data-structures and related algorithms were replaced

by STL components. The list de�nitions found in the code mixed up two di�er-

ent aspects: parts of the data structure were application speci�c (e.g. attributes

like aclTarget, aclSource) and parts were used for organizational purposes

(e.g. next). These two parts were separated and subject to particular changes.

The application speci�c information (data types) was modi�ed in the following

way:

1. Remove organization related information from the structure.

2. Add the default and copy constructor and a destructor.

3. De�ne == and < operators for the structure.

next

attr1
attr2

Data structure

attr1
attr2

Data type

Generic data structure

attr1
attr2

Instance of
generic data structure

Figure 1: Replacement of data structures

Figure 1 shows how the appropriate generic component was then instantiated

for the newly de�ned data type that only contained the essential information.

The information concerned with data organization is handled by the container

object (generic data structure) provided by STL. Further additions of some

C++ speci�c operations were necessary to provide a complete data type and to

ful�ll the orthodox canonical form as described in [Coplien92].

2Complex expressions in the code were replaced by function objects to increase the

maintainability.

2



struct aclEntry {

int aclTarget;

int aclSubject;

int aclResources;

// ...

aclEntry ();

aclEntry (int target, int subject, int resources);

aclEntry (const aclEntry &);

~aclEntry ();

};

inline operator==(const aclEntry &,const aclEntry &);

inline operator<(const aclEntry &,const aclEntry &);

typedef list<aclEntry> acl_list;

These replacements were simple, since only initialization values had to be

derived from existing initialization routines. The default- and copy-constructor

were necessary for the list template. While the default-constructor simply ini-

tialized the attributes of the entry, the copy-constructor had to assign the values

of a given entry to the attributes of the structure.

3 Dependencies

After replacing a data structure with an instance of a generic data structure,

every function and module that had access to this data structure had to be mod-

i�ed accordingly. Depending on the interfaces between various C-modules, the

conversion was rather sophisticated and took most of the e�ort involved in the

whole C to C++ transformation. We classi�ed the dependencies between di�er-

ent modules as follows: access dependency, function dependency, and structure

dependency.

3.1 Access dependency

The C source code used pointers to directly access attributes of data structures.

The access method for containers in STL are called iterators, which represent a

well de�ned interface for gaining access to the items of a list.

Expressions such as
aclEntry *ptr;

ptr=ptr->next;

or
aclEntry *ptr;

ptr->subject=3;

had to be replaced by
acl_list::iterator itr;

itr++;

or
acl_list::iterator itr;

(*itr).subject=3;

The introduction of such components resulted in changes to all read and write

operations on the variables kept in a list entry and on the list entries themselves

(e.g. adding/removing new entries). Additionally, data encapsulation would

make it necessary to add access methods for all attributes of an entry. However,

3



the requirement of strict data encapsulation was not enforced by the transfor-

mation. Access dependency could be handled by a rather simple search and

replace procedure [Paul94].

Malloc, free: Another task to be performed was changing the creation of a

new entry. Instead of using malloc or free to create or delete an item, those

statements were replaced by the insert (resp. delete) methods and a constructor

was introduced for the initialization.

Casting: Some programmers (ab)use the e�ect that the order of attributes

within a structure corresponds to the order of memory location of every single

variable within a structure type. The technique is called casting which puts a

di�erent scheme onto an existing memory location. This approach is used to

realize a kind of polymorphic behavior in C. It was used to put data items of

di�erent types into the same list. The conversion of data structures into STL

containers caused severe problems since casting could not be projected onto

generic components. Inheritance and one additional level of indirection could

be used to solve this problem of loosing information when inserting such data

items into STL containers. The initial approach of STL only allows to put

objects of one type into the same container.

List vs. iterator: Since a pointer to a list entry in C can be used as a pointer

to a single item as well as a pointer to a whole list, a more sophisticated problem

was the distinction between a particular item and a whole list. During our work

a heuristic approach was chosen:

� If the variable was dereferenced to gain access to the entry's attributes,

then the variable was converted into an iterator.

� If only the next pointer was a�ected by the statements in the scope of the

variable, then the variable's type was changed to a list.

This problem of distinguishing between a list and a single item was essential

also for the next kind of dependency.

3.2 Function dependency

This type of dependency occurred when a data structure was involved in the

declaration and de�nition of a function, either as parameter or return-value.

Parameter:

A function declaration of the kind
void f(struct aclEntry *)

has to be replaced by either
f(acl_list::iterator)

or
f(acl_list &)

The calling statements of such a function had to be changed too. The prob-

lem was to determine, whether the whole list would be needed within the func-

tion or just a particular entry. Analyzing the function was the only solution to

solve this problem.

4



Return-value:

A function-declaration
struct aclEntry * f()

could not be simply replaced by
acl_list::iterator f()

or
acl_list & f()

Some functions returned a pointer to the beginning of a newly (locally) cre-

ated list. Thus, another technique had to be used to overcome this problem: an

additional parameter was provided for returning the newly created list instead

of using the return-value. The assignment took place within the function:

int f(acl_list &);

Simultaneously, the return-value was changed to int to supply the calling func-

tion with information whether an error has occurred or not.

3.3 Structure dependency

Apart from lists, we discovered a tree data structure with a de�nition very

similar to those of lists. However, it was not possible to apply the same trans-

formations that were suitable for lists.

struct tree {

struct tree *child_list;

struct tree *next_peer;

struct tree *parent;

char label[MAXLABEL];

u_long subid;

int type;

};

In this case, it was not possible to map one data structure directly on an

instance of a generic data structure. The data structure had to be analyzed in

order to �nd possible mappings.

Recognizing and handling those dependencies might be seen as the most

expensive task in terms of time, since all possibilities have to be checked to

make a decision how to change a particular instance of the old data structure.

This problem might be interesting for further studies.

4 Further Work

So far we succeeded in the task of replacing simple data structures and related

algorithms with instances of generic de�nitions. Complex data structures re-

quire far more e�ort. We discovered that, for example, the data structure tree

mentioned above could be replaced by an instance of the generic data structure

set. This was the result of analyzing all functions that used a variable of type

tree.

An evaluation of the resulting program size showed that the total amount

of lines of code did not di�er much. However, the size of the C source code

5



modules could be decreased by about 10% due to the reduction of organizational

overhead, which was necessary in the C source to maintain the list.

Our approach is also applicable to C++ programs that do not currently use

generic components. The transformation process for C++ programs should be

easier because of the encapsulation facilities and inheritance provided by the

language.

The template facility of C++ that provides the basis for our approach o�ers

further possibilities that can be exploited in the future. This has been shown

in a paper on program generalization [Si�96]. Templates can also be used to

con�gure subcomponents [VanHilst96]. We currently work on the integration of

those approaches into our re-engineering activities.

5 Conclusions

We have presented a reengineering approach that is applicable to both C and

C++ programs. It utilized generic components (data structures and algorithms)

to replace common code fragments that are usually gained from copy-and-paste

programming.

The replacement process of simple data structures resulted in higher main-

tainability of the source code because of encapsulation and locality. Data struc-

ture organization and memory management were separated from user speci�c

data types.

Although the replacement of complex data structures is still an issue, we

could empirically test a mapping from one data structure onto an instance of a

related generic component. This requires a thorough analysis as well as more

adaptations because data organization cannot be transformed in a kind of one-

to-one mapping.

References

[Coplien92] James O. Coplien. Advanced C++: programming styles and idioms.

Addison-Wesley, Reading, Mass. and London, 1992.

[Paul94] Santanu Paul and Atul Prakash. A framework for source code search

using program patterns. IEEE Transactions on Software Engineering,

20(6):463{75, June 1994.

[Si�96] M. Si� and T. Reps. Program generalization for software reuse: from

C to C++. Forth Symposium on the Foundations of Software Engineering

(October 1996, San Francisco). ACM, 1996.

[Stepanov95] A. Stepanov and M. Lee. The standard template library. Hewlett-

Packard Laboratories, 7 July 1995.

[VanHilst96] M. VanHilst and D. Notkin. Decoupling Change from Design.

Forth Symposium on the Foundations of Software Engineering (October

1996, San Francisco). ACM, 1996.

6


