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1 Introduction

[GHJV94] proposed a number ofdesign patterns that offer good solutions for recurring design situa-
tions. Along with the good solutions they also discuss naiv solutions to these design situations and
argue why such naiv solutions should be replaced by a sound design pattern. Our position is that this
exactly describes the task of OO reengineering: find patterns within a legacy OO program that show
a poor solution for a (recurring) problem and replace this poor solution by a sound solution offered by
the corresponding design pattern.

By replacing a poor solution with a good design pattern one gains all the advantages offered by design
patterns like a well structured and well documented and easy to understand (sub)design that is flexi-
ble, extensible and easy to maintain.

To yield this one has to solve two main problems:

1. detecting occurences of (poor) implementation/design patterns in legacy programs

2. replacing the poor code/design by a good implementation/design pattern

We attack the first problem by GFRNs (Generic Fuzzy Reasoning Nets, cf. [JSZ97a]) which offer a
general, graphical, very high level language for modelling and applying reverse engineering knowl-
edge. This language enables to define and analyse fuzzy knowledge that deals with incomplete or con-
tradicting analysis results, is able to defer expensive analysis operations until demand and to
incorporate interactively (uncertain) user assumptions.

The second problem is attacked by a knowledge base of design patterns that stores the structure of
design patterns on a high conceptual level together with a description of a prototypical implementa-
tion and rules for the variation and adaptation of a pattern (and its implementation).1 In addition, this
knowledge base will contain rules describing how to replace poor design patterns by corresponding
good desgin patterns.

Nevertheless, we consider OO reengineering as an interactive design task. Thus, we plan to offer the
proposed mechanisms as semi-automatic tool support within the FUCABA (From Uml to C++ And
Back Again) design environment [Rose97]. The FUCABA environment currently supports editing of
UML class diagrams with (limited) support of design patterns and transformations of UML class dia-
grams to C++ including standard implementations for associations and design patterns. The FUCABA
environment also supports structure oriented editing of the C++ code and backward propagation of
design relevant changes to the UML class diagram.

Section 2 introduces a Singleton situation as a running example. Section 3 shows how GFRNs will be
used to identify the poor situation within our example and section 4 shows how this poor situation will
be replaced by an instance of the Singleton design pattern.

We assume that the reader is familar with UML (cf. [UML97a]) and C++ ([Strous91]).

1. The representation of design patterns we have in mind is to some extend comparable to the one found in [FMW97].
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2 The singleton example

A typical yet simple example of a poor design/implementation that may/should be fixed by an appro-
priate design pattern is a (number of) global variable(s) that should be replaced by a Singleton design
pattern.

Figure 1 shows some code of an example university administration system containing a global vari-
ablecourse_program of typemap<string, Course*> that provides global access to all courses via their
title. As one would expect, the global variable consists of a definition of the variable on file scope
within a certain cc-file and a(n extern) declaration in the corresponding h-file making it available to
clients.

During reverse engineering we analyse the application code and identify its basic elements and create
a logical representation that abstracts from the code details and its variants. Figure 2 shows the logical
representation derived from the code fragements of Figure 1 in an (extended) UML-class-dia-
gram-like notation. The global variable is represented as an explicit object using the UML notation
for class instances, i.e. an underlined object declaration within a rectangle. Its identification as a poor
Singleton pattern is shown in a dashed oval, the UML notation for design patterns.

«V.cc»

#include “XY.h”

...
course_program.print();
...

«XY.h.top_level_scope»

...
extern map<string, Course *> course_program;
...

«XY.cc.top_level_scope»

...
map<string, Course *> course_program( 1000 );
...

Figure 1: Global variable example code

«W.cc»

extern map<string, Course *> course_program;
...
... course_program[ ... ] ...
...

«U.cc»

...

...course_program[ ... ] ...

...

«U.h»

#include “XY.h”
...

Course

+title : string
. . .

Student

+name : string
. . .

attends

n n

map

. . .

T1, T2

Figure 2: A poor Singleton situation

+course_program : map<string, Course*>

Singleton
poor

definition
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According to [GHJV94] the example shows a poor situation since everyone has full direct read/write
access to this global variable from everywhere. (1) During maintenance of a big system nothing pre-
vents a (freshman) programmer from accidently deleting a course, inserting an inconsistent course, or
from destroying the whole map just by assigning it a new value via. (2) Due to the full access to all
map operations it is not trivial to replace later on the hash table implementation e.g. by a sorted tree
for support of ordered listings.

Such global variables should be replaced by a Singleton pattern, cf. Figure 3. The global variable is
changed into a private data member within a (new) classCourse_Program. (This private data member
closely corresponds to a qualified association shown in grey/green color.) The private access to the
constructor prevents clients from creating instances accidently. The provided static2, public instance

method (1) creates the sole instance on demand and (2) provides easy access to this sole instance from
everywhere, e.g.:c = (* Course_Program::instance())[ “Reengineering” ].

For all methods that have been used directly on the global variable, classCourse_Program provides
encapsulating methods, that by dedault call the corresponding method on the private data member.
This enables later extension e.g. by consistency checks. In addition, this shows the cutout of methods
of classmap that is actually used forcourse_program within the application. Encapsulation of this cut-
out facilitates to switch to other implementations. Making the used methods visible helps to identify
potential misusage, e.g. accidental writes.

Replacing the global variable by a Singleton pattern includes replacing all applied occurences like the
direct method invocations by invocations of appropriate methods of the new Singleton class. Obsolete
extern declarations or includes should be removed and include statements for the (h-file of the) new
Singleton class have to be inserted. Altogether this enhances the design and implementation of the leg-
acy system utilizing the advantages of the introduced (good) design pattern (hopefully) without affect-
ing the applications execution semantics.

2. Static class members are indicated by underlining.

a_string : string

course_program

Course

+title : string
. . .

attends

n n

Figure 3: A sound Singleton pattern instance

Singleton

Course_Program

-the_instance : Course_Program*
-_course_program : map<string, Course*>

-Course_Program()
+instance() : Course_Program*
+operator[] ( a_string : string ) : Course*
+print( )

class

access_op

Student

+name : string
. . .

storage if ( the_instance == NULL ) {
the_instance =

new map<string, Course*>(1000);
read_courses( the_instance );

}
return the_instance;

return _course_program[ astring ];

_course_program.print( );
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3 Detection of (poor) patterns

The general problem in detecting (poor) design patterns in a legacy OO program is that they seldom
appear in their pure, strict form. The fairly simple example of a global variable should consist of a
definition of the variable on file scope within a certain cc-file and a(n extern) declaration in the cor-
responding h-file making it available to clients, cf. Figure 1. A slight variation is a client unit that con-
tains the (extern) declaration itself, instead of including the corresponding h-file. Another case is a
static class member variable with public access rights. There may exist also inconsistent situations,
e.g. a public global variable that is used locally only.

Figure 4 shows a cutout of a GFRN (Generic Fuzzy Reasoning Net) modelling simple rules for the
identification of a poor Singleton pattern. A GFRN consists of states (grey/green ovals) representing
certain pieces of knowledge and fuzzy implications (grey/green rectangles) representing knowledge
inference rules. For example, implicationi2 represents the fuzzy rule that an item declared within a
class and withpublic: access is globally visible (+ ... ) with a certainty of1.0. Negation is indicated by
solid arrowheads, e.g. rulei1 says that a file-scope item wich is NOT declared static is a global item,
too. Rulei3 concludes that an itemv that is globally visible and represents a variable (... : T ) and that
has storage classstatic ( ... ) represents a global variable with a certainty of 0.8. Together with some
other facts rulei4 identifies an instance of a poor Singleton pattern.

Due to our experiences in analysing relational databases, during reverse engineering one has to deal
with inconsistent and incomplete knowledge and with certain very resource demanding analysis oper-
ations. Since we consider reverse engineering as an interactive desgin task and plan only a semi-auto-
matic tool support we have to deal with uncertain user assumptions, too. GFRNs allow us to deal with
these problems using fuzzy inference mechanisms and demand driven analysis.

Due to limitted space we can not show the full power of this mechanism here, one may have a look in
[JSZ97a]. To give an impression how the GFRN of Figure 4 is used for the identification of a poor
Singleton, we could start the inference with a user assumption that the variablecourse_program repre-
sents a poor Singleton. To validate this assumption, our inference mechanism tries to instantiate the
incomming implications (i4) together with their prerequisites. Thus a fuzzy place for a global variable
and at least one applied occurrence3 is created where the formal parameterv is already bound to
course_program. Further analysis checks, whethercourse_program is actually a variable (and binds
parameterT to map<string, Course*>) with public access rights and storage class static. If one of these

3. The inference mechanism searches for all applied occurences ofcourse_program. It generates a fuzzy place for each
occurrence where the formal parametersv andm are bound appropriate each time.

static ...

Figure 4: Reverse engineering knowledgebase for poor Singleton patterns

+v : T

v.m(...)

+...

... : Tclass C { ... }

v

...

poor
Singleton

file-scope

public: ...

i1: 1.0

i2: 1.0

i3: 0.8

i4: 0.9

●
●

●

●
●

● v

i5: 1.0
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facts can not be proved the fuzzy belief of the “poor Singleton” assumption will evaluate to 0, reject-
ing the interactive hint.

Basic facts (likecourse_program represents a variable) are derived via source code analysis tools and
get a fuzzy belief of1. A fuzzy implication combines the fuzzy beliefs of its input places with its own
certainty using a fuzzy AND (i.e. a minimum function). The fuzzy belief of derived facts (like
course_program : map<string, Course*>) is computed by a fuzzy OR (i.e. the maximum) of the fuzzy
beliefs computed by its incomming implications.4 This shows how GFRNs handle uncertain and
inconsistent facts and how expensive source code analysis is triggered on demand.

To summarize, we use GFRNs for the combination of basic facts (derived from the source code) to
logical items on a conceptual level. These logical items will serve as input for the pattern rewriting
process.

4 Pattern rewriting

Beyond detecting poor design situations we plan tool support for the replacement of poor patterns by
their corresponding good patterns. Therefore, we need an extensible pattern knowledge base that
describes not only the available good patterns but also the corresponding poor patterns and how poor
patterns (and its various parts) are to be replaced by (the parts of) good patterns. To set up this knowl-
edge base we again use a very high level, graphical specification language that provides a formal yet
intuitive pattern description. The idea is to specify the poor pattern and the corresponding good
replacements in an extended UML-class-diagram-like notation.

Figure 5 shows how pattern rewrite rules for the Singleton example look like. The LHS
(Left-Hand-Side) of rule 1 refers to elements of the GFRN of Figure 4. It contains a global variable
v : T (with formal parametersv (variable name) andT (variable Type) that are bound within the anal-
ysis phase. In addition the global variable has been classified as a “poor Singleton” (with a sufficient
certainty). By applying rule 1, an occurence of its LHS is replaced by a copy of its RHS
(Right-Hand-Side). Thus, the global variable is deleted and an new Singleton Class with the same
name is inserted instead. This new class contains the former variable as a private data member_v5. In
addition it contains static data members for holding the one sole instance of the new Singleton class
and providing access to this sole instance.

Rule 1.1 is a subrule of rule 1. The “*” indicates that an application of rule 1 triggers the application
of rule 1.1 as often as possible. The LHS of rule 1.1 refers to elements of rule 1 (shown in grey/green
color) and to (new) elements of the GFRN. Rule 1.1 looks for methods invocations on v (v.m( ... ) )
where the corresponding method is not yet incorporated in the Singleton class (a crossed out element
says “not yet existing”). For each such occurence (i.e. for each used method) rule 1.1 creates the cor-
responding member function. In addition, rule 1.1 creates a default implementation that forwards the
method call to the private data member_v.

Rule 1.1.1 is a subrule of rule 1.1. Again, the “*” indicates that each application of rule 1.1 triggers
the application of rule 1.1.1 as often as possible. Thus, rule 1.1.1 replaces all direct invocations of a
certain method by calls to the corresponding new Singleton member function where the Singleton
object is retrieved viav::instance().

4. See [JSZ97a] for the handling of negations.

5. The_«+»v indicates that the name of the private data member is computed as the concatenation of an_ and the name
bound tov.
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Note that these rewrite rules are defined in terms of high level logical concepts. Thus introducing a
new class actually results in the creation of the corresponding h- and cc-file containing the class def-
nition as well as the usual #ifndef ... #define ... #endif directives ensuring single inclusion as well as
standard constructor and destructor declarations with default implementations as well as other default
elements of a C++ class implementation like a header comment template. Creating the Singleton
access operation not only declares this function as a public, static member function in the h-file but
also provides its default implementation in the cc-file. Removing a method invocationv.m automati-
cally removes no longer used external declarations or include directives, too. Adding the logical con-
cept (v::instance()->m) also adds necessary include directives, etc.. To summarize, each logical
element of the pattern rewrite rules represents a rather complex analysis, deletion or insertion of a
design level concept that may cause complex text analysis and change operations on many files within
the underlying implementation code.

In general, there are multiple ways to fix a certain design problem. In our approach this is reflected
by multiple rule sets and rule variants that apply to the same poor pattern. The different rule sets rep-
resent alternative choices for good patterns or alternative implementations of one pattern. The
FUCABA environment will be able to identify applicable rewrite rules and to execute rules choosen
by the reengineer.

Figure 5: Rewrite rules for the Singleton pattern

v

-the_instance : v*
-_«+»v : T

-v()
+instance() : v*

Singleton
class

access_op

storage

+v : TSingleton
poor

definition

rule 1

v

...

m( ... )

+v : T

rule 1.1*

v.m( ... )

v

...

m( ... )

+v : T

v.m( ... )

return _«+»v.m( ... );

v

...

m( ... )

+v : T

rule 1.1.1*

v.m( ... )

v

...

m( ... )

+v : T

(v::instance()->m( ... ))
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5 Conclusions

This paper proposes a semi-automatic tool support for reengineering OO legacy systems by rewriting
poor design patterns by good design patterns. The code analysis and reverse engineering phase is sup-
ported by GFRNs (Generic Fuzzy Reasoning Nets) offering a general means for dealing with uncer-
tain, inconsistent and incomplete reengineering knowledge. The forward engineering task is
supported by a knowledge base of design pattern rewrite rules that specify on a design level how poor
code should be replaced by a well designed implementation.

The reverse and the forward engineering tasks are attacked using very high level, graphical specifica-
tion languages. The authors have a strong background in the definition and implementation of such
graphical specification languages. Jens Jahnke is developing and implementing the GFRNs as a gen-
eral means for complex (program) analysis and reverse engineering tasks as a major part of his PhD
thesis. Albert Zündorf partly developed and fully implemented a general purpose pattern rewrite lan-
guage called PROGRES [Schürr91] during his PhD thesis [Zündorf96]. Using this experiences he is
going to realize the design pattern rewriting approach as part of his postdoctoral qualification.
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