
Understanding class hierarchies with KABA

M. Streckenbach, G. Snelting

Universit�at Passau

Abstract

KABA is a prototype implementation of the Snelting/Tip analysis [2, 3] for JAVA. KABA

combines data
ow analysis, type inference and concept lattices in order to perform a �ne-

grained analysis of member-access patterns in a class hierarchy together with a given set of

applications. KABA computes a transformed hierarchy which is guaranteed to be 1. oper-

ationally equivalent, 2. maximally factorized, 3. minimal. The new hierarchy in particular

makes obvious which classes can be splitted and which cannot; which inheritance relations

must be retained and which can be discarded. The paper presents several case studies on

medium-sized JAVA programs.

1 Overview

We present the �rst case studies of a new method for analyzing the usage of a class hierarchy.

This method { which was introduced in [2] and is described in more detail in [3] { provides a

�ne-grained analysis of member access patterns, and enables semantics-preserving reengineering

transformations. Our method can analyze a class hierarchy along with any number of programs

that use it, and provide the user with a combined view re
ecting the usage of the hierarchy by

the entire set of programs.

The method provides amazing insight into the de-facto behaviour of a hierarchy. It consists of

the following steps:

1. Points-to analysis determines for every pointer a conservative (and sharp) approximation of

the object set it may point to at runtime; this is used to approximate dynamic binding.

2. type constraints essential for program behaviour are extracted from the source text.

3. all member accesses (that is, the conservative [and sharp] approximation of their runtime

behaviour) are extracted.

4. the type constraints are applied, and �nally a concept lattice is computed.

The lattice can be interpreted as a new class hierarchy which is guaranteed to be operationally

equivalent to the old one, but minimal and maximally factorized. In this workshop paper we will

not explain the underlying theory; the interested reader is referred to [1] for a general overview

of concept lattices in software technology, and to [2, 3, 5, 6] for the theoretical background of our

analysis and its extensions for JAVA and C++. We will however present several case studies we

performed with KABA1, a prototype implementation of the analysis for JAVA. Our examples are

JAVA programs of up to 15,000 LOC, and while some turned out to be reasonably structured,

KABA revealed high reengineering potential for others.

1.1 A small example

Let us begin with a small example in order to illustrate the method. Figure 1(a) shows a small

class hierarchy, in which a class Person is de�ned that contains a person's name, address, and

1KABA = KlassenAnalyse mit Begri�sAnalyse (class analysis via concept analysis). KABA is also a popular

chocolate drink in Germany.

1



class String f /* details omitted */ g;
class Address f /* details omitted */ g;
enum Faculty f Mathematics, ComputerScience g;
class Professor; /* forward declaration */

class Person f
public:

String name;

Address address;

long socialSecurityNumber;

g;

class Student : public Person f
public:

Student(String sn, Address sa, int si)f
name = sn; address = sa; studentId = si;

g;
void setAdvisor(Professor *p)f

advisor = p;

g;
long studentId;

Professor *advisor;

g;
class Professor : public Person f
public:

Professor(String n, Faculty f, Address wa)f
name = n; faculty = f;

workAddress = wa;

assistant = 0; /* default: no assistant */

g;
void hireAssistant (Student *s)f

assistant = s;

g;
Faculty faculty;

Address workAddress;

Student *assistant; /* either 0 or 1 assistants */

g;

(a)

int main()f
String s1name, p1name;

Address s1addr, p1addr;

Student* s1 = /* Student1 */

new Student(s1name,s1addr,12345678);

Professor *p1 = /* Professor1 */

new Professor(p1name,Mathematics,p1addr);

s1->setAdvisor(p1);

return 0;

g

(b)

int main()f
String s2name, p2name;

Address s2addr, p2addr;

Student* s2 = /* Student2 */

new Student(s2name,s2addr,87654321);

Professor *p2 = /* Professor2 */

new Professor(p2name, ComputerScience, p2addr);

p2->hireAssistant(s2);

return 0;

g

(c)

Figure 1: Example: relationships between students and professors. (a) Class hierarchy for express-

ing associations between students and professors. (b) Example program using the class hierarchy

of Figure 1(a). (c) Another example program using the class hierarchy of Figure 1(a).

socialSecurityNumber. Classes Student and Professor are derived from Person. Students

have an identi�cation number (studentId), and a thesis advisor if they are graduate students.

A constructor is provided for initializing Students, and a method setAdvisor for designating a

Professor as an advisor. Professors have a faculty and a workAddress, and a professor may

hire a student as a teaching assistant. A constructor is provided for initialization, and a method

hireAssistant for hiring a Student as an assistant. Details for classes Address and String are

not provided; in the subsequent analysis these classes will be treated as \atomic" types.

Figure 1(b) and (c) show two programs that use the class hierarchy of Figure 1(a). In the

�rst program, a student and a professor are created, and the professor is made the student's

advisor. The second program creates another student and professor, and here the student is made

the professor's assistant. The example is certainly not perfect C++ code, but looks reasonable

enough at �rst glance.

Figure 2 shows the lattice computed by our method for the class hierarchy and the two example

programs of Figure 1. Ignoring a number of details, the lattice may be interpreted as follows:

� The lattice elements (concepts) may be viewed as classes of a restructured class hierarchy

that precisely re
ects the usage of the original class hierarchy by the client programs.

� The ordering between lattice elements may be viewed as inheritance relationships in the

restructured class hierarchy.

� A variable v has type C in the restructured class hierarchy if v occurs immediately below

concept C in the lattice.

2



Student::advisor Person::name

Professor::assistant Student::advisor p s p1 s2

Student2

Student::Student()
Student::studentId
Person::address

Professor::Professor()
Professor::workAddress

Professor::faculty
s1

Professor1

Professor::assistant

Person::socialSecurityNumber

p2

Professor::hireAssistant()

Student1 Professor2

Student::setAdvisor()

Figure 2: Lattice for Student/Professor example.

� A member m occurs in class C if m appears directly above concept C in the lattice.

Examining the lattice of Figure 2 according to this interpretation reveals the following inter-

esting facts2:

� Data member Person::socialSecurityNumber is never accessed (i.e. dead), because no

variable appears below it. This illustrates situations where subclassing is used to inherit the

functionality of a class, but where some of that functionality is not used.

� Data member Person::address is only used by students, and not by professors (for pro-

fessors, the data member Professor::workAddress is used instead, perhaps because their

home address is con�dential information). This illustrates a situation where the member of

a base class is used in some, but not all derived classes.

� No members are accessed from parameters s and p, and from data members advisor and

assistant. This is due to the fact that no operations are performed on a student's advisor, or

on a professor's assistant. Such situations are typical of redundant, incomplete, or erroneous

code and should be examined closely.

� The analyzed programs create professors who hire assistants (Professor2), and professors

who do not hire assistants (Professor1). This can be seen from the fact that method

Professor::hireAssistant() appears above the concept labeled Professor2, but not

above the concept labeled Professor1.

� There are students with advisors (Student1) and students without advisors (Student2).

This can be seen from the fact that data member Student::setAdvisor appears above the

concept labeled Student1, but not above the concept labeled Student2.

� Class Student's constructor does not initialize the advisor data member. This can be seen

from the fact that attribute Student::advisor does not appear above attribute Student::Student()

in the lattice3.

One can easily imagine how the above information might be used as the basis for restructuring

the class hierarchy. First of all, the lattice provides detailed insight into the de-facto behaviour of

the hierarchy: due to the principle of conservative approximation, it is guaranteed that a variable

will not access a member if it does not appear below the member in the lattice. Furthermore, the

lattice is maximally factorized (in particular, common attributes are factored out in superclasses)

and minimal (it is the smallest lattice which is operationally equivalent and maximally factorized).

2The labels Student1, Professor1, Student2, and Professor2 that appear in the lattice represent the types of

the heap objects created by the example programs at various program points (indicated in Figures 1(b) and (c)

using comments).
3Student::Student() also represents the this-pointer of the method.

3



One possibility would thus be a tool to automatically generate restructured source code from the

information provided by the lattice, similar to the approach taken in [5, 6].

However, from a redesign perspective, we believe that an interactive approach would be more

appropriate in order to improve software-technological criteria such as high cohesion, low coupling,

and long-term stability. For example, the programmer doing the restructuring job may decide that

the data member socialSecurityNumber should be retained in the class hierarchy because it may

be needed later. In the interactive tool we envision, one could indicate this by moving up in the

lattice the attribute under consideration, socialSecurityNumber. The programmer may also

decide that certain �ne distinctions in the lattice are unnecessary. For example, one may decide

that it is not necessary to distinguish between professors that hire assistants, and professors that

don't. In an interactive tool, this distinction could be removed by merging the concepts for

Professor1 and Professor2.

2 Case studies

2.1 jEdit

Our �rst example is \jEdit", a text editor with useful features like syntax coloring and regular

expression search (about 12000 LOC including JavaDoc documentation)4. Figure 3 shows the orig-

inal hierarchy of all classes shipped with \jEdit". Five separate subsystems are visible, concerned

with { from top to bottom { input modes, editor commands, editor modes, regular expressions,

and syntax highlighting. Several singleton classes without any inheritance relationship provide

basic and auxiliary functionality. All original subhierarchies are very 
at.

The lattice calculated by KABA (�gure 4) consists of several independent substructures, which

correspond to the subsystems from the original hierarchy. Most of the original singleton classes,

as well as the \input mode" subsystem, exactly reproduce in the right hand part of the lattice,

showing no reengineering potential. Note also that three subsystems (\editor commands", \editor

modes", \syntax highlighting") are based on dynamic typing: the classes of their objects are

computed at runtime. These subsystems therefore do not reappear in �gure 4.5

One single class however has become a diamond (�gure 5). Hence KABA demonstrates that

this class can be split up into several classes, because only the objects below the diamond's bottom

node need access to all members of the original class.

Most interesting however is the leftmost part of the lattice: the \regular expressions" subsystem

has become a complex structure, exposing lots of details about the use of the original classes (�gure

6). Some subclasses of the original base class \REToken" are just reproduced by KABA (e.g.

\RETokenBackRef", \RETokenEnd" at \RETokenRange" on the right side of �gure 6). But the

original subclass \RE" has been distributed to many di�erent nodes (left hand side of �gure 6);

most of them representing non-abstract classes. Thus the lattice presents an optimal splitting and

4version 1.2�nal, available from http://www.gjt.org/~sp/jedit.html
5None of the available analysis methods for statically typed languages can handle dynamic typing. Some rely on

additional user information, while other reengineeering tools { including KABA { just leave such code unchanged.

Figure 3: Original class hierarchy for \jEdit" program

4



Figure 4: Lattice for \jEdit"

Figure 5: Details for \jEdit": nodes for original \RESyntax" class

factoring for the original subclass \RE", which is guaranteed to be operationally equivalent. Note

that the reengineer might merge some of the class proposals again, due to cohesion and coupling

considerations. KABA will prohibit merges which might corrupt operational equivalence.

2.2 JAS

The second example is \JAS", a java bytecode assembler, including a Scheme-like scripting lan-

guage (about 5400 LOC)6. Its original class hierarchy is shown in �gure 7. Among various single

classes and three small inheritance trees it shows a huge structure with more than 50 classes at

the top. These classes are part of the scripting language implementation. The top class is \Obj"

and all but 4 classes derived from \Obj" additionally implement an interface \Procedure". Each

of these classes represents a function like \Add" or \Sub" in the scripting language.

In the KABA lattice (�gure 8) this huge structure is reproduced basically unmodi�ed (the �gure

does not show the whole lattice), demonstrating the original design was good. More interesting in

this example is one of the small trees, namely the one with base class \Insn". The leftmost part

in the lattice contains \Insn" and its original subclasses (�gure 9). All but one subclass of \Insn"

contained only a di�erent constructor, and these subclasses are reproduced identically.

The rightmost node however contains all members of the original subclass \Label". This new

class is di�erent from the others, because it does not use the methods \Insn.size" and \Insn.write"

like all other subclasses. A closer look reveals that these classes are all dealing with the repre-

sentation of certain bytecode instructions, but \Label" is about bytecode addressing. The imple-

mentations of \size" and \write" in \Label" do not contain any code, so they can be considered

amputated. An even closer look reveals that the \resolv" function does not execute any useful

6version 0.4, available from http://www.sbktech.org/jas.html

5



Figure 6: Details for \jEdit": substructure for \REToken" (not all labels shown)

code when called from a \Label" object. This demonstrates that the original subhierarchy should

be restructured: \Label" does not share any code with the other subclasses, thus it does not need

a common base class with them.

The new classes for subclasses of the \InsnOperand" class show a similar phenomenon (�gure

10). Two classes (\UnsignedByteWideOperand" and \IincOperand" on the left hand side) are

separated from the rest, just like \Label" was. They have own implementations of the method

\writePre�x", while all other subclasses share the same implementation. A look at the source code

reveals that this time the other classes use a dummy implementation of \writePre�x" which has no

functionality; only the separated classes actually have code for \writePre�x". This demonstrates

\writePre�x" can be removed from \InsnOperand" and put into a new class, from which the

separated classes can be derived.

Figure 7: Original class hierarchy for the \JAS" example

6



Figure 8: Lattice for \JAS"

Figure 9: Details for \JAS": substructure for \Insn" (not all labels shown)

2.3 Hanoi

Our last example is a program called \Hanoi". This program is an interactive applet version of

the well-known \Towers of hanoi" problem, shipped with Jax [4]. The original class hierarchy is

shown in �gure 11. The lattice derived with KABA is shown in �gure 12.

The resulting lattice is comparable in size to the original hierarchy. In fact, the structure of

both hierarchies is quite similar, indicating that reengineering potential is quite low. For example,

the GUI class with three di�erent subclasses for di�erent platforms in the left part of �gure 11

replicates exactly in the middle of �gure 12. In some cases however KABA proposes to split

classes: �gure 12 also presents a detail, where a class from the original program has been split into

two subhierarchies; the second of these has again a subclass. A look at the source code reveals

that this proposals makes perfect sense from a software engineering viewpoint.

In the right part of the lattice, the little subhierarchy with three subclasses from �gure 11

becomes a complex sublattice, namely the rightmost substructure in �gure 12. The original

classes use two di�erent constructors, which generates two sub-substructures in the lattice. But

in order to maintain high cohesion, the original classes should not be splitted. Note that much of

the subhierarchy with four subclasses (lower middle in �gure 11) is unused and therefore does not

reappear in �gure 12.

7



Figure 10: Details for \JAS": substructure for \InsnOperand" (not all labels shown)

Figure 11: Original class hierarchy for \Hanoi" program

3 Conclusion

Our analysis is perhaps the most expensive analysis of object-oriented programs available at the

moment. But is is also one of the most powerful methods, due to its unique combination of points-

to analysis, type constraints, and concept lattices. The method includes classic analyses such as

dead members or useless variables as special cases. The structure theory of concept lattices (not

discussed in this paper) provides lattice simpli�cations which preserve operational equivalence,

but increase quality factors such as low coupling and high cohesion.

Our preliminary case studies have indicated the usefulness of the analysis as a basis for reengi-

neering, but the method can also be used for quality assesment during initial development. It

turned out that the JAVA examples we analysed were all reasonably well structured, and of course

Figure 12: \Hanoi" lattice with details

8



the real \market" for the method are big old C++ programs. However the complexity of both the

language and the method itself seem to prohibit an application to C++ right now. We hope that

this situation will change within the next two years.

Acknowledgements. Frank Tip, beeing a co-inventor of the method, provided valuable

suggestions for the case studies. Andreas B�ogeman supported the implementation of KABA. This

work is funded by the Deutsche Forschungsgemeinschaft, grant Sn11/7-1.

References

[1] G. Snelting. Concept analysis { a new framework for program understanding. In Proc. ACM

SIGPLAN/SIGSOFT Workshop on Program Analysis for Software Tools and Engineering

(PASTE), pages 1{10, Montreal, Canada, June 1998. ACM SIGPLAN Notices 33(7).

[2] G. Snelting and F. Tip. Reengineering class hierarchies using concept analysis. In Proc. ACM

SIGSOFT Symposium on the Foundations of Software Engineering, pages 99{110, Orlando,

FL, November 1998.

[3] G. Snelting and F. Tip. Reengineering of class hierarchies using concept analysis. Submitted

for publication, 1999.

[4] F. Tip, C. La�ra, P. F. Sweeney, and D. Streeter. Size matters: reducing the size of java class

�le archives. In Proc. OOPSLA '99, 1999. to appear.

[5] F. Tip and P. Sweeney. Class hierarchy specialization. In Proceedings of the Twelfth Annual

Conference on Object-Oriented Programming Systems, Languages, and Applications (OOP-

SLA'97), pages 271{285, Atlanta, GA, 1997. ACM SIGPLAN Notices 32(10).

[6] F. Tip and P. F. Sweeney. Class hierarchy specialization. Technical Report RC21111, IBM

T.J. Watson Research Center, February 1998. Submitted for publication.

9


