
Extracting Reusable Software Architectures:

A Slicing-Based Approach

Jianjun Zhao
Department of Computer Science and Engineering

Fukuoka Institute of Technology
3-10-1 Wajiro-Higashi, Higashi-ku, Fukuoka 811-0295, Japan

Email: zhao@cs.�t.ac.jp

Abstract

An alternative approach to developing reusable com-
ponents from scratch is to recover them from existing
systems. Although numerous techniques have been pro-
posed to recover reusable components from existing sys-
tems, most have focused on implementation code, rather
than software architecture. In this paper, we apply ar-
chitectural slicing to extract reusable architectures from
existing architectural speci�cations. Architectural slic-
ing is designed to operate on the architectural speci�ca-
tion of a software system to provide knowledge about the
high-level structure of a software system, rather than the
traditional program slicing which is designed to operate
on the source code of a program to provide the low-level
implementation details of a program.

1 Introduction

Software architecture is receiving increasingly atten-
tion as a critical design level for software systems [17].
The software architecture of a system de�nes its high-
level structure, exposing its gross organization as a col-
lection of interacting components. A well-de�ned ar-
chitecture allows an engineer to reason about system
properties at a high level of abstraction. Architectural
description languages (ADLs) are formal languages that
can be used to represent the architecture of a software
system. They focus on the high-level structure of the
overall application rather than the implementation de-
tails of any speci�c source module. Recently, a number
of architectural description languages have been pro-
posed such as Wright[1], Rapide [12], UniCon [16], and
ACME [7] to support formal representation and reason-
ing of software architectures. As software architecture
design resources (in the form of architectural speci�ca-
tions) are going to be accumulated, the development of
techniques to support software reuse at the architectural
level will become an important issue.

One way to support software reuse is to use slicing
technique. Program slicing, originally introduced by
Weiser [19], is a decomposition technique which extracts
program elements related to a particular computation.
A program slice consists of those parts of a program
that may directly or indirectly a�ect the values com-
puted at some program point of interest, referred to as

a slicing criterion. The task to compute program slices
is called program slicing. To understand the basic idea
of program slicing, consider a simple example in Fig-
ure 1 which shows: (a) a program fragment and (b) its
slice with respect to the slice criterion (Total,14). The
slice consists of only those statements in the program
that might a�ect the value of variable Total at line 14.
The lines represented by small rectangles are statements
that have been sliced away.

Traditional slicing has been studied primarily in the
context of conventional programming languages. In
such languages, slicing is typically performed by using
a control ow graph or a dependence graph [5, 15, 20].
Traditional slicing has many applications in software
engineering activities including program understanding
[4], debugging, testing, maintenance [6], reuse [3, 11], re-
verse engineering [2], and complexity measurement [15].

However, existing slicing-based approaches to ex-
tract reusable components from existing software sys-
tems have mainly focused on the statement level [3, 11],
rather than the architectural level. We believe that ap-
plying slicing technique to support system reuse at the
architectural level promises bene�t for software archi-
tectural reuse, because while reuse of code is important,
in order to make truly large gains in productivity and
quality, reuse of software designs and patterns may of-
fer the greater potential for return on investment. By
slicing a software architecture, a system designer can
extract reusable architectures from it, and reuse them
into new system designs for which they are appropriate.

In this paper, we apply architectural slicing to extract
reusable architectures from existing architectural speci-
�cations. Abstractly, our architectural slicing algorithm
takes as input a formal architectural speci�cation (writ-
ten in its associated architectural description language)
of a software system, then it removes from the speci�-
cation those components and interconnections between
components which are not interested by the architect.
The rest of the speci�cation, i.e., its architectural slice,
can thus be used by the architect in a new system archi-
tecture design. This bene�t allows one to rapidly reuse
existing architecture design resources when performed
architecture design.

The primary idea of architectural slicing technique

 1 begin
 2 read(X,Y);
 3 Total := 0.0;
 4 Sum := 0.0;
 5 if X <= 1 then
 6 Sum := Y;
 7 else
 8 begin
 9 read(Z);
10 Total := X * Y;
11 end;
12 end if
13 Write(Total, sum);
14 end

 1 begin
 2 read(X,Y);
 3 Total := 0.0;
 4
 5 if X <= 1 then
 6
 7 else
 8 begin
 9
10 Total := X * Y;
11 end;
12 end if
13
14 end

(a) A program fragment.

(b) a slice of (a) on the criterion (Total,14).

Figure 1: A program fragment and its slice on criterion
(Total,14).

has been presented in [20, 21], and this article can be re-
garded as an outgrowth of our previous work for apply-
ing this technique to software architectural reuse. More-
over, the goal of this paper is to provide a sound and
formal basis to our slicing-based architectural extraction
approach before applying it to real software architecture
design.

The rest of the paper is organized as follows. Section
2 briey introduces how to represent a software archi-
tecture using Wright: an architectural description lan-
guage. Section 3 shows a motivation example. Section
4 de�nes some notions about slicing software architec-
tures. Section 5 presents the architecture information
ow graph for software architectures . Section 6 gives
a two-phase algorithm for computing an architectural
slice. Concluding remarks are given in Section 7.

2 Software Architectural Speci�cation
in Wright

We assume that readers are familiar with the basic
concepts of software architecture and architectural de-
scription language, and in this paper, we use Wright

architectural description language [1] as our target lan-

Customer1

Customer2

cashier pump
cashier_pump

Customer2_
pump

Customer2_
cashier

Customer1_
pump

Customer1_
cashier

Figure 3: The architecture of the Gas Station system.

guage for formally representing software architectures.
The selection of Wright is based on that it supports to
represent not only the architectural structure but also
the architectural behavior of a software architecture.

Below, we use a simple Wright architectural speci-
�cation taken from [14] as a sample to briey introduce
how to use Wright to represent a software architecture.
The speci�cation is showed in Figure 2 which models the
system architecture of a Gas Station system [9].

2.1 Representing Architectural Structure

Wright uses a con�guration to describe architec-
tural structure as graph of components and connectors.

Components are computation units in the system. In
Wright, each component has an interface de�ned by a
set of ports. Each port identi�es a point of interaction
between the component and its environment.

Connectors are patterns of interaction between com-
ponents. In Wright, each connector has an interface
de�ned by a set of roles. Each role de�nes a participant
of the interaction represented by the connector.

A Wright architectural speci�cation of a system is
de�ned by a set of component and connector type de�ni-
tions, a set of instantiations of speci�c objects of these
types, and a set of attachments. Attachments specify
which components are linked to which connectors.

For example, in Figure 2 there are three compo-
nent type de�nitions, Customer, Cashier and Pump, and
three connector type de�nitions, Customer_Cashier,
Customer_Pump and Cashier_Pump. The con�guration
is composed of a set of instances and a set of attach-
ments to specify the architectural structure of the sys-
tem.

2.2 Representing Architectural Behavior

Wright models architectural behavior according to
the signi�cant events that take place in the computa-
tion of components, and the interactions between com-
ponents as described by the connectors. The notation
for specifying event-based behavior is adapted from CSP

Con�guration GasStation
Component Customer

Port Pay = pay!x! Pay
Port Gas = take ! pump?x ! Gas
Computation = Pay.pay!x! Gas.take ! Gas.pump?x ! Computation

Component Cashier
Port Customer1 = pay?x ! Customer1
Port Customer2 = pay?x ! Customer2
Port Topump = pump!x ! Topump
Computation = Customer1.pay?x ! Topump.pump!x! Computation

[] Customer2.pay?x! Topump.pump!x ! Computation
Component Pump

Port Oil1 = take ! pump!x ! Oil1
Port Oil2 = take ! pump!x ! Oil2
Port Fromcashier = pump?x ! Fromcashier
Computation = Fromcashier.pump?x!

(Oil1.take ! Oil1.pump!x ! Computation)

[] (Oil2.take! Oil2.pump!x ! Computation)
Connector Customer Cashier

Role Givemoney = pay!x ! Givemoney
Role Getmoney = pay?x ! Getmoney
Glue = Givemoney.pay?x ! Getmoney.pay!x ! Glue

Connector Customer Pump
Role Getoil = take ! pump?x ! Getoil
Role Giveoil = take! pump!x ! Giveoil
Glue = Getoil.take ! Giveoil.take ! Giveoil.pump?x! Getoil.pump!x ! Glue

Connector Cashier Pump
Role Tell = pump!x ! Tell
Role Know = pump?x ! Know
Glue = Tell.pump?x! Know.pump!x ! Glue

Instances
Customer1: Customer
Customer2: Customer
cashier: Cashier
pump: Pump
Customer1 cashier: Customer Cashier
Customer2 cashier: Customer Cashier
Customer1 pump: Customer Pump
Customer2 pump: Customer Pump
cashier pump: Cashier Pump

Attachments
Customer1.Pay as Customer1 cashier.Givemoney
Customer1.Gas as Customer1 pump.Getoil
Customer2.Pay as Customer2 cashier.Givemoney
Customer2.Gas as Customer2 pump.Getoil
casier.Customer1 as Customer1 cashier.Getmoney
casier.Customer2 as Customer2 cashier.Getmoney
cashier.Topump as cashier pump.Tell
pump.Fromcashier as cashier pump.Know
pump.Oil1 as Customer1 pump.Giveoil
pump.Oil2 as Customer2 pump.Giveoil

End GasStation.

Figure 2: An architectural speci�cation in Wright.

[8]. Each CSP process de�nes an alphabet of events and
the permitted patterns of events that the process may
exhibit. These processes synchronize on common events
(i.e., interact) when composed in parallel. Wright uses
such process descriptions to describe the behavior of
ports, roles, computations and glues.

A computation speci�cation speci�es a component's
behavior: the way in which it accepts certain events on
certain ports and produces new events on those or other
ports. Moreover, Wright uses an overbar to distin-
guish initiated events from observed events �. For ex-
ample, the Customer initiates Pay action (i.e., pay!x)

�In this paper, we use an underbar to represent an ini-

tiated event instead of an overbar that used in the original

Wright language de�nition [1].

while the Cashier observes it (i.e., pay?x).

A port speci�cation speci�es the local protocol with
which the component interacts with its environment
through that port.

A role speci�cation speci�es the protocol that must
be satis�ed by any port that is attached to that role.
Generally, a port need no have the same behavior as the
role that it �lls, but may choose to use only a subset of
the connector capabilities. For example, the Customer

role Gas and the Customer_Pump port Getoil are iden-
tical.

A glue speci�cation speci�es how the roles of a
connector interact with each other. For example, a
Cashier_Pump tell (Tell.pump?x) must be transmitted
to the Cashier_Pump know (Know.pump!x).

As a result, based on formal Wright architectural

speci�cations, we can infer which ports of a component
are input ports and which are output ports. Also, we
can infer which roles are input roles and which are out-
put roles. Moreover, the direction in which the infor-
mation transfers between ports and/or roles can also
be inferred based on the formal speci�cation. As we
will show in Section 5, such kinds of information can be
used to construct the information ow graph for a soft-
ware architecture for computing an architectural slice
e�ciently.

In this paper we assume that a software architec-
ture be represented by a formal architectural speci�ca-
tion which contains three basic types of design entities,
namely, components whose interfaces are de�ned by a
set of elements called ports, connectors whose interfaces
are de�ned by a set of elements called roles and the
con�guration whose topology is declared by a set of ele-
ments called instances and attachments. Moreover, each
component has a special element called computation and
each connector has a special element called glue as we
described above.

In the rest of the paper, we assume that an architec-
tural speci�cation P be denoted by (Cm; Cn; cg) where:

� Cm is the set of components in P ,

� Cn is the set of connectors in P , and

� cg is the con�guration of P .

3 Motivation Example
We present a simple example to explain our approach

on how to apply architectural slicing to extract reusable
architectures from an existing architectural speci�ca-
tion.

Consider the Gas Station system whose architectural
representation is shown in Figure 3, and Wright speci-
�cation is shown in Figure 2. During the design process,
suppose a system architect wants to use existing design
resources to design a new system' architecture. Suppose
the architect has the source code of architectural speci-
�cation of the LAS system, the architect wants to reuse
the source. However, instead of reusing the whole speci-
�cation, the architect wishes to use only a partial speci-
�cation, that is, a functionality which is concerned with
the component cashier. A common way is to manually
check the source code of the speci�cation to �nd such
information. However, it is very time-consuming and
error-prone even for a small size speci�cation because
there may be complex dependence relations between
components in the speci�cation. If the architect has
an architectural slicer at hand, the work may probably
be simpli�ed and automated without the disadvantages
mentioned above. In such a scenario, an architectural
slicer is invoked, which takes as input: (1) a complete
architectural speci�cation of the system, and (2) a set
of ports of the component cashier, i.e., Customer1,
Customer2 and Topump (this is an architectural slic-
ing criterion). The slicer then computes a backward
and forward architectural slice respectively with respect

to the criterion and outputs them to the architect. A
backward architectural slice is a partial speci�cation of
the original one which includes those components and
connectors that might a�ect the component cashier

through the ports in the criterion, and a forward archi-
tectural slice is a partial speci�cation of the original one
which includes those components and connectors that
might be a�ected by the component cashier through
the ports in the criterion. The other parts of the speci�-
cation that might not a�ect or be a�ected by the compo-
nent cashier will be removed, i.e., sliced away from the
original speci�cation. The architect can thus reuse the
partial architectural speci�cation in the new system's
architecture design.

4 Extraction Criteria
In this section, we give basic de�nitions for extracting

architectural slices.
Intuitively, an architectural slice may be viewed as a

subset of the behavior of a software architecture, simi-
lar to the original notion of the traditional static slice.
However, while a traditional slice intends to isolate the
behavior of a speci�ed set of program variables, an ar-
chitectural slice intends to isolate the behavior of a spec-
i�ed set of a component or connector's elements. Given
an architectural speci�cation P = (Cm; Cn; cg), our goal
is to compute an architectural slice Sp = (C 0

m; C
0

n; c
0

g)
which should be a \sub-architecture" of P and preserve
partially the semantics of P . To de�ne the meanings of
the word \sub-architecture," we introduce the concepts
of a reduced component, connector and con�guration.

De�nition 4.1 Let P = (Cm; Cn; cg) be an architec-
tural speci�cation and cm 2 Cm, cn 2 Cn, and cg be
a component, connector, and con�guration of P respec-
tively:

� A reduced component of cm is a component c0m that
is derived from cm by removing zero, or more ele-
ments from cm.

� A reduced connector of cn is a connector c0n that is
derived from cn by removing zero, or more elements
from cn.

� A reduced con�guration of cg is a con�guration c0g
that is derived from cg by removing zero, or more
elements from cg.

The above de�nition showed that a reduced compo-
nent, connector, or con�guration of a component, con-
nector, or con�guration may equal itself in the case that
none of its elements has been removed, or an empty com-
ponent, connector, or con�guration in the case that all
its elements have been removed.

Having the de�nitions of a reduced component, con-
nector and con�guration, we can de�ne the meaning of
the word \sub-architecture".

De�nition 4.2 Let P = (Cm; Cn; cg) and P 0 =
(C 0

m; C 0

n; c
0

g) be two architectural speci�cations. Then
P 0 is a reduced architectural speci�cation of P if:

� C0

m = fc0m1
; c0m2

; : : : ; c0mk
g is a \subset" of Cm =

fcm1
; cm2

; : : : ; cmk
g such that for i = 1; 2; : : : ; k,

c0mi
is a reduced component of cmi

,

� C0

n = fc0n1 ; c
0

n2
; : : : ; c0nkg is a \subset" of Cn =

fcn1 ; cn2 ; : : : ; cnkg such that for i = 1; 2; : : : ; k, c0ni
is a reduced connector of cni ,

� c0g is a reduced con�guration of cg,

Having the de�nition of a reduced architectural spec-
i�cation, we can de�ne some notions about slicing soft-
ware architectures.

In a Wright architectural speci�cation, for exam-
ple, a component's interface is de�ned to be a set of
ports which identify the form of the component inter-
acting with its environment, and a connector's interface
is de�ned to be a set of roles which identify the form of
the connector interacting with its environment. To un-
derstand how a component interacts with other compo-
nents and connectors for extracting architectural slices,
an architect must examine each port of the component
of interest and each role of the connector. To satisfy
these requirements, we can de�ne a slicing criterion for
a Wright architectural speci�cation as a set of ports of
a component or a set of roles of a connector of interest.

De�nition 4.3 Let P = (Cm; Cn; cg) be an architec-
tural speci�cation. A slicing criterion for P is a pair
(c;E) such that:

1. c 2 Cm and E is a set of elements of c, or

2. c 2 Cn and E is a set of elements of c.

Note that the selection of a slicing criterion depends
on architects' interests on what they want to examine.
If they are interested in examining a component in an
architectural speci�cation, they may use slicing criterion
1. If they are interested in examining a connector, they
may use slicing criterion 2. Moreover, the determination
of the set E also depends on architects' interests on
what they want to examine. If they want to examine
a component, then E may be the set of ports or just
a subset of ports of the component. If they want to
examine a connector, then E may be the set of roles or
just a subset of roles of the connector.

De�nition 4.4 Let P = (Cm; Cn; cg) be an architec-
tural speci�cation.

� A backward architectural slice Sbp = (C 0

m; C
0

n; C
0

g)
of P on a given slicing criterion (c;E) is a reduced
architectural speci�cation of P which contains only
those reduced components, connectors, and con�g-
uration that might directly or indirectly a�ect the
behavior of c through elements in E.

� Backward-slicing an architectural speci�cation P

on a given slicing criterion is to �nd the backward
architectural slice of P with respect to the criterion.

De�nition 4.5 Let P = (Cm; Cn; cg) be an architec-
tural speci�cation.

� A forward architectural slice Sfp = (C 0

m; C
0

n; C
0

g)
of P on a given slicing criterion (c;E) is a reduced
architectural speci�cation of P which contains only
those reduced components, connectors, and con�g-
uration that might be directly or indirectly a�ected
by the behavior of c through elements in E.

� Forward-slicing an architectural speci�cation P on
a given slicing criterion is to �nd the forward ar-
chitectural slice of P with respect to the criterion.

From De�nitions 4.4 and 4.5, it is obviously that
there is at least one slice of an architectural speci�cation
that is the speci�cation itself. Moreover, the architec-
ture represented by Sp should be a \sub-architecture"
of the architecture represented by P .

Note that in contrast to de�ne an architectural slice
as a set of components, here we de�ne an architectural
slice as a reduced architectural speci�cation of the orig-
inal one that consists of either components or connec-
tors. Our de�nition of an architectural slice is particu-
larly useful for supporting architectural reuse. By using
an architectural slicer, an architect can automatically
decompose an existing architecture (in the case that its
architectural speci�cation is available) into some small
architectures each having its own functionality which
may be reused in new system designs.

5 The Information Flow Graph for Soft-
ware Architectures

In this section we introduce the architecture infor-
mation ow graph for software architectures on which
architectural slices can be computed e�ciently.

The architecture information ow graph is an arc-
classi�ed digraph whose vertices represent the ports of
components and the roles of the connectors in an archi-
tectural speci�cation, and arcs represent possible infor-
mation ows between components and/or connectors in
the speci�cation.

De�nition 5.1 The Architecture Information Flow
Graph (AIFG) of an architectural speci�cation P is
an arc-classi�ed digraph (Vcom; Vcon; Com; Con; Int),
where Vcom is the set of port vertices of P ; Vcon is the
set of role vertices of P ; Com is the set of component-
connector ow arcs; Con is the set of connector-
component ow arcs; Int is the set of internal ow arcs.

There are three types of information ow arcs in
the AIFG, namely, component-connector ow arcs,
connector-component ow arcs, and internal ow arcs.

Component-connector ow arcs are used to represent
information ows between a port of a component and a
role of a connector in an architectural speci�cation.

Connector-component ow arcs are used to represent
information ows between a role of a connector and a
port of a component in an architectural speci�cation.

Customer1

Customer2

Customer1_
cashier

pv1: Customer1.Pay

pv2: Customer1.Gas

pv3: Customer2.Pay

pv4: Customer2.Gas

pv5: cashier.Customer1

pv6: cashier.Customer2

pv7: cashier.Topump

pv8: pump.Fromcashier

pv9: pump.Oil1

pv10: pump.Oil2

rv1: Customer1_cashier.Givemoney

rv2: Customer1_cashier.Getmoney

rv3: Customer2_cashier.Givemoney

rv4: Customer2_cashier.Getmoney

rv5: cashier_pump.Tell

rv6: cashier_pump.Know

rv7: Customer1_pump.Getoil

rv8: Customer1_pump.Giveoil

rv9: Customer2_pump.Getoil

rv10: Customer2_pump.Giveoil

pv1

pv6

pv5

pv7

pv3

rv1

rv2

rv4

rv3

pv4

pv2

rv5 rv6

pv10

pv9

pv8

rv9

rv10

rv8

rv7

cashier

pump

Customer1_
pump

cashier_
pump

Customer2_
cashier Customer2_

pump

component-connector flow arc

connector-component flow arc

internal flow arc

Figure 4: The information ow graph of the architectural speci�cation in Figure 2.

Internal ow arcs are used to represent internal in-
formation ows within a component or connector in an
architectural speci�cation.

As we introduced in Section 2, Wright uses CSP-
based model to specify the behavior of a component and
a connector of a software architecture. Wright allows
user to infer which ports of a component are input and
which are output, and which roles of a connector are
input and which are output based on a Wright archi-
tectural speci�cation. Moreover, it also allows user to
infer the direction in which the information transfers be-
tween ports and/or roles. As a result, by using a static
analysis tool which takes an architectural speci�cation
as its input, we can construct the AIFG of a Wright

architectural speci�cation automatically.

Figure 4 shows the AIFG of the architectural speci�-
cation in Figure 2. In the �gure, large squares represent
components in the speci�cation, and small squares rep-
resent the ports of each component. Each port vertex
has a name described by component name.port name.
For example, pv5 (cashier.Customer1) is a port ver-
tex that represents the port Customer1 of the compo-
nent cashier. Large circles represent connectors in
the speci�cation, and small circles represent the roles
of each connector. Each role vertex has a name de-
scribed by connector name.role name. For example, rv5
(cashier_pump.Tell) is a role vertex that represents
the role Tell of the connector cashier_pump. The com-
plete speci�cation of each vertex is shown on the right
side of the �gure.

Solid arcs represent component-connector ow arcs
that connect a port of a component to a role of a connec-
tor. Dashed arcs represent connector-component ow
arcs that connect a role of a connector to a port of

a component. Dotted arcs represent internal ow arcs
that connect two ports within a component (from an
input port to an output port), or two roles within a con-
nector (from an input role to an output role). For exam-
ple, (rv2; pv5) and (rv6; pv8) are connector-component
ow arcs. (pv7; rv5) and (pv9; rv8) are component-
connector ow arcs. (rv1; rv2) and (pv8; pv10) are in-
ternal ow arcs.

6 Extracting Reusable Architectures
Roughly speaking, the process of extracting reusable

architectures is how to �nd some architectural slices de-
�ned in this paper. However, the slicing notions de�ned
in Section 4 give us only a general view of an architec-
tural slice, and do not tell us how to compute it. In [21]
we presented a two-phase algorithm to compute a slice
of an architectural speci�cation based on its informa-
tion ow graph. Our algorithm contains two phases: (1)
Computing a slice Sg over the information ow graph
of an architectural speci�cation, and (2) Constructing
an architectural slice Sp from Sg.

6.1 Computing a Slice over the AIFG

Let P = (Cm; Cn; cg) be an architectural speci�ca-
tion and G = (Vcom; Vcon; Com;Con; Int) be the AIFG
of P . To compute a slice over theG, we re�ne the slicing
notions de�ned in Section 4 as follows:

� A slicing criterion for G is a pair (c; Vc) such that:
(1) c 2 Cm and Vc is a set of port vertices corre-
sponding to the ports of c, or (2) c 2 Cn and Vc is
a set of role vertices corresponding to roles of c.

� The slice Sbg(c; Vc) of G on a given slicing criterion
(c; Vc) is a subset of vertices of G such that for any

Customer1

Customer2

Customer1_
cashier

pv1: Customer1.Pay

pv3: Customer2.Pay

pv5: cashier.Customer1

pv6: cashier.Customer2

pv7: cashier.Topump

rv1: Customer1_cashier.Givemoney

rv2: Customer1_cashier.Getmoney

rv3: Customer2_cashier.Givemoney

rv4: Customer2_cashier.Getmoney

pv1

pv6

pv5

pv7

pv3

rv1

rv2

rv4

rv3

cashier

Customer2_
cashier

component-connector flow arc

connector-component flow arc

internal flow arc

Figure 5: A slice over the AIFG of the architectural speci�cation in Figure 2.

vertex v of G, v 2 Sbg(c; Vc) i� there exists a path
from v to v0 2 Vc in the AIFG.

According to the above descriptions, the computa-
tion of a slice over the AIFG can be solved by using
an usual depth-�rst or breath-�rst graph traversal algo-
rithm to traverse the graph by taking some port or role
vertices of interest as the start point of interest.

Figure 5 shows a slice over the AIFG with respect
to the slicing criterion (cashier; Vc) such that Vc =
fpv5; pv6; pv7g.

6.2 Computing an Architectural Slice

The slice Sg computed above is only a slice over the
AIFG of an architectural speci�cation, which is a set
of vertices of the AIFG. Therefore we should map each
element in Sg to the source code of the speci�cation. Let
P = (Cm; Cn; cg) be an architectural speci�cation and
G = (Vcom; Vcon; Com;Con; Int) be the AIFG of P . By
using the concepts of a reduced component, connector,
and con�guration introduced in Section 4, a slice Sp =
(C 0

m;C
0

n; c
0

g) of an architectural speci�cation P can be
constructed in the following steps:

1. Constructing a reduced component c0m from a com-
ponent cm by removing all ports such that their
corresponding port vertices in G have not been in-
cluded in Sg and unnecessary elements in the com-
putation from cm. The reduced components C0

m in
Sp have the same relative order as the components
Cm in P .

2. Constructing a reduced connector c0n from a con-
nector cn by removing all roles such that their cor-
responding role vertices in G have not been in-
cluded in Sg and unnecessary elements in the glue
from cn. The reduced connectors C 0

n in Sp have the

same relative order as their corresponding connec-
tors in P .

3. Constructing the reduced con�guration c0g from the
con�guration cg by the following steps:

{ Removing all component and connector in-
stances from cg that are not included in C 0

m

and C 0

n.

{ Removing all attachments from cg such that
there exists no two vertices v1 and v2 where
v1; v2 2 Sg and v1 as v2 represents an at-
tachment.

{ The instances and attachments in the reduced
con�guration in Sp have the same relative or-
der as their corresponding instances and at-
tachments in P .

Figure 6 shows a slice of the Wright speci�cation in
Figure 2 with respect to the slicing criterion (cashier,
E) such that E=fCustomer1, Customer2, Topumpg is a
set of ports of component cashier. The small rectan-
gles represent the parts of speci�cation that have been
removed, i.e., sliced away from the original speci�ca-
tion. The slice is obtained from a slice over the AIFG
in Figure 5 according to the mapping process described
above.

7 Concluding Remarks
In this paper, we applied architectural slicing to extract
reusable architectures from existing architectural speci-
�cations. Abstractly, our architectural slicing algorithm
takes as input a formal architectural speci�cation (writ-
ten in its associated architectural description language)
of a software system, then it removes from the speci�-
cation those components and interconnections between

Con�guration GasStation
Component Customer

Port Pay = pay!x ! Pay
2222222222222222222222

Computation = Pay.pay!x ! Gas.take ! Gas.pump?x ! Computation
Component Cashier

Port Customer1 = pay?x ! Customer1
Port Customer2 = pay?x ! Customer2
Port Topump = pump!x ! Topump
Computation = Customer1.pay?x! Topump.pump!x ! Computation

[] Customer2.pay?x ! Topump.pump!x! Computation
22222222222222222

2222222222222222222222

2222222222222222222222

22222222222222222222222222

222222222222222222222222222

222222222222222222222222222

222222222222222222222222222

Connector Customer Cashier
Role Givemoney = pay!x ! Givemoney
Role Getmoney = pay?x ! Getmoney
Glue = Givemoney.pay?x! Getmoney.pay!x ! Glue

22222222222222222

22222222222222222222222222

22222222222222222222222222

2222222222222222222222222222222222222

22222222222222222

222222222222222222222

222222222222222222222

222222222222222222222222222

Instances
Customer1: Customer
Customer2: Customer
cashier: Cashier
22222222

Customer1 cashier: Customer Cashier
Customer2 cashier: Customer Cashier
222222222222222222222

222222222222222222222

222222222222222222

Attachments
Customer1.Pay as Customer1 cashier.Givemoney
222222222222222222222222222

Customer2.Pay as Customer2 cashier.Givemoney
222222222222222222222222222

casier.Customer1 as Customer1 cashier.Getmoney
casier.Customer2 as Customer2 cashier.Getmoney
222222222222222222222222

222222222222222222222222222

222222222222222222222222

222222222222222222222222

End GasStation.

Figure 6: A backward slice of the architectural speci�cation in Figure 2.

components which are not interested by the architect.
The rest of the speci�cation, i.e., its architectural slice,
can thus be used by the architect in a new system archi-
tecture design. This bene�t allows one to rapidly reuse
existing architecture design resources when performed
architecture design.

While our initial exploration used Wright as the
architecture description language, the concept and ap-
proach are language-independent. However, the imple-
mentation of an architectural slicing tool may di�er
from one architecture description language to another
because each language has its own structure and syntax
which must be handled carefully.

To demonstrate the usefulness of our slicing ap-
proach, we are implementing a slicer for Wright archi-
tectural descriptions to support architectural-level un-
derstanding and reuse.

References
[1] R. Allen, \A Formal Approach to Software Archi-

tecture," PhD thesis, Department of Computer Sci-
ence, Carnegie Mellon University, 1997.

[2] J. Beck and D. Eichmann, \Program and Interface
Slicing for Reverse Engineering," Proceeding of the
15th International Conference on Software Engi-
neering, pp.509-518, Baltimore, Maryland, IEEE
Computer Society Press, 1993.

[3] G. Canfora, A. Cimitile, A. De Lucia, and G.
A. Di Lucca, \Software Salvaging Based on Con-
ditions," Proceedings of the International Confer-
ence on Software Maintenance, pp.424-433, Victo-
ria, Canada, September 1994.

[4] A. De Lucia, A. R. Fasolino, and M. Munro, \Un-
derstanding function behaviors through program

slicing," Proceedings of the Fourth Workshop on
Program Comprehension, Berlin, Germany, March
1996.

[5] J.Ferrante, K.J.Ottenstein, and J.D.Warren, \The
Program Dependence Graph and Its Use in Op-
timization," ACM Transaction on Programming
Language and System, Vol.9, No.3, pp.319-349,
1987.

[6] K. B. Gallagher and J. R. Lyle, \Using Program
Slicing in Software Maintenance," IEEE Transac-
tion on Software Engineering, Vol.17, No.8, pp.751-
761, 1991.

[7] D. Garlan, R. Monroe, and D. Wile, \ACME: An
Architecture Description Interchange Language,"
Proceedings of CASCON'97, November 1997.

[8] C.A.R. Hoare, \Communicating Sequential Pro-
cesses," Prentice Hall, 1985.

[9] D. Helmbold and D. Luckham, \Debugging Ada
Tasking Programs," IEEE Software, Vol.2, No.2,
pp.47-57, 1985.

[10] S. Horwitz, T. Reps, and D. Binkley, \Interpro-
cedural Slicing Using Dependence Graphs," ACM
Transaction on Programming Language and Sys-
tem, Vol.12, No.1, pp.26-60, 1990.

[11] F. Lanubile and G. Visaggio, \Extracting Reusable
Functions By Flow Graph-Based Program Slic-
ing," IEEE Transaction on Software Engineering,
Vol.23, No.4, pp.246-259, April 1997.

[12] D. C. Luckham, L. M. Augustin, J. J. Ken-
ney, J. Veera, D. Bryan, and W. Mann, \Spec-
i�cation Analysis of System Architecture Using
Rapide," IEEE Transaction on Software Engineer-
ing, Vol.21, No.4, pp.336-355, April 1995.

[13] R. T. Monroe and D. Garlan, \Style-Based Reuse
for Software Architectures," Proc. 4th Interna-
tional Conference on Software Reuse, pp., 1996.

[14] G. Naumovich, G.S. Avrunin, L.A. Clarke, and
L.J.Osterweil, \Applying Static Analysis to Soft-
ware Architectures," Proceedings of the Sixth Eu-
ropean Software Engineering Conference, LNCS,
Vol.1301, pp.77-93, Springer-Verlag, 1997.

[15] K. J. Ottenstein and L. M. Ottenstein, \The Pro-
gram Dependence Graph in a software Develop-
ment Environment," ACM Software Engineering
Notes, Vol.9, No.3, pp.177-184, 1984.

[16] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M.
Young, and G. Zelesnik, \Abstractions for Software
Architecture and Tools to Support Them," IEEE
Transaction on Software Engineering, Vol.21, No.4,
pp.314-335, April 1995.

[17] M. Shaw and D. Garlan, \Software Architecture:
Perspective on an Emerging Discipline," Prentice
Hall, 1996.

[18] F. Tip, \A Survey of Program Slicing Techniques,"
Journal of Programming Languages, Vol.3, No.3,
pp.121-189, September, 1995.

[19] M. Weiser, \Program Slices: Formal, Psychologi-
cal, and Practical Investigations of an Automatic
Program Abstraction Method," PhD thesis, Uni-
versity of Michigan, Ann Arbor, 1979.

[20] J. Zhao, \Using Dependence Analysis to Sup-
port Software Architecture Understanding," in M.
Li (Ed.), New Technologies on Computer Soft-
ware, pp.135-142, International Academic Publish-
ers, September 1997.

[21] J. Zhao, \Applying Slicing Technique to Software
Architectures," Proc. Fourth IEEE International
Conference on Engineering of Complex Computer
Systems, pp.87-98, August 1998.

