
Object-Model Driven Abstraction-to-Code

Mapping

Harald Gall and Johannes Weidl

Technical University of Vienna
Distributed Systems Group

Argentinierstrasse 8/184-1

A-1040 Vienna, Austria, Europe

fgall, weidlg@infosys.tuwien.ac.at

Abstract

In object-oriented re-architecting, we face the problem of improving the main-

tainability of procedural source code to facilitate software evolution. We do

this by transforming the procedural code into an object-structure employing

encapsulation to the legacy data structures and their related procedures. To

handle the concept assignment problem, we established a stepwise abstraction-

to-code mapping via di�erent object models based on criteria such as the kind

of information used in the modeling process, model granularity, and model

abstraction. This mapping is object-model (and thus forward-) driven rather

than source-code (or reverse-) driven and therefore enables the speci�c use

of application and domain knowledge. For that, an object-model driven ap-

proach promises a high-level semantic class structure for an improved software

evolution process. We have applied our approach to a real-world embedded

software system to identify potential objects; several results from the case

study are given in the paper.

1 Introduction

We denote the transformation of procedural software into functionally equiv-

alent object-oriented software as Object-Oriented Re-Architechting (OORA).

Our OORA approach CORET (Capsule Oriented Reverse Engineering Tech-

nique) is based upon our previous work [4, 6] but focuses on the transformation

of C to C++ programs.

Improving the maintainability of a system can extend its life-time consider-

ably and decrease maintenance costs; both are objectives essential for the

success of real-world applications. Furthermore, our OORA approach aims

at generating objects that locate and encapsulate logically interrelated code

1

to improve cohesion and minimize coupling. This facilitates a potential reuse

process.

We clearly state that our approach has limitations especially concerning the

reverse engineering of (sophisticated) inheritance hierarchies together with

polymorphism and strict encapsulation concerning the generation of private

class attributes. However, experience shows that industry is reluctant in re-

implementing existing software systems. We have developed a functionality-

preserving semi-automated transformation process as an alternative.

In re-engineering an existing system written in C, we face the concept assign-

ment problem [1, 2], i.e. the problem of relating source code entities to real-

world and application-domain concepts1. In OORA, we additionally have to

group source code entities to classes representing sound abstractions in the

context of object-orientation. This task is denoted as object identi�cation. In

literature, several approaches to this task can be found, e.g. Liu et al. [8, 9]

or Yeh et al. [12], based on di�erent criteria for the identi�cation.

In our CORET process we use a model-driven rather than a source code-driven

approach to the problem of object identi�cation. We use di�erent object

models (OMs) to represent the application at di�erent levels of abstraction2.

Di�erent sources of information are used for the modeling process, such as de-

sign documentation, requirements, and information from application experts.

The object models are then related to the source code in a mapping step

(`abstraction-to-code mapping') and serve as the basis for the transformation.

Furthermore, the models represent additional system documentation and can

be used in a re-implementation process. Objective of this paper is to show

how object models can be utilized in the OORA process and how they are

related to resolve the abstraction-to-code mapping problem.

In CORET, we use di�erent tools: 1) For the modeling, we use Rational's

ROSE 3; 2) To reverse engineer C code, we use Imagix4D4 as well as our own

parser; 3) The abstraction-to-code mapping process is as well tool-supported.

We will brie
y survey these tools in Section 4.

Our case study is part of a Train Control System that is a real-world em-

bedded software system provided by an industrial partner. The system under

study is one version of a family of systems which are safety-critical and have

strong timing considerations. The software is programmed in two languages

(C, Assembler) and has to run on di�erent development and target environ-

ments. The system controls high speed train movement and realizes precision

stops in metros. The code size is approximately 150K LOC (Lines of Code),

with the software implemented as state automatons as described in the SDL

speci�cations of the system. Time critical parts are implemented in Assem-

bler, while the rest of the software is implemented in C. The source code is

well commented and the software documentation of the studied parts of the

system were available. We will present some examples concerning this soft-

ware system.

1We denote the representation of such concepts as abstractions.
2Currently, we use OMT as modeling notation [11].
3Rational ROSE is a trademark of Rational Software Corp.
4Imagix4D is a trademark of Imagix Corp.

2

The paper is organized as follows: Section 2 introduces the di�erent object

models, Section 3 describes the abstraction-to-code mapping process in detail.

In Section 4, we explain the tools we use. Section 5 gives an outlook to further

work and Section 6 draws some conclusions.

2 The use of object models in CORET

Figure 1 shows a sketch of the CORET tool with its main processes in terms

of a data
ow diagram. First, the source code is parsed (\Analyzing") and

di�erent object models are created (\Modeling"). Then, the binding process is

performed, i.e. the source code entities are associated with their corresponding

classes in a dedicated object model (see Section 2.1). The mapping process

matches the object models to obtain a target object model (see Section 2.4)

that serves as the basis for the system transformation. Finally, the procedural

source code is transformed into object-oriented code. This paper concentrates

on the modeling process with all its object models involved. The detailed

binding (see [5]), mapping, and transforming (see [4, 6]) are beyond the scope

of the paper.

Analyzing

Transforming

MappingModeling

System information

SCp

Database SCoo

time

Binding

AST

SCp … procedural source code
SCoo … object-oriented source code
AST … abstract syntax tree

Figure 1: CORET tool sketch

Application modeling as a goal driven activity establishes no one-to-one cor-

respondence between a given application and `its' application model. For this,

CORET utilizes a set of application models.

The object models used in CORET are grouped by their level of abstraction

compared to the source code (see Figure 2):

1. The binding process is done between the procedural source code and

OMdesign (Section 2.1).

2. The mapping process is done between OMdesign and OMrequirements

(Section 2.2).

3

3. OMrequirements can be used as the basis for creating OMarchitecture, which

is intended to represent the system's `architecture' in terms of high-level

concepts (Section 2.3).

4. OMtarget is the result of the mapping process between OMdesign and

OMrequirements (Section 2.4).

abstraction

procedural source code

OMdesign

OMrequirements

Mapping

Binding

OMarchitecture

OMtarget

Figure 2: The object models in CORET

The models di�er in various aspects: the source of information used for the

modeling; thus, the quality of information used in the modeling process; the

degree of abstraction and the model granularity5; the incorporation of object-

oriented concepts (especially inheritance); the relationship to the legacy sys-

tem to be re-architected and to the target system transformed; the annotations

of the model entities (model entities are basically attributes, methods, classes,

and associations), the task of the object model in the process; the mode of

the model creation (e.g. manually). Each OM can exist in various versions

due to di�erences in e.g. reliability of modeling information, granularity, or

completeness. Each individual model is indexed and denoted as OMi.

We predominantly use the OMT object model [11] and interaction diagrams

of the dynamic model, we currently neglect the functional model (i.e. object-

interaction diagrams, data-
ow diagrams). The functional model has only

little in
uence in the task of abstraction-to-code mapping since this part of

the OORA process concentrates on the static structure of the system rather

than on dynamical aspects such as the exchange and
ow of data. We do

utilize use-cases for re�ning the models. In future, we will switch to UML [3].

Section 2.1 to Section 2.4 describe the CORET object models in detail.

2.1 OMdesign

OMdesign is based on application-speci�c knowledge introduced by design and

implementation related documentation and information given by application

5High granularity means a high degree of detail in the model and vice versa.

4

experts. For this, its abstraction level is low compared to the other models

depicted in Figure 2. Low abstraction means that the model is `close' to the

source code in terms of containing design and implementation related con-

cepts (e.g. `list' as an implementation abstraction of a data container). Fur-

thermore, OMdesign is not modeled strictly applying all the object-oriented

mechanisms available. Since inheritance is not explicitly stated in non-oo

documentation and code, OMdesign usually does not contain inheritance hier-

archies.

The careful and restrictive use of oo modeling mechanisms|especially inheri-

tance|leads to an object model that is structurally highly related to the

source code. OMdesign is an object-oriented view of the procedural system

under study and exhibits the virtual class structure of the system. This vir-

tual class structure originates from understanding the real-world, design, and

implementation concepts of the procedural system as interrelated classes fol-

lowing the object-oriented paradigm.

By modeling OMdesign in a forward-driven step the application-semantic con-

tent of the classes in the model can be trusted. This means, that those classes

are sound abstractions of the basic functionality of the system because of the

introduction of application and domain-speci�c knowledge by a human engi-

neer.

In a reverse engineering step, so-called class candidates are automatically re-

covered from the procedural source code. As class candidates we consider

compound data types together with related procedures and functions as well

as sets of global variables grouped by data
ow analysis6. Because of the

automated reverse generation, the application-semantic content of class can-

didates is questionable meaning that a considerable part of the abstractions

recovered will be inferior. By binding object candidates to forward-modeled

classes we yield a semantically meaningful class structure of the procedural

system. This is the essence of our object identi�cation approach and distin-

guishes it from other|especially fully-automated|approaches.

From the above discussion it should be clear that the structural similarity

between OMdesign and the procedural source code is essential when it comes

to binding. Obviously, a higher structural similarity leads to a better binding

result, i.e. a higher number of class candidates bound to classes.

According to the type of information used in the modeling process we iden-

tify three categories of OMdesign classes according to their existence in the

procedural source code (see Figure 3).

1. Existing classes. Existing classes (E-classes) are based on a concept

that can be found in the source code in an appropriate procedural instan-

tiation. This means that parts of the procedural source code implement

the concept. Existing classes are modeled as reliable or correct informa-

tion from the documentation or from an application expert.

2. Possibly existing classes. Possibly existing classes (P-classes) are

model classes that might have no instance in the source code. Possibly

6For a more detailed de�nition of the term `class candidate' see [5] (therein called `object
candidate').

5

existing classes originate from unreliable information.

3. Non-existing classes. Non-existing classes (N-classes) have no corre-

spondence in the source code. Such classes are used to yield a complete

and comprehensive view of the system. For example, if a speci�c func-

tionality (e.g. encoding/decoding) is done in hardware, there is no or

only few code dealing with the concept of an `En/Decoder'. Class B in

Figure 3 depicts such a class: A part of the concept is implemented in

software, the other one is implemented in hardware or even missing in

the current version of the system.

OMdesign

Existing
class A

?

Non-existing
(N-) class

Possibly
existing
(P-) classes

X

Class B

Procedural
instance of A

Class A

Existing
(E-) classes

Procedural
source code

class association

Figure 3: Class categories in OMdesign

The more E- and N-classes and the less P-classes are identi�ed in the model,

the better the binding result will be. The type of information (reliable, unre-

liable) often cannot be assessed at the time of modeling|if ever. Thus, the

modeling engineer often cannot be sure which class category a class belongs

to. However, the knowledge of E- and N- classes builds up �xed points in a

modeling process that is characterized by inherent uncertainty. These �xed

points can be used to resolve subsequent uncertainties in later steps of the

OORA process.

The category of a class (E, P, N) is stored in the class category annotation. In

general, all model entities, i.e. basically classes, attributes, methods, param-

eters, and associations can be annotated. Model entities can be annotated

with a detailed description of the information source that led to the creation

of the model entity.

OMdesign is an annotated object model of low abstraction containing ex-

plicit links to the procedural source code as the result of our model-driven

abstraction-to-code mapping process. The explicit relation (object model {

procedural source code) enables a wide range of possibilities to restructure

6

the system using oo modeling mechanisms on the basis of a comprehensible

object model.

2.2 OMrequirements

On the one hand, OMdesign is generated from design and implementation re-

lated system documentation and is intended to be modeled at a low abstrac-

tion level to obtain a better binding result. On the other hand, OMrequirements

is generated from the system requirements and domain knowledge and concen-

trates on all aspects of object-orientation. Since OMdesign does not consider

high-level object-oriented concepts, OMrequirements can be used to optimize

the OORA process by incorporating fully object-oriented structures (espe-

cially inheritance) thus increasing the quality of the target system (i.e. the

system after the re-architecting).

It is important to model OMrequirements according to the speci�c legacy sys-

tem requirements to get an accurate model of the system under study. It is

not valid to incorporate adapted requirements: Especially information of hu-

man experts tends to be biased not to the original requirements of the legacy

system but to requirements the system is supposed to meet at the time of

inspection.

The granularity of OMrequirements in terms of the absolute number of ab-

stractions or concepts in the model is lower compared to OMdesign because

OMrequirements does not contain design and implementation related detail.

The granularity in terms of a speci�c abstraction will be higher because of

the use of, for instance, inheritance hierarchies or aggregation constructs.

In the mapping process of CORET, a target object is generated by raising

the OMdesign abstraction level using OMrequirements as `optimal' template in

terms of object-orientation. The mapping process involves the folding of hier-

archies and constructs and similarity checks between model classes analogous

to the binding process [5].

To clarify the OMrequirements { OMdesign di�erence, we present an example

from our case study. We focus on two particular subsystems called `Receiver'

and `Decoder'. The Receiver subsystem collects data from the environment,

generates a encoded message and sends the message to the the Decoder, which

decodes the message and sends the data on to other subsystems. The Receiver

subsystem communicates with the Decoder subsystem using a Data Channel,

over which the data is sent as messages. The communication is triggered by a

Control Channel connecting Receiver and Decoder. The concept of channels is

quite hardware related focusing on the medium rather than on the actual data

sent across. While a channel abstraction is used in OMdesign, OMrequirements

abstracts the hardware related concepts to the more data centered abstraction

of PDUs (Protocol Data Units). This shift in abstractions is shown in Figure

4, which is a meta-diagram showing the di�erence in abstractions rather than

being part of an OMT model.

7

OMrequirements

OMdesign

Receiver Decoder

PDU

Receiver Decoder
Data Channel

Control Channel

Figure 4: Abstraction di�erences in OMrequirements and OMdesign

2.3 OMarchitecture

During the OORA process we experienced that OMrequirements can be further

abstracted to an architectural description of the system. It turned out to be

an appropriate instrument in discussing about the high-level design of the sys-

tem or in creating a reference architecture for a whole family of systems. For

example, in OMarchitecture functional and non-functional system requirements

can be identi�ed and modeled individually.

OMarchitecture is not directly involved in the CORET process, it rather rep-

resents documentation which can be used to reason about the system from

a high-level view. It can be the basis of restructuring the system to meet

adapted requirements in a reengineering activity.

In our case study we further abstracted the PDU concept to the concept of

`Intermodule Communication', which is an encapsulated component of the

system and can be designed and implemented independently in various ways.

In Figure 5 we present an example of our case study: On the requirements

level, we model subsystems as an inheritance hierarchy with one kind of sub-

systems having a bu�er associated. This accurately re
ects the situation in

our case study where some subsystems have bu�ers, others do not. On the

architecture level, we model the same concept using an optional association

between a single subsystem class and the bu�er class. The subsystemmodeling

in OMrequirements facilitates the mapping process because the more detailed

abstraction can be mapped more easily to the classes in OMdesign.

2.4 OMtarget

OMtarget di�ers from all other object models in that it is semi-automatically

created. The abstractions modeled as classes in OMdesign are mapped to

the oo high-level constructs in OMrequirements to achieve an object-oriented

target system. Human interaction is used in the mapping process to resolve

con
icts and optimize the mapping result by introducing application and do-

main knowledge.

8

OMarchitecture

OMrequirements

1 1

0..1

OPTIONAL
PART-OF

IS-A

Subsystem

Non-buffering
Subsystem

Buffering
Subsystem

1

BufferSubsystem

Buffer
PART-OF

Figure 5: Abstraction di�erences in OMrequirements and OMarchitecture

OMtarget is the basis for the system transformation. It represents an object

model of the procedural system with the model entities linked to entities of

the source code. In a code generation step, we use the procedural source code

together with the information in OMtarget to create the object-oriented target

code.

3 Utilizing object models in abstraction-

to-code mapping

In the object-oriented re-architecting process we face the concept assignment

problem, i.e. the problem of relating concepts to code. We build abstrac-

tions of the underlying application concepts in a set of object models. The

object-oriented paradigm provides various means to model these abstractions

such as classes, associations, etc. Having the source code and a model of the

application, we can start to map abstractions to code. Here, we face another

problem concerning re-architecting: To get a re-architectured system of high

quality in terms of object-orientation (i.e the extensive use of the oo mecha-

nisms provided) we have to provide an appropriate and highly abstract target

model. The higher the model abstraction level, the bigger the gap between

code and abstraction and the poorer the mapping result.

3.1 Stepwise mapping

To bridge the gap between low-level code and high-level abstractions we in-

troduce a stepwise mapping process. In the �rst step, the code is related

to abstractions deduced mainly from design documentation and application

domain knowledge. This OMdesign object model lacks high-level oo con-

cepts, in particular inheritance. To introduce high-level oo concepts we cre-

9

ate another model from the application requirements and domain knowledge.

This OMrequirements model has to represent exactly the system to be re-

architectured but is not modeled strictly according to the structure of the

procedural system. It rather is a structural representation of the target oo

system. Explicit links between OMdesign and OMrequirements are established

in the CORET mapping process �nishing our model-driven abstraction-to-

code mapping. The result is an object model with explicit references to the

source code. These references are stored in a mapping table relating model

entities to source code entities.

During the mapping process, OMtarget is generated which serves as the basis

for a later system transformation. The abstraction level of OMtarget in the best

case is OMrequirements, in the worst case OMdesign (see Figure 2). Consider-

ing architectural reasoning or reasoning about system families OMrequirements

can further be abstracted to the OMarchitecture model being an architectural

representation of the procedural system in oo terms.

OMarchitecture class hierarchy Intermodule Communication

OMrequirements class hierarchy Protocol_Data_Unit

OMdesign class Encoded_message

Source code struct dc_mess {…};

level of abstraction

Figure 6: The `message' concept at di�erent levels of abstraction

3.2 Object model characteristics

As mentioned in Section 2 the object models are di�erent in a number of as-

pects. The characteristic properties of the CORET object models that were

described in Sections 2.1 to 2.4 are summarized in Table 1.

As an example, Figure 6 shows the di�erent abstractions of the concept of a

message. The object models provide the knowledge of the source code struc-

ture dc mess being the part of the implementation of the high-level concept

Intermodule Communication.

Obviously, the binding and mapping quality depend on the quality of the ob-

ject models. If the design documentation is poor or not up to date, OMdesign

will considerably di�er from the application's structure. In this case, hav-

ing access to the knowledge of application experts is of great importance. If

there are no explicit system requirements, they have to be re-engineered or

extracted from the design documentation.

10

Properties OMdesign OMrequirements

Information source source code, requirements documentation,

design documentation, application expert

application expert

Model abstraction level low high

Model granularity high low

Object-oriented concepts no limited

Relation to the legacy system explicit links to source code explicit links to source code

accurate representation accurate representation

Relation to the target system basis for target model basis for target model

Model annotations info source, info source,

class category class category

Model task binding mapping

Model creation mode manually manually

OMarchitecture OMtarget

Information source requirements documentation, other models,

application expert application expert

Model abstraction level high Between OMdesign

Model granularity high and OMrequirements.

Object-oriented concepts full limited

Relation to the legacy system no explicit links to source code explicit links to source code

inaccurate representation accurate representation

Relation to the target system { basis for target model

Model annotations info source {

Model task documentation transformation

Model creation mode manually semi-automated

Table 1: Properties of the CORET object models

11

Human intervention is important in our OORA process. The CORET process

is interactive, using application domain and application speci�c information

to resolve uncertainties and ambiguities. Because of the process inherent

uncertainty, we use concepts of soft-computing in the binding and mapping

process, e.g. a fuzzy text comparison in our similarity measure [5].

4 Tools in the OORA process

To create and maintain the set of object models we use Rational's model-

ing tool ROSE. We use ROSE's ODBC enabled scripting language to export

object model data to a RDBMS (Oracle 77) and to import data to visualize

and adapt models in ROSE. ROSE directly supports the textual annotation

of each model entity. The Booch, OMT, and UML notations are supported.

For the identi�cation of class candidates we used Imagix's reverse engineering

tool Imagix4D. We extracted the main struct's together with the procedures

accessing and/or manipulating them. Since we plan to detect class candidates

according to more sophisticated criteria, a dedicated CORET parser was built.

Class candidates are as well stored in the RDBMS. The CORET binder works

on the database to establish the OMdesgin { source code relation.

To support the human engineer we identify a couple of tasks that can be

semi-automated and thus supported by tools (binding, mapping, etc.). Be-

cause OORA involves some uncertainties in each step, human interaction has

proven to be useful and thus is essential throughout the whole process to

resolve con
icts and ambiguities. Thus, we do not strive for full automation.

5 Further work

To improve the binding, we are going to introduce the so-called concept anno-

tation. Model entities, especially methods, are annotated with concepts such

as `maximum search', `sort', etc. In the reverse engineering step, program

plans associated with these concepts are used to detect the concepts in the

code. The concepts and plans together with their interrelations are stored in

a pattern repository. These concepts and plans are functional and language

patterns, respectively, we do not use (object-oriented) design patterns such as

[7] or [10]. Since the binding process currently is based on a mainly syntactical

similarity check and has de�ciencies in associating methods and procedures,

the concept annotation enables a semantical similarity comparison and thus

is expected to improve the binding result.

Additionally, we plan to use language patterns to identify GUI (Graphical

User Interface) and data structure implementations (arrays, lists, trees, etc.)

in the procedural code. Since the GUI and data structure implementation is

not involved with the basic application functionality, we consider to do the

modeling in a separate object model.

7Oracle is a trademark of Oracle Inc.

12

6 Conclusion

In the OORA process, we attack the concept assignment problem by providing

object models of the application at di�erent levels of abstraction to enable a

stepwise abstraction-to-code mapping process. As abstractions we use the

class concept of the object-oriented paradigm. The re-architectured system

uses the object-oriented mechanisms such as data abstraction, information

hiding, and inheritance to improve the software evolution by facilitating the

system maintainability or enabling software reuse. The whole process is based

on human interaction to introduce and improve a variety of semantics that

cannot be recovered by fully automated approaches.

The result of the abstraction-to-code mapping is a set of object models that

have explicit references to the source code. This means that these models have

a well-de�ned and formal represented corresponding to the source code rather

than only being informal representations of the system. This is essential for

maintenance since an engineer can then locate the system part subject to

change in an application model and is guided to the corresponding parts in

the code. The model-driven linkage of abstractions to code is a prerequisite

in our OORA process to achieve an object-oriented system with high-level

semantics.

7 Acknowledgments

We are grateful to Roland Mittermeir and Dominik Rauner-Reithmayer for

many interesting discussions and valuable comments. This work, that was

pursued in cooperation with the University Klagenfurt, was supported by the

Austrian National Science Foundation (FWF), project no. P 11.340 �OMA.

References

[1] T. J. Biggersta�, B. G. Mitbander, and D. Webster. The concept as-

signment problem in program understanding. Proceedings of the 15th In-

ternational Conference on Software Engineering, Baltimore, Maryland,

pages 482{98. IEEE Computer Society Press, May 1993.

[2] T. J. Biggersta�, B. G. Mitbander, and D. E. Webster. Program under-

standing and the concept assignment problem. Communications of the

ACM, 37(5):72{83, May 1994.

[3] M. Fowler and K. Scott. UML distilled { applying the standard object

modeling language, Object technology series. Addison-Wesley, Reading,

Mass. and London, 1997.

[4] H. Gall, R. Kl�osch, and R. Mittermeir. Object-oriented re-architecturing.

5 th European Software Engineering Conference (ESEC '95). Springer

Verlag, Berlin, September 1995.

[5] H. Gall and J. Weidl. Binding object models to source code: an approach

to object-oriented re-architecting. Technical report TUV{1841{97{14.

13

Distributed Systems Group, Technical University of Vienna, September

1997.

[6] H. C. Gall, R. R. Kl�osch, and R. T. Mittermeir. Using domain knowl-

edge to improve reverse engineering. International Journal of Software

Engineering and Knowledge Engineering, 6(3):477{505. World Scienti�c

Publishing Company, 1996.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: el-

ements of reusable object-oriented software, Addison-Wesley professional

computing series. Addison-Wesley, Reading, Mass. and London, 1995.

[8] S. Liu and N. Wilde. Identifying objects in a conventional procedural

language: An example of data design recovery. IEEE Conference on

Software Maintenance, pages 266{71, November 1990.

[9] R. M. Ogando, S. S. Yau, S. S. Liu, and N. Wilde. An object �nder for

program structure understanding in software maintenance. Journal of

Software Maintenance: Research and Practice, 6:261{83, 1994.

[10] Wolfgang Pree. Design Patterns for Object-Oriented Software Develop-

ment, ACM Press. Addison-Wesley, 1995.

[11] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.

Object-oriented modeling and design. Prentice-Hall, Englewood Cli�s,

NJ, 1991.

[12] A. S. Yeh, D. R. Harris, and H. B. Reubenstein. Recovering abstract

data types and object instances from a conventional procedural language.

Second Working Conference on Reverse Engineering, pages 227{36. IEEE

Computer Society Press, July 1995.

14

