
Definition of a Common Exchange Model - version 1.1 1 / 29

Definition of a Common Exchange Model
Serge Demeyer, Sander Tichelaar and Patrick Steyaert

Version 1.1 -- Last Modified: Thursday, July 02, 1998
Available on the WWW at: http://www.iam.unibe.ch/~famoos/InfoExchFormat/

Abstract
This document defines the exchange model for usage by tool prototypes within the FAMOOS
reengineering project. The model is based upon the CDIF standard so that it can be
transferred via flat ASCII streams.

All comments are welcome: famoos@iam.unibe.ch.

1) Introduction

The FAMOOS project (http://www.iam.unibe.ch/~famoos/) aims to develop a reengineering
method for transforming object-oriented legacy code into frameworks. The reengineering
method itself is defined around a life cycle model (see Figure 1).

1) Requirements Analysis: identifying the concrete reengineering goals

2) Model Capture: documenting and understanding the software system

3) Problem Detection: identifying flexibility and quality problems

4) Problem Resolution: selecting new software architectures to correct the problems

5) Reorganisation: transforming the existing software architecture for a new release

6) Change Propagation: ensuring that all client systems benefit from the new release

Figure 1: FAMOOS reengineering life cycle

To realise that life cycle, three research areas Ðwhich are likely to furnish solutionsÐ have
been selected for further investigation

Metrics & Heuristics [DETECTM]
Applied in phase (3) to identify problems and phase (4) to measure improvement.

Grouping [DOCUM]

Definition of a Common Exchange Model - version 1.1 2 / 29

Applied in phase (2) to form software modules and phase (4) to form target architectures.
Reorganisation Operations [REORGOP]

Applied in phase (5) to perform the actual program transformations and phase (6) to
adapt the target software context.

Currently, the FAMOOS partners are building a number of tool prototypes for conducting
various experiments within those three research areas. However, the source code available for
case studies is written in different implementation languages (C++, Ada and to a lesser extent
Java and Smalltalk). To avoid equipping all the tool prototypes with parsing technology for
all of the implementation languages, it is necessary to agree on a common information
exchange format with language specific extensions (see Figure 2). This document is a
specification for such a format.

 PROTOTYPES

Common
Format

Language
Plug-ins Reorganisation

Heuristics

Metrics

Grouping

Smalltalk

Java

Ada

C++

 LANGUAGES

Figure 2: Conception of the Common Exchange Format

2) Requirements Specification

Based on our experiences with the tool prototypes built so far, plus given a survey of the
literature on reengineering repositories and code base management systems we specified the
following requirement list. The list is split up in two, one part defining requirements
concerning the data model, the other part specifying issues concerning the representation.

Data Model

1) Extensible. To handle the definition of language plug-ins, the data model must allow
extensions with language specific entities and properties. Some tool prototypes may also
need to define tool specific properties.

2) Sufficient basis for metrics, heuristics, grouping and reengineering operations. To avoid a
common denominator that would ineffective for our goals, we set the lower limit for the
model to everything that is required to experiment with the tool prototypes.

3) Readily distillable from source code. Since it is not our aim to define a model that covers
all aspects of all languages, the upper limit to the information the model will contain, is
what can be generated by basic code parsing (i.e. parsing without any interpretation of the
obtained information, for instance, determining if a relation is an aggregation or a
composition). The generated information should be usable by any tool , thus also by
language independent tools.

Representation

Definition of a Common Exchange Model - version 1.1 3 / 29

1) Easy to generate by available parsing technology. Since we cannot wait for future
developments, we must use parsers available today keeping an eye on short-term
evolution. Within the FAMOOS project, parsing technology comes mainly from the
FAST library part of the Audit platform. However, there are a number of other viable
alternatives: like the SNiFF+ symbol table which is accessible via an API; like Ada
compilers which provide standard API's for accessing internal data structures; like the
tables generated by Audit which can be transformed in what is needed; like the Java
inspection facilities part of java.lang.reflect or even the Java byte code itself; like Smalltalk
inspection facilities and parsers that are part of every Smalltalk implementation.

2) Simple to process. As the exchange format will be fed into a wide variety of tool
prototypes, the format itself should be quite easy to convert into the internal data
structures of those prototypes. On top of that, processing by "standard" file utilities (i.e.,
grep, sed) and scripting languages (i.e., perl, python) must be easy since they may be
necessary to cope with format mismatches.

3) Convenient for querying. A large portion of reengineering is devoted to the search for
information. The representation should be chosen so that it may easily be transformed
into an input-stream for querying tools (i.e., spreadsheets and databases).

4) Human readable. The exchange format will be employed by (buggy) prototypes. To ease
debugging, the format itself should be readable by humans. Especially, references between
entities should be by name rather than by identifiers bearing no semantics.

5) Allows combination with information from other sources. Although most of the data
model will be extracted from source code, we expect that other origins can provide input
as well. Especially CASE tools with design diagrams (e.g., TDE or Rational/Rose) are
likely candidates. Thus, the representation should allow merging information from other
origins. Note that Ñjust like with the "human readable" requirementÑ this implies that
references between entities should be by name rather than by identifiers bearing no
semantics.

6) Supports industry standards. Since the tool prototypes must be utilised within an
industry context, they must integrate with whatever tools already in use. Ad hoc exchange
formats (even when they can be translated with scripts) hinder such integration, and --
when available-- the representation should favour an industry standard.

3) CDIF Transfer Format

We have adopted CDIF [CDIF94a] as the basis for the information exchange of information in
the FAMOOS exchange model [EVALCDIF]. CDIF is an industrial standard for transferring
models created with different tools. The main reasons for adopting CDIF are, that firstly it is
an industry standard, and secondly it has a standard plain text encoding which tackles the
requirements of convenient querying and human readability. Next to that the CDIF
framework supports the extensibility we need to define our model and language plug-ins.
More information concerning the CDIF standard can be found at http://www.cdif.org/.

Definition of a Common Exchange Model - version 1.1 4 / 29

4) The Data Model

4.1. The Core Model

The core model (shown in Figure 3) specifies the entities and relations that can and should be
extracted immediately from source code1.

Figure 3: The Core Model

The core model consists of the main OO entities, namely Class, Method, Attribute and
InheritanceDefinition. For reengineering , we need the other two, the associations
Invocation and Access. An Invocation represents the definition of a Method calling
another Method2 and an Access represents a Method accessing an Attribute3. These
abstractions are needed for reengineering tasks such as dependency analysis, metrics
computation and reengineering operation. Typical questions we need answers for are: Òare
entities strongly coupled?Ó, Òwhich methods are never invoked?Ó, ÒI change this method.
Where do I need to change the invocations on this method?Ó.

4.2. The complete model

The structure of the complete model is shown in Figure 4. Object, Property, Entity and
Association are made available to handle the extensibility requirement (see "2) Requirements
Specification" - p.2). For specifying language plug-ins, it is allowed to define language specific
Objects, plus it is allowed to add language specific attributes to existing Objects. Tool

1 The model doesn't consist of abstractions for packages at this point. This will be integrated in the future.

2 Actually, in the complete model an Invocation is more general: it is about behavioural entities (such as
methods and functions) calling other behavioural entities.

3 In the complete model an Access is about a behavioural entity accessing a structural entity (such as attributes
and global variables).

Definition of a Common Exchange Model - version 1.1 5 / 29

prototypes are more restricted in extensions to the model: they can define tool specific
Properties for existing Objects. Next to that, they can add attributes to existing Objects, but
they cannot extend the repertoire of entities and associations. For a complete description of
how to extend the model, see appendix "B. How to extend the model" - p.27. The abstract
classes StructuralEntity and BehaviouralEntity are needed by the associations.

Figure 4: Basic structure of the complete model

In the following sections we describe the different entities with their attributes, and how these
entities are represented in the CDIF transfer format. Some of the attributes might not appear
in the CDIF format. Mandatory attributes always appear. Optional attributes that do not
appear, have either a default value or are unknown.

 4.3. Basic Data Types

 Besides the usual primitive data types (String, Integer, BooleanÉ) we have a number of extra
data types in our model that are considered "basic". These are Name, Qualifier and Index:

• Name vs. Qualifier
A Name is a string that bears semantics inside the model, while a Qualifier is a string
that gets its semantics from outside the model. A String does not bear any semantics.
For instance, a uniqueName may be used to refer to another object, hence bears semantics
inside the model. However, a sourceAnchor will store some information that must be
interpreted by applications outside the model, hence is a qualifier. Finally, a comment line
is a string, since it does not bear any semantics understandable by a computer. In CDIF
these types are simply represented by Strings, or TextValues if they are multi-valued (see
appendix "A. Clarifications on the CDIF Encoding" - p.26 for a description of multi-
valued strings in CDIF).

• Index

An Index represents a position in some sequence. Indices always have a base of 1. In
CDIF this type is represented by an integer.

Definition of a Common Exchange Model - version 1.1 6 / 29

4.4. Level of Extraction

The core model contains entities that not all parsers may provide. Next to that, some tools do
not always need all of this information (e.g. a metrics tool might not need Invocation and
Access, because many metrics can already be gathered from Class and Method alone). To
allow "incomplete" models, we introduce the level of extraction.

Basically, the level of extraction is an integer, telling how much of the core model is actually
extracted. In principle, the higher the number, the more information is available. The levels are
set up in such a way that no information is available on a level that needs information from
higher levels (for instance, Access is not usable if there are no Attribute's available). Next
to that, it is possible that on the higher levels parts of the information aren't necessary for a
certain task, or simply not computable by a certain tool. Therefore it is allowed to only
provide parts of the information on the levels 3 and 4 (designated by the "+/-").

Table 1 gives an overview of the levels of extraction.

Level 1 Class, InheritanceDefinition, Method.

Level 1 is the minimum model that parsers should be able to provide and
corresponds with what is usually understood as the interface of a class.

Level 2 Level 1 + Attribute

Level 3 Level 2 +/- Access
 +/- Invocation

Level 4 Level 3 +/- instances of Argument
 +/- instances of BehaviouralEntity

Table 1: Levels of Extraction

4.5. The basic classes Object, Entity and Association

Object Property

sourceAnchor (): Qualifier
commentsAt (pos Integer): String

Name (): Qualifier
Value (): String

Association Entity

name (): Name
uniqueName: Name

Figure 5: The basic classes Object, Entity and Association

As stated in section 4.2, the classes Object, Entity, Association and Property are added
to provide extensibility to the model. The attributes of the basic classes are:

Definition of a Common Exchange Model - version 1.1 7 / 29

• sourceAnchor: Qualifier; optional

Identifies the location in the source where the information is extracted.
The exact format of the qualifier is dependent on the source of the information. Usually, it
will be an anchor in a source file, in which case the following format should be used

file "<filespec>" start <start_index> stop <stop_index>.
Where <filespec> is a string holding the name of the source-file in an operating system
dependent format (preferably a filename relative to some project directory). Note that
filenames may contain spaces and double quotation marks. A double quotation mark in a
filename should be escaped with a \". <start_index> and <stop_index> are indices
starting at 1 and holding the beginning/ending character position in the source file.
Extra position indices or whole source anchors may be added to handle anchors in files
that may need to be displayed with external editors. For instance, the line and column of
the character (startline, startcol, stopline, stopcol). Or the negative offset
counting from the end of the file instead of from the beginning (negstart, negstop). In
CDIF a basic source anchor looks as follows (delimited with a Ô|Õ, see appendix "A.
Clarifications on the CDIF Encoding" - p.26 for a description of multi-valued strings in
CDIF):

(sourceAnchor #[file "factory.h" start 260 end 653|]#)

• comments: 0..N String; optional

Entities and associations may own a number of comments, where developers and tools
store textual information about the object. In CDIF we represent this with a CDIF
TextValue, where the blocks are delimited by a Ô|Õ (see appendix "A. Clarifications on the
CDIF Encoding" - p.26 for a description of multi-valued strings in CDIF):

(comments #[commentLines|]#,#[commentLines|]#,...)

Entities and associations may own a number of properties where extensions of the core model
may be stored. A Property has the following attributes:

• name: Qualifier; mandatory

Is a string that identifies a Property.

• value: String; mandatory

Contains the value of the property. The meaning of the value is not defined within this
model.

CDIF example showing a class Widget with a Property containing the value 5 for some
number-of-methods metric4. They are related by the relationship HasProperty:

 (Class ENT001
 (name "Widget")

....
)

 4 Every CDIF entity has a unique identifier which is local for a information exchange. In the presented example
these identifiers are: ENT001, PR005 and REL003 for respectively the Class instance, the Property
instance and the HasProperty relation instance.

Definition of a Common Exchange Model - version 1.1 8 / 29

(Property PR005
(name "metric_NOM")
(value #[5]#)

)

(Entity.HasProperty.Property REL003 ENT001 PR005)

 To enable a global referencing scheme based on names, the key classes in the model should
respect the minimal interface of Entity.

• name: String; mandatory

Is a string that provides some human readable reference to an entity.

• uniqueName: String; mandatory

Is a string that is computed based on the name of the entity. Each class must define its
specific formula. The uniqueName serves as an external reference to that entity and must
be unique for all entities in the model.

 4.6. Core Entity: Class

 Class

 isAbstract (): Boolean
scopeQualifier (): Qualifier

 Figure 6: Class

 A Class represents the definition of a class in source code. What exactly constitutes such a
definition is a language dependent issue. Besides the attributes inherited from Entity, it has
the following attributes:

• isAbstract: Boolean; optional

Is a predicate telling whether the class is declared abstract. Abstract classes are important
in OO modelling, but how they are recognised in source code is a language dependent
issue.

• scopeQualifier: Qualifier; optional

Is a string with a language dependent interpretation, that defines the scope of a class. A
null scopeQualifier is allowed, it means that the class has global scope. The scopeQualifier
concatenated with the name of the class must provide a unique name for that class within
the model.

• formula for uniqueName:

if isNull (scopeQualifier(class)) then
 uniqueName (class) = name (class)
else
 uniqueName (class) = scopeQualifier (class)
 + "::" + name (class)

 CDIF Example of a non-abstract class Widget with global scope:

Definition of a Common Exchange Model - version 1.1 9 / 29

(Class FM1
(name "Widget")
(uniqueName "Widget")
(isAbstract -FALSE-)
(sourceAnchor #[file "factory.h" start 260 end 653|]#)

)

 4.7. Core Entity: Method

 Method

 belongsToClass (): Name
hasClassScope (): Boolean
isAbstract (): Boolean
isConstructor (): Boolean

 accessControlQualifier (): Qualifier
signature (): Qualifier
isPureAccessor (): Boolean
declaredReturnType (): Qualifier
declaredReturnClass (): Name

 Figure 7: Method

 A Method represents the definition in source code of an aspect of the behaviour of a class.
What exactly constitutes such a definition is a language dependent issue. Besides the inherited
attributes, it has the following attributes:

• belongsToClass: Name; mandatory

Is a name referring to the class owning the method. It uses the uniqueName of the class as
a reference.

• hasClassScope: Boolean; optional

Is a predicate telling whether the method has class scope (i.e., invoked on the class) or
instance scope (i.e., invoked on an instance of that class).

• isAbstract: Boolean; optional

Is a predicate telling whether the method is declared abstract. Abstract methods are
important in OO modelling, but how they are recognised in source code is a language
dependent issue.

• isConstructor: Boolean; optional

Is a predicate telling whether the method is a constructor. A constructor is a method that
creates an (initialised) instance of the class it is defined on. Thus a method that creates an
instance of another class is not considered a constructor. How constructor methods are
recognised in source code is a language dependent issue.

• accessControlQualifier: Qualifier; optional

See definition of StructuralEntity (see p. 18).

Definition of a Common Exchange Model - version 1.1 10 / 29

• signature: Qualifier; mandatory

See definition of StructuralEntity (see p. 18).

• isPureAccessor: Boolean; optional

See definition of StructuralEntity (see p. 18).

• declaredReturnType: Qualifier; optional

See definition of StructuralEntity (see p. 18).

• declaredReturnClass: Name; optional

See definition of StructuralEntity (see p. 18).

• formula for uniqueName:

uniqueName (method) = belongsToClass (method) +
 "." + signature (method)

CDIF Example (constructor for a class Widget. This method has no returntype and
therefore also no "returnclass", hence are both attributes empty):

(Method FM2
(name "Widget")
(belongsToClass "Widget")
(sourceAnchor #[file "factory.h" start 321 end 326|]#)
(accessControlQualifier "public")
(hasClassScope -FALSE-)
(signature "Widget()")
(isAbstract -FALSE-)
(declaredReturnType "")
(declaredReturnClass "")
(uniqueName "Widget.Widget()")

)

4.8. Core Entity: Attribute

Attribute

belongsToClass (): Name
accessControlQualifier (): Qualifier
hasClassScope (): Boolean

declaredType (): Qualifier
declaredClass (): Name

Figure 8: Attribute

An Attribute represents the definition in source code of an aspect of the state of a class.
What exactly constitutes such a definition is a language dependent issue. Besides the
attributes inherited from Entity, it has the following attributes:

• belongsToClass: Name; mandatory

Is a name referring to the class owning the attribute. It uses the uniqueName of the class
as a reference.

Definition of a Common Exchange Model - version 1.1 11 / 29

• accessControlQualifier: Qualifier; optional

Is a string with a language dependent interpretation, that defines who is allowed to access
it (for instance, 'public', 'private'É).

• hasClassScope: Boolean; optional

Is a predicate telling whether the attribute has class scope (i.e., shared memory location
for all instances of the class) or instance scope (i.e., separate memory location for each
instance of the class).

• declaredType: Qualifier; optional

See definition of StructuralEntity (see p.18).

• declaredClass: Name; optional

See definition of StructuralEntity (see p.18).

• formula for uniqueName:

 uniqueName (attribute) = belongsToClass (attribute) +
 "." + name (attribute)

 CDIF Example of a private attribute wTop in class Widget:

 (Attribute FM22
(name "wTop")
(belongsToClass "Widget")
(sourceAnchor #[file "factory.h" start 281 end 284|]#)
(declaredType "int")
(declaredClass "")
(accessControlQualifier "private")
(uniqueName "Widget.wTop")

)

 4.9. Core Association: InheritanceDefinition

 InheritanceDefinition

 subclass (): Name
superclass (): Name
accessControlQualifier (): Qualifier
index (): Index

 Figure 9: InheritanceDefinition

 An InheritanceDefinition represents the definition in source code of an inheritance
association between two classes. One class then plays the role of the superclass, the other
plays the role of the subclass. What exactly constitutes such a definition is a language
dependent issue. Besides the attributes inherited from Association, it has the following
attributes:

• subclass: Name; mandatory

Is a name referring to the class that inherits. It uses the uniqueName of the class as a
reference.

Definition of a Common Exchange Model - version 1.1 12 / 29

• superclass: Name; mandatory

Is a name referring to the class that is inherited from. It uses the uniqueName of the class
as a reference.

• accessControlQualifier: Qualifier; optional

Is a string with a language dependent interpretation, that defines how subclasses access
their superclasses (for instance, 'public', 'private'É).

• index: Index; optional

In languages with multiple inheritance, this is the position of the superclass in the list of
superclasses of one subclass. Usually this will have a null value, but it may be necessary
for OO languages with multiple inheritance that resolve name collisions via the order of
the superclasses (i.e., CLOS).

 CDIF Example of an inheritance relationship between Scrollbar and Widget:

 (InheritanceDefinition FM27
(subclass "ScrollBar")
(superclass "Widget")
(accessControlQualifier "public")
(index 1)

)

 4.10. Core Association: Access

 Access

 accesses (): Name
accessedIn (): Name
isAccessLValue (): Boolean

 Figure 10: Access

 A Access represents the definition in source code of a BehaviouralEntity accessing a
StructuralEntity. Depending on the level of extraction (see Table 1, p. 6), that
StructuralEntity may be an attribute, a local variable, an argument, a global variableÉ.
What exactly constitutes such a definition is a language dependent issue. Besides the
attributes inherited from Association, it has the following attributes:

• accesses: Name; mandatory

Is a name referring to the variable being accessed. It uses the uniqueName of the variable
as a reference.

• accessedIn: Name; mandatory

Is a name referring to the method doing the access. It uses the uniqueName of the method
as a reference.

• isAccessLValue: Boolean; optional

Is a predicate telling whether the value was accessed as Lvalue, i.e. a location value or a
value on the left side of an assignment. When the predicate is true, the memory location
denoted by the variable might change it value; false means that the contents of the

Definition of a Common Exchange Model - version 1.1 13 / 29

memory location is read; null means that it is unknown.
Note that LValue is the inverse of RValue.

 Example of print() accessing wTop:

 virtual print () { cout << "top of widget " << wTop; };

In CDIF:

 (Access FM18
(accesses "Widget.wTop")
(accessedIn "Widget.print()")

)

 4.11. Core Association: Invocation

 Invocation

 invokedBy (): Name
invokes (): Qualifier
base (): Name
candidatesAt (pos Integer): Name

 Figure 11: Invocation

 A Invocation represents the definition in source code of a BehaviouralEntity invoking
another BehaviouralEntity. What exactly constitutes such a definition is a language
dependent issue. It is important to note that due to polymorphism, there exists at parse time
a one-to-many relationship between the invocation and the actual entity invoked: a method,
for instance, might be defined on a certain class, but at runtime actually invoked on an
instance of a subclass of this class. This explains the presence of the base attribute and the
candidates aggregation.

 Besides the attributes inherited from Association, it has the following attributes:

• invokedBy: Name; mandatory

Is a name referring to the BehaviouralEntity doing the invocation. It uses the
uniqueName of the entity as a reference.

• invokes: Qualifier; mandatory

Is a qualifier holding the signature of the BehaviouralEntity invoked. Due to
polymorphism, the signature of the invoked BehaviouralEntity is not enough to assess
which BehaviouralEntity is actually invoked. Further analysis based on the arguments
is necessary. Concatenated with the base attribute this attribute constitutes the unique
name of a behavioural entity.

• base: Name; optional

Is the unique name of the entity where the invoked entity is defined on. Null means
unknown and an empty string means the attribute has no base (the invoked entity may be
a global function). Together with the invokes attribute, this attribute constitutes the
unique name of a behavioural entity.

Definition of a Common Exchange Model - version 1.1 14 / 29

• candidates: 0 .. N Name; optional

Is a multi-valued attribute holding a number of names of BehaviouralEntities. Each
name refers to a BehaviouralEntity that may be the actual one invoked at run-time. See
appendix "A. Clarifications on the CDIF Encoding" - p.26 for a description of multi-
valued strings in CDIF.

CDIF Example. The method Widget.print() is invoked according to the source code. The
actual method invoked at runtime, however, could be the print() method of one of the
subclasses MotifWidget or SwingWidget:

(Invocation FM35
(invokedBy "ScrollBar.print()")
(invokes "print()")
(base "Widget")
(candidates #[Widget.print()|]#,

#[MotifWidget.print()|]#,
#[SwingWidget.print()|]#)

)

4.12. Argument, ComplexExpression & SimpleAccess

Figure 12: Argument, ComplexExpression & SimpleAccess

An Argument represents the passing of an argument when invoking a BehaviouralEntity.
What exactly constitutes such a definition is a language dependent issue. The model
distinguishes between two kind of arguments, a complex expression or a simple access. The
former means that some expression is passed, in that case the contents of the expression is
not further specified. The latter means that some StructuralEntity is passed, in which case
an access is maintained.

Besides the attributes inherited from Association, it has the following attributes:

• position: Index; mandatory

The position of the argument in the list of arguments.

• isReceiver: Boolean; optional

Is a predicate telling whether this argument plays the role of the receiver in the containing
invocation.

 Example:

Definition of a Common Exchange Model - version 1.1 15 / 29

Widget.print () {
call(wTop);

}

 CDIF:

 (SimpleAccess FM35
(position 1)
(isReceiver -FALSE-)

)

(Access FM89
(accesses "Widget.wTop")
(accessedIn "Widget.print()")

)

 (Invocation FM101
(invokedBy "Widget.print()")
(invokes "call(int)")

)

 (SimpleAccess.HasAccess.Access FM107 FM35 FM89)

(Invocation.HasArgument.Argument FM108 FM101 FM35)

4.13. BehaviouralEntity Hierarchy

 Figure 13: BehaviouralEntity Hierarchy

The entities that define behaviour in our model are all subclasses of BehaviouralEntity.

 4.14. BehaviouralEntity

 BehaviouralEntity

 accessControlQualifier (): Qualifier
signature (): Qualifier
 isPureAccessor (): Boolean
declaredReturnType (): Qualifier
declaredReturnClass (): Name

 Figure 14: BehaviouralEntity

A BehaviouralEntity represents the definition in source code of a behavioural abstraction,
i.e. an abstraction that denotes an action rather than a part of the state. Subclasses of this

Definition of a Common Exchange Model - version 1.1 16 / 29

class represent different mechanisms for defining such an entity. Besides the attributes
inherited from Entity, it has the following attributes:

• accessControlQualifier: Qualifier; optional

Is a string with a language dependent interpretation, that defines who is allowed to invoke
it (for instance, 'public', 'private'É).

• signature: Qualifier; mandatory

Is a string that allows to uniquely distinguish a behavioural entity. This is necessary
because there exist OO languages (i.e., C++, Java) that allow to overload methods, so that
the same method name may be associated with different parameter lists, each with its own
method body. The way a signature string is composed is language dependent, but it
should at least include the name of the method. The UML [Booc96a] compliant notation
will be used, which will typically look like
"package::subpackage::classname.methodname(parameters)" . The signature is not
allowed to contain any spaces5.

• isPureAccessor: Boolean; optional

Is a predicate telling whether the behavioural entity is a pure accessor. There are two
kinds of accessors, a reader accessor and a writer accessor. A pure reader accessor is an
entity with a single receiver parameter, only returning the value of an attribute of the class
the method is defined on. A pure writer accessor is a method with one receiver parameter
and one value parameter, only storing the value inside the attribute of a class. How
accessor methods are recognised in source code is a language dependent issue.

• declaredReturnType: Qualifier; optional

Is a qualifier that via interpretation outside the model refers to the type of the returned
object. Typically this will be a class, a pointer or a primitive type (e.g. "int" in Java).
declaredReturnType is null if the return type is not known or the empty string (i.e. "")
if the BehavourialType doesn't have a return type6 (for instance, the C++ void). How
the declared return type may be recognised in source code and how the return type
matches to a class or another type are language dependent issues.

• declaredReturnClass: Name; optional

The class that is implicit in the declaredReturnType. For example, in C++ the
declaredReturnClass of Class* m() is Class. This attribute is particularly useful for
dependency analysis and should therefore be added in case it is easily extractable from
source code.
declaredReturnClass is null if the declaredClass is unknown or the empty string (i.e.
"") if it is known that the declaredReturnType doesn't implicitly consist of a Class, but
something else such as a primitive type.

5 A signature and a scopeQualifier are not allowed to contain any spaces. This makes it easier to compare and
parse these attributes and attributes that are derived from them.

6 This is consistent with UML 1.1 [Booc96a]. We don't use "void", because this doesn't work for, for instance,
Smalltalk, where it is possible to define a class called "void".

Definition of a Common Exchange Model - version 1.1 17 / 29

 4.15. Function

 Function

 scopeQualifier (): Qualifier

 Figure 15: Function

 A Function represents the definition in source code of an aspect of global behaviour. What
exactly constitutes such a definition is a language dependent issue. Besides the inherited
attributes, it has the following attributes:

• scopeQualifier: Qualifier; optional

Is a string with a language dependent interpretation, that defines a possible scope of the
variable. A null scopeQualifier is allowed, it means that the variable must not be
explicitly imported before using it. The scope qualifier concatenated with the name of the
function must provide a unique name for that function within the model. Scope qualifiers
are not allowed to contain any spaces5.

• formula for uniqueName:

uniqueName (method) = scopeQualifier (function) +
 "::" + signature (function)

CDIF Example (of a global function "testFactory" in sub package "test" of package
"widgetfactory"):

(Function FM2
(name "testFactory")
(sourceAnchor #[file "factory.h" start 321 end 326|]#)
(accessControlQualifier "public")
(signature "testFactory()")
(scopeQualifier "widgetfactory::test")
(declaredReturnType "")
(declaredReturnClass "")
(uniqueName "widgetfactory::test::testFactory()")

)

Definition of a Common Exchange Model - version 1.1 18 / 29

 4.16. StructuralEntity Hierarchy

 Figure 16: StructuralEntity Hierarchy

 All possible variable definitions are subclasses of the class StructuralEntity.
StructuralEntity itself participates in the Access association.

 4.17. StructuralEntity

 StructuralEntity

 declaredType (): Qualifier
declaredClass (): Name

 Figure 17: StructuralEntity

 A StructuralEntity represents the definition in source code of a structural entity, i.e. it
denotes an aspect of the state of a system. The different kinds of structural entities mainly
differ in lifetime: some have the same lifetime as the entity they belong to, e.g. an attribute
and a class, some have a lifetime that is the same as the whole system, e.g. a global variable.
Subclasses of this class represent different mechanisms for defining such an entity. Besides
the attributes inherited from Entity, it has the following attributes:

• declaredType: Qualifier; optional

Is a qualifier that via interpretation outside the model refers to the type of the returned
object. declaredType is null if the type is unknown or the empty string (i.e. "") if the
StructuralType doesn't have a return type (e.g. "void" in C++).
Note that we need a language dependent interpretation to link a type name to a class
name, because in most OO languages, types are not always equivalent to a class. How the
declaredType may be recognised in source code and how the type matches to a class are
language dependent issue.

Definition of a Common Exchange Model - version 1.1 19 / 29

• declaredClass: Name; optional

The class that is implicit in the declaredType. The declaredType might be the class itself,
but might also be a pointer to a class (for instance, Class* in C++) or a primitive type
(such as "int" in Java), or something else depending on the language. The declaredClass
will contain the class which is designated already by the declaredType, or the class where
the declaredType points to, null if it is unknown if there is an implicit class in the
declared type, and the empty string (i.e. "") if it is known that there is no implicit class in
the declared type. What exactly is the relationship between declaredClass and
declaredType is language-dependent.
Note that this is useful information for, for instance, dependency analysis (a requirement
for this model). Therefore it appears in this model.

 4.18. GlobalVariable

 GlobalVariable

 scopeQualifier (): Qualifier

 Figure 18: GlobalVariable

 A GlobalVariable represents the definition in source code of a variable with a lifetime equal
to the lifetime of a running system, and which is globally accessible. What exactly constitutes
such a definition is a language dependent issue. Besides the inherited attributes, it has the
following attributes:

• scopeQualifier: Qualifier; optional

Is a string with a language dependent interpretation, that defines a possible scope of the
variable. A null scopeQualifier is allowed, it means that the variable must not be explicitly
imported before using it. The scopeQualifier concatenated with the name of the variable
must provide a unique name for that variable within the model. Scope qualifiers are not
allowed to contain any spaces5.

• formula for uniqueName (Ò::Ó because a ÒglobalÓ variable has package
scope):

if isNull (scopeQualifier(globalVariable)) then
 uniqueName (globalVariable) = name (globalVariable)
else
 uniqueName (globalVariable) = scopeQualifier (globalVariable)
 + "::" + name (globalVariable)

 CDIF Example:

 (GlobalVariable FM23
(name "TRUE")
(sourceAnchor #[file "factory.h" start 287 end 291|]#)
(declaredType "int")
(declaredClass ÐNULL-)
(accessControlQualifier "public")
(uniqueName "TRUE")

)

Definition of a Common Exchange Model - version 1.1 20 / 29

 4.19. ImplicitVariable

 ImplicitVariable

 scopeQualifier (): Qualifier

 Figure 19: ImplicitVariable

 An ImplicitVariable represents the definition in source code of context dependent
reference to a memory location (i.e., 'this' in C++ and Java, 'self' and 'super' in Smalltalk).
What exactly constitutes such a definition is a language dependent issue. Besides the inherited
attribute, it has the following attributes:

• scopeQualifier: Qualifier; optional

Is a string with a language dependent interpretation, that defines a possible scope of the
variable. A null scopeQualifier is allowed, it means that the variable has universal scope.
The scopeQualifier concatenated with the name of the variable must provide a unique
name for that variable within the model. Scope qualifiers are not allowed to contain any
spaces5.

• formula for uniqueName:

 if isNull (scopeQualifier(implicitVariable)) then
 uniqueName (implicitVariable) = name (implicitVariable)
else
 uniqueName (implicitVariable) =
 scopeQualifier (implicitVariable)
 + "." + name (implicitVariable)

 4.20. LocalVariable

 LocalVariable

 belongsTo (): Name

 Figure 20: LocalVariable

 A LocalVariable represents the definition in source code of a variable defined locally to a
method. What exactly constitutes such a definition is a language dependent issue. Besides the
inherited attributes, it has the following attributes:

• belongsTo: Name; mandatory

Is a name referring to the BehaviouralEntity owning the variable. It uses the
uniqueName of this entity as a reference.

• formula for uniqueName:

 uniqueName (localVar) = belongsTo (localVar) +
 "." + name (localVar)

 Example:

Definition of a Common Exchange Model - version 1.1 21 / 29

Class ScrollBar {
computePosition(int x,int y,int width,int height) {

int position_;
. . .

}
}

 In CDIF:

 (LocalVariable FM76
(name "position_")
(sourceAnchor #[file "factory.h" start 85 end 89|]#)
(declaredType "int")
(declaredClass ÐNULL-)
(belongsTo "ScrollBar.computePosition(int,int,int,int)")
(uniqueName "ScrollBar.computePosition(int,int,int,int).position_

")
)

 4.21. FormalParameter

 FormalParameter

 belongsTo (): Name
position (): Index
isReciever (): Boolean

 Figure 21: FormalParameter

 A FormalParameter represents the definition in source code of a formal parameter. What
exactly constitutes such a definition is a language dependent issue. Besides the attributes
inherited from Entity and BehaviouralEntity, it has the following attributes:

• belongsTo: Name; mandatory

Is a name referring to the BehaviouralEntity owning the variable. It uses the
uniqueName of this entity as a reference.

• position: Index; mandatory

The position of the parameter in the list of parameters.

• isReciever: Boolean; mandatory; default = 'false'

Is a predicate telling whether the parameter plays the role of the receiver. This is required
in those cases where the receiver is not passed via an implicit variable, which is quite
unusual hence the default value.

• formula for uniqueName:

uniqueName (formalPar) = belongsTo (formalPar) +
 "." + name (formalPar)

Example (w is the formal parameter):

Window::addWidget(Widget& w) { };

Definition of a Common Exchange Model - version 1.1 22 / 29

In CDIF (w is not a receiver. This implies the default value false for isReciever and is
therefore the reason that this attribute does not appear in the CDIF representation):

(FormalParameterDefinition FM41
(name "w")
(declaredType "Widget &")
(declaredClass "Widget")
(belongsTo "Window.addWidget(Widget&)")
(position 1)
(uniqueName "Window.addWidget(Widget&).w")

)

5) Open Questions

5.1. Why not UML?

The unified Modelling Language (UML) [Booc96a] is rapidly becoming the standard
modelling language for object-oriented software, even in industry. So, UML is a viable
candidate for serving as the data model behind our exchange format. Nevertheless, UML is
geared towards an analysis / design language and there exists no accurate and straightforward
mapping from source-code to UML. For instance, inheritance like applied in an
implementation does not necessarily correspond to generalisation like specified in UML (e.g.,
in an implementation a Rectangle might be a subclass of Square while a correct generalisation
is the other way around). Likewise, attribute definitions do not always correspond with
aggregation (e.g., is a Rectangle an aggregation of two instances of Point or is it an aggregation
of four integers). Thus choosing UML would violate the requirement that the data model
should be readily distillable from source code (see "Requirements Specification" - p.2) and
that's the first motivation to rule out UML.

Moreover, extracting an accurate UML model from source code is considered quite important
during the model capture phase of the reengineering life cycle (see Figure 1). The FAMOOS
project will definitely investigate that topic in further depth, and we do not want to hamper
such investigations by choosing a straightforward but inaccurate mapping. That is the second
motivation to rule out UML.

Finally, UML does not include internal dependencies such as method invocations and variable
accesses. Those dependencies are necessary in the problem detection and reorganisation
phases of the reengineering life cycle (see Figure 1). Thus, choosing UML would violate the
requirement of being a sufficient basis for reengineering operations (see "Requirements
Specification" - p.2).

However, we relied heavily on UML in the terminology and naming conventions applied in
our model to become independent of the implementation language. For example, we talk about
attributes instead of members (C++) or instance variable (Smalltalk) and we talk about classes
instead of types (Ada).

Definition of a Common Exchange Model - version 1.1 23 / 29

5.2. Why not CORBA/IDL?

CORBA is receiving widespread attention as interoperability standard between different
object-oriented implementation languages. The IDL (interface description language) is used to
specify the external interface of a software component and there are tools that extract IDL
from source code. As such, CORBA/IDL is a viable candidate to serve as our exchange
format.

However, CORBA/IDL only describes the interface of a software component, and, like
UML, not the internal dependencies such as method invocations and variable accesses. Thus,
also CORBA/IDL would violate the requirement of being a sufficient basis for reengineering
operations (see "Requirements Specification" - p.2).

5.3. What about Dynamic Information?

Because of polymorphism, not all method invocations can be resolved at compile time. Also,
a model based on source code is not ideal for identifying sequences of interactions between
objects. Thus, basing the model solely on static information eliminates some interesting facts
about a software system and one might consider including run-time information as well.

For the moment we consider the issue too premature to include in an information exchange
standard. The technology is available (i.e., Look for C++, method wrappers for Smalltalk) but
is certainly not part of the standard tool repertoire. And extracting run-time information
generates such a wealth of data that we cannot asses what is important enough to maintain.

5.4. How do you handle hybrid languages (C++, Ada...)?

Some OO languages are extensions of older procedural languages, and as such allow a hybrid
programming style. Part of the object-oriented reengineering problem is precisely that
programmers did not use object-oriented constructs where it would have been advantageous.
For problem detection, it might be worthwhile to include procedural constructs in the model.

For the moment we decided to ignore the issue. We have some ideas on expressing procedural
programming constructs as degenerated object-oriented constructs (e.g., define a procedure as
a method defined on a dummy class) but no concrete proposal in that direction.

6) References

6.1. FAMOOS Internal References

[DETECTM] FAMOOS Achievement Report DETECTM-A.2.3.2. " Specification of
Techniques and Strategies for Problem Detection". Benedikt Schulz, Forschungszentrum
Informatik.

[DOCUM] FAMOOS Achievement Report DOCUM-A.2.3.1. " Documentation and
Model Capture Method(Grouping)". Oliver Ciupke, Forschungszentrum Informatik.

[EVALCDIF] FAMOOS Achievement Report EVALCDIF "Evaluation of the CDIF
Transfer-Format". Thomas Kohler, Daimler-Benz AG.

Definition of a Common Exchange Model - version 1.1 24 / 29

[REORGOP] FAMOOS Achievement Report REORGOP-A.2.3.3./A.2.3.4. " Specification
of Complex Reengineering Operations and Target Structures ". Joachim Weisbrod,
Forschungszentrum Informatik.

6.2. External References

[Booc96a] Booch, G., Jacobson, I. and Rumbaugh, J, "The Unified Modelling Language
for Object-Oriented Development". See http://www.rational.com/.

[CDIF94a] CDIF Technical Committee, "CDIF Framework for Modelling and
Extensibility", Electronic Industries Association, EIA/IS-107, January 1994. See
http://www.cdif.org/.

[CDIF94b] CDIF Technical Committee, "CDIF Transfer Format Syntax SYNTAX.1",
Electronic Industries Association, EIA/IS-109, January 1994. See http://www.cdif.org/.

[CDIF94c] CDIF Technical Committee, "CDIF Transfer Format Encoding
ENCODING.1", Electronic Industries Association, EIA/IS-110, January 1994. See
http://www.cdif.org/.

Definition of a Common Exchange Model - version 1.1 25 / 29

Appendices
A. Clarifications on the CDIF Encoding

To satisfy the requirements for information exchange between tools (see "Requirements
Specification" - p.2), we choose the CDIF standard as the basis for transferring information
between tools. This choice at least satisfies the "supports industry standards" and the
"extensible" requirements. Moreover, CDIF is open with respect to the specific format for a
transfer, or Ñto state it in CDIF terminologyÑ allows for different syntaxes and encodings.
By adopting the CDIF syntax SYNTAX.1 with the plain text encoding ENCODING.1 (see
[CDIF94b] and [CDIF94c]), we also satisfy the "human readable" and "simple to process"
requirements.

CDIF has proven to be a proper solution for our purposes. However, the explicit definition
of associations and the lack of multi-valued string attributes leads to verbose transfers that are
difficult to read for humans and hinders the merging of information coming from different
sources. Also, there are some things we found unclear while reading the CDIF specifications.
Therefore, this part of the appendix describes our interpretation of the CDIF standard.

Avoid Explicit Relationships

We avoid explicit relationships for the core model (see Figure 3).This might seem a bit strange
at first, but our experiments have shown that heavy use of CDIF relationships compromises
the readability of the document a lot. First of all, information gets scattered around in the
transfer instead of being nicely encapsulated in the entity it belongs to. And second, CDIF
relationships employ meaningless identifiers Ðunique within the transfer onlyÐ instead of
references by name. The latter also hinders the combination of information from different
sources.

Below is an example of how we encapsulate a "belongsToClass" attribute in Method, instead
of defining an explicit "Class.HasMethod.Method" relationship and instantiating it for every
Class/Method association. Thus we get ...

(Method FM35
(name "print")
(belongsToClass "Widget")
...

)

instead of

Definition of a Common Exchange Model - version 1.1 26 / 29

(Class FM17
(name "Widget")
...

)

...
(Method FM35

(name "print")
...

)

...
(Class.HasMethod.Entity FM56 FM17 FM35)

Allow multi-valued String Attributes

To deal with many-to-1 relationships we need multi-valued string attributes. Indeed, we avoid
explicit relationships to enhance the readability of a document and to ease combination of
information from different sources. However, using a string attribute to encode a relationship
(like we did above) only allows for 1-to-many relationships.

CDIF provides IntegerList and PointList in its set of basic data types, thus Ñin principleÑ
CDIF permits the use of multi-valued attributes. Unfortunately, there is no basic data type
that copes with multi-valued strings. Yet, the CDIF "TextValue" data type comes very near,
thus in some rare occasions we interpret "TextValue" as a multi-valued text attribute.

In the original CDIF standard, a TextValue denotes a set of characters which is divided into
blocks with a maximum of 1024 characters. The beginning of each block is marked by "#["
while the end is marked by "]#". The actual value of the text is the concatenation of the
blocks.

To represent a multi-valued string attribute with a TextValue, we interpret each block in a
TextValue as a separate string. Also, we require that each one of those strings must append a
special delimiter character (which is "|") to its end so that the original multi-valued strings can
be retrieved from the concatenated blocks. In the (unlikely) situation that a Ò|Ó appears in a
string value it should be escaped with Ò\|Ó. Thus we get ...

(Invocation FM35
(invokedBy "ScrollBar.print()")
(invokes "print()")
(candidates #[Widget.print()|]#,

#[MotifWidget.print()|]#,
#[SwingWidget.print()|]#)

)

instead of (using CDIF relationships):

Definition of a Common Exchange Model - version 1.1 27 / 29

(Invocation FM35
(invokedBy "ScrollBar.print()")
(invokes "print()")

)

 ...

 (Candidate FM45
(value "Widget.print()")

)

 (Candidate FM46
(value "MotifWidget.print()")

)

 (Candidate FM47
(value "SwingWidget.print()")

)

...

(Invocation.HasCandidate.Candidate FM87 FM35 FM45)
(Invocation.HasCandidate.Candidate FM88 FM35 FM46)
(Invocation.HasCandidate.Candidate FM89 FM35 FM47)

B. How to extend the model

Considering the "Conception of the Common Exchange Format" (see Figure 2), we see that
there are two situations in which the model will be extended. The first corresponds with a
language-specific plug-in, while the second corresponds with a tool-specific addition. On the
other hand, considering the model itself (see Figure 4 and Figure 5),there are two possible
kinds of extensions. One is to add attributes to existing classes, the other is to create new
classes.

To ensure that the various tools will be able to deal with all extensions, it is necessary to
specify what and how to extend. This is the purpose of the following rules.

1) Language-specific plug-ins are allowed to create new classes (for instance, new kinds of
entities and associations) and add new attributes. Tool specific additions are restricted to
the addition of new attributes.

2) Additional attributes should NOT be introduced via subclasses.

The motivation behind the first rule is that reengineering tools should always be able to work
together. A reengineering tool that is dependent of extra classes will complicate co-operation,
hence the restriction.

Because the second rule is counter-intuitive, we will ellaborate on the motivation. Indeed,
since CDIF offers inheritance, extensions to the model are tempted to create subclasses of
existing classes to add new attributes. However, such an approach implies that all tools that
process a CDIF transfer must know about the extra subclasses defined in an extension, hence
must completely analyse the meta-model part of a CDIF transfer.

As an example consider an extension for a C++ class, where we add an attribute called
"friends", which is a multi-valued attribute holding the names of all friend classes and methods

Definition of a Common Exchange Model - version 1.1 28 / 29

of a certain class. If we define the new attribute as an attribute of "Class", the CDIF transfer
will contain a class entity with a potentially unknown attribute. Tools that do not know
about this extra attribute may safely ignore it. For instance, a simple querying tool (e.g., grep)
will be able extract information out of a transfer (see Figure 22 (a)) without worrying about
the extra attribute. However, if we define a new subclass C++Class, which contains the
additional attribute, a transfer will contain "C++Class" entities. Tools that do not know about
this subclass will break because they do not know the extension and therefore do not
recognize the C++Class (see Figure 22 (b)).

Figure 22: Example of an extension.
(a) without subclassing, correct (b) with subclassing, incorrect.

C. The FAMOOS meta-model in CDIF

The FAMOOS Exchange Model is defined in the subject area FAMOOS. It only uses the
Foundation subject area, which is the basic CDIF subject-area that defines an entity-
relationship model and is mandatory to use by all models.

For the complete definition of the meta-model in CDIF, check
http://www.iam.unibe.ch/~famoos/InfoExchFormat/

Definition of a Common Exchange Model - version 1.1 29 / 29

D. The complete FAMOOS Exchange Model

Definition of a Common Exchange Model - version 1.1 i / iv

Cover Pages

Achievement A2.4.1

Definition of a Common Exchange Model

1) Identification

Project Id: Esprit IV #21975 ÒFAMOOSÓ

Deliverable Id: D 2.2 Ð FINALFHB Final FAMOOS Methodology
Handbook

Date for delivery: 31.03.98

Planned date for delivery: 31.03.98

WP(s) contributing to: 2

Author(s): S. Demeyer, S. Ducasse, T. Richner, M. Rieger, P.
Steyaert, S. Tichelaar

2) Abstract
This document defines the exchange model for usage by tool prototypes within the FAMOOS
reengineering project. The model is based upon the CDIF standard so that it can be
transferred via flat ASCII streams.

3) Keywords

Object-oriented, reengineering, reverse engineering, code repository, FAMOOS.

4) Version History

Ver Date Editor(s) Status & Notes

0.4 17.11.97 S. Demeyer; P.
Steyaert

First draft version. Released to all the
participants of the Ulm-workshop
(21.11.97).

0.5 24.11.97 S. Demeyer Quick tour of revised model; incorporates
feedback generated during workshops at
FZI (20.11.97) and Daimler-Benz
(21.11.97).

0.6 09.01.98 S. Demeyer Expanded quick tour into a full
specification. Changed original document
template for convenient generation of

Definition of a Common Exchange Model - version 1.1 ii / iv

HTML.

Document is now ready for reviewing and
defining language plug-ins.

1.0 30.03.98 S. Demeyer Final release:

• Incorporated feedback given on prior
release.

• Adapted meta-model to be streamlined
with CDIF; removed examples, we first
need some tool experience with CDIF.

• Introduced the notion of Òlevel of
reificationÓ.

1.1alpha 15.06.98 S. Tichelaar • Adapted the model according to
feedback on 1.0 version and experiences
using the model in tools:
- shortened some names
- added Object and Property entity
- converged meta-meta-model and meta-
model in one model
- changed "level of reification" into
"level of extraction"
Ð all kinds of small changes

• Included CDIF examples and the
complete model definition in CDIF as an
appendix

1.1 1.07.98 S. Tichelaar, S.
Demeyer

• Extended the model to deal with global
functions (i.e., introduce
BehaviouralEntity and
StructuralEntity).

• Added appendices about "Clarifications
on the CDIF Encoding" and "How to
extend the model"

5) Issues for future releases

Some issues couldn't be incorporated in the 1.1 release due to time constraints:

• The model needs basic adaptation to incorporate the notion of packages/modules/... in the
core model.

Definition of a Common Exchange Model - version 1.1 iii / iv

6) Table of Contents
Definition of a Common Exchange Model. 1

Abstract... 1
1) Introduction... 1
2) Requirements Specification... 2
3) CDIF Transfer Format... 3
4) The Data Model... 4

4.1. The Core Model.. 4
4.2. The complete model... 4
4.3. Basic Data Types... 5
4.4. Level of Extraction... 6
4.5. The basic classes Object, Entity and Association................................ 6
4.6. Core Entity: Class.. 8
4.7. Core Entity: Method... 9
4.8. Core Entity: Attribute...10
4.9. Core Association: InheritanceDefinition..11
4.10. Core Association: Access...12
4.11. Core Association: Invocation..13
4.12. Argument, ComplexExpression & SimpleAccess............................14
4.13. BehaviouralEntity Hierarchy...15
4.14. BehaviouralEntity...15
4.15. Function..17
4.16. StructuralEntity Hierarchy..18
4.17. StructuralEntity..18
4.18. GlobalVariable...19
4.19. ImplicitVariable..20
4.20. LocalVariable..20
4.21. FormalParameter..21

5) Open Questions..22
5.1. Why not UML?...22
5.2. Why not CORBA/IDL?..23
5.3. What about Dynamic Information?...23
5.4. How do you handle hybrid languages (C++, Ada...)?.........................23

6) References...23
6.1. FAMOOS Internal References...23
6.2. External References...24

Appendices. 2 5

A. Clarifications on the CDIF Encoding...25
Avoid Explicit Relationships..25
Allow multi-valued String Attributes...26

B. How to extend the model..27
C. The FAMOOS meta-model in CDIF..28
D. The complete FAMOOS Exchange Model...29

Cover Pages. i

1) Identification... i
2) Abstract... i
3) Keywords.. i
4) Version History... i
5) Issues for future releases.. ii
6) Table of Contents... iii
7) List of Figures... iv
8) List of Tables.. iv

Definition of a Common Exchange Model - version 1.1 iv / iv

7) List of Figures
Figure 1: FAMOOS reengineering life cycle... 1
Figure 2: Conception of the Common Exchange Format................................. 2
Figure 3: The Core Model.. 4
Figure 4: Basic structure of the complete model.. 5
Figure 5: The basic classes Object, Entity and Association.............................. 6
Figure 6: Class... 8
Figure 7: Method.. 9
Figure 8: Attribute..10
Figure 9: InheritanceDefinition...11
Figure 10: Access..12
Figure 11: Invocation..13
Figure 12: Argument, ComplexExpression & SimpleAccess...........................14
Figure 13: BehaviouralEntity Hierarchy...15
Figure 14: BehaviouralEntity...15
Figure 15: Function..17
Figure 16: StructuralEntity Hierarchy..18
Figure 17: StructuralEntity..18
Figure 18: GlobalVariable...19
Figure 19: ImplicitVariable..20
Figure 20: LocalVariable..20
Figure 21: FormalParameter..21
Figure 22: Example of an extension. (a) without subclassing, correct (b) with
subclassing, incorrect..28

8) List of Tables
Table 1: Levels of Extraction... 6

