
FAMIX Java language plug-in 1.0

Author Sander Tichelaar (tichel@iam.unibe.ch)

Version 1.0

Last modified 1999-09-07

1 Abstract
This document describes the language plug-in to the FAMIX 2.0 model [Deme99] for the
Java programming language [Gosl96]. It handles interpretation issues concerning Java in
FAMIX and the extension of the FAMIX model for Java specific features.

2 Notation
The basic FAMIX model is modified in three different ways to handle Java sources:

• New classes are added to the common exchange model to model entities and associations
unique to Java. These classes are marked as new entities resp. associations.

• New attributes are added to existing classes of the basic FAMIX model. In this case the
class is marked "extended" and only the new and modified (see below) attributes are listed
in the definition of the modified class.

• The definition of attributes of existing classes are modified or are made more specific. In
this case the corresponding class is marked "interpreted" and the interpreted attributes are
listed in the definition of the modified class. To discriminate new from interpreted
attributes, new attributes are explicitly tagged as being new and interpreted attributes are
listed without any type information since that information hasn’t changed anyway.

3 Modified classes

3.1 Model (interpreted)

Model

SourceLanguage

SourceDialect

Figure 1: Model

The new or modified attributes are:

• SourceLanguage
For Java models this attribute always contains the string “Java”.

• SourceDialect
The Java language doesn’t really have dialects, but it has versions. If known, this version
can be stored in this attribute. The possibly interesting issues for FAMIX on the language-
feature-and-syntax level (as opposed to added libraries) between the different versions are:
1.0.x -> 1.1.x: - Addition of inner classes (including anonymous ones)

- Final method parameters and local variables
1.1.x -> 1.2.x: - Addition of a new keyword (strictfp)

3.2 Package (interpreted)

Package

Figure 2: Package

A Package maps in Java to the Java package construct. Packages in Java have the following
properties:

• packages contain classes and packages. Both classes and packages can belong to only one
package.

• package names should be unique within their encapsulating package.

Normally packages in Java map directly to the directory structure of source code, i.e. the
source code for a certain class in a certain package appears in a directory with the same name
as the package. Nested packages appear as subdirectories of the directory with the source code
of the encapsulating package.

3.3 Class (interpreted and extended)

Class

isInterface (): Boolean # new

isPublic (): Boolean # new

isFinal (): Boolean # new

isAbstract

belongsToPackage

Figure 3: Class

Both classes and interfaces in Java are mapped to the FAMIX entity Class. Interfaces differ
from classes in that they can only define abstract methods and final static variables. Interfaces
cannot inherit from classes (for a full discussion, see InheritanceDefinition, p.6).

The new or modified attributes are:

• isInterface: Boolean; optional
Is a predicate telling if the entity is an interface as opposed to a normal class.

• isPublic: Boolean; optional
Is a predicate telling if the class is defined public or not. Public (as opposed to default)
visibility means the class is visible outside its containing package.

• isFinal: Boolean; optional
Is a predicate telling if the class is defined final or not. Final classes cannot be subclassed
(and subsequently its methods cannot be overridden). Interfaces cannot be final.

• isAbstract
In Java a class is abstract if the class is declared abstract. This is obligoraty if one or more
of its methods are abstract. Even if the class does not contain any abstract methods, it can
be declared abstract, implying that the class is not allowed to be instantiated. Interfaces
are always abstract, but don’t have to be declared as such (although you may if you want
to).

• belongsToPackage
The package to which a class belongs is defined by the package statement at the beginning
of a Java source file that also contains the class definition.

3.4 BehaviouralEntity (interpreted)

BehaviouralEntity

declaredReturnType

declaredReturnClass

Figure 4: BehaviouralEntity

The following attributes are interpreted as follows:

• declaredReturnType
In Java this attribute can contain any primitive types, array types or classes (and
interfaces).

• declaredReturnClass
This attribute contains the unique name of the FAMIX class entity (which is a Java class
or interface) if the declaredReturnType denotes such an entity.

3.5 Method (interpreted and extended)

Method

isFinal (): Boolean # new

isSynchronized (): Boolean # new

isNative (): Boolean # new

accessControlQualifier

signature

isPureAccessor

hasClassScope

isAbstract

isConstructor

Figure 5: Method

Each definition of a method in source code constitutes this entity.

The new or modified attributes are:

• isFinal: Boolean; optional
Is a predicate telling if the method is defined final or not. Final methods cannot be
overridden.

• isSynchronized: Boolean; optional
Is a predicate telling if the method is defined synchronized or not. Only one of the
synchronized methods of an instance of a class can be accessed at once at runtime.

• isNative: Boolean; optional
Is a predicate telling if the method is defined native or not. Native methods are
implemented in an external language (for instance, C++) and therefore do not have an
implementation in the Java side of the code.

• accessControlQualifier
The allowed access specifiers for methods are: public, protected, private.
An empty specifier means default visibility, which denotes that the method is visible for
all classes within the same package.

• signature
In Java is a method is uniquely distinguished by its name and the number, the types and
the position of its formal parameters. Therefore, the signature string takes the form
methodname(T1, ...,Tn) where T1..n are the types of the formal parameters of the
method (see also the section about unique naming conventions in the FAMIX 2.0
Specification [Deme99]). Note that parameters can be declared final, but that this
finalness is not part of the method signature. A subclass can override a method and add or
drop any final parameter modifiers you wish. You can also add or drop final modifiers in a
method’s parameters without causing any harm to existing compiled code that uses that
method[Gosl96].

• isPureAccessor
A pure reader accessor in Java normally looks like (accessing a variable name):

String getName {
return name;

}
A pure writer accessor normally looks like:

void setName(String name) {
this.name = name;

}

• hasClassScope
A method in Java has class scope if it is defined static.

• isAbstract
A method is abstract, if it is declared abstract with the abstract keyword. An abstract
method in Java doesn’t have an implementation.

• isConstructor
A constructor in Java has the form of a method with no declared return type and a name
identical to the name of the class it belongs to.

3.6 StructuralEntity (interpreted)

StructuralEntity

declaredType

declaredClass

Figure 7: StructuralEntity

The following attributes are interpreted as follows:

• declaredType
In Java this attribute can contain any primitive types, array types or classes (and
interfaces).

• declaredClass
This attribute contains the unique name of the FAMIX class entity (which is a Java class
or interface) if the declaredType denotes such an entity.

3.7 Attribute (interpreted and extended)

Attribute

isFinal (): Boolean # new

isTransient (): Boolean # new

isVolatile (): Boolean # new

hasClassScope

accessControlQualifier

Figure 8: Attribute

The new or modified attributes are:

• isFinal: Boolean; optional
Is a predicate telling if the attribute is defined final or not. Final attributes are set only
once and cannot be changed afterwards.

• isTransient: Boolean; optional
Is a predicate telling if the (non-static) attribute is defined transient or not. Transient
indicates that an attribute is not part of an object’s persistent state and thus needs not to be
serialized with the object.

• isVolatile: Boolean; optional
Is a predicate telling if the attribute is defined volatile or not. Volatile specifies that an
attribute is used by synchronized threads and that the compiler should not attempt to
perform optimizations with it.

• hasClassScope
An attribute in Java has class scope if it is defined static.

• accessControlQualifier
The allowed access specifiers are: public, protected, private. An empty
specifier means default visibility, which denotes that the attribute is visible for all classes
within the same package.

3.8 ImplicitVariable (interpreted)

ImplicitVariable

Figure 9: ImplicitVariable

Implicit variables in Java are this, super and class. this is an implicit instance
variable which refers the current object a method is executing in. super refers to the
superclass of the current object. class is not an implicit variable in the strict sense of the
word (as it is also a keyword in Java). An expression like String.class evaluates to a
reference to the String class object. This works for all types, including the primitive types. It is
close enough, however, to an implicit static variable to be modelled as an implicit variable.
Normally implicit variables will only appear in a transfer when they are explicitly referenced
by other entities.

3.9 LocalVariable (extended)

LocalVariable

isFinal (): Boolean # new

Figure 10: LocalVariable

The new or modified attributes are:

• isFinal: Boolean; optional
Is a predicate telling if the attribute is defined final or not. Final local variables are set only
once and cannot be changed afterwards.

3.10 FormalParameter (extended)

FormalParameter

isFinal (): Boolean # new

Figure 11: Attribute

The new or modified attributes are:

• isFinal: Boolean; optional
Is a predicate telling if the attribute is defined final or not. Final parameters cannot be
changed within the methodbody of the method it is a parameter of. Note that the finalness
of a parameter is not part of the method signature - it is simply a detail of the
implementation. A subclass can override a method and add or drop any final parameter
modifiers you wish. You can also add or drop final modifiers in a method’s parameters
without causing any harm to existing compiled code that uses that method.

3.11 InheritanceDefinition (interpreted)

InheritanceDefinition

accessControlQualifier

index

Figure 12: InheritanceDefinition

In Java classes always inherit from a single class (except the root class Object that doesn’t
inherit from any class). A class can implement multiple interfaces, which simulates some kind
of multiple inheritance, but as interfaces do not have any implementation, resolving which
method needs to be executed, is not a problem. Interfaces can inherit from multiple interfaces.
In FAMIX classes and interfaces are treated similarly, as shown by the fact that they are both
represented as classes, therefore both class inheritance and interface implementation is
represented by an InheritanceDefinition in FAMIX.

The new or modified attributes are:

• accessControlQualifier
The access control in Java is always "public". It means that all public and protected
attributes and methods are inherited by the subclass and keep their declared visibility.

• index
The index is always "null" as Java has single inheritance and therefore name collisions
cannot appear. Java classes can implement multiple interfaces, but as interfaces do not
implement any behaviour name collisions do not cause any problems. Interfaces can

contain constants, but a class cannot implement multiple interfaces that contain constants
with the same name with possibly different values.

3.12 Invocation (interpreted)

Invocation

base

candidatesAt

Figure 13: Invocation

The new or modified attributes are:

• base
In Java this attribute contains the statically determinable class of the expression receiving
the invocation. For example:

MyClass r = new MyClass();
…
r.m();

Then MyClass is the receiving class (and thus the base) of this invocation.

• candidates
For invocations the candidates attribute holds either all methods overriding the method
base::invokes, or if base is a Java interface it holds all methods with the same
signature in classes that implement that interface

4 New classes

4.1 TypeCast

TypeCast

belongsToBehaviour (): Name

fromType (): Name

toType (): Name

Figure 1: TypeCast

This new association models type cast like (MyClass)variable.

Type casts are interesting for reengineering as they often point to problems in the design of a
system. There will be an instance of this class for every type cast occuring in the source code,
even if the cast is between the same types, because we are interested in all the places where
casts occur.

The attributes of TypeCast are:

• belongsToBehaviour: Name; mandatory
Refers to the BehaviouralEntity the cast appears in.

• fromType: Name; optional
Refers to the unique name of the type the casted expression has. This is the declared type
of variable in the above example.

• toType: Name; optional
Refers to the unique name of the type the expression is casted to (MyClass in the above
example).

5 Miscellaneous
Java does not have functions or global variables, thus those entities will never appear in a
FAMIX model of a Java system. Next to that, arrays and primitive types are not handled
explicitly in this FAMIX extension either.

Then there is a minor issue about file visibility. Normally a class with default visibility is
visible within its package. However, when such a class is defined in the same file of another
class and the name of the file is the same as the name of the other with the .java extension and
theses classes are not defined in the default package, then the class is not visible outside the
file, even to classes in the same package that are defined in other files. This issue is not dealed
with in this Java language plug-in, because it’s a minor issue and in model transfers we
assume a compilable system anyway.

6 Pending issues
Issues not yet covered in this plug-in are:

• Nested classes, inner classes, anonymous classes. A solution for this needs to be
synchronized with other language plugins (most notably C++).

• Implicit methods. In Java there are certain methods defined implicitly. These are the
default constructors and the methods this(..), super(..) (with or without parameters), which
are some kind of aliases to constructors of either the current class or its superclass. If
introduced in the plug-in, these implicit methods should only appear in a transfer when
they are explicitly referenced by other entities.
Implicit methods could be introduces with an isImplicit attribute for methods and
interpreting this(..) and super(..) calls as calls to the respective constructors instead. But
using an ImplicitMethod is consistent with the ImplicitVariable. However, this causes
problems on the language independent level, as entities and associations on the language
independent level (such as in Invocations) may reference this language specific entity.
For that to work, ImplicitMethod should be defined on the FAMIX level rather than the
Java Plug-in level.

• Static and instance initializers

7 References
[Deme99] FAMIX 2.0, technical report, University of Berne, 1999.

[Flan97] David Flanagan, Java in Nutshell: 2nd edition, O'Reilly, 1997.

[Gosl96] James Gosling, Bill Joy and Guy Steele, The Java Language Specification,
Addison Wesley, 1996.

Cover Pages

Achievement 2.4.1b

FAMIX Java language plug-in 1.0

1) Identification
Project Id: Esprit IV #21975 “FAMOOS”

Deliverable Id: D 2.2 – FINALFHB Final FAMOOS Methodology
Handbook

Date for delivery: 31.08.99

Planned date for delivery: 31.08.99

WP(s) contributing to: 1

Author(s): Sander Tichelaar

2) Abstract
This document describes the language plug-in to the FAMIX 2.0 model [Deme99] for the
Java programming language [Gosl96]. It handles interpretation issues concerning Java in
FAMIX and the extension of the FAMIX model for Java specific features.

3) Keywords
Object-oriented, reengineering, reverse engineering, code repository, round-trip engineering,
FAMOOS, FAMIX, Java.

4) Version History
Ver Date Editor(s) Status & Notes

0.3 24.08.99 Sander Tichelaar First draft version released for public
review.

5) Issues for future releases
See Pending issues, page 8.

6) Table of Contents

FAMIX Java language plug-in 1.0 ..1

1 Abstract..1

2 Notation..1

3 Modified classes ..1

3.1 Model (interpreted) ...1
3.2 Package (interpreted) ..2
3.3 Class (interpreted and extended)...2
3.4 BehaviouralEntity (interpreted) ..3

3.5 Method (interpreted and extended)...3
3.6 StructuralEntity (interpreted) ..4
3.7 Attribute (interpreted and extended)...5
3.8 ImplicitVariable (interpreted) ...5
3.9 LocalVariable (extended)..6
3.10 FormalParameter (extended)...6
3.11 InheritanceDefinition (interpreted) ...6
3.12 Invocation (interpreted) ..7

4 New classes...7

4.1 TypeCast ...7

5 Miscellaneous ..8

6 Pending issues..8

7 References..8

Cover Pages ..9

FAMIX Java language plug-in 1.0 ...9
1) Identification ..9
2) Abstract ..9
3) Keywords ...9
4) Version History..9
5) Issues for future releases ..9
6) Table of Contents ...9
7) List of Figures ..10
8) List of Tables ...10

7) List of Figures
Figure 1: Model ..1

Figure 2: Package..2

Figure 3: Class ..2

Figure 4: BehaviouralEntity..3

Figure 5: Method ..3

Figure 7: StructuralEntity ...4

Figure 8: Attribute ..5

Figure 9: ImplicitVariable...5

Figure 10: LocalVariable ..6

Figure 11: Attribute ..6

Figure 12: InheritanceDefinition...6

Figure 13: Invocation..7

Figure 1: TypeCast..7

8) List of Tables

