
� ���������
	��������	 ��	�� � ��� �������������	��

����� ��� � � �"!#�%$'&)(�* + ,�-.$/�0!#132.&4-5(6 7�8 9

Robb D. Nebbe
Software Composition Group

Universität Bern, Institut für Informatik
Neubrückstrasse 10

CH 3012 Bern, Switzerland

http://www.iam.unibe.ch/~nebbe/coord.ps.gz

:);=<?>�@BADCFEB<?GH@I;

This position paper is based on work recovering architectures from object-oriented systems in
the context of the FAMOOS Esprit project. Our experience corroborates the existence of
aspects that cross-cut the functionality of a software system. However, when examining how
the problems arising from such a situation are dealt with in Ada where the language has
built-in support for concurrency and C++ where no such support exists suggests the
possibility of a more general approach to aspect-oriented programming based on the
following hypothesis about software structure that so far has proven to be correct.

A software system can be structured as a set of independent semantic domains
consisting of a core problem domain and a set of coordinated supporting domains.

I will use the term semantics to refer to an axiomatic or denotational notions of semantics
where only the result is considered as semantically relevant as opposed to an operational
notion of semantics where how the result was obtained is equally important. I will also use
the term coordination to mean the linking of actions or instances from different semantic
domains. This is a very general notion of coordination of which the more traditional use of
coordination in relation to concurrency is an example.

This position paper starts by presenting my hypothesis about software structure in greater
detail followed by a resume of the problems observed in our legacy systems. We then briefly
discuss the possibility of extending a language to solve these problems and introduce the
principles of orthogonality and transparency. Finally, this leads to a view of AOP as
encompassing two paradigms, composition and coordination, that underlie the distinction
between objects and aspects.

JLK=M�NPO�QSR4T�JDUWVXNYT�Z J[N\R�]=^_N`]aR4TSbdc efU_ghKBNji=T_VhkHV

This hypothesis was constructed to explain numerous observations about several FAMOOS1

case studies consisting of object-oriented legacy systems provided by the industrial partners
of the FAMOOS consortium.

A software system can be structured as a set of independent semantic domains
consisting of a core problem domain and a set of coordination supporting domains.

A model of the core problem domain (or core domain model) captures the basic functionality
of the software system. The supporting domain models help by providing services such as

1

1FAMOOS is an Esprit project. http://www.iam.unibe.ch/~famoos/

synchronization, threads, persistency, and RMI that are needed to implement this
functionality. Typically the relationship with these supporting domain models is hidden in the
implementation of the core domain model where it is coded into the various classes.

We identified two different situations as being problematic:
� The code relating the core problem domain to the supporting problem domains is

distributed acrossed the classes of the core problem domain. Furthermore, this code is
often fundamentally similar and is in effect duplicating a single policy in different
contexts. For example the synchronization policy is often the same but adapted
specifically to each class; changing the policy requires changing each class.

� Distinctions are lifted into the core domain model, where they are totally irelevant, from
supporting domain models in order to facilitate coordinating the two models. For example
classes are split into synchronized and non-synchronized variants or persistent and
non-persistent variants thus increasing the chance that the underlying similarity will go
unnoticed.

Both situations complicate understanding the software system. The duplication in the first
situation greatly increases the chances of human error in adapting and implementing a policy
in a particular class. The second situation creates a risk that if the model of the problem
domain is adapted then not all of the variants will be recognized as capturing a single concept
from the problem domain and they will thus become inconsistent.

Both problems are aggravated by the fact that classes provide the only means of organizing
abstractions. One means of getting around this limitation is to extend the programming
language to support what is in our terminology a supporting domain model directly. In the
next section we look at two such cases.

�������	���
������������������	����������� ���
�������"!#����$%����&(')���	����*��"�+����,�$

In [Moss96] Moss and Hosking suggest that an extension to Java supporting persistence
should be both orthogonal and transparent; principles they attribute to [Atkinson95]. What
they mean by orthogonal is independent from the type system. This implies that persistency
can be applied independently to a single object or perhaps a set of objects independent of
their respective types. Transparency relates to how many decisions a programmer must make
in the source code relating to a particular extension. Moss and Hosking point out that this
relates to the amount of control the programmer has over the extension. If an extension is
completely transparent then its use is entirely a consequence of the semantics of the core
domain model. In AOP transparency does not translate into a total lack of control but it does
imply a reliance on the semantics of the core domain model to provide the appropriate join
points.

If we look at our two situations identified as problems we see that the second relates to a lack
of orthogonality; however, the first is more complex. The distribution throughout the source
code is a problem of transparency but the fact that fundamentally similar code is duplicated
relates to the fact that in order to formulate a general policy capturing the underlying
similarity one must have fairly complete reflective facilities and the distinctions upon which
the policy is based must be discernible in the source code.

Another example of extending a language to encompass supporting domains is the Illinois
Concert C++ system (ICC++). Even though they do not use the principles of orthogonality
and transparency to explain their work they are quite appropriate. Using a simplified version

2

of C++2 as a base ICC++ handles locality, communication, thread creation and
synchronization both transparently and orthogonally as well as efficiently [Chien97].

The underlying argument in ICC++ (coming from my understanding of [Plevyak96]) is that
the transparency is critical to obtaining a respectable level of performance. If the approach
were not transparent then the programmer would be required to program to many assumptions
about the context in which an application was to execute thus crippling the attempts of the
compiler to produce efficient code. Orthogonality is also a critical aspect since many
optimizations involve locking sets of objects with different types as a single collection.

What is particularly interesting about ICC++ is that the language provides very high level
guarantee that the intermediate states of an object are not observable. This facilitates
reasoning locally about the semantics of the source code since these semantics will be
preserved by the compiler. I suggest that the goal of having the semantics defined in the core
domain model independently of any aspects is similarly important if we are to be able to
reason locally. It also helps to formulate a clear separation of responsibility between objects
and aspects.

���������
	�� ���!�
	��
�"����#�����%$

I suggest that a composition language is good at defining individual semantic domains
including both the core domain model and any supporting domain models. What a
composition language is not good at is coordinating these different domain models. This is
because in order to support the separation of concerns the coordination should be both
orthogonal and transparent.

The traditional definition of an aspect makes the distinction between aspects and objects
somewhat unclear [Lopes97]. I feel this is due to the fact that this notion encompasses a
particular supporting domain model as well as the coordination of this model with the core
domain model. For example, section 3.3 of her thesis [Lopes97] “Design Decisions and
Alternatives” relates design decisions and alternatives essentially covering the domain models
behind COOL and RIDL.

What is truly unique about an aspect is the ability to coordinate separate domain models. This
consists of linking a set of objects from one domain model with a set of object from another
domain model and then linking actions in one domain to actions in another domain.
Examples of what I consider to be coordination include: when a new instance is declared the
domain model handling storage must allocate memory for the instance; when an object needs
to be synchronized, it can be linked to a semaphore and before any of its methods are invoked
the semaphore must be seized and afterwards it must be released; choosing how to
communicate with an object based on whether it is local or remote.

In this view an object is written in a composition language and is based on the paradigm of
composing larger objects from smaller objects. In contrast an aspect coordinates objects from
a supporting domain model to implement and ensure the semantics of the core domain model.
Semantics are defined within a domain model but many nonfunctional properties such as
fairness and liveness are consequences of a supporting domain model and how it is
coordinated with the core domain model.

3

2The restrictions are similar to those adopted by Java such as no casting between pointers and
int’s, no pointer arithmetic etc.

This suggests that a general aspect language would be open ended since any supporting
domain model could be replaced or extended as needed rather than writing a new aspect
language. However, this is dependent on the ability to define the semantics within a single
domain model.

The independence of a supporting domain model from the core domain model is relatively
straight forward since the coordination always appears in the classes of the core domain
model. The inverse relationship, the independence of the semantics of the core domain model
from the supporting domain models, is more subtle.

In COOL [Lopes97] the aspects are not allowed to change the state of an object. This is
rationalized as preserving a clear separation of responsibilities. My view of coordination
implies that an aspect does not change the state of any object; rather, it links actions in one
domain model to those in another. This means that as a consequence of actions in one domain
model, actions will take place in another but the semantics of these actions must be
completely defined within their respective domain models. This is what is meant by
semantically independent.

Of course there remains the case where there is a problem with the coordination. For
example, a synchronization scheme that lets two writers modify an objects state at the same
time. From the point of view of the core domain model this is somewhat like having an error
in the compiler. The code in the core domain model is correct but its semantics are not
correctly implemented in the executable.

Now assuming that the composition language has a full reflective interface and the necessary
semantic distinctions are clear. In order to allow general policies to be formulated, of which
an aspect is an instance we only need to allow access to this reflective interface from the
coordination language in which aspects, or now policies are written. This solves some of the
confusion linked with reflective solutions to coordination problems caused by the fact that
metaobjects have no clearly defined role and in fact can do almost anything.

���������	���
�����

If we assume that the theory set forth is true then we can characterize aspect-oriented
programming as follows (somewhat paraphrasing [Kiczales97]):

Object-oriented technology provides a good fit for defining the semantics of individual
problem domains. However, many important non-functional issues cross-cut any such
domain. This situation arises because the relationship between a core domain model
and its supporting domain models is not one of composition, upon which the
object-oriented paradigm is based, but of coordination.

I feel that an important step is to automate much of work surrounding aspects. Just as many
things can be built into a compiler today I think that it may be important to write general
policies that automate the use of aspects in much the same way that memory management is
automated in many programming languages. Most people will not be interested in writing
aspects if there are already adequate solutions. However, if they feel the need to tune their
specific application then the have the possibility to do it themselves rather than being locked
in to a single domain model and its associated coordination as when it is implemented in the
language.

Another advantage is the separation of the core domain model which is an important asset to
the company who developed the software from the supporting domains that the company

4

needs but has no special interest in developing or maintaining. However, since supporting
domain models can be shared across many different applications there should be a market for
them.

The clear separation between the concepts of an object and an aspect and the underlying
composition and coordination paradigms is advantageous. It is the result of a further
separation of concerns where the coordination aspect is factored out of the specific domain
model to which it is coupled.

Unfortunately this doesn’t explain all the areas that have been represented as aspects.
Memory allocation is easily handled by this theory, however, the loop unrolling found in
[Ki czales97] is more difficult to characterize. It could be viewed as a relationship between the
language domain model and the core domain model but I personally find this unsatisfactory.

Errors fit into this theory but not as a proper aspect. Instead Errors must be separated in those
that are within a core domain model and those which are external. Those within the core
domain model often represent a programming error while an external failure represents the
inability of supporting model to perform a coordinated action. For example, physical failure
such as the loss of a connection or exceeding the available resources such as memory or
computational power (missed deadlines). However, since there is no semantic relationship
with the supporting domain model it is neither desirable nor possible to handle such
situations within the normal control flow of the core domain model. Such an analysis is
consistent with the way in which exceptions are used in embedded systems written in Ada.

���������
	����������������

This work has been funded by the Swiss Government under Project NFS-2000-46947.96 and
BBW-96.0015 as well as by the European Union under the ESPRIT program Project 21975

��������� ��!#"%$#&('*)

[Atkinson95] M. P. Atkinson and R. Morrison, “Orthogonally Persistent Object Systems”,
Int. J. Very Large Data Bases 4, 3, 319-401, 1995

[Chien97] A. Chien, J. Dolby, B. Ganguly, V. Karamcheti, X. Zhang, High Level Parallel
Programming: The Illinois Concert System, submitted for publication 1997

[Kiczales97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier and J.
Irwin, Aspect-Oriented Programming, Xerox Palo Alto Research Center, 1997

[Lopes97] C. I. V. Lopes, D: A Language Framework for Distributed Programming, Ph.D.
thesis, Northeastern University, Nov. 1997

[Moss96] J. E. B. Moss and A. L. Hosking, “Approaches to Adding Persistence to Java” , in
First International Workshop on Persistence and Java, Technical Report 96-58, Sun
Microsystems Laboratories, Nov. 1996

[Plevyak96] J. B. Plevyak, Optimization of Object-Oriented and Concurrent Programs, Ph.D.
thesis, University of Illinois at Urbana-Champaign, 1996

5

