
Dynamic Type Inference to Support
Object-Oriented Reengineering in Smalltalk

Pascal Rapicault�,
Mireille Blay-Fornarino�, Stéphane Ducasse+, Anne-Marie Dery�

� I3S University of Nice-Sophia Antipolis�

+Software Composition Group, Universit¨at Berny

Abstract

Type information is a crucial information to support object-oriented reengineer-
ing. In a dynamically typed language like Smalltalk standard static type inference is a
complex and heavily computational task. In this paper, we report how we use message
passing control and compiler extension to support dynamic inference type in Smalltalk.

1 Object-Oriented Reengineering Goals and Needs

In the context of the european esprit project Famoos, the SCG team is focusing especially
on application model capture, (i.e. supporting the documentation and the understanding of
an application) and problem detection, (i.e. supporting detection of possible problems in
regards to the requirements). The Rainbow team at University of Nice-Sophia Antipolis
was developing a dynamic type inference systems for Smalltalk. So both teams collabo-
rated having quite similar goals: capture the model underlying an operational Smalltalk
program to support the developer to modify or rewrite it. In this context, type information
of method arguments or instance variables is absolutely necessary in the following tasks:

� To compute for metrics based on coupling among classes,

� To check class coupling (Law of Demeter),

� To group classes according to their relationships,

� To support extraction of design model entities like association and aggregation,

� To detect patterns and class properties such as abstract classes, mixins, constructors,
builders, and so on.

Some commercial tools support lightweight static type inference by looking for in-
stance variable assigments in theinitialize method. Such an approach alone is not really
convincing because theinitialize method can be implemented using a composed method
[Bec97], resulting in no type information.

Static type inference techniques have been developed for dynamically typed languages
like Self and Smalltalk [BI82, Suz81, PC94, Age96, Joh86]. However, those techniques are
complex to implement and require a lot of computation power. Type inference techniques-
for compiler implementation must provide strong optimizations and distinguish between

�Bat. Essi 650 Route des Colles. B.P. 145. 06903 Sophia-Antipolis Cedex, France(blay, rapicaul,
dery)@essi.fr, http://www.essi.fr/ �blay/

yInstitut für Informatik (IAM), Universität Bern, Neubr¨uckstrasse 10, 3012 Berne, Switzerland
(ducasse)@iam.unibe.ch, http://www.iam.unibe.ch/ �(ducasse)/

1

primitive types like small integer, integer and float. In our context, we are not really inter-
ested to know if an instance variable is a small integer or an integer, the main type values
are the other domain classes defined in the reengineered application. Finally, in the con-
text of reengineering, we do not believe in ”click and doit” fully automatized systems that
reengineer object-oriented applications like the refactoring approach of Moore [Moo96],
even if such an approach could be suitable in the context of application deployement. We
strongly believe in systems that help and support the domain experts in their work but also
sollicite their knowledge about the application.

We have chosen to look at the execution of the programs and to dynamically deduce
types. The hypothesis of this work are then the coverage of tests is ”complete” and the pro-
gram is operational. Supposing these conditions are verified, we deduce for the interesting
classes and their metaclasses, the type of their variables and the signature of the methods.
We also determine the type of the temporal variables manipulated in the methods associ-
ated to the classes we want to type. Moreover, the programmer can control the deduced
type by using the offered dynamic information (number of class, list of type values taken
by variables and parameters).

Having the presented goals in mind, we experimented with a ligthweight dynamic type
inference in Smalltalk based on variable access and message passing control. We extended
the Method Wrapper and sligthly changed the Smalltalk compiler. After a short presenta-
tion of the used algorithm, we report here this experiment.

Algorithm

Let us note T the type hierarchy and the partial order relation�.

� Let us note;1 the common subtype.

8� 2 T; ; � �

� We define the function" that computes the smallest common super class of two
classes :

": T � T ! T

t1; t2! a; t1 � a; t2 � a; :9b 2 T; b � a; t1 � b; t2 � b.

� We define the functioninfer that deduces according to the current type, initially;,
the encounter type and the set of encountered types, the new current type and the
new set of encountered types.

Infer : T � T �H� ! T �H�

– ;; t; h! t; h [ftg

– t0; t; h! t; h [ftg wheret0 � t

– t0; t; h! t0; h [ftg wheret � t0

– t0; t; h! (t " t0); h [ftg where:(t � t0);:(t0 � t)

This algorithm allows one to infer the type of a variable. Applied sequentially on all
the parameters of a method, we obtain its signature.

1; corresponds in Smalltalk toUndefinedObject. In this particular case we don’t use the Smalltalk class
hierarchy.

2

2 Method Wrappers and Compiler Extension

Wrapping methods is one of the most suitable techniques to control message passing at the
level of the class [BJRF98, Duc98]. We created a new subclass of theMethodWrapper class.
The new classTypingMethodWrapper maintains a reference to the associated structure storing
type method information. We then specialized the methodvalueWithReceiver:arguments: so
that we stored the type after each invocation of the wrapped method.

To instrument the code, we extended in a simple manner the method wrappers [BJRF98]
and modified the Smalltalk compiler [Riv96]. We implemented various structures to store
types of class elements: methods, instance variables, class variables. Such structures are
responsible for storing and managing type information queries.

Typing Variable: a First Attempt. To know the type of variable, we subclassed the
classParser by the classTypingParser and redefined theassigment:startingAt: method. We also
specialized theCompiler class methodpreferredParserClass on a new subclassTypingCompiler

whose instances are used to recompile methods being typed.

TypingParser>>assignment: var startingAt: start
"variable <left arrow> (’:=’) expression => AssignmentNode"
" !!!! Change the parse tree.

The ValueNode is now a MessageNode that computes the value,
examines and stores its type."

| leftArrow param |
leftArrow := token = Character leftArrow. "left arrow"
self scanToken. "skip the left arrow or :="
self expression ifFalse: [ˆself expected: ’Expression’].
param := Array

with: (LiteralNode new value: var)
with: (LiteralNode new

value: TypingParser currentSelector)
with: (LiteralNode new

value: TypingParser theClass).
parseNode := AssignmentNode new

variable: var
value: (MessageNode new

receiver: parseNode
selector: #var:inMethod:in:
arguments: param)

leftArrow: leftArrow.
parseNode sourcePosition: (start to: self endOfLastToken)

Then we defined onObject the methodvar:inMethod:in: that is invoked when a variable is
affected and store the value of the variable.

Object>>var: varName inMethod: aSel in: aClass
DTTypeStructureRegister new

registerVarType: varName name
inMethod: aSel
in: aClass
value: self class

This first attempt was positive with regards to the time invested and the results obtained.
However, we would like to see if we extended the Smalltalk compiler using the right hot
spots. We want to have a deeper understanding of the Smalltalk compiler to evaluate the
impacts of our changes [HJ95b, Riv96].

3 Thoughts and Evaluation

The assumption that the coverage is complete is an important factor for computing the
type and for analysising the results. This assumption differs in both teams. In the Rainbow

3

team, that originally developed the algorithm, the assumption about the existence of a com-
plete coverage was strong. This is reflected also in the presented algorithm as discussed
later. The SCG team took the opposite view about the completeness of the test. Princi-
pally because in the context of application understanding, no one is sure that running the
application will simply cover all the cases. So SCG team developed another algorithm not
presented here.

The following situation illustrates the main difference. If a method is defined in a class
A and is only invoked via inheritance on instances of one of its subclasses, each algorithm
gives a different result: if there are no calls done via other subclasses or via the class B
itself the Rainbow algorithm returns a type in terms of the subclass B, because they choose
dynamic precision and assume strong complete coverage. In the same situation, the SCG
algorithm returns as type the class A, the class in which the method is currently defined.
This was needed because the goal was to avoid introducing relationships between classes
and subclasses.
Besides knowing instance variable and method types, applying dynamic type inference
helps to find other information like:

1. Some methods are never called. If we assume that the coverage is complete, we can
deducethat the method is abstract or hooked. In the same way that the Coverage
Tools based on Method Wrapper [BJRF98], pointing this out helps the developer to
decide if a method is obsolete.

2. As we explained above depending on the algorithm, a deduced type value could
be a subclass of the class defining the method itself. In the context of a complete
coverage, if no other methods of the same class exist having as type for receiver or
parameters, we can deduce that this class is abstract. Note that under the hypothesis
that the coverage is complete, inferring as type of a method a subclass of the class in
which the method is defined shows a design problem where class is bound with its
subclasses.

3. Sometimes, comparing the signature of the calls allows one to detect a method need-
ing multi-discrimination. In such a case, it’s interesting to detect it and to propose at
model level several methods capturing better the reality.

4. When the return value of a class method is an instance of the class, we probably have
found a ”constructor”. If the return value are only instances of some subclasses, the
class is abstract.

5. Finally, often the deduced type are classes of classes. This information is essential
to capture the model. But more studies should be done to really take advantages of
such an information.

4 Related and Future Work

As we already discussed, part of this work relies on the completeness of the test coverage.
The synergy between these two approaches is important and using the tests developed for
covering a program leads to better results.

[RB98] describes how they use both dynamic type inference via method wrappers and
active values [HJ95a]. Their approach is similar to ours, so we definitely plan to compare
both approaches. Moreover we want to knowto which degree our approach can be extended
to take into account their work on the determination of class relationship cardinality.

We also want to analyse memory consumption and the scalability of the approach to
large applications.

As this work is in its early stages, we have not yet exploited all the advantages of this
approach. We yet argue that it allows some detections which are not allowed by static

4

inference. We are working on the determination of other features of the model underlying
a reengineered application by a finer analysis of the obtained results.

References
[Age96] Ole Agesen.Concrete Type Inference: Delivering Object-Oriented Applications. PhD

thesis, Sun Microsystems Laboratories, 1996.

[Bec97] Kent Beck.Smalltalk Best Practice Patterns. Prentice Hall, 1997. ISBN: 0-13-476904-X.

[BI82] Alan Borning and Dan Ingalls. A type declaration and inference system for smalltalk. In
ACM Symposium on Principles of Programming Languages, 1982.

[BJRF98] John Brant, Ralph E. Johnson, Donald Roberts, and Brian Foote. Wrappers to the rescue.
In To appear in Proceedings of ECOOP’98, LNCS, page ??? Springer-Verlag, 1998.

[Duc98] Stéphane Ducasse. Evaluating Message Passing Control Techniques in Smalltalk.Journal
of Object-Oriented Programming (JOOP), 1998. To appear near the end of the year.

[HJ95a] Bob Hinkle and Ralph Johnson. The active life is the life for me.Smalltalk Report,
5(7):14–21, may 1995.

[HJ95b] Bob Hinkle and Ralph Johnson. Parametrized compiler: Making code reusable.Smalltalk
Report, 4(9):13–18, jul-aug 1995.

[Joh86] R.E. Johnson. Type-checking Smalltalk. InProceedings OOPSLA’86, pages 315–321.
ACM, sep 1986.

[Moo96] Ivan Moore. Automatic inheritance hierarchy restructuring and method refactoring. In
Proceedings of OOPSLA’96, pages 235–250. ACM, 1996.

[PC94] J. Plevyak and A. Chien. A precise concrete type inference for object-oriented languages.
In Proceedings of OOSPLA’94, pages 324–340, 1994.

[RB98] Don Roberts and John Brant. ”good enough” analysis for refactoring. InECOOP’98
International Workshop on Object-Oriented Reengineering, 1998.

[Riv96] Fred Rivard. Smalltalk : a Reflective Language. InProceedings of REFLECTION’96,
pages 21–38, April 1996.

[Suz81] N Suzuki. Inferring types in smalltalk. In8th Annual Symposium on Principles of Pro-
gramming Languages, pages 187–199, 1981.

5

