
TheFAMOOS Object-Oriented
Reengineering Handbook

http://www.iam.unibe.ch/∼famoos/handbook/

Holger B̈ar, Markus Bauer
Oliver Ciupke, Serge Demeyer

St́ephane Ducasse, Michele Lanza
Radu Marinescu, Robb Nebbe

Oscar Nierstrasz, Michael Przybilski
Tamar Richner, Matthias Rieger

Claudio Riva, Anne-Marie Sassen
Benedikt Schulz, Patrick Steyaert

Sander Tichelaar, Joachim Weisbrod

Version: October 15, 1999
(As Released to the general Public)

Editors of the Final Version: Stéphane Ducasse and Serge Demeyer
Previous Editors: Oliver Ciupke, Sander Tichelaar

This work has been funded by the European Union under the ESPRIT program Project
no. 21975 (FAMOOS) as well as by the Swiss Government under Project no.

NFS-2000-46947.96 and BBW-96.0015.

http://www.iam.unibe.ch/~famoos/handbook/


2



Contents

Preface 7

How to Read this Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

Annotated Bibliograph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

1 The Need for Object-Oriented Reengineering 11

1.1 The FAMOOS Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Basic Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 The Reengineering Life-cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

I Techniques 19

2 Techniques 21

2.1 Metrics (by M. Bauer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Program Visualisation and Metrics(by M. Lanza). . . . . . . . . . . . . . . . . . . . . . 31

2.3 Grouping(by O. Ciupke). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.4 Reorganisation(by B. Schulz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

2.5 Reverse and Reengineering Patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

II Reverse Engineering 107

3 Reverse Engineering Pattern 109

3.1 Patterns for Reverse Engineering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109

3.2 Clusters of Patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109

3.3 Overview of Forces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110

3.4 Resolution of Forces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111

3.5 Format of a Reverse Engineering Pattern. . . . . . . . . . . . . . . . . . . . . . . . . . .111



4 CONTENTS

4 Cluster: First Contact 113

READ ALL THE CODE IN ONE HOUR (by S. Demeyer, S. Ducasse, S. Tichelaar) . . . . . . 115

SKIM THE DOCUMENTATION (by S. Demeyer, S. Ducasse, S. Tichelaar). . . . . . . . . . . 118

INTERVIEW DURING DEMO (by S. Demeyer, S. Ducasse, S. Tichelaar). . . . . . . . . . . . 121

5 Cluster: Extract Architecture 125

GUESSOBJECTS (by S. Demeyer, S. Ducasse, S. Tichelaar). . . . . . . . . . . . . . . . . . 127

CHECK THE DATABASE (by S. Demeyer, S. Ducasse, S. Tichelaar). . . . . . . . . . . . . . 130

6 Cluster: Focus on Hot Areas 133

INSPECT THELARGEST (by S. Demeyer, S. Ducasse,S. Tichelaar) . . . . . . . . . . . . . . 135

EXPLOIT THE CHANGES (by S. Demeyer, S. Ducasse,S. Tichelaar) . . . . . . . . . . . . . 139

V ISUALIZE THE STRUCTURE (by S. Demeyer, S. Ducasse,S. Tichelaar) . . . . . . . . . . . 142

CHECK METHOD INVOCATIONS (by S. Demeyer, S. Ducasse,S. Tichelaar) . . . . . . . . . 144

STEP THROUGH THEEXECUTION (by S. Demeyer, S. Ducasse,S. Tichelaar) . . . . . . . . 146

7 Cluster: Prepare Reengineering 149

WRITE THE TESTS (by S. Demeyer, S. Ducasse, S. Tichelaar) . . . . . . . . . . . . . . . . 150

REFACTOR TOUNDERSTAND (by S. Demeyer, S. Ducasse, S. Tichelaar). . . . . . . . . . . 151

BUILD A PROTOTYPE (by S. Demeyer, S. Ducasse, S. Tichelaar). . . . . . . . . . . . . . . 152

FOCUS BY WRAPPING (by S. Demeyer, S. Ducasse, S. Tichelaar) . . . . . . . . . . . . . . 153

8 Cluster: misc 155

CONFERWITH COLLEAGUES (by S. Demeyer, S. Ducasse,S. Tichelaar). . . . . . . . . . . 156

9 Pattern Overview 157

III Reengineering 165

10 Reengineering Patterns 167

10.1 Reengineering Patterns: a Need. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167

10.2 Reengineering Patterns and Related Work. . . . . . . . . . . . . . . . . . . . . . . . . .168

10.3 Form of a reengineering pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168

10.4 Pattern Navigation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170

11 Cluster: Type Check Elimination 175

TYPE CHECK ELIMINATION IN CLIENTS (by S. Ducasse, R. Nebbe and T. Richner) . . . . 176

TYPE CHECK ELIMINATION WITHIN A PROVIDER HIERARCHY (by S. Ducasse, R. Nebbe and
T. Richner) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181



CONTENTS 5

12 Cluster: Duplicated Code 187

DETECTION OFDUPLICATED CODE (by M. Rieger and S. Ducasse) . . . . . . . . . . . . . 188

13 Cluster: Improving Flexibility 193

REPAIRING A BROKEN ARCHITECTURE (by H. B̈ar and O. Ciupke) . . . . . . . . . . . . . 194

TRANSFORMING INHERITANCE INTO COMPOSITION (by B. Schulz) . . . . . . . . . . . . 199

DISTRIBUTE RESPONSIBILITIES (by H. B̈ar and O. Ciupke) . . . . . . . . . . . . . . . . . 207

USE TYPE INFERENCE (by M. Bauer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213

A Glossary 219



6 CONTENTS



Preface

How to Read this Book

The book is organized into five parts:

I. Techniques. This first part describes various techniques that help during the reengineering life cycle.
Source code metrics automatically measure properties of the software product and help in focusing
the reengineering task by pin-pointing key classes of the system. Then the annotation of basic graphs
with metrics reveals semantic structures that are hidden in plain source code and are generally helpful
when presenting large amounts of data. Grouping is a way of building more abstract views that are
based on the elementary, often overly detailed views from the source code in order to reveal higher-
level problems. Finally, an approach to reorganisation is presented based on refactorings and design
patterns.

II. Reverse Engineering

and III. Reengineering. The second and third parts form the core of the book. They consists of so-called
reengineering patterns. Reengineering patterns capture tacit knowledge about when and how to
apply reverse and reengineering tools and techniques as well as their implications. A reengineering
pattern is somewhat like a design pattern. However, while a design pattern presents a solution to
a design problem, a reengineering pattern relates two solutions (an existing solution and a target
solution) via a process which transforms the one into the other. The reengineering patterns in the
book tackle well known reverse and reengineering techniques often encountered in object-oriented
programming.

IV. Tools. The third part contains a description of some of the tool prototypes that have been developed in
the context of the Famoos project. Without tools, reengineering is an almost impossible task because
of the huge amount of information comprising most legacy systems. To be able to exchange reengi-
neering data between different tools, an information exchange model called FAMIX is proposed.

Background. The last part contains an introduction into software metrics and some discussions about the
use of metrics when dealing with object oriented software.



8 CONTENTS

Annotated Bibliography

Several good books exist today on how to improve the development of applications at several levels. We
invite the reader to read these books in order to have a better overview of the field. This sections contains
an annotated bibliography of material which is relevant to OO Reengineering. We did not aim for com-
pleteness, but rather selected information sources we have found interesting. Omission of any work does
not imply that the work is less significant than those annotated here.

Software Engineering In General

• Both [Som96] and [Pre94] provide a broad overview of software engineering. Their books cover
issues like reengineering and reverse engineering, CASE tools and metrics.

• [Dav95] provides lots of good practical advice on how to tackle software projects, some of which
motivates work on reengineering.

Object-Oriented Engineering

• [GR95] provides a decision framework for managing OO projects. Rather then imposing a particular
software process or method, it tells you how you can built your own.

Conferences, Journals and Special Issues

• [CT97] is a special issue on object-oriented reengineering.

• [Arn92] is a book collecting various early papers on reengineering.

• [WC94], [WN96] are more recent special issues on reverse and reengineering.

• Since 1994, there is a yearly conference on reverse engineering. It is called WCRE (Working Con-
ference on Reengineering). The proceedings from 1995 onwards are published by IEEE Computer
Society Press.

• ICSM (International Conference on Software Maintenance) and EuroMICRO (Software Mainte-
nance and Reengineering) are other conferences focussing more on reengineering and maintenance.
Their proceedings are also published by IEEE.

• The Journal of Software Maintenance – Research and Practicveis a journal dedicated to software
maintenance and published bi-mothly by Wiley and Sons.

Metrics

• [FP97] is the seminal work on metrics but does cover very little on object-oriented metrics.

• [HS96a] provides an overview of the state of the art in object- oriented metrics.

• [LK94] is a pragmatic handbook on how to use metrics to check object-oriented source code.



CONTENTS 9

Object-Oriented Design

• [Rie96] presents a list of object-oriented design heuristics using C++.

• [Mey97] elaborates on Design by Contract.

• Design patterns are discussed in many books, most notably in [GHJV95] and in proceedings of the
different PLoP conferences.

• [Lak96] describes issues in building large scale (C++) systems including design considerations such
as layering and more practical issues such as finding efficient include structures.

Information Exchange (Meta-Meta Models)

• CDIF (CASE data interchange format). Seehttp://www.eigroup.org/

• MOF (Meta-Object Facility) and XMI. Seehttp://www.omg.org/

Idioms

The books that follow contain practical information on exploiting programming language features to write
good code.

• [Bec97] contains a set of idioms related to the SMALLTALK language. The main focus of the book
is to show how to write code that communicate its intent.

• [Mey98, Mey96] Meyer on the one hand focusses very much on the specific issues of C++ and explains
complicated concepts such as theconst mechanism in detail, or how to replace the default memory
manager. On the other hand, Meyer also explains general OO concepts, like multiple inheritance,
and its pitfalls in C++.

• [Cop92] Coplien strives to teach C++ fluencyby well known idioms like the orthodox canonical class
form. He shows examples of how C++ can be used in a functional style. Some of the desing idioms
presented in this book have been later rewritten into a pattern language.

UML, Object-Oriented Documentation

• [Fow97b] provides a fast introduction to UML including the notion of “perspectives” which is quite
interesting from a reverse engineering point of view because it is a way to specify how a certain
UML diagram should be interpreted (i.e., on a Conceptual, Specification or Implementation level).

• [BRJ98], [RJB99] provide a good user reference and language reference for UML.

• [Joh92],[OQC97] present how patterns can support the documentation of a frameworks.

• [Bro96], [Wuy98], [PK98] present some possible approaches to support design patterns extraction.

• [FMvW97] shows how design patterns can be supported at the development environment level.

• [SLMD96] presentsReuse Contractsas a way to document frameworks for evolution.

• [WCH87] presents some discussion about variety of composition relationships.

http://www.eigroup.org/
http://www.omg.org/


10 CONTENTS

Refactoring and Code Smells

• [Fow99] summarises practical experience with refactorings and code smells.

• The Ph.D. work of Opdyke [Opd92] on Refactoring resulted in a number of papers describing incre-
mental redesign performed by humans supported by refactoring tools [OJ93], [JO93].

• [RBJ97b] describes the Refactoring Browser, a SMALLTALK tool that represents the state of the art
in the field is described in and can be obtained fromhttp://st-www.cs.uiuc.edu/.

• Both Casais [Cas91], [Cas92], [Cas94], [Cas95a] and Moore ([Moo96]) report on tools that optimise
class hierarchies without human intervention. Schulz et al. illustrate the feasibility of refactorings
on a subset of C++ [SGMZ98b].

• There exists a web-page discussing ”code smells”, i.e. suspicious symptoms in source code that
might provide targets for refactoring. Seehttp://c2.com/cgi/ wiki?CodeSmells

Reverse and Reengineering Taxonomy

• [CCI90] (reappeared in [CC92]) provides a reverse and reengineering taxonomy. Unfortunately, it
does not cover OO specific issues like refactoring.http://www.tcse.org/ revengr/ taxonomy.html

Organisations

• IEEE Computer Society’s Technical Committee on Reverse Engineering. Seehttp://www.tcse.org/
revengr

• The Reengineering Forum (an industry association). Seehttp://www.reengineer.org/

http://st-www.cs.uiuc.edu/
http://c2.com/cgi/wiki?CodeSmells
http://www.tcse.org/revengr/taxonomy.html
http://www.tcse.org/revengr
http://www.tcse.org/revengr
http://www.reengineer.org/


Chapter 1

The Need for Object-Oriented
Reengineering

Reengineering legacy systems has become a vital matter in today’s software industry. In the past few years,
most of the reengineering efforts were focussed on systems written in traditional programming languages
such as COBOL, Fortran and C. But recently an increasing demand for reengineering object-based systems
has emerged. This recent evolution is not caused by failure of the object-oriented paradigm. Rather, it
illustrates that the mere application of object-oriented techniques is not sufficient to deliver flexible and
adaptable systems. This is due to a number of obvious problems:

• Lack of experience. It requires several years of experience to fully exploit the potential of the object-
oriented paradigm. Such experience is often built up during the initial stages of a project, at the time
when the most crucial parts of the system are implemented.

• Hybrid programming languages.The use of hybrid languages –like C++ and Ada–, combined with
a ”learn on the job” approach, prevents programmers from making the necessary paradigm shift.

• Technology expansion.Legacy systems could not benefit from emerging standards (e.g., UML,
CORBA), technological advancements (e.g., design patterns, architectural styles) and extra language
features (e.g., C++ templates, Ada inheritance).

These problems are accidental in nature: given proper training and sufficient tool support they will eventu-
ally be resolved. So why should one worry about object-oriented reengineering, since within a few years
there won’t be any more object-oriented legacy systems? In fact there a more fundamental problem.

The law ofsoftware entropydictates that even when a system starts off in a well-designed state, require-
ments evolve and customers demand new functionality, frequently in ways the original design did not
anticipate. A complete redesign may not be practical, and a system is bound to gradually lose its original
clean structure and deform into a bowl of ”object-oriented spaghetti” [WH92], [Cas98], [BMMM98].

Many of the early adopters of the object-oriented paradigm have experienced such software entropy ef-
fects. Their systems are developed using object-oriented design methods and languages of the late 80s
and exhibit a range of problems that prohibits them meeting the evolving requirements imposed by their
customers. Their systems have become overly rigid thus compromising thier competitive advantage and as
a consequence object-oriented reengineering technology has become vital to their business.

1.1 The FAMOOS Project

The need for object-oriented reengineering technology has been recognised by two of the leading European
companies, namely Daimler-Benz and Nokia. Together with the University of Berne, Forshungszentrum



12 The Need for Object-Oriented Reengineering

Informatik, SEMA Spain and Take5 they started a research project –namedFAMOOS 1 – to investigate tools
and techniques for dealing with object-oriented legacy systems.

The handbook you are reading right now is one of the main results of theFAMOOS project. It collects
techniques and knowledge on the problem of software evolution with a special emphasis on object-oriented
software. Most of the subject matter is not ”new” in the sense that it represents new discoveries. Rather the
handbook regroups much of the knowledge about redesign, metrics and heuristics into a single work that
is focused on object-oriented reengineering.

1.1.1 Case Studies

All the techniques described in the handbook have been verified on six industrial case-studies, ranging
from 50.000 lines of C++ up until 2,5 million lines of Ada. Figure1.1provides a quick overview of all of
theFAMOOS case studies.

Figure 1.1: Overview of theFAMOOS Case Studies

• Pipeline Planning.The system supports the planning of liquid flow in a pipeline between multiple
stations. The reengineering goal was to extract design from source-code, in order to reduce the cost
of implementing similar systems, probably in other languages. The system is written in C++ and is
a candidate for being rewritten in Java or Smalltalk.

• User Interface.This software provides graphical representations of telecommunication networks to
telecom operators. The reengineering goal was to increase the flexibility of the software, i.e. improve
its portability, facilitate addition of functionality and enhance tailorability towards customers. The
system is written in C++.

• Real-time System.This software provide operating system features for embedded real-time con-
trolling of hardware. The reengineering goal was to improve modularity for gaining shorter edit-
compile-run cycles. The system is written in a mixture of C and C++.

• Mail Sorting. A control system for machines sorting mail envelopes. The software is highly config-
urable, to deal with the different ways countries over the world handle letters. The software itself is
based on an internally developed distributed architecture which hindered the future evolution. The

1If you want to read more about theFAMOOS project and its results, we suggest to browse the web-sites offered by the respective
project partners:http://dis.sema.es/ projects/ famoos/; http://www.iam.unibe.ch/ famoos/; http://www.fzi.de/ prost/

http://dis.sema.es/projects/famoos/
http://www.iam.unibe.ch/~famoos/
http://www.fzi.de/prost/


1.1 The FAMOOS Project 13

reengineering goal was to investigate how new technology could improve the portability and scala-
bility (e.g. CORBA, Java, HTML). The system is written in a mixture of C and C++.

• Cellular Network Management.This case-study concerned a management system for digital net-
works. The main goal of the reengineering project was to unbundle the application, i.e. split the
system into sub-products that can be developed and sold separately. The system is written in a
mixture of C and C++.

• Space Mission Management.A set of applications that in different combinations form systems to
support the planning and execution of space missions. The reengineering goal was identify com-
ponents in order to improve reliability and facilitate system maintenance. The system is written in
Ada.

1.1.2 Reengineering Goals

From this list of case studies some interesting information can be learned. First of all, the goals and
motivations for reengineering the software systems are quite diverse, yet some common themes emerge.

• Unbundling. Unbundle the software system into subsystems that can be tested, delivered and mar-
keted separately.

• Performance.Improving performance is sometimes a goal and sometimes considered as a potential
problem once the system is reengineered.

• Port to other Platform. Porting to other (user-interface) platforms, sometimes requiring overall
changes to the system.

• Design Extraction.Always a necessary step in understanding the system; sometimes even an explicit
reengineering goal.

• Exploitation of New Technology.This may range from new features of the programming language
up until upcoming standards (CORBA and UML).

1.1.3 Architectural Problems

Besides the motivations for reengineering problems, the case studies experience recurrent problems that are
perceived as key obstacles for achieving the stated reengineering goals. Solving these problems requires
significant human intervention since it involves an intimate understanding of and considerable changes to
the architecture of the legacy system.

• Insufficient Documentation.All of the case studies face the problem of non-existent, unsatisfactory or
inconsistent documentation. Tools to document module interfaces, maintain existing documentation
and visualise the static structure and dynamic behaviour are required.

• Lack of Modularity.Most of the case studies suffer from a high degree of coupling between classes
/ modules / sub-systems that hampers further software development (compilation, maintenance, ver-
sioning, testing). A solution will involve metrics to help detect such dependencies and refactoring
tools to help in resolving them.

• Duplicated Functionality.In many of the case studies several modules implement similar functional-
ity in a slightly different way. This common functionality should be factored out in separate classes
/ components, but tools are missing which help in recognising similarities and in restructuring the
source code.



14 The Need for Object-Oriented Reengineering

• Improper Layering.In a few case studies the user-interface code is mixed in with the ”basic” func-
tionality, creating problems in porting to other user-interface platforms. A general lack of separa-
tion, or layering, is observed with regard to other aspects (distribution, database, operating system)
in other case studies. In contrast to a lack of layering, one case study suffers from unnecessary
layers. Overly layered modules resulted from each successive developer encapsulating the module
with a new concept instead of revising it. This problem needs tool support for defining layers and
subsequent correction of broken layers.

1.1.4 Code Clean Up

There are quite a number of problems that have to do with ”code clean up”. Many of these problems arise
from the lack of familiarity with the new object-oriented paradigm. But several years of development with
sometimes geographically dispersed programming teams that change over time exacerbate these problems.
Since they involve behaviour preserving restructuring of code only, those problems could be identified and
repaired almost mechanically.

• Misuse of Inheritance.Inheritance is used as a way to add missing behaviour to one superclass. This
is a often a result of having a method in a subclass being a modified clone of the method in the
super-class.

• Missing Inheritance.In some cases, programmers have duplicated code instead of creating a sub-
class. In other parts, long case statements that discriminate on the value of a variable are used instead
of method dispatching on a type.

• Misplaced Operations.Operations on objects were defined outside the corresponding class. Some-
times this was necessary in order to patch ”frozen” designs.

• Violation of Encapsulation.This was observed in extensive use of the C++ friend mechanism. Also,
software engineers rely on the strong typing of the compiler to ensure certain constraints, and af-
terwards use typecasts to circumvent the safety-net. In some cases this leads to redundant type
definitions which contaminate the name space.

• Class Misuse.This problem has been named ”C style C++”, although it is observed in Ada as well.
It refers to the usage of the classes as a structuring mechanism for namespaces only. Sometimes this
is necessary to interface with external non object-oriented systems.

1.1.5 Requirements

Last but not least, the case studies impose a number of constraints on the techniques and heuristics pre-
sented in this book.

• Language Independent.All material in this handbook is applicable on all major object-oriented
languages, in particular C++ and Ada, Java and Smalltalk.

• Scalable.Some techniques and heuristics scale better than others. Rather than restricting ourselves
to those techniques that can deal with small as well as large systems, we choose to specify for every
technique the scale of systems it can be applied upon.

• Tool Support.There is a heavy emphasis on available tool support for all techniques covered in the
book.



1.2 Basic Terminology 15

1.2 Basic Terminology

Before diving in the specific solutions for object-oriented reengineering, it is useful to agree on some termi-
nology. We rely on the taxonomy of Chikofsky and Cross which is well-accepted within the reengineering
community [CCI90]. For terminology specific to the object-oriented paradigm, we draw upon the design
pattern book [GHJV95].

• Reverse engineering.Originally used for the process of analysing hardware to discover its design,
the term refers to the process of recovering information from an existing software system. In general
reverse engineering seeks to recover information at a higher level of abstraction such as design in-
formation from code. Reverse engineering does not involve modifying the software system: it may
be done as a stage in the reengineering process (model capture), as part of an effort to document the
system, or as an attempt to extract reusable components from the software.

• Forward engineering.Refers to the usual process of software engineering: moving from require-
ments to high-level design, to progressively lower design levels and to implementation. While it
may seem unnecessary to introduce a new term, the adjective ”forward” has come to be used where
it is necessary to distinguish from reverse engineering and reengineering.

• Reengineering.Reengineering is the modification of a software system which in general requires
some reverse engineering to be done. That is, reengineering requires that we first recover a view of
the system at a higher level of abstraction than the code itself, then make changes to this view and
implement these changes at the code level again. Simplistically, reengineering thus involves moving
from code to model (reverse engineering), making modifications to the model, and then moving to
”better” code (forward engineering).

There is some discussion as to whether or not reengineering involves a change in the functionality
of the system – what it does for the user – since practically speaking reengineering almost always
modifies the existing behaviour of the system, and indeed is usually motivated by a need to meet new
requirements.

• Restructuring. Restructuring refers to transforming a system from one representation to another
while remaining at the same abstraction level. At implementation level, this usually means changing
the code structure without changing the semantics. However, even if the semantics are not changed
at implementation level, restructuring might affect higher levels of abstraction (changing design
vocabulary without affecting the implementation).

• Refactoring. Refactoring is restructuring within an object-oriented context. Refactoring involves
tearing apart classes into special and general purpose components and rationalising class interfaces.
The principle behind refactorings is that some relatively simple transformations (e.g., renaming a
class, renaming a method, moving a method or attribute to another class) are combined into quite
powerful semantic preserving transformations (i.e., componentise parts of a class, introduce a bridge
design pattern).

1.3 The Reengineering Life-cycle

In this section we present theFAMOOSreengineering life-cycle. We regard reengineering as an evolutionary
process consisting of the following six stages (see also figure1.2):

1. Requirements analysis: identifying the concrete reengineering goals.

2. Model capture: documenting and understanding the design of a legacy system.

3. Problem detection: identifying violations of flexibility and quality criteria.



16 The Need for Object-Oriented Reengineering

4. Problem analysis: selecting a software structure that solves a design defect.

5. Reorganisation: selecting the optimal transformation of the legacy system.

6. Change propagation: ensuring the transition between different software versions.

Figure 1.2: The Reengineering Life-cycle

Several iterations of these re-engineering stages might be needed before achieving a stable system with the
desired degree of generality and adaptability.

Requirements Analysis. The specification of the criteria that the new, reengineered software must fulfill
(for example, faster network performance).

Model Capture. In order to understand and to manipulate an object-oriented legacy system, it is nec-
essary to capture its design, its architecture and the relationships between different elements of its im-
plementation. A common problem in legacy systems is the lack of documentation. As a consequence, a
preliminary model capture is often unavoidable, in order to document the system and the rationale behind
its design. This requires reverse-engineering the legacy system to extract design information from the code.

Problem Detection. According to the reengineering requirements, problem areas within the legacy sys-
tems need to be detected. This requires methods and tools to inspect, measure, rank and visualise software
structures. The problem areas have typically properties that deviate strongly form the properties as they
are defined in the requirements. Detecting the problems with respect to flexibility requires a definition of
these deviations (for example through thresholds on metrics). Problem detection can be based on a static
analysis of the legacy system (i.e. analysing its source code or its design structure), but it can also rely on
a dynamic usage analysis of the system (i.e. an investigation of how programs behave at run-time).

Problem Analysis. Upon detection of possible defects in the legacy system, software developers have
to analyse them; that is, match detected problems against unmet requirements and understand how they
concretely affect the software. Because applications are organised as intricate webs where classes, objects
and methods may participate in various interactions, a detected problem may have to be decomposed into
elementary sub-problems. A selection follows of appropriate target software structures - such as design
patterns - that impart the software with the desired flexibility and functionality. A combination of such
structures may be necessary to handle the particular design defect at hand. A prerequisite for problem
analysis is an identification and specification of software structures to serve as the targets of reengineering,
and a classification that allows to look for target structures corresponding to particular flexibility criteria or
functional requirements.



1.3 The Reengineering Life-cycle 17

Reorganisation. This phase of reengineering consists in physically transforming software structures ac-
cording to the operations selected previously. This requires methods and tools to manipulate and edit soft-
ware systems, to reorganise and recompile them automatically, to debug them and check their consistency,
and to manage versions of software.

Change Propagation. The process of establishing a revised system throughout a corporate software
environment. This might involve reengineering methodology that supports dissemination of improvements
in more than one step.



18 The Need for Object-Oriented Reengineering



Part I

Techniques





Chapter 2

Techniques

To reengineer and reverse engineer a software system one needs a range of techniques. This chapter
provides a summary of the techniques investigated within theFAMOOS project.

Metrics are definitively appealing as support for understanding huge systems [DD99], [DDL99], [Bau99].
Section2.1presents a list of the principal metrics and discussed their possible use and applicability.

Program Visualization is well suited to help to understand huge systems [DDL99], [Lan99]. Section2.2
presents how the combination of simple graph layouts and metrics gives a quick means to understand
and analyse an application.

Abstracting from the code contributes to the understanding of the system and can help to detect certain
flaws [Ciu99]. Section2.3 presents how grouping entities at another level of abstraction supports a
first analysis of the system.

Refactoring is now a well-known technique that helps behavior transforming code change [JO93], [RBJ97b],
[Fow99]. Section2.4will focus more on advanced techniques based on design pattern based trasnfor-
mations.



22 Techniques

2.1 Metrics

Author: Markus Bauer

2.1.1 Introduction

What are software metrics?– Formally, they measure certain properties of a software project by map-
ping them to numbers (or other symbols) according to well-defined, objective measurement rules. The
measurement results are then used to describe, judge or predict characteristics of the software project with
respect to the property that has been measured. Usually, measurements are made to provide a foundation
of information upon which decisions about software engineering tasks can be both planned and performed
better.

Although software metrics can be used to measure properties of the software development processes as
well as organisations that produce software, we will only deal with software product metrics. These metrics
measure properties of the source code of a software project and are the most interesting ones within the
context of reengineering.1

To illustrate the concept of a software product metric, consider one of the most famous software metrics,
Lines of Code. This metric measures the size of a piece of source code. We use this example to introduce
the format which we will use to describe the metrics in this text: Each metric is presented with an acronym
and its full name; a scope, explaining what entities of the software system are being measured (the system
as a whole, a class,. . . ); a category (the metrics in this text can be grouped into certain categories, see
below); a (detailed) description, defining the metric and thus giving the measurement rule; related metrics
that measure the same properties and references pointing to the original paper, where the metric has been
defined first.

LOC – Lines Of Code.

Scope System, Class, Method

Category Complexity

Description Measures the size of a piece of source code by counting its lines.Since the size of some
source code can be seen as an indicator of its complexity,LOC is often used as a complexity
metric or as an indicator on how much effort required to implement that piece of code.

The line counting is usually done with respect to a certain coding standard which defines pre-
cisely what constitutes a line of code in a particular programming language. This is necessary
for obtaining comparable, well-defined measurement results.

See also –

References [Hum97] provides a good discussion of all aspects related toLOC.

Why are software metrics important when reengineering (object oriented) legacy systems?– Software
metrics support numerous reengineering tasks, because they help to focus reengineering efforts. They aid
in forming an initial understanding of the legacy system and can often uncover hints about design flaws
that that are obstructing the modification and extension of the system. Metrics lend themselves we to
automatization and with appropriate tools they can provide easy access to meaningful information about
the source code without requiring you to read through all the source code by hand. Instead you can use the
information to make a more efficient study of the source code based on the points of interest indicated by
the metrics results.

1Note, however, that process metrics or metrics that measure resources of an organisation should still be applied in reengineering
projects to support the project management, but this is beyond the scope of this text.



2.1 Metrics (by M. Bauer) 23

The next section of this text gives an overview over some important object-oriented software metrics and
explains some basic properties that can be measured by them. This provides the background needed to
present how metrics can be used during reengineering tasks through some some typical usage scenarios
based on some of these metrics. We believe that learning how metrics are applied in these usage scenarios
will illustrate ideas on how to use metrics in your own reengineering projects.

2.1.2 Some Important Metrics

In this section, we present some object oriented software metrics, that have proven to be particularly use-
ful2. These metrics fall into several categories depending on thes aspects of a system they measure. We
have identified the following categories:complexitymetrics,couplingmetrics,cohesionmetrics andinher-
itance treemetrics.

2.1.2.1 Complexity Metrics

Complexity metrics measure thecomplexityof an entity of a system. The metrics presented here measure
the complexity of a class. By the term complexity of a piece of software or source code, we usually try to
describe how much effort has to be spent by a software engineer to understand, write or modify that piece
of software – code that is difficult to read and understand is considered as complex. Since measuring the
complexity directly is not possible (since we would have engineers read the code and check how much time
they needed to understand it), we use some metrics to estimate that complexity. The metricLOC (p. 22),
mentioned above, is an example of such a complexity metric.

One of the well established metrics to measure the complexity of a class is:

WMC – Weighted Method Count.

Scope Class

Category Complexity

Description Measures the complexity of a class by adding up the complexities of the methods defined in
the class.Thus,

WMC =
n∑
i=1

ci

whereci denotes a complexity measurement of methodi.

Complexity measurements for methods are usually given by code complexity metrics like
LOC (p. 22) or the McCabe cyclomatic complexity. The McCabe cyclomatic complexity
measures the complexity of some code by taking into account the decision structure of the
code, i.e. code that contains a lot of loops orif-then-else-constructs is considered more
complex.

See also NOM (p. 24) is a special case of this metric – all method complexities are assumed to be 1.

References [CK94], [CS95], [EBD99]

2Chapter??contains a survey and critiques on a large amount of metrics, we used that survey to select the metrics presented here.
Additionally, we recommend [LK94] as a good textbook on metrics.



24 Techniques

A special case ofWMC(which is very simple to compute) is:

NOM – Number Of Methods.

Scope Class

Category Complexity

Description Measures the complexity of a class by counting the number of methods defined in that class.

See also WMC(p. 23)

References [HS96a]

Obviously, complexity metrics play an important role when reengineering software systems: classes with
high complexity measurements are difficult to understand and consequently difficult to change. For details,
check the scenarios in sections2.1.3.1-2.1.3.4.

2.1.2.2 Coupling Metrics

Another important aspect when dealing with a legacy system is the coupling between classes. A class is
coupledto another class, if it depends on (or knows) that class, for example by accessing variables of that
class, or by invoking methods from that class.

DAC – Data Abstract Coupling.

Scope Class

Category Coupling

Description Measures coupling between classes that results from attribute declarations.

DAC counts the number of abstract data types defined in a class. Essentially, a class is an
abstract data type, thereforeDAC reflects the number of declarations of complex attributes,
i.e. attributes that have another class of the system as a type.

See also RFC(p. 24), CBO – Coupling Between Objects[CK94], NIV – Number of Instance Variables
[LK94]

References [LH93], [HM95], [HM96]

The following metric is a coupling metric as well; however, the complexity of the class affects the mea-
surement, thus it cannot be considered as a pure coupling metric.

RFC – Response Set For A Class.

Scope Class

Category Complexity, Coupling

Description Measures complexity and coupling properties of a class by evaluating the size of the response
set of the class, i.e. how many methods (local to the class and methods from other classes)
can be potentially invoked by invoking methods from the class.

More formally,RFC for a classC is defined asRFC = |RS|, where the response setRS
is given by



2.1 Metrics (by M. Bauer) 25

RS = M ∪
⋃
m∈M

Rm

M is the set of methods defined inC andRm is the set of methods called by methodm ∈M .

See also DAC (p. 24), MPC – Message Passing Complexity[LH93]

References [CK94]

Why are we interested in the coupling between classes? – Classes, that are tightly coupled cannot be
seen as isolated parts of the system. Understanding or modifying them requires that other parts of the
system must be inspected as well. Conversely, if other parts of a system get changed, classes with high
coupling measurements are more likely to be affected by these changes (see scenario in section2.1.3.3).
Additionally, classes with high coupling tend to play key roles in the system, making them a good starting
point when trying to understand an unfamiliar legacy system (see scenario in section2.1.3.1).

2.1.2.3 Cohesion Metrics

Thecohesionof a class describes how closely the entities of a class (such as attributes and methods) are
related. Often, cohesion is measured by establishing relationships between methods of the class in the case
where the same instance variables are accessed. A useful metric measuring this property is:

TCC – Tight Class Cohesion.

Scope Class

Category Cohesion

Description Measures the cohesion of a class as the relative number of directly connected methods, where
methods are considered to be connected when they use at least one common instance variable.

More formallyTCC for a classC is defined as follows: Let

NDC = |{(m,n) | methodsm,n access a common instance variable}|

be the number of connected methods andNPC = n(n−1)
2 the possible number of connected

methods, then

TCC =
NDC

NPC

See also LCOM – Lack of Cohesion On Methods[CK94]

References [BK95], [HM95], [HM96], [EDL98]

Cohesion is an important concept: good object oriented design styles usually require that classes have high
cohesion, since they should encapsulate concepts that belong together. Classes with low cohesion often
represent violations to a flexible, extensible or reusable design. All of these are issues that must be dealt
with during reengineering projects. The scenario in section2.1.3.2further deals with this issues.



26 Techniques

2.1.2.4 Inheritance Tree Metrics

A basic concept that is central to object-oriented systems isinheritance. Through inheritance, relationships
between objects can be modelled (for example theis-a relationship). Moreover, inheritance is often used
to allow for some reuse of existing classes. Accordingly, measuring properties of the inheritance tree of a
system often gives interesting results. Some simple metrics relating to the inheritance tree and its layout
are:

DIT – Depth in Inheritance Tree.

Scope Class

Category Class Hierarchy

Description Measures the depth of a class in the system’s inheritance tree.

The DIT-value for a classC is defined as length of the longest path in the inheritance tree
from the root class of the system toC.

See also —

References [CK94]

NOC – Number Of Children.

Scope Class

Category Class Hierarchy

Description Counts the number of children (direct subclasses) of a class.

See also NOD (p. 26)

References [CK94]

NOD – Number Of Descendants.

Scope Class

Category Class Hierarchy

Description Counts the number of descendants (direct and indirect subclasses) of a class.

See also NOC(p. 26)

References [TSM95]

Obviously, the inheritance metrics presented above may be used to measure a special case of coupling – the
usage of classes through inheritance relations. For example, classes with lowDIT values and highNOC-or
NOD-values are classes that affect a lot of other classes, because they are (direct or indirect) super classes
to them. Changes to such classes are likely to require changes in the subclasses. We believe, however, that
inheritance based properties of a system are more easily understood through visualising the inheritance
tree.

Recently, more sophisticated metrics have been defined that measure the amount of reuse in an inheritance
tree. Because of their complexity, these metrics are outside the scope of this text, we refer you to chapter
?? for a description of these metrics.



2.1 Metrics (by M. Bauer) 27

2.1.3 Usage Scenarios

In this section, we present some scenarios illustrating how metrics can be applied successfully in software
reengineering projects.

2.1.3.1 Get a Basic Understanding of the System

Usually, one of the initial steps when reengineering a legacy system is to aquire a basic understanding on
how the system works and how it is structured. However, the documentation alone is typically insufficient.
Therefore some analysis of the system’s source code is required. This is(model capture)and metrics can
provide valuable help during this task.

A good way to start model capture is to find out which parts (i.e. classes) implement the key concepts
of the system. A technique to do this is described in [Bau99]: Usually, the most important concepts of a
system are implemented by very fewkey classes3, which can be characterised by the following properties:
Key classesmanagea large amount of other classes orusethem in order to implement their functionality,
thus they are tightlycoupledwith other parts of the system. Additionally, they tend to be rathercomplex,
since they implement much of the system’s functionality.

Based on this observation, it is straightforward to identify these key classes by using both a complexity
metric likeWMC (p. 23) and a coupling metric likeDAC (p. 24). Figure2.1 shows a diagram that can be
used for such an analysis – the classes of the legacy system are placed into a coordinate system according to
their complexity and coupling measurements. Classes that are complex and tightly coupled with the rest of
the system fall into the upper right corner and are good candidates for these key classes. To understand how
the legacy system works we should thus concentrate on understanding these classes and their interactions
by studying their source code.

Figure 2.1: Finding the key classes in a legacy system

2.1.3.2 Find Violations of ”Good” OO Design

Though reengineering projects are usually started in order to make the legacy system satisfy additional
functional or non-functional requirements, general improvements to the software are often desired as well.

3Case studies in [Bau99] have shown that about 10 % of the classes of a system can be considered as key classes



28 Techniques

One way to achieve such general improvements consists in finding violations of a ”good” object oriented
software design(problem detection). Unfortunately, there is no consensus on what ”good” design really
is, however, some guidelines and principles exist that are considered helpful to achieve an understandable,
flexible and extensible software design. Metrics are particularly suitable to check, whether the legacy
system adheres to such design principles or to find violations of them.

A (very basic) principle in object oriented software engineering states that a class should implementone
single concept(of the application domain). Some violations of that principle can be detected by using
software metrics if we make the following assumptions:

• A class that implements more than one concept, has probablylow cohesionmeasurements, since
these concepts can be implemented separately.

• A class that by itself does not implement one concept, i.e. the implementation of the concept is
distributed among many classes, is probablytightly coupledto other classes.

Therefore, by applying cohesion metrics likeTCC (p. 25) and coupling metrics likeDAC (p. 24) or RFC
(p. 24) to the legacy system, possible violations of the principle ”one class – one concept” can be found.
These classes tend to have either lowTCC-values or highDAC-, RFC-values.

For example, classes that have very lowTCC-values, can often be split. Sometimes this leads to a more
flexible design, since the two separate classes are easier to understand and are more reusable. LowTCC-
measurements can as well point to classes that have not been designed in an object-oriented flavour at all
– these classes are not implementing a self contained object from the application domain, they just group
methods together, acting as a module. In a similar manner other design principles can be checked and
violations can be detected by using metrics [Rie96].

However, we should be aware of some difficult issues, when applying metrics for such problem detec-
tions: It is difficult to specify thresholds for the measurements, i.e. values, which classes adhering to a
”good” design should fulfill. Additionally metrics can produce ”false alarms”. They can label classes as
being problematic, but there may well be a reason that these classes present untypical measurement values.
Measurement results must always be taken with a grain of salt and problematic results should always be
checked against the source code.

2.1.3.3 Identify Change Sensitive Parts

Whenever we make changes to an existing software system, it is likely that these changes will require
further changes throughout the system since the entities of the system are interdependent. Changes in some
parts of the system can produce a lot of work, if a lot of other parts depend on them, and, inversely, some
parts probably change often during the evolution of a system, because they depend on lots of other parts
and changes to the system are likely to affect them.

To make sure that the system does not misbehave after making some changes, we would be interested in
localizing thesechange sensitiveclasses, i.e. classes that are most likely to be affected by changes to a
system because the depend on lots of other parts. To do this, we can use coupling metrics like theDAC
(p. 24). Classes with highDAC-values ”know” a lot of other classes and are therefore change sensitive.
These classes should then be carefully examined and tested after modifications of the system.

2.1.3.4 Track the Evolution of the System

Most software systemsevolveover the time, i.e. new functionality is added, extensions are made,. . . . This
poses an important question: Does the quality of our system decrease during the evolution of the system?
Do some reorganisation raise the quality of the system?



2.1 Metrics (by M. Bauer) 29

Metrics can be used to answer these question and to control the quality of the software. A lot of research
work has been done in this area, see for example [LK94], [EL96] or [DD99].

The basic steps of using metrics for quality control are:

1. Establish quality goals for your software.

2. Decide on a set of metrics to check your software with respect to the quality goals.

3. Use the metrics to constantly monitor the quality while the system evolves.

A simple example: a very high level quality goal for a software system could be maintainability, thus,
coupling measurements should not be high in order to ensure that changes to the system do not trigger
changes throughout the system (see2.1.3.3). Therefore, monitoringDAC-values can be promising. When
a significant number of classes evolves to higherDAC-measurements, some refactorings of the system
could be appropriate, to reduce coupling.

Another application of metrics when tracking the evolution of a system is to identify stable and unstable
parts of your system (for details, see [DDN99]). Often, this can be interesting information: Stable parts
can be declared as ”frozen” and can often be reused in other projects (i.e. factored out into frameworks),
whereas unstable parts should be tested thoroughly.

2.1.4 Summary

In the previous sections we have seen what object oriented software metrics are, and how they can be
applied in reengineering projects. We have illustrated that metrics are able to support model capture and
problem detection phases. Figure2.2sums up our experiences with the metrics mentioned in this text and
gives hints on how well these metrics are suited for model capture or problem detection.

Figure 2.2: Applicability of the metrics



30 Techniques

Reengineering projects can benefit from metrics in the following ways: Applied with well documented
scenarios (as given in section2.1.3), they make reengineering tasks more organised and focused. They
provide an abstraction mechanism from the huge amount of source code of the legacy system, thus allowing
you to concentrate your work on the important or critical parts of the system that have been identified by
the measurements.

However, metrics can fail. They can point to wrong places in your source code, or you can even miss
important classes of your system, because the measurements just do not ”catch” them. Therefore, metrics
should be used with care, and you should always check with the system’s source code or make additional
analyses to avoid drawing wrong conclusions.



2.2 Program Visualisation and Metrics (by M. Lanza) 31

2.2 Program Visualisation and Metrics

Author: Michele Lanza

“Continuous visual displays allow users to assimilate information rapidly and to readily iden-
tify trends and anomalies. The essential idea is that visual representations can help make
understanding software easier.”
[BE96]

Although the object-oriented paradigm lets programmers work at higher levels of abstraction than proce-
dural models, the tasks of understanding, debugging, and tuning large systems remain difficult. This has
numerous causes: the dichotomy between the code structure as hierarchies of classes and the execution
structure as networks of objects; the atomisation of functionality - small chunks of functionality dispersed
across multiple classes; and the sheer numbers of classes and complexity of relationships in applications
and frameworks. The fields of scientific visualisation and program visualisation have demonstrated repeat-
edly that the most effective way to present large volumes of data to users is with a continuous visual fashion
[PHKV93].

In this chapter we list some properties that a graphical representation of source code should possess to be
useful for reverse engineering. We then see in what respect our approach fulfils those requirements and
include a short scenario to explain our approach. We also list some problems concerning the visualisation
of metrics, colors and issues concerning interactivity.

The central point of this chapter is to show how we merge the concepts of program visualisation, metrics
and interactivity. These three aspects are the cornerstones of this work. The concepts that are explained
here have been implemented in a single tool called CodeCrawler, which we present in the next chapter.

2.2.1 Graphs for Reverse Engineering

In this section we list some features that in our eyes graphs for reverse engineering should have. We empha-
sise that we use the term graph in a very broad sense: often we mean its picture or graphical representation
on screen or on paper and not necessarily its scientific definition.

• Simplicity and Quality. The first important prerequisite is that the generated pictures of a graph
have to be relatively simple and easy to grasp. The main reason for that is that too much displayed
information overloads the viewer’s perception. This tends to backfire and causes an unwanted infor-
mation loss. A secondary aspect is that simple graphs are also easily reproducible, while complex
techniques like hyperbolic trees [LRP95] are affected by a considerable complexity which is hard to
grasp and reproduce. Many approaches have been discussed as to how a software entity could be
represented for program visualisation ([BE96, PHKV93, KG88] to name but a few). We think that a
graphical representation of an object oriented entity should be easy to grasp and not make use of a
specific dictionary of shapes which has first to be learned. A graph should be able to transmit useful
information to the viewer at first sight.

• Quantity. We have to be able to select how much of the subject system we want to display and at
what level of granularity. Thus, we should be able to zoom in and out of such a graph and reduce the
amount of displayed information at will.

• Colors. Program visualisation can be supported by colors, because they can attract the eye to inter-
esting hot spots, while other parts of the graph which look less colorful can be ignored by the viewer.
Colors have often been used in program visualisation [Riv98]. While colors are a good way to attract
the attention of the eye, the usage of too many colors in a graph is not advised, since this results in
an optical overload for the viewer of the graph. We also advise against the use of color conventions
which have first to be learned by the viewer, as this lessens the impact of the colors.



32 Techniques

• Scalability. As reverse engineering is especially crucial in very large systems, a visualisation should
be scalable and work if possible at any level of granularity. The number of displayed entities should
not affect the quality of the graph.

• Interactivity. A very important aspect of graphs is not only their layout algorithm but also that they
can provide interactivity to the user through direct-manipulation interfaces. Making a static display
of nodes and trying to extract information from the graph has clearly defined limits, which we discuss
below in Section2.2.2.

• Metrics. Although intangible in the physical sense, softwarehassize. It can be measured, especially
in object-oriented code we can assign numerical values (metric measurements) to its entities. Al-
though the concept of software is abstract and often exists only in the head of the programmer, we
can measure it. Once we can measure it, we can assign a size to it and represent this size graphically.
We think that metrics enrich the semantic value of a graphical representation of a software entity,
and discuss this below in Section2.2.4.

2.2.2 Interactivity

A graph which lacks interactivity has certain drawbacks:

1. The user can’t produce new views starting from a part of the graph.

2. The user can’t find out secondary information (e.g. he can’t inspect the nodes or browse through
their source code).

3. The user can’t reduce the amount of displayed data by either removing nodes by hand or by filtering
out nodes through algorithms.

Those limits can be overridden if the graph is interactive:

• If we produce a view on a system and one particular node is drawing our attention, we’d like to
know more about this node and the entity that it is representing. So we should be able to know its
name, to have a look at its properties, to zoom in into the node, to have a list of all nodes that have a
relationship with this node, or even to have a look at the source code behind the node (suppose the
node is a method).

• Starting from a part of the graph or from one single node we’d like to be able to generate new views
without having to go through the whole graph generation procedure again. The viewer should be
able to ’navigate’ around the code travelling from one point of interest to the next.

• Sometimes the relationship edges in a graph make the whole graph look like a cobweb. We should
be able to switch off edges and switch them on again on demand depending on nodes we selected,
etc.

• Suppose we have displayed a graph with a lot of nodes and edges. One particular node is of interest
to us. But since there are too many edges in the graph it’s hard to see how many times and to
which other nodes the node in question is connected. So the graph should also be able to provide
a ’highlighting feature’ where we can display on top of all edges and nodes the connections of the
node in question. It is important to note here that compared to the previous point we don’t want to
reduce the complexity of the displayed graph. We just want to have a better view on it.

It is an important point we are stating: The interactivity of a graph isnot just a nice featurebut one of its
most important aspects.



2.2 Program Visualisation and Metrics (by M. Lanza) 33

2.2.3 The Use of Layout Algorithms

Perhaps the most difficult aspect of showing software through graphs involves the graph layout problem.
The nodes and edges of the graph must be positioned in a pleasing and informative layout that clearly
shows the underlying graph’s structure. Many techniques have been proposed for laying out arbitrary
graphs. Unfortunately, in practice, drawing informative graphs is exceedingly difficult, particularly for
large systems. The resulting graphs, even when drawn carefully, are often too busy and cluttered to interpret
[BE96].

The opposite case can also be true: sometimes elaborate layout algorithms can’t ameliorate the user’s
perception or can do that only at the cost of algorithm complexity: There are various (and sometimes very
complex) techniques to display a tree graph, but in the end it’s still just a tree.

However, we don’t want to minimise the importance of complex layout algorithms, on the contrary: we
believe they could bring many more benefits than drawbacks. Good layout algorithms just were not part of
the constraints of this work. But it is certainly a very promising field of research in this context. The layout
algorithms used in this work are discussed in detail in Section2.2.6.

2.2.4 The Use of Metrics in Graphs

In [BE96] the following statement is made: ”Software is intangible, having no physical shape or size.
Software visualisation tools use graphical techniques to make software visible by displaying programs,
program artifacts, and program behaviour.”

It is obvious that everything regarding metrics possible through their graphical display is also possible by
just calculating and analysing the metric measurements. So the question arises why we should have a
graphical display of them, since the information sought is in the metrics themselves. But in the same way
one could think to listen to music by just reading the partiture of a song instead of using the sense normally
designed for that (the hearing)4. What changes is the perception and the impact of what is perceived.

Our Idea. The whole concept is fairly easy: we map metric measurements of software entities on their
graphical representation on the screen. As we said before we chose the entities to be represented by
rectangles. Rectangles have a certain width and a certain height. They can be filled with a color. Their
position can also bear a certain amount of information.

With this approach, in a two-dimensional graph consisting of nodes and eventually edges between the
nodes, up to five metrics can be assigned to a node and rendered visually at the same time. These are:

1. The X coordinate of the position

2. The Y coordinate of the position

3. The width

4. The height

5. The color shade

This concept is rendered clearly in Figure2.3, where we see where the metrics can be applied on a node.

Not every graph can make use of five the metrics at the same time. In a graph that does not have an origin
(which defines an absolute coordinate system) it makes no sense using two metrics for the position of the

4A short comment on perception: the size of software can be seen through other means: if we scroll through the source code of
a very large class, we probably have to either move the mouse or press some keys on the keyboard to scroll on. This physical act of
scrolling can also transmit size and complexity to the viewer.



34 Techniques

Figure 2.3: An example of nodes and their possible metrics.

nodes. A good example for such a graph is a tree graph, where the position on the nodes is implicitly defined
by the logical position of the nodes in the tree. Another property which came up during our experiments
was that sometimes the multiple use of the same metric (for example if we choose the same metric to reflect
width and height) can emphasise certain parts of the graph and render them more clearly for the viewer.

2.2.5 A Concrete Graph Specification.

In our approach aconcrete graph, this means the resulting displayed graph, is the combination of four
factors :

1. The Graph Type. Its purpose is to render a certain aspect of a system: a tree graph is good for
displaying hierarchical information, a circle for communication, a confrontation graph for depen-
dencies, etc.

2. The Layout Algorithm . Starting from the original idea of the graph, variations refine the concrete
display. The layout takes into account the following issues:

• Display concerns (i.e. the fact that the complete graph should or not: fit into the screen, min-
imise the space used, sort the nodes according to certain criteria, etc.).

• The entities and their relationships. This implies the choice of the represented entities (class,
attribute and/or method) to be rendered as graphic elements and the logical link between the
graphical elements and the metrics. For example in some graphs the position of the nodes
reflects the size of the entities whereas in others this is the size of the node.

3. The Metric Selection. Once the layout algorithm stands, metrics are associated to the graph. This
application depends on the specification of the previous step.

4. The Interaction. Since the goal of a graph is to support the reverse engineering of the application,
the interaction that a user can perform should be specified. All the graphs support basic navigation
functionality which allows one to access code elements. However, the interaction is refined for
specific graphs, for example to walk through it, to highlight the edges, to zoom in/out, etc.

2.2.6 A Short Example

To make the whole idea of visualising software structures with the help of metrics a bit more understandable
we included here a short example of our approach.



2.2 Program Visualisation and Metrics (by M. Lanza) 35

Figure 2.4: A simple inheritance tree.

Suppose we want to understand the inheritance hierarchy of a small system. The idea that comes up is to
display the graph as a tree. The nodes in tree represent classes, the edges represent inheritance relationships.

The layout algorithm for displaying a tree is arbitrary, for reason of simplicity we chose a very simple
one, which sometimes can make edges cross nodes, but it renders the whole concept nonetheless. Keep in
mind that this layout part can also make use of very complicated algorithms for space optimisations, edge
crossing reduction, etc.

Once we have displayed the tree as we see in Figure2.4 we apply size and color metrics to the nodes.
The use of position metrics is not possible here, as the position of the nodes is intrinsically defined by
their logical position in the tree. As the nodes represent classes, we use class size metrics. The width and
height of the nodes render the number of methods (NOM) while the color renders the number of attributes
(instance variables).

Figure 2.5: An inheritance tree that makes use of size and color metrics.

Once the tree is rendered as in Figure2.5 we can start interacting with the graph. We can freely move
nodes around, delete them, inspect them (i.e. browse the underlying classes), filter out parts, etc.

In fact, if we left out the interactive part, the amount of useful information that we could extract would be
limited to the display in Figure2.5.



36 Techniques

Useful Graphs

This section is dedicated to the graphs which prove to be useful when it comes to the understanding of
software systems and the detection of design problems using the approach discussed in this work. Although
this may seem a little confusing, what in this chapter is called a ‘useful graph’ is not only its layout,
but primarily thecombination of a layout with object-oriented metrics and the consequent extraction of
information made by the viewer through interaction with the graph.

The following is structured as follow:

• Graph Structure. Section2.2.7presents the structure we adopted to describe a useful graph. Every
useful graph is presented using this format.

• Case Studies.Section2.2.8is a short presentation of the two case studies we chose to apply each
useful graph on.

• Layout Algorithms. Section2.2.9presents the layout algorithms we selected.

• Useful Graphs. In section2.2.10we present the useful graphs divided into the 4 distinct groups:
class, method, attributeandclass internal. The names indicate which kind of entities are displayed
in the graphs. Class internal treats the special case where methods and attributes are displayed at the
same time.

2.2.7 Graph Structure

For each graph which we treat in this chapter, we discuss the following properties:

Graph: Indicates what type of graph and layout has to be chosen, and whether a sorting of the nodes has
to precede the display.

Scope: At what granularity level the graph can be applied. We differentiate betweenfull system, subsystem
andsingle class. Sometimes the subsystems are indicated as a single inheritance hierarchy. We also
indicate if the graph is language specific.

Metrics: We list five metrics in the following order: width metric, height metric, color metric, horizontal
position metric, vertical position metrics. When we write a dash (-), this means that the metric should
not be set. In case we write an asterisk (*) this means that the metric can be set freely. In the case
of class internal graphs we repeat the five metrics twice, once for the method nodes and once for the
attribute nodes.

General idea: We write what the graph is all about and what ideas lie underneath it. We also indicate what
the user should be searching for in the graph.

Results: Here we present the results obtained after applying the graph on our case studies.

Possible Alternatives: We list a few alterations that could be made regarding the metrics, so as to obtain
slightly different graphs, and list also some eventual interactions that could be applied on the graph
to increase its usefulness.

Evaluation: Some statements about the advantages and drawbacks of the graph.



2.2 Program Visualisation and Metrics (by M. Lanza) 37

Application Refactoring Browser Duploc

Classes 166 123

Methods 2365 2382

Attributes 365 386

Table 2.1: An overview of the size of our case studies.

2.2.8 Case Studies

This section contains a short overview of the systems we used as case studies for this work. Basically we
use them to test the graphs listed in the remainder of this chapter. We chose these two case studies for the
following reasons:

• Availability. Both case studies are public domain and can be downloaded freely. With this point we
can ensure that the results are reproducible.

• Size. We chose two case studies which can be termed as being of anaverage sizeand are represen-
tative of medium-sized standalone applications. We think that very small applications can’t reflect
results properly because the purpose of most graphs is coping with complexity, which in such cases
is not necessary. On the other hand, if we had chosen very big applications, it would have been hard
to present results in a concise manner, because many graphs can be applied in various areas and at
various levels of granularity.

• Level of maturity. We chose one very mature application which has gone through some refactorings
and redesigns, and another one which has been developed in a rush and which has yet to undergo its
first redesign. We did this to see if the results of our experiments would differ and in what way they
would do that.

Refactoring Browser. The Refactoring Browser is a widely used tool for the implementation of Smalltalk
programs [RBJ97b]. We took it as a case study because it is an application which has gone through several
refactorings and redesigns and has been written by some very experienced programmers. This quality of
implementation should thus be visible in such a system. It is a medium sized application as we can see in
table2.1.

Duploc. Duploc is a tool for the detection of duplicated code [RD98]. Duploc was the first application
written in Smalltalk by its developer, Matthias Rieger and has yet to undergo its first major redesign. Thus
we expect it to have some of the flaws which new systems tend have, like oversized classes and methods,
obsolete attributes, etc.

2.2.9 Graphs

This section is dedicated to the graphs and layouts we have selected to implement in CodeCrawler. We
discuss the properties, advantages and drawbacks of each one of them. We include this here because they
are mentioned throughout the remainder of this chapter.

We discuss the original idea of a graph and the scope of its applicability. Each graph has at least one
possible kind of layout and we discuss it with a regard for the metrics that can be applied for that special
layout. Sometimes a sorting of the nodes has an influence on the usefulness of a graph and we discuss that
as well as the general pros and contras for each graph.

In Table2.2we have an overview of all graphs and their properties supported by CodeCrawler.



38 Techniques

Graph Type Metrics Entities Sort Scope

Tree 3 C Global

Correlation 5 CMA Global- Local

Histogram 3 CMA X Global- Local

Checker 3 CMA X Global- Local

Stapled 3 CMA XX Global- Local

Confrontation 3 + 3 MA X Local

Table 2.2: CodeCrawler’s graph layouts.

The ’Metrics’ column specifies how many metrics can be rendered by the graph. 5 means that the a single
node can render 5 metrics at the same time. 3+ 3 means that two separate groups of entities and metrics
can be defined. The ’Entities’ column refers to the kind of entities the graph can be applied upon: C for
class, M for method and A for attribute5. The ’Scope’ column specifies if the graph can be applied to the
complete (sub)system or only to some entities like a class or a method. The ’Sort’ column indicates if a
sorting of the nodes according to a certain metric measurement can enhance the usefulness of the graph in
question.

5The limitation to these three types of entity is due to the current implementation of the Moose model. Future implementations of
it may include supplemental entities.



2.2 Program Visualisation and Metrics (by M. Lanza) 39

2.2.9.1 The Tree Graph

Figure 2.6: A tree graph of a system.

Overall Idea. A tree graph is useful for the display of hierarchical structures like inheritance hierarchies
containing classes. The nodes represent classes, while the edges between the nodes represent inheritance
relationships.

Scope. The scope of this graph ranges from very large systems to subsystems consisting of few classes.
A requirement is that there is some usage of inheritance in the system. Otherwise the graph gets very flat
and wide.

Layouts. We implemented three slightly different layout algorithms, which we simply called left, cen-
tered and right. Each one of them is based on recursion.

Metrics. The number of possible metrics that can be applied is 3. The two position metrics cannot be
used, as the position of the nodes is defined by the layout algorithm. However, a virtual fourth metric is
present, HNL. It is rendered by the layout algorithm through the vertical position of the nodes.

Sort influence. This graph is one of the few cases where a sorting of the nodes is not advised, as it
disturbs the recursive layout algorithm.

Pro et contra. The advantage of this graph is that it can render a complex system in a very simple manner.
Its only drawback is that because the position of the nodes is defined by the layout algorithm, this graph
tends to get very large for big systems and will sometimes not fit on one single screen. The use of node
shrinking can alleviate this problem.



40 Techniques

2.2.9.2 The Correlation Graph

Figure 2.7: A correlation graph of method nodes using LOC and NOS as position metrics.

Overall Idea. This graph can render the relationship between two metrics when they are applied to
entities. The two metrics are directly mapped onto the position coordinates of the nodes. This graph needs
an absolute origin within a coordinate system, which in our case is the upper left corner of the graph. If the
chosen metrics are in close relation to each other, the nodes are positioned along a certain correlation axis,
which is defined by the metrics. If a node finds itself far away from this correlation axis, it means that its
metric measurements are somehow abnormal compared to the other nodes and should be inspected. Very
large measurements put a node far away from the origin, if one of the two position metric measurements is
very small, the node finds itself near the left or top border of the graph.

Scope. This graph can be applied to any type of entity. The maximum number of displayable nodes is
very big, as the expansion of the graph drawing depends on the outliers in the system and not on the number
of displayed nodes. This involves an overlapping of nodes, which however is not negative, because we are
mainly interested in the outliers (i.e. the extreme values).

Layouts. There is only one possible layout in this case, which directly maps the position metrics to the
position of the nodes.

Metrics. The number of possible metrics that can be applied is 5. Indeed, each metric can be applied in
this case. However, if we choose to select size metrics this involves that the nodes overlap, while without
size metrics the nodes will either be positioned next to each other or cover up other nodes entirely. The
overlap problem is especially acute when the chosen size metrics tend to have big values, like LOC.

Sort influence. A sort has no influence on the layout.

Pro et contra. The main advantage of this graph is its scalability. Another advantage is that we can
pick out the outliers at one glance. The drawback is a certain loss of overview, because the nodes overlap.
However, as we often do not make use of size metrics for this graph, we can circumnavigate this problem.



2.2 Program Visualisation and Metrics (by M. Lanza) 41

2.2.9.3 The Histogram

Figure 2.8: A horizontal histogram.

Figure 2.9: A horizontal histogram using the size addition layout

Overall Idea. A histogram provides a representation of the distribution of entities related to a certain
metric. The distribution of the nodes can in turn give us general information about a system. For example
if we use as vertical position metric LOC of methods, we are able to gather if the methods tend to be
overlong or not, and if there are any significant outliers.

Scope. This graph can be applied to any type of entity, class, method or attribute. The number of dis-
playable nodes is also very large. However, since a large part of the nodes distribute around a certain value,
a few of the rows of this graph can get very large and eventually get bigger than the screen. This problem
is sometimes acute if we use the size addition layout described below. One of the fields where its use is
advised, is to make a distribution of the methods of single classes or of attributes of subsystems.

Layouts. There are two possible layouts. The first, calledhorizontal, ignores size metrics and displays
every node with the same size. The second one, calledsize addition, makes use of the width metric, and
puts the nodes next to each other, while taking their size in consideration. Only the horizontal layout can
be considered to be a real histogram, the kind which is used in the field of statistics.

Metrics. The number of possible metrics depends on the used layout. The horizontal layout can make
use of 2 metrics, namely the color and the vertical position.The size addition layout can also make use of
the width metric.

Sort influence. In the case of the horizontal layout, a sort has a positive effect if we take the color metric
as sort criterion. It makes the detection of color metric outliers easier. In the case of the size addition
layout, a sort according to the width metric also has some positive effect for the detection of width metric
outliers.

Pro et contra. This graph shows a good behaviour in terms of scalability. Its major drawback is that
the vertical position metric needs to have a rather large measurement interval, otherwise the nodes will be
distributed all near the same vertical position.



42 Techniques

2.2.9.4 The Checker Graph

Figure 2.10: A checker graph using a sorted horizontal layout.

Figure 2.11: A checker graph using a quadratic layout with method nodes and invocation edges.

Overall Idea. The base idea for this kind of graph is simplicity. We want to lay out nodes without a
special algorithm, we just place them one next to each other, to prevent them from overlapping.

Scope. This graph scales up quite well (especially if node shrinking is applied). Therefore it can be used
for any kind on entity. However, it’s not advisable to use edges in this graph, because it looks very chaotic,
as they will cross the nodes.

Layouts. The first layout kind is calledhorizontalandvertical. We just place the nodes next to each other.
We see such a layout in Figure2.106. Because this wastes a lot of space, we introduced thequadraticlayout
which tries to lay out the nodes to make them form a rectangle, whose width is dependent of the number of

6This figure suggests that a histogram is a special case of a checker graph. This is not true: a histogram makes use of a more
complex layout algorithm which makes use of position metrics, as we see in the following subsections.



2.2 Program Visualisation and Metrics (by M. Lanza) 43

Figure 2.12: A checker graph using a maximal space usage layout.

displayed nodes. The graph which makes the best use of space is calledmaximal space usage, which tries
to put as many nodes on the visible part of the drawing as possible.

Metrics. As the position metrics can’t be used in this graph, we can only use size and color metrics.

Sort influence. The sort is essential for this graph. Indeed, if we don’t make use of it, the nodes are
placed randomly on the screen and it will be very hard to discern significant nodes. If we do make use of a
sort according to a metric (especially the width metric), the detection of outliers will be very easy.

Pro et contra. The advantage is that we end up with a very easy to analyse layout. If the nodes are sorted,
the detection of outliers is very easy, and the detection of suspicious node shapes is easy as well. This graph
scales up well and several hundreds of nodes can be displayed at the same time without overlapping.



44 Techniques

2.2.9.5 The Stapled Graph

Figure 2.13: A stapled graph of class nodes.

Overall Idea. The idea for this graph came up when we tried to cure a small flaw in the horizontal
checker layout: The width of the whole graph is defined by the summed widths of the nodes and cannot be
influenced by the user. In such cases it often happens that the checker graph is wider than the screen. The
stapled graph is thus a derivate: the user can indicate the maximum width of the graph he’d like to have,
and all the node are accordingly shrunk in their width to make the graph fit the indicated space.

Scope. This graph can also display any kind of entity.

Layouts. A this time there is only one possible layout, which displays the nodes horizontally.

Metrics. The size and color metrics can be used, while this is not possible for the position metrics.

Sort influence. The sorting of nodes is essential for this graph to get some meaningful results. In fact it
can be used for the detection of outliers regarding the height metric, if the nodes are sorted according to
the width metric. If the two metrics are in close relation we often get a ”staircase effect” because the nodes
tend to get equally bigger in width and height. If this is not the case, the staircase effect breaks and we’ll
be able to easily detect those cases.

Pro et contra. One major drawback is that the width of a node will not directly reflect its metric, because
it’s being distorted by the graph width mapping function. Another drawback is that if the summed undis-
torted node widths of all nodes is bigger than the desired graph width, the nodes are shrunk in their width
(otherwise they will be enlarged). If this shrinking is heavy, many small nodes will somehow disappear
because they get very narrow, often only one pixel wide. The pro is obviously the intuitive detection of
abnormal nodes whichdon’t have to be outliers, but which stand out because two normally related metrics
are not closely related in their case. Another pro is also that the graph will always fit the screen.



2.2 Program Visualisation and Metrics (by M. Lanza) 45

2.2.9.6 The Confrontation Graph

Figure 2.14: A confrontation graph using an horizontal layout

Overall Idea. This graph grew out of the necessity to display the access relationships between methods
and attributes. An access is the only type of relationship between two entities of a different type.

Scope. This graph can only be applied on methods and attributes at the same time with accesses as edges.
It’s best used with the methods and attributes of one class.

Layouts. There are two possible displays. The first, called eitherhorizontalor vertical displays on one
row (column) the attributes and on the other one the methods. We can see such a layout in Figure2.14.
However, since in a class often the number of methods is much greater than the number of attributes,
and the graph very soon gets larger than the screen, we introduced thethree rowlayout. In this case the
attributes are in the middle row, while the methods are in the upper and lower row.

Metrics. The size and color metrics can be used, while this is not possible for the position metrics.

Sort influence. A sort is advised for this graph. In the case of the method nodes it’s especially useful
according to the metrics LOC, NOS and NMAA. In case of the attribute nodes it’s best to use NAA. If such
a sort is applied, the number of edge crossings tends to drop and makes the graph look less cluttered.

Pro et contra. The major contra for this graph is that there is no special ordering of the nodes like
clustering, except for a possible sort. However, it’s the best graph to look at the internals of a class.



46 Techniques

2.2.10 Useful Graphs: Class Graphs

In this section we list all graphs which display class nodes. We have noticed that the following graphs can
be separated in two distinct groups. The graphs in the second group are normally applied after those in the
first group, because they address more precise issues. We distinguish the following groups:

1. Those which serve primarily for system understanding. They work at a higher abstraction level, and
in some cases can only return a general statement about the system. Problem detection is secondary
in such graphs and in some cases not even possible. The following graphs fall under this category:

• SYSTEM COMPLEXITY, Section2.2.10.1.

• SYSTEM HOT SPOTS, Section2.2.10.2.

• WEIGHT DISTRIBUTION, Section2.2.10.3.

• ROOT CLASS DETECTION, Section2.2.10.4.

2. Those which primarily address problem detection, and secondarily program understanding. They
must be applied on subsystems, rather than full systems. We list the following:

• SERVICE CLASS DETECTION, Section2.2.10.5.

• COHESION OVERVIEW, Section2.2.10.6.

• SPINOFF HIERARCHY, Section2.2.10.7.

• INHERITANCE IMPACT, Section2.2.10.8.

• INTERMEDIATE ABSTRACT, Section2.2.10.9.



2.2 Program Visualisation and Metrics (by M. Lanza) 47

2.2.10.1 System Complexity

Graph Inheritance tree, without sort.

Scope Full system.

Metrics

Size NIV (number of instance vari-
ables)

NOM (number of methods)

Color WLOC (lines of code)

Position - -

General Idea: This is one of the first graphs that should be applied to a system. It is an overview of the
inheritance hierarchies of a whole system. This graph can give clues on the complexity and structure of
the system (how many classes are present?), as well as information on the use of inheritance in the system
(how deep do the hierarchies go and is the system in general flat or deep?). If we furthermore apply some
class complexity metrics we can extract some more information. In this case we use as size metrics NIV
and NOM, while for the color we choose WLOC. The detection of aberrant classes is now made easy: we
can see if there arevery large classes, small classesor evenempty classes.

Results with the Refactoring Browser: In Figure2.15we see theSYSTEM COMPLEXITYgraph applied
on the Refactoring Browser. It shows few stand-alone classes and a few deep hierarchies. The first thing
that strikes the eye is the classBrowserNavigator(A) which has a huge number of methods (175) and
lines of code (1495) compared to the other classes present in the system. At the same time it only has
one instance variable (this is the reason for its very narrow look). It may be a case for refactoring. If we
take a look at the inheritance tree on the right side we can spot the classBRStatementNode(B) which is
completely empty. When I asked the developers of the Refactoring Browser about this case, they told me
that they were aware of the problem and that this class had been created to duplicate a hierarchy of another
program. The same case can be spotted on one of the stand-alone classesRefactoringError(D) which is
also empty. The next point of interest is the classBRScanner(C) which has the most instance variables
(14) while it implements comparatively few methods (52). Perhaps this massive stand-alone class could be
split up into subclasses. Another thing we can see is, that in the inheritance hierarchy in the middle of the
graph, the root classRefactoring(E) is implementing by far the most methods, while there are quite a few
very small classes deeper down the inheritance chain.

Figure 2.15: The system complexity graph applied on the Refactoring Browser using as size metrics NIV
and NOM, and as color metric WLOC.



48 Techniques

Results with Duploc: When we apply theSYSTEM COMPLEXITY graph on Duploc, we can spot the
following in Figure2.16: The system shows some very flat inheritance hierarchies, with many stand-alone
classes which can have considerable sizes. This could mean that the system has not yet been refactored.
There are three deep hierarchies, although in all three we can see that the main work is being done by the
roots, which indicates top-heavy hierarchies. We also see that the main classcalled DuplocApplication(A)
is very large and has only one very small subclass called it DuplocInformationMural7. AlthoughDuplo-
cApplicationhas the most methods and has the second most instance variables, the class with the most lines
of code isFastSparseCMatrix(B). This class has only half the number of methods ofDuplocApplication
(74 vs. 130) but has nearly twice as much lines of code (1641 vs. 1060). Because of this we can already
deduce thatFastSparseCMatrixhas some very long methods. The third point of interest are the classes on
the left side (C): all of them are empty. These classes have become empty after being exported from the
ENVY environment. The fourth eye-catch is the classBinValueColoringModel(D) on the right side. This
class has the most instance variables (20), but only 52 methods. This may indicate that it is a service class
which implements a lot of accessor methods. This supposition is being enforced by the light color value
which is a sign for few lines of code (402), and is confirmed when we browse the source code of this class.

Figure 2.16: The system complexity graph applied on Duploc using as size metrics NIV and NOM, and as
color metric WLOC.

Possible Alternatives: The color metric can be varied at will, especially class complexity metrics like
NCV (number of class variables) prove to be useful.

Evaluation: This is certainly one of the first graphs that should be applied to a system, as it can return
information on the structure and complexity of the subject system. However, it suffers one small drawback,
which shows in very large systems: Sometimes the number of classes we want to display is so large that
this graph takes several screens of place. It is difficult then to discern the outliers in the systems at one
glance. The system hot spots graph discussed in Section2.2.10.2can counter this problem.

7The InformationMural is a subapplication of Duploc included in a latter phase of development. Evidently the developer did not
want to write an own main application class from scratch, but preferred to take the existing one, subclass it and override only some
needed methods. This explains the small size of this class.



2.2 Program Visualisation and Metrics (by M. Lanza) 49

2.2.10.2 System Hot spots

Graph Checker, quadratic, sort according to width metric.

Scope Full system.

Metrics

Size NOM (number of methods) NIV (number of instance vari-
ables)

Color WLOC (lines of code)

Position - -

General Idea: For very large systems it’s hard to decide where to start looking for problems hot spots.
One general rule is to look for very large or complex classes regarding their number of attributes and
methods. The graph described here is a very simple display of all classes in the system sorted according
to a certain metric. The nodes are placed next to each other to prevent overlapping. This graph detects
outliers very easily because of the sorting. We distinguish the following:

• Large nodes at the bottom of the graph. These represent the biggest classes in the system.

• Small nodes at the top of the graph. These are the smallest classes which can sometimes even be
empty.

• Very flat nodes. These nodes possess very few (if any) instance variables.

• Rather high nodes. This is seldom the case, as classes rarely have many attributes. Sometimes we
can detect configuration classes like this.

Results with the Refactoring Browser: In Figure2.17we get aHOT SPOTSview on the Refactoring
Browser. While in Figure2.15we had to search for the biggest and smallest nodes, this is made easy in
this kind of graph because the nodes have been sorted: as before we can locate the classBrowserNavigator
(A) andBRScanner(B). The sorting of the nodes makes it easy now to detect empty or very small classes,
which find themselves at the top of the graph (D). Our attention is now also drawn to other classes like
BrowserApplicationModel(C), which implements 38 methods while it defines no instance variable, which
is visible by its flat shape. The view on the shape of the nodes is also facilitated, we can now detect classes
like MoveVariableDefinitionRefactoring(E), which defines 6 instance variables while it implements only
7 methods (mainly accessors), giving it nearly a square shape.

Figure 2.17: The system hot spots graph applied on the Refactoring Browser using as size metrics NOM
and NIV, and as color metric WLOC. The nodes have been sorted according to NOM.

Results with Duploc: TheHOT POTSview on Duploc reveals also some information which could not be
seen at first sight in Figure2.16, as we see in Figure2.18. We see Duploc has either very large classes
(A)(B), or very small ones (D). We can also locate some classes with many instance variables (C). Two
classes which could be interesting for further investigation because of areDuplocCodeReader(F) (32 meth-
ods, 17 instance variables) andDuplocProgressMeter(E) (15 methods, 9 instance variables): both classes
have many instance variables and few methods, which could indicate service classes apt for refactoring.



50 Techniques

Figure 2.18: The system hot spots graph applied on Duploc using as size metrics NOM and NIV, and as
color metric WLOC. Sort according to NOM.

Possible Alternatives: The color metric can be varied at will. A sort according to other metrics (espe-
cially WLOC and NCV) can also give interesting results which emphasise certain nodes.

Evaluation: The main drawback of theSYSTEM COMPLEXITY graph described in Section2.2.10.1is
the fact that through the ordering of the nodes in tree structures we lose track of the size of the nodes
all too easily. Only extreme cases strike our eyes. TheSYSTEM HOT SPOTSgraph described here makes
this up through the sorting of the nodes and an ordering of them which reflects this sorting. However we
lose the notion of inheritance in this case, since displaying the edges would mess up the view. A certain
disadvantage of this graph is that the more nodes we display the more space is needed.



2.2 Program Visualisation and Metrics (by M. Lanza) 51

2.2.10.3 Weight Distribution

Graph Histogram, size addition layout, sort according to width metric.

Scope Full system.

Metrics

Size NOM (number of methods) -

Color HNL (hierarchy nesting level)

Position - NOM

Figure 2.19: The weight distribution graph applied on the Refactoring Browser. As width and vertical
position metric we use NOM, as color metric we use HNL.

General Idea: With this graph we are able to make a general assessment on the system we are inves-
tigating. The width and the vertical position of the nodes is reflected by NOM, the color represents their
HNL. This means that the deeper down (in the graph) the class nodes are, the more methods these classes
implement. A dark node on the other hand means that the class it represents has a deep hierarchy nesting
level. The possible assessments we can now make are:

• The system istop-heavy. This means that the classes that implement the most functionality are high
up in the inheritance hierarchies. Such a graph has big nodes (on the bottom of the graph) which
have very light color values (because their HNL is small). Top-heavy systems suffer when it comes
to subclassing and reusing, because their root classes do too much themselves.

• The system isbottom-heavy. The most functionality is implemented in classes deep down the inher-
itance hierarchies. Such a case displays dark, big nodes on the bottom of the graph. Bottom-heavy
systems are sometimes the results of overzealous abstracting mechanisms.

• The system iseven. This display looks somehow chaotic, because the dark and light nodes distribute
themselves over the whole graph. This case balances the two cases described above.

Results with the Refactoring Browser: The Refactoring Browser is an evenly distributed system, as we
see in Figure2.19: It’s not possible to locate a majority of the dark or the light nodes on a certain area of
the graph, although we can see there are three big classes marked as (A) high up the hierarchy.



52 Techniques

Figure 2.20: The weight distribution graph applied on Duploc. As width and vertical position metric we
use NOM, as color metric we use HNL.

Results with Duploc: Duploc is clearly a top-heavy system, as we see in Figure2.20: The dark nodes are
all very small (small NOM) and thus located on the top region of the graph. The big classes on the bottom
of the graph are all very light (high up in the hierarchy). The system is thus to be classified as top-heavy,
which is mainly due to its young age: Duploc has not yet undergone a reengineering or refactoring. It
should be analysed on whether it’s possible to introduce a supplemental abstraction level high up in the
hierarchy.

Possible Alternatives: The width metric can be varied, especially NIV (number of instance variables)
can give some supplemental information on the complexity of the classes. The color metric can also be
changed, especially WLOC (lines of code) shows a good behaviour.

Evaluation: This graph can make a general assessment about the system. Such an assessment may not
be very useful and will most probably not involve a specific problem, but upon such statements about the
subject system we can vary our approach. In fact, the more we know about the system before we dive into
its details, the more precisely we can deploy the other graphs.



2.2 Program Visualisation and Metrics (by M. Lanza) 53

2.2.10.4 Root Class Detection

Graph Correlation.

Scope Full system or very large subsystems.

Metrics

Size * *

Color *

Position WNOC (total number of chil-
dren)

NOC (number of children)

General Idea: In very large systems with many inheritance hierarchies it may be difficult to identify at
once the classes which have the most impact on their subclasses. The impact of a class on its descendants
can be measured with the number of direct subclasses and the total number of subclasses of a class: the
more there are, the more the functionality implemented in a root class is used. This graph shows the
correlation between WNOC (total number of subclasses) and NOC (number of direct subclasses).

The further away from the origin such a class node is, the bigger is its impact. The type of inheritance used
for a class can also be identified with this graph:

• If a node is positioned on the right side of the graph, while holding a vertical position near the top,
this means that while the underlying class has a great number of descendants its direct subclasses
are few. This is often the case when directly below a root class a supplemental abstraction level of
classes has been introduced.

• If the node finds itself on the 45 degrees axis (it can’t be further left because WNOC is always at
least equal to NOC) and far away from the top of the graph, this means that the underlying class has
a lot of direct subclasses. This is what we call aflying saucer hierarchybecause the inheritance tree
of this class resembles one.

• If a class node is positioned exactly along the 45 degrees axis this means that all its subclasses don’t
have subclasses themselves, and thus are leaf node classes in an inheritance tree.

Results with the Refactoring Browser: To make the effect of this graph more visible, in Figure2.21we
see on the top left the root class detection graph while on the bottom right we see a display of two major
inheritance trees. We see the classRefactoring(A) which has 43 descendants and 5 direct subclasses as
root of major inheritance tree on the right side of the correlation graph. The other root class,BrowserAp-
plicationModel(B) can also be identified on the right side of the graph. Two classes,MethodRefactoring
(C) andVariableRefactoring(D), which are the heads of minor flying saucer hierarchies (14 and 13 direct
subclasses) can be identified near the 45 degrees axis.

Results with Duploc: The results of this graph are somewhat deceiving in the case of Duploc, as its
inheritance hierarchies are very flat. We can detect however two root classes, namelyPresentationModel-
ControllerState(A) and PMCS(B). In Figure2.22we see where the detected root classes are located in
one of the inheritance hierarchies of Duploc.

Possible Alternatives: We do not make use of the color and size metrics, which could add information
to this graph.



54 Techniques

Figure 2.21: A root class detection graph applied on the Refactoring Browser. As position metrics we use
WNOC and NOC.

Figure 2.22: A root class detection graph applied on Duploc. As position metrics we use WNOC and NOC.

Evaluation: The detection of flying saucer hierarchies can of course be done through an inheritance tree
display. The resulting tree graph has then to be searched for them. However, in some cases where the
number of classes was very large, the resulting graph would become several screens big. In such cases it’s
not easy to detect flying saucers at once, and the graph described here comes into play. This graph can
come in handy to see if there are some inheritance hierarchies upon which we want to apply inheritance
specific graphs like intermediate abstract or inheritance impact.



2.2 Program Visualisation and Metrics (by M. Lanza) 55

2.2.10.5 Service Class Detection

Graph Stapled, sort according to width metric.

Scope Subsystem or small full system.

Metrics

Size NOM (number of methods) WLOC (lines of code)

Color NOM

Position - -

General Idea: This graph has proven to be useful for the detection of so-calledservice classes. A
service class is a class which mainly provides services to other classes. It often contains some tables and
dictionaries which other classes can access for their purposes. Such classes often have an aberrant ratio
between NOM and WLOC: they have very short methods which mainly access or return values. In this
kind of graph we present a selection of some classes (a whole inheritance tree is often a good choice) as a
stapled graph. The classes have been sorted according to their width, which represents NOM.

Because there tends to be a certain relation between NOM and WLOC, we should get a sort of staircase
effect on the nodes the more we move to the right.

We can make out the following:

• If a class node breaks the staircase effect (by being too short) it is a candidate for a service class.

• This graph can also serve as detector for classes with overlong methods: If the class breaks the effect
in the other direction (by being too tall) it’s a candidate for method splitting, because this means that
it has many lines of code (tall) and comparatively few methods (narrow, and because of the sorting
pushed to the left side of the graph).

Figure 2.23: The service class detection graph applied on a subhierarchy of the Refactoring Browser. As
width metric and sorting criterion we use NOM, the height metric is WLOC.

Results with the Refactoring Browser: In Figure2.23we selected a whole inheritance tree (26 classes)
of the Refactoring Browser to be displayed in aSERVICE CLASS DETECTIONgraph. We see one huge class
BrowserNavigator(A), which in fact is even bigger, but we cut it down because of space reasons. We see
quite clearly that there is a certain tendency for a staircase which is severely broken in two places. The first



56 Techniques

service class candidate isCodeTool(B), which has 22 methods and 49 lines of code. A closer inspection
reveals that the methods are mainly get/set-methods (accessors). The second candidate isCodeModel(C)
with 40 methods and 136 lines of code. The name itself already reveals the service function this class is
intended to have. As method splitting candidate we detect the classClassCommentTool(D) which has only
7 methods but 89 lines of code.

Figure 2.24: The service class detection graph applied on a subset of Duploc. As width metric and sorting
criterion we use NOM, the height metric is WLOC.

Results with Duploc: We obtained the graph in Figure2.24by first applying the graph on the whole sys-
tem and then by selecting a subset which looked interesting. We see there are some candidates for service
classes: The classCachedObservationData(A) contains 20 methods for a total count of 50 lines of code.
A closer inspection reveals it is truly a service class. Nearly the same ratio is visible in the classesCompar-
isonMatrixBody(B) (22/80),PresentationModelControllerState(C) (25/87) andObservationOnRawSub-
Matrix (D) (30/122). Some classes tend to have overlong methods, namelyPMVSInformationMuralMode
(E) (22/396) andDuplocCodeReader(F) (32/530), and should be looked at for possible method splitting.

Possible Alternatives: Nearly the same results can be obtained if we use NIV (number of instance vari-
ables) instead of NOM: both NOM and NIV are closely related in service classes (because of the accessors).
Sometimes abstract classes higher up the hierarchy tend to have the same properties as service classes, be-
cause their abstract nature makes them have several very short methods which are later overridden or
extended by the subclasses. This can be alleviated if we use HNL (hierarchy nesting level) as color metric.
Service class candidates which are true service classes tend then to have a darker color shade. Fake service
classes like the abstract ones will have a lighter color shade because they are higher up the hierarchy.

Evaluation: As this graph addresses a special problem, it should be used in a second phase of reverse
engineering. Experience has shown that it’s advisable to apply it on subsystems, especially inheritance
hierarchies.



2.2 Program Visualisation and Metrics (by M. Lanza) 57

2.2.10.6 Cohesion Overview

Graph Checker, quadratic, sort according to width metric.

Scope Full system or subsystem.

Metrics

Size NOM (number of methods) WNAA (number of direct ac-
cesses on attributes)

Color NIV (number of instance variables)

Position - -

General Idea: In this graph the nodes differ greatly in shape and color. In the best case this graph
can give us some clues on which classes we should inspect for a possible splitting. We distinguish the
following:

• The flat nodes indicate that the methods of a class (the width indicates the number) do not access
many times its instance variables. This is further emphasised by the small height (few instance
variable accesses).

• The narrow and high nodes on the other hand, tend also to be very light colored. This case happens
when the classes have many accesses but only few instance variables. This is mostly the case when
the class defines an attribute which is then heavily accessed directly by its subclasses. This is not
advisable because of the lacking encapsulation: a single access through an accessor which would
then be invoked by other classes, instead of direct accesses on the attribute, would be much better.

• More or less rectangular nodes with darker color shades indicate a good cohesion inside those classes,
although this is only provable after applying a class cohesion graph, which is described in Sec-
tion 2.2.13.1.

Figure 2.25: A cohesion overview graph applied on the Refactoring Browser. As size metrics we use NOM
and WNAA. As color metric NIV is used.

Results with the Refactoring Browser: The resulting graph can be seen in Figure2.25. The first thing
we notice is that the nodes differ heavily in their shapes and colors. There are some white nodes that
don’t define instance variables (for example (A)) and because of this absence they can’t have any instance
variable access either. This is the reason for their flat shape. We also gather there are some empty or
nearly empty ones (located around (F)). The classBrowserNavigatorstrikes once again the eye for its huge
number of methods and its small number of instance variables (only one). The nodes (D) and (E) strike the



58 Techniques

Figure 2.26: A cohesion overview graph applied on Duploc. As size metrics we use NOM and WNAA. As
color metric NIV is used.

eye for their narrow shape and light color: Both have few methods and instance variables, (1,2) and (2,1)
respectively, while at the same time they have a huge number of accesses. The reason for this is that their
variables are directly accessed by their subclasses. The classBRScanner(C) shows a great complexity and
heavy access.

Results with Duploc: The graph in Figure2.26 shows a few characteristics of Duploc: Many empty
or nearly-empty classes (C), quite a few heavy-access classes (B) and (D) and a few very large classes,
for exampleDuplocApplication(A). We see there are quite a few classes that could be interesting for
inspection with a class cohesion graph and do that for one special case, the classDuplocApplicationin
Section2.2.13.1.

Possible Alternatives: None.

Evaluation: This graph can be seen as anin-betweener, because it comes after a graph for general
overview and before a graph which treats class internals. The best result it can return is a collection of
classes which we should further examine with a class cohesion graph, described in Section2.2.13.1.



2.2 Program Visualisation and Metrics (by M. Lanza) 59

2.2.10.7 Spinoff Hierarchy

Graph Inheritance tree, centered, without sort.

Scope Subsystem, especially inheritance hierarchies.

Metrics

Size WNOC (total number of chil-
dren)

NOM (number of methods)

Color WNOC (total number of children)

Position - -

General Idea: We have noticed that in inheritance hierarchies the notion of inheritance is often carried
on only by one or two classes on each level of the inheritance tree. This means that when a class has some
subclasses often only one of them is really carrying on the weight of the inheritance, while its siblings tend
to bespinoffclasses implementing only few functionalities. Although this is not a bad thing per se, an
easy detection of such spinoff hierarchies could make us focus on the inheritance carriers, while we could
save time by ignoring (at least at the beginning) the less important spinoff classes. Spinoff classes often
implement few methods and have few or no subclasses at all.

We distinguish the following:

• Small, light colored nodes. These are thespinoff classeswith few or no children and few methods.

• Large, dark colored nodes. These are theinheritance carriers.

Results with the Refactoring Browser: In Figure2.27we see all inheritance hierarchies that make up
the Refactoring Browser. We filtered out all stand-alone classes to get a clearer overview. We detect two
cases of spinoff hierarchies:

1. The one with the classBrowserApplicationModel(A) as root. We see two classes split up the second
level of this tree, namelyCodeTool(A21) andNavigator(A11). There are a few spinoff classes on
this level, neither of them has subclasses. The same situation is present on the next level of this
tree where the classesBrowserTextTool(A22) andBrowserNavigator(A12) carry on the weight of
inheritance. A good example for spinoffs is visible betweenCodeTool(A21) andBrowserTextTool
(A22): CodeToolhas 7 subclasses but only one of them,BrowserTextTool, carries on the inheritance.
Each one of its siblings is very small (keep in mind that the height reflects NOM) and is thus a
spinoff.

2. The one with the classRefactoring(B) as root. Again two main inheritance threads are visible:
The one consisting ofRefactoring(B), MethodRefactoring(B11) andChangeMethodNameRefac-
toring (B12). The other consists ofRefactoring(B), VariableRefactoring(B21) andRestoringVari-
ableRefactoring(B22).

The other inheritance trees in this display also show some property of a spinoff hierarchy, and could be a
case of further investigation.

Results with Duploc: After removing the many stand-alone classes from Duploc, the remaining graph
in Figure2.28can only show us the absence of spinoff hierarchies. Especially in the tree with the class
PresentationModelControllerState(A) as root, we see that on the third level we have 5 siblings, 4 of which
are all inheritance carriers, with only one tiny spinoff class with the meaningful namePMCSDummyMode
(B).



60 Techniques

Figure 2.27: The spinoff hierarchy graph applied on the inheritance hierarchies of the Refactoring Browser.
As size metrics we use WNOC and NOM, as color metric WNOC.

Figure 2.28: The spinoff hierarchy graph applied on Duploc. As size metrics we use WNOC and NOM, as
color metric WNOC.

Possible Alternatives: We have to emphasise that a preprocessing consisting of filtering out all stand-
alone nodes is advised for this graph, as they add unnecessary complexity to the displayed graph. This
graph does not have real alternatives, as it addresses a special problem.

Evaluation: This graph should come into play in a later phase of the reverse engineering, as it addresses
a special problem which may not be present at all in the system. The detection of an inheritance carrier
could be important, as it is the place which should be checked out because subclasses depend on it. The
spinoff classes on the other hand, can be examined for possible push-ups of functionality.



2.2 Program Visualisation and Metrics (by M. Lanza) 61

2.2.10.8 Inheritance Impact

Graph Inheritance tree, without sort.

Scope Subsystem, especially inheritance hierarchies.

Metrics

Size NMO (number of methods over-
ridden)

NME (number of methods ex-
tended)

Color NOM (number of methods)

Position - -

General Idea: This graph is able to tell us if there has been made an improper or suspect use of inher-
itance: it can tell us if a class that implements many methods does not make use of method overriding
or method extension, or uses it only rarely. Overriding and extending methods is one of the powerful
properties of object-oriented languages and should be used if possible.

Nodes that override or extend a lot are bigger, nodes that implement many methods are dark. We are looking
for dark nodes (many methods) which are at the same time very small (no use or rare use of overriding and
extension).

Results with the Refactoring Browser: One of the hierarchies of the Refactoring Browser seems to
have one such class which should certainly be further investigated: In Figure2.29we can detect the class
BrowserNavigator(A) which implements many methods (175), while it only overrides one and extends
two methods.

Figure 2.29: The inheritance impact graph applied on an inheritance tree of the Refactoring Browser. As
size metrics we use NMO and NME, as color metric NOM.

Results with Duploc: This graph returns no meaningful results if applied on Duploc.

Possible Alternatives: No real alternatives, as it addresses a specific problem. This graph is often ob-
tained after filtering out all stand-alone classes and all inheritance hierarchies which show no sign we are
looking for.



62 Techniques

Evaluation: A graph which addresses a very special problem. It’s not always useful, but if it can detect
something, it can be an important discovery which can affect a whole inheritance hierarchy.



2.2 Program Visualisation and Metrics (by M. Lanza) 63

2.2.10.9 Intermediate Abstract Class

Graph Inheritance tree, without sort.

Scope Subsystem, especially inheritance hierarchies.

Metrics

Size NOM (number of methods) NMA (number of methods
added)

Color NOC (number of children)

Position - -

General Idea: This graph is useful for the detection of abstract classes or nearly-empty classes which
are located somewhere in the middle of an inheritance chain. Often they tend to have a superclass which
implements a lot of methods. The programmer then started to subclass this class. The number of direct
subclasses would soon be too big so an attempt was made to logically group several subclasses under an
abstract intermediate class.

Such an intermediate subclass would normally have many children, while at the same time its size is very
small (because it is abstract or nearly empty). We thus have to look for small, dark nodes in the middle of
inheritance hierarchies.

The dark color comes from the greater number of direct subclasses, while the small size from the small
functionality implemented. We chose NMA as height metric to reflect the fact that often such intermediate
abstract classes don’t override superclass methods, which in turn means that is we use NOM as width
metric, the node is square (no functionality implemented, or if there is a bit of implemented functionality,
then it doesn’t come from the superclass). Intermediate abstract classes are of some interest, because often
we can try to push up some functionalities of its subclasses into it, thus concentrating them in one place,
instead of spreading the functionality all over the subclasses, risking to obtain duplicated code.

Figure 2.30: The intermediate abstract class graph applied on a subset of the Refactoring Browser. As size
metrics we use NOM and NMA, as color metric NOC.

Results with the Refactoring Browser: The Refactoring Browser harbours in one of its inheritance
hierarchies two intermediate abstract classes, as we see in Figure2.30. The root classRefactoring(A)
implements quite a few methods, while we can spot the two intermediate abstract classes asMethodRefac-
toring (B) andVariableRefactoring(C). These two classes implement themselves very few methods (2 and
1 respectively) and are the roots of smaller subhierarchies. In the case ofMethodRefactoringwe see that its



64 Techniques

subclasses are implementing several methods, as we see inInlineMethodRefactoring(D) andMoveMetho-
dRefactoring(E). Perhaps an attempt could be made to extract duplicated code and push it up into the
intermediate abstract class.

Figure 2.31: The intermediate abstract class graph applied on an inheritance hierarchy of Duploc. As size
metrics we use NOM and NMA, as color metric NOC.

Results with Duploc: One of Duploc’s inheritance hierarchies also contains an intermediate abstract
class, as we see in Figure2.31: The subclassPMCS(B) of the root classPresentationModelControllerState
(A) implements only 4 methods and is obviously an intermediate abstract class. The subclasses ofPMCS
should be searched for duplicated code which could be pushed up intoPMCS.

Possible Alternatives: None.

Evaluation: The detection of abstract classes is very important: several object oriented languages either
directly provide a declaration or support a standard idiom for identifying abstract classes. Abstract or
nearly abstract classes can be seen as the hinges of the system, upon which several classes depend. It’s
where the common functionality is defined and where we should start to look at source code if we want to
understand the logic of their subclasses.



2.2 Program Visualisation and Metrics (by M. Lanza) 65

2.2.11 Useful Graphs: Method Graphs

Method graphs can work at any level of granularity most of the time. However, the more method nodes we
display, the harder it is to make out outliers. Methods are the entities which are responsible for the action
in a system. This implies that every graph which uses method nodes is often followed by an examination
of the actual underlying source code. This means that the graphs listed here have a very concrete context.

In this section we list the following graphs:

• METHOD EFFICIENCY CORRELATION, Section2.2.11.1.

• CODING IMPACT HISTOGRAM, Section2.2.11.2.

• METHOD SIZE NESTING LEVEL, Section2.2.11.3.



66 Techniques

2.2.11.1 Method Efficiency Correlation

Graph Correlation.

Scope Full system, subsystem or single class.

Metrics

Size NOP (number of parameters) NOP

Color *

Position LOC (lines of code) NOS (number of statements)

Figure 2.32: A method efficiency correlation graph.

General Idea: This graph is a good way to locate thefreaky entitiesinside a group of methods, when it
comes to their efficiency. By efficiency we mean how many statements are put on each line. By displaying
the nodes in the correlation graph (as in Figure2.32), we see that most of the nodes are near a certain
correlation axis. However, there are a few which do not adhere to this rule.

The methods that are not near the correlation axis may have some problems, which may be

1. High LOC (lines of code) and low NOS (number of statements). This is for example the case with
”forgotten methods”, that at some point have been commented out and then been forgotten. This
may also be the case for overzealous line indentation, when a single parenthesis is put on a line of its
own or when many blank lines have been used.

2. Low LOC and high NOS. This can be the case when the methods are written without indentation and
several statements are on the same line, which is a bad thing too, since this decreases the readability,
and it may also break the law of Demeter [LH89].

3. Long methods (high LOC and high NOS). Normally a case for redesign, since long methods should
be split up in smaller, better understandable and reusable ones [Bec97].

4. Empty methods. These nodes position themselves on the top left of the graph. Although they can be
viewed there by selecting and moving, the overlapping of the nodes which is characteristic for this
graph makes it hard to see those empty methods at one glance. A better graph for the detection of
empty methods is the Coding Impact Histogram described in Section2.2.11.2.

Other hot spots can be detected by looking at the size of the nodes:

• Big nodes have many parameters. Although it’s hard to define a threshold on the number of parame-
ters, we think that methods taking more than 5 parameters should be looked at.



2.2 Program Visualisation and Metrics (by M. Lanza) 67

• Very small nodes on the outskirts of the graph should be looked at: these are very long methods
which do not take any input parameter. Perhaps they could be split up easily.

The interesting property of this graph is its scalability. Since most of the nodes overlay each other, and
those nodes are of no real interest to us, because they have average metric measurements, we can display
several thousands of nodes at the same time. Our interest is drawn by the nodes which find themselves
on the outer skirts of the graph, and which do not suffer overlaying, as their position is defined by their
non-average metric measurements. The size of this graph is not affected by the number of displayed nodes,
but on the maximum values for the position metrics.

Results with the Refactoring Browser: The method efficiency correlation graph shows some interest-
ing results when applied to the Refactoring Browser. In Figure2.33we display all 2365 methods of the
Refactoring Browser. We can spot several cases which should be looked into. The first nodes to meet the
eye are those on the right edge of the graph (A). These three methods are very long (45, 51 and 65 lines of
code) compared to the other methods in the system, which does not have a great distribution, thus signify-
ing that the system is homogeneous related to the method lengths. The opposite case can be seen on the
top left side of the graph (B). Upon closer inspection (by selecting and moving the nodes) we can see that
the RefactoringBrowser contains 20 empty methods. The next point of interest is the method marked (C):
this method takes 7 input parameters which is of course very much. The methodreInstallInterface(D) on
the top of the graph is also a case of closer study: While it has 16 lines of code it contains no statements.
If we browse its source code, we see that the whole body of the method has been commented. The method
needsParenthesisFor:(E) on the other hand contains 31 statements in only 19 lines of code and should
perhaps be reformatted. The group of methods marked as (F) should also be looked into, since all of them
contain comparatively few statements in long method bodies.

Figure 2.33: The method efficiency graph applied on the Refactoring Browser, using as position metrics
LOC and NOS, as color metric HNL, and as size metric NOP.

Results with Duploc: When this graph is applied to Duploc, as we see in Figure2.34, the first thing to
strike the eye is the large distribution of the nodes. Duploc obviously does have some very long methods.
The second thing that meets the eye is that the main correlation axis has a different angle compared to the
Refactoring Browser in Figure2.33. The methodputPerlCode:(A) is 201 lines long but does have only
2 statements. Upon closer inspection we see that its purpose is to print out a very long string. We have
some other very long methods, (B) with 135 lines, (C) with 95 lines, (D) with 109 lines. We have some
method that are far away from the system correlation axis, like (A), (C), (E), (F) and (G). (E) for example
has 64 lines of code with only 1 statement. A closer inspection reveals its body is mainly commented code
for testing purposes, i.e. when the system is tested some parts of the method body are uncommented. (F)
reveals the same situation, where the 18 lines long method body doesn’t contain any statements at all. (G)
has 32 statements packed in 14 lines of code. Reformatting makes it more readable. The empty methods



68 Techniques

can of course be detected as (H), while we should also note the nodes around (I), which seem to be very
short and at the same time badly formatted methods. The two methods (J) also draw attention due to their
considerable size, which reflects the fact that they take 9 input parameters each.

Figure 2.34: The method efficiency graph applied on Duploc, using as position metrics LOC and NOS, as
color metric HNL, and as size metric NOP.

Possible Alternatives: We chose the size of the nodes to be represented by NOP (number of parameters).
Since the distribution tends to get sparse the more we move to the right and to the bottom, we can see the
methods which take many parameters more clearly, since it’s normally the large methods that take more
parameters. Generally in this graph the size metrics can be chosen freely, although it’s advisable to use
metrics which tend to have small measurements. Otherwise the nodes get very big and clutter up the view.
The color metric can also be used freely. We chose HNL (hierarchy nesting level) in this case, but since
the nodes in this graph tend to be very small, the color node metric doesn’t really matter.

Evaluation: This is one of the few graphs which works very well at any level of granularity. As such it
can be used anytime. We saw it can be useful to apply it on a subsystem before we dive into its details. At
class level it can help to detect problem cases for a concrete reengineering.



2.2 Program Visualisation and Metrics (by M. Lanza) 69

2.2.11.2 Coding Impact Histogram

Graph Histogram, size addition layout, sort according to width metric.

Scope Single class or small subsystem.

Metrics

Size LOC (lines of code) -

Color LOC

Position LOC -

General Idea: This graph shows the coding impact of methods and where the most coding has happened.
While the normal histogram can only tell us how methods are distributed regarding their lines of code, this
graph (Figure2.35) can reveal where the real programming effort has been made: Writing 20 methods each
one line long is easier than writing one method 20 lines of code long. It shows if there are any aberrant
methods that are too long or if the system is unbalanced because of too long and complex methods. As a
nice side-effect we can also grasp at one glance if there are any empty methods (those at the very top of
the graph). A good design should have a lot of tiny methods so this is where the biggest columns in the
graph should be. Methods not following this rule should be analysed as possible ”split candidates” which
could be broken down into smaller pieces. While this graph is inefficient on whole systems because of the
huge number of methods, it has proven to be very useful when applied to the methods of one single class.
It should also be noted that the average length of a method implemented in typical industrial Smalltalk
applications is around 6 lines [Bec97].

Figure 2.35: A coding impact histogram.

Results with the Refactoring Browser: Since this is one of the graphs which can hardly be applied
on whole systems, but rather on specific small subsystems or singular classes, we do not compare the
systems from our case studies with each other, but we rather show a few illustrative examples taken out
randomly8 from the Refactoring Browser. We selected only the two classes (BrowserNavigator(B) and
BRProgramNode(A)) with the most methods for this graph. We see in Figure2.36that each class has its
own coding impact topography. We see thatBrowserNavigator(B) has many methods which tend to be
overlong, and especially 6 very long ones which isolate themselves (B1) from the others. On the other hand
BRProgramNodehas an irregular topography with many accessors (A2) and one very long method (A1).

Possible Alternatives: This graph knows many useful mutations, especially those which keep LOC as
vertical position metric, but use other size and color metrics and a different sort criterion. In these cases, es-
pecially NI (number of invocation) and NMAA (number of accesses on attributes) showed good behaviour.

8This randomness should also express the interactive approach of such systems, which is guided by intuition rather than a system-
atic methodology, although experience has shown that at the beginning of a reverse engineering experiment we tend to apply a certain
fixed set of graphs. This reflects the fact that the graphs address each a different level of abstraction.



70 Techniques

Figure 2.36: The coding impact graph applied on two classes of the Refactoring Browser. The width metric,
as well as the color and vertical position metric is LOC.

Evaluation: This graph is very useful toget a feelingfor certain classes or subsystems. It can show us
what kind of implementation lies behind the subject entities and in certain cases what we should continue
to explore.



2.2 Program Visualisation and Metrics (by M. Lanza) 71

2.2.11.3 Method Size Nesting Level

Graph Checker, quadratic, sort according to width metric.

Scope Subsystem, especially inheritance hierarchy. No stand-alone classes.

Metrics

Size LOC (lines of code) NOS (number of statements)

Color MHNL (hierarchy nesting level)

Position - -

General Idea: A general rule is that big methods should be split up [Bec97] into smaller chunks to
increase their reusability and to make them easier to understand. This is especially true for methods that
are implemented in classes deep down the inheritance hierarchy: perhaps parts of those big methods could
be extracted and put up into a higher class to reuse them across several subclasses. The method size nesting
level graph can help us to detect large methods deep down the inheritance hierarchy: It’s a checker graph
of methods with LOC and NOS as size metrics and MHNL as color metric. The nodes are sorted according
to LOC, which puts the larger methods on the bottom area of the graph.

Since the color reflects the MHNL of the methods, we should be looking for big, dark nodes in the bottom
area of the graph: these are possible split candidates. We call such methods split-and-push-up candidates.

Figure 2.37: The method size nesting level graph applied on the largest Refactoring Browser methods. Size
metrics: LOC, NOS. Color metric: MHNL.

Results with the Refactoring Browser: The Refactoring Browser shows in Figure2.37that is has been
refactored itself a few times: there remain very few large methods, after filtering out all those with a LOC
measurement smaller than 20. Yet, there are some large methods which also have medium MHNL values
like those in the last row (A). Their lengths vary from 65 to 37 lines, which makes them also possible
split-and-push-up candidates.

Results with Duploc: We display in Figure2.38 only the methods that have more than 20 LOC and
belong to non-stand-alone classes. The resulting graph shows us there are several very large methods,
which on one hand don’t have big MHNL values, but since they’re not methods belonging to root classes
either, are all the same split-and-push-up candidates. The biggest methods (A) have 201, 135 and 109



72 Techniques

Figure 2.38: The method size nesting level graph applied on several Duploc methods. Size metrics: LOC,
NOS. Color metric: MHNL.

LOC, which is way too much for Smalltalk methods. This excessive size is again due to the fact that most
of them have never been refactored and written in one pull.

Possible Alternatives: The same graph using only LOC as size and color metric can be applied on whole
systems (including stand-alone classes). In such a case the graph serves to easily detect very large methods
which could be split up.

Evaluation: Since this graph is useful for classes belonging to inheritance hierarchies, it should primarily
be used to get insights into such structures as to where the methods are which could be reengineering
candidates.



2.2 Program Visualisation and Metrics (by M. Lanza) 73

2.2.12 Useful Graphs: Attribute Graphs

Attributes define the properties of classes. As such, it’s mandatory that to understand the purpose of an
attribute, we have to understand the class in which it is defined. This implies that very soon after applying
one of the following graphs, we have to look at the source code of the class.

In this section we list the following graphs:

• DIRECT ATTRIBUTE ACCESS, Section2.2.12.1.

• ATTRIBUTE PRIVACY, Section2.2.12.2.



74 Techniques

2.2.12.1 Direct Attribute Access

Graph Checker, quadratic, sort according to width metric.

Scope Full system or subsystem.

Metrics

Size NAA (number of times accessed
directly)

NAA

Color NAA

Position - -

General Idea: This is a graph of all attributes of a system or subsystem. As metrics we use NAA (number
of times accessed) for the size and the color. We then also sort the nodes according to NAA. What we get is
a clear display of which attributes are accessed the most in a system. These attribute nodes are positioned
at the bottom of this graph. The largest nodes should be a case for closer inspection. The general rule
should be that attributes which are accessed directly can break the system if the inner implementation of
the attribute changes. This can be avoided by using an accessor method which returns the value(s) of the
attribute. An accessor on such an attribute can provide a defensive wall of protection against such changes.
There may also be some attributes which are never accessed and which may have been forgotten in the
system and thus only add unnecessary complexity to it. They could be removed from the system. Such
attribute nodes are positioned on top of the graph.

Results with the Refactoring Browser: In Figure2.39we notice at once that there is the attributeclass
(A) defined in the classMethodRefactoringwhich is directly accessed 86 times. We also see there are some
never accessed attributes which should also be further investigated (B).

Figure 2.39: The direct attribute access graph applied on the Refactoring Browser. The size, color metric
and sort criterion is NAA.

Results with Duploc: In Figure2.40we see that while in Duploc there are no attributes which are heavily
accessed (the maximum is 31 direct accesses for the attributeregion(A) defined in the classAbstractRaw-
SubMatrix) there are many attributes which are never accessed (B) and which should be looked into for
possible removal.



2.2 Program Visualisation and Metrics (by M. Lanza) 75

Figure 2.40: The direct attribute access graph applied on Duploc. The size, color metric and sort criterion
is NAA.

Possible Alternatives: An interaction with interesting nodes is necessary to see if accessors have been
implemented for them and if those accessor methods are used all the time.

Evaluation: A graph which works at every level of granularity. The next step which has to follow such
a graph is to examine the classes in which the outlier attributes are defined. Note that this graph takes
only the direct accesses into account. If an attribute is accessed very often through the use of an accessor
method this will not show in this graph. Note that the quality of this graph depends heavily on the quality
of the metamodel. Especially when building a model out of a CDIF file we have often seen that sometimes
accesses are left out. This can lead us to wrong conclusion on never accessed attributes. Again, a check
against the code has to be done to be sure.



76 Techniques

2.2.12.2 Attribute Privacy

Graph Checker, quadratic, sort according to width metric.

Scope Full system or subsystem. Better performance with C++ or Java.

Metrics

Size NAA (number of times accessed
directly)

NCM (number of classes which
access this attribute)

Color *

Position - -

General Idea: Attributes may be directly accessed several times in a system. As we said in Sec-
tion 2.2.12.1such a situation is not ideal and can be detected with the graph described there. Apart from the
number of times an attribute is accessed, another metric may prove to be useful for a similar graph: NCM,
the number of classes which have methods that directly access a certain attribute. The attribute privacy
graph is a checker graph which uses as size metrics NAA and NCM.

We are looking for wide, high nodes: such nodes are directly accessed a lot of times by many classes and
should have an accessor at all costs, because the system easily breaks if such an attribute is tampered with.

Very wide but shallow nodes should also be looked at: although they are directly accessed a lot, it’s by few
or often only one class. If it’s the case of only one accessing class, it should be checked it the attribute in
question is private. If not, it can be made private without impact on the rest of the system.

Figure 2.41: The direct attribute access graph applied on the Refactoring Browser. The size metrics are
NAA and NCM.

Results with the Refactoring Browser: In Figure2.41 we can spot some heavily accessed attributes
marked as (A) which are accessed by many classes. We also see there are some very flat but wide nodes
which are attributes heavily accessed by only 1 or very few classes.

Results with Duploc: In Figure2.42we can see that as a difference to the Refactoring Browser, Duploc
has attributes which are seldom accessed by more than one class. The maximum NCM value is 3. We
deduce from that that the implementor of Duploc keeps an eye on encapsulation9.

Possible Alternatives: None.
9The implementor of Duploc used to implement a lot in C++, which could be a reason for the tight encapsulation.



2.2 Program Visualisation and Metrics (by M. Lanza) 77

Figure 2.42: The direct attribute access graph applied on Duploc. The size metrics are NAA and NCM.

Evaluation: A graph whose purpose is to find attributes which have to be examined. Since such an
examination takes place at textual level, it’s a graph which can help find problems at once. The results are
incomplete in this case: the last step after detecting wide and flat nodes would be to check if the attributes
concerned are defined as private. If not they could be made private. However, this does not work in
Smalltalk, so we had to leave that part out with our case studies.



78 Techniques

2.2.13 Useful Graphs: Class Internal Graphs

A class internal graph treats the special case where the components of a class are displayed at the same
time: methods and attributes.

In this case we find ourselves at a low level of abstraction, the source code is only one step away and it’s
necessary to look at it after applying a class internal graph.

In this section we list the following graph:

• CLASS COHESION, Section2.2.13.1.



2.2 Program Visualisation and Metrics (by M. Lanza) 79

2.2.13.1 Class Cohesion

Graph Confrontation graph, nodes sorted according to their width metrics..

Scope Single class.

Metrics (Method Nodes)

Size LOC (lines of code) NOS (number of statements)

Color LOC

Position - -

Metrics (Attribute Nodes)

Size NAA (number of times accessed
directly)

NAA

Color NAA

Position - -

General Idea: This graph is a confrontation graph where the edges represent instance variable accesses
between methods and attributes. This graph can indicate us how strong the internal cohesion of a class is.
If a class has many accesses and looks very chaotic, this means that the class is difficult to split. On the
other hand, if we can make out two or more separate clusters in this display, this is an indication that the
class is a good split candidate. If the root class of an inheritance hierarchy shows such characteristics it is a
sign that the hierarchy tends to be top-heavy. If the class shows sparse attribute accesses it could be easier
to subclass.

Results with the Refactoring Browser: In Figure2.43we displayed the methods and attributes of the
classBRScannerwhich has been identified as (C) in Figure2.25. We gather at once that this class is heavily
coupled internally and that splitting such a class is next to impossible.

Figure 2.43: A class cohesion graph applied on the class BRScanner. The method nodes (in the lower row)
use as size metric NOS and as color metric LOC. The attribute nodes (in the upper row) use as color and
size metric NAA.

Results with Duploc: We obtained some impressive results when we applied this graph to some classes
of Duploc. We show only one here: the classDuplocApplication. After filtering out all methods that never
accessed attributes, we got the graph displayed in Figure2.4410. We clearly see two distinct clusters of
attribute and method nodes. This class is thus certainly a split candidate. This suspect was confirmed
afterwards when I asked the implementor of Duploc about this class. He confirmed that this class was to
be split up during the next redesign of the system.

10Note that the graph resulted like this after direct manipulation of the graph (i.e. moving around nodes) and not because of a
layout algorithm that can identify clusters. However, we included into CODECRAWLER the functionality to help us quickly identify
such clusters.



80 Techniques

Figure 2.44: A class cohesion graph applied on the class DuplocApplication.

Possible Alternatives: We advise the user to remove all stand-alone nodes from the graph, as they are of
no use in this case. The metrics, especially the color metric in the method nodes can be varied freely.

Evaluation: This graphs needs some interaction before it can express its full potential. However, its
usefulness is indisputable: Up to this moment we haven’t seen a technique which can detect split candidates
with such an easy and quick method.



2.3 Grouping (by O. Ciupke) 81

2.3 Grouping

Author: Oliver Ciupke

2.3.1 The problem

Reengineering large software systems requires analysing and manipulating tasks at multiple levels of ab-
straction. The standard views of a system used during design and implementation, such as the class and
method structure as well as the source code, are often not sufficiently abstract. These views provide a
wealth of information, not all of which is relevant to the task of reengineering. Consequently, the essential
information may be obscured.

Additionally, some problems arising during the design of software are themselves only understandable at
a high level of abstraction. For example, the class structure may look well designed even though there
are too many dependencies between the packages or subsystems. This can make the system unnecessarily
complex thus compromising flexibility and increasing the cost to maintain the system.

Abstract views of a system are already supported in several design languages and methods. Examples in-
clude packages in UML [RJB99] or subjects in OOA [CY91]. Unfortunately, they are currently to vaguely
defined making them insufficient for the tasks occurring in reverse- and reengineering. Here, a concept
must be implementable by tools in a way that it is composable with other techniques (such as querying and
problem-detection) in a clearly defined manner.

2.3.2 Grouping

To be able to analyse a system, we must have an exact way to come from elementary views to more abstract
ones. They must be formally sound, so it is known with precision what the meaning of an abstraction and
to ensure that it is possible to build tools able to deal with these abstractions.

What we need is a description of how to move from a detailed description of a system to a more abstract
view. We call this processgrouping (also referred to asabstraction, compressionor lifting). Grouping
means replacing a set of entities, often describing a common abstract concept, into one abstract entity
called agroup(or complex entity).

Figure2.45 shows a model of a small C++ program including classes and methods together with their
relationships. Figure2.46 shows a more abstract view on the same program where methods have been
grouped together with the classes they belong to. One can imagine, that these kinds of abstractions are
often useful to get an appropriate overview and to understand overall dependencies. For larger systems, it
is even necessary to go beyond this level, e.g., to view it on the level of subsystems or packages.

2.3.2.1 Examples

In principle, any set of entities under consideration can be grouped together. Similarly, each entity can
in principle be split up into its component parts in order to provide a more detailed view of the system.
However, there are several groupings which are particularly useful in building up common abstractions.
Examples for those are

Classes to packages:Grouping classes to packages (or subsystems or modules or clusters) is probably
the application most commonly used. Figure2.47shows an example. The three upper left packages
could be a framework, whereas the lower right package could be an instantiation of this framework
towards a specific application. After grouping, dependencies between classes are propagated to the
surrounding packages. The process leads to an overview over the overall architecture of the system.



82 Techniques

ClassExportFilter

CollectNode

CollectNodeSet

CollectNodeTypeSet

EdgeFilter

GMLFloatValue

GMLIntegerValue

GMLListValue

GMLStringValue

GMLValue

InheritsFilter

NodeAction

ProgramGraph

SingleTypeFilter

TypeFilter

ClassExportFilter::follow

ClassExportFilter::~ClassExportFilter

CollectNode::createNodeArray

CollectNode::getNodeList

CollectNode::postAction

CollectNode::preAction

CollectNode::reset

CollectNode::~CollectNode

CollectNodeSet::createNodeList

CollectNodeSet::getNodeSet

CollectNodeSet::postAction

CollectNodeSet::preAction

CollectNodeSet::reset

CollectNodeSet::~CollectNodeSet

CollectNodeTypeSet::CollectNodeTypeSet

CollectNodeTypeSet::preAction

CollectNodeTypeSet::~CollectNodeTypeSet

EdgeFilter::follow

EdgeFilter::~EdgeFilter

GMLFloatValue::GMLFloatValue

GMLFloatValue::clone

GMLFloatValue::getValue

GMLFloatValue::isFloat

GMLFloatValue::print

GMLFloatValue::printValue

GMLFloatValue::setValue

GMLFloatValue::~GMLFloatValue

GMLIntegerValue::GMLIntegerValue

GMLIntegerValue::clone

GMLIntegerValue::getValue

GMLIntegerValue::isInteger

GMLIntegerValue::print

GMLIntegerValue::printValue

GMLIntegerValue::setValue

GMLIntegerValue::~GMLIntegerValue

GMLListValue::=

GMLListValue::GMLListValue

GMLListValue::addBack

GMLListValue::addFront

GMLListValue::clone

GMLListValue::getNextValue

GMLListValue::getValue

GMLListValue::isList

GMLListValue::print

GMLListValue::printDelim

GMLListValue::printValue

GMLListValue::removeAllValues

GMLListValue::removeNextValue

GMLListValue::removeValue

GMLListValue::setDelim

GMLListValue::~GMLListValue

GMLStringValue::GMLStringValue

GMLStringValue::clone

GMLStringValue::getValueGMLStringValue::isString

GMLStringValue::print

GMLStringValue::printValue

GMLStringValue::setValue

GMLStringValue::~GMLStringValue

GMLValue::GMLValue

GMLValue::clone

GMLValue::getKey

GMLValue::isFloat

GMLValue::isInteger

GMLValue::isList

GMLValue::isString

GMLValue::print

GMLValue::printValue

GMLValue::setKey

GMLValue::~GMLValue

InheritsFilter::InheritsFilter

InheritsFilter::follow

InheritsFilter::~InheritsFilter

NodeAction::postAction

NodeAction::preAction

NodeAction::~NodeAction

ProgramGraph::=

ProgramGraph::ProgramGraph

ProgramGraph::_dfs_MaxDepthOfGraph

ProgramGraph::collapseNodes

ProgramGraph::dfs_MaxDepthOfGraph

ProgramGraph::genDFSRek

ProgramGraph::genDFSRekRev

ProgramGraph::genericDFS

ProgramGraph::genericDFSRev

ProgramGraph::mark

ProgramGraph::marked

ProgramGraph::name

ProgramGraph::new_edge_action

ProgramGraph::new_node_action

ProgramGraph::toggleAll

ProgramGraph::toggleMark

ProgramGraph::type

ProgramGraph::unmark

ProgramGraph::unmarkAll

ProgramGraph::~ProgramGraph

SingleTypeFilter::SingleTypeFilter

SingleTypeFilter::follow

SingleTypeFilter::~SingleTypeFilter

TypeFilter::TypeFilter

TypeFilter::follow

TypeFilter::~TypeFilter

g

g

g

g

other

orig

val

val

g

other

other

filter

g

g

Figure 2.45: Program structure with classes and methods

ClassExportFilter

CollectNode

CollectNodeSet

CollectNodeTypeSet

EdgeFilter

GMLFloatValue

GMLIntegerValue

GMLListValue

GMLStringValue

GMLValue

InheritsFilterNodeAction ProgramGraph

SingleTypeFilter

TypeFilter

Figure 2.46: Program structure with collapsed methods

Interesting views in this example are as well those where not the classes of all packages (groups) are
being replaced by a single node. We replace only those belonging to the framework itself, if we want
to investigate how the application uses the framework. Or we could only group the instantiation if



2.3 Grouping (by O. Ciupke) 83

we want to see, which classes of the framework are actually needed.

Packages to packages:In general packages may be grouped recursively giving agrouping hierarchy. In
some programming environments, packages of different levels are given different names such as
“subsystems”, “program blocks”, “service blocks” etc. Typically, this case occurs together with the
former one (classes to packages).

Classes to super-classes:Grouping classes with (possibly one of their) their super classes is an abstraction
commonly applied when modelling a system or an algorithm. An algorithm working on viewable
elements is described in terms of an abstract super-class only.

Since we must take into account all possible dependencies, it is not enough only to consider only
the super class, again we have to propagate relationships of all original classes to the remaining
representant.

Objects to classes (or types):In a dynamic view, objects of a snapshot or a trace can be mapped to their
classes. This is extremely useful due to the huge number of objects often being created during a
program run. Therefore, similar functionality has so far often been implemented in tools such as
visual debuggers (e.g., LOOK! 11 or profilers. Related work on visualising the behaviour of object-
oriented systems are for example [PHKV93], [KLRZ94].

Dynamic method calls to pair of calling and called object: A set of messages between objects, i.e., method
invocations during run time, can be grouped together with respect to caller and callee. If messages
are modelled as associations between objects and represented by edges in a graph, then this is an
example for grouping edges instead of nodes. It is often useful to label the resulting edge with the
number of messages it represents.

Dynamic method calls within a certain interval of time: Messages can also be grouped with respect to
given intervals of time. See for example [KM96].

Classes to files and files to directories:In many programming environments, grouping classes to files
and files to directories conforms to grouping classes to packages.

Objects to processes or physical machines:Objects can be grouped to their containing processes (or
threads) or the physical machines they reside on. This grouping is useful, e.g., to examine the
run-time performance of an concurrent (for processes) or distributed (for machines) object-oriented
system.

and many more.

The examples given above are applied in different contexts, mostly depending on the kinds of entities in-
volved. Groupings containingstaticentities (classes, methods) are often used in model capture as well as
forward and reverse engineering.Dynamicentities (objects, threads) are used when debugging or during
performance or other dynamic analysis purposes. Groupings from or tophysicalentities (files, resources,
databases, machines, processors) are needed for many development issues such as configuration manage-
ment, checking consistency of compile dependencies, compile time analysis or documentation.

2.3.3 Definitions

We now want to provide an formal definition for our concept of grouping. First, we give a list of require-
ments which a concept should fulfill in order to be applicable in our tasks.

In the following, we will only consider grouping entities (nodes). Grouping associations (the elements of a
relation, i.e., edges) can in principle be defined in an analogous way.

11http://www.objectivesoft.com/ look.html

http://www.objectivesoft.com/look.html


84 Techniques

• The result of every legal grouping on every legal structure should be well defined.

A tool implementing grouping should be able to give a meaningful result for any legal input.

• Entities should not just disappear. Every entity of a detailed view should be represented in an abstract
view, though several entities of a detailed view may be represented by the same entity in the abstract
view.

A change in a method means in turn changing its containing class and package. For example, if
an abstract view only represents packages, it must be possible to determine from the model which
entities have been changed. Conversely, if we determine from the model that a package has to be
examined then we must be able to find out which classes and methods are meant in detail.

• Dependencies should be maintained. If two entities in a detailed view obey a certain dependency,
their representants should have a dependency of the same type.

For example, if we change a methods interface in one package then we want to see from an abstract
view, showing only packages, whether this change may affect other packages.

• Our concept of grouping should be well defined also in combination with other concepts such as
filtering information.

Put together, these requirements already set up a kind of an informal definition or concept of grouping.

We represent the structure of a system as atyped graph. The entities of a structure and their associations
are represented by nodes and edges respectively. A set of associations between a set of entities defines a
relation on these entities. Nodes and edges may have differenttypes. Node typesare for example “Class”,
“Method”, “Package”, “Object”;edge typesfor example “hasMethod”, “contains”, “creates”.

A group in terms of a graph which represents a system structure is just a set of nodes. Grouping is then
replacing one or more groups (i.e., the corresponding nodes) by a node representing these groups while
maintaining the edges between the nodes (see Figure2.48). Formally, grouping and related terms are
defined as follows. We use graph theoretic and relational algebraic terms in their usual definitions. Please
note: for simplicity, we use the terms “Graph” or “directed Graph” here for what is exactly spoken a
directed 1-Graph(see for example [Har69] or [SS89]). This follows the terminology adopted throughout
most of the related work.

• A group is a subset of all entities under consideration (including groups themselves).

• A groupingis asurjective graph homomorphismΦ mapping a GraphG = (V,E) to a graphG′ =
(V ′, E′). The elements of a single group are being mapped to a single node, which represents this
group.

• A certain groupingΦ can be given

1. by a functionH mapping the nodes ofG to the nodes ofG′. SinceΦ is a graph homomorphism,
it is completely determined byH. Due to the property ofΦ as a surjective homomorphism,H
is atotal, unambiguous and surjective relation, i.e., a surjective function fromV to V ′.

2. by itsspanning relationS mapping every entity to be grouped to its surrounding group.S may
be anyunambiguousrelation, i.e., partial function. We can computeH from S by

H = (I u SL) t S =: I ⊕ S

This is probably the definition most frequently used as input for tools, since it does not need
to store nodes mapped to themselves. The notion of the overwrite operator for relations “⊕” is
borrowed from the specification language Z as described in [Spi92].



2.3 Grouping (by O. Ciupke) 85

3. by anequivalence relationA defining a group in terms of entities that are all equivalent.

E = {(x, y)|H(x) = H(y)} = HHT

In this case, the groupingH is defined as thecanonical mappingof A producing theequiva-
lence classes

V/A = V H

• Thetrivial grouping is the identity, which maps every graph to itself.

• Thecardinalityof a group is the number of its elements (since a group is a set).

For the ease of writing, we often identify these representationsH, S andA with the groupingΦ itself in
the remainder of this report.

2.3.3.1 Filters and views

Filtering is a concept complementary to grouping. Both grouping and filtering are needed to define a
concept of views. While a surjective homomorphism defines a grouping, an injective homomorphism
defines a filter. A view on a system can be defined in a formal way by a combination of groupings and
filters.

• A filter is an injective graph homomorphism. A filtered view is apartial sub-graphof an other view.

A filter may select only a subset of the nodes and edges or restrict the graph to those nodes and edges
fulfilling certain properties12.

• A viewon a model is the result of any combination (a sequence of concatenations) of groupings and
filters applied to a model of a system. If a model is represented as a graph, then every view of this
model is also a graph.

• The model itself is named thecomplete view.

• A view v2 is said to bemore abstractthan another onev1, if a non trivial groupingH exists, which
mapsv1 to v2, i.e.,v2 = v1H.

This means that the process of abstraction is defined in a way that nothing just disappears, but details
are (temporarily) hidden.

New views are produced from existing ones by sequences of abstractions and selections. In this way,
abstraction and selection form operators which transform views. Since abstraction and selection can be
used in different order, we will spend a short look on the properties regarding this matter.

Figure2.49shows an example where an abstraction and a selection are applied to a graph in different order.
Unfortunately, the resulting graph differs depending on if abstraction or selection was first. In other words,
abstraction and selection do notcommutein every case.

The fact that the order of abstraction and selection matters is important for the interpretation of results of an
analysis. Since abstraction only collapses information, while selection really omits it, abstraction should
be performed first, if there is a choice.

12Selectionandrestrictionare special kinds of filters on heterogeneous relations. The distinction is taken from relational algebra
as used in database theory. To further confuse the situation in SQL a restriction is written within the “select” statement.



86 Techniques

2.3.3.2 Group types

Every entity has a type (e.g., class, object, method, file). These are types on the meta-level and should not
be confused with the types declared in the program or in the specification of the programming language.

The type of a group is determined by the possible types of entities it can hold (which may be more than
one). Additionally, a group may be represented by an entity of a further type. For example the group of
objects of a given class may be represented by this class (though it is not equal to this class).

2.3.3.3 Group operations

A model of a system may provide operations on its entities or relations. For example a user may want
to click onto a node to see or edit its properties, e.g., the source code it represents. For groups, there are
additionally special operations available:

collapse: replace the set of entities contained in the same group by a representation of this group (e.g., in
a certain view)

expand: replace the group by its elements (e.g., in a certain view)

To perform an operation on each single element of a group or to filter a subset of elements from a group
fulfilling certain properties (i.e., a predicate) there are well known operations from functional programming
[BW88]:

map: takes an operationo and a set (or group)s and performso on each element ofs13

filter: takes a predicatep (a function returning true or false) and a set (or group)s and returns a sets′

containing those elementsx of s, for whichp(x) is true

2.3.3.4 Visualising groups

A major goal for the concept of grouping is to support high level visualisations. There are different possi-
bilities, how to realise such visualisations.

Since grouping produces views which are simply graphs, the visualisation of the result of a grouping
is straightforward. Groups that are collapsed are shown as a node replacing the elements contained in
the group. Relations of those elements are propagated to the group as required by grouping as a graph
homomorphism.

But we also want to show the original situation. There we want to see all detailed information, but we also
want to see which are the groups and which entities belonging to the different groups. Groups can also be
visualised when they are not collapsed to a single node, but when they are still (or again) expanded and all
their elements are present. This is especially important when groups are defined interactively by the user.
Possibilities for such visualisations are

• Drawing a shape (e.g., a box) around the elements to be grouped. This requires all elements of
a group to be localised near each other. This is for example the solution defined in the UML for
packages. We drew groups in this way in Figure2.48.

• Drawing all the entities contained in a group in the same way, e.g., in the same colour or with the
same shape.

• The group is shown as an additional node which is connected to its elements by its defining contain-
ment relation. This way, elements of the detailed view and the abstract view are shown at the same
time. We used this visualisation in Figure2.49.

13Sometimes “map” is referred to as “foreach”, but this term is often used with a different meaning in the area of concurrent
programming.



2.3 Grouping (by O. Ciupke) 87

2.3.4 Tool support

Our tool set GOOSE already supports several common use-cases requiring grouping functionality. Most of
it is implemented in the programREV IEW for querying and manipulating graph data in GML format.

REV IEW reads a graph from input, a set of commands is being performed on the graph, and result is given
as output. Several commands are available to deal with grouping:

collapseList Collapse a list of nodes to a new node. The command reads a file that contains the name of
every node that is to be collapsed. Each line has to contain one node name. The first line is the name
of the new node to create. The collapsed nodes are deleted from the resulting graph.

The new node replaces the deleted nodes in all edges, i.e., the new node is connected with another
node of the graph, iff one of the nodes in the given list was and that node is not in the given list.

collapseMethodsEvery node in the graph of typeMethodare collapsed with the class node that they
belong to. The method nodes are deleted and the class node replaces the deleted nodes in all edges.
So this command abstracts from methods but keeps the relations between classes through methods.

collapseSubsystemAll nodes that belong to a subsystem are collapsed with the subsystem node. (Similar
to collapse nodes.)

collapseSubsystemListReads a list of subsystem node names from file. Each line has to contain one
name.REV IEW invokescollapseSubsystemon each name in the file.

addHierarchy Adds a hierarchy to the program graph. The hierarchy is created by subsystem nodes and
consistsOfedges. It forms a tree where the leafs are class nodes.

makeSimple If there is more than one edge between any node, then replace them by only one edge, even if
the two edges are of different types. This command is useful for graph layout algorithms that require
simple graphs, i.e., graphs with at most one edge between nodes.

makeSimpleTypes If there is more than one edge of the same type between any node, then replace them by
only one edge of the same type. Use this command, if you don’t care about the individual relationship
but about the fact that there is a relationship of a certain type.

All but the last two commands group nodes. The last two commands implement two frequently needed
edge groupings.

To give an example, Figure2.46was derived from Figure2.45by REV IEW by using the commands:14

collapseMethods
deleteSingles
makeSimpleTypes

Another useful tool is a script analysing a directory structure and producing a subsystem hierarchy as
required by theaddHierarchy command. This is applicable in programming environments where the
subsystem structure is denoted by the structure of files and directories [Rit98]. This is for example the
concept used by Java in most cases.

A tool providing visualisation for groupings which conform to the UML notation has also been imple-
mented within the context of this project, see [Kos98].

14In fact during normal usage, all these commands are invoked automatically by a script.



88 Techniques

2.3.5 Open issues

Some issues are still unresolved and need further research.

Grouping edges It is also possible to group edges. Grouping edges occurs far less frequently but may be
useful in several situations. All edges to be grouped are mapped to the edge representing the group.
In most cases edges between the same nodes (called parallel edges) are being grouped, e.g., function
calls between the same classes. There is no clear definition of how to group non adjacent edges, yet.
Adjacent nodes may be grouped too (may be ambiguous in non-directed graphs) or such edges may
be mapped to hyper-edges. We will delay a clear definition until need arises from applications or
tool development.

Our toolREV IEW currently supports grouping together all edges between the same nodes having the
same type.

Non-hierarchic grouping A non-hierarchic grouping is a grouping defined by a non-hierarchical relation.
A non-hierarchic grouping contains groups which share at least one element. E.g., two packages may
share the same class. Non-hierarchic grouping introduces a “shared containment” relation. Groups
are connected by this relation, if they both contain the same element. A non-hierarchic grouping is
not any more defined by a homomorphism, since a non-hierarchical relation is not a function.

It is not fully clear yet, which are exactly the cases where non-hierarchical grouping is needed. E.g.,
a shared class could also be moved to a third package with relations to this package. One example
is to split up a system with respect to functional responsibilities (communication, user interface),
where entities may serve for several functionalities.

In practical applications, there are both examples explicitly forbidding or allowing non-hierarchic
grouping:

• A package structure must be organised hierarchically in Java.

• In contrast, the object modelling method described by Coad and Yourdon [CY91] allows dif-
ferent packages (in this context named “Subjects”) to share the same classes.

Another open question is whether shared elements must propagate all their relations to all groups
containing them or if these relations may be split up between groups.

2.3.6 Summary and future work

We presented the concept of grouping which can be applied for both static and dynamic structures as they
are often used in the context of reengineering software systems. It provides a formally sound way to deal
with views on different levels of abstraction. We provided formal definitions for grouping, filtering and
views. Filtering information is a concept complementary to grouping. Consistent views on a system result
from combinations of grouping and filtering. We gave examples for different ways to visualise abstract
views, and gave a brief overview of our tools supporting different tasks related to grouping.

Some of the tasks within this topic still require further work. Among them are:

• Grouping is already being supported by our tool prototypes, but there is still a wish-list of improve-
ments. For example, more flexible and reusable methods for the specification of groupings and
support for complex entities within the visualisation.

• A further look has to be taken on some formal issues which are still open, as mentioned in Sec-
tion 2.3.5. Some clarification to these questions will also have to come from further practical usage
in case-studies.



2.3 Grouping (by O. Ciupke) 89

• A lot of knowledge exists about what “good” design means on the levels of abstraction as they are
usually used in forward-engineering (e.g., the class level). For large systems it is important to gain
similar kind of knowledge on higher levels of abstraction, such as the subsystem or package levels.
It has to be investigated, how this can be supported by our comprehension of grouping.



90 Techniques

2.4 Reorganisation

Author: Benedikt Schulz

In this section we present a new technique for the reorganisation of object- oriented systems. The key idea
of our approach is introduce design patterns into a system through the application of refactorings. The
use of design patterns leads to a more flexible design, whereas the application of refactorings ensures the
correctness of the transformations.

The section is organised as follows. In section2.4.1we describe the fundamentals of our approach in-
volving design patterns and refactorings. These two techniques are combined into a powerful technique
for reorganisation in section2.4.2. Our approach is discussed and evaluated in section2.4.3. We present
related work in section2.4.4and conclude in section2.4.5with suggestions for further work.

2.4.1 Fundamentals

Changing a system by hand is an extremely time-consuming, difficult and error-prone task. Consider
the case of simply renaming a method of a class. After the name has been changed, all places where this
method is called, which can be spread over the whole system, have to be identified and changed accordingly.
Because of these difficulties, atechnique for reorganisation should allow for tool-support.

The aim of reorganisation is not to add new functionality to a system, but to make it more flexible in order
to make it easier to add the desired new functionality. Therefore the reorganization should not change the
behaviour of the system. Thus thetechnique must define the notion of system behaviour making it possible
to prove, that a performed reorganisation-step does not change this behaviour.

In this section, we present two approaches for the reorganisation of object-oriented systems. In2.4.1.1
we describe the high-level approach first presented in [Zim97]. This approach describes design patterns
as operators rather than as building blocks. The low-level approach of William Opdyke, who describes in
[JO93] a set of transformations he callsrefactorings, is presented in2.4.1.2.

2.4.1.1 Design Patterns as Operators

Design patterns have recently gained much attention in the field of software engineering. Many people con-
sider them to be a promising approach for overcoming some fundamental problems in the design and reuse
of object-oriented software. Design patterns were first introduced to the software community by Gamma
et. al [GHJV95], [Gam91] in the early 90s. They are descriptions of solutions to a set of common, recur-
ring design problems within a particular context. They consist of a pattern name, a problem description,
the presentation of a well-proven solution and the consequences and trade-offs of applying the pattern. The
essential advantages of the application of design patterns are:

• Better software design can be achieved via the reuse of well-proven solutions for general design
problems.

• Design patterns form a standardised terminology for the modelling of software systems. They ease
the documentation of design decisions and make them more understandable.

• Design patterns are language independent.

Over the years, some weaknesses in design patterns have been identified. One major problem is the absence
of a more formal classification of design patterns and their mutual relationships [Zim95]. Due to the
commonly very informal description of the purpose and the structure of a design pattern it is often hard to
choose the right pattern variant.



2.4 Reorganisation (by B. Schulz) 91

Another major problem is the lack of a systematic way to integrate design patterns into existing systems.
The descriptions of design patterns are so far mainly focused on the depiction of the target structure re-
sulting from the application of the design pattern. The process of pattern application itself is often not
taken into consideration. That means that up to now, design patterns have been seen as building blocks
[BMR+96], rather than as operators. This allows for the easy construction of new systems, but makes it
very hard to introduce design patterns into existing systems in order to reorganise them.

In order to overcome these shortcomings, a new approach is presented in [Zim97]. The author introduces a
novel concept to support the systematic application of design patterns to existing software systems. In his
approach he considers design patterns to be operators, whose application transforms an existing design into
a target design, fulfilling the necessary requirements. In order to make a systematic approach possible, the
process of design pattern application is split into five steps (see Figure2.50). The example given in Figure
2.51and2.52illustrates the algorithm of applying the patternBridgeto an existing design:

1. Identification of the problem structure : The software engineer identifies the part of the existing
design that should be reorganised. In the given example (see figure2.51), the application of operator
Bridgeaims at de-coupling the abstraction (superclassSet ) from its implementations. The problem
structure comprises the classSet and its descendants.

2. Check of pre-conditions: All pre-conditions must hold in order to apply the design pattern operator.
In our example, the implementationsHashSet andListSet must provide the same interface as
the abstractionSet in order to be interchangeable.

3. Parameterised transformation of the problem structure into the target structure: In this step
the design pattern application itself is put into place. The process is divided into generic aspects
(depending on the design pattern) and application specific aspects (parameters). The user parame-
terises the process by choosing an appropriate variant of the design pattern. Additional parameters
are for example the set of methods which will be delegated or the decision whether the class of the
implementation object shall be interchangeable at run-time or not.

In our example, a new abstract classSetImpl (the new implementation superclass) is introduced.
A new attributeimpl is added to the classSet (3a). The methods ofSet are divided into two
groups; implementation-independent methods which remain inSet and implementation-dependent
methods which are moved toSetImpl . This division is performed by the user.Set delegates all
calls to implementation-dependent methods toSetImpl (3b). Now the user may decide whether
he wants the implementation objects to be interchangeable at run-time or not (3c). In our example,
the methodchangeImpl provides the corresponding functionality.

4. Reorganisation of context: The transformation of the problem structure often causes a change to
its interface. The clients of the interface affected by the change have to be reorganised in order to
provide the same functionality as before. In our example all calls of the formnew(HashSet) are
replaced bynew(Set(HashSet)) .

5. Check of post-conditions: Post-conditions must hold after the design pattern has been applied. It
is often hard to formalise post-conditions as they usually depend on semantics. Therefore they are
often described informally. In our example the condition”the class of the implementation object is
interchangeable at runtime”must hold after the application of the operatorBridge.

The needed transformations are described in terms of meta model operations. For this purpose, a meta
model comprising the entitiesClass, Method, Param, andAttributeand a description language are intro-
duced. This language consists of three sets of constructs:

• transformation operations, e.g.,applyDelegation( <from >, <to >, <Params>)

• parameterisations by the user, e.g.,<InputVar >?: <VarType > [ <InitList >]

• miscellaneous operations, e.g., conditions and labels



92 Techniques

With the approach described above, the application of design patterns becomes an algorithmic process. In
the ”building block” approach, the user must know about and understand the informal description of the
design pattern and all its relationships and variants in order to apply the pattern to the design. The ex-
plicit separation of generic and specific aspects (e.g., parameters) of the design pattern and the operational
presentation simplify its application, since the user only has to cope with use-case specific aspects of the
design pattern application. Beyond this, the transformational approach enables to use design patterns as
reorganisation operatorsin order to reorganise existing systems by identifying the problem structure and
transforming it into an improved target structure using the algorithm described above.

2.4.1.2 Refactorings

In his PhD thesis [JO93], William Opdyke presented an approach for the support of the evolution of object-
oriented systems. He defined a set of so-calledrefactorings, which are implementable in a tool and showed
that the application of these refactorings does not change the system behaviour.

Opdyke calls the property of not changing the behaviour of a programsemantic equivalenceand defines it
as follows:

Let the external interface to the program be via the functionmain. If the functionmainis called
twice (once before and once after a refactoring) with the same set of inputs, the resulting set
of output values must be the same.

Besides the semantic equivalence, Opdyke additionally defines several more invariants to ensure the syn-
tactic and semantic correctness of the refactorings. He does not, for example, allow the use ofmultiple
inheritanceor theredefinition of inherited member variables. Every refactoring has to preserve these in-
variants.

The refactorings are divided into two subsets: One subset contains 26low-level refactoringsfocusing
on simplicity in order to make it easy to prove that system behaviour is not changed. The other subset
consists of threehigh-level refactorings, which are defined by using the low-level refactorings. The proof
of the behaviour preserving nature of the high-level refactorings is also furnished in terms of low-level
refactorings.

Low-level refactorings allow the creation (e.g.,create empty class ), deletion (e.g.,
delete member function ) or modification of program entities (e.g.add function argument ).
Furthermore, refactorings to move member variables (e.g.,
move member variable to superclass ) and simple composite refactorings (e.g.,
convert code segment to function ) belong to the low-level refactorings. The description of
these refactorings is as follows:

• Name: Denotes the name of the refactoring.

• Description: Describes the refactoring and its variants.

• Arguments: Enumerates the set of arguments and their meaning.

• Pre-conditions: Lists the set of pre-conditions, which have to hold in order to assure that the seman-
tics of the program remain unchanged when applying the refactoring.

• Proof of correctness: A semi-formal proof that ensures that the refactoring does not change either
the invariants or the semantics of the program, assuming that all pre-conditions hold.

The three high-level refactorings described in [JO93] are:

• Creation of an abstract superclass: The common abstraction (methods, member variables) of two
or more classes is factored out into an abstract superclass.



2.4 Reorganisation (by B. Schulz) 93

• Subclassing and simplifying conditionals: Conditional statements, dependent on the internal state
of the object, which are used to select the different behaviour of an object are replaced by an imple-
mentation using various subclasses and polymorphism.

• Converting an inheritance relation into an aggregation: A relation modelled by inheritance is
converted into aggregation. The functionality, which was inherited can be accessed by delegating it
to the component.

The description of the high-level refactorings contains one additional section describing how it is decom-
posed into low-level refactorings, how the pre-conditions can be derived from them and how the proof of
correctness is built upon the proof for the low-level refactorings.

Since Opdyke presented the pre-conditions as well as the necessary restructuring in a detailed way, it
was possible to construct tools for the support of the refactoring task. Due to the complexity of the C++
language15 Ralph Johnson and his group focused on Smalltalk and constructed aRefactoring Browser
for Smalltalk[RBJ97a]. This tool supports a selection of the refactorings described in [JO93] and was
successfully used for the development ofHotdraw.

Berthold Mohr showed in [Moh98] that it is possible to implement a tool supporting refactorings for a
subset of C++. He implemented the refactoring for the conversion of an inheritance relationship into an
aggregation including all necessary low-level refactorings.

In spite of the promising results in formalising [JO93] and implementing [RBJ97a][Moh98] refactorings,
there are some restrictions to the approach:

• Behaviour preservation: The described approach of assembling high-level refactorings from low-
level refactorings requires behaviour preservation for every application of a low-level refactoring.
It may be desirable to ignore this constraint and to guarantee behaviour preservation for the entire
high-level refactoring only.

• Language dependance: It is not possible to specify all the pre-conditions in a language-independent
way, because the semantics of a program heavily depend on the semantics of the underlying program-
ming language.

• Pre-condition checking: Checking whether a pre-condition holds or not, is a difficult task which
requires global dataflow analysis techniques. This is, in general, an unsolvable problem.

• Level of abstraction: Even the high-level refactorings are not on a level of abstraction which is
necessary for reengineering.

Especially the inappropriate level of abstraction is annoying when refactorings must be used to re-engineer
large object-oriented systems. We present a new approach to overcome this shortcoming in the following
section.

2.4.2 The FAMOOS approach

This section will begin with a definition of a set of requirements a reorganisation methodology must meet.
Then we show that the approaches presented in section2.4.1are not adequate to fulfil these demands. In
the last part, we introduce a new methodology for the reorganisation of large object-oriented systems.

We have identified the following requirements which must be fulfilled by a reorganisation methodology in
order to be practically applicable for large object-oriented software systems:

15Opdyke writes in [JO93]: “The C++ language is a semantically complicated language, supporting machine level operations
such as pointer arithmetic; these complexities make it difficult to more precisely define what behaviour preservation means for C++
programs.”



94 Techniques

• Language independence: The methodology should not rely on a specific object-oriented program-
ming language.

• Level of abstraction: The methodology should aim at the design level rather than the implementa-
tion level, since most of the problems of an object-oriented system which can be solved by reorgani-
sation (e.g., lack of flexibility) concern the design of that system.

• Behaviour preservation: The goal of reorganisation is not to change the functionality of a given
system, but to improve the structure of that system in order to make these sorts of functionality
changes easier. Therefore a reorganisation operation should not change the systems behaviour. The
methodology must be proven to preserve behaviour.

• Tool support: The methodology requires for tool support, since reorganising a large system by hand
is error-prone and time-consuming.

In the preceding section, we presented two different approaches to the reorganisation of object-oriented
systems. Although both of them are very promising, they suffer from some weaknesses which make it
difficult to put them into practice. While design pattern operators fulfil the first two requirements, (i.e.,
they are language independent and deal with design aspects) they fail to fulfil the last. Thus, not only is
the underlying model too abstract to be implemented in a tool, but the pattern operators also lack proof
of behaviour preservation. Unlike low-level refactorings, the atomic operations which make up a design
pattern operator do not necessarily lead to behaviour preserving states. In the example given in Figures
2.51 and2.52, the application of step 3 changes the behaviour of that system as constructs of the form
Set s = new(HashSet); are no longer valid due to the broken inheritance relationship. On the
other hand, refactorings provide at least a semi-formal proof of behaviour preservation. Even more, it
was shown that they can be implemented in tools [RBJ97a], [Moh98]. However, refactorings, even the
high-level refactorings are not at a level of abstraction which is needed for reorganisation. Beyond this
the specification of refactoring-specific pre-conditions heavily depends on the semantics of the underlying
programming language. Thus it is not possible to use the refactoring-approach in a language independent
way.

Our approach offers the best of both worlds. We combine the two approaches in order to overcome the
shortcomings of both of them byimplementing the design pattern operators[Zim97] with Opdyke’s refac-
torings[JO93].

Whereas in [Zim97] the description of the operators is very informal, we are now able to formalise the
operators, as well as their pre-conditions and post-conditions with the aid of the refactorings. This means,
that we replace the meta-model and the operator-language defined in [Zim97] with the model and language
defined in [JO93].

The different phases for applying a design-pattern operator in [Zim97] are refined as follows:

1. Identification of the problem structure : As in [Zim97] the software engineer has to identify the
part of the system to be reorganised first. Depending on the selected problem structure and the design
pattern operator to be applied, the sequence of refactorings can be determined.

2. Checking the pre-conditions: The preconditions are derived from the sequence of refactorings.
They are checked before each application of a single refactoring. However it is possible to derive
a set of preconditions which, when satisfied, ensures the success of the application of the whole
sequence.

3. Parameterised transformation of the problem structure into the target structure: This step
performs the transformation by executing the sequence of refactorings. As in [Zim97] this may
require a parameterisation by the user.

4. Reorganisation of context: Since the reorganisation of the context is part of the application of a
single refactoring, the context of the problem structure does not need to be reorganised after the
execution of the sequence of refactorings.



2.4 Reorganisation (by B. Schulz) 95

5. Checking the post-conditions: The post-conditions hold after the application of the design pattern,
because every refactoring preserves the given invariants, while at the same time not changing the
behaviour of the system. An explicit checking of the post-conditions can thus be omitted.

Figures2.53 and 2.54 depict the third step of the application of the design pattern operatorBridge as
performed by our new approach. The sequence of necessary transformation steps is different from the
sequence in [Zim97], since our approach requires behaviour preservation at every step.

In step 3aa new, unreferenced classAbstractSet is introduced.AbstractSet is assigned to the
same superclass (not shown in the figure) asSet in step 3b. The introduction of a component relation-
ship betweenSet andAbtractSet , the copying of the interface ofSet to AbstractSet and the
delegation of all methods ofAbstractSet to its componentSet is depicted instep 3c.

Step 3das depicted in Figure2.54contains the most crucial refactoring. First the constructor method of
AbstractSet is changed to include one parameter determing the actual implementation (e.g.,HashSet
or ListSet ) of the set. Then every construction of a set (subclass ofSet ) is changed to use the new
constructor ofAbstractSet and every variable definition usingSet or one of its subclasses as a type
is changed toAbstractSet . Finally in step 3ea new methodgetImpl can be introduced in the class
Set to determine the actual implementation class of the set.

Our approach fulfils all the already mentioned requirements. The method islanguage-independenton the
design-level, because design patterns are language-independent. The design level is theappropriate level
of abstraction for a reengineering task. The application of design pattern operators is correct in the sense
of behaviour preservation. Since every single primitive transformation is fully specified together with
pre-conditions and post-conditions, it is possible to implementtools to support our approach.

2.4.3 Discussion

In this section we present some results of the application of our approach to an existing system. For this
purpose we implemented a tool prototype which provides several simple or complex refactorings for C++
(e.g., addclass, changesuperclass, convertinheritanceinto aggregation), [Moh98] using the FAST C++-
parser [Sem97]. The sequence and order of refactorings required to implement a particular design pattern
is determined via shell scripts. We tested our tool with an existing software application for the visualisation
of flow data from the field of hydraulic engineering. The aim of our experiment was to make some hot-
spots in the system more flexible in order to ease the functional extension of the software. Some of our
experiences are described below.

The software system mentioned was developed for a Windows NT platform using a proprietary graphic
library providing several drawing classes (e.g.,Shape , Circle ) and implemented using the Windows
Graphic Device Interface (GDI) as a basis. Due to performance aspects, with a new version of that soft-
ware, it was decided to use the Windows DirectDraw interface. In order to be compatible with older
versions of Windows NT, one requirement was that the platform-dependent graphic sub-system should be
interchangeable.

In the original design the platform specific graphic output routines (e.g.,drawPoint ) were coded in
Graphic using GDI-routines. All graphical shapes inherited the needed base functionality from
Graphic (see Figure2.55). Therefore it was hard to introduce new functionality to support more than
one graphic sub-system, since the platform-dependent parts were strongly coupled to the domain-specific
classes. On the other hand, the relationship betweenShape andGraphics was equivalent to animple-
mentation inheritanceandGraphic was never used as a static type of a variable or in a polymorphic way
throughout the entire system.

One way to solve that problem is toobjectify the parts of the problem structure which should be inter-
changeable. We decided to apply the pattern operatorBridge in order to decouple the platform-specific
functionality from the domain-specific parts. Further requirements were that the reorganisation must pre-
serve the needed inheritance relationships of bothGraphic andShape , since some methods of those



96 Techniques

classes were implemented using inherited functionalities16 and the process should provide the possibil-
ity for appropriate parameterisation by the user (e.g., the selection of delegated methods or inheritance
relations).

In order to achieve the necessary target structure, we used a variant of pattern operatorBridgeconsisting of
the refactoringconvert inheritance into aggregation . This high-level refactoring converts
an inheritance relationship into a component relationship [JO93] and consists of the following steps:

1. Create a new member variableimpl of typeGraphic .

2. For each member function inherited fromGraphic create a member function inShape . Calls to
these functions are delegated to the corresponding methods inGraphic .

Due to the requirement, which states that the inheritance relationship should be preserved, the refactor-
ing was slightly modified as follows. Instead of breaking up the inheritance relationship the refactor-
ing change superclass is called for classShape . Shape becomes a subclass of the superclass of
Graphic . Now one can easily change the code for platform-dependent graphic support by creating the
appropriate subclassesGraphicGDI andGraphicDDraw . The corresponding methods ofGraphic
are changed to becomeabstract. All these steps can be supported by tool-based refactorings as well.

The process of applying design pattern operators to existing systems resulted in some difficulties. First, pat-
tern operators must obey existing inheritance relationships if necessary. This sometimes leads to slightly
complicated refactoring sequences and often requires user interaction. Another problem was that some-
times our tool could not check all pre-conditions automatically. However, this does not occur in only this
specific case but is generally a problem [JO93], since pre-condition checking often requires global data
flow analysis. Beyond this, our tool only supported a subset of C++ syntax (not supported is pointer arith-
metic and multiple inheritance to name a few). Nevertheless, our tool significantly eased the reorganisation
of the software. In addition, our tool works directly on the source code and no pretty printing is required.
Thus programmers recognise their own code after the reorganisation operation has been completed.

2.4.4 Related Work

Since reengineering and reorganisation has been recognised as an important field of research, many contri-
butions to this topic can be found in the literature. We present in the following only work which is closely
related to our work.

Schema evolution of object-oriented databasescan be seen as the basis for Opdykes work. In [BCG+87]
a set of primitive schema evolution operators for the object-oriented database-systemORIONis presented
and categorised. However the focus of this work is more on how to deal with different versions of persistent
objects than on code transformations in general.

One aspect of improving the structure of object-oriented systems is discussed in [Cas92] and [Cas93]. The
author describes both a global and an incremental approach for reorganisation of inheritance relationships.
The approach focuses on the reduction of redundancies in the class definitions. The same author presented
in [Cas95b] an excellent overview of existing techniques for the management of class evolution in object-
oriented systems.

Several approaches cover parts of the reengineering life-cycle. In [Mei96][vW96][FMvW97] the authors
present an approach for visualisingfragmentsof object-oriented systems. These fragments can be classes,
subsystems or even design patterns. Transformations of the fragments are implemented by using the refac-
toring browser for Smalltalk [RBJ97a]. However the authors do not describe any high-level transformations
of fragments.

TheMeTHOOD-project [GD97] covers almost the whole reengineering life-cycle. The description of the
transformations is given in a way similar to the description of the design pattern operators. However no

16Note: These inheritance relations were left out for simplicity in Figure2.55and2.56



2.4 Reorganisation (by B. Schulz) 97

proofs of correctness are given and it seems that it is not possible to perform the transformations automati-
cally.

Adaptive Programming [Lie95][HS96b] separates the structure of object-oriented systems from the algo-
rithms operating on these structures. This approach aims at a change avoidance rather than at a systematic
way of increasing the flexibility of object-oriented systems.

2.4.5 Summary

In this chapter we presented a new approach to the tool-based reorganisation of object-oriented software.
Implementing design pattern operators with refactorings, we combined two existing approaches in order
to overcome the weaknesses of both of them. Our methodology uses refactorings, which are proven to
preserve behaviour and can be implemented in tools. Since every application of a refactoring leads to a
behaviour preserving state, composing design pattern operators of refactorings ensures the behaviour pre-
servingness of the entire pattern operator. Beyond this, design pattern operators are language independent,
at least at design level. Pattern operators aim at the right level of abstraction, since most of the problems of
an object-oriented system can only be solved by improving the systems design.We demonstrated the feasi-
bility of our approach by applying design pattern operators composed of simple or complex refactorings to
an existing system in order to reorganise the hot-spots of that system.



98 Techniques

2.5 Reverse and Reengineering Patterns

We have shown how metrics, graphs and metrics combination and grouping software entities can help in
understanding identifying important entities, overall applications organizations and detecting problems.
Based on these results, refactorings can help fixing the identified problems.

Having techniques for helping in the reengineering tasks is of primary importance. Without techniques
and tools supporting them reengineering applications would be nearly impossible. However, relying only
on techniques and tools does not suffice. Indeed knowing how to apply a given technique is not enough
and knowing when to apply or not is also a key point in the success of the reengineering. Moreover,
knowing what are consequence of applying a given technique and in which order apply them is also a key
information.

The following part is a first attempt to record all the implicit knowledge that reengineers have been devel-
oped over the years. This knowledge is described in pattern format to ease the readability and highlight
the motivation and the forces behind every patterns. Please notice that this work is not into a final and
definitive stage as the gathering of such an information is slow and difficult.



2.5 Reverse and Reengineering Patterns 99

Grouping

Elementary
View

Abstract
View

Figure 2.47: Grouping an elementary view to a more abstract one



100 Techniques

Grouping

Group

Elementary
View

Abstract
View

Figure 2.48: Grouping an elementary view to a more abstract one



2.5 Reverse and Reengineering Patterns 101

Selection

Selection

Abstraction Abstraction

Figure 2.49: Abstraction and selection do sometimes not commute

Prob em Structure Target Structure

(1)

(2)
(3)

(4)

(5)

Transformation
Process

Figure 2.50: Systematic process of design pattern application



102 Techniques

forall obj in self
do

self.delete (obj)
od

Set

abstract insert()
abstract delete()
abstract lookup()
abstract forall()

deleteAll()
union()

HashSet

hashtable htbl

insert() {...}
delete() {...}
lookup() {...}
forall() {...}

ListSet

list lst

insert() {...}
delete() {...}
lookup() {...}
forall() {...}

Set

impl

abstract insert()
abstract delete()
abstract lookup()
abstract forall()

deleteAll()
union()

SetImpl

HashSet
...

ListSet
...

3a

1+2

Figure 2.51: Application of Design Pattern OperatorBridge(I)



2.5 Reverse and Reengineering Patterns 103

Set

impl

insert()
delete()
lookup()
forall()

deleteAll()
union()

impl.insert(...);

SetImpl

abstract insert()
abstract delete()
abstract lookup()
abstract forall()

HashSet
...

ListSet
...

Set

impl

insert()
delete()
lookup()
forall()
deleteAll()
union()

constructor()
changeImpl()

SetImpl

abstract insert()
abstract delete()
abstract lookup()
abstract forall()

abstract changeImpl()
constructor (type subtypeSetImpl)
{ impl = new type ; }

changeImpl (type subtypeSetImpl)
{ impl.changeImpl(type) ; }

HashSet
...
changeImpl() {...}

ListSet
...
changeImpl() {...}

3c

3b

Figure 2.52: Application of Design Pattern OperatorBridge(II)

Set

abstract insert()
abstract delete()
abstract lookup()
abstract forall()

deleteAll()
union()

HashSet

hashtable htbl

insert() {...}
delete() {...}
lookup() {...}
forall() {...}

ListSet

list lst

insert() {...}
delete() {...}
lookup() {...}
forall() {...}

3b

AbstractSet

SetImpl impl

insert() {...}
delete() {...}
lookup() {...}
forall() {...}

deleteAll()
union()

3c

3a

impl.insert(...);

......

Figure 2.53: Application of aBridgewith refactorings (I)



104 Techniques

AbstractSet

impl

insert()
delete()
lookup()
forall()
deleteAll()
union()

constructor()
changeImpl()

Set

abstract insert()
abstract delete()
abstract lookup()
abstract forall()

abstract changeImpl()
constructor (type subtypeSetImpl)
{ impl = new type ; }

changeImpl (type subtypeSetImpl)
{ impl.changeImpl(type) ; }

HashSet
...
changeImpl() {...}

ListSet
...
changeImpl() {...}

3e

3d

... ...

Figure 2.54: Application of aBridgewith refactorings (II)

Graphic

drawPoint(){...}
getPhysicalPosition(){...}

...

Shape

draw(){...}

Circle

...

draw() {...}

Rectangle

...

draw() {...}
// draw a rectangle
drawPoint(x,y);

...

Figure 2.55: Problem structure before reorganisation



2.5 Reverse and Reengineering Patterns 105

Graphic

abstract drawPoint(){...}
abstract getPhysicalPosition(){...}

...

Shape

Graphic* impl

abstract draw(){...}
drawPoint(x,y){...}
getPhysicalPosition(){...}

Circle

...

draw() {...}

Rectangle

...

draw() {...}

drawPoint(x,y)
{ impl.drawPoint(x,y) ; }

GraphicGDI

...

drawPoint() {...}
getPhysicalPosition(){...}

...

GraphicDDraw

...

drawPoint() {...}
getPhysicalPosition(){...}

...

Figure 2.56: Improved target structure after the reorganisation and functional extension



106 Techniques



Part II

Reverse Engineering





Chapter 3

Reverse Engineering Patterns

3.1 Patterns for Reverse Engineering

This pattern language describes how to reverse engineer an object-oriented software system. Reverse en-
gineering might seem a bit strange in the context of object-oriented development, as this term is usually
associated with “legacy” systems written in languages like COBOL and Fortran. Yet, reverse engineering
is very relevant in the context of object-oriented development as well, because the only way to achieve
a truly reusable object-oriented design is recognized to be iterative development (see [Boo94], [GR95],
[JGJ97], [Ree96]). Iterative development involves refactoring existing designs and consequently, reverse
engineering is an essential facet of any object-oriented development process.

The patterns have been developed and applied during theFAMOOS project [http: //www.iam.unibe.ch/
∼famoos/]; a project whose goal is to produce a set of re-engineering techniques and tools to support the
development of object-oriented frameworks. Many if not all of the patterns have been applied on software
systems provided by the industrial partners in the project (i.e., Nokia and Daimler-Chrysler). These systems
ranged from 50.000 lines of C++ up until 2,5 million lines of Ada. Where appropriate, we refer to other
known uses we were aware of while writing.

In its current state, the pattern language can still be improved and we welcome all kinds of feedback that
would help us do that. We are especially interested in course grained comments —does the structure work?
is the set of forces complete? is the naming OK ?— rather than detailed comments on punctuation, spelling
and lay-out.

Acknowledgments. We would like to thank our EuroPLoP’99 shepherd Kyle Brown: his comments were
so good we considered including him as a co-author. We also want to thank both Kent Beck and Charles
Weir who shepherded a very rough draft of what you hold right now. Finally, we must thank all participants
of theFAMOOS project for providing such fruitful working context.

3.2 Clusters of Patterns

The pattern language itself has been divided intoclusterswhere each cluster groups a number of patterns
addressing a similar reverse engineering situation. The clusters correspond roughly to the different phases
one encounters when reverse engineering a large software system. Figure3.1 provides a road map and
below you will find a short description for each of the clusters.

First Contact (p. 113) This cluster groups patterns telling you what to do when you have your very first
contact with the software system.

http://www.iam.unibe.ch/~famoos/
http://www.iam.unibe.ch/~famoos/


110 Reverse Engineering Pattern

Focus on Hot Areas

First Contact

Resources spent

Skim The Documentation

Interview During Demo

Read All The Code In One Hour

Check The Database

Guess Objects

Extract Architecture

Check Method Invocations

Visualize the Structure

Inspect the Largest

Exploit the Changes

Step Through the Execution

Refactor to Understand

Build Prototype
Write the Tests

Focus by Wrapping

Prepare Reengineering

U
nd

er
st

an
di

ng

Figure 3.1: Overview of the pattern language using clusters.

Extract Architecture (p. 125) Here, the patterns tell you how to get to the architecture out of a system.
This knowledge will serve as a blueprint for the rest of the reverse engineering project.

Focus on Hot Areas (p. 133) The patterns in this cluster describe how to get a detailed understanding of
a particular component in your software system.

Prepare Reengineering(p. 149) Since reverse engineering often goes together with reengineering, this
cluster includes some patterns that help you prepare subsequent reengineering steps.

3.3 Overview of Forces

All the patterns in this pattern language tell you how to address a typical reverse engineering problem. To
evaluate the situation before and after applying the pattern we introduce a number offorces. The forces are
meant to help you assessing whether the pattern is appropriate for your particular situation.

Limited Resources. Because your resources are limited you must select which parts of the system to
reverse engineer first. However, if you select the wrong parts, you will have wasted some of your
precious resources. In general theless resources you need to apply, the better.

Tools and Techniques.For reverse engineering large scale systems, you need to apply techniques proba-
bly accompanied with tools. However, techniques and tools shape your thoughts and good reverse
engineering, requires an unbiased opinion. Also, techniques and tools do require resources which
you might not be willing to spend. In general, theless techniques and tools required, the better.



3.4 Resolution of Forces 111

Reliable Info. A reverse engineer is much like a detective that solves a mystery from the scarce clues
that are available [WC96]. As with all good detective stories, the different clues and testimonies
contradict each other, thus your challenge is to assess which information is reliable and solve the
mystery by coming up with the most plausible scenario. In general, themore reliable the information
you get, the better.

Abstraction. The whole idea of understanding the inner complexities of a software system is to construct
mental models of portions of it, thus a process of abstraction. Consequently, the reengineering
taxonomy of Chikofsky and Cross [CCI90], defines reverse engineering as ”the process of analyzing
a subject system to [...] create representations of the system [...] at a higher level of abstraction”.
Of course, the target level of abstraction for your particular reverse engineering step depends very
much on the subsequent demands and so you don’t want to get too abstract. Still in general, themore
abstract the information obtained, the better.

Sceptic Colleagues.As a reverse engineer, you must deal with three kinds of colleagues. The first category
are the faithful, the people who believe that reverse engineering is necessary and who thrust that you
are able to do it. The second is the category of sceptic, who believe this reverse engineering of yours
is just a waste of time and that its better to start the whole project from scratch. The third category is
the category of fence sitters, who do not have a strong opinion on whether this reverse engineering
will pay off, so they just wait and see what happens. To save your reverse engineering from ending
up in the waste bag, you must keep convincing the faithful, gain credit with the fence sitters and be
wary of the sceptic. In general, themore credibility you gain, the better.

3.4 Resolution of Forces

Table 3.1 shows an overview of how the different patterns resolve the forces. This view is especially
important because it emphasises the different trade-offs implied by the patterns. For instance, it shows that
READ ALL THE CODE IN ONE HOUR and SKIM THE DOCUMENTATION take about the same amount
of resources and also require about the same amount of techniques and tools (very little, hence the double
plusses), yet score differently on the reliability and abstraction level of the resulting information. On the
other hand, GUESS OBJECTSrequires more resources, techniques and tools then the previous two (one
minus), but achieves better results in terms of reliable and abstract information.

3.5 Format of a Reverse Engineering Pattern

The pattern presented hereafter have the following format.

Name. Names the pattern after the solution it proposes. The pattern names are verb phrases to stress the
action implied in applying them.

Intent. Summarizes the purpose of the pattern, including a clarifyingExampleon when and how to apply
the pattern.

Context. Presents the context in which the pattern is supposed to be applied. You may read this section as
the prerequisites that should be satisfied before applying the pattern.

Problem. Describes the problem the pattern is supposed to solve. Note that the prerequisites defined in
the ’Context’ section are supposed to narrow the scope of the problem, so readers are encouraged to
read both sections together.

Solution. Proposes a solution to the problem that is applicable in the given context. This section may
include aRecipeor a list ofHintsandVariationsto be taken in account when applying the solution.



112 Reverse Engineering Pattern

Li
m

ite
d

R
es

ou
rc

es

To
ol

s
an

d
Te

ch
ni

qu
es

R
el

ia
bl

e
In

fo

A
bs

tr
ac

tio
n

S
ce

pt
ic

C
ol

le
ag

ue
s

FIRST CONTACT

READ ALL THE CODE IN ONE HOUR ++ ++ + - +

SKIM THE DOCUMENTATION ++ ++ - + -

INTERVIEW DURING DEMO ++ + 0 + -

EXTRACT ARCHITECTURE

GUESSOBJECTS - - ++ ++ +

CHECK THE DATABASE - - ++ + ++

FOCUS ONHOT AREAS

INSPECT THELARGEST 0 - 0 0 0

V ISUALIZE THE STRUCTURE - -- + + +

CHECK METHOD INVOCATIONS - - + + 0

EXPLOIT THE CHANGES -- -- ++ + ++

STEP THROUGH THEEXECUTION - 0 ++ - +

PREPAREREENGINEERING

WRITE THE TESTS -- - ++ ++ 0

REFACTOR TOUNDERSTAND -- - 0 + 0

BUILD A PROTOTYPE -- - + -- ++

FOCUS BY WRAPPING -- 0 0 0 0

Table 3.1: How each pattern resolves the forces. Very good:++, Good:+, Neutral: 0, Rather Bad:- , Very
bad: -- . Limited Resources: The less resources you need to apply, the better. Tools and Techniques: The
less techniques and tools required, the better. Reliable Info: The more reliable the information you get, the
better. Abstraction: The more abstract the information obtained, the better. Sceptic Colleagues: The more
credibility you gain, the better.

Forces Resolved.Describes the situation after applying the pattern. This description is done in terms of
the forces.

Rationale. Explains the technical background of the pattern, i.e. why it works.

Known Uses. Presents the know uses of this pattern. Note that all patterns in this pattern language have
been developed and applied in the context of theFAMOOS project. Yet, this section presents other
reported uses of the pattern we were aware of while writing the pattern.

Related Patterns. Links the pattern in a web of other patterns, explaining how the patterns work together
to achieve the global goal of reverse engineering. The section includes aResulting Contextwhich
tells you how you may use the output of this pattern as input for another one.



Chapter 4

Cluster: First Contact

All the reverse engineering patterns in this cluster are applicable in the very early stage of a reverse engi-
neering project when you are largely unfamiliar with the software system. Before tackling such a project,
you need an initial assessment of the software system. However, accomplishing a good initial assessment
is difficult because you need a quick and accurate result.

The patterns in this cluster tell you how to optimally exploit information resources like source code (READ

ALL THE CODE IN ONE HOUR (p. 115)), documentation (SKIM THE DOCUMENTATION (p. 118)) and
system experts (INTERVIEW DURING DEMO (p. 121)). The order in which you apply them depends mainly
on your project and we refer you to the“Related Patterns”section in each pattern for a discussion on the
trade-offs involved. Afterwards you will probably want to CONFER WITH COLLEAGUES (p. 156) and
then proceed with EXTRACT ARCHITECTURE(p. 125).

Forces Revisited

Limited Resources. Wasting time early on in the project has severe consequences later on.Consequently,
time is the most precious resource in the beginning of a reverse engineering project.This is especially
relevant because in the beginning of a project you feel a bit uncertain and then it is tempting to start
an activity that will keep you busy for a while, instead of something that confronts you immediately
with the problems to address.

Tools and Techniques.In the beginning of a reverse engineering project, you are in a bootstrapping situa-
tion: you must decide which techniques and tools to apply but you lack a profound basis to make such
a decision.Consequently, choose very simple techniques and very basic tools, deferring complex but
time consuming activities until later.

Reliable Info. Because you are unfamiliar with the system, it is difficult to assess which information is
reliable. Consequently, base your opinion on certified information but complement it using supple-
mentary but less reliable information sources.

Abstraction. At the beginning of the project you can not afford to be overwhelmed by too many details.
Consequently, favor techniques and tools that provide you with a general overview.

Sceptic Colleagues.This force is often reinforced in the beginning of a reverse engineering project, be-
cause as a reverse engineer –or worse, a consultant– there is a good chance that you are a newcomer
in a project team.Consequently, pay attention to the way you communicate with your colleagues as
the first impression will have dire consequences later.



114 Cluster: First Contact

Li
m

ite
d

R
es

ou
rc

es

To
ol

s
an

d
Te

ch
ni

qu
es

R
el

ia
bl

e
In

fo

A
bs

tr
ac

tio
n

S
ce

pt
ic

C
ol

le
ag

ue
s

READ ALL THE CODE IN ONE HOUR ++ ++ + - +

SKIM THE DOCUMENTATION ++ ++ - + -

INTERVIEW DURING DEMO ++ + 0 + -

Table 4.1: How each pattern of FIRST CONTACT resolves the forces. Very good:++, Good:+, Neutral: 0,
Rather Bad:- , Very bad:--



115

READ ALL THE CODE IN ONE HOUR

Author(s): Serge Demeyer, St́ephane Ducasse and Sander Tichelaar

Intent

Make an initial evaluation of the condition of a software system by walking through its source code in a
limited amount of time.

Example. You are facing a 500 K lines C++ program, implementing a software system to
display multi-media information in real time. Your boss asks you to look how much of the
source code can be resurrected for another project. Before actually identifying what may be
reused, you will leaf through the source code to get a feeling for its condition.

Context

You are starting a reverse engineering project of a large and unfamiliar software system. You have the
source code at your disposal and you have reasonable expertise with the implementation language being
used.

Problem

You need an initial assessment of the internal state a software system to plan further reverse engineering
efforts.

Solution

Take the source code to a room where you can work undisturbed (no telephones, no noisy colleagues).
Grant yourself a reasonably short amount of study time (i.e., approximately one hour) to walk through the
source code. Take notes sparingly to maximize the contact with the code.

After this reading time, take about the same time to produce a report about your findings, including list of
(i) the important entities (i.e., classes, packages, ...); (ii) the coding idioms applied (i.e., C++ [Cop92],
[Mey98], [Mey96]; Smalltalk [Bec97]); and (iii) the suspicious coding styles discovered (i.e., “code
smells” [Fow99]). Keep this report short, and name the entities like they are mentioned in the source
code.

Hints. The fact that you are limited in time should force you to think how you can extract the most useful
information. Below are some hints for things to look out for.

• Functional tests or units tests convey important information about the functionality of a software
system.

• Abstract classes and methods reveal design intentions.

• Classes high in the hierarchy often define domain abstractions; their subclasses introduce variations
on a theme.



116 Cluster: First Contact

• Occurrences of the Singleton pattern [GHJV95] may represent information that is constant for every
complete execution of a system.

• Surprisingly large constructs often specify important chunks of functionality that should be executed
sequentially.

• Some development teams apply coding styles and if they did, it is good to be aware of them. Espe-
cially naming conventions are crucial to scan code quickly.

Forces Resolved

Limited Resources. By applying this pattern, you spend 1/2 a day (plus the time to collect the source
code) to end up with a short list that is a reasonable basis for planning further reengineering efforts.

Tools and Techniques.Good source code browsers can speed you up and inheritance hierarchy browsers
can give you a feel for the structure of a software system. However, be wary of fancy tools as they
quickly overwhelm you with too much unnecessary information and may require a lot of time to
configure correctly. Printing out the source code and reading a paper version may serve just as well.

Reliable Info. The concentrated contact with the code –and code is the only testimony you are sure is
correct1– provides you with a rather unbiased view to start with. Moreover, by applying this pattern
–especially in combination with SKIM THE DOCUMENTATION (p. 118)– you may already have
encountered some contradicting pieces of information, which is definitely worthwhile to explore in
further depth.

Abstraction. The information you get out is fairly close to the source code, consequently the abstraction
level is quite low. However the fact that you work under time pressure forces you to skip details
driving you towards an abstract view of the software system.

Sceptic Colleagues.The mere effect of asking quite precise questions after only 1/2 a day of effort raises
your credit tremendously, usually enough for being allowed to continue your attempts.

Rationale

Reading the code in a short amount of time is very efficient as a starter. Indeed, by limiting the time and yet
forcing yourself to look at all the code, you mainly use your brain and coding expertise to filter out what
seems important. This is a lot more efficient than extracting human readable representations or organizing
a meeting with all the programmers involved.

Moreover, by reading the code directly you get an unbiased view of the software system including a sense
for the details and a glimpse on the kind of problems you are facing. Because the source code describes
the functionality of the system –no more, no less– it is the only reliable source of information. Be careful
though with comments in the code. Comment can help you in understanding what a piece of software is
supposed to do. However, just like other kinds of documentation, comments can be outdated, obsolete or
simply wrong.

Finally, acquiring the vocabulary used inside the software system is essential to understand it and commu-
nicate about it with other developers. This pattern helps to acquire such a vocabulary.

1Remember the old Swiss saying: ”If the map and the terrain disagree, trust the terrain”



117

Known Uses

While writing this pattern, one of our team members applied it to reverse engineer the Refactoring Browser
[RBJ97b]. The person was not familiar with Smalltalk, yet was able to identify code smells such as “Large
Constructs” and “Duplicated Code”. Even without Smalltalk experience it was possible to get a feel for
the system structure by a mere inspection of class interfaces. Also, a special hierarchy browser did help
to identify some of the main classes and the comments provided some useful hints to what parts of the
code were supposed to do. Applying the pattern took a bit more than an hour, which seemed enough for a
relatively small system and slow progress due to the unfamiliarity with Smalltalk.

The original pattern was suggested by Kent Beck, who stated that it is one of the techniques he always
applies when starting consultancy on an existing project. Since then, other people have acknowledged that
it is one of their common practices.

Related Patterns

If possible, READ ALL THE CODE IN ONE HOUR (p. 115) in conjunction with SKIM THE DOCUMENTA-
TION (p. 118) to maximize your chances of getting a coherent view of the system. To guide your reading,
you may precede this pattern with INTERVIEW DURING DEMO (p. 121), but then you should be aware that
this will bias your opinion.

Resulting Context. This pattern results in a list of (i) the important entities (i.e., classes, packages, ...);
(ii) the presence of standard coding idioms and (iii) the suspicious coding styles discovered. This is enough
to start GUESSOBJECTS(p. 127) and CHECK THE DATABASE (p. 130) to improve the list of important
entities. Depending on whether you want to wait for the results of SKIM THE DOCUMENTATION (p. 118),
you should consider to CONFERWITH COLLEAGUES (p. 156).



118 Cluster: First Contact

SKIM THE DOCUMENTATION

Author(s): Serge Demeyer, St́ephane Ducasse and Sander Tichelaar

Intent

Make an initial guess at the functionality of a software system by reading its documentation in a limited
amount of time.

Example. You must develop a geographical information system. Your company has once
been involved in a similar project, and your boss asks you to check if some of the design of
this previous project can be reused. Before doing any design extraction on the source code,
you will skim the documentation to see how close this other system is to what you are expected
to deliver.

Context

You are starting a reverse engineering project of a large and unfamiliar software system. You have the doc-
umentation at your disposal and you are able to interpret the diagrams and formal specifications contained
within.

Example. If the documentation relies on use cases (see [JGJ97]) for recording scenarios or
formal languages for describing protocols, you should be able to understand the implications
of such specifications.

Problem

You need an initial idea of the functionality provided by the software system in order to plan further reverse
engineering efforts.

Solution

Take the documentation to a room where you can work undisturbed (no telephones, no noisy colleagues).
Grant yourself a reasonably short amount of study time (i.e., approximately one hour) to scan through the
documentation. Take notes sparingly to maximize the contact with the documentation.

After this reading time, take about the same time to produce a report about your findings, including a list
of (i) the important requirements; (ii) the important features (iii); the important constraints; (iv) references
to relevant design information. Include your opinion on how reliable and useful each of these are. Keep
this report as short as possible and avoid redundancy at all cost (among others, use references to sections
and/or page numbers in the documentation).

Depending on the goal of the reverse engineering project and the kind of documentation you have at your
disposal, you may steer the reading process to match your main interest. For instance, if you want in-
sight into the original system requirements then you should look inside the analysis documentation, while
knowledge about which features are actually implemented should be collected from the end-user manual
or tutorial notes. If you have the luxury of choice, avoid spending too much time to understand the design
documentation (i.e., class diagrams, database schema’s, ...): rather record the presence and reliability of
such documents as this will be of great help in later stages of the reverse engineering.



119

Be aware for documentation that is outdated with respect to the actual system. Always compare version
dates with the date of delivery of the system and make note of those parts that you suspect unreliable.

Avoid to read the documentation electronically if you are not sure to gain significant browsing functionality
(e.g., hypertext links in HTML or PDF). This way you will not spend times with versions, file format and
platform issues that certain word processors and CASE tools do not succeed to address.

Hints. The fact that you are limited in time should force you to think how you can extract the most useful
information. Below are some hints for things to look out for.

• A table of contents gives you a quick overview of the structure and the information presented.

• Version numbers and dates tell you how up to date the documentation is.

• References to other parts of the documentation convey chronological dependencies.

• Figures are a always a good means to communicate information. A list of figures, if present, may
provide a quick path through the documentation.

• Screen-dumps, sample print-outs, sample reports, command descriptions, reveal a lot about the func-
tionality provided in the system.

• Formal specifications, if present, usually correspond with crucial functionality.

• An index, if present contains the terms the author deems significant.

Forces Resolved

Limited Resources. By applying this pattern, you spend 1/2 a day (plus the time to collect the documen-
tation) to end up with a short list that is a reasonable basis for planning further reengineering efforts.

Tools and Techniques.As reading the documentation only requires the physical document, the tool inter-
ference is really low. Yet, when CASE tools have been applied, it may be necessary to consult the
documentation on line. Note that CASE tools often enforce some documentation conventions so be
sure to be aware of them.

No special techniques are necessary to apply this pattern, unless formal specification or special dia-
grams are used.

Reliable Info. The success of this pattern depends heavily on the quality of the documentation. Applying
this pattern (especially combined with READ ALL THE CODE IN ONE HOUR (p. 115)), you may
have encountered some contradicting pieces of information, which is definitely worthwhile to explore
in further depth.

Abstraction. The abstraction level you get out depends largely on the abstraction level of the available
documentation, but is usually quite high because documentation is supposed to be written at a certain
abstraction level.

Sceptic Colleagues.Unless good documentation is available, sceptics will almost certainly consider this
activity a waste of time and you will probably loose some credibility with the faithful and fence
sitters. This is a negative effect, so reduce its potential impact by limiting the time spend here.



120 Cluster: First Contact

Rationale

Knowing what functionality is provided by the system is essential for reverse engineering. Documentation
provides an excellent means to get an external description of this functionality.

However, documentation is either written before or after implementation, thus likely to be out of sync
with respect to the actual software system. Therefore, it is necessary to record the reliability. Moreover,
documentation comes in different kinds, i.e. requirement documents, technical documentation, end-user
manuals, tutorial notes. Depending on the goal of your reengineering project, you will record the usability
of each of these documents. Finally, documentation may contain large volumes of information thus reading
is time consuming. By limiting the time you spend on it, you force yourself to classify the pieces of
information into the essential and the less important.

Related Patterns

You may or may not want to SKIM THE DOCUMENTATION (p. 118) before READ ALL THE CODE IN

ONE HOUR (p. 115) depending on whether you want to keep your mind free or whether you want some
subjective input before reading the code. INTERVIEW DURING DEMO (p. 121) can help you to collect a
list of entities you want to read about in the documentation.

Resulting Context. This pattern results in a list of (i) the important requirements; (ii) the important
features (iii); the important constraints; (iv) references to relevant design information plus an opinion on
how reliable and useful each of these are. Together with the result of READ ALL THE CODE IN ONE HOUR

(p. 115) and SKIM THE DOCUMENTATION (p. 118) this is a good basis to CONFERWITH COLLEAGUES

(p. 156) and then proceed with GUESSOBJECTS(p. 127) and CHECK THE DATABASE (p. 130).



121

INTERVIEW DURING DEMO

Author(s): Serge Demeyer, St́ephane Ducasse and Sander Tichelaar

Intent

Obtain an initial feeling for the functionality of a software system by seeing a demo and interviewing the
person giving the demo.

Example. You are asked to extend an existing database application so that it is now accessible
via the world-wide web. To understand how the end-users interact with the application, you
will ask one of the current users to show you the application and use that opportunity to chat
about the systems user-interface. And to understand some of the technical constraints, you will
also ask one of the system maintainers to give you a demo and discuss about the application
architecture.

Context

You are starting a reverse engineering project of a large and unfamiliar software system. You have found
somebody to demonstrate the system and explain its usage.

Problem

You need an idea of the typical usage scenario’s plus the main features of a software system in order to
plan further reverse engineering efforts.

Solution

Observe the system in operation by seeing a demo and interviewing the person who is demonstrating. Note
that the interviewing part is at least as enlightening as the demo.

After this demo, take about the same time to produce a report about your findings, including (i) some
typical usage scenarios or use cases; (ii) the main features offered by the system and whether they are
appreciated or not; (iii) the system components and their responsibilities; (iv) bizarre anecdotes that reveal
the folklore around using the system.

Hints. The person who is giving the demo is crucial to the outcome of this pattern so care is demanded
when selecting the person. Therefore, consider to apply this pattern several times with different kinds of
persons giving the demo. This way you will see variances in what people find important and you will hear
different opinions about the value of the software system. Always be wary of enthusiastic supporters or
fervent opponents: although they will certainly provide relevant information, you must spend extra time to
look for complementary opinions in order to avoid prejudices.

Below are some hints concerning people you should be looking for, what kind of information you may
expect from them and what kind of questions you should ask them.

• An end-usershould tell you how the system looks like from the outside and explain you some de-
tailed usage scenarios based on the daily working practices. Ask about the situation in the company



122 Cluster: First Contact

before the software system was introduced to assess the scope of the software system within the
business processes. Probe for the relationship with the computer department to divulge bizarre anec-
dotes.

• A person from themaintenance/development teamshould clarify the main requirements and architec-
ture of a system. Inquire how the system has evolved since delivery to reveal some of the knowledge
that is passed on orally between the maintainers. Ask for samples of bug reports and change requests
to assess the thoroughness of the maintenance process.

• A managershould inform you how the system fits within the rest of the business domain. Ask about
the business processes around the system to check for unspoken motives concerning your reverse
engineering project. This is important as reverse engineering is rarely a goal in itself, it is just a
means to achieve another goal.

Forces Resolved

Limited Resources. By applying this pattern, you spend 1/2 a day (plus the time to set-up the demo) to
end up with a short list that is a reasonable basis for planning further reengineering efforts.

Tools and Techniques.Except for the equipment necessary to run the software system –which should be
readily available– this pattern does not require anything special. The interviewing technique to apply
requires a special listening ear though.

Reliable Info. A demo is a reliable means to dig out what features are considered important, but you
cannot trust on it to omit irrelevant features. Of course the reliability of the information obtained
depends largely on the person who is giving the demo. Therefore, if possibly cross-check any in-
formation against other more reliable sources (requirements, progress and delivery reports, source
code, log files, ...).

Abstraction. The abstraction level achieved by seeing a demo is quite abstract, though it depends on the
person who is giving a demo.

Sceptic Colleagues.The users and maintainers of a software system are usually quite eager to show you
the system and tell you what they like and dislike about it. If you have a good listening ear this is a
good way to boost your credibility.

Rationale

Interviewing people working with a software system is essential to get a handle on the important function-
ality and the typical usage scenario’s. However, asking predefined questions does not work, because in the
initial phases of reverse engineering you do not know what to ask. Merely asking what people like about a
system will result in vague or meaningless answers. On top of that, you risk getting a very negative picture
because people have a tendency to complain.

Therefore, hand over the initiative to the user by requesting for a demo. First of all, a demo allows users
to tell the story in their own words, yet is comprehensible for you because the demo imposes some kind of
tangible structure. Second, because users must start from a running system, they will adopt a more positive
attitude explaining you what works. Finally, during the course of the demo, you can ask lots of precise
questions, getting lots of precise answers, this way digging out the expert knowledge about the system’s
usage.



123

Known Uses

One anecdote from the very beginning of theFAMOOS project provides a very good example for the po-
tential of this pattern. For one of the case studies —a typical example of a 3-tiered application with a
database layer, domain objects layer and user-interface layer— we were asked ’to get the business objects
out’. Two separate individuals were set to that task, one took a source code browser and a CASE tool and
extracted some class diagrams that represented those business objects. The other installed the system on
his local PC and spend about an hour playing around with the user interface to came up with a list of ten
questions about some strange observations he made. Afterwards, a meeting was organized with the chief
analyst-designer of the system and the two individuals that tried to reverse engineer the system. When
the analyst-designer was confronted with the class-diagrams he confirmed that these covered part of his
design, but he couldn’t tell us what was missing nor did he tell us anything about the rationale behind his
design. It was only when we asked him the ten questions that he launched off into a very enthusiastic and
very detailed explanation of the problems he was facing during the design — he even pointed to our class
diagrams during his story! After having listened to the analyst-designer, the first reaction of the person that
extracted the class diagrams from the source code was ’Gee, I never read that in the source code’.

Related Patterns

For optimum results, you should perform several attempts of INTERVIEW DURING DEMO (p. 121) with
different kinds of people. Depending on your taste, you may perform these attempts before, after or in-
terwoven with READ ALL THE CODE IN ONE HOUR (p. 115) and SKIM THE DOCUMENTATION (p.
118).

Resulting Context. This pattern results in (i) some typical usage scenarios or use cases; (ii) the main
features offered by the system and whether they are appreciated or not; (iii) the system components and
their responsibilities; (iv) bizarre anecdotes that reveal the folklore around using the system. Together with
the result of READ ALL THE CODE IN ONE HOUR (p. 115) and SKIM THE DOCUMENTATION (p. 118)
this is a good basis to CONFER WITH COLLEAGUES (p. 156) and then move on to GUESSOBJECTS(p.
127) and CHECK THE DATABASE (p. 130).



124 Cluster: First Contact



Chapter 5

Cluster: Extract Architecture

The patterns in FIRST CONTACT (p. 113) should have helped you getting an initial feeling of the software
system. Now is the right time to draw some blueprints of the complete system that will serve as a roadmap
during the rest of the reverse engineering project. The main priority in this stage of reverse engineering is
to get an accurate picture without spending too much time on the hairy details.

The patterns in this cluster tell you how to derive a system blueprint from source code (GUESSOBJECTS

(p. 127)) and from a database schema (CHECK THE DATABASE (p. 130)). With these blueprints you will
probably want to proceed with FOCUS ONHOT AREAS (p. 133).

Forces Revisited

Reliable Info. Since the blueprints resulting from these activities will influence the rest of your project,
accuracy is the single most important aspect.Consequently, take special precautions to make the
extracted blueprints as reliable as possible.In particular, plan for an incremental approach where
you gradually improve the blueprints while you gain a better understanding of the system.

Limited Resources. Results coming from this stage of reverse engineering are always worthwhile.Con-
sequently, considerEXTRACT ARCHITECTUREa very important activity and plan to spend a con-
siderable amount of your resources here.However, via an incremental approach you can stretch your
resources in time.

Tools and Techniques.While extracting an architecture, you can afford the time and money to apply
some heavyweight techniques and purchase some expensive tools.Yet —because accuracy is so
important— do never rely on techniques and tools and always make a conscious assessment of their
output.

Abstraction. Architectural blueprints are meant to strip away the details. Yet, computer science has this
strange phenomenon that details are crucial to the overall system [Bro87]. Consequently, favor differ-
ent blueprints that emphasize one perspective and choose the most appropriate ones when necessary.
Adapt the notation to the kind of blueprint you are making ([Dav95] – principle 21).

Sceptic Colleagues.Good blueprints help a lot because they greatly improve the communication within a
team. However, since they strip away details, you risk to offend those people who spend their time
on these details. Also, certain notations and diagrams may be new to people, and then your diagrams
will just be ignored. Consequently, take care in choosing which blueprints to produce and which
notations to use — they should be helpful to all members of the team.



126 Cluster: Extract Architecture

Li
m

ite
d

R
es

ou
rc

es

To
ol

s
an

d
Te

ch
ni

qu
es

R
el

ia
bl

e
In

fo

A
bs

tr
ac

tio
n

S
ce

pt
ic

C
ol

le
ag

ue
s

GUESSOBJECTS - - ++ ++ +

CHECK THE DATABASE - - ++ + ++

Table 5.1: How each pattern of FIRST CONTACT resolves the forces. Very good:++, Good:+, Neutral: 0,
Rather Bad:- , Very bad:--



127

GUESSOBJECTS

Author(s): Serge Demeyer, St́ephane Ducasse and Sander Tichelaar

Intent

Progressively refine a model of a software system, by defining hypotheses about what should be in the code
and checking these hypotheses against the source code

Example. You are facing a 500 K lines C++ program, implementing a software system to
display multi-media information in real time. Your boss asks you to look how much of the
source code can be resurrected from another project. After having READ ALL THE CODE IN

ONE HOUR (p. 115), you noticed an interesting piece of code concerning the reading of the
signals on the external video channel. You suspect that the original software designers have
applied some form of observer pattern, and you want to learn more about the way the observer
is notified of events. You will gradually refine your assumption that the class V IDEOCHANNEL

is the subject being observed by reading its source code and tracing interesting paths.

Context

You are in the early stages of reverse engineering a software system: you have an initial understanding of
its functionality and you are somewhat familiar with the main structure of its source code. Due to this, you
have identified a certain aspect of the system as especially important. You have on-line access to the source
code of the software system and the necessary tools to manipulate it (i.e., from an elementarygrep to a
professional browser). You have reasonable expertise with the implementation language being used.

Problem

You must gain an overall understanding of the internal structure of a software system and report this knowl-
edge to your colleagues so that they will use it as a kind of roadmap for later activities.

Solution

Take a notepad and/or sketchpad (not necessarily as an electronic tool). Based on your experience, and
the little you already understand from the system, devise a model that serves as your initial hypotheses of
what to expect in the source code. Check these hypotheses against the source code, using whatever tools
you have available. Consciously keep track of which parts of the source code confirm and which parts
contradict your hypotheses. Based on the latter, refine the initial model, recheck the hypotheses and rework
the list of confirmations and contradictions. Do this until you obtain a more or less stable model.

Note that it is a good idea to sort the entities in your hypotheses models according to the probability of
appearance in source-code. This is especially useful as names inside the source-code do not always match
with the concepts they represent. This may be due to particular coding conventions or compiler restrictions
(identifiers cannot exceed a certain length), or because of the native language of the original programmer.1

Afterwards, sit down to produce a boxes- and arrows diagram describing your findings. As a rule of the
thumb, make sure your diagram fits on one page. It is better to have two distinct diagrams, where each

1In one particular reverse engineering experience, we were facing source code that was a mixture of English and German. As you
can imagine,grep is not a very good tool to check occurrences of English terms in German texts.



128 Cluster: Extract Architecture

provides a clean perspective on the system than one messy diagram with too many details too read and
memorize. People should be able to redraw the diagram from memory after they have seen it once; it is
only then that your diagram will really serve as a roadmap.

Variations. The pattern itself is quite broad and thus widely applicable. Below are some suggestions of
possible variants.

• Guess Patterns.While having READ ALL THE CODE IN ONE HOUR (p. 115), you might have seen
some symptoms of patterns. You can use a variant of GUESS OBJECTS to refine this knowledge.
(See the better known pattern catalogues [GHJV95], [BMR+96], [Fow97a] for patterns to watch out
for. See also [Bro96] for a discussion on tool support for detecting patterns.)

• Guess Object Responsibilities. Based on the requirements resulting from SKIM THE DOCUMENTA-
TION (p. 118), you can try to assign object responsibilities and check the resulting design against
the source code. (To assign object responsibilities, use the noun phrases in the requirements as the
initial objects and the verb phrases as the initial responsibilities. Derive a design by mapping objects
on class hierarchies and responsibilities on operations. See [WBWW90] for an in depth treatment
on responsibility-driven design.)

• Guess Object Roles. The usage scenarios that you get out of INTERVIEW DURING DEMO (p. 121)
may serve to define some use cases that in turn help to find out which objects fulfill which roles. (See
[JCJO92] for use cases and [Ree96] for role modeling.)

• Guess Process Architecture. The object-oriented paradigm is often applied in the context of dis-
tributed systems with multiple cooperating processes. A variant of GUESSOBJECTSmay be applied
to infer which processes exist, how they are launched, how they get terminated and how they interact.
(See [Lea96] for some typical patterns and idioms that may be applied in concurrent programming.)

Forces Resolved

Limited Resources. The amount of resources you invest in this pattern depends mainly on the level of
detail and accuracy that you want to achieve. Be wary of the hairy details though, as this pattern
tends to have an exponential effort/gain curve. For detailed information, consider switching to STEP

THROUGH THEEXECUTION (p. 146) instead.

Tools and Techniques.Applying this pattern does not require a lot of tools: a a simplegrep may be suf-
ficient and otherwise a good code browser will do. Probably you will also need a tool for producing
the final blueprint, as it is likely that someone will have to update the blueprint later on in the project.
However, choose a a simple drawing tool rather then a special purpose CASE tool, as you will need
a lot of freedom to express what you found.

In itself, the pattern does not require a lot of techniques. However, a large repertoire of knowledge
about idioms, patterns, algorithms, techniques is necessary to recognize what you see. As such, the
pattern should preferably be applied by experts, yet lots of this expertise may be acquired on the job.

Reliable Info. The blueprints you extract by applying this pattern are quite reliable because of the gradual
refinement of the hypotheses and confirmation against source code. Yet, be sure to keep the blueprint
up to date while your reverse engineering project progresses and your understanding of the software
system grows.

Abstraction. If applied well, the different blueprints you achieve by means of GUESSOBJECTSprovide
the ideal abstraction level. That is, each blueprint provides a unique perspective on the software
system that highlights the important facts and strips the unimportant details. Yet, navigating between
the various blueprints provides you all the necessary perspectives to really understand the system.



129

Sceptic Colleagues.The results of GUESSOBJECTSpattern should drastically increase the confidence of
your team in the success of the reverse engineering project. This is because the members of the team
will normally experience an “aha erlebness”, where the little pieces of knowledge they have fit the
larger whole.

Rationale

Clear and concise descriptions of a system are a necessary ingredient to plan team activities. However, be-
ing clear and concise is for humans to decide, thus creating them requires human efforts. On the other hand,
they must accurately reflect what’s inside the system, so somehow the source-code should be incorporated
in the creation process as well. GUESS OBJECTSaddresses this tension by using a mental model (i.e.,
the hypotheses) as the primary target, yet progressively refines that model by checking it against source
code. Moreover, conciseness implies loss of detail, hence the reason to extract multiple blueprints offereing
alternative perspectives.

Known Uses

In [MN97], there is a report of an experiment where a software engineer at Microsoft applied this pattern
(it is called ’the Reflexion Model’ in the paper) to reverse engineer the C-code of Microsoft Excel. One of
the nice sides of the story is that the software engineer was a newcomer to that part of the system and that
his colleagues could not spend too much time to explain him about it. Yet, after a brief discussion he could
come up with an initial hypotheses and then use the source code to gradually refine his understanding. Note
that the paper also includes a description of a lightweight tool to help specifying the model, the mapping
from the model to the source code and the checking of the code against the model.

Related Patterns

All the patterns in the FIRST CONTACT (p. 113) cluster are meant to help you building the initial hypotheses
to be refined via GUESSOBJECTS(p. 127). Next, some of the patterns in FOCUS ONHOT AREAS (p. 133)
may help you to refine this hypothesis.

Resulting Context. After this pattern, you will have a series of blueprints where each contains one per-
spective on the whole system. These blueprints will help you during later reverse engineering steps, in
particular the ones in FOCUS ON HOT AREAS (p. 133) and PREPARE REENGINEERING (p. 149). Con-
sequently, consider applying CONFER WITH COLLEAGUES (p. 156) after applying GUESSOBJECTS(p.
127).



130 Cluster: Extract Architecture

CHECK THE DATABASE

Author(s): Serge Demeyer, St́ephane Ducasse and Sander Tichelaar

Intent

Get a feeling for the data model inside a software system by checking the database schema.

Example. You are asked to extend an existing database application so that it is now acces-
sible via the world-wide web. The initial software system manipulates the business objects
(implemented in C++) stored inside a relational database. You will reconstruct the data model
underlying your business objects by mapping the table definitions in the database on the cor-
responding C++ classes.

Context

You are in the early stages of reverse engineering a software system, having an initial understanding of its
functionality. The software system employs some form of a database to make its data persistent.

You have access to the database and the proper tools to inspect its schema. Or even better, you have samples
of data inside that database and maybe you are even able to spy on the database queries during the execution
of the system. Finally, you have some expertise with databases and knowledge of how data-structures from
your implementation language are mapped onto the data-structures of the underlying database.

Problem

You want to derive a data model for the persistent data in a software system in order to guide further reverse
engineering efforts.

Solution

Check the database schema to reconstruct at least the persistent part of the data model. Use your knowledge
of how constructs in the implementation language are mapped onto database constructs to reverse engineer
the real data model. Make samples of data inside the database to refine the data-model.

Forces Resolved

Limited Resources. Reconstructing the data model from the database schema takes considerable resources,
although it depends largely on the underlying technology. Factors that affect this force in a positive
way are the quality of the database schema (is it in normal form?), the correspondence between the
database paradigm and the implementation language paradigm (inheritance hierarchies do not map
directly to relational tables), the expressiveness of the database schema (does it include foreign keys
?). On the other hand, the reverse engineering of database schemas may include techniques like data
sampling and run-time inspection, which takes even more resources.

Tools and Techniques.This pattern can do without a lot of tool support: a dump of the database schema
and some samples of data inside the tables is something all database systems can provide. However,



131

there are some tools available to support you in recovering object models (see [HEH+96], [PB94],
[JSZ97]).

This pattern requires substantial technical expertise, because it requires knowledge of ways to ma-
nipulate data structures in both the implementation language and the database, plus ways to map one
onto the other.

Reliable Info. Because the pattern is based on analyzing persistent data, the reliability of the reconstructed
data model is usually quite high. However, if the database system is manipulated by different soft-
ware systems and if each of these software systems is build with different implementation technolo-
gies (CASE tools, 4GL, ...), the reliability of the data model tends to decrease because the database
schema provides the most common denominator of all implementation technologies involved. Data
sampling is a good way to cope with this problem though.

Abstraction. The abstraction level of the reconstructed data model tends to be low, as it is closer to the
underlying database schema than it is to the implementation language. However, this depends largely
on the amount of resources spent. For instance, with data sampling and run-time inspection one can
drastically improve the abstraction level.

Sceptic Colleagues.If applied well, this pattern increases your credibility considerably, because a well
defined data model is normally considered a collective source of knowledge which greatly improves
the communication within a team. Moreover, almost all software engineers will have experience
with data models and will appreciate their presence.

Rationale

Having a well defined central data model is a common practice in larger software projects that deal with
persistent data. Not only, it specifies common rules on how to access certain data structures, it is also a
great aid in assigning development tasks. Therefore, it is a good idea to extract an accurate data model
before proceeding with other reverse engineering activities.

Known Uses

The reverse engineering and reengineering of database systems is a well-known problem, drawing certain
attention in the literature (see [HEH+96], [PB94], [JSZ97]). Note the recurring remark that the database
schema alone is too weak a basis and that data sampling and run-time inspection must be included for
successful reconstruction of the data model.

Related Patterns

CHECK THE DATABASE requires an initial understanding of the system functionality, like obtained by
applying patterns in the cluster FIRST CONTACT (p. 113).

There are some patterns that describe various ways to map object-oriented data constructs on relational
database counterparts. See among others [KC98], [CKR99].

Resulting Context. CHECK THE DATABASE results in a data model for the persistent data in your soft-
ware system. Such a data model is quite rough, but it may serve as an ideal initial hypotheses to be further
refined by applying GUESSOBJECTS(p. 127). The data model should also be used as a collective knowl-
edge that comes in handy when doing further reverse engineering efforts, for instance like in the clusters
FOCUS ON HOT AREAS (p. 133) and PREPARE REENGINEERING (p. 149). Consequently, consider to
CONFERWITH COLLEAGUES (p. 156) after CHECK THE DATABASE.



132 Cluster: Extract Architecture



Chapter 6

Cluster: Focus on Hot Areas

The patterns in FIRST CONTACT (p. 113) should have helped you getting an initial feeling of the software
system, while the ones in EXTRACT ARCHITECTURE (p. 125) should have aided you deriving some
blueprints of the overall system structure. The main priority now is to get detailed knowledge about a
particular part of the system.

This cluster tell youhow, and to some degreewhereyou might obtain such detailed knowledge. The
patterns involve quite a lot of tools and rely on substantial technical knowledge, hence are applicable in the
later stages of a reverse engineering project only. Indeed, only then you can afford to spend the resources
obtaining detailed information as only then you have the necessary expertise to know that your investment
will pay off.

There are two patterns that explain youwhereto focus your attention: INSPECT THELARGEST (p. 135)
suggests to look at large object objects, while EXPLOIT THE CHANGES (p. 139) advises to look at the
places where programmers have been changing the system. (Of course, no technique or tool will replace
the human mind, hence to know where to focus your attention, be sure to CONFER WITH COLLEAGUES

(p. 156) as well). Then, there are two patterns that inform youwhere and howto study program struc-
tures: VISUALIZE THE STRUCTURE (p. 142) tells about program visualisation techniques, while CHECK

METHOD INVOCATIONS (p. 144) recommends to check invocations of both constructor and overridden
methods. Finally, there is one pattern describing youhowto investigate programs, namely STEP THROUGH

THE EXECUTION (p. 146) which explains how to take advantage of your debugger.

Many reverse engineering projects prepare for a subsequent reengineering phase. If you’re in such a situa-
tion, you might consider the patterns in PREPAREREENGINEERING(p. 149) as your next step. If you’re
not, then these patterns are the last ones we have to offer for helping you.

Forces Revisited

Tools and Techniques.To obtain the required details from a software system you must pay the price in
terms of technical expertise and tools. This is the most important force during this stage of reverse
engineering:consequently, make sure your reverse engineering team does possess the necessary
skills and tools.

Limited Resources. These patterns are applicable during the later stages of a reverse engineering project,
thus resources are less scarce as you can be quite sure that your investment will pay off. On the other
hand, the activities you apply require more resources.Consequently, engage in detailed reverse
engineering only when you are certain that you need to know the details about that part of a system.
The patterns in the previous clusters should have helped you obtaining that knowledge.



134 Cluster: Focus on Hot Areas

Abstraction. All patterns in this cluster have in common that they extract detailed information, at an
intermediate level of abstraction (i.e., between source code and design). Yet, detailed knowledge
is necessary because in software engineering —and this is in contrast with many other engineering
disciplines— details are very important [Bro87]. So, even during fine-grained reverse engineering,
there are little details that seem so obvious, yet may obstruct the understanding of the system if you
failed to state them.1 Consequently, when working on intermediate abstraction levels, make sure you
provide enough context so that the relationship with both higher and lower levels is clear.

Reliable Info. As details are so important, you should be confident in the obtained results.Consequently,
favour extracting information from the trustworthy information sources. Fortunately, because you’re
in the later stages of reverse engineering, you know which information sources are reliable and which
ones are not.

Sceptic Colleagues.You would not have arrived this far without the support of some colleagues, so at
least you still have the support of the faithful. Moreover, you probably did satisfy the expectations,
otherwise the sceptic would have succeeded to cancel your project. And if you did really well, you
might even have won some fence sitters over into the camp of the faithful. At this stage, you will not
achieve more support from your colleagues.Consequently, keep on delivering the necessary results
to avoid providing reasons for the sceptics to cancel your project.

Li
m

ite
d

R
es

ou
rc

es

To
ol

s
an

d
Te

ch
ni

qu
es

R
el

ia
bl

e
In

fo

A
bs

tr
ac

tio
n

S
ce

pt
ic

C
ol

le
ag

ue
s

INSPECT THELARGEST 0 - 0 0 0

V ISUALIZE THE STRUCTURE - -- + + +

CHECK OVERRIDDEN METHODS - - + + 0

EXPLOIT THE CHANGES -- -- ++ + ++

STEP THROUGH THEEXECUTION - 0 ++ - +

Table 6.1: How each pattern of FIRST CONTACT resolves the forces. Very good:++, Good:+, Neutral: 0,
Rather Bad:- , Very bad:--

1A typical example of such a harmful detail is the use of private/protected in a UML diagram. Depending on the favourite
programming language of the author of the diagram, the interpretation is quite different, and readers of the diagram should be made
aware of this. That is, with a C++ background the interpretation is class based, thus instances of the same class may access each
other’s private members. On the other hand, with a Smalltalk background, the interpretation is instance based, thus it is only the
object itself that is allowed to access its members. Finally, in Java a protected member may also be accessed by classes in the same
package.



135

INSPECT THELARGEST

Author(s): Serge Demeyer, St́ephane Ducasse and Sander Tichelaar

Intent

Identify important functionality by looking at large constructs.

Example. You are facing an object-oriented system and you want to find out which classes
do the bulk of the work. You will produce a list of all classes where the number of methods
exceeds the average number of methods per class, sort the list and inspect the largest classes
manually.

Context

You are in a later stage of reverse engineering a software system. You have an overall understanding of
its functionality and you know the main structure of its source code. You have a metrics tool at your
disposal plus a code browser to inspect the source code. The metrics tool is configured in such a way that it
provides you with a number of measurements of source code constructs you are feeding into it. Moreover,
the metrics are defined in such a way that they have a high correlation with the amount of functionality
implemented in the construct.

Problem

You must identify those places in the source code that correspond with important chunks of functionality.

Solution

Use the metrics tool to collect a limited set of measurements for all the constructs in the system. Sort
the resulting list according to these measurements. Browse the source code for the largest among those
constructs in order to understand how these constructs work together with other related constructs. Produce
a list of all the constructs that appear important, including a description of how they should be used (i.e.
external interface).

Hints. Identifying important pieces of functionality in a software system via measurements is a tricky
business which requires expertise in both data collection and interpretation. Below are some hints that
might help you getting the best out of your data.

• Which metrics to collect ?In general, it is better to stick to the simple metrics, as the more complex
ones will not perform better for the identification of large constructs. This experience is backed up by
empirical evidence, as it has been reported in the literature that size metrics have a high correlation
(see among others [FP97]).

For identifying important functionality in object-oriented source code, look at methods and classes.
For methods you may restrict yourself to counting the lines of code and if available the number of
other methods invoked.2 For classes, you should count the number of methods and the number of

2Counting the lines of code can be done very efficiently without parsing, just by counting all occurrences of the<CR> character.



136 Cluster: Focus on Hot Areas

attributes defined on that class, plus the depth of the inheritance tree and probably also the lines of
code (i.e., the sum of all the lines of code of all the methods of a class). (See the chapter on Metrics
— p.22 for a more precise definition of each of the metrics and a list of other metrics you might
collect).

• Which variants to use ?Usually, it does not make a lot of difference which variant is chosen, as long
as the choice is clearly stated and applied consistently. Here as well, it is preferable to choose the
most simple variant, unless you have a good reason to do otherwise. For instance, while counting the
lines of code, you should decide whether to include or exclude comment lines, or whether you count
the lines after the source code has been normalised via pretty printing. In such a case, do not exclude
comment lines nor normalise the source code as the extra effort will not pay of. Another example of
an alternative definition is the case of counting the number of methods, where one must decide how
to deal with ’special’ methods like class methods (i.e., the C++ static methods). In this case it is a
good idea to count class methods separately as they represent a different kind of functionality.

• Which thresholds to apply ?It is better not to apply thresholds to filter out those constructs which
measurements fall into a given threshold interval. Indeed, ’large’ is a relative notion and thresholds
will distort your perspective of what constitutes large within the system.

• How to interpret the results ?Do not only look for the largest construct while analysing the data.
Before actually browsing the source code, check the distribution of measurements to see whether the
80/20 rule is satisfied. Also, gather several measurements in different columns one beside another
and then look for unusual rows.

(Note that the 80/20 rule is a more formal expression of the rule of the thumb that most constructs
in source code will be small, and only a few exceptional cases will be large. To be precise, the rule
states that 80% of the constructs will be smaller than 20% of the size of the largest construct.)

Forces Resolved

Limited Resources. Once the metric tool is configured for the particular language of the software system,
collecting the necessary data is not that resource consuming; in the worst case it can be done via
batch jobs during the night. However, analysing the data and browsing the selected source code
constructs requires a lot of resources depending on the desired level of detail. You can neutralise this
effect to some extent by limiting the set of metrics.

Tools and Techniques.To apply this pattern, you require a tool which should be able to collect the neces-
sary measurements. However, since you can restrict yourself to simple counting metrics such a tool
should be quite easy to obtain.

Analysing and interpreting the data however, requires a certain amount of knowledge. Some of this
knowledge is summarised in our list of metric definitions (see the chapter on Metrics — p.22) and
the rest you can learn on the job.

Reliable Info. It is not because a software construct is large that it is important, neither is it true that a
small construct is always irrelevant. Therefore, the results contain quite a lot of noise, hence are
somewhat unreliable. Still, given the amount of resources required, this pattern usually provides a
good return on investment, especially since the large constructs will often point you to other more
important but smaller constructs.

Abstraction. The abstraction level of this pattern results mainly from browsing the source code, not so
much from measuring the constructs in the system. Therefore, the abstraction level of the results
should be considered quite low.

Sceptic Colleagues.Metrics are often associated with process and quality control, therefore some pro-
grammers may believe that you will use the metrics to examine their productivity. Be careful if



137

you have such programmers among your faithful as it may be a way to turn them into sceptics. In
particular, do not blindly deduce that large constructs are bad and should be rewritten.

Rationale

The main reason why size metrics are often applied during reverse engineering is because they provide a
good focus (between 10 to 20% of the software constructs) for a low investment, even though the results
are somewhat unreliable. With such a good focus, you can afford some erroneous results which you will
compensate anyway via code browsing.

The results are a bit unreliable because ’large’ is not necessarily the same as ’important’. Quite often large
constructs are irrelevant as they would have been refactored into smaller pieces if they were important.
Conversely, small constructs may be far more important than the large ones, because good designers tend
to distribute important functionality over a number of highly reusable and thus smaller components. Still,
different larger constructs may share the same smaller construct, so via the larger constructs you may be
able to identify some important smaller constructs too.

The main disadvantage of the pattern is that it forces you to look at the largest constructs first. Large
constructs are usually the most complicated ones, therefore understanding the corresponding source code
may prove to be difficult. Another disadvantage is that the analysis of the metrics data results in a list
of raw software constructs. For program understanding, it is usually more important to know how these
constructs work together with other ones, something which must be revealed by code browsing.

Note that by restricting yourself to a limited set of simple metrics you already avoid one of the most
common pitfalls. Indeed, metrics tools usually offer you a wide range of metrics and since collecting data
is so easy, you may be tempted to apply all metrics that are available. However, the more data you collect,
the more data you must analyse and the amount of numbers will quickly overwhelm you. Moreover, some
metrics require substantial parsing effort, which in turn requires the configuration of the parser to your
software system, which can be painstaking and time-consuming. By limiting the amount a metrics and
keeping the metrics simple, you circumvent these problems.

Known Uses

In several places in the literature it is mentioned that looking for large object constructs helps in program
understanding (see among others, [MLM96a], [Kon97], [FNP98a], [FNP98b], [Mar98], [LS98], [Nes88]).
Unfortunately, none of these incorporated an experiment to count how much important functionality re-
mains undiscovered. As such it is impossible to assess the reliability of size metrics for reverse engineering.

Note that some metric tools visualise information via typical algorithms for statistical data, such as his-
tograms and Kiviat diagrams. Visualisation may help to analyse the collected data. Datrix [MLM96a],
TAC++ [FNP98a], [FNP98b], and Crocodile [LS98] are tools that exhibit such visualisation features.

Related Patterns

Looking at large constructs requires little preparation but the results are a bit unreliable. By investing more
in the preparation you may improve the reliability of the results. For instance, if you VISUALIZE THE

STRUCTURE (p. 142) you invest in program visualisation techniques to study more aspects of the system
in parallel, thereby increasing the quality of the outcome. Also, you can EXPLOIT THE CHANGES (p.
139) to focus on those parts of the system that change, thereby increasing the likelihood of identifying
interesting constructs and focussing on the way constructs work together.



138 Cluster: Focus on Hot Areas

Resulting Context. By applying this pattern, you will have identified some constructs representing im-
portant functionality. Some other patterns may help you to further analyse these constructs. For instance, if
you VISUALIZE THE STRUCTURE (p. 142) you will obtain other perspectives and probably other insights
as well. Also, if you STEP THROUGH THEEXECUTION (p. 146) you will get a better perception of the run-
time behaviour. Finally, in the case of a object-oriented code, you can CHECK METHOD INVOCATIONS

(p. 144) to find out how a class is related to other classes.

Even if the results have to be analysed with care, some of the larger constructs can be candidates for further
reengineering: large methods may be split into smaller ones (see [Fow99]), just like big classes may be
cases of a GOD CLASS (see [BMMM98]).



139

EXPLOIT THE CHANGES

Author(s): Serge Demeyer, St́ephane Ducasse and Sander Tichelaar

Intent

Recover design issues by asking where, how and why the developers have been changing the implementa-
tion.

Example. You must understand an old but evolving software system, where the evolution
is controlled through a configuration management system. You will filter out those modules
that have been changed most often and find out what these changes where about and why they
were necessary.

Example. You must understand an object-oriented framework that has been adapted several
times as the developers gained insight into the problem domain. You will filter out all classes
where the number of methods and attributes has decreased significantly and find out where that
functionality has been moved to. With that knowledge, you will make a guess at the design
rationale underlying this redistribution of functionality.

Context

You are in a later stage of reverse engineering an evolving software system. You have an overall understand-
ing of its functionality and you know the main structure of its source code. You have several releases of the
source code at your disposal plus a way to detect the differences between the releases, i.e. a configuration
management system and/or a metrics tool.

Problem

You must identify those parts in the design that played a key role during the system’s evolution.

Solution

Use whatever means at your disposal to compile a list of targets of important/frequent changes. For each
target, put yourself in the role of the original developer and ask yourself what the change is about and why
it was necessary. With this insight, produce a list of crucial system parts, including a description of the
design issues that makes them important.

Variations. The pattern comes in two variants corresponding to the way the targets of changes are iden-
tified.

• The configuration database variantrequires that all changes to the system were done via a config-
uration management system which logs all changes in the configuration database. In that case you
can take advantage of the query facilities provided by the configuration database to produce a list of
components that have been changed. Sort the list according to the frequency of changes and inspect
the corresponding source code plus the comments in the configuration database to find out how and
why this component has changed.



140 Cluster: Focus on Hot Areas

• The change metrics variantidentifies changes by comparing subsequent releases and measuring
differences in size. With the change metrics variant, the first step is to measure the size of named
constructs in two subsequent releases. Afterwards, you compile a list with three columns: the name
of the construct and both measurements. Sort the list according to the largest decrease in size. For
each decrease in size, ask yourself where this functionality has been moved to and then deduce how
and why this construct has changed.

Hints. If you consider applying the change metrics variant on object-oriented source code, we can rec-
ommend three heuristics that help identifying the following changes.

• Split into superclass / merge with superclass. Look for the creation or removal of a superclass (change
in hierarchy nesting level - HNL), together with a number of pull-ups or push-downs of methods and
attributes (changes in number of methods - NOM and number of attributes - NOA).

• Split into subclass / merge with subclass. Look for the creation or removal of a subclass (change
in number of immediate subclasses- HNL), together with a number of pull-ups or push-downs of
methods and attributes (changes in number of methods - NOM and number of attributes - NOA).

• Move functionality to superclass, subclass or sibling class. Look for removal of methods and at-
tributes (decreases in number of methods - NOM and number of attributes - NOA) and use code
browsing to identify where this functionality is moved to.

• Split method / factor out common functionality. Look for decreases in method size (via lines of code
- LOC, or number of message sends - MSG, or number of statements - NOS) and try to identify
where that code has been moved to.

Rationale

A configuration management tool maintains and controls the different versions of the components that
constitute the entire software system. If such a tool has been used for the software system you are reverse
engineering, its database contains a wealth of information about where, how and why the software system
has evolved. As a reverse engineer, you should exploit the presence of this database.

But even without a configuration management system, it is feasible to identify where, how and to some
degree why a system has evolved by comparing subsequent releases and measuring changes. With change
metrics, the results are less accurate than it is the case with the configuration database variant, mainly
because the rationale for the change is not recorded thus must be deduced. On the other hand, because
you focus on constructs that decrease in size, you are likely to identify places where functionality has been
moved to other locations. Such moving of functionality is always relevant for reverse engineering, as it
reveals design intentions from the original developers.

Satisfying the prerequisite of having different releases of the source code plus the necessary tools to assess
the differences, the main advantages of looking at changes are the following. (i) It concentrates on relevant
parts, because the changes point you to those places where the design is expanding or consolidating. (ii)
It provides an unbiased view of the system, because you do not have to formulate assumptions of what to
expect in the software (this is in contrast to GUESSOBJECTS(p. 127) and VISUALIZE THE STRUCTURE(p.
142)) (iii) It gives an insight in the way components interact, because the changes reveal how functionality
is redistributed among constructs (this is in contrast to INSPECT THELARGEST(p. 135)).

Known Uses

There is a company called MediaGeniX, which incorporates a scaled down version of the configuration
database variant into their development process and tools. It is based on the so-called tagging tool, which



141

automatically updates one comment line in a method body each time this method is modified. The comment
line records information like the date of the change, the name of the programmer and a reference into
their configuration management system. The reference reveals the nature of the change (i.e., bug fix or a
new feature) and via consultation of the actual configuration management system even what this change
was about. Afterwards, they run queries to identify which features are localised to a few modules and
which features cross-cut a large number of modules to identify where they may improve the design of
the framework. Also, they have identified methods that are modified a lot when bug fixing, and used this
information as input for their code reviewing. They have even identified cycles in the bug fixing, in the
sense that the modification of one method fixed a bug but immediately introduced another bug and then the
repair of the newly introduced bug again introduced the older bug. More information about the usage of
the tagging tool in the context of reverse engineering can be found in [Hon98].

Besides the tagging tool, we are aware of two other projects where people have been exploiting the version
control system for reverse engineering purposes. First, there is the SeeSoft tool, developed at Bell Labs,
which visualises source code changes and has been used successfully for reverse engineering purposes
[BE96]. Second, there is the ARES project (see http://www.infosys.tuwien.ac.at/Projects/ARES/) which
also experimented with visualisation of changes using the 3DSoftVis tool [JGR99].

Finally, concerning the change metrics variant, we ran an experiment on three medium sized systems
implemented in Smalltalk. As reported in [DDN99], these case studies suggest that the heuristics support
the reverse engineering process by focussing attention on the relevant parts of a software system.

Related Patterns

Inspecting changes is a costly but very accurate way of identifying areas of interest in a system. If you
V ISUALIZE THE STRUCTURE (p. 142) or INSPECT THELARGEST (p. 135) you will get less accurate
results for a lower amount of resources.

Resulting Context. By applying this pattern, you will have identified some parts in the design that played
a key role during the system’s evolution. Some other patterns may help you to further analyse these con-
structs. For instance, if you VISUALIZE THE STRUCTURE (p. 142) you will obtain other perspectives and
probably other insights as well. Also, if you STEP THROUGH THE EXECUTION (p. 146) you will get
a better perception of the run-time behaviour. Finally, in the case of a class, you can CHECK METHOD

INVOCATIONS (p. 144) to find out how this class is related to other classes.



142 Cluster: Focus on Hot Areas

V ISUALIZE THE STRUCTURE

Author(s): Serge Demeyer, St́ephane Ducasse and Sander Tichelaar

Intent

Obtain insight in the software system’s structure —including potential design anomalies— by means of
well-known visualisations.

Example. You want to understand an object-oriented class structure in order to improve
it. In particular, you would like to redistribute responsibilities, by splitting large superclasses
and hooking the subclasses underneath the appropriate ancestor. To analyse the situation, you
will display the inheritance hierarchies, paying special attention to large classes high up in the
hierarchy. Afterwards, for classes identified that way, you will display a graph showing which
method accesses which attributes to analyse the class’ cohesion and find out whether a split is
feasible.

Context

You are in a later stage of reverse engineering a software system. You have an overall understanding of the
system’s functionality and based on that understanding, you have selected part of the software system for
further inspection. You have a program visualisation tool at your disposal plus a code browser to inspect
the source code.

Problem

You want to obtain insight in the structure of a selected part of a software system, including knowledge
about potential design anomalies.

Solution

Instruct the program visualisation tool to show you a series of graphical layouts of the program structure.
Based on these graphical layouts, formulate yourself some assumptions and use the code browser to check
whether your assumptions are correct. Afterwards, produce a list of correct assumptions, classifying the
items in one of two categories: (i) helps program understanding, or (ii) potential design anomaly.

Hints. Obtaining insight in the structure of a software system via visualisation tools is difficult, especially
when searching for potential design anomalies. We have included our expertise with program visualisation
in a separate chapter and we refer the interested reader to the chapter on Visualisation — p.31 for further
details.

Rationale

Program visualisation is often applied in reverse engineering because good visual displays allow the human
brain to study multiple aspects of a problem in parallel. This is often phrased as ”one picture conveys a



143

thousand words”, but then of course the problem is which words they convey, thus which program visu-
alisations to apply and how to interpret them. For the program visualisations listed in the the chapter on
Visualisation — p.31 we describe both when to apply them and how to interpret the results. For other
visualisations you will have to experiment to find out when and how to use them.

Related Patterns

If your program visualisation tool scales enough to accommodate the system your facing, then you can
start to VISUALIZE THE STRUCTURE right away. However, since program visualisations rarely scale
well, it is preferable to first filter out which parts of the source code are relevant for further analysis.
Therefore, consider to INSPECT THELARGEST (p. 135) or to EXPLOIT THE CHANGES (p. 139) before
you VISUALIZE THE STRUCTURE.

Resulting Context. By applying this pattern, you will have obtained an overview of the structure of a
selected part of a software system, including potential design anomalies. Some other patterns may help you
to further analyse these constructs. For instance, if you STEP THROUGH THE EXECUTION (p. 146) you
will get a better perception of the run-time behaviour and if you CHECK METHOD INVOCATIONS (p. 144)
you can find out how a class is related to other classes. If you have identified design anomalies, you should
consider to refactor them (see [Fow99]). Some typical design anomalies including the way to refactor them
can be found in the part on Reengineering — p.167.



144 Cluster: Focus on Hot Areas

CHECK METHOD INVOCATIONS

Author(s): Serge Demeyer, St́ephane Ducasse and Sander Tichelaar

Intent

Find out how a class is related to other classes by checking the invocations of key methods in the interface
of that class. Two examples of key methods that are easy to recognise are constructors and overridden
methods.

Example. You have identified a number of classes that represent part of the domain model.
You want to learn about the aggregation relationships between these classes and therefore, you
will inspect for all constructor methods which methods are invoking them.

Example. You have identified a part of a class hierarchy where the designers relied on
template methods to customise the design. To learn how the subclasses interact with their
superclasses, you will retrieve all methods overriding another one, and inspect who is invoking
these methods.

Context

You are in a later stage of reverse engineering a software system implemented in an object-oriented lan-
guage. You have an overall understanding of the system’s functionality and based on that understanding,
you have selected a part of the class hierarchy for further inspection. You have a code browser at your
disposal that allows you to jump from a method invocation to the places where the corresponding method
is defined.3

Problem

You want to find out how a class is related to the other classes in the system.

Solution

Select key methods in the interface of the class and inspect who is invoking these methods.

Variations. The pattern has two variants depending on the selected methods in the public interface.

• The constructor method variantsuggests you to look at invocations of constructor methods to reveal
aggregation relationships between classes.

• The template method variantrecommends you to select methods that are overridden in a subclass
plus the methods invoking them to infer template methods [GHJV95].

3Note that your code browser should take polymorphism into account. Polymorphism implies that one invocation has several
candidates for being the defining method. Because the actual target can only be resolved at run-time, your browser must show all
candidates.



145

Hints. If you consider applying the above variants, following suggestions may help you getting the best
out of your efforts.

• For the constructor method variant, you must trace the chain of invocations until the result of the
constructor is stored into an attribute. The class defining this attribute is the aggregation. Also,
look out for invocations of constructor methods where the invoking object is passing itself as an
argument and where this argument is stored into an attribute of the constructor class. In that case,
the constructor class is the aggregation.

• The template method variant, explicitly states that you should look a methods that are overridden and
not methods that are declared abstractly. The reason is that not all template methods distinguish the
hook method via an abstract method, but that often a concrete method is used to specify the default
behaviour. By looking for overridden methods, you are certain that you will cover the latter case as
well.

Rationale

If the object-oriented paradigm is applied well, state should be encapsulated behind the interface of a class
(see [Mey97] and [Bec97] among others). Therefore, to understand how a class is related to other classes,
method invocations are more reliable than attribute declarations. Yet, because the amount of method in-
vocations is large you must choose which invocations to analyse. This pattern helps you in this choice by
suggesting two specific kinds of methods that are easy to identify and result in well-known class relation-
ships.

Known Uses

In [DG98] we report on a case study where we applied the template method variant.

Related Patterns

Checking method invocations of classes is quite tedious, thus it is best to start with a small amount of
classes. Therefore, consider to INSPECT THELARGEST (p. 135) or EXPLOIT THE CHANGES (p. 139) or
V ISUALIZE THE STRUCTURE(p. 142) to limit the amount of classes to inspect.

Resulting Context. By applying this pattern, you will know how a class is related to the other classes
in the system. If you STEP THROUGH THE EXECUTION (p. 146) you will get a better perception of the
run-time behaviour of these relationships.



146 Cluster: Focus on Hot Areas

STEP THROUGH THEEXECUTION

Intent

Obtain a detailed understanding of the run-time behaviour of a piece of code by stepping through its exe-
cution.

Example. You have a piece of code that implements a graph layout algorithm and you must
understand it in order to rewrite it. You will feed a graph into the program and use the debugger
to follow how the algorithm behaves.

Context

You are in a later stage of reverse engineering a software system. You have an overall understanding of the
system’s functionality and based on that understanding, you have selected part of the software system for
further inspection. You have a debugger at your disposal that allows you to inspect data structures and to
interactively follow the step by step execution of a piece of code. You know a set of representative input
data to feed into that piece of code to launch a normal operation sequence.

Problem

You want to obtain a detailed understanding of the run-time behaviour of a piece of code.

Solution

Feed representative input data in the piece of code to launch a normal operation sequence. Use the debugger
to follow the step by step execution and to inspect the internal state of the piece of code.

Hints.

• Test programs usually provide representative input data in their initialisation code.

• Usage scenarios, like the ones resulting from INTERVIEW DURING DEMO (p. 121), may give clues
on what is a normal operation sequence.

Forces Resolved

Limited Resources Once you know what you really want to understand, this pattern works well in a
limited resource context. However, stepping through the code can be highly inefficient whitout a
clear focus.

Tools and TechniquesThe success of this pattern relies on the ability to use a good interactive debugger.

Reliable Info By following the step by step execution of a program, you get a very reliable view of a
piece of code. However, beware that the input data is indeed representative for a normal operation
sequence.



147

Abstraction The abstraction level is quite low, unless you can tie the step by step execution to a typical
usage scenario.

Sceptic ColleaguesNeutral.

Rationale

In [Mey97], object-oriented programming is defined as “designing a system around the functionality it
offers rather then the data structures it operates upon”. Hence, understanding the run-time behaviour is
crucial to understand an object-oriented program. And the best way to get a view on the run-time behaviour
is to see the events as they actually occur in a real execution, a view which is provided by interactive
debugging tools.

Known Uses

In [RE93] you can find some interesting debugging techniques applicable in the context of Smalltalk. Many
of them will generalise to other programming environments as well.

Related Patterns

Stepping through program executions is quite tedious, thus it is best to focus on a small piece of code.
Consider to INSPECT THELARGEST (p. 135) or to EXPLOIT THE CHANGES (p. 139) or to VISUALIZE

THE STRUCTURE(p. 142) to obtain such a focus. Also, you need some typical usage scenarios which may
be provided by INTERVIEW DURING DEMO (p. 121).

Resulting Context. By applying this pattern, you will have a detailed understanding of the run-time
behaviour of a piece of code. This may be necessary to apply patterns in PREPAREREENGINEERING(p.
149).



148 Cluster: Focus on Hot Areas



Chapter 7

Cluster: Prepare Reengineering

The reverse engineering patterns in this cluster are only applicable when your reverse engineering activities
are part of a larger reengineering project. That is, your goal is not only understanding what’s inside the
source code of a software system, but also rewriting parts of it. Therefore, the patterns in this cluster will
take advantage of the fact that you will change the source code anyway.

Li
m

ite
d

R
es

ou
rc

es

To
ol

s
an

d
Te

ch
ni

qu
es

R
el

ia
bl

e
In

fo

A
bs

tr
ac

tio
n

S
ce

pt
ic

C
ol

le
ag

ue
s

WRITE THE TESTS -- - ++ ++ 0

REFACTOR TOUNDERSTAND -- - 0 + 0

BUILD A PROTOTYPE -- - + -- ++

FOCUS BY WRAPPING -- 0 0 0 0

Table 7.1: How each pattern of PREPAREREENGINEERINGresolves the forces. Very good:++, Good:+,
Neutral: 0, Rather Bad:- , Very bad:--



150 Cluster: Prepare Reengineering

WRITE THE TESTS

Author(s): Serge Demeyer, St́ephane Ducasse and Sander Tichelaar

Intent

Record your knowledge about how a component reacts to a given input in a number of black box tests, this
way preparing future changes to the system.

Example. You are asked to extend a parser for a command language so that it is able to parse
two additional commands. Before actually changing the of parser, you will write a number of
test programs that check whether the parser accepts all valid command sequences and rejects
some typical erronous ones.

Context

You are at the final stages of reverse engineering a software system, just before you will start to reengineer
a part of that system. You have sufficient knowledge about that part to predict its output for a given input.

Problem

Before starting to reengineer the system, you want to make sure that all what used to work keeps on
working.

Solution

Write a number of black box tests that record your knowledge about the input/output behaviour.



151

REFACTOR TOUNDERSTAND

Author(s): Serge Demeyer, St́ephane Ducasse and Sander Tichelaar

Intent

Obtain better readable —thus more understandable— and better organised —thus more extensible— code
via renaming and refactoring.

Example. You are asked to extend a parser for a command language so that it is able to
parse two additional commands. Before actually extending the parser, you will improve the
readability of the source code. Among others, you will rename key methods and classes to
reflect your understanding of a parser and you will split long and complex methods into smaller
ones. As an example of the former, you will rename the class StreamIntf into Scanner and
the method rdnxt into nextToken. An example of the latter would be to split the nextToken
method, so that it becomes a large case statement, where each branch immediately invokes
another method.)

Context

You are at the final stages of reverse engineering a software system, just before you will start to add new
functionality to that system. You have a good programming environment that allows you to rename things
easily and that operates on top of a version control system.

Problem

The shape of the code is such that it is difficult to read —hence to understand— and difficult to add the
new functionality.

Solution

Reorganise the code so that its structure reflects better what the system is supposed to do.



152 Cluster: Prepare Reengineering

BUILD A PROTOTYPE

Author(s): Serge Demeyer, St́ephane Ducasse and Sander Tichelaar

Intent

Extract the design of a critical but cryptic component via the construction of a prototype which later may
provide the basis for a replacement.

Example. You have a piece of code that implements a graph layout algorithm. You have an
idea on how the algorithm works, but the code is too cryptic to map your knowledge of the
algorithm onto the code. You will write a prototype that implements your understanding of the
algorithm and map pieces of your code onto the existing code.

Context

Problem

Solution



153

FOCUS BY WRAPPING

Author(s): Serge Demeyer, St́ephane Ducasse and Sander Tichelaar

Intent

Wrap the parts you consider unnecessary for the future reengineering in a black box component.

Example. You have to migrate a graph manipulation program from a Unix to Macintosh user-
interface platform. The original program is well designed and has separated out most of the
platform specific operations into a separate layer. You will clean up this layering by moving
all platform specific behaviour into a separate layer, this way wrapping the obsolete part into
a separate component.

Context

Problem

Solution



154 Cluster: Prepare Reengineering



Chapter 8

Cluster: misc



156 Cluster: misc

CONFERWITH COLLEAGUES

Intent

Share the information obtained during each reverse engineering activity to boost the collective understand-
ing about the software system.

Example. Your team has to reverse engineer a workflow system containing lots of complex
rules on how tasks get transferred. Each team member investigates a part of the system and
as such the knowledge about the workflow rules is distributed over the team. To increase
the overall understanding, you will devote 15 minutes of the weekly team meeting to discuss
reverse engineering results made during the last week.

Context

You are a member of a software development team and part of the job assigned to your team is the reverse
engineering of a software system. Different members of the team perform different reverse engineering
activities and consequently the knowledge about the system is scattered throughout the team.

Problem

How do you ensure that every team member contributes to the overall understanding of the software system.

Solution

Use whatever means at your disposal (meetings, e-mail, intra-nets, ...) to ensure that whenever any team
member finishes a reverse engineering step, the obtained information is shared with the rest of the team.

Hints.

• To avoid information overload, choose the communication channels in such a way that sharing the
information fits well with the culture within your team. For instance, do not organise a special
team meeting devoted to reverse engineering results; rather use an existing meeting as a vehicle for
applying this pattern.

Rationale

Reverse engineering is sometimes compared with solving a puzzle [Will96b]. If team members keep some
pieces of the puzzle for themselves it will never be possible to finish the puzzle. Consequently, it is
imperative that a reverse engineering team is organised in such a way that information may be shared
among the various team members.



Chapter 9

Pattern Overview

The followin tables summarize the patterns for reference purposes.

The first series of tables lists the patterns together with their problem and their solution, this way aiding
reverse engineers to identify which patterns may be applicable to their problem.

The second series of tables show how all the patterns work together to tackle an overall reverse engineering
project. For each pattern, the tables list the context and prerequisites plus the pattern results and how these
results may serve as input for other patterns.



158 Pattern Overview

F
IR

S
T

C
O

N
T

A
C

T

P
at

te
rn

P
ro

bl
em

S
ol

ut
io

n

R
E

A
D

A
L

L
T

H
E

C
O

D
E

IN
O

N
E

H
O

U
R

(p
.1

15
)

Yo
u

ne
ed

an
in

iti
al

as
se

ss
m

en
to

ft
he

in
te

rn
al

st
at

e
a

so
ftw

ar
e

sy
st

em
to

pl
an

fu
rt

he
rr

ev
er

se
en

gi
ne

er
-

in
g

ef
fo

rt
s.

G
ra

nt
yo

ur
se

lf
a

re
as

on
ab

ly
sh

or
ta

m
ou

nt
of

st
ud

y
tim

e
to

w
al

k
th

ro
ug

h
th

e
so

ur
ce

co
de

.
A

fte
rw

ar
ds

pr
od

uc
e

a
re

po
rt

in
cl

ud
in

g
a

lis
to

f(
i)

th
e

im
po

rt
an

te
nt

iti
es

;
(ii

)
th

e
co

di
ng

id
io

m
s

ap
pl

ie
d

;(
iii

)
th

e
su

sp
ic

io
us

co
di

ng
st

yl
es

di
sc

ov
er

ed

S
K

IM
T

H
E

D
O

C
U

M
E

N
T

A
T

IO
N

(p
.

11
8)

Yo
u

ne
ed

an
in

iti
al

id
ea

of
th

e
fu

nc
tio

na
lit

y
pr

o-
vi

de
d

by
th

e
so

ftw
ar

e
sy

st
em

in
or

de
r

to
pl

an
fu

r-
th

er
re

ve
rs

e
en

gi
ne

er
in

g
ef

fo
rt

s.

G
ra

nt
yo

ur
se

lf
a

re
as

on
ab

ly
sh

or
t

am
ou

nt
of

st
ud

y
tim

e
to

sc
an

th
ro

ug
h

th
e

do
cu

m
en

ta
tio

n.
A

fte
rw

ar
ds

pr
od

uc
e

a
re

po
rt

in
cl

ud
-

in
g

a
lis

t
of

(i)
th

e
im

po
rt

an
t

re
qu

ire
m

en
ts

;
(ii

)
th

e
im

po
rt

an
t

fe
at

ur
es

(ii
i);

th
e

im
po

rt
an

t
co

ns
tr

ai
nt

s;
(iv

)
re

fe
re

nc
es

to
re

le
-

va
nt

de
si

gn
in

fo
rm

at
io

n.

IN
T

E
R

V
IE

W
D

U
R

IN
G

D
E

M
O

(p
.

12
1)

Yo
u

ne
ed

an
id

ea
of

th
e

ty
pi

ca
l

us
ag

e
sc

en
ar

io
’s

pl
us

th
e

m
ai

n
fe

at
ur

es
of

a
so

ftw
ar

e
sy

st
em

in
or

-
de

r
to

pl
an

fu
rt

he
r

re
ve

rs
e

en
gi

ne
er

in
g

ef
fo

rt
s.

O
bs

er
ve

th
e

sy
st

em
in

op
er

at
io

n
by

se
ei

ng
a

de
m

o
an

d
in

te
r-

vi
ew

in
g

th
e

pe
rs

on
w

ho
is

de
m

on
st

ra
tin

g.
A

fte
rw

ar
ds

pr
od

uc
e

a
re

po
rt

in
cl

ud
in

g
a

lis
to

f(
i)

so
m

e
ty

pi
ca

lu
sa

ge
sc

en
ar

io
s

or
us

e
ca

se
s;

(ii
)

th
e

m
ai

n
fe

at
ur

es
of

fe
re

d
by

th
e

sy
st

em
an

d
w

he
th

er
th

ey
ar

e
ap

pr
ec

ia
te

d
or

no
t;

(ii
i)

th
e

sy
st

em
co

m
po

ne
nt

s
an

d
th

ei
r

re
sp

on
si

bi
lit

ie
s;

(iv
)

bi
za

rr
e

an
ec

do
te

s
th

at
re

ve
al

th
e

fo
lk

lo
re

ar
ou

nd
us

in
g

th
e

sy
st

em
.

E
X

T
R

A
C

T
A

R
C

H
IT

E
C

T
U

R
E

P
at

te
rn

P
ro

bl
em

S
ol

ut
io

n

G
U

E
S

S
O

B
J

E
C

T
S
(p

.1
27

)
Yo

u
m

us
tg

ai
n

an
ov

er
al

lu
nd

er
st

an
di

ng
of

th
e

in
-

te
rn

al
st

ru
ct

ur
e

of
a

so
ftw

ar
e

sy
st

em
an

d
re

po
rt

th
is

kn
ow

le
dg

e
to

yo
ur

co
lle

gu
es

so
th

at
th

ey
w

ill
us

e
it

as
a

ki
nd

of
ro

ad
m

ap
fo

r
la

te
r

ac
tiv

iti
es

.

B
as

ed
on

yo
ur

ex
pe

rie
nc

e,
an

d
th

e
lit

tle
yo

u
al

re
ad

y
un

de
rs

ta
nd

fr
om

th
e

sy
st

em
,

de
vi

se
a

m
od

el
th

at
se

rv
es

as
yo

ur
in

iti
al

hy
-

po
th

es
es

of
w

ha
t

to
ex

pe
ct

in
th

e
so

ur
ce

co
de

.
C

he
ck

th
es

e
hy

-
po

th
es

es
ag

ai
ns

t
th

e
so

ur
ce

co
de

,
re

fin
e

th
e

in
iti

al
m

od
el

an
d

re
ch

ec
k

th
e

hy
po

th
es

es
.

A
fte

rw
ar

ds
,

pr
od

uc
e

a
bo

xe
s-

an
d

ar
-

ro
w

s
di

ag
ra

m
de

sc
rib

in
g

yo
ur

fin
di

ng
s.

C
H

E
C

K
T

H
E

D
A

T
A

B
A

S
E

(p
.1

30
)

Yo
u

w
an

tt
o

de
riv

e
a

da
ta

m
od

el
fo

r
th

e
pe

rs
is

te
nt

da
ta

in
a

so
ftw

ar
e

sy
st

em
in

or
de

r
to

gu
id

e
fu

rt
he

r
re

ve
rs

e
en

gi
ne

er
in

g
ef

fo
rt

s.

C
he

ck
th

e
da

ta
ba

se
sc

he
m

a
to

re
co

ns
tr

uc
t

at
le

as
t

th
e

pe
rs

is
te

nt
pa

rt
of

th
e

da
ta

m
od

el
.

U
se

yo
ur

kn
ow

le
dg

e
of

ho
w

co
ns

tr
uc

ts
in

th
e

im
pl

em
en

ta
tio

n
la

ng
ua

ge
ar

e
m

ap
pe

d
on

to
da

ta
ba

se
co

n-
st

ru
ct

s
to

re
ve

rs
e

en
gi

ne
er

th
e

re
al

da
ta

m
od

el
.

U
se

th
e

sa
m

pl
es

of
da

ta
in

si
de

th
e

da
ta

ba
se

to
re

fin
e

th
e

da
ta

-m
od

el
.



159

F
O

C
U

S
O

N
H

O
T

A
R

E
A

S

P
at

te
rn

P
ro

bl
em

S
ol

ut
io

n

IN
S

P
E

C
T

T
H

E
L

A
R

G
E

S
T

(p
.1

35
)

Yo
u

m
us

ti
de

nt
ify

th
os

e
pl

ac
es

in
th

e
so

ur
ce

co
de

th
at

co
rr

es
po

nd
w

ith
im

po
rt

an
t

ch
un

ks
of

fu
nc

-
tio

na
lit

y.

U
se

a
m

et
ric

s
to

ol
to

co
lle

ct
a

lim
ite

d
se

t
of

m
ea

su
re

m
en

ts
fo

r
al

lt
he

co
ns

tr
uc

ts
in

th
e

sy
st

em
.

S
or

tt
he

re
su

lti
ng

lis
ta

cc
or

di
ng

to
th

es
e

m
ea

su
re

m
en

ts
.

B
ro

w
se

th
e

so
ur

ce
co

de
fo

r
th

e
la

rg
es

t
am

on
g

th
os

e
co

ns
tr

uc
ts

in
or

de
r

to
un

de
rs

ta
nd

ho
w

th
es

e
co

n-
st

ru
ct

s
w

or
k

to
ge

th
er

w
ith

ot
he

r
re

la
te

d
co

ns
tr

uc
ts

.
P

ro
du

ce
a

lis
t

of
al

l
th

e
co

ns
tr

uc
ts

th
at

ap
pe

ar
im

po
rt

an
t,

in
cl

ud
in

g
a

de
-

sc
rip

tio
n

of
ho

w
th

ey
sh

ou
ld

be
us

ed
(i.

e.
ex

te
rn

al
in

te
rf

ac
e)

.

E
X

P
L

O
IT

T
H

E
C

H
A

N
G

E
S

(p
.1

39
)

Yo
u

m
us

t
id

en
tif

y
th

os
e

pa
rt

s
in

th
e

de
si

gn
th

at
pl

ay
ed

a
ke

y
ro

le
du

rin
g

th
e

sy
st

em
’s

ev
ol

ut
io

n.
U

se
w

ha
te

ve
r

m
ea

ns
at

yo
ur

di
sp

os
al

to
co

m
pi

le
a

lis
t

of
ta

r-
ge

ts
of

im
po

rt
an

t/f
re

qu
en

tc
ha

ng
es

.
F

or
ea

ch
ta

rg
et

,p
ut

yo
ur

se
lf

in
th

e
ro

le
of

th
e

or
ig

in
al

de
ve

lo
pe

r
an

d
as

k
yo

ur
se

lf
w

ha
t

th
e

ch
an

ge
is

ab
ou

ta
nd

w
hy

it
w

as
ne

ce
ss

ar
y.

W
ith

th
is

in
si

gh
t,

pr
o-

du
ce

a
lis

to
fc

ru
ci

al
sy

st
em

pa
rt

s,
in

cl
ud

in
g

a
de

sc
rip

tio
n

of
th

e
de

si
gn

is
su

es
th

at
m

ak
es

th
em

im
po

rt
an

t.

V
IS

U
A

L
IZ

E
T

H
E

S
T

R
U

C
T

U
R

E
(p

.
14

2)
Yo

u
w

an
tt

o
ob

ta
in

in
si

gh
ti

n
th

e
st

ru
ct

ur
e

of
a

se
-

le
ct

ed
pa

rt
of

a
so

ftw
ar

e
sy

st
em

,i
nc

lu
di

ng
kn

ow
l-

ed
ge

ab
ou

tp
ot

en
tia

ld
es

ig
n

an
om

al
ie

s.

In
st

ru
ct

th
e

pr
og

ra
m

vi
su

al
is

at
io

n
to

ol
to

sh
ow

yo
u

a
se

rie
s

of
gr

ap
hi

ca
l

la
yo

ut
s

of
th

e
pr

og
ra

m
st

ru
ct

ur
e.

B
as

ed
on

th
es

e
gr

ap
hi

ca
ll

ay
ou

ts
,f

or
m

ul
at

e
yo

ur
se

lf
so

m
e

as
su

m
pt

io
ns

an
d

us
e

th
e

co
de

br
ow

se
rt

o
ch

ec
k

w
he

th
er

yo
ur

as
su

m
pt

io
ns

ar
e

co
rr

ec
t.

A
fte

rw
ar

ds
,p

ro
du

ce
a

lis
to

fc
or

re
ct

as
su

m
pt

io
ns

,c
la

ss
ify

in
g

th
e

ite
m

s
in

on
e

of
tw

o
ca

te
go

rie
s:

(i)
he

lp
s

pr
og

ra
m

un
de

rs
ta

nd
in

g,
or

(ii
)

po
te

nt
ia

ld
es

ig
n

an
om

al
y.

C
H

E
C

K
M

E
T

H
O

D
IN

V
O

C
A

T
IO

N
S

(p
.1

44
)

Yo
u

w
an

t
to

fin
d

ou
t

ho
w

a
cl

as
s

is
re

la
te

d
to

th
e

ot
he

r
cl

as
se

s
in

th
e

sy
st

em
.

S
el

ec
tk

ey
m

et
ho

ds
in

th
e

in
te

rf
ac

e
of

th
e

cl
as

s
an

d
in

sp
ec

tw
ho

is
in

vo
ki

ng
th

es
e

m
et

ho
ds

.
Tw

o
ex

am
pl

es
of

ke
y

m
et

ho
ds

th
at

ar
e

ea
sy

to
re

co
gn

is
e

ar
e

co
ns

tr
uc

to
rs

an
d

ov
er

rid
de

n
m

et
ho

ds
.

S
T

E
P

T
H

R
O

U
G

H
T

H
E

E
X

E
C

U
T

IO
N

(p
.1

46
)

Yo
u

w
an

tt
o

ob
ta

in
a

de
ta

ile
d

un
de

rs
ta

nd
in

g
of

th
e

ru
n-

tim
e

be
ha

vi
ou

r
of

a
pi

ec
e

of
co

de
.

F
ee

d
re

pr
es

en
ta

tiv
e

in
pu

t
da

ta
in

th
e

pi
ec

e
of

co
de

to
la

un
ch

a
no

rm
al

op
er

at
io

n
se

qu
en

ce
.

U
se

th
e

de
bu

gg
er

to
fo

llo
w

th
e

st
ep

by
st

ep
ex

ec
ut

io
n

an
d

to
in

sp
ec

tt
he

in
te

rn
al

st
at

e
of

th
e

pi
ec

e
of

co
de

.



160 Pattern Overview

F
IR

S
T

C
O

N
T

A
C

T

C
on

te
xt

:
Yo

u
ar

e
st

ar
tin

g
a

re
ve

rs
e

en
gi

ne
er

in
g

pr
oj

ec
to

fa
la

rg
e

an
d

un
fa

m
ili

ar
so

ftw
ar

e
sy

st
em

.

P
a

tt
e

rn
P

re
re

q
u

is
ite

s
R

e
su

lt
W

h
a

tn
ex

t?

R
E

A
D

A
L

L
T

H
E

C
O

D
E

IN

O
N

E
H

O
U

R
(p

.1
15

)
•

so
ur

ce
co

de

•
ex

pe
rt

is
e

w
ith

th
e

im
pl

em
en

ta
tio

n
la

ng
ua

ge

•
th

e
im

po
rt

an
t

en
tit

ie
s

(i.
e.

,
cl

as
se

s,
pa

ck
-

ag
es

,.
..)

•
th

e
co

di
ng

id
io

m
s

ap
pl

ie
d

•
th

e
su

sp
ic

io
us

co
di

ng
st

yl
es

di
sc

ov
er

ed

•
S

K
IM

T
H

E
D

O
C

U
M

E
N

T
A

T
IO

N
(p

.
11

8)
an

d
IN

T
E

R
V

IE
W

D
U

R
IN

G
D

E
M

O
(p

.1
21

)
to

ge
ta

lte
rn

at
iv

e
vi

ew
s

•
C

O
N

F
E

R
W

IT
H

C
O

L
L

E
A

G
U

E
S

(p
.

15
6)

to
re

po
rt

fin
di

ng
s

•
G

U
E

S
S

O
B

J
E

C
T

S
(p

.
12

7)
an

d
CH

E
C

K

T
H

E
D

A
T

A
B

A
S

E
(p

.1
30

)
to

re
fin

e
th

e
lis

t
of

im
po

rt
an

te
nt

iti
es

S
K

IM
T

H
E

D
O

C
U

M
E

N
T

A
-

T
IO

N
(p

.1
18

)
•

do
cu

m
en

ta
tio

n

•
yo

u
ar

e
ab

le
to

in
te

rp
re

t
th

e
di

-
ag

ra
m

s
an

d
fo

rm
al

sp
ec

ifi
ca

tio
ns

co
nt

ai
ne

d
w

ith
in

•
im

po
rt

an
tr

eq
ui

re
m

en
ts

•
im

po
rt

an
tf

ea
tu

re
s

•
im

po
rt

an
tc

on
st

ra
in

ts

•
re

fe
re

nc
es

to
re

le
va

nt
de

si
gn

in
fo

rm
at

io
n.

+
an

as
se

ss
m

en
t

of
th

e
re

lia
bi

lit
y

an
d

us
e-

fu
ln

es
s

fo
r

ea
ch

of
th

e
ab

ov
e.

•
R

E
A

D
A

L
L

T
H

E
C

O
D

E
IN

O
N

E
H

O
U

R

(p
.1

15
)a

nd
IN

T
E

R
V

IE
W

D
U

R
IN

G
D

E
M

O

(p
.1

21
)

to
ge

ta
lte

rn
at

iv
e

vi
ew

s

•
C

O
N

F
E

R
W

IT
H

C
O

L
L

E
A

G
U

E
S

(p
.

15
6)

to
re

po
rt

fin
di

ng
s

•
G

U
E

S
S

O
B

J
E

C
T

S
(p

.
12

7)
an

d
CH

E
C

K

T
H

E
D

A
T

A
B

A
S

E
(p

.
13

0)
to

m
ap

th
e

in
-

fo
rm

at
io

n
on

an
ov

er
al

ls
ys

te
m

bl
ue

pr
in

t.

IN
T

E
R

V
IE

W
D

U
R

IN
G

D
E

M
O

(p
.1

21
)

•
ru

nn
in

g
sy

st
em

•
so

m
eb

od
y

w
ho

ca
n

de
m

on
st

ra
te

ho
w

to
us

e
th

e
sy

st
em

•
ty

pi
ca

lu
sa

ge
sc

en
ar

io
s

or
us

e
ca

se
s

•
th

e
m

ai
n

fe
at

ur
es

of
fe

re
d

by
th

e
sy

st
em

an
d

w
he

th
er

th
ey

ar
e

ap
pr

ec
ia

te
d

or
no

t

•
th

e
sy

st
em

co
m

po
ne

nt
s

an
d

th
ei

r
re

sp
on

-
si

bi
lit

ie
s

•
bi

za
rr

e
an

ec
do

te
s

th
at

re
ve

al
th

e
fo

lk
lo

re
ar

ou
nd

us
in

g
th

e
sy

st
em

•
R

E
A

D
A

L
L

T
H

E
C

O
D

E
IN

O
N

E
H

O
U

R

(p
.

11
5)

an
d

SK
IM

T
H

E
D

O
C

U
M

E
N

T
A
-

T
IO

N
(p

.1
18

)
to

ge
ta

lte
rn

at
iv

e
vi

ew
s

•
C

O
N

F
E

R
W

IT
H

C
O

L
L

E
A

G
U

E
S

(p
.

15
6)

to
re

po
rt

fin
di

ng
s

•
G

U
E

S
S

O
B

J
E

C
T

S
(p

.
12

7)
an

d
CH

E
C

K

T
H

E
D

A
T

A
B

A
S

E
(p

.
13

0)
to

m
ap

th
e

in
-

fo
rm

at
io

n
on

an
ov

er
al

ls
ys

te
m

bl
ue

pr
in

t.



161

E
X

T
R

A
C

T
A

R
C

H
IT

E
C

T
U

R
E

C
on

te
xt

:
Yo

u
ar

e
in

th
e

ea
rly

st
ag

es
of

re
ve

rs
e

en
gi

ne
er

in
g

a
so

ftw
ar

e
sy

st
em

.
Yo

u
ha

ve
an

in
iti

al
un

de
rs

ta
nd

in
g

of
its

fu
nc

tio
na

lit
y

an
d

yo
u

ar
e

so
m

ew
ha

t
fa

m
ili

ar
w

ith
th

e
m

ai
n

st
ru

ct
ur

e
of

its
so

ur
ce

co
de

.
(T

hi
s

in
iti

al
un

de
rs

ta
nd

in
g

m
ig

ht
ha

ve
be

en
ob

ta
in

ed
by

th
e

pa
tte

rn
s

in
F

IR
S

T
C

O
N

T
A

C
T

(p
. 1

13
))

.

P
a

tt
e

rn
P

re
re

q
u

is
ite

s
R

e
su

lt
W

h
a

tn
ex

t?

G
U

E
S

S
O

B
J

E
C

T
S
(p

.1
27

)
(v

ar
ia

nt
s:

gu
es

s
pa

tte
rn

s,
gu

es
s

ob
je

ct
re

sp
on

sa
bi

l-
iti

es
,

gu
es

s
ob

je
ct

ro
le

s,
gu

es
s

pr
oc

es
s

ar
ch

ite
ct

ur
e)

•
kn

ow
le

dg
e

of
im

po
rt

an
ta

sp
ec

ts
of

a
so

ftw
ar

e
sy

st
em

•
on

-li
ne

ac
ce

ss
to

th
e

so
ur

ce
co

de
pl

us
th

e
ne

ce
ss

ar
y

to
ol

s
to

m
an

ip
-

ul
at

e
it

•
re

as
on

ab
le

ex
pe

rt
is

e
w

ith
th

e
im

-
pl

em
en

ta
tio

n
la

ng
ua

ge
be

in
g

us
ed•

a
se

rie
s

of
bl

ue
pr

in
ts

,e
ac

h
on

e
co

nt
ai

ni
ng

a
pe

rs
pe

ct
iv

e
on

th
e

w
ho

le
sy

st
em

•
C

H
E

C
K

T
H

E
D

A
T

A
B

A
S

E
(p

.
13

0)
if

yo
u

ar
e

in
te

re
st

ed
in

th
e

da
ta

m
od

el

•
al

lp
at

te
rn

s
in

FO
C

U
S

O
N

H
O

T
A

R
E

A
S

(p
.

13
3)

if
yo

u
w

an
tt

o
re

fin
e

th
e

bl
ue

pr
in

ts

C
H

E
C

K
T

H
E

D
A

T
A

B
A

S
E

(p
.

13
0)

•
so

ftw
ar

e
sy

st
em

em
pl

oy
s

so
m

e
fo

rm
of

a
da

ta
ba

se

•
yo

u
ha

ve
ac

ce
ss

to
th

e
da

ta
ba

se
,

in
cl

ud
in

g
th

e
pr

op
er

to
ol

s
to

in
-

sp
ec

t
its

sc
he

m
a

an
d

sa
m

pl
es

of
th

e
da

ta

•
kn

ow
le

dg
e

of
ho

w
da

ta
-s

tr
uc

tu
re

s
fr

om
yo

ur
im

pl
em

en
ta

tio
n

la
n-

gu
ag

e
ar

e
m

ap
pe

d
on

to
th

e
da

ta
-s

tr
uc

tu
re

s
of

th
e

un
de

rly
in

g
da

ta
ba

se

•
a

da
ta

m
od

el
of

th
e

pe
rs

is
te

nt
pa

rt
of

yo
ur

sy
st

em
•

G
U

E
S

S
O

B
J

E
C

T
S

(p
.

12
7)

if
yo

u
ne

ed
to

ob
ta

in
ot

he
r

ov
er

al
lb

lu
eb

rin
ts

of
th

e
sy

s-
te

m

•
al

lp
at

te
rn

s
in

FO
C

U
S

O
N

H
O

T
A

R
E

A
S

(p
.

13
3)

if
yo

u
w

an
tt

o
re

fin
e

th
e

da
ta

m
od

el



162 Pattern Overview

F
O

C
U

S
O

N
H

O
T

A
R

E
A

S

C
on

te
xt

:
Yo

u
ar

e
in

a
la

te
r

st
ag

e
of

re
ve

rs
e

en
gi

ne
er

in
g

a
so

ftw
ar

e
sy

st
em

.
Yo

u
ha

ve
an

ov
er

al
lu

nd
er

st
an

di
ng

of
its

fu
nc

tio
na

lit
y

an
d

yo
u

ar
e

fa
irl

y
fa

m
ili

ar
w

ith
th

e
m

ai
n

st
ru

ct
ur

e
of

its
so

ur
ce

co
de

.

P
a

tt
e

rn
P

re
re

q
u

is
ite

s
R

e
su

lt
W

h
a

tn
ex

t?

IN
S

P
E

C
T

T
H

E
L

A
R

G
E

S
T

(p
.

13
5)

•
a

co
de

br
ow

se
r

•
T

he
m

et
ric

s
to

ol
is

co
nfi

gu
re

d
w

ith
a

nu
m

be
r

of
si

ze
m

et
ric

s

•
a

lis
t

of
co

ns
tr

uc
ts

re
pr

es
en

t-
in

g
im

po
rt

an
tf

un
ct

io
na

lit
y

•
V

IS
U

A
L

IZ
E

T
H

E
S

T
R

U
C

T
U

R
E

(p
.

14
2)

to
ob

ta
in

ot
he

r
pe

rs
pe

ct
iv

es
on

th
os

e
co

ns
tr

uc
ts

.

•
S

T
E

P
T

H
R

O
U

G
H

T
H

E
E

X
E

C
U

T
IO

N
(p

.
14

6)
to

ge
t

a
be

tte
r

pe
rc

ep
tio

n
of

th
e

ru
n-

tim
e

be
ha

vi
ou

r.

•
(in

th
e

ca
se

of
ob

je
ct

-o
rie

nt
ed

so
ur

ce
co

de
)

C
H

E
C

K

M
E

T
H

O
D

IN
V

O
C

A
T

IO
N

S
(p

.
14

4)
to

fin
d

ou
t

ho
w

cl
as

se
s

ar
e

re
la

te
d

to
ea

ch
ot

he
r

•
re

fa
ct

or
in

g
if

yo
u

w
an

tt
o

sp
lit

so
m

e
of

th
es

e
la

rg
er

co
n-

tr
uc

ts
in

to
sm

al
le

r
on

es

E
X

P
L

O
IT

T
H

E
C

H
A

N
G

E
S

(p
.1

39
)

(v
ar

ia
nt

s:
co

nfi
gu

ra
tio

n
da

ta
ba

se
,c

ha
ng

e
m

et
ric

s)

•
se

ve
ra

l
re

le
as

es
of

th
e

so
ur

ce
co

de

•
a

co
nfi

gu
ra

tio
n

m
an

ag
em

en
t

sy
st

em
an

d/
or

a
m

et
ric

s
to

ol

•
a

lis
t

of
de

si
gn

pa
rt

s
th

at
pl

ay
ed

a
ke

y
ro

le
du

rin
g

th
e

sy
st

em
’s

ev
ol

ut
io

n

•
V

IS
U

A
L

IZ
E

T
H

E
S

T
R

U
C

T
U

R
E

(p
.

14
2)

to
ob

ta
in

ot
he

r
pe

rs
pe

ct
iv

es
on

th
os

e
co

ns
tr

uc
ts

.

•
S

T
E

P
T

H
R

O
U

G
H

T
H

E
E

X
E

C
U

T
IO

N
(p

.
14

6)
to

ge
t

a
be

tte
r

pe
rc

ep
tio

n
of

th
e

ru
n-

tim
e

be
ha

vi
ou

r.

•
(in

th
e

ca
se

of
ob

je
ct

-o
rie

nt
ed

so
ur

ce
co

de
)

C
H

E
C

K

M
E

T
H

O
D

IN
V

O
C

A
T

IO
N

S
(p

.
14

4)
to

fin
d

ou
t

ho
w

cl
as

se
s

ar
e

re
la

te
d

to
ea

ch
ot

he
r

V
IS

U
A

L
IZ

E
T

H
E

S
T

R
U

C
-

T
U

R
E

(p
.1

42
)

•
a

pa
rt

of
th

e
so

ftw
ar

e
sy

st
em

•
a

pr
og

ra
m

vi
su

al
is

at
io

n
to

ol

•
a

co
de

br
ow

se
r

•
in

si
gh

ti
n

th
e

se
le

ct
ed

pa
rt

•
lis

to
fp

ot
en

tia
ld

es
ig

n
an

om
a-

lie
s

•
S

T
E

P
T

H
R

O
U

G
H

T
H

E
E

X
E

C
U

T
IO

N
(p

.
14

6)
to

ge
t

a
be

tte
r

pe
rc

ep
tio

n
of

th
e

ru
n-

tim
e

be
ha

vi
ou

r.

•
(in

th
e

ca
se

of
ob

je
ct

-o
rie

nt
ed

so
ur

ce
co

de
)

C
H

E
C

K

M
E

T
H

O
D

IN
V

O
C

A
T

IO
N

S
(p

.
14

4)
to

fin
d

ou
t

ho
w

cl
as

se
s

ar
e

re
la

te
d

to
ea

ch
ot

he
r

•
re

fa
ct

or
in

g
if

yo
u

w
an

tt
o

sp
lit

so
m

e
of

th
es

e
la

rg
er

co
n-

tr
uc

ts
in

to
sm

al
le

r
on

es



163

C
H

E
C

K
M

E
T

H
O

D
IN

V
O

C
A

-
T

IO
N

S
(p

.1
44

)
(v

ar
ia

nt
s:

co
nt

ru
ct

or
m

et
h-

od
s,

ov
er

rid
de

n
m

et
ho

ds
)

•
a

pa
rt

of
th

e
so

ftw
ar

e
sy

st
em

•
a

pr
og

ra
m

vi
su

al
is

at
io

n
to

ol

•
a

co
de

br
ow

se
rt

ha
ta

llo
w

s
yo

u
to

ju
m

p
fr

om
a

m
et

ho
d

in
vo

-
ca

tio
n

to
th

e
pl

ac
es

w
he

re
th

e
co

rr
es

po
nd

in
g

m
et

ho
d

is
de

-
fin

ed

•
a

lis
t

of
cl

as
se

s
an

d
th

e
re

la
-

tio
ns

hi
ps

be
tw

ee
n

th
em

•
S

T
E

P
T

H
R

O
U

G
H

T
H

E
E

X
E

C
U

T
IO

N
(p

.
14

6)
to

ge
t

a
be

tte
r

pe
rc

ep
tio

n
of

th
e

ru
n-

tim
e

be
ha

vi
ou

r.

S
T

E
P

T
H

R
O

U
G

H
T

H
E

E
X

E
-

C
U

T
IO

N
(p

.1
46

)
•

a
pa

rt
of

th
e

so
ftw

ar
e

sy
st

em

•
an

in
te

ra
ct

iv
e

de
bu

gg
er

•
a

se
t

of
re

pr
es

en
ta

tiv
e

in
pu

t
da

ta

•
in

si
gh

t
in

to
th

e
ru

n-
tim

e
be

-
ha

vi
ou

r
of

a
pi

ec
e

of
co

de
•

P
R

E
P

A
R

E
R

E
E

N
G

IN
E

E
R

IN
G

(p
.

14
9)

if
yo

u
ne

ed
to

re
en

gi
ne

er
th

at
pi

ec
e

of
co

de



164 Pattern Overview

——————————————————————



Part III

Reengineering





Chapter 10

Reengineering Patterns

A reengineering patterndescribes how to go from an existinglegacysolution to arefactoredsolution
that better suits the current requirements. In this chapter we explain why we choose the pattern form to
communicate reengineering expertise and present the reengineering pattern form. We stress the differences
between the Design Patterns and the Reengineering Patterns, and also between the Reengineering Patterns
and the AntiPatterns. After that we present the differences between the reengineering patterns themselves.
It should be noted that the reengineering patterns are not linked together in a pattern language due to a lack
of time.

10.1 Reengineering Patterns: a Need

Reengineering projects, despite their diversity, often encounter some typical problems again and again.
These can be problems at different levels and due to different practices [FY97]. But it is unlikely that one
methodology or process will be appropriate for all projects and organisations [SP98], just as not one tool
or technique can be expected to solve all the technical problems encountered in a reengineering project.
To allow reengineering projects to benefit from the experience gained in previous efforts, an appropriate
form is required for transferring expertise. This form should be small enough to be easily consulted and
navigated, and stable enough as to be useful for many reengineering projects.

In the object-oriented software engineering communityDesign Patterns[GHJV95] have been adopted as
an effective way of communicating expertise about software design. A design pattern describes a solution
for a recurring design problem in a form which facilitates the reuse of a proven design solution. In addition
to the technical description of the solution, an important element of a design pattern is its discussion of the
advantages and disadvantages of applying the pattern.

We propose the use of the pattern form as a means of communicating expertise in the area of reengineering.
Reengineering patternscodify and record knowledge about modifying legacy software: they help to diag-
nose problems and identify weaknesses hindering further development of the system as well as aiding the
search for solutions that better satisfy the new requirements. We see reengineering patterns as stable units
of expertise which can be consulted in any reengineering effort: they describe a process without proposing
a complete methodology, and they suggest appropriate tools without ’selling’ a specific one. A more thor-
ough discussion of the advantages of the pattern form as a vehicle for reengineering expertise can be found
in [SP98], which discusses patterns closely related to ours.

All the reengineering patterns presented hereafter address problematic legacy solutions typically found in
object-oriented code, and describe how to move from thelegacysolution to a newrefactoredsolution. The
patterns presented are all of a technical nature, dealing directly with source code problems. There exist
however higher-level reengineering patterns which describe overall strategies for dealing with legacy sys-
tems. See for instance theSystems Reengineering Patterns[SP98] which address broader methodological



168 Reengineering Patterns

issues. The ’Deprecation’ pattern [SP98], for example, describes how to iteratively change interfaces of a
system in a friendly way for the client of the system under change.

10.2 Reengineering Patterns and Related Work

The reengineering patterns presented here and theSystems Reengineering Patternsof [SP98] are closely.
The principle differences is that here the patterns are source-level rather high-level and they are focused
on bject-oriented legacy systems1. Note that our patterns cannot be used to evaluate whether or not an
application should be reengineered in the first place; this difficult task has been tackled by [STS97] and
[RSW98]. In [BS95] a methodology is proposed to help in the migration of legacy systems (principally
legacy database systems) to new platforms.

Reengineering patterns differ fromDesign Patterns[GHJV95] in their emphasis on theprocessof moving
from an existinglegacysolution that is no longer appropriate to a newrefactoredsolution. The mark
of a good reengineering pattern is (a) the clarity with which it exposes the advantages, the cost and the
consequences of the target solution with respect to the existing solution, and not how elegant the target
solution is, and (b) the description of the change process: how to get from the legacy version of the system
to the refactored version.

We also contrast reengineering patterns withAntiPatterns[BMMM98]. Antipatterns, as exposed by Brown
et al., are presented as “bad” solutions to design and management issues in software projects. Many of the
problems discussed are managerial concerns that are outside the direct control of developers. Moreover,
the emphasis in antipatterns is on prevention: how to avoid making the mistakes which lead to the “bad”
solution. Consequently, antipatterns may be of interest when starting a project or during development but
are no longer helpful when we are confronted with a legacy system. In reengineering, though, we prefer
to withhold the judgement inherent in the notion of “bad solution” and use the term “legacy solution” or
“legacy pattern” for a solution which at the time, and under the constraints given, seemed appropriate. In
reengineering it is too late for prevention, and reengineering patterns therefore concentrate on the cure:
how to detect problems and move to more appropriate solutions.

Finally, our reengineering patterns are different from coderefactorings[JO93, JO93]. A reengineering
pattern describes a process which starts with the detection of the symptoms and ends with the refactoring
of the code to arrive at the new solution. A refactoring is only the last stage of this process, and addresses
only the technical issue of automatically or semi-automatically modifying the code to implement the new
solution. Reengineering patterns also include other elements which are not part of refactorings: they
emphasise the context of the symptoms by taking into account the constraints being faced and include a
discussion of the impact of the changes introduced by the refactored solution.

A reengineering pattern may describe a solution that would not be ideal if one is designing a system from
scratch, but is a good solution under the current constraints of the legacy system. For example, if the
constraint is that changes must be kept local some solutions are clearly not applicable even if they seem at
first hand to be the best solutions.

10.3 Form of a reengineering pattern

The primary goal of a reengineering pattern is to help developers in solving reengineering problems. The
idea being that a developer must diagnose a problem, identify the available options and choose a particular
course of action. Furthermore, the relevant weaknesses must be identified, where relevant is defined in
terms of the desired flexibility or some other quality, and the system transformed so that it possesses the
desired quality.

1We do not address problems of reengineering procedural applications to object-oriented ones.



10.3 Form of a reengineering pattern 169

The pattern form has been defined principally forreengineeringpatterns: that is, patterns which describe
a transformation of a existing design to a more appropriate, target design. In general the pattern form has
been defined with the following requirements in mind, although some patterns may - due to specific needs
- add or omit sections described in the presented pattern format:

Focus on Reengineering Process.A reengineering pattern is different from a design pattern. It should
go beyond discussing good and bad designs. A reengineering pattern should also discuss the reengineering
process! For example if we know a design to contain problems according to present requirements, then
how can these problems be discovered; or, what are the pitfalls in transforming a system? Both are issues
that have to do with the reengineering process itself. A typical reengineering pattern will describe a process
that transforms a system with a design that is no longer adequate into a system with an improved design.
The reengineering pattern should clearly identify these two states of the system and their relationship.

Easy Navigation. The idea is that a handbook user (i.e. reengineer) should be able to determine if a
pattern is applicable within thefirst page of description.

Separate out Tool and Language Dependent Issues.To make the patterns as generally applicable as
possible, tool and language dependent issues should be separated out as much as possible. The main part
of the patterns describes stable reengineering knowledge, whereas tools are more subject to evolution and
in some cases language dependent issues can be interesting but not of influence on the core idea of the
pattern.

Standard Terminology and Notation. A language neutral terminology and notation is mandatory if the
patterns are to be kept as language independent as is reasonably possible. The rule for terminology is: as
far as it is defined the UML terminology [SMHP+97] is used for object oriented concepts and if a term is
not defined by UML then the terminology of the FAMOOS Information Exchange model (see section??)
is used. All other terms are to be defined in a glossary that is part of this handbook. For the homogeneity
of the patterns, a strong requirement is that all the drawings should be done using UML notations.

The specific aspects of reengineering patterns lead us to the definition of an adapted form for the reengi-
neering patterns. This form is structured as follows:

Pattern Name. The name is based on the reengineering operation that is performed as this is the most
natural way of discussing the pattern in the context of reengineering. It must form the basis for a
terminology for reengineers to talk about reengineering a system. As a temporary solution, patterns
which miss a good word will be named by a short sentence with a verb that emphasises the kind of
reengineering transformation.

Intent. A description of the process, together with the result and why it is desirable.

Applicability. When is the pattern applicable? When is it not applicable? This section includes a list of
symptoms, a list of reengineering goals and a list of related patterns. Symptoms are those experi-
enced when reusing, maintaining or changing the system. For example, correlations between editing
different parts of a system for making a certain change can indicate the need for a particular kind
of reengineering. Reengineering goals present the qualities improved through the application of this
pattern.

Motivation. This section presents an example: it must acquaint the reader with a concrete example so they
can better understand the more abstract presentation of the problem which follows in the structure
and process sections. The example must clearly describe the structure of the legacy system, the
structure of the reengineered system, and the relation between the two. The state of the system
before and after the application of the pattern are described.



170 Reengineering Patterns

Structure. This section describes the structure of the system before and after reengineering. Each structure
section is similar to the structure section in the Gang of Four pattern book. The participants and their
collaborations are identified. Consequences discuss the advantages and disadvantages of the target
structure in comparison to the initial structure.

Process.The process section is subdivided into three sections: the detection, the recipe and the difficulties.
The detection section describes methods and tools to detect that the code is indeed suffering from the
suspected problem and that the process given below can help to alleviate this problem. The recipe
states how to perform the reengineering operation and the possible variants. The optional difficulties
subsection discusses situations where the reengineering operation is not feasible or is compromised
by other problems.

Discussion. In this section, forces of the legacy solution are discussed first. Indeed, often legacy solutions
fulfilled the requirements at the time they were implemented. When requirements change however,
the solution must evolve to accommodate the new requirements. The forces of the refactored so-
lution are stressed in terms of cost and benefit tradeoffs of applying the pattern. What is the cost
of detecting this problem? What is the magnitude of the problem? What is the benefit gained by
applying the pattern? This discussion should aid an engineer in deciding (once he knows the pat-
tern is applicable to the code) whether or not it is, in this specific case, worth applying the pattern.
Moreover, relationships with Design Patterns or AntiPatterns should be documented.

The sections above form the core of the pattern. The sections described below deal with more concrete
issues and are essential to the reengineering handbook, where engineers need information about language
specific issues and existing tool support and know applications.

Language Specific Issues.This section lists what must be specifically resolved for each language. What
makes it more difficult? More easy?

Tool Support. Lists and describes tools to support the detection of symptoms, detection of participants
and collaborations, and to aid in the transformation of the system.

Known Uses. Gives known cases where the pattern has been applied, successfully or not. In our context,
references are made to our industrial case studies.

10.4 Pattern Navigation

The patterns that we have collected for this handbook solve a quite random set of reengineering problems.
To provide the reader with some guidance , we present ways to select the patterns that might be of interest
in solving a specific problem of yours. The usefulness of the navigational support is inherently limited due
to the rather small set of available patterns, but it provides an overview of what is already covered by the
patterns.

We currently provide navigation based based on forces that typically play a role in reengineering (see
section10.4.1). For each type of navigation, a table is shown that gives a broad overview of which pattern
covers what. Following the table, the patterns are listed – according to the same structure as the table – with
a short explanation of their appearance in the table. This allows for a quick scan of the available patterns.

10.4.1 Forces

In this section we categorise the patterns according to how they affect the forces that are at work in a
reengineering project. In table10.1we show the reengineering patterns and their influence on the different
forces. The patterns are shown vertically and the forces horizontally. A ‘+’ means that the pattern increases



10.4 Pattern Navigation 171

the effect of, or has a high impact on, the particular force. A ‘-’ means that the pattern reduces the impact
of, or has a low impact on, the force. No sign means that the pattern either has no or an unpredictable
influence on the force. To give an example, the Code Duplication Detection pattern requires only minor
effort when applying it, scales up well and does not require much parsing.

Forces

F
le

xi
bi

lit
y

U
nd

er
st

an
da

bi
lit

y

R
eu

sa
bi

lit
y

E
ffo

rt

S
ca

la
bi

lit
y

P
ar

si
ng

ef
fo

rt

G
lo

ba
lI

m
pa

ct

Type Check Elimination in Clients + + + -

Type Check Elimination within a Provider Hierarchy + +

Detection of Duplicated Code - + -

Repairing a Broken Architecture + +

Transforming Inheritance into Composition + +

Distribute Responsibilities + + +

Table 10.1: How the individual patterns affect the forces of a reengineering effort.

Flexibility

TYPE CHECK ELIMINATION IN CLIENTS. By reducing the coupling between the clients and the
provider class hierarchy by refactoring the interface of the provider classes and the client code that
depends on these interfaces thus making the clients much more robust. This greatly facilitates ex-
tending the functionality of the provider hierarchy without breaking the client code.

TYPE CHECK ELIMINATION WITHIN A PROVIDER HIERARCHY. Transforms a single provider
class being used to implement what are conceptually a set of related types into a hierarchy of classes.
Decision structures, such as case statements or if-then-elses, over type information are replaced by
polymorphism. This results in increased modularity and facilitates the extension of functionality
through the addition of new subclasses.

REPAIRING A BROKEN ARCHITECTURE. Detects and removes dependencies between packages
of a system that aren’t allowed according to the designated system architecture. These architec-
ture breaking dependencies may prohibit the exploitation of the architecture’s advantages and cause
unexpected effects at maintenance work.

TRANSFORMING INHERITANCE INTO COMPOSITION. This pattern describes, how to transform an
inheritance relationship into a component relationship. This increases flexibility, because a com-
ponent relationship can be changed dynamically whereas an inheritance relationship can only be
changed statically.

DISTRIBUTE RESPONSIBILITIES. Distributes the responsibilities equally among the classes of an
object-oriented system to prevent large, hardly maintainable and reusable classes.

Understandability

TYPE CHECK ELIMINATION IN CLIENTS. The reduced coupling between client and provider classes
as well as the refactored interface of the provider classes present a more modular view of what is
essentially the same functionality thus facilitating understandability.



172 Reengineering Patterns

TYPE CHECK ELIMINATION WITHIN A PROVIDER HIERARCHY. Breaking a single complex class
into a hiearchy of simpler but more specialised classes facilitates partial understanding rather than
requiring complete understanding. This simplifies understanding how the hierarchy can be extended
by separating information that is relevant to the entire hierarchy from that which is specific to just a
few classes.

REPAIRING A BROKEN ARCHITECTURE. Detects and removes dependencies between packages
of a system that aren’t allowed according to the designated system architecture. These architec-
ture breaking dependencies may prohibit the exploitation of the architecture’s advantages and cause
unexpected effects at maintenance work.

DISTRIBUTE RESPONSIBILITIES. Distributes the responsibilities equally among the classes of an
object-oriented system to prevent large, hardly maintainable and reusable classes.

Reusability

TYPE CHECK ELIMINATION IN CLIENTS. The refactored interface of the classes from the provider
hierarchy more accurately reflect the needs of any client classes. This increases the likelyhood that
classes from the provider hierarchy can be reused while simplifying their reuse.

TRANSFORMING INHERITANCE INTO COMPOSITION. This pattern describes, how to transform an
inheritance relationship into a component relationship. This increases flexibility, because a com-
ponent relationship can be changed dynamically whereas an inheritance relationship can only be
changed statically.

DISTRIBUTE RESPONSIBILITIES. Distributes the responsibilities equally among the classes of an
object-oriented system to prevent large, hardly maintainable and reusable classes.

Relatively minor effort

DETECTION OFDUPLICATED CODE. Collecting duplication data is fully automatised. Filtering the
data to find candidates for refactoring automatically is possible only in some special cases. Normally,
human intervention and expertise is required to assess the duplication and decide on the possible
refactoring operations.

Patterns that easily scale up

DETECTION OFDUPLICATED CODE. Code Duplication is done with tool support. All of the tools
are built to scale up well.

Patterns that need a low parsing effort

DETECTION OFDUPLICATED CODE. Depending on the technique used to detect duplication, more
or less parsing is required. The DUPLOC tool (see Chapter??) developed inFAMOOS requires only
minimal parsing.

Global impact

TYPE CHECK ELIMINATION IN CLIENTS. The pattern involves refactoring the interface of a class
hierarchy in order to better support the clients of these classes. Consequently, most clients will be
affected which may potentially require that changes be made throughout the system.



10.4 Pattern Navigation 173

Higher number of Classes

DISTRIBUTE RESPONSIBILITIES. Distributes the responsibilities equally among the classes of an
object-oriented system to prevent large classes that are difficult to maintain and reuse.

TYPE CHECK ELIMINATION WITHIN A PROVIDER HIERARCHY. Separates a single complex class
into a hiearchy of simpler more specialized classes representing a cleaner separation of concerns.
The increased number of classes allow a greater precision in expressing dependencies.



174 Reengineering Patterns



Chapter 11

Cluster: Type Check Elimination



176 Cluster: Type Check Elimination

TYPE CHECK ELIMINATION IN CLIENTS

Author(s): Stéphane Ducasse, Robb Nebbe and Tamar Richner

Intent

Transformclientclasses that depend on type tests (usually in conjunction with case statements) intoclients
that rely on polymorphism. The process involves factoring out the functionality distributed across the
clients and placing it in the provider hierarchy. This results in lower coupling between theclientsand the
providers(class hierarchy).

Applicability

Symptoms.

• Large decision structures in theclient over the type of (or equivalent information about) an instance
of the provider, either passed as an argument to the client, an instance variable of the client, or a
global variable.

• Adding a new subclass of theprovider superclass requires modifications toclientsof the provider
hierarchy because functionality is distributed over these clients.

Reengineering Goals.

• Localise functionality distributed acrossclientsin theproviderhierarchy.

• Improve usability ofproviderhierarchy.

• Lower coupling betweenclientsand theproviderhierarchy.

Related Reengineering Patterns. A closely related reengineering pattern is TYPE CHECK ELIMINA -
TION WITHIN A PROVIDER HIERARCHY, where the case statements over types are in theprovider code
as opposed to theclient code. The essential distinction is if the decision structure is over the type or an
attribute functioning as a type of: (a) an instance ofanotherclass (this pattern) or (b) an instance of the
class to which the method belongs (see TYPE CHECK ELIMINATION WITHIN A PROVIDER HIERARCHY

in section11).

Motivation

The fact that the clients depend on provider type tests is a well known symptom for a lack of polymor-
phism. This leads to unnecessary dependencies between the classes and it makes it harder to understand
the program because the interfaces are not uniform. Furthermore, adding a new subclass requires all clients
be adapted.



177

Initial Situation. The following code illustrates poor use of object-oriented concepts as shown by Fig.11.1.
The functionmakeCalls takes a vector ofTelephone’s (which can be of different types) as a parameter
and makes a call for each of the telephones. The case statement switches on an explicit type-flag returned by
phoneType(). In each branch of the case, the programmer calls the phoneType specific methods identified
by the type-tag to make a call.

initializeLine()
connect()

tourneManivelle()
call()

makeCalls()

switch(p->phoneType())
case ....
case ...

TelephoneBox

POTSPhone

Telephone

ISDNPhone

ProvidersClient

Figure 11.1: Initial relation and structure of clients and providers.

void makeCalls(Telephone * phoneArray[])
{

for (Telephone *p = phoneArray; p; p++) {
switch(p->phoneType()) {
case TELEPHONE::POTS: {

POTSPhone * potsp = (POTSPhone *) p;
potsp->tourneManivelle();
potsp->call(); break;}

case TELEPHONE::ISDN: {
ISDNPhone * isdnp = (ISDNPhone *) p;
isdnp->initializeLine();
isdnp->connect(); break;}

case TELEPHONE::OPERATORS: {
OperatorPhone * opp = (OperatorPhone *) p;
opp->operatormode(on);
opp->call(); break;}

case TELEPHONE::OTHERS:
default:

error(....);
} } }

Final Situation. After applying the pattern the correspondingringPhones() will look as follows and the
structure as shown by the Fig.11.2.

void makeCalls(Telephones *phoneArray[])
{

for(Telephone *p = phoneArray; p; p++) p->makeCall();
}

Note that the client code, which represents distributed functionality, has been greatly simplified. Further-
more, this functionality has been localised within theTelephone class hierarchy, thus making it more
complete and uniform with respect to the clients needs.



178 Cluster: Type Check Elimination

makeCall() makeCall()

POTSPhone ISDNPhone

makeCalls()

... makeCall()

TelephoneBox Telephone

makeCall()

Client Providers

Figure 11.2: Final relation and structure of clients and providers.

Structure

Participants.

• provider classes(Telephone and its subclasses)

– organised into a hierarchy.

• theclients (TelephoneBox) of the provider class hierarchy.

Collaborations. The collaborations will change between all clients and the providers as well as the col-
laboration within the provider hierarchy.

Initially, the clients collaborate directly with the provider superclass and its subclasses by virtue of type
tests or a case statement over the types of the subclasses. After reengineering the only direct collaboration
between the clients and the providers is through the superclass. Interaction specific to a subclass is handled
indirectly through polymorphism.

Within the provider hierarchy the superclass interface must be extended to accurately reflect the needs of
the clients. This will involve the addition of new methods and the possible refactorisation of the existing
methods in the superclass. Furthermore, the collaborations between the provider superclass and its sub-
classes may also evolve, i.e. it must be determined whether the new/refactored methods are abstract or
concrete.

Consequences. Relying on polymorphism localises the protocol for interacting with the provider classes
within the superclass. The collaborations are easier to understand since the interface actually required
by the clients is now documented explicitly in the provider superclass. It also simplifies the addition of
subclasses since their responsibilities are defined in a single place and not distributed across the clients of
the hierarchy.

Process

Detection. The technique described in the pattern TYPE CHECK ELIMINATION WITHIN A PROVIDER

HIERARCHY to detect case statements is applicable for this pattern. Whereas in the pattern TYPE CHECK

ELIMINATION WITHIN A PROVIDER HIERARCHY, the switches are located in the same class, hence in
one file for a language like C++, in this pattern the case statements occur in several classes which can be
spread over different files.



179

Recipe. The process consists of two major steps. The first is to encapsulate all the responsibilities that
are specific to the provider classes within the provider hierarchy. The second is to make sure that these
responsibilities are correctly distributed within the hierarchy.

1. Determine the set of clients to which the pattern will be applied.

2. Define a new abstract method in the provider superclass and concrete methods implementing this
method in each of the subclasses based on the source code contained within each branch of the case
statement.

3. Refactor the interface of the provider superclass to accurately reflect the protocol used by the clients.
This involves not only adding and possibly changing the methods included but determining how
they work together with the subclasses to provide the required behaviour. This includes determining
whether methods are abstract or concrete in the provider superclass.

4. For each client, rewrite the method containing the case statement so that it uses only the interface of
the provider superclass.

Difficulties.

1. The set of clients may all employ the same protocol; in this case the pattern needs to be applied
only once. However, if the clients use substantially different protocols then they can be divided into
different kinds and the pattern must be applied once for each kind of client.

2. If the case statement does not cover all the subclasses of the provider superclass a new abstract class
may need to be added and the client rewritten to depend on this new class. For example, if it is an
error to invoke the client method with some subclasses as opposed to just doing nothing then the type
system should be used to exclude such cases. This reduces the provider hierarchy to the one starting
at the new abstract class.

3. Refactoring the interface will affect all clients of the provider classes and must not be undertaken
without examining the full consequences of such an action.

4. Nested case statements indicate that multiple patterns must be applied. This pattern may need to be
applied recursively in which case it is easiest to apply the pattern to the outermost case statement
first. The provider classes then become the client classes for the next application of the pattern.
Another possibility is when the inner case statement is also within the provider class but some of the
state of the provider classes should be factored out into a separate hierarchy.

Discussion

During the detection phase one can find other uses of case statements. For example, case statements are
also used to implement objects with states [Bec94], [ABW98]. In such a case the dispatch is not done on
object type but on a certain state as illustrated in the State pattern [GHJV95] , [ABW98]. Moreover, the
Strategy pattern [GHJV95], [ABW98] is also based on the elimination of case statement over object state.

Language Specific Issues.



180 Cluster: Type Check Elimination

C++ In C++ virtual methods can only be used for classes that are related by an inheritance relationship. The
polymorphic method has to be declared in the superclass with the keywordvirtual to indicate that calls to
this methods are dispatched at runtime. These methods must be redefined in the subclasses.

Since C++ does not offer runtime type information, type information is encoded mostly using someenum
type. A data member of a class having such an enum type and a method to retrieve these tags are usually a
hint that polymorphism could be used (although there are cases in which polymorphic mechanism cannot
substitute the manual type discrimination).

ADA Detecting type tests falls into two cases. If the hierarchy is implemented as a single discriminated
record then you will find case statements over the discriminant. If the hierarchy is implemented with tagged
types then you cannot write a case statement over the types (they are not discrete); instead an if-then-else
structure will be used.

If a discriminated record has been used to implement the hierarchy it must first be transformed by applying
the TYPE CHECK ELIMINATION WITHIN A PROVIDER HIERARCHY pattern.

SMALLTALK In SMALLTALK the detection of the case statements over types is hard because few type
manipulations are provided. Basically, methodsisMemberOf: and isKindOf: are available.anObject
isMemberOf: aClass returns true ifanObject is an instance of the class aClass,anObject isKindOf:
aClass returns true if aClass is the class or a superclass of anObject. Detecting these method calls is
not sufficient, however, since class membership can also be tested withself class = anotherClass, or
with property tests throughout the hierarchy using methods likeisSymbol, isString, isSequenceable,
isInteger.

Tools

Glimpse and agrep can be found atftp://ftp.cs.arizona.edu/glimpse.

Known Uses

In theFAMOOSmail sorting case study, we identified 28 matches (a match is not equivalent to a file because
a same file may contain several switches) for the expressionagrep ’switch;type’, 185 matches for the sole
expressionagrep ’switch’. In the same timeagrep ’if’ gave us 10976 matches whereas using the perl script
shown above we reduce the matches to 497.

In this case study, we identify three obvious lacks of polymorphism but they were not corresponding with
the presented pattern but its companion pattern TYPE CHECK ELIMINATION WITHIN A PROVIDER HIER-
ARCHY. We found also cases that implement state object [GHJV95].

This pattern has been also applied in one of theFAMOOS case studies written in Ada. This considerably
decreased the size of the application and improved the flexibility of the software. In one of theFAMOOS

C++ case studies, manual type check also occurs implemented statically via # ifdefs.



181

TYPE CHECK ELIMINATION WITHIN A PRO-
VIDER HIERARCHY

Author(s): Stéphane Ducasse, Robb Nebbe and Tamar Richner

Intent

Transform a singleprovider class being used to implement what are conceptually a set of related types
into a hierarchy of classes. Decision structures, such as case statements or if-then-elses, over type infor-
mation are replaced by polymorphism. This results in increased modularity and facilitates the extension of
functionality through the addition of new subclasses.

Applicability

Symptoms.

• Methods contain large decision structures over an instance variable of theprovider class to which
they belong.

• Extending the functionality of theproviderclass requires modifying many methods.

• Manyclientsdepend on a singleproviderclass.

Reengineering Goals.

• Improve modularity.

• Simplify extension ofprovider functionality.

Related Reengineering Patterns. A closely related pattern is TYPE CHECK ELIMINATION IN CLIENTS

where the case statements over types are in the client code as opposed to the provider code. The essential
distinction is if the decision structure is over an instance variable of the class (this pattern) or another class
(see TYPE CHECK ELIMINATION IN CLIENTS in section11).

Motivation

Case statements are sometimes used to simulate polymorphic dispatch. This often seems to be the result
of the absence of polymorphism in an earlier version of the language (Ada’83→ Ada’95 or C→ C++).
Another possibility is that programmer don’t fully master the use of polymorphism and as a result do not
always recognise when it is applicable. In any language that supports polymorphism it is preferable to
exploit the language support rather than simulate it.

In the presence of polymorphism the process of dispatching is part of the language. In contrast, with
case statements or other large decision structures the simulated dispatch must be hand coded and hand
maintained. Accordingly, changing or extending the functionality are more difficult because they often



182 Cluster: Type Check Elimination

affect many places in the source code. It also results in long methods with obscured logic that are hard to
understand.

Programmers often fall back to the language they are most familiar with – in the Variable State pattern Kent
Beck shows an example of such a situation related to Lisp programmers [Bec97]. Thus, they may continue
to implement solutions which do not exploit polymorphism even when polymorphism is available. This
could occur especially when programmers extend an existing design by programming around its flaws,
rather than reengineering it.

Initial Situation. Our example, taken in a simplified form from one of the case studies, consists of a
message class that wraps two different kinds of messages (TEXT andACTION) that must be serialised to
be sent across a network connection as shown in the code and the figure11.3.

Client1
Message

set_value(action Integer)
send(channel Channel)

set_value(text String)
receive(channel Channel)

Client2

Figure 11.3: Initial relation and structure of clients and providers.

A single provider class implements what is conceptually a set of related types. One attribute of the class
functions as surrogatetypeinformation and is used in a decision structure to handle different variations of
functionality required.

class Message {
public:

Message();
set value(char* text);
set value(int action);
void send(Channel c);
void receive(Channel c);

...
private:

void* data;
int type ;
}
// from Message::send

const int TEXT = 1;
const int ACTION = 2;
switch (type ) {
case TEXT: ...
case ACTION: ... };

Final Situation.

The case statements have been replaced by polymorphism and the original class has been transformed into
a hierarchy comprised of an abstract superclass and concrete subclasses. Clients must then be adapted to
create the appropriate concrete subclass.

Initially there may be a large number of dependencies on this class, making modification expensive in terms
of compilation time, and increasing the effort required to test the class. The target structure improves all of
these problems with the only cost being the effort required to refactor the provider class and to adapt the
clients to the new hierarchy.



183

Message

send(channel Channel)
receive(channel Channel)

Client1

Text_Message
send(channel Channel)
receive(channel Channel)
Text_Message(text String)

send(channel Channel)

Action_Message

receive(channel Channel)
Action_Message(action Integer)

Client2

Figure 11.4: Final relation and structure of clients and providers.

class Message {
public:

virtual void send(Channel c) = 0;
virtual void receive(Channel c) = 0;

...
};

class Text Message: public Message {
public:

Text Message(char* text);
void send(Channel c);
void receive(Channel c);

private:
char* text;

...
};

class Action Message: public Message {
public:

Action Message(int action);
void send(Channel c);
void receive(Channel c);

private:
int action;

...
};

Structure

Participants.

• A single provider (Message) class that is transformed into a hierarchy of classes (Message,
Text Message andAction Message)

• A set ofclient classes



184 Cluster: Type Check Elimination

Collaborations. The single provider class will be transformed into a hierarchy, thereby increasing mod-
ularity and facilitating extension of functionality.

Initially, the clients are all dependent on a single provider class. This class encompasses several variants of
functionality and thus encapsulates all the collaboration that would normally be handled by polymorphism.
This results in long methods typically containing case statements or other large decision structures.

The situation is improved by refactoring the single provider class into a hierarchy of classes: an abstract
superclass and a concrete subclass for each variant. Each of the new subclasses is simpler than the initial
class and these are relatively independent of each other.

Consequences. The functionality of the hierarchy can be extended adding a new subclass without modi-
fying the superclass. The increased modularity also impacts the clients who are now likely to be dependent
on separate subclasses in the provider hierarchy.

Process

Detection.

A class having many long methods is a good candidate for further analysis. A line of code per method met-
ric may help to narrow the search. If these methods contain case statements or complex decision structures
all based on the same attribute then the attribute is probably serving as surrogate type information. In C++,
where it is a good practice to define a class per file, the frequency of case statements in the same file can be
also used as a first hint to narrow the search for this pattern.

Example: detection of case statements in C++ Knowing if the pattern should be applied requires the
detection of case statements. Regular-expression based tools like emacs, grep, agrep help in the localisation
of case statements based on explicit construct like C++’s switch or Adacase. For example,grep ’switch’
‘find . -name ”*.cxx” -print‘ enumerates all the files with extension.cxx contained in a directory tree that
containsswitch. The grep facilities for grep are extended inagrep so it is possible to ask for finer queries.
For example, the expressionagrep ’switch;type’ -e ‘find . -name ”*.cxx” -print‘ extracts all the files
containing lines havingswitch andtype.

However, even for a language like C++ that provides an explicit case statement construct, detecting case
statements based on explicitifthenelse structures is necessary. The tools above are not well suited for
such a task, since their detection capabilities are restricted to one line at a time. One possible solution is
to use perl scripts - a perl script which searches the methods in C++ files and lists the occurrences of case
statements can be found in the appendix.

Recipe.

1. Determine the number of conceptual types currently implemented by the class by inspecting the case
statements. An enumeration type or set of constants will probably document this as well.

2. Implement the new provider hierarchy. You will need an abstract superclass and at least one derived
concrete class for every variant.

3. Determine if all of the methods need to be declared in the superclass or if some belong only in a
subclass.

4. Update the clients of the original class to depend on either the abstract superclass or on one of its
concrete subclasses.



185

Difficulties.

• If the case statements are not all over the same set of functionality variants this is a sign that it might
be necessary to have a more complex hierarchy including several intermediate abstract classes, or
that some of the state of the provider should be factored out into a separate hierarchy.

• If a client depends on both the superclass and some of the subclasses then you may need to refactor
the client class or apply the TYPE CHECK ELIMINATION IN CLIENTS pattern because this is an
indication that the provider does not support the correct interface.

Discussion

During the detection phase one can find other uses of case statements. For example, case statements are
also used to implement objects with states [Bec94], [ABW98]. In such a case the dispatch is not done on
object type but on a certain state as illustrated in the State pattern [GHJV95], [ABW98]. Moreover, the
Strategy pattern [GHJV95], [ABW98] is also based on the elimination of case statement over object state.

In his thesis Opdyke [JO93] discusses the automatisation of code refactoring. His “Refactoring To Spe-
cialise”, in which he proposed to use class invariant as a criteria to simplify conditionals, is similar to this
pattern.

Language Specific Issues.

C++ Detection: in C polymorphism can be emulated either by using function pointers or through union
types and enum’s. C++ programmers are likely to use a single class with a void pointer and then cast this
pointer to the appropriate type inside a switch statement. This allows them to uses classes which are
nominally object-oriented as opposed to unions which they have probably been told to avoid. The use of
constants is typically favoured over the use of enum’s.

Difficulties: If void pointers have been used in conjunction with type casts then you should check to see if
the classes mentioned in the type casts should be integrated into the new provider hierarchy.

ADA Detection: because Ada83 did not support polymorphism (or subprogram access types) discrim-
inated record types are the preferred solution. Typically an enumeration type provides the set of variants
and the conversion to polymorphism is straightforward in Ada95.

SMALLTALK In SMALLTALK the detection of the case statements over types is hard because few type
manipulations are provided. Basically, methodsisMemberOf: and isKindOf: are available.anObject
isMemberOf: aClass returns true ifanObject is an instance of the class aClass,anObject isKindOf:
aClass returns true if aClass is the class or a superclass of anObject. Detecting these method calls is
not sufficient, however, since class membership can also be tested withself class = anotherClass, or
with property tests throughout the hierarchy using methods likeisSymbol, isString, isSequenceable,
isInteger.

Tools

Glimpse and agrep can be found atftp://ftp.cs.arizona.edu/glimpse.



186 Cluster: Type Check Elimination

Known Uses

In oneFAMOOS case study several instances of this problem were found. In the example studied in depth
(DialogElement) it appears in conjunction with a class that groups together user interface and core model
functionality. There is a data member calledtype that is used in the various switch statements. Furthermore
a void pointer is frequently cast to an appropriate type based on the value oftype.



Chapter 12

Cluster: Duplicated Code



188 Cluster: Duplicated Code

DETECTION OFDUPLICATED CODE

Author(s): Matthias Rieger and Stéphane Ducasse

Intent

Detect code duplication in a system, without prior knowledge of the code. Identifying the duplicated code
is a first important step towards application refactoring.

Applicability

The only prerequisite is the availability of the source code.

Symptoms.

• You already saw the same source somewhere else in the application.

• You already fixed the same error in another piece of code.

• You make a conceptual change and in adapting the software to the new concept have to edit similar
pieces of code over and over again.

• You know you employed copy and paste programming during development, but do not remember
exactly were it was.

Reengineering Goals. Some of the following reengineering goals are not only linked to the identification
of duplicated code but also to its removal by refactoring:

Identifying unknown duplicated code. This pattern is well-suited to identifyunknown and middle size
(4 to 100 lines) of duplicated code. If you are looking for occurrences of a particular line of code,
usesed- or grep-like tools or emacs (regexp and etag) facilities. If you are sure that the developers
had to use copy and paste coding (e.g. your software contains about 4 millions lines of code and was
developed by 2 people during one year) but want to know what has been copied and pasted, apply
this pattern.

Identifying duplicated code in large scale system.Following the previous point, if you are looking for a
way to identify duplicated code in a big (100’000 lines) to huge system apply this pattern.

Improving maintenance. Detection helps the maintainer of a system to make sure that some code frag-
ment, where an error has been fixed, is not copied a number of times with the error still in it, or,
complicating matters further, is fixed differently at each location by maintainers who have no knowl-
edge of each other’s activities.

Reducing maintenance cost.By detecting clones of a piece of code to be maintained and merging the
code into one instance, the multiplied effort otherwise necessary to maintain all the clone instances
is removed.



189

Improving the code readability. By identifying duplicated code and refactoring it, the size of code is
reduced. The level of abstraction is elevated when similar code pieces are refactored in a new method,
ultimately leading to the SMALLTALK ideal of 6 lines of code per method. In one of theFAMOOS

case studies, we found a method of 6000 lines of C++ code, which is a nightmare in complexity by
any standards.

Improving compilation time. The less lines of code you have, the faster your system is compiled.

Reducing the footprint of the application. The less lines of code you have, the smaller the executable
of your application gets.

Related Reengineering Patterns.

• The CUT AND PASTE anti-pattern [BMMM98] explains what practices lead to code duplication.
The pattern discussed here focuses on thedetectionof the duplicated code.

• Patterns describing the factoring and reorganisation of code within the class hierarchy or by creating
new classes. Such patterns detail how the detected clones can be merged into a single instance.

Motivation

The duplication of code occurs frequently during the development phase when programmers reuse tried
and tested code in a new context, but are reluctant or, due to severe time pressure unable, to invest the time
necessary to generalise the existing code to be used in the old and the new context. Since duplication is
anad hoc/copy&paste activity more than something that is planned for, occurrences of duplication are not
documented and have to be detected.

Process

In order to detect code duplication in an unknown system, one cannot search for specific patterns. Rather,
the self similarity of the system has to be discovered. Each copy is equal or similar to its clones and
this similarity is revealed by comparing the entire system to itself. This comparison is on the one hand
computing intensive and on the other hand produces a remarkable amount of data of possibly copied code
pieces. It is therefore necessary to automatically narrow down the candidates that have to be examined in
detail by a human.

Recipe. The applicability of the recipe is based on the availability of a tool for duplication detection.

1. Start with an automatic search for clones. The tool should create a database of all locations where
code duplication possibly occurred.

2. Deciding on the level or size of duplication that is interesting, filters are defined that remove the
uninteresting candidates.

3. For each clone family (i.e.n ≥ 2 copies of the same piece of code) that is left after the filtering
step, a list of source code locations, possibly already with citations of the offending code pieces, is
presented to the maintainer so s/he can decide on how to remove the duplication.

Note that the recipe in this pattern does not concern itself with the actual problems of refactoring the code.



190 Cluster: Duplicated Code

Difficulties. The approaches used to compare actual pieces of code work on syntactical representations.
Therefore, one cannot detect duplicatedfunctionalitythat does not bear any syntactical resemblance.

Language Specific Issues.

Language dependency can stem from the parser that transforms the source code in the format that is used
for comparisons by the tool. Depending on this format, the parser can be of variable complexity. For
example, comparing the source code as text with only minimal transformations, e.g. removing comments
and superfluous white space, only needs a very simple lexer, which keeps language dependency at a low
level. Comparing abstract syntax tree of the source code, however, requires a full blown parser. The
complexity of the first transformation step thus correlates directly with language dependency.

Tools

Tool support is vital for applying this pattern.

• We have implemented a SMALLTALK tool called DUPLOC (see Chapter??), which is specifically
aimed at supporting a visual approach of code duplication detection. At the moment, the tool uses
textual comparisons only. It allows the user to compare source code file by file, enabling him to ex-
amine the source code by clicking on the dots. Noise filtering can be done by removing uninteresting
lines.

• DUP [Bak92] is a tool that detects parameterised matches and generates reports on the found
matches. It can also generate scatter-plots of found matches.

• DOTPLOT [Hel95] is a tool for displaying large scatter-plots. It has been used to compare source
code, but also filenames and literary texts.

• DATRIX [MLM96b] is a tool that finds similar functions by comparing vectors of source metrics.

Discussion

This pattern is valuable to apply if your system has the symptoms identified above or if your reengineering
goals belong to the set of the mentioned reengineering goals. It is also advisable, though, to apply it as a
precautionary measure in the maintenance process as acode investment[BMMM98]. If you plan to revamp
an old system, duplication detection can help to plan parts of the effort.

Moreover, if your system should be migrated from one paradigm to another one—e.g. from COBOL to an
object oriented language like SMALLTALK —and you suspect duplicated code, this pattern is valuable to
identify which parts of the old system have been duplicated. Assessing the similarities and differences of
the parts will also improve your understanding of the systems functionalities.

The approach that has been taken in the development of DUPLOC (Chapter??) has the following advan-
tages:

• It is lightweight: it does not use complicated algorithms like elaborate parsing techniques.

• It is visual: the human eye is built to detect configurations and this can be fully exploited with a
matrix visual representation.

• It is language independent: Since we use textual comparison, the tool is language independent to a
high degree and can be used for a number of languages without a change.



191

Technical. The algorithm that is used to compare the source lines determines what level of fuzziness is
allowed to recognise a match. The simplest algorithm—which compares the source lines character per
character—finds only exact matches. More complicated algorithms (see for example [Bak95]) can findpa-
rameterised matches. Parameterised matches point out the possibility to refactor code into a parametrisable
function, where exact matches emphasise more the repetitive structures in the source code.

Known Uses

The pattern has been applied in biology research to detect DNA sequences [PK82]. In the context of
software reengineering, the pattern has been applied to detect duplicated code inFAMOOS case-studies
containing up to 1’000’000 lines of C++. It also has been applied to detect duplicated code in a COBOL

system of 4 millions of line of code. The DUP tool [Bak92] has been used to investigated the source code
of the X-Window system, and DATRIX has investigated multiple versions of a large telecommunications
system, wading through 89 million lines of code all in all [LPM+97]. DOTPLOT [Hel95] has been used to
detect similarities inman-files, literary texts and names from file systems.



192 Cluster: Duplicated Code



Chapter 13

Cluster: Improving Flexibility



194 Cluster: Improving Flexibility

REPAIRING A BROKEN ARCHITECTURE

Author(s): Holger Bär and Oliver Ciupke

Intent

Detect and remove dependencies between packages of a system that aren’t allowed according to the desig-
nated system architecture. These architecture breaking dependencies may prohibit the exploitation of the
architecture’s advantages and cause unexpected effects at maintenance work.

Applicability

This pattern is only applicable if the system to re-engineer should suit a certain architecture likeModel
View Controller(MVC), should be layered or should obey other documented restrictions concerning the
dependencies between its packages.

To clarify the further discussion we note that a dependency between two classes located in different pack-
ages implies a dependency between the corresponding packages with the same direction.

Symptoms.

• If you are to carry out a change on the system which is supported by the system’s documented
architecture, e. g. replacing the top level package in a layered architecture or adding a view to the
model in a MVC architecture, the effort is higher than expected. This is due to extra dependencies
breaking the architecture and resulting in a cascade of changes to the rest of the system.

• Analyzing the system one encounters forbidden dependencies between packages, e. g. model classes
depending on their visual representation in an MVC architecture.

Reengineering Goals.

• If the conformance to a certain architecture is proven or recovered the benefits of the architecture can
be exploited, e. g. it’s easy to add a new view to a model within the MVC architecture.

• Understandability: the dependency constraints of the architecture reduce the number of dependen-
cies.

Motivation

The following example describes a typical three tier architecture for business applications with a user
interface, application logic layer and database layer. The architectural restriction on the dependencies
between these three packages is that the user interface may depend on the application logic which may
depend on the database, but nothing more.



195

Initial Situation. In our example the application logic layer implements financial transaction manage-
ment and offers a service namedreportTransactions (from, to) to report the transactions for a certain
period of time. Figure13.1 shows the three packages and their dependencies. Evidently there’s a de-
pendency breaking the architecture from the application logic layer to the user interface: the callnew
ListOutput (reportList) to create a new output window for lists offered by the user interface layer. The
reason for introducing this call instead of returning the resulting list to the user interface layer might be the
fear of performance penalties.

In general reasons leading to a broken architecture are:

• Altering the system without having understood the architecture.

• A system architecture which seems to have performance penalties that can be overcome by breaking
the architecture.

• Favoring ”quick-and-dirty” instead of ”nice-and-clean”.

«layer»
user interface

«layer»
application logic

«layer»
database

reportTransactions (from, to)

new ListOutput (reportList)

Figure 13.1: A broken architecture

Final Situation. The solution for the problem described above is quite straightforward. Just let the
service computing the report return the transaction list to the user interface instead of itself displaying
the list. But first it’s not always that easy and second it’s only easy after the dependency breaking the
architecture has been found within the whole system.

Structure

There is no common problem structure for breaking an architecture because architectures themselves do
not have a common structure. So a target structure is missing also.

Process

Detection.

1. Analyze the actual high level dependency structure, i.e. the dependencies between packages.

2. Search for dependencies which are not allowed by the documented architecture. You can do this

Manually: Visualize the dependency graph with a graph layout tool and search manually for depen-
dencies breaking the architecture.

Automatically: The process can be automated with a tool that is able to analyze and manipulate
graphs or relational queries on the given data.



196 Cluster: Improving Flexibility

(a) Set up a second graph containing the packages and the allowed dependencies between
them according to the documented architecture.

(b) Compute the set of actual dependencies minus the set of allowed dependencies. The result
are the dependencies breaking the architecture.

3. To find architecture violations in a system that should be layered search for cycles in the dependency
graph.

Recipe.

A violating dependency exists either between two packages where no dependency is allowed or the depen-
dency is just in the wrong direction like the one in our motivating example. In the first case there is no
general solution, but in the second case the dependency can be reversed in a generic way:

1. Create a new abstract class with the same interface as the target of the dependency.

2. Replace the dependency on the target class by one on the new abstract class.

3. Let the target of the dependency inherit from the new abstract class. Now both the original source
and target of the dependency are dependent on the abstract class.

4. Move the abstract class to a package where both the source and the target package may depend on it.
In the case of reversing the dependency, this is the package containing the source of the dependency.

Figure13.2shows a broken architecture. PackageP2 may depend on packageP1, butP1 is not supposed
to depend onP2. Actually classB depends both on classesC andD which makesP1 dependent onP2.

Figure13.3shows the solution to the problem. Instead ofC andD, B calls now the abstract classesC abstr
andD abstr. C andD inherit from their abstract counterpart and implement the methods called byB.

A

B

C
D

P2

P1

Figure 13.2: A broken architecture

There are also special solutions for similar problems like a model that has to update its various views
without knowing how many views there are and of which type they are. This problem is solved by the
OBSERVERpattern [GHJV95].



197

P2

C D

B

P1

A

C_abstr D_abstr

Figure 13.3: Dependencies reverted to fit the documented architecture

Difficulties. The new abstract class used by the source of the forbidden dependencyB can be seen as an
interface defined byB that supplier classes must implement. So this interface needn’t contain all methods
of the former target (C resp.D), but only the methodsB needs.

In our example in the figures13.2and13.3there was only one class, classB, having a forbidden dependency
on classC. If there is more than one class having a forbidden dependency the solution is a bit more
complicated:

• Define only one interface per package that is used by all dependants onC.

• For dependants in different packages create one abstract class per package and let classC implement
all of them or move the abstract class(es) into a package which every affected package may depend
on.

Language Specific Issues. The transformation for reversing dependencies is only generally applicable
for languages that allow an inheritance relation to be added to a pure abstract class (interface in JAVA ).
This is the case for C++ and JAVA and also for SMALLTALK , because in SMALLTALK there is no need to
inherit from a pure abstract class.

Tools

Tools support is available for the following tasks of the detection section:

• Produce static structure graphs from source code.
The tool set GOOSE contains too parsers, RETRIEVER and TABLEGEN with different advantages
which can generate design information from C++ code in a format readable further tools.

• Visualizing a graph.
You can use VCG, a graph layout tool, with a great variety of hierarchical layouts or Graphlet offering
a set of layout algorithms with quite different aproaches. Unfortunately Graphlet (Version 2.8) has
problems with printing the graphs.



198 Cluster: Improving Flexibility

• Setting up a new graph
can be done with a graph editor like Graphlet.

• Finding cycles in a graph.
Execute the command

reView strongComponents < graph.gml | printCycles

of the tool set GOOSEwith graph.gml replaced by your graph file.

• Computing the difference between two graphs.
The tool set GOOSE lets you convert graphs in a relational ASCII format. Filter off any other in-
formation besides first three collumns containing the type, source and target of the relation in these
ASCII files with the Unix commandcut -f1-3. Then use the Unix commandcomm -23 followed by
the two files on which the difference should be computed.

Known Uses

In one of theFAMOOS case studies, there was an architecture defined with a base line framework and dif-
ferent products on top of this framework. When analysing the code, a class of the base line framework was
found to inherit from several product classes. This kind of dependency was forbidden by the architecture
definition. To repair this, an interface class was introduced from which the product classes inherited. This
way, the framework was no longer dependent on the products, which made the system easier to change and
decreased compile times.

A further example for an successful architecture clean up is the change in the event model of the Java
Development Kit from the Version 1.0 to 1.1 (...cite). In this case the OBSERVER pattern was applied1.
The observer pattern [GHJV95] is a special form of the general principle to introduce an abstract interface
to decouple classes.

1In the JDK, the Observer is called Listener.



199

TRANSFORMINGINHERITANCE INTO COM-
POSITION

Author: Benedikt Schulz

Intent

Improve the flexibility and comprehensibility of your design by transforming an inheritance relationship
into a component relationship and delegating of a set of methods to this component.

Motivation

The following example occurred in a project which aimed at visualising hydraulic data of river parts. The
data was visualised in a two-dimensional diagram which changed over time. The user of the system got the
impression of seeing a film because of this animation.

The most crucial part in the system concerning efficiency was the subsystem which was responsible for
drawing lines on the screen: For every new frame of the animation the complete set of lines representing
the data had to be redrawn.

Initial Situation. In the first version of the system drawing lines was handled by the GDI subsystem
of the Win32s operating system. This was pretty efficient until a new requirement came into play. The
customers wanted to be able to change properties of the lines like colour, thickness, style, etc. The GDI
subsystem was not able to draw lines with customisable thickness in an efficient way however: The system
was showing rather a slide show than a film. The initial design is depicted in Figure13.4.

Graphic

drawPoint(){...}
getPhysicalPosition(){...}

...

Shape

draw(){...}

Circle

...

draw() {...}

Rectangle

...

draw() {...}
// draw a rectangle
drawPoint(x,y);

...

Figure 13.4: Initial Situation

Some experiments with a new technology called DirectDraw (that is also a subsystem of the operating
system) revealed its superiority and thus the project manager decided to replace GDI with DirectDraw.

This led to serious problems: Since the class responsible for drawing lines was using functionality of GDI
by inheritance it was not possible just to replace it by DirectDraw. DirectDraw had a different interface and
so the implementation of a lot of methods which were responsible for drawing lines had to be changed.



200 Cluster: Improving Flexibility

Final Situation. To avoid similar problems in the future the project manager decided not only to change
the the drawing system but additionally to introduce a flexible new design which should allow for easy
exchange of different drawing systems.

The new design got its flexibility mainly from one change: Instead of relying on inheritance to reuse
functionality, a component relationship together with the concept of delegation was used. This means that
a Shape -object no longer ”knows” (directly or via inheritance) how to draw points but it rather ”knows”
an object which ”knows” how to draw the points. Since objects can even be changed during run-time of
the system the flexibility of the system was significantly improved. The final design is depicted in Figure
13.5where new or changed entities are marked grey.

Graphic

abstract drawPoint(){...}
abstract getPhysicalPosition(){...}

...

Shape

Graphic* impl

abstract draw(){...}
drawPoint(x,y){...}
getPhysicalPosition(){...}

Circle

...

draw() {...}

Rectangle

...

draw() {...}

drawPoint(x,y)
{ impl.drawPoint(x,y) ; }

GraphicGDI

...

drawPoint() {...}
getPhysicalPosition(){...}

...

GraphicDDraw

...

drawPoint() {...}
getPhysicalPosition(){...}

...

Figure 13.5: Target Structure

Some weeks after the redesign of the system it was revealed that the DirectDraw subsystem was not auto-
matically installed on all systems running Win32s. But since the system could check whether DirectDraw
was installed or not during run-time and since the drawing system was made exchangeable during run-time
this new fact did not lead to any problems.

In the end the target structure is an instance of the Bridge design pattern [GHJV95]. (It was not possible
to use a Singleton Graphic acting as a facade to the libraries, because Graphic is not stateless and can
have different states for different Shape-objects.) The Transforming Inheritance into Composition pattern
is nevertheless not equivalent to the Bridge design pattern, because it not only describes “good” target
structures but rather the process of applying the Bridge design pattern to an existing object-oriented legacy
system.

Applicability

Transforming Inheritance into Compositionis applicable whenever you recognise during the reviewing of
your legacy system thatyou should have usedone of the following design patternsbut you have not used
them:

• Bridge [GHJV95],

• Strategy [GHJV95] or

• State [GHJV95][DA96].



201

All of these design patterns make use of the Objectifier design pattern [Zim95] and the technique of dele-
gation.

The application of this pattern is difficult if the inheritance relationship is deeply nested in the hierarchy
because breaking the hierarchy means that all the methods which were inherited (and this can be a large
number) have to be delegated. Therefore the inheritance relationship isnot removed in a variant of the
Transforming Inheritance into Composition reengineering pattern which will be discussed later.

The reengineering pattern should not be used in the following cases:

• Inheritanceis the appropriate modelling technique for the problem (e.g., if there is ais-a relationship
between two classes).

• Introducing delegation would be too expensive with respect to efficiency. This has to be considered
especially when the delegation takes place within a loop which is processed a lot of times.

• In statically typed languages: Clients use the two classes related via inheritance polymorphically and
you do not want to change these clients.

Symptoms. The application of this pattern can improve your design if you encounter one of the following
problems:

• For a certain problem you should have used theBridge, Strategyor Statedesign pattern but in the
system you are reengineering these design patterns have not been used. You know how to use the
respective design patterns when you are building a new system but you do not know how to apply
them to an existing design.

– You want to be able to change the implementation of an abstraction in a more flexible way,
maybe even at run-time (Bridgedesign pattern). The actual design does not allow for this kind
of flexibility.

– You want to extend the class system with new classes which share the same interface but differ
in their behaviour (Strategydesign pattern). The actual design does not allow for this kind of
flexibility.

– You have a lot of conditional statements in your code because the behaviour of an object de-
pends strongly on its current state. You want to get rid of these conditionals (Statedesign
pattern).

• The inheritance relationship was established mainly for code reuse. The code which was the reason
for using inheritance now has to be changed and so you want to remove the inheritance relation-
ship because it is no longer appropriate. You do not know how to do this without changing the
functionality of the system.

Reengineering Goals. The goal of the Transforming Inheritance into Compositionreengineering pattern
is to help software engineers to apply a design pattern relying on the Objectifier design pattern and delega-
tion to an existing design. In particular the pattern aims at

• increasing run-time flexibility. This is achieved because after the application of the reengineering
pattern you will be able to change the component during run-time.

• increasing static flexibility (configurability). This is achieved because after the application of the
pattern you will be able extend the component class hierarchy independently from the abstraction.

• increasing comprehensibility. This is achieved because the reengineering pattern can remove inheri-
tance for code reuse which is hard to understand from your system.



202 Cluster: Improving Flexibility

Related Reengineering Patterns. The Transforming Inheritance into Compositionreengineering pattern
is related to all design patterns which rely on the Objectifier design pattern [Zim95] and delegation like

• Bridge

• Strategy

• State

Structure

The problem structure is depicted in Figure13.6. Transforming Inheritance into Compositionleads you to
the target structure depicted in Figure13.7

%DVH

�P%DVH��

&RPSRQHQW

�VHUYLFH���

'HOHJDWRU

�VHUYLFH���
�VHUYLFH���

/HDIB�

�P/HDI��

/HDIB�

�P/HDI��

���

Figure 13.6: Problem Structure for the reengineering pattern

Participants.

• Baseis the root of the inheritance tree.

• Component (Graphic) is the class which gets cut out from the inheritance hierarchy to serve as a
provider of certain services. The inheritance relationship toBase may remain in existence.

• Delegator(Shape) is the class which uses services fromComponent by inheritance in Figure13.6.
After application of the reengineering pattern in Figure13.7Delegator will make use of these
services by delegation.

• Leaf 1, Leaf 2, ... (Circle, Rectangle, ...) are the leaves of the inheritance hierarchy

• Component A, Component B, ... (GraphicGDI, GraphicDDraw, ...) are the subclasses ofCompo-
nent implementing the services of their super-class in different ways..



203

%DVH

�P%DVH��

&RPSRQHQW

�VHUYLFH���

'HOHJDWRU

�VHUYLFH���
�VHUYLFH���

�FRPS���&RPSRQHQW

����

����

&RPSRQHQWB$

�VHUYLFH���

'HOHJDWRU��VHUYLFH���

^�FRPS�!VHUYLFH����`

/HDIB�

�P/HDI��

/HDIB�

�P/HDI��

��� &RPSRQHQWB%

�VHUYLFH���

���

Figure 13.7: Target Structure for the reengineering pattern

Collaborations.

• Delegator makes use ofservice1(drawPoint) provided byComponent . This is done

– in the problem structure by executing inherited methods fromComponent whereas

– in the target structure the execution of these methods isdelegatedto Component .

Consequences.

• Positive benefits

– Transforming Inheritance into Compositionsolves an important and basic reengineering prob-
lem and the application of the reengineering pattern allows for the introduction of several
known design patterns [GHJV95].

– Since abstraction and implementation are separated, changing the implementation does not
require recompilation but only rebinding of the system.

– The implementors ofservice1 can be designed to form a separate inheritance tree. (This is
suggested by the classComponentA in Figure13.7.) This is impossible before the application
of the reengineering pattern.

• Negative liabilities

– The execution ofservice1 provided byDelegator will take longer in the target structure
because it has to be delegated. This may be critical ifservice1 is needed a lot of times.

– The target structure is slightly more difficult to implement since the attribute ofDelegator
namedcomp has to be initialised whenever a new instance ofDelegator is created and
destroyed whenever that instance is deleted.



204 Cluster: Improving Flexibility

Process

The process mainly relies on the idea of combining the approach of considering design patterns as opera-
tors [Zim97] (rather than building blocks) and the refactoring approach presented in [JO93]. This idea is
presented and discussed in detail in [SGMZ98a].

Detection.

Since violations against flexibility issues can only be detected if you know where flexibility is needed
and which kind of flexibility (e.g., run-time flexibility, configurability) is needed, algorithmic detection is
difficult. However, you can

• ask people who designed and implemented the system if there is a case where they wanted to be able
to change the implementation of an interface at run-time and this was not possible.

• look for methods with a large amount of conditional statements. The behaviour of an object may
depend strongly on its internal state (Type Check Elimination within a Provider Hierarchy).

• look for two classes, one inheriting from the other, which are never used polymorphically. This
means that a variable declared as super-class is never used for an instance of the subclass.

Recipe. In this section we show how to apply tTransforming Inheritance into Composition and what kind
of reengineering operations have to be applied. If we name entities (like classes, methods and attributes) we
refer to the participants of the problem structure depicted in Figure13.6and the target structure depicted
in Figure13.7.

1. Create a new attributecomp of Component in the classDelegator . Change the constructor
method ofDelegator so that it initialises the attributecomp with a new instance ofComponent .
If you plan to add several subclasses ofComponent later on (you should do so!) than add a new
formal argument to the constructor method ofDelegator which will serve as an indicator of which
concrete subclass ofComponent to use.

2. Copy all the signatures of the methods fromComponent which are visible toDelegator to
Delegator . For each added method add an implementation which delegates the execution of the
method to the corresponding method ofComponent . For an example, see the implementation of
Delegator:service1() in Figure13.7.

3. Remove the inheritance relationship betweenComponent andDelegator . Caution: In statically
typed languages you will not be able to use an instance ofDelegator polymorphically as an
instance ofComponent after this step. In particular it is not possible any more to cast instances of
Delegator to Component .

Difficulties.

If you decide to introduce an additional formal parameter to the constructor ofDelegator then every
piece of code that creates an instance ofDelegator has to be changed. In languages which support
default values for formal parameters this problem can be resolved by defining an appropriate default value
(e.g.,Component if this class is not made abstract).

If there is no way to avoid polymorphism betweenDelegator andComponent but you still have strong
reasons to apply Transforming Inheritance into Composition and you are using a statically typed language,
you can omit removing the inheritance relationship betweenComponent andDelegator . You should
be aware of the fact, that you might have the following problem: The classComponent has two parts:



205

• One part of the methods represents set of utility services. You madeDelegator inherit from
Component because you wanted to be able to use these services without re-implementing them.

• The other part of the methods represents thereal interface ofDelegator . You madeDelegator
inherit fromComponent because you wanted to establish anis-arelationship betweenDelegator
andComponent to be able to use instances of both classes polymorphically.

In this case consider splitting theComponent class into two separate classes.

Language Specific Issues.

• In C++ you should implement the attributecomp as a pointer. Otherwise you will not be able to use
polymorphism for the inheritance tree with rootComponent .

• In dynamically typed languages like SMALLTALK it is not necessary that two classes are related
via an inheritance link to use them polymorphically. This means, for example, that you can still use
instances ofComponent andDelegator together in one container object.

Discussion

Since the detection of the problem structure is far away from being an algorithmic, tool supported process,
you should not explicitly look for this problem structure. But since software development is an iterative
process you will find the problem structure while trying to extend or modify your system. Once you have
found the problem structure in your code, you should strongly consider the application of Transforming
Inheritance into Composition.

The relevance of this reengineering pattern is high: In a lot of companies which were early adopters of the
object-oriented paradigm, the maturity of the software engineers concerning object-oriented technology
was low. This resulted in an overuse of inheritance, mainly for code reuse. These software defects can be
removed by the application of the reengineering pattern.

The concept of delegation and the Objectifier design pattern [Zim95] are the fundamentals of this reengi-
neering pattern and the resulting target structure is closely related to the Bridge, Strategy and State design
patterns [GHJV95]. A good understanding of these design patterns helps to use the reengineering pattern.

Tools

The detection of pairs of classes which are never used polymorphically can be done with the tool-setGoose
[BC98][Ciu99]. Goosecan not only detect missing polymorphism but a lot of other design defects which
occur in object-oriented systems.

Since the application of the reengineering pattern relies on the application of refactorings [Opd92] you can
use every tool which supports this technique, such as theRefactoring Browser[RBJ97b] for SMALLTALK

, which is the most advanced refactoring tool. The Refactoring Browser is described and available for free
athttp://st-www.cs.uiuc.edu/ ∼brant/Refactory/ .

For a subset of C++ we implemented a prototype to support refactorings. This tool is calledRefaC++and
described in [Moh98]. RefaC++ can perform a subset of the refactorings presented in [Opd92] and can
also apply the Bridge design pattern automatically.



206 Cluster: Improving Flexibility

Known Uses

Transforming Inheritance into Compositionhas been applied in the following known cases:

• The reengineering pattern was applied with success in the project described in the motivation section.
It was possible to increase the flexibility of the system so that the new requirement (DirectDraw not
available on every Win32s installation) could be fulfilled without problems.

• We are analysing and flexibilising a graphical information system for a German middle-sized en-
terprise. We found several design flaws which have been corrected by applying this reengineering
pattern.

• [RJ96] describes how frameworks evolve. In the White-box Framework design pattern [RJ96] the
engineer is encouraged to use inheritance for reuse because it is easier to understand and to reuse. In
later stages of the framework development inheritance has to be replaced by polymorphic composi-
tion.



207

DISTRIBUTE RESPONSIBILITIES

Author(s): Holger Bär and Oliver Ciupke

Intent

Distribute the responsibilities equally among the classes of an object-oriented system to prevent large,
hardly maintainable and reusable classes.

Applicability

A responsibility is a description of a service offered by a class. It is fulfilled by a set of publicly accessible
methods.

Symptoms. If the responsibilities aren’t distributed among the classes, there will be one or more classes
incorporating a lot of responsibilities. Such classes, calledmultiple responsible classes(MRC) from now
on, result in the following symptoms.

• If you ask for the responsibilities of a MRC, you get long and unclear answers.

• The MRC is used by other classes for different purposes (low level MRC).

• The MRC uses a lot of classes (high level MRC ormanager class).

• Functional enhancements somewhere in the system often require changes in one of the high level
MRCs.

• A MRC is mostly large in lines of code and number of methods, because many responsibilities result
in many methods resulting in many lines of code for concrete classes.

• High level MRCs can hardly be reused because too many design decisions of the specific application
are coded into them.

• Maintenance work on MRCs is hard, because there is no boundary between the different responsi-
bilities, so that it’s unclear where to change the class for a certain maintenance action and which the
effects of the change are.

Reengineering Goals.

• Understandability: classes with many responsibilities are hard to understand, because the responsi-
bilities are mixed together, i. e one can’t identify the individual responsibilities and understand their
implementation and collaboration with other classes in isolation.

• Flexibility: classes with few responsibilities allow fine grained adoptions by subclassing or replacing
a class.

• Reusability: classes are normally reused as a whole. Therefore it’s unlikely that MRCs are reused
because the particular combination of responsibilities needed in its original application is unlikely to
occur in another one.



208 Cluster: Improving Flexibility

Related Reengineering Patterns.

• large classes

• large methods

• structural programming
Classic structural programming principles applied to an OO-language often lead to one central man-
ager class operating on several dumb data classes.

Motivation

Initial Situation. The UML diagram in Figure13.8shows a manager class,AccountManager, together
with two passive classes,AccountData andBarChart. The responsibilities of the manager class are

1. to process user input inOnCalculateSummary,

2. to do the summary calculation usingGet...Transaction methods to query the transaction data from
classAccountData,

3. and to present the results with the help of classScreen.

So the manager class has three responsibilities and implements nearly the whole functionality. Major
design decisions like how the summary is calculated and presented and the reactions on the user input are
hard coded in this class thus making it hardly reusable.

AccountManager

+OnCalculateSummary()

AccountData

+GetFirstTransaction()
+GetNextTransaction()

Screen

+DrawRectangle(value : flo

Figure 13.8: Example of a manager class with two passive classes.

Final Situation. We can distribute the three responsibilities of the manager class among three classes:
UserInteraction, Account andBarChart. In this design all classes besidesUserInteraction have a high
potential for reuse.

Account

+GetFirstTransaction()
+GetNextTransaction()
+CalculateSummary()
+GetSummary()

BarChart

+ShowValue(value : float)
+Update()

UserInteraction

+OnCalculateSummary()

Screen

+DrawRectangle(value : flo

Figure 13.9: The improved example with distributed responsibilities.



209

Structure

The structure of the problem and the target structure differ both between high level MRCs and low level
MRCs.

High level MRC problem structure.

high level MRC

+method A1 for resp. 1()
+method A2 for resp. 1()
+method B for resp. 2()
+...()

used class used classused classused class

Figure 13.10: Problem structure of a high level MRC.

Participants. The high level MRC shows a broad interface with a set of methods per responsibility.

Collaborations. High level MRCs often use many other classes to fulfill their numerous responsibilities.

Low level MRC problem structure.

low level MRC

client class client classclient class client class

Figure 13.11: Problem structure of a low level MRC.

Collaborations. The various clients use different responsibilities of the low level MRC.

High level MRC target structure.

For high level MRCs there is no general target structure. The goal is to distribute the responsibilities. Good
candidates for receiving responsibilities are the used classes. But sometimes it’s necessary to define a new
class likeBarChart of the motivating example. The manager class itself will be reduced in size (lines of
code, methods) or will disappear completely.

Low level MRC target structure.

Participants. The low level MRC has been split into several classes according to the responsibilities of
the MRC and the parts used by the client classes.



210 Cluster: Improving Flexibility

client class client classclient class

part A of MRC part C of MRCpart B of MRC

client class

Figure 13.12: Target structure of a low level MRC.

Collaborations. The client classes of the low level MRC now only use those parts of the MRC they
actually need.

Consequences.

• The responsibilities of the high level MRC are distributed moving the code closer to the data it works
on.

• In case the manager class disappears completely there is no central control any more. The design has
made a step towards autonomous interacting objects.

• The remainder of the high level MRC and the parts of the low level MRC are smaller, easier to
understand and exhibit more potential for reuse.

• Instead of many dependencies on one low level MRC the application of this pattern leads to a set of
classes each with a lower number of dependents.

• The smaller ”part classes” of the low level MRC are more stable than the original class simply
because they encapsulate less design decisions. So together with the previous topic the compilation
times after changes to the system will be reduced.

• In both cases the number of classes may increase.

• The distribution of responsibilities may affect the efficiency of the system.

Process

Detection.

• MRCs are normally the largest classes in a system, program or package both in lines of code and in
number of methods.

• To find high level MRCs search for classes with manager, man, driver, initiator and so on in their
name.

• Classes that use many other classes are also good candidates for high level MRCs. They can be
found by looking for classes with high values for coupling metrics like the CBO metric [CK94].

• Low level MRCs are used for different purposes. So the implementation of their responsibilities are
likely to not communicate with each other. Therefore these classes will often exhibit low cohesion.
There are numerous cohesion metrics, e. g. the TCC metric [BK95].



211

The conjunction of the size and coupling criteria and optionally the name criterion should produce satisfy-
ing results for the detection of high level MRCs as should the conjunction of the size and cohesion criteria
for low level MRCs.

Recipe.

• Search for candidate MRCs as described in the detection section above. The next steps depend on
whether you have detected a high level or a low level MRC.

• High level MRCs
Try to distribute the responsibilities of the manager class to other classes. Good candidates for
receiving responsibilities are the classes used by the manager class. It may be necessary to define a
new class likeBarChart of the motivating example. The manager class itself will be reduced in size
(lines of code, methods) or will disappear completely.

• Low level MRCs

1. Determine the parts of the low level MRC.
There are two ways to determine the parts — one considers the use of the class by its clients,
the other one examines the class’ internal structure:

(a) Analyse the use of the class by its clients. Note for each type of client the features of the
MRC (methods and public attributes) it uses. Find a partition of the feature set so that each
client uses only one or few parts.

(b) Although cohesion metrics indicate whether a class could and should be split, they do not
directly indicate where to split the class. You can get good suggestions for splitting by
computing the minimum cut on the undirected graph containing all methods and attributes
of the class as nodes and all method calls and variable accesses within the class as edges2.
The minimum cut algorithm computes such a partition of the graph in two sets of nodes that
the number of edges from one set to the other is minimised. Splitting a class according to
this partition leads to two classes with minimal communication between them. Of course
this splitting step can be applied to the two sets recursively until the resulting classes are
small enough.

2. You may use one of the mentioned partitions of the MRC or a combination of both to split the
MRC. In cases where there is no optimal partition (e. g. client uses more than one part or there
is more than zero communication between the parts) the partition often needs some manual fine
tuning to end up with a set of reasonable classes.

3. Split the MRC according to the partition and reorganise its context.

Difficulties.

• The detection of MRCs is not very precise, especially for low level MRCs. The key point in detecting
a low level MRC is to recognise that it is used by different types of clients for different purposes.

• Determining the partition of the MRC can hardly be done fully automatically because the parts must
be reasonable classes.

Tools

Several prototype tools have been developed within theFAMOOS project which can help to detect and to
solve this problem.

2All edges have weight 1; parallel edges are allowed for modelling multiple calls and accesses



212 Cluster: Improving Flexibility

• A visualisation of the static system structure at the right level of abstraction, e.g. with the tools within
the tool set GOOSEcan help detecting central classes or subsystems.

• TABLEGEN computes the TCC cohesion metric and also coupling metrics.

• The computation of minimum cuts to determine the partition of a MRC can be done withREV IEW,
a tool also developed within theFAMOOS project.

• GOOSE’ relational representation of design information enables to search for classes with a high
out-degree of usage. The classes with the highest out-degrees are good candidates for being high
level MRCs.

Known Uses

During restructuring in one of theFAMOOS case studies, there was a big class found which incorporated
responsibilities for several different products. This class was split into several pieces to make the program
more flexible with respect to frequent changes [Rit98].



213

USE TYPE INFERENCE

Author: Markus Bauer

Intent

It is hard to understand the structure and the workings of a software system written in a dynamically typed
language because of the lack of type declarations. Therefore add type annotations to the program code
which document the system and which can additionally be used by sophisticated reengineering tools.

Applicability

Apply this pattern when reengineering systems that are written inSmalltalkor in a similar, dynamically
typed programming language, where you have only limited knowledge about the system. Typical situations
could be:

• You have to maintain and/or modify the software system, but you have only limited knowledge about
its inner workings. You are interested to learn, which types of objects of the system are manipulated
by some code your are working on, but this is difficult since you do not have type declarations in
your source code that provide you with that information.

• You want to support a reengineering task by some tools, but these tools rely on type information
for the system’s variables and methods. Most reengineering tools rely on such type information.
Examples include (but are not limited to) theSmalltalk Refactoring Browser[RBJ97b]3 or tools that
calculate software product metrics (like those described in [CK94]).

• You want to reengineer or rewrite the system using a statically typed programming language, but to
achieve this, you need appropriate type declarations for the system’s variables and methods.

Problem

In dynamically typed systems, the lack of static type information (i.e. the lack of type declarations for
variables and method signatures) makes some reengineering tasks difficult or impossible, since such type
information usually represents prominent parts of a system’s semantics.

Motivation

Consider some code fragments4 for a dynamically typed application that manipulates drawings. Such an
application might have a classContainer for storing some objects. Figure13.13shows a methodadd
that is used to add objects to the container.

For reengineering purposes we might be interested in an answer to the following question: What kind of
objects can be stored in the container, that is, of what types are the objects, that are passed as arguments to
theadd -Method?

3The current implementation of the Refactoring Browser does not infer precise types for the system’s entities though, it relies on
(unprecise) heuristics instead.

4We present code examples in a syntax close to Java. Since we deal with dynamically typed code, we just omit Java’s type
declarations.



214 Cluster: Improving Flexibility

add: anObject
contents add: anObject.
anObject draw.
”. . . ”

Figure 13.13: Methodadd in classContainer .

Forces

• To learn about the types of objects that are manipulated by some code you are looking at, you might
consider manually tracing the execution of your code and guess what’s going on in your system, but
for larger systems, this is an infeasible and error-prone task.

• You could also try to capture that information by looking at method and variable names, but in many
legacy systems naming conventions do not exist or do not provide enough information about the
object types and the manipulations that are made with them (see our example above). Even worse,
you can’t be sure that the names do not lead you to wrong conclusions.

• To migrate from a dynamically typed language to a statically typed language, you could apply ap-
proaches that do not rely on type information, like those proposed for the translation of Smalltalk
applications to Java in [EK98]. These approaches simulate Smalltalk’s dynamic type system in Java.
The resulting code, however, is not authentic Java code and is hard to understand and maintain. Such
code additionally has the usual shortcomings of untyped code: it is not type safe.

Solution

Find out what types the variables and method parameters have and put this information into the source
code, using type annotations or comments.

In more detail:

1. Perform a program analysis of your dynamically typed object oriented legacy system.

2. Use the results of the program analysis to determine type information for the program’s variables,
including global and local variables, parameters and return values of methods. Based on this type
information, add type annotations to the program’s source code.

3. Use these type annotations to understand how your legacy system works or as additional semantic
information to more sophisticated reengineering tools.

This technique is calledtype inference, because you infer the type of an object at a certain place in the code
by tracing its way from its creation to the current place.

If we can enrich the code of our example application with type annotations (see figure13.14) by using the
techniques described below we can easily find an answer to the question we asked above: OurContainer
holds points, lines, splines, . . . , so it has obviously something to do with some geometrical shapes that make
up a drawing.

We learn from this example that type annotations like those given in figure13.14make code much easier
to understand and that they contain valuable information about the inner workings of a system.



215

add: anObject
” {Container} × {Point, Line, Spline,. . .} → {} ”
contents add: anObject.
anObject draw
”. . . ”

Figure 13.14: Methodadd annotated with type information.

Process

Type inference usually can’t be done manually for reasonable large and complex applications. Therefore,
we have to automate the task of computing type information for variables and method signatures.

To implement a tool or other means to get the information, we observe that during the runtime of the
system, type information propagates through the system’s expressions and statements: Upon creation, each
object has a certain type assigned to it, and this type information is spread to all expressions and statements
(including variable and method parameter expressions), that do some operations with the object. Thus, to
infer types for the variables and methods of the system, we need to inspect object creations and the data
flow through the system.

Basically we can do this in two ways: We either can execute the application and collect the type informa-
tion we are interested in during its runtime(dynamic type inference) or we can use static program analysis
techniques(static type inference)to analyse the applications source code and compute how the type infor-
mation flows through the application’s expressions. We will cover both approaches in some more detail
below.

Dynamic type inference. With dynamic type inference, we modify the application or its runtime envi-
ronment, to have it record the runtime type information for us.

1. Determine the most common execution paths through your program, that is, determine the most
common usage scenarios of your legacy system. In some cases you might be able to use already
existing testing scenarios for this. In other cases, determining these common usage scenarios might
be difficult, especially if you don’t know much about the system.

2. Instrument the code with instructions that record the data flow through your system and that col-
lect the runtime types of the system’s variables. [RBFDD98] describes how to modify the runtime
libraries of a Smalltalk environment to achieve this with only minor changes to the application’s
code.

3. Run the system and have it execute the most common usage scenarios you collected in step 1.

4. Use the recorded runtime type information to put type annotations into the source code.

Static type inference. With static type inference, we need a tool that reads in the complete source code
of the application and analyses it to construct a data flow graph. This is done by representing the applica-
tion’s expressions as nodes in the graph, and by modelling the dependencies between them as edges. The
dependencies that are taken into account to construct the data flow graph are given by the following rules:

1. An assignmentvar := expr generates a data flow from the right hand side expressionexpr to
the variablevar on the left hand side.



216 Cluster: Improving Flexibility

x := 0.
y := 2.5.
x := y.

2.5
{Float}

y
{Float}

0
{Int}

x
{Int, Float}

Figure 13.15: Data flow graph.

max: b
(self < b)

ifTrue: [ˆb]
ifFalse: [ˆself]

Invocation ofmax:
x := 1 max: 2

a
{Int}

result
{Int}

max

1
{Int}

2
{Int}

x
{Int}

b
{Int}

Figure 13.16: Data flow across method boundaries

2. A variable accessgenerates a data flow from the variable being accessed to the surrounding expres-
sion.

3. A method invocationgenerates a data flow from the actual argument expressions to the formal argu-
ments of the invoked method, and from the result of the invoked method to the invoking expression.

A data flow graph for a short piece of code is shown in figure13.15.

For each node the tool then tries to compute the set of classes the corresponding expression can hold
instances of. It starts by determining type information for the program’s literal expressions and object
creation statements (which are represented as source nodes in the graph) and moves that information along
the edges through the graph. Each node then carries the union set of all type information of its predecessors.
In figure13.15, for example, the node forx carries the type information{Int, Float}, since it depends on
the type information of the nodes fory and0.

Some subtle problems arise, whenever method invocations cause data flows across method boundaries (as
given by rule 3). Such a case is shown in figure13.16.

There are some well proven techniques to allow for an analysis which keeps track of these inter-method
data flows in an efficient and practicable way. One of these is Agesen’s Cross Product Algorithm [Age95]5.

5There are other algorithms that also allow the tracking of data flow across method boundaries, for example [PS91], [OPS92],
[PC94], but Agesen’s algorithm is superior to most of these, because it is easy to understand and computes precise type information



217

The basic idea is to create separate sub graphs for each method and link all those subgraphs together in an
appropriate and efficient way.

After the graph has been complexly built up and all type information has been propagated through it,
the type information associated with the graph’s nodes can be used to annotate the source code of the
application.

Discussion

A problem of using type inference to reveal some information about a legacy system arises from the fact
that we analyse the data flow through an application. To make our approach work, we have to analyse
the complete source code of an executable application (including libraries), or, if we are using dynamic
type inference, we have to execute an adapted version of the system. This might be a problem in some
cases when parts of the source code are not available and/or a runnable version of the system cannot be
produced. Furthermore, frameworks and class libraries cannot be analysed without application code using
or instantiating them. Then, however, the inferred types are only valid in the specialised context of the
particular application.

Static type inference algorithms usually have to overcome some difficulties: static analysis is complex
and the results are often unprecise. Agesen’s static type inference algorithm, as sketched above, addresses
these difficulties in an appropriate way6. However, since the algorithm is very complicated it is difficult to
implement it in a correct way and produce a reliable tool out of it. This is an issue, if you can’t use one of
the already existing tools (see for example [Li98]).

However, once a tool for performing such an analysis has been built, it can be used on other reengineering
projects as well and then it quickly pays of its rather high development costs.

Dynamic type inference has serious limitations when being applied to larger systems: You have to ensure
that the most important parts of the system are covered by the analysis in a sufficient way, which might not
be feasible for larger systems if you do not have test cases or usage scenarios available.

Related Reengineering Patterns

Type annotations document the inner workings of a legacy system. We can therefore see type inference as
a technique to improve your knowledge about the legacy system. Thus, this pattern relates with all other
reengineering patterns that describereverse engineering techniques, i.e. analyses of the source code of
legacy systems to extract additional semantic information and improve the understanding of the systems.

Known Uses

ObjectShare has used type annotations (like those that can be computed by applying this pattern) to docu-
ment large parts of the source code to theVisualworks Smalltalkenvironment. This emphasises that type
annotations are of great help understanding source code.

The GOOSE tool set (and related tools) that support the reengineering of C++ applications by visualising
software structures [Ciu97], checking design heuristics [BC98] and calculating software metrics [Mar97]
can analyse Smalltalk applications after type inference is used and the source code is enriched with type
annotations.

in a very efficient way[Age94].
6A detailed discussion of the algorithm, especially regarding complexity and precision can be found in [Age95] or in [Bau98].



218 Cluster: Improving Flexibility

The University of Stuttgart, Germany, has developed a tool calledSmalltalk Explorerwhich is used to
explore existing Smalltalk applications. It heavily relies on the type inference algorithm presented here.
Type annotations are used to allow for an easy navigation through unknown Smalltalk code by documenting
which classes are manipulating which other classes and by introducing hyperlinks between them[Li98].

The type inference algorithm is also used to facilitate a mostly automatic translation of dynamically typed
Smalltalk applications into statically typed Java applications [Bau98]. Since most of Smalltalk’s concepts
can be mapped upon suitable Java concepts the most prominent issue is to infer appropriate static types for
the resulting Java code. This is done by computing type annotations (as described above) and transforming
them into type declarations. In more detail, to map a type annotation to a type declaration, a class must
be found (or created by refactorings), that is a common abstraction to all classes included in the type
annotation.



Appendix A

Glossary

Class versioning.
Each change to a class results in a new, distinct class definition; each object belongs to one class
version, which is thus a snapshot of the class definition at a certain point in the life of a system
[BH89].

Conversion.
The physical storage format of objects is transformed to match a different class definition [LH90].

Design Pattern.
A proven design that describes the core of a solution to a problem which occurs over and over again
in OO software design, together with its range of applicability. The solution usually has developed
and evolved over time [GHJV95].

Design recovery.
A subset of reverse engineering in which domain knowledge, external information, and deduction
or fuzzy reasoning are added to the observations of the the subject system. The objective of de-
sign recovery is to identify meaningful higher-level abstractions beyond those obtained directly by
examining the system itself [CCI90].

Filtering and screening.
Objects are wrapped with exception handlers that hide differences between different versions of the
same class [SZ86].

Forward engineering.
The traditional process of moving from high-level abstractions and logical, implementation-independent
designs to the physical implementation of a system [CCI90].

Framework.
A framework is an abstract object-oriented design together with a library of standard software com-
ponents (abstract classes and templates as well as concrete components) that can be specialised,
instantiated and combined to construct a number of systems with similar properties for a specific
application domain [Cas96] [JF88].

Global reorganisation of hierarchies.
Algorithms put inheritance hierarchies in a normal form that minimises the number of classes and
relationships and suppresses redundant definitions [Che96] [LBSL91].

Hierarchy maintenance.
Guidelines and semi-automatic algorithms are provided to reorganise inheritance hierarchies for im-
proved reusability [Put94].



220 Glossary

Incremental reorganisation of hierarchies.
Algorithms analyse and reorganise subclassing relationships to eliminate the need for redefinitions
in inheritance relationships and to factor common functionality in a hierarchy [Cas92] [DDHL96].

Law of Demeter.
Reference and calling dependencies between methods and variables are changed to follow a modular
programming style [LHR88].

Legacy System.
A system is called legacy if it exhibits the following properties: It is a production system carrying
out business-critical tasks. It has been developed with older technology, or with older versions of an
existing technology. It can no longer be easily adapted to meet changing requirements.

Method factorisation.
Code fragments common to several methods are extracted and put in separate methods to maximise
code sharing [OJ90].

Metrics-based analysis.
A set of quality statistics on oo code is computed and then used to detect design problems and guide
re-engineering activities.

Object-oriented views.
An abstraction layer is inserted between subsystems in an oo design to limit the scope of changes to
single subsystems and to map different versions of subsystems to each other [Bra92] [RR95].

Pattern restructuring.
Modification primitives on oo programs structured according to specific kinds of patterns and archi-
tectures are formally specified to ensure the preservation of behaviour [HS96b].

Pattern-directed re-engineering.
Standard software structures serve to document and analyse oo applications, and serve as targets
structures for re-engineering [Yel96] [Zim95].

Redocumentation.
A form of restructuring where the resulting semantically-equivalent representation is an alternative
view intended for a human audience [CCI90].

Reengineering.
The examination and alteration of a subject system to reconstitute it in a new form and the subsequent
implementation of the new form [CCI90].

Refactoring.
Frequent high-level re-engineering operations are identified and specified to preserve class behaviour
across modifications [JO93] [OJ90].

Restructuring.
A transformation from one form of representation to another at the same relative level of abstraction.
The new representation is meant to preserve the semantics and the external behaviour of the original
[CCI90].

Reverse engineering.
The process of analysing a subject system with two goals in mind:

1. to identify the system’s components and their interrelationships; and,

2. to create representations of the system in another form or at a higher level of abstraction
[CCI90].



221

Schema evolution.
A set of operations specifies the kinds of high-level revisions to an oo design that occur during
conceptual modelling [LM96].

Schema modification primitives.
A set of elementary modification operations, all specified so as to preserve basic integrity constraints,
suffices to define any other more complex modification operation [BKKK87] [Zic92].

Software maintenance.
Modification of a software product after delivery to correct faults, to improve performance or other
attributes, or to adapt the product to a changed environment [IEE83].

Tailoring and excuses.
Language mechanisms allow to redefine inherited properties and to accommodate exceptions in spe-
cialisation hierarchies [Bor88].

Transposed files.
By storing object variables in different tables, adding, updating and deleting variables is possible
without reformatting records [ALC91].

Visual analysis of oo software.
Static and dynamic properties of oo programs are represented graphically to identify design and
implementation problems [PHKV93] [SSC96].



222 Glossary



Bibliography

[ABW98] S. R. Alpert, Kyle Brown, and B. Woolf.Design Patterns in Smalltalk. Addison-Wesley,
1998. 179, 179, 179, 185, 185, 185

[Age94] Ole Agesen. Constrained-based type inference and parametric polymorphism. InProceed-
ings of the First International Static Analysis Symposium (SAS ’94), volume 864 ofLNCS.
Springer-Verlag, 1994.216

[Age95] Ole Agesen. The cartesian product algorithm. In W. Olthoff, editor,Proceedings ECOOP’95,
LNCS 952, pages 2–26, Aarhus, Denmark, August 1995. Springer-Verlag.216, 217

[ALC91] J. Andany, M. Ĺeonard, and Palisser C. Management of schema evolution in databases. In
11th VLDB Proceedings, pages 3–20, September 1991.221

[Arn92] Robert S. Arnold.Software Reengineering. IEEE Computer Society Press, Los Alamitos,
CA, 1992. 8

[Bak92] Brenda S. Baker. A Program for Identifying Duplicated Code.Computing Science and
Statistics, 24:49–57, 1992.190, 191

[Bak95] Brenda S. Baker. On Finding Duplication and Near-Duplication in Large Software Systems.
In Proc. Second IEEE Working Conference on Reverse Engineering, pages 86–95, July 1995.
191

[Bau98] Markus Bauer. Reengineering von Smalltalk nach Java. Master’s thesis, Institut für Algo-
rithmen und Datenstrukturen, Universtät Karlsruhe, 1998.217, 218

[Bau99] Markus Bauer. Analyzing software systems by using combinations of metrics. In Oliver
Ciupke and St́ephane Ducasse, editors,Proceedings of the ECOOP’99 Workshop on Expe-
riences in Object-Oriented Re-Engineering, number 26/6/99 in FZI Report, June 1999.21,
27, 27

[BC98] Holger B̈ar and Oliver Ciupke. Exploiting design heuristics for automatic problem detec-
tion. In St́ephane Ducasse and Joachim Weisbrod, editors,Proceedings of the ECOOP Work-
shop on Experiences in Object-Oriented Re-Engineering, number 6/7/98 in FZI Report, June
1998. 205, 217

[BCG+87] Jay Banerjee, Hong-Tai Chou, Jorge F. Garza, Won Kim, Darrell Woelk, Nat Ballou, and
H. Kim. Data model issues for object-oriented applications.ACM TOOIS, 5(1), January
1987. 96

[BE96] T. Ball and S. Erick. Software visualization in the large.IEEE Computer, pages 33–43,
1996. 31, 31, 33, 33, 141

[Bec94] Kent Beck. Death to case statements.Smalltalk Report, pages 8–9, January 1994.179, 185

[Bec97] Kent Beck.Smalltalk Best Practice Patterns. Prentice-Hall, 1997.9, 66, 69, 71, 115, 145,
182



224 BIBLIOGRAPHY

[BH89] Anders Bjornerstedt and Christer Hulten. Version control in an object-oriented architecture.
In W. Kim and F. Lochovsky, editors,Object-Oriented Concepts, Databases and Applica-
tions, pages 451–485. Addison-Wesley/ACM Press, Reading, Mass., 1989.219

[BK95] J. M. Bieman and B. K. Kang. Cohesion and reuse in an object-oriented system.Proceedings
of the ACM Symposium on Software Reusability, April 1995. 25, 210

[BKKK87] Jay Banerjee, Won Kim, H-J. Kim, and H.F. Korth. Semantics and implementation of schema
evolution in object-oriented databases. InProceedings ACM SIGMOD ’87, pages 311–322,
December 1987. Published as Proceedings ACM SIGMOD ’87, volume 16, number 3.221

[BMMM98] William J. Brown, Raphael C. Malveau, Hays W. “Skip” McCormickIII, and Thomas J.
Mowbray. AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis. Wiley
and Sons, 1998.11, 138, 168, 189, 190

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stad.
Pattern-Oriented Software Architecture – A System of Patterns. John Wiley, 1996.91, 128

[Boo94] Grady Booch.Object Oriented Analysis and Design with Applications. The Benjamin Cum-
mings Publishing Co. Inc., 2nd edition, 1994.109

[Bor88] A. Borgida. Modelling class hierarchies with contradictions. InSIGMOD Record (special
issue on SIGMOD ’88), pages 434–443, September 1988.221

[Bra92] Svein Erik Bratsberg.Unified Class Evolution by Object-Oriented Views. PhD thesis, Octo-
ber 1992. 220

[BRJ98] Grady Booch, James Rumbaugh, and Ivar Jacobson.The Unified Modeling Language User
Guide. Addison-Wesley, 1998. ISBN: 0-210-57168-4.9

[Bro87] Frederick P. Brooks. No silver bullet.IEEE Computer, 20(4):10–19, April 1987.125, 134

[Bro96] Kyle Brown. Design reverse-engineering and automated design pattern detection in
smalltalk. Technical Report TR-96-07, North Carolina State University, 1996.9, 128

[BS95] Michael Brodie and Michael Stonebraker.Migrating Legacy Systems: Gateways, Interfaces
and the Incremental Approach. Morgan Kaufman, 1995.168

[BW88] Richard Bird and Philip Wadler.Introduction to Functional Programming. International
Series in Computer Science. Prentice Hall, 1988.86

[Cas91] Eduardo Casais.Managing Evolution in Object Oriented Environments: An Algorithmic
Approach. Ph.D. thesis, Centre Universitaire d’Informatique, University of Geneva, May
1991. 10

[Cas92] Eduardo Casais. An incremental class reorganization approach. In O. Lehrmann Madsen,
editor,Proceedings ECOOP’92, LNCS 615, pages 114–132, Utrecht, The Netherlands, June
1992. Springer-Verlag.10, 96, 220

[Cas93] Eduardo Casais.Object-Oriented Systems, volume 1, chapter Automatic Reorganization of
Object-Oriented Hierachies: A Case Study, pages 95–115. 1993.96

[Cas94] Eduardo Casais. Automatic reorganization of object-oriented hierarchies: A case study.
Object-Oriented Systems, 1(2):95–115, December 1994.10

[Cas95a] Eduardo Casais. Managing class evolution in object-oriented systems. In O. Nierstrasz
and D. Tsichritzis, editors,Object-Oriented Software Composition, pages 201–244. Prentice
Hall, 1995. 10



BIBLIOGRAPHY 225

[Cas95b] Eduardo Casais.Object-Oriented Software Composition, chapter Managing Class Evolution
in Object-Oriented Systems, pages 201–244. Prentice Hall, 1995.96

[Cas96] Eduardo Casais.An Experiment in Framework Development. John Wiley & Sons, October
1996. 219

[Cas98] Eduardo Casais. Re-engineering object-oriented legacy systems.Journal of Object-Oriented
Programming, 10(8):45–52, January 1998.11

[CC92] Elliot J. Chikofsky and James H. Cross. Reverse engineering and design recovery: A tax-
onomy. In Robert S. Arnold, editor,Software Reengineering, pages 54–58. IEEE Computer
Society Press, 1992.10

[CCI90] Elliot J. Chikofsky and James H. Cross II. Reverse engineering and design recovery: A
taxonomy. IEEE Software, pages 13–17, January 1990.10, 15, 111, 219, 219, 220, 220,
220, 220

[Che96] J.-B. Chen. Generation and reorganization of subtype hierarchies. InJOOP, vol. 8, no. 8,
pages 26–35, January 1996.219

[Ciu97] Oliver Ciupke. Analysis of object-oriented programs using graphs. In Jan Bosch and Stuart
Mitchell, editors,Object-Oriented Technology – Ecoop’97 Workshop Reader, volume 1357
of Lecture Notes in Computer Science, pages 270–271, Jyväskyl̈a, Finnland, March 1997.
Springer Verlag.217

[Ciu99] Oliver Ciupke. Automatic Detection of Design Problems in Object-Oriented Reengineering.
In Proceedings of the 30th International Conference on Technology of Object-Oriented Lan-
guages and Systems (TOOLS USA’99). IEEE Computer Society Press, August 1999.21,
205

[CK94] Shyam R. Chidamber and Chris F. Kemerer. A metrics suite for object oriented design.IEEE
Transactions on Software Engineering, 20(6):476–493, June 1994.23, 24, 25, 25, 26, 26,
210, 213

[CKR99] Jens Coldewey, Wolfgang Keller, and Klaus Renzel.Architectural Patterns for Business
Information Systems. Publisher Unknown, 1999. To Appear.131

[Cop92] James O. Coplien.Advanced C++: Programming Styles and Idioms. Addison-Wesley, 1992.
9, 115

[CS95] N. I. Churcher and M. J. Shepperd. A metrics suite for object oriented design.IEEE Trans-
actions on Software Engineering, 21(3):263–265, March 1995.23

[CT97] Eduoardo Casais and Antero Taivalsaari. Object-oriented software evolution and re-
engineering (special issue).Journal of Theory and Practice of Object Systems (TAPOS),
3(4):233–301, 1997.8

[CY91] Peter Coad and Edward Yourdon.Object-Oriented Analysis. Prentice Hall, London, 2 edi-
tion, 1991. 81, 88

[DA96] P. Dyson and B. Anderson. State patterns. InFirst European Conference on Pattern Lan-
guages of Programming, 1996. 200

[Dav95] Alan Mark Davis.201 Principles of Software Development. McGraw-Hill, 1995. 8, 125

[DD99] Serge Demeyer and Stéphane Ducasse. Metrics, do they really help ? In Jacques Malen-
fant, editor,Proceedings LMO’99 (Languages et Modèlesà Objets), pages 69–82. HERMES
Science Publications, Paris, 1999.21, 29



226 BIBLIOGRAPHY

[DDHL96] H. Dicky, C. Dony, M. Huchard, and T. Libourel. On automatic class insertion with over-
loading. InSIGPLAN Notices, vol. 31, no 10 (special issue on OOPSLA’96), pages 251–267,
October 1996.220

[DDL99] Serge Demeyer, Stéphane Ducasse, and Michele Lanza. A hybrid reverse engineering plat-
form combining metrics and program visualization. In Francoise Balmas, Mike Blaha, and
Spencer Rugaber, editors,WCRE’99 Proceedings (6th Working Conference on Reverse En-
gineering). IEEE, October 1999.21, 21

[DDN99] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Finding refactorings via change
metrics. working paper, April 1999.29, 141

[DG98] Serge Demeyer and Harald Gall. Workshop on object-oriented re-engineering (WOOR’97).
Software Engineering Notes, 23(1):28–29, January 1998.145

[EBD99] Letha Etzkorn, Jagdish Bansiya, and Carl Davis. Design and code complexity metrics for oo
classes.Journal of Object-Oriented Programming, pages 35–40, 1999.23

[EDL98] Letha Etzkorn, Carl Davis, and Wei Li. A practical look at the lack of cohesion in methods
metric. Journal of Object-Oriented Programming, 11(5):27–34, September 1998.25

[EK98] R. L. Engelbrecht and D. G. Kourie. Issues in translating Smalltalk to Java. In Kai Koskimies,
editor,Compiler Construction 98, volume 1383 ofLNCS. Springer, 1998.214

[EL96] K. Erni and C. Lewerentz. Applying design-metrics to object-oriented frameworks. In
Proceedings of the 3rd International Software Metrics Symposium. IEEE Computer Soci-
ety Press, 1996.29

[FMvW97] Gert Florijn, Marco Meijers, and Pieter van Winsen. Tool support for object-oriented pat-
terns. In Mehmet Aksit and Satoshi Matsuoka, editors,Proceedings ECOOP’97, LNCS
1241, pages 472–495, Jyvaskyla, Finland, June 1997. Springer-Verlag.9, 96

[FNP98a] Fabrzio Fioravanti, Paolo Nesi, and Sandro Perli. Assessment of system evolution through
characterization. InICSE’98 Proceedings (International Conference on Software Engineer-
ing). IEEE Computer Society, 1998.137, 137

[FNP98b] Fabrzio Fioravanti, Paolo Nesi, and Sandro Perli. A tool for process and product assess-
ment of C++ applications. InCSMR’98 Proceedings (Euromicro Conference on Software
Maintenance and Reengineering). IEEE Computer Society, 1998.137, 137

[Fow97a] Martin Fowler.Analysis Patterns: Reusable Objects Models. Addison-Wesley, 1997.128

[Fow97b] Martin Fowler.UML Distilled. Addison-Wesley, 1997.9

[Fow99] Martin Fowler.Refactoring: Improving the Design of Existing Code. Addison-Wesley, 1999.
10, 21, 115, 138, 143

[FP97] Norman Fenton and Shari Lawrence Pfleeger.Software Metrics: A Rigorous and Practical
Approach. International Thomson Computer Press, London, UK, second edition, 1997.8,
135

[FY97] Brian Foote and Joseph W. Yoder. Big Ball of Mud. InProceedings of PLop’97, 1997. Fourth
Conference on Patterns Languages of Programs (PLoP ’97/EuroPLoP ’97), Technical Report
WUCS-97-34 (PLoP ’97/EuroPLoP ’97), September 1997 Department of Computer Science,
Washington University.167

[Gam91] E. Gamma.Objektorientierte Software-Entwicklung am Beispiel von ET++: Klassenbiblio-
thek, Werkzeuge, Design. PhD thesis, 1991.90



BIBLIOGRAPHY 227

[GD97] Thomas Grothehen and Klaus R. Dittrich. The methood approach:
Measures, transformation rules and heuristics for object-oriented design.
http://www.ifi.unizh.ch/dbtg/MeTHOOD/index.html, October 1997.96

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.Design Patterns. Addison
Wesley, Reading, MA, 1995.9, 15, 90, 115, 128, 144, 167, 168, 179, 179, 180, 185, 185,
196, 198, 200, 200, 200, 200, 203, 205, 219

[GR95] Adele Goldberg and Kenneth S. Rubin.Succeeding With Objects: Decision Frameworks for
Project Management. Addison-Wesley, Reading, Mass., 1995.8, 109

[Har69] Frank Harary.Graph Theory. Series in Mathematics. Addison-Wesley, 1969.84

[HEH+96] J.-L. Hainaut, V. Englebert, J. Henrard, J.-M. Hick, and D. Roland. Database reverse engi-
neering: From requirements to CARE tools. InAutomated Software Engineering, Vol. 3 Nos
1/2, June 1996. 1996. 131, 131

[Hel95] Jonathan Helfman. Dotplot Patterns: a Literal Look at Pattern Languages.TAPOS, 2(1):31–
41, 1995. 190, 191

[HM95] M. Hitz and B. Montazeri. Measure coupling and cohesion in object-oriented systems.Pro-
ceedings of International Symposium on Applied Corporate Computing (ISAAC’95), October
1995. 24, 25

[HM96] M. Hitz and B. Montazeri. Chidamber and kemerer’s metrics suite; a measurement theory
perspective.IEEE Transactions on Software Engineering, 22(4):267–271, April 1996.24,
25

[Hon98] Koen De Hondt.A Novel Approach to Architectural Recovery in Evolving Object-Oriented
Systems. Ph.D. thesis, Vrije Universiteit Brussel - Departement of Computer Science - Plein-
laan 2, Brussels - Belgium, December 1998.141

[HS96a] Brian Henderson-Sellers.Object-Oriented Metrics: Measures of Complexity. Prentice-Hall,
1996. 8, 24

[HS96b] W. Hürsch and L. Seiter. Automating the evolution of object-oriented systems. InProceed-
ings of ISOTAS’96, LNCS 1049, pages 2–21, Japan, March 1996. JSSST-JAIST.97, 220

[Hum97] Watts Humphrey.Introduction to the Personal Software Process. SEI Series in Software
Engineering. Addison Wesley, 1997.22

[IEE83] IEEE. Ieee standard. Technical Report 729-1983, IEEE, 1983.221

[JCJO92] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Overgaard.Object-Oriented
Software Engineering – A Use Case Driven Approach. Addison-Wesley/ACM Press, Read-
ing, Mass., 1992.128

[JF88] Ralph E. Johnson and Brian Foote. Designing reusable classes.Journal of Object-Oriented
Programming, 1(2):22–35, 1988.219

[JGJ97] Ivar Jacobson, Martin Griss, and Patrik Jonsson.Software Reuse. Addison-Wesley/ACM
Press, 1997.109, 118

[JGR99] Mehdi Jazayeri, Harald Gall, and Claudio Riva. Visualizing software release histories: The
use of color and third dimension. InICSM’99 Proceedings (International Conference on
Software Maintenance). IEEE Computer Society, 1999.141

[JO93] Ralph E. Johnson and William F. Opdyke. Refactoring and aggregation. InObject Technolo-
gies for Advanced Software, First JSSST International Symposium, volume 742 ofLecture
Notes in Computer Science, pages 264–278. Springer-Verlag, November 1993.10, 21, 90,
92, 92, 93, 93, 93, 94, 94, 96, 96, 168, 168, 185, 204, 220



228 BIBLIOGRAPHY

[Joh92] Ralph E. Johnson. Documenting frameworks using patterns. InProceedings OOPSLA ’92
ACM SIGPLAN Notices, pages 63–76, October 1992.9

[JSZ97] Jens H. Jahnke, Wilhelm Schäfer, and Albert Z̈undorf. Generic Fuzzy Reasoning Nets
as a Basis for Reverse Engineering Relational Database Applications. InProceedings of
ESEC/FSE’97, number 1301 in LNCS, pages 193–210, 1997.131, 131

[KC98] Wolfgang Keller and Jens Coldewey. Accessing relational databases: A pattern language. In
Robert Martin, Dirk Riehle, and Frank Bushmann, editors,Pattern Languages of Program
Design 3, pages 313–343. Addison-Wesley, 1998.131

[KG88] Michael F. Kleyn and Paul C. Gingrich. Graphtrace – understanding object-oriented systems
using concurrently animated views. InProceedings OOPSLA ’88, ACM SIGPLAN Notices,
pages 191–205, November 1988. Published as Proceedings OOPSLA ’88, ACM SIGPLAN
Notices, volume 23, number 11.31

[KLRZ94] D. Kimelman, B. Leban, T. Roth, and D. Zernik. Reduction of visual complexity in dynamic
graphs. In R. Tamassia and I. G. Tollis, editors,Graph Drawing, volume 894 ofLecture Notes
in Computer Science, pages 218–225. DIMACS, Springer-Verlag, October 1994. ISBN 3-
540-58950-3.83

[KM96] Kai Koskimies and Hanspeter M̈ossenb̈ock. Scene: Using scenario diagrams and active
text for illustrating object-oriented programs. InProceedings of the 18th International
Conference on Software Engineering, pages 366–375. IEEE Computer Society Press, March
1996. 83

[Kon97] Kostas Kontogiannis. Evaluation Experiments on the Detection of Programming Patterns
Using Software Metrics. In Ira Baxter, Alex Quilici, and Chris Verhoef, editors,Proceedings
Fourth Working Conference on Reverse Engineering, pages 44 – 54. IEEE Computer Society,
1997. 137

[Kos98] Kai Koskimies. Extracting high-level views of UML class diagrams. InProceedings of the
Nordic Workshop on Software Architecture, NOSA’98, number 14/98 in Research Report.
Department of Computer Science, University of Karlskrona/Ronneby, August 1998.87

[Lak96] John Lakos.Large Scale C++ Software Design. Addison-Wesley, 1996.9

[Lan99] Michele Lanza. Combining metrics and graphs for object oriented reverse engineering. Mas-
ter’s thesis, University of Bern, 1999.21

[LBSL91] K. Lieberherr, P. Bergstein, and I. Silva-Lepe. From objects to classes: Algorithms for
optimal object-oriented design.Software Engineering Journal, pages 205–228, July 1991.
219

[Lea96] Doug Lea. Concurrent Programming in Java – Design principles and Patterns. The Java
Series. Addison-Wesley, 1996.128

[LH89] K. Lieberherr and I. Holland. Assuring a good style for object-oriented programs.IEEE
Software, pages 38–48, September 1989.66

[LH90] Barbara Staudt Lerner and A. Nico Habermann. Beyond schema evolution to database re-
organization. InProceedings OOPSLA/ECOOP’90, ACM SIGPLAN Notices, pages 67–76,
October 1990. Published as Proceedings OOPSLA/ECOOP’90, ACM SIGPLAN Notices,
volume 25, number 10.219

[LH93] W. Li and S. Henry. Maintenance metrics for the object oriented paradigm.IEEE Proceed-
ings of the First International Software Metrics Symposium, pages 52–60, May 1993.24,
25



BIBLIOGRAPHY 229

[LHR88] Karl J. Lieberherr, Ian M. Holland, and Arthur Riel. Object-oriented programming: An
objective sense of style. InProceedings OOPSLA ’88, ACM SIGPLAN Notices, pages 323–
334, November 1988. Published as Proceedings OOPSLA ’88, ACM SIGPLAN Notices,
volume 23, number 11.220

[Li98] Jinhua Li. Maintenance support for untyped object-oriented systems.
http://www.informatik.uni-stuttgart.de/ifi/se/people/li/, 1998.217, 218

[Lie95] Karl J. Lieberherr.Adaptive Object-Oriented Software – The Demeter Method. PWS Pub-
lishing Company, 1995.97

[LK94] Mark Lorenz and Jeff Kidd. Object-Oriented Software Metrics: A Practical Approach.
Prentice-Hall, 1994.8, 23, 24, 29

[LM96] Q. Li and D. McLeod. Object flavor evolution through learning in an object-oriented database
system. InProceedings of the 2nd International Conference on Expert Database Systems,
pages 241–256. George Mason University, April 1996.220

[LPM+97] B. Lague, D. Proulx, E. Merlo, J. Mayrand, and J. Hudepohl. Assessing the Benefits of Incor-
porating Function Clone Detection in a Development Process. InProceedings of ICSM’97.
IEEE, 1997. 191

[LRP95] John Lamping, Ramana Rao, and Peter Pirolli. A focus + context technique based on hyper-
bolic geometry for visualising larges hierarchies. InProceedings of CHI’95, 1995. 31

[LS98] Claus Lewerentz and Frank Simon. A Product Metrics Tool Integrated into a Software De-
velopment Environment. InObject-Oriented Technology Ecoop’98 Workshop Reader, LNCS
1543, pages 256–257, 1998.137, 137

[Mar97] Radu Marinescu.The Use of Software Metrics in the Design of Object-Oriented Systems.
Diploma thesis, University Politehnica Timisoara - Fakultat fur Informatik, October 1997.
217

[Mar98] Radu Marinescu. Using object-oriented metrics for automatic design flaws in large scale
systems. InObject-Oriented Technology Ecoop’98 Workshop Reader, LNCS 1543, pages
252–253, 1998.137

[Mei96] Marco Meijers. Tool support for object-oriented design patterns. Master’s thesis, CS De-
partment of Utrecht University, August 1996.96

[Mey96] Scott Meyers.More Effective C++. Addison-Wesley, 1996.9, 115

[Mey97] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, second edition,
1997. 9, 145, 147

[Mey98] Scott Meyers.Effective C++. Addison-Wesley, second edition, 1998.9, 115

[MLM96a] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the automatic detection of function
clones in a software system using metrics. InInternational Conference on Software System
Using Metrics, pages 244–253, 1996.137, 137

[MLM96b] Jean Mayrand, Claude Leblanc, and Ettore M. Merlo. Automatic detection of function clones
in a software system using metrics. InProceedings of ICSM (International (International
Conference on Software Maintenance), 1996. 190

[MN97] Gail Murphy and David Notkin. Reengineering with reflexion models: A case study.IEEE
Computer, 17(2):29–36, August 1997.129



230 BIBLIOGRAPHY

[Moh98] Berthold Mohr. Reorganisation objektorientierter Systeme. Diplomarbeit, Forschungszen-
trum Informatik (FZI) an der Universität Karlsruhe (TH), Karlsruhe, Germany, March 1998.
93, 93, 94, 95, 205

[Moo96] Ivan Moore. Automatic inheritance hierarchy restructuring and method refactoring. InPro-
ceedings of OOPSLA ’96 Conference, pages 235–250. ACM Press, 1996.10

[Nes88] Paolo Nesi. Managing OO project better.IEEE Software, July 1988. 137

[OJ90] W. F. Opdyke and R. E. Johnson. Refactoring: An aid in designing application frameworks
and evolving object-oriented systems. InProceedings of SOOPPA, ACM, November 1990,
pages 145–160, 1990.220, 220

[OJ93] William F. Opdyke and Ralph E. Johnson. Creating abstract superclasses by refactoring. In
Proceedings of the 1993 ACM Conference on Computer Science, pages 66–73. ACM Press,
1993. 10

[Opd92] William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, University of
Illinois, 1992. 10, 205, 205

[OPS92] Nicholas Oxhøj, Jens Palsberg, and Michael I. Schwartzbach. Making type inference practi-
cal. In O. Lehrmann Madsen, editor,Proceedings ECOOP’92, LNCS 615, pages 329–349,
Utrecht, The Netherlands, June 1992. Springer-Verlag.216

[OQC97] Georg Odenthal and Klaus Quibeldey-Cirkel. Using patterns for design and documentation.
In Proceedings of ECOOP’97, LNCS 1241, pages 511–529. Springer-Verlag, June 1997.9

[PB94] William J. Premerlani and Michael R. Blaha. An approach for reverse engineering of rela-
tional databases.Communications of the ACM, 37(5):42–49, May 1994.131, 131

[PC94] J. Plevyak and A. A. Chien. Precise concrete type inference for object-oriented languages.
ACM SIGPLAN Notices, 29(10):324–324, October 1994.216

[PHKV93] Wim De Pauw, Richard Helm, Doug Kimelman, and John Vlissides. Visualizing the behavior
of object-oriented systems. InProceedings OOPSLA ’93, ACM SIGPLAN Notices, pages
326–337, October 1993. Published as Proceedings OOPSLA ’93, ACM SIGPLAN Notices,
volume 28, number 10.31, 31, 83, 221

[PK82] J. Pustell and F. Kafatos. A high speed, high capacity homology matrix: Zooming through
sv40 and polyoma.Nucleid Acids Research, 10(15):4765–4782, 1982.191

[PK98] Lutz Prechelt and Christian Krämer. Functionality versus practicality: Employing exist-
ing tools for recovering structural design patterns.Journal of Universal Computer Science,
4(12):866–882, December 1998.9

[Pre94] Roger S. Pressman.Software Engineering: A Practitioner’s Approach. McGraw-Hill, 1994.
8

[PS91] Jens Palsberg and Michael I. Schwartzbach. Object-oriented type inference. InProceed-
ings OOPSLA ’91, ACM SIGPLAN Notices, pages 146–161, November 1991. Published as
Proceedings OOPSLA ’91, ACM SIGPLAN Notices, volume 26, number 11.216

[Put94] A. Putkonen. A Methodology Supporting Analysis, Design and Maintenance of Object-
Oriented Systems. PhD thesis, University of Kuopio, Finland, 1994.219

[RBFDD98] Pascal Rapicault, Mireille Blay-Fornarino, Stéphane Ducasse, and Anne-Marie Dery. Dy-
namic type inference to support object-oriented reengineering in smalltalk, 1998. Proceed-
ings of the ECOOP’98 International Workshop Experiences in Object-Oriented Reengineer-
ing, abstract in Object-Oriented Technology (ECOOP’98 Workshop Reader forthcoming
LNCS). 215



BIBLIOGRAPHY 231

[RBJ97a] Don Roberts, John Brant, and Ralph Johnson. A refactoring tool for smalltalk. http://st-
www.cs.uiuc.edu/users/brant/Refactory/Refac toringBrowser.html, April 1997.93, 93, 94,
96

[RBJ97b] Don Roberts, John Brant, and Ralph E. Johnson. A refactoring tool for smalltalk.Journal of
Theory and Practice of Object Systems (TAPOS), 3(4):253–263, 1997.10, 21, 37, 116, 205,
213

[RD98] Matthias Rieger and Stéphane Ducasse. Visual detection of duplicated code. In Serge De-
meyer and Jan Bosch, editors,Object-Oriented Technology (ECOOP’98 Workshop Reader),
LNCS 1543, pages 75–76. Springer-Verlag, July 1998.37

[RE93] Roxie Rochat and Juanita Ewing. Smalltalk debugging techniques.The Smalltalk Report,
2(9):18–23, jul 1993.147

[Ree96] Trygve Reenskaug.Working with Objects: The OOram Software Engineering Method. Man-
ning, 1996. 109, 128

[Rie96] Arthur J. Riel.Object-Oriented Design Heuristics. Addison-Wesley, May 1996.9, 28

[Rit98] Fabian Ritzmann. Reverse engineering of large scale software systems. Diplomarbeit, Uni-
versiẗat Karlsruhe, June 1998.87, 212

[Riv98] Claudio Riva. Visualizing software release histories: The use of color and third dimension.
Master’s thesis, Politecnico di Milano, Milan, 1998.31

[RJ96] D. Roberts and R. Johnson. Evolving frameworks - a pattern language for developing object
-oriented frameworks. http://st-www.cs.uiuc.edu/users/droberts/evolve.html, 1996.206, 206

[RJB99] James Rumbaugh, Ivar Jacobson, and Grady Booch.The Unified Modeling Language Refer-
ence. Addison-Wesley, 1999. 0-210-30998-X.9, 81

[RR95] Y.-G. Ra and E. A. Rundensteiner. A transparent object-oriented schema change approach
using view evolution. InProceedings of the 11th International Conference on Data Engi-
neering, pages 165–172. IEEE Computer Society Press, March 1995.220

[RSW98] Jan Ransom, Ian Sommerville, and Ian Warren. A Method for Assessing Legacy Systems
for Evolution. InProceedings of Reengineering Forum’98, 1998. 168

[Sem97] SemaGroup.FAST Programmer’s Manual and FAST Programmer’s Manual Complement,
1997. 95

[SGMZ98a] B. Schulz, T. Genssler, B. Mohr, and W. Zimmer. On the computer aided introduction of
design patterns into object-oriented systems. In27th Conference on Technology of Object-
Oriented Languages and Systems (TOOLS). IEEE, 1998. 204

[SGMZ98b] Benedikt Schulz, Thomas Genssler, Berthold Moor, and Walter Zimmer. On the Computer
Aided Introduction of Design Patterns into Object-Oriented Systems. InProceedings of the
27th TOOLS conference, IEEE CS Press, 1998.10

[SLMD96] Patrick Steyaert, Carine Lucas, Kim Mens, and Theo D’Hondt. Reuse contracts: Managing
the evolution of reusable assets. InProceedings of OOPSLA ’96 Conference, pages 268–285.
ACM Press, 1996.9

[SMHP+97] Rational Software, Microsoft, Hewlett-Packard, Oracle, Sterling Software, MCI System-
house, Unisys, ICON Computing, IntelliCorp, i Logix, IBM, ObjecTime, Platinum Technol-
ogy, Ptech, Taskon, Reich Technologies, and Softeam.Unified Modeling Language (version
1.1). Rational Software Corporation, September 1997.169

[Som96] Ian Sommerville.Software Engineering. Addison-Wesley, fifth edition, 1996.8



232 BIBLIOGRAPHY

[SP98] Perdita Stevens and Rob Pooley. System reengineering patterns. InProceedings of FSE-6.
ACM-SIGSOFT, 1998.167, 167, 168, 168, 168

[Spi92] J. M. Spivey.The Z Notation. Prentice Hall, New York, second edition, 1992.84

[SS89] Gunther Schmidt and Thomas Ströhlein. Relationen und Graphen. Mathematik f̈ur Infor-
matiker. Springer-Verlag, 1989.84

[SSC96] M. Sefika, A. Sane, and R. H. Campbell. Architecture-oriented visualization. InSIGPLAN
Notices, vol. 31, no 10 (special issue on OOPSLA’96), pages 389–407, October 1996.221

[STS97] Software Reengineering Assessment Handbook v3.0. Technical report, STSC, U.S. Depart-
ment of Defense, March 1997. (http://stsc.hill.af.mil/RENG).168

[SZ86] Andrea H. Skarra and Stanley B. Zdonik. The management of changing types in an object-
oriented database. InProceedings OOPSLA ’86, ACM SIGPLAN Notices, pages 483–495,
November 1986. Published as Proceedings OOPSLA ’86, ACM SIGPLAN Notices, volume
21, number 11.219

[TSM95] T.P. Tegarden, S.D. Sheetz, and D.E. Monarchi. A software complexity model of object-
oriented systems.Decision Support Systems, 13(3–4):241–262, 1995.26

[vW96] Pieter van Winsen. Reengineering with object-oriented design patterns. Master’s thesis, Cs
Department of Utrecht University, November 1996.96

[WBWW90] Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener.Designing Object-Oriented
Software. Prentice Hall, 1990.128

[WC94] Richard C. Waters and Elliot Chikofsky. Reverse engineering: Progress along many dimen-
sions (special issue).Communications of the ACM, 37(5):22–93, May 1994.8

[WC96] Linda Wills and James H. Cross, II. Recent trends and open issues in reverse engineering.
Automated Software Engineering, 3(1-2):165–172, June 1996.111

[WCH87] Morton E. Winston, Roger Chaffin, and Douglas Herrmann. A taxonomy of part-whole
relations.Cognitive Science, 11:417–444, 1987.9

[WH92] Norman Wilde and Ross Huit. Maintenance support for object-oriented programs.Transac-
tions on Software Engineering, 18(12):1038–1044, December 1992.11

[WN96] Linda Wills and Philip Newcomb. Reverse engineering (special issue).Automated Software
Engineering, 3(1-2):5–172, June 1996.8

[Wuy98] Roel Wuyts. Declarative reasoning about the structure of object-oriented systems. InPro-
ceedings of TOOLS USA ’98. IEEE, August 1998.9

[Yel96] P. Yelland. Creating host compliance in a portable framework: A study in the use of existing
design patterns. InSIGPLAN Notices, vol. 31, no 10 (special issue on OOPSLA’96), pages
18–29, October 1996.220

[Zic92] Zicari. A Framework for Schema Updates in an Object-Oriented Database System, in Build-
ing an Object-Oriented Database System - The Story of O2. Morgan Kaufmann Publishers,
1992. 221

[Zim95] Walter Zimmer. Using design patterns to reorganize object-oriented applications. Technical
Report 1/95, FZI, 1995.90, 200, 202, 205, 220

[Zim97] Walter Zimmer.Frameworks und Entwurfsmuster. PhD thesis, Universität Karlsruhe, 1997.
90, 91, 94, 94, 94, 94, 94, 94, 95, 204


	The FAMOOS Object-Oriented Reengineering Handbook
	Preface
	How to Read this Book
	Annotated Bibliograph

	The Need for Object-Oriented Reengineering
	The FAMOOS Project
	Case Studies
	Reengineering Goals
	Architectural Problems
	Code Clean Up
	Requirements

	Basic Terminology
	The Reengineering Life-cycle

	Techniques
	Techniques
	Metrics  (by M. Bauer)
	Introduction
	Some Important Metrics
	Complexity Metrics
	Coupling Metrics
	Cohesion Metrics
	Inheritance Tree Metrics

	Usage Scenarios
	Get a Basic Understanding of the System
	Find Violations of "Good" OO Design
	Identify Change Sensitive Parts
	Track the Evolution of the System

	Summary

	Program Visualisation and Metrics  (by M. Lanza)
	Graphs for Reverse Engineering
	Interactivity
	The Use of Layout Algorithms
	The Use of Metrics in Graphs
	A Concrete Graph Specification.
	A Short Example
	Graph Structure
	Case Studies
	Graphs
	The Tree Graph
	The Correlation Graph
	The Histogram
	The Checker Graph
	The Stapled Graph
	The Confrontation Graph

	Useful Graphs: Class Graphs
	System Complexity
	System Hot spots
	Weight Distribution
	Root Class Detection
	Service Class Detection
	Cohesion Overview
	Spinoff Hierarchy
	Inheritance Impact
	Intermediate Abstract Class

	Useful Graphs: Method Graphs
	Method Efficiency Correlation
	Coding Impact Histogram
	Method Size Nesting Level

	Useful Graphs: Attribute Graphs
	Direct Attribute Access
	Attribute Privacy

	Useful Graphs: Class Internal Graphs
	Class Cohesion


	Grouping  (by O. Ciupke)
	The problem
	Grouping
	Examples

	Definitions
	Filters and views
	Group types
	Group operations
	Visualising groups

	Tool support
	Open issues
	Summary and future work

	Reorganisation  (by B. Schulz)
	Fundamentals
	Design Patterns as Operators
	Refactorings

	The FAMOOS approach
	Discussion
	Related Work
	Summary

	Reverse and Reengineering Patterns


	Reverse Engineering
	Reverse Engineering Pattern
	Patterns for Reverse Engineering
	Clusters of Patterns
	Overview of Forces
	Resolution of Forces
	Format of a Reverse Engineering Pattern

	Cluster: First Contact
	Cluster: Extract Architecture
	Cluster: Focus on Hot Areas
	Cluster: Prepare Reengineering
	Cluster: misc
	Pattern Overview

	Reengineering
	Reengineering Patterns
	Reengineering Patterns: a Need
	Reengineering Patterns and Related Work
	Form of a reengineering pattern
	Pattern Navigation
	Forces


	Cluster: Type Check Elimination
	Cluster: Duplicated Code
	Cluster: Improving Flexibility
	Glossary


