
1.

ven if
their

e leg-
s Esprit
rame-

everse
the

nt how
ollow

d dur-

t no.
PRIT
ork-

atth-
T ie Code And Quest ions:
a Reengineering Pattern
Serge Demeyer, Stéphane Ducasse and Oscar Nierstrasz

Serge.Demeyer@uia.ua.ac.be

{ducasse,oscar}@iam.unibe.ch

Abstract. The reengineering pattern presented in this paper shows how you can
support your understanding during system reengineering by linking your questions
or information about the code in the code itself.

1. Introduction

Legacy systems are not limited to the procedural paradigm and languages like Cobol. E
object-oriented paradigm promised the building of more flexiblesystems and the ease in
evolution, nowadays object-oriented legacy systems exist in C++, Smalltalk or Java. Thes
acy systems need to be reengineered to meet new requirements. The goal of the Famoo
project was to support the evolution of such a object-oriented legacy systems towards f
works.

In this context, we used patterns as a way to record reengineering expertise. We wrote r
engineering patterns that record how to extract information of the legacy systems from
code, the organization or the people [Deme99n] and reengineering patterns that prese
code can be transformed to support new requirements, to be more flexible or to simply f
object-oriented design [Duca99c].Tie Code and Questions is a third kind of reengineering
pattern, it is not only applicable during the reverse engineering phase but can also be use
ing the reengineering of a software system.

Acknowledgements.This work has been funded by the Swiss Government under Projec
NFS-2000-46947.96 and BBW-96.0015 as well as by the European Union under the ES
program Project no. 21975. We would like to thanks the attendees of the SCG internal w
shop writer at the Universitu of Bern: Serge Demeyer, Pietro Malorgio, Tamar Richner,M
ias Rieger and Sander Tichelaar.

2. Tie Code and Questions

chro-

ou

un-
s and

le, or

s
e in-
avail-

ser
.

he
code
ow-

iece
un-

u
o you,

s you
Tie Code and Questions
Intent — Keep all your questions and answers about the code you are reengineering syn
nized with the code by storing them directly in the source files.

Problem

You want tokeep track of your understandingabout a piece of code and the questions that y
have, keep theseremarks synchronized with the codeduring its future evolution, andshare them
with the other members of your team.

This is a hard problem because:

• Understanding code you do not write is really difficult due to the fact that we have to
derstand symbolic information and models that can be represented in various way
styles.

• You want to record your understanding or questions about a piece of codeas soon asthey
appear. Otherwise you will forget them because at the time they may seem too simp
because later you will be concentrating on another part of the code.

• You need to record your understandingas close aspossible to the code element it refer
to avoid to spend time describing the context of the problem you have. Moreover th
formation you are interested in only makes sense to a maintainer who has the code
able.

• You want to write your understanding in a simple way with your favourite code brow
tools, so recording the information in a design document is not a practical solution

• You want tosharethe information you found principally with other team members in t
futurebecause this is likely that you or your team will pass over the same piece of
or you may get into the code later and you do not want to forget what you learned. H
ever you only want to have this information available when you will read the same p
of code and you do not want to spend meeting time reporting detailed information to
concerned people.

Context

You are reverse engineering the functionality of an application. You may have appliedRefactor
to Understand and started to refactor the code when you identifiedDuplicated Code. You
may also have usedStep Through The Code to understand a functionality. However, as yo
did not develop the original code, there are many design decisions which are not clear t
and numerous questions arise as you proceed.

Solution

While you are working on the code annotate it directly and immediately with the question
are facing.

Tie Code and Questions 3.

ple,
uery

ode
t and

e an-

lan-
ments,
s
clients

eth-
-
mple-
tify
ithout

s func-
ited for
im-

akes
ethod-

u can
s sev-

uous
nd the

on,
using,
General Hints
• Use conventions to identify your annotations. In a team context, include, for exam

the initials of the developer that made the comments. This way you can easily q
them.

• Never write your annotations in a language different from that in which the source c
is programmed (English in most cases). Otherwise, you create a different contex
force the reader to switch between them.

• When you discover the answer to any one of your questions, immediately update th
notation for the benefit of future readers.

Annotations
• Record your annotations by using the commenting convention of the programming

guage (referred to as comment-based annotations). Some programming environ
like that of Eiffel, allow you to specify different levels of visibility for your comment
and your code; where possible, assign a private scope to your comments so that
cannot see the annotations.

• If you are working with an IDE where you can query method senders, use special m
ods dedicated to the annotations (referred to asmethod-basedannotations). These meth
ods take a single annotation string as an argument, and typically have an empty i
mentation. You can then use the querying and browsing facilities of your IDE to iden
classes containing annotations, or specific locations where the annotations occur, w
the need for any additional tools or special text pre-processing.

Discussion

The comment-based approach is better-suited for a text-based environment like the e-tag
tionality supported by emacs [etags man page]. The method-based approach is better su
an integrated environment like that of Smalltalk or Sniff+ that supports querying of method
plementors or senders.

The less you change the code, the less likely it is that you will introduce errors. This m
the comment-based version safer than the method-based version. However using a m
based approach allows you to easily produce a log file.

Keeping vs Removing the Annotations

What options do you have when you want to release a new version?

• Comment-based annotations. If your client does not have to see the code, then yo
leave the comment-based annotations in the code. The Eiffel environment provide
eral views of the code that are especially useful in such situations.

• Method-based annotations. A good compiler will not generate any code for unambig
calls to messages with empty bodies. Nevertheless, if performance is an issue, a
overhead of the empty calls cannot be tolerated for the system you are working
choose the comment-based approach or convert the method calls into comments
for example, a perl script.

4. Tie Code and Questions

If the
reat
cer-

you are
ht du-
od.)

meth-
to un-

f sym-
In either case you should seriously consider simply leaving your comments in the code.
software is valuable enough for you to invest effort into reengineering it, the likelihood is g
that someone in the future will again have to extend and modify it. That person will almost
tainly benefit from the questions and answers you have identified.

Examples

You define a method dedicated to the annotation in the common ancestor of the classes
trying to understand. (If your application classes do not share a common ancestor you mig
plicate the method definition, or, better yet, you may define a separate class for this meth

In the Moose Environment. The following Smalltalk code defines in the classMSEAb-

stractRoot (root of the Moose environment) the methodstrangeCode: that takes a string as
argument. The default implementation is empty.

MSEabstractroot>>strangeCode: aString
"empty method body"

Annotations are then included in selected methods. These annotations do not replace the
ods’ comments but rather contain specific questions that you asked yourself while trying
derstand the system:

assessClassAttributesFor: aClassDef smalltalkClass: aSTClass
"Try to find out the properties of the given class (i.e., category
sourceAnchor, declaredAbstract, ...)"

| category |
(self saveComments and: [aSmalltalkClass comment isEmpty not])

ifTrue: [aClassDef addComment: aSmalltalkClass comment].
category := self assessClassCategoryFor: aSmalltalkClass

isMetaClass: isMetaClass.
self saveSourceReference

ifTrue:
[aClassDef sourceAnchor:

(MSEUtilities browserCategoryToSourceAnchor: category)
].

self strangeCode:
'SD:3/12/99.Why is metaclass checked to store category?'.

self saveCategory & isMetaClass not
ifTrue: [aClassDef setNamedPropertyAt: #category put: category].

aClassDef isAbstractKnown
ifTrue: [aClassDef isAbstract: false]

In Squeak. The following code shows the definition of theflag: method in Squeak 2.7. Here
the developers use the fact that the Smalltalk environment supports also the browsing o
bols (here passed as parameters).

Object>>flag: aSymbol
"Send this message, with a relevant symbol as argument, to flag a

message for subsequent retrieval. For example, you might put the
following line in a number of messages:

self flag: #returnHereUrgently

Tie Code and Questions 5.

we
nment,

lose
ly the
clarify
c and

bul-
ard
n and

e the
your
Then, to retrieve all such messages, browse all senders of
#returnHereUrgently."

Figure 1 shows all the senders of theflag: message in the Squeak2.7 environment. Here
see both the method-based, mainly used for cross-references integrated into the enviro
and comments.

Tradeoffs

Finding the Right Amount of Annotation. As with any kind of comments, you should
take care to introduce just the right amount of detail. Terse or cryptic annotations quickly
their value, and verbose annotations will distract the reader from the code itself. Normal
code should communicate its intention, and the methods or class comments are there to
implementation details [Beck97a]. That’s why the annotations should contain only specifi
precise remarks.

To see the advantages of applyingTie Code and Questions, let’s compare it with the alter-
native solution of writing your questions and information into a separate log file or using a
letin board system like a Wiki Wiki Server to share them with your team. With a bulletin bo
you can easily prepare a list of questions to ask to the original developers of the applicatio
discuss them with the other members of your team. However,Tie Code and Questions has
the following advantages:

Minimise Context Description. By applyingTie Code and Questions, you will exploit
the context given by the programming language and the code. This way you will minimiz
need to describe the context of your questions and keep your effort low while documenting

Figure 1 Finding all senders of a message in Squeak.

6. Tie Code and Questions

to de-
d this
in-

keep-
ns,
take

h time
even

-
work-
nage
must
f the

sis on
s the

arrive
n’ by
or de-

ils and

but to
of the
by in-

rn has
m used
questions and annotations. With other approaches you will have to spend an extra effort
scribe the context of your annotations.You will certainly include some method bodies an
will be redundant with the code itself. Moreover, you will spend time documenting volatile
formation.

Automatic Synchronization . By applyingTie Code and Questions, you keep the code
and the annotations in close physical proximity, and you thereby improve your chances of
ing them in sync. While modifying the code, you will more naturally modify the annotatio
or remove them it they become obsolete. With other approaches, you will have to really
care to keep the code and the questions in sync. You will have to update the log file eac
the related code changes. Moreover, as your log will be not an official document it will be
more difficult to allocate time to keep it synchronized with the code.

Improving Team Communication. Tie Code and Questions ensures that team mem
bers will always read the annotations in sync with the current version of the code they are
ing on. A log file can be shared with other members of your team. However, you must ma
different versions of the log file for each version of the code, and every team member
spend extra effort to be sure that he or she has the right log file for the working version o
application.

Rationale

This pattern has its roots in literate programming. Literate programming puts the empha
keeping the code and its documentation physically close. The physical proximity reduce
effort spent in keeping the code and its documentation in sync.

Related Patterns

[PlopD4 page 632] is a pattern proposing to help newcomers to feel like home when they
in a new project. The pattern solution is : "An adopter should be encouraged to ‘move i
cosmetically arranging the code". The present pattern is more about how can maintainers
velopers use simple code annotations to improve their understanding about code deta
keep it close to and synchronized with the code elements they refer to.

Known Uses

• The Squeak development team used this technique not to keep track of questions
communicate between developers. This way every developer had an understanding
status of strange aspects of the code. In this team the comments were introduced
voking methodflag: defined in the classObject .

• During the development and the maintenance of the Moose environment, the patte
been applied to register questions about the strange aspects of the system. The tea
the methodscodeToBeChanged: andstrangeCode: implemented into the application
root class to annotate with two different meanings.

Tie Code and Questions 7.

were
n-

niX.
thod
de-

infor-
ster].

ld was

he sys-
anding

moti-
f anno-
• During the development of the game Skweek in assembler possible improvements
tagged using dummy labels namedgorbi . Hence the editor and the debugger could ide
tify them easily.

• A slightly different but related use of the pattern is applied by the company MediaGe
A systematic code tagging mechanism was introduced. The idea is to include in me
comments information identifying the motivation of the code changes (bug fixes, new
velopment, new release), the name of developer, the time of the actions. From this
mation the dependencies between the applications were extracted [OOPSLA 98 po
To increase the acceptance of the tagging procedure with the developers, a free fie
added to the tag where the developers could write what they want.

Resulting Context
You are registering the questions or the aspects of the system you are maintaining inside t
tem thus reducing the effort spent to keep the code and your questions or early underst
of the application in sync. However, success is not garanteed: First, the team should stay
vated to annotate the code and second, you should pay attention to keep a similar level o
tation.

	Tie Code and Questions
	Problem
	Context
	Solution
	General Hints
	Annotations

	Discussion
	Keeping vs Removing the Annotations

	Examples
	In the Moose Environment.
	In Squeak

	Tradeoffs
	Finding the Right Amount of Annotation
	Minimise Context Description.
	Automatic Synchronization
	Improving Team Communication.

	Rationale
	Related Patterns
	Known Uses
	Resulting Context

