
1.

ven if
their

e leg-
s Esprit
rame-

everse
the

nt how
ollow
t
d ap-

t no.
PRIT
ork-

atth-
Transform Condit ionals: a
Reengineering Pattern

Language
Serge Demeyer, Stéphane Ducasse and Oscar Nierstrasz

Serge.Demeyer@uia.ua.ac.be
{ducasse,oscar}@iam.unibe.ch

Abstract. The reengineering pattern presented in this paper shows how you can
transform conditionals in object-oriented code to improve the flexibility of appli-
cation.

1. Introduction
Legacy systems are not limited to the procedural paradigm and languages like Cobol. E
object-oriented paradigm promised the building of more flexiblesystems and the ease in
evolution, nowadays object-oriented legacy systems exist in C++, Smalltalk or Java. Thes
acy systems need to be reengineered to meet new requirements. The goal of the Famoo
project was to support the evolution of such a object-oriented legacy systems towards f
works.

In this context, we used patterns as a way to record reengineering expertise. We wrote r
engineering patterns that record how to extract information of the legacy systems from
code, the organization or the people [Deme99a] and reengineering patterns that prese
code can be transformed to support new requirements, to be more flexible or to simply f
object-oriented design [Duca99a].Transform Conditional is a reengineering pattern tha
presents how conditionals can be transformed to improve the flexibility of object-oriente
plication.

Acknowledgements.This work has been funded by the Swiss Government under Projec
NFS-2000-46947.96 and BBW-96.0015 as well as by the European Union under the ES
program Project no. 21975. We would like to thanks the attendees of the SCG internal w
shop writer at the Universitu of Bern: Serge Demeyer, Pietro Malorgio, Tamar Richner,M
ias Rieger and Sander Tichelaar.

2. Transform Conditional

ans-
attern

e in-
crip-

-
tional
sses.

ll. In
with

r
der

poly-
: the
Transform Conditional
Transform Conditional is a pattern language describing how switch statements are tr
formed into code that is more flexible and exhibits less coupling between classes. This p
language consists of four patterns,Transform Self Conditional to Subclassing, Transform Cli-
ent Conditional to Polymorphism, Apply State andApply Null Object. ForApply State
andApply Null Object our intention is not to copy two established design patterns :State and
NullObject but rather to provide a more specific reading with a focus on reengineering. W
vite the reader to read [Gamm95a, Alpe98a, Dyso98a] and [Wool98a] for the original des
tion of theState andNullObject.

The following picture summarizes their differences.

• Transform Self Conditional to Subclassing eliminates switch statements over type in
formation by introducing subclasses for each type case, and by replacing the condi
code with a single polymorphic method call to an instance of one of the new subcla

• Apply State is a special case ofTransform Self Conditional to Subclassing in the
sense they both transform a conditional within the class itself to a polymorphic ca
Apply State the conditional over the state is transformed into methods associated
different delegated classes representing the different states.

• Transform Client Conditional to Polymorphism transforms a switch statement ove
type information in a client class by introducing polymorphic methods in the provi
and calling them from the client class.

• Apply Null Object is a special case ofTransform Client Conditional to Polymorphism
in the sense they both transform a conditional expression over the provider into a
morphic call. Here the type of the provider is reduced to the most simple expression
null value. The condition that check for a null value is transformed by creating aNullOb-

Transform Conditional

over object state

Apply State Pattern

over a self type

Transform Conditional to Polymorphism

over a provider type Transform Self Conditional to Subclassing

Apply Null Object

over null values

Transform Conditional 3.

ype
ject class that performs the default behaviour, liberating the client from having to t
check before performing an operation.

Client

m()

...
switch (a.class)
case B: ...
case C: ...
case D: ...
...

A

B C D

A

doit()

B

doit()

C

doit()

D

doit()

Client

m()

...
a.doit()
...

4. Transform Self Conditional to Subclassing

table
d will

ing on

s.
viour.
class

with

itional
to the
e code
Transform Self Conditional to Subclassing
Make a class more extensible by transforming complex conditional code that tests immu
state into a single polymorphic call to a hook method on the same class. The hook metho
be implemented by a different subclass for each case of the conditional.

Problem
A class is hard to modify or subclass because it implements multiple behaviours depend
the value of some immutable attribute.

Context

You need to modify the functionality of a class or add new functionality.

Applicability

You have access to the source code of the class and of clients that instantiate it.

Symptoms
• The class you want to modify has long methods with complex conditional branche
• Instances of the class seem to represent multiple data types each with different beha
• The expression being tested in the conditional represents type information over the

containing the expression itself.
• The behaviour of a class depends on the value of some immutable attribute.
• Conceptually simple extensions require many changes to the conditional code.
• Subclassing is next to impossible without duplicating and adapting the methods

conditional code.

Solution
Identify the methods with complex conditional branches. In each case, replace the cond
code with a call to a new hook method. Identify or introduce subclasses corresponding
cases of the conditional. In each of these subclasses, implement the hook method with th
corresponding to that case in the original case statement.

Transform Self Conditional to Subclassing 5.

he
wever,
ystem
state

te of
the

his is

l that
ir size.
tate-

class
ional

ries.
ds of
Structure/Participants

Detection

Most of the time, the type discrimination will jump in our face while you are working on t
code, so this means that you will not really need to detect where the checks are made. Ho
it can be interesting to have simple techniques to quickly assess if unknown parts of a s
suffer from similar practices. This can be a valuable source of information to evaluate the
of a system.

• Look for long methods with complex decision structures on some immutable attribu
the object that models type information. In particular look for attributes that are set in
constructor and never changed.

• Especially look for classes where multiple methods switch on the same attribute. T
often a sign that the attribute is being used to simulate a type.

• As methods containing switch statements tend to be long, it may help to use a too
sorts methods by lines of code or visualizes classes and methods according to the
Alternatively, search for classes or methods with a large number of conditional s
ments.

• For languages like C++ or Java where it is common to store the implementation of a
in a separate file, it is straightforward to search for and count the incidence of condit
keywords (if , else , case , etc.). On a UNIX system, for example,

grep 'switch' ‘find . -name "*.cxx" -print‘

enumerates all the files in a directory tree with extension.cxx that contain aswitch .
Other text processing tools like agrep offer possibilities to pose finer granularity que
Text processing languages like Perl may be better suited for evaluating some kin
queries, especially those that span multiple lines.

A

m()

...
case B: ...
case C: ...
case D: ...
...

A

m()
hook()

B

hook()

...
hook()
...

C

hook()

D

hook()

Client

Client

6. Transform Self Conditional to Subclassing

the
ional
to and

void
ed on

nsider
ingle

), dis-
mer-
tfor-

a-

ents.

ts to

ans
ents,
pies a

sses,

se by

ot of

r en-
ts to
C/C++: Legacy C code may simulate classes by means of union types. Typically
union type will have one data member that encodes the actual type. Look for condit
statements that switch on such data members to decide which type to cast a union
which behaviour to employ.

In C++ it is fairly common to find classes with data members that are declared as
pointers. Look for conditional statements that cast such pointers to a given type bas
the value of some other data member. The type information may be encoded as anenum

or (more commonly) as a constant integer value.

Instead of defining subclasses of the class containing the conditional statement, co
also whether the types to which the void pointer is cast can be integrated into a s
hierarchy.

Ada: Because Ada83 did not support polymorphism (or subprogram access types
criminated record types are often used to simulate polymorphism. Typically an enu
ation type provides the set of variants and the conversion to polymorphism is straigh
ward in Ada95.

Smalltalk: Smalltalk provides only a few ways to manipulate types. Look for applic
tions of the methodsisMemberOf: andisKindOf: , which signal explicit type-checking.
Type checks might also be made with tests likeself class = anotherClass , or with
property tests throughout the hierarchy using methods likeisSymbol , isString , isSe-

quenceable , isInteger .

Steps

1. Identify the class to transform and the different conceptual classes that it implem
An enumeration type or set of constants will probably document this well.

2. Introduce a new subclass for each behaviour that is implemented. Modify clien
instantiate the new subclasses rather than the original class. Run the tests.

3. Identify all methods of the original class that implement varying behaviour by me
of conditional statements. If the conditionals are surrounded by other statem
move them to separate, protected hook methods. When each conditional occu
method of its own, run the tests.

4. Iteratively move the cases of the conditionals down to the corresponding subcla
periodically running the tests.

5. The methods that contain conditional code should now all be empty. Replace the
abstract methods and run the tests.

6. Alternatively, if there are suitable default behaviours, implement these at the ro
the new hierarchy.

7. If the logic required to decide which subclass to instantiate is non-trivial, conside
capsulating this logic as a factory method of the new hierarchy root. Update clien
use the new factory method and run the tests.

Transform Self Conditional to Subclassing 7.

im-
ddi-

der to
hile

es of
t code
ay be

pos-
truc-
ough

a more
the

check
deal-
ing

ts do
nce the
es.

o the

ld like
Tradeoffs

Pros
• Different clients now depend on different subclasses of the original class, thereby

proving modularity. Furthermore, functionality can now be extended by defining a
tional subclasses, without affecting clients of the existing classes.

Cons
• The larger number of classes makes the design more complex, and potentially har

understand. If the original conditional statements are simple, it may not be worthw
to perform this transformation.

Difficulties
• Wherever instances of the transformed class were originally created, now instanc

different subclasses must be created. If the instantiation occurred in client code, tha
must now be adapted to instantiate the right class. Factory objects or methods m
needed to hide this complexity from clients.

• If you do not have access to the source code of the clients, it may be difficult or im
sible to apply this pattern since you will not be able to change the calls to the cons
tors. Evaluate carefully whether it is possible to present the transformed design thr
the old interface or ifDouble Dispatch can be applied.

• If the case statements test more than one attribute, it may be necessary to support
complex hierarchy, possibly requiring multiple inheritance. Considering splitting
class into parts, each with its own hierarchy.

When the legacy solution is the solution

Explicit type checks cannot always be avoided. One of the few good reasons to use type
instead of polymorphism is when polymorphism cannot be used! Indeed when the code is
ing with the limits of the paradigm like using non object-oriented libraries or when stream
in objects from files. When streaming objects in from a text file representation, the objec
not yet exist, so an explicit type check is necessary to recreate the objects. In this case, o
instances are created, methods can then be called to fill the object instance variable valu

Tolerating type checks

Explicit type checks are not always a problem. In particular they may be an alternative t
creation classes when:

• the set over which the method selection is fixed and will not evolve in the future.

• the typecheck is only made in one place.

Example

A message class wraps two different kinds of messages (TEXT andACTION) that must be serial-
ized to be sent across a network connection as shown in the code and the figure. We wou

8. Transform Self Conditional to Subclassing

l

re
ies the
e a

till
to be able to send a new kind of message (sayVOICE), but this will require changes to severa
methods of Message.

Since Message conceptually implements two different classes,Text_Message and
Action_Message , we introduce these as subclasses ofMessage . We introduce constructors for
the new classes, we modify the clients to construct instances ofText_Message and
Action_Message rather thanMessage , and we remove theset_value() methods. Our regres-
sion tests should run at this point.

Now we find methods that switch on thetype_ variable. In each case, we move the enti
switch statement to a separate, protected hook method, unless the switch already occup
entire method. In the case ofsend() , this is already the case, so we do not have to introduc
hook method. Again, all our tests should still run.

Now we iteratively move cases of the switch statements fromMessage to its subclasses. The
TEXT case ofMessage::send() moves toText_Message::send() and theACTION case
moves toAction_Message::send() . Every time we move such a case, our tests should s
run.

Message

set_value(action Integer)
send(channel Channel)
set_value(text String)
receive(channel Channel)

Client1 Client2

Figure 1 Initial design and source code.

class Message {
public:

Message();
set_value(char* text);
set_value(int action);
void send(Channel c);
void receive(Channel c);
...

private:
void* data_;
int type_;
static const int TEXT = 1;
static const int ACTION = 2;
...

}

Message::send(Channel c) {
switch (type_) {
case TEXT:

...
case ACTION:

...
}

}
void Client1::doit() { ...

Message * myMessage =
new Message();

myMessage->set_Value("...");
...

}

Transform Self Conditional to Subclassing 9.

t (i.e.,

extend.
rs. In-
of sim-

ypes,
Finally, the original send() method is now empty, so it can be redeclared to be abstrac
virtual void send(Channel) = 0). Again, our tests should run.

Rationale
Classes that masquerade as multiple data types make a design harder to understand and
The use of explicit type checks leads to long methods that mix several different behaviou
troducing new behaviour then requires changes to be made to all such methods instead
ply specifying one new class representing the new behaviour.

By transforming such classes to hierarchies that explicitly represent the multiple data t
you make your design more transparent, and consequently easier to maintain.

Message

send(channel Channel)
receive(channel Channel)

Client1 Client2

Text_Message

Text_Message(String)
send(channel Channel)
receive(channel Channel)

Action_Message

Action_Message(int)
send(channel Channel)
receive(channel Channel)

class Message {
public:

virtual void
send(Channel c) = 0;

virtual void
receive(Channel c) = 0;

...
};

class Text_Message: public Message
{
public:

Text_Message(char* text);
void send(Channel c);
void receive(Channel c);

private:
char* text;

...
};

class Action_Message: public
Message {
public:

Action_Message(int action);
void send(Channel c);
void receive(Channel c);

private:
int action;

...
};

void Client1::doit() { ...
Message * myMessage = new

Text_Message("...");
...

}

Figure 2 Resulting hierarchy and source code.

10. Transform Self Conditional to Subclassing

s
r

at

lf but

satisfy
have
s at-

to avoid
s. It is
n by
lean,

ymor-
(e.g.,
ram-

e
se the
Related Patterns
In Transform Self Conditional to Subclassing the condition tests type information of the clas
that contains it. A similar situation is addressed inApply State where the conditional tests ove
state. From this point of view,Apply State is a specialization ofTransform Self Conditional
to Subclassing even if the solution proposed by theState pattern introduces state classes th
are not subclasses of the original class. On the other hand, inTransform Client Conditional to
Polymorphism the conditional expressions are used to invoke methods not of the class itse
of provider classes.

Replace Type Code with Subclasses, Refactoring To Specialize are two refactorings
that can be used to apply the pattern. If the conditional code testsmutablestate of the object,
consider instead applyingTransform Client Conditional to Polymorphism. Otherwise, if
state of other objects is tested, such as arguments to the method, then consider applyingTrans-
form Client Conditional to Polymorphism.

Discussion

Why the legacy solution may have been applied

The problem may arise for various reasons:

• The class may have been repeatedly extended with code to handle special cases to
the needs of many different clients. Whereas the original design of the class may
been simple, it now contains several methods with complex conditional logic over it
tributes.

• Programmers may have decided not to define subclasses to handle special cases
cluttering the name space, or to keep changes and extensions local to a single clas
rarely obvious when varying behaviour is better implemented by subclassing tha
conditional code. (In Smalltalk, for example, True and False are subclasses of Boo
but this is not the case in most other object-oriented languages.)

• In languages without polymorphism, case statements may be used to simulate pol
phic dispatch. Even if a later version of the language does support polymorphism
C++ vs. C, or Ada 95 vs Ada 83), coding conventions in place may encourage prog
mers to continue to apply the outdated idiom.

Transform Self Conditional to Subclassing can be composed with delegation when th
class containing the original conditional cannot be subclassed. One solution is then to u

Transform Self Conditional to Subclassing 11.

ginal
polymorphism on another hierarchy, by moving part of the state and behaviour of the ori
class into a separate class to which the method will delegate.

A

m()

...
Case B: ...
Case C: ...
Case D: ...
...

AA

m()
hook()

B

hook()

...
hook()
...

C

hook()

D

hook()

A

m()

delegate m ()
...

delegate

12. Transform Client Conditional to Polymorphism

to a

on its

nt and

e type

s, es-

ta of
rivate

. Im-
ondi-
Transform Client Conditional to Polymorphism
Transform conditional code that tests the type of a provider object into a polymorphic call
new method, thereby reducing client/provider coupling.

Problem
It is hard to extend a provider hierarchy because many of its clients perform type checks
instances to decide what actions to perform.

Context

You want to add a new subclass to a provider hierarchy. You have access to both the clie
provider source code.

Symptoms
• Clients of the class you want to subclass have long conditional methods that test th

of provider instances.
• Adding a new subclass to the provider hierarchy requires making changes to client

pecially where there tests occur.
• The fact that the Law of Demeter is violated, e.g. that the clients access private da

the provider can be a symptom especially when combined with the fact that these p
data are used to select the provider method to be invoked.

Solution
Replace the client’s conditional code by a call to a new method of the provider hierarchy
plement the new method in each provider class by the appropriate case of the original c
tional code.

Transform Client Conditional to Polymorphism 13.

ce pro-
nts

I).
alue
itch-

ingle
e hi-
t over
Structure/Participants

Detection

Apply essentially the same techniques described inTransform Self Conditional to Subclass-
ing to detect case statements, but look for conditions that test the type of a separate servi
vider which already implements a hierarchy. You should also look for case stateme
occurring in different clients of the same provider hierarchy.

C++: Legacy C++ code is not likely to make use of run-time type information (RTT
Instead, type information will likely be encoded in a data member that takes its v
from some enumerated type representing the current class. Look for client code sw
ing on such data members.

Ada: Detecting type tests falls into two cases. If the hierarchy is implemented as a s
discriminated record then you will find case statements over the discriminant. If th
erarchy is implemented with tagged types then you cannot write a case statemen
the types (they are not discrete); instead an if-then-else structure will be used.

Smalltalk: As in Transform Self Conditional to Subclassing, look for applications of
isMemberOf: andisKindOf: , and tests likeself class = anotherClass .

Client

m()

...
switch (a.class)
case B: ...
case C: ...
case D: ...
...

A

B C D

A

doit()

B

doit()

C

doit()

D

doit()

Client

m()

...
a.doit()
...

14. Transform Client Conditional to Polymorphism

lltalk,
nce of

)

ction

ith a

call to
thod.

ent

rst.

the
od call
ts or
l.

rchy, a
cerned
rna-

erit-
y de-
riate

ave to
ts of
ces of
Java: Look for applications of the operatorinstanceof , which tests membership of an
object in a specific, known class. Although classes in Java are not objects as in Sma
each class that is loaded into the virtual machine is represented by a single insta
java.lang.Class. It is therefore possible to determine if two objects,x andy belong to the
same class by performing the test:

x.getClass() == y.getClass()

Alternatively, class membership may be tested by comparing class names:
x.getClass().getName().equals(y.getClass().getName())

(Recall that== compares object references, whereasequals() compares object values.

Steps
1. Identify the clients performing explicit type checks.

2. Add a new, empty method to the root of the provider hierarchy representing the a
performed in the conditional code.

3. Iteratively move a case of the conditional to some provider class, replacing it w
call to that method. After each move, the regression tests should run.

4. When all methods have been moved, each case of the conditional consists of a
the new method, so replace the entire conditional by a single call to the new me

5. Consider making the method abstract in the provider’s root. Alternatively implem
suitable default behaviour here.

Other Steps to Consider.

• If the provider hierarchy is not a real inheritance hierarchy, you must transform it fi

• It may well be that multiple clients are performing exactly the same test and taking
same actions. In this case, the duplicated code can be replaced by a single meth
after one of the clients has been transformed. If clients are performing different tes
taking different actions, then the pattern must be applied once for each conditiona

• If the case statement does not cover all the concrete classes of the provider hiera
new abstract class may need to be introduced as a common superclass of the con
classes. The new method will then be introduced only for the relevant subtree. Alte
tively, if it is not possible to introduce such an abstract class given the existing inh
ance hierarchy, consider implementing the method at the root with either an empt
fault implementation, or one that raises an exception if it is called for an inapprop
class.

• If the conditionals are nested, the pattern may need to be applied recursively.

Tradeoffs

Normally the instances of the correct classes should be already created so we do not h
look for the creation of the instances, however refactoring the interface will affect all clien
the provider classes and must not be undertaken without examining the full consequen
such an action. In case of multiple clients,Double Dispatch can be an aid for the migration.

Transform Client Conditional to Polymorphism 15.

s-
n the

ype-

igner
in cli-
ts and
ces:
When type checks are needed

Contrary toTransform Self Conditional to Subclassing where type checks are sometimes ju
tified, the only time where type checks over provider type information is needed is whe
code of the provider is frozen and may not be extended.

Example

The code in figure 3 illustrates misplaced responsibilities since the client must explicitly t
check instances of Telephone to determine what action to perform..

After applying the pattern the client code will look like this:

void makeCalls(Telephones *phoneArray[]) {

for(Telephone **p = phoneArray; *p; p++)

*p->makeCall();

}

Rationale

Riel states, "Explicit case analysis on the type of an object is usually an error. The des
should use polymorphism in most of these cases" [Riel96a]. Indeed, explicit type checks
ents are a sign of misplaced responsibilities since they increase coupling between clien
providers. Shifting these responsibilities to the provider will have the following consequen

void makeCalls(Telephone * phoneArray[]) {
for (Telephone **p = phoneArray; *p; p++) {

switch((*p)->phoneType()) {
case TELEPHONE::POTS:

POTSPhone *potsp = (POTSPhone *) p;
potsp->tourneManivelle();
potsp->call();
break;

case TELEPHONE::ISDN:
ISDNPhone *isdnp = (ISDNPhone *) p;
isdnp->initializeLine();
isdnp->connect();
break;

case TELEPHONE::OPERATORS:
OperatorPhone *opp = (OperatorPhone *) p;
opp->operatormode(on);
opp->call();
break;

case TELEPHONE::OTHERS:
default:

error(....);
}

}

Figure 3 Explicit type checks in client code.

16. Transform Client Conditional to Polymorphism

ed
ub-

lient

ients

l be

-

t-

sider-
ne of
means
• The client and the provider will be more weakly coupled since the client will only ne
to explicitly know the root of the provider hierarchy instead of all of its concrete s
classes.

• The provider hierarchy may evolve more gracefully, with less chance of breaking c
code.

• The size and complexity of client code is reduced. The collaborations between cl
and providers become more abstract.

• Abstractions implicit in the old design (i.e., the actions of the conditional cases) wil
made explicit as methods, and will be available to other clients.

• Code duplication may be reduced (if the same conditionals occur multiply).

Related Patterns
InTransform Client Conditional to Polymorphism the conditional is made on the type infor
mation of a provider class. The same situation occurs inApply Null Object where the condi-
tional tests over null value before invoking the methods. From this point of view,Apply Null
Object is a specialization ofTransform Client Conditional to Polymorphism.

Replace Conditional with Polymorphism is the core refactoring of this reengineering pa
tern, so the reader may refer to the steps described in [Fowl99a].

Known Uses
This pattern has been applied in one of the Famoos case studies written in Ada. This con
ably decreased the size of the application and improved the flexibility of the software. In o
the Famoos C++ case studies, explicit type checks were also implemented statically by
of preprocessor commands (# ifdefs).

Apply State 17.

t

spects

tional

of the

e ob-

ts, del-
ight in-
Apply State
Like Transform Self Conditional to Subclassing, transform complex conditional code tha
tests over quantified states into delegated calls to state classes. So we apply theState pattern,
delegating each conditional case to a separate State object.

We invite the reader to read theState andState Patterns for a deep description of the problem
and discussion [Gamm, Alpe98a, Dyso98a]. Here we only focus on the reengineering a
of the pattern.

Problem
It is hard to extend a class because you have to modify all its methods that perform condi
checks on its states to decide what actions to perform.

Context

You want to add a new behavior to a class. You have access the class source code.

Symptoms
• Duplication of the same tests based on object state description in several methods

object.
• New states cannot be added without having to modify all the methods containing th

ject state tests.

Solution
Apply theState pattern, i.e. encapsulate the state dependent behavior into separate objec
egate calls to these objects and keep the state of the object consistent by refering to the r
stance of these state objects.

Structure/Participants

A

m()

...
case stateA:
...
case stateB:
...
case stateC:

AState

m()
hook()

StateA

hook()

...
hook()
...

StateB

hook()

StateC

hook()

AContext

m()

delegate m ()
...

delegate

18. Apply State

cop-
tance

e the

l to the

order
nsfor-

ince
re un-
pact

sion.

gacy
nality

steps
Steps
1. Identify the interface of a state and the number of states.

2. Create a new abstract class, State, representing the interface of the state.

3. Create a new class subclass of State for each state.

4. Define methods of the interface identified in Step 1 in each of the state classes by
ying the leaf of the test in the method. Pay attention to change the state of the ins
variable in the Context to refer to the right instance of State class.

5. Add a new instance variable in the Context class.

6. You may have to have a reference from the State to the Context class to invok
state transitions from the State classes.

7. Initialise the newly created instance to refer to a default state class instance.

8. Change the methods of the Context class containing the tests to delegate the cal
instance variable.

The step 4 can be done using the Extract Method of the Refactoring Browser. Note that the
of the steps are different from the ones of [Alpe98a] because we choose to apply the tra
mation in a way that let the system always runnable and testabel using unit tests.

TradeOffs

Pros
• Limited Impact.The public interface of the original class does not have to change. S

the state instances are accessed by delegation from the original object, the clients a
affected. In the straightforward case the application of this pattern has a limited im
on the clients.

Cons
• Class explosion. The systematic application of this pattern may lead to a class explo

When not to apply
• If the number of states are not fixed or too long.

• If the transitions between states is not clear.

When not to apply? When the legacy solution is ok!

When the states are clearly identified and it is known that they will not be changed, the le
solution is a solution that has the advantage of grouping all the state behaviour by functio
instead of spreading it over different subclasses.

Example

The Design Patterns Smalltalk Companion presents a code transformation steps by
[Alpe98a].

Apply Null Object 19.

of a
ro-

d

king

king

class
Apply Null Object
Transform conditional code that tests over null values into a polymorphic call to method
NullObject. Shift the responsibility for deciding what to do to the provider hierarchy by int
ducing a special Null object. [Wool98a]

We invite the reader to read theNullObject pattern for a deep description of the problem an
discussion [Wool98a]. Here we only focus on the reengineering aspects of the pattern.

Problem

You are repeatly checking for null values before sending message.

Symptoms

• Client methods are always testing that certain values are not null before actually invo
their methods.

• Adding a new subclass to the client hierarchy requires testing null values before invo
some of the provider methods.

Solution

Apply theNullObject pattern, i.e. encapsulate the null behaviour as a separate provider
so that the client class does not have to perform a null test.

Structure/Participants
Client

m()

...
if(a=Null)
{}...
...

RealObject

C

AbstractObject

doit()

Real Object

doit()

NullObject

doit()

Client

m()

...
a.doit()
...

20. Apply Null Object

r Null.

st an

way,
ribed

ider,

inter-

ect
ever,

bject
ad

erface
t may
otion
r but
hich

ble is
Detection

Look for idiomatic null tests.

Steps
1. Identify the interface required for the null behaviour.
2. Create a new abstract superclass as a superclass of the RealObject class.
3. Create a new subclass of the abstract superclass with a name starting with No o
4. Define default methods into the Null Object class.
5. Initialise the instance variable or structure that was checked to now hold at lea

instance of the Null Object class.
6. Remove the conditional tests form the client.

If you want to be able to still be able to make some conditional over null values in a clean
you may introduce in RealObject and Null Object classes a query method isNull as desc
in Introduce Null Object [Fowl99a].

Tradeoffs

Pros
• As the client normally just checks whether it can invoke some methods of the prov

the interface of the provider class does not have to be modified when applyingNullOb-
ject. Contrary to other patterns likeTransform Client Conditional to Polymorphism
where the interface of the provider may change considerably to propose a coherent
face to the clients, the application of theNullObject pattern has a limited impact.

Cons
• The application ofNullObject can lead to a class explosion, indeed for every realObj

class, three classes are created, RealObject, NullObject and AbstractObject. How
several techniques exist to circumvent this problem, such as implementing the null o
as a special instance of RealObject rather than as a subclass of AbstractObject. ReNul-
lObject for deeper explanations.

Difficulties: Multiple Clients
• If several clients have the same notion of default behaviour and share the same int

they can be treated independently of each other. However, one of the difficulties tha
arise when applying this pattern is the fact that several clients may have a different n
of default behaviour. If the different clients do not agree on the common behaviou
agree on a common interface, one possibility is to have a palatable Null Object in w
each client may specify its desired default behaviour.

When not to apply? When the legacy solution is ok!
• If clients do not agree on the same interface.
• When very little code uses the variable directly or when the code that use the varia

well-encapsulated in a single place.

Apply Null Object 21.

ne:
Example
The following example code is taken from [Wool98a]. The original code is the following o

VisualPart>>objectWantedControl
...
^ctrl isNil

ifFalse:
[ctrl isControlWanted

ifTrue:[self]
ifFalse:[nil]]

It is then transformed into :

VisualPart>>objectWantedControl
...
^ctrl isControlWanted

ifTrue:[self]
ifFalse:[nil]

Controller>>isControlWanted
^self viewHasCursor

NoController>>isControlWanted
^false

22. Apply Null Object

. Tem-
algo-

als.

does
thing
External Pattern
Thumbnails

Replace Type Code with Subclasses

Provides a recipe for carrying out the refactorings required forTransform Self Conditional to
Subclassing [Fowl99a].

Replace Conditional with Polymorphism

Double Dispatch

Deprecation

Replace Type Code with State

Template Method

Define the skeleton of an algorithm in an operation, deferring some steps to subclasses
plate Method lets subclasses redefine certain steps of an algorithm without changing the
rithm’s structure. [Gamm95a]

Refactoring To Specialize

W. Opdyke [Opdy92b] proposed using class invariants as a criterion to simplify condition

NullObject

A Null Object provides a surrogate for another object that shares the same interface but
nothing. Thus, the Null Object encapsulates the implementation decisions of how to do no
and hides those details from its collaborators [Wool98a].

Introduce Null Object

Provides a recipe for carrying out the refactorings required forApply Null Object [Fowl99a].

Apply Null Object 23.

ar to

rn

-
er

rts,

.

State
Allow an object to alter its behavior when its internal state changes. The object will appe
change its class [Gamm95a].

State Patterns
The State Patterns pattern language refines and clarifies the State Pattern [Dyso98a].

References
[Alpe98a], Sherman R. Alpert, Kyle Brown and Bobby Woolf,The Design Patterns
Smalltalk Companion, Addison-Wesley, 1998.
[Gamm95a], Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides,Design
Patterns, Addison Wesley, 1995.
[Deme99a], Serge Demeyer, Stéphane Ducasse and Sander Tichelaar,A Pattern Lan-
guage for Reverse Engineering, Proceedings of the 4th European Conference on Patte
Languages of Programming and Computing, 1999, Paul Dyson (Ed.), UVK Univer-
sitätsverlag Konstanz GmbH, Konstanz, Germany, July 1999.
[Duca99a],Stéphane Ducasse, Tamar Richner and Robb Nebbe,Type-Check Elimina-
tion: Two Object-Oriented Reengineering Patterns, WCRE’99 Proceedings (6th Work
ing Conference on Reverse Engineering), Francoise Balmas, Mike Blaha and Spenc
Rugaber (Eds.), IEEE, October 1999.
[Fowl99a],Martin Fowler, Kent Beck, John Brant, William Opdyke and Don Robe
Refactoring: Improving the Design of Existing Code, Addison-Wesley, 1999.
[Opdy92a],William F. Opdyke,Refactoring Object-Oriented Frameworks, Ph.D. thesis,
University of Illinois, 1992.
[Riel96a],Arthur J. Riel,Object-Oriented Design Heuristics, Addison-Wesley, 1996.
[Wool98a], Bobby Woolf,Null Object, Pattern Languages of Program Design 3, Robert
Martin, Dirk Riehle and Frank Bushmann (Eds.), pp. 5-18, Addison-Wesley, 1998

	Transform Conditional
	Transform Self Conditional to Subclassing
	Problem
	Context
	Applicability
	Symptoms

	Solution
	Structure/Participants
	Detection
	Steps

	Tradeoffs
	Pros
	Cons
	Difficulties
	When the legacy solution is the solution
	Tolerating type checks

	Example
	Rationale
	Related Patterns
	Discussion
	Why the legacy solution may have been applied

	Transform Client Conditional to Polymorphism
	Problem
	Context
	Symptoms

	Solution
	Structure/Participants
	Detection
	Steps
	Other Steps to Consider

	Tradeoffs
	When type checks are needed

	Example
	Rationale
	Related Patterns
	Known Uses

	Apply State
	Problem
	Context
	Symptoms

	Solution
	Structure/Participants
	Steps

	TradeOffs
	Pros
	Cons
	When not to apply
	When not to apply? When the legacy solution is ok!

	Example

	Apply Null Object
	Problem
	You are repeatly checking for null values before sending message.
	Symptoms

	Solution
	Structure/Participants
	Detection
	Steps

	Tradeoffs
	Pros
	Cons
	Difficulties: Multiple Clients
	When not to apply? When the legacy solution is ok!

	Example

	Replace Type Code with Subclasses
	Replace Conditional with Polymorphism
	Double Dispatch
	Deprecation
	Replace Type Code with State
	Template Method
	Refactoring To Specialize
	NullObject
	Introduce Null Object
	State
	State Patterns
	References

