
Concurrent Programming

Prof. O. Nierstrasz

Tokyo Institute of Technology

Winter 2000/2001

CP — Titech Winter 2001 i.

s

ese questions? 31

ncy 32

ency 33
es 34

35
36
37

inism 38
tions 39

40
41
42
43

readsDemo 44
y 45

46
reation) 47
ethods) 48

49
n Thread States 50

51
52

. 53
em 54

55
ods 56

ks 57
58
59
ent
answer th

 Concurre
 Concurr
e Process
tion Prefix
ursion

oice
n-determ
arded ac

ead FSP
hreads ...
he TwoTh
ncurrenc
mposition
.Thread (c
.Thread (m
.Runnable
 betwee
eads
Threads
Threads ..
pping th

ization
ized meth
ized bloc
notify
.Object
Table of Cont
1. Concurrent Programming 1

Goals of this course 2
Schedule 3
Introduction 4
Recommended reading 5
Concurrency 6
Parallelism 7
Why do we need concurrent programs? 8
Difficulties 9
Concurrency and atomicity 10
Safety 11
Liveness 12
Expressing Concurrency 13
Process Creation 14
Co-routines 15
Fork and Join 16
Cobegin/coend 17
Communication and Synchronization 18
Synchronization Techniques 19
Busy-Waiting 20
Semaphores 21
Programming with semaphores 22
Monitors 23
Programming with monitors 24
Problems with monitors 25
Path Expressions 26
Message Passing 27
Send and Receive 28
Remote Procedure Calls and Rendezvous 29
What you should know! 30

Can you

2. Java and
Modelling
Finite Stat
FSP — Ac
FSP — Rec
FSP — Ch
FSP — No
FSP — Gu
Java
Threads
SimpleThr
Multiple T
Running t
FSP — Co
FSP — Co
java.lang
java.lang
java.lang
Transitions
LTS for Thr
Creating
Creating
... And sto
Synchron
Synchron
Synchron
wait and
java.lang

CP — Titech Winter 2001 ii.

ts 92
— design steps 93

94

ronized Objects 95
96

 — design steps 97
98
99

oundedCounter 100
dableArray 101

102
103
104

hronization 105
ion — design steps 106
lls 107

108

nt 109
110

 — design steps 111
112

ip 113
ip ... 114
rotocol class 115
ow! 116
se questions? 117

ock 118

119
pecification 120

121
122
123
What you should know! 60
Can you answer these questions? 61

3. Safety and Synchronization 62
Modelling interaction — shared actions 63
Modelling interaction — handshake 64
Modelling interaction — multiple processes 65
Safety problems 66
Atomicity and interference 67
Atomic actions 68
Sequential behaviour 69
Concurrent behaviour 70
Locking 71
Synchronization 72
Synchronization in Java 73
Busy-Wait Mutual Exclusion Protocol 74
Atomic read and write 75
Modelling the busy-wait protocol 76
Busy-wait composition 77
Checking for errors 78
Conditional synchronization 79
Producer/Consumer composition 80
Wait and notify 81
Slot (put) 82
Slot (get) 83
Producer in Java 84
Consumer in Java 85
Composing Producers and Consumers 86
What you should know! 87
Can you answer these questions? 88

4. Safety Patterns 89
Idioms, Patterns and Architectural Styles 90
Pattern: Immutable classes 91

Immutability varian
Immutable classes
Design steps ...
Pattern: Fully Synch
Applicability ...
Full Synchronization
Design steps ...
Design steps ...
Example: a BalkingB
Example: an Expan
Example ...
Bundling Atomicity
Using inner classes
Pattern: Partial Sync
Partial Synchronizat
Example: LinkedCe
Example ...
Pattern: Containme
Applicability ...
Contained Objects
Design steps ...
Managed Ownersh
Managed Ownersh
A minimal transfer p
What you should kn
Can you answer the

5. Liveness and Deadl
Safety revisited
Safety — property s
Safety properties
Safety properties
Liveness

CP — Titech Winter 2001 iii.

158
bles 159

tions 161
tions ... 162
ow! 163
se questions? 164

165

hrony 166

ous Invocations 167
ations — form 168
ations — design steps 169

ee variants 171
cations 172
.. 173
ed messages 174
ages ... 175
e Gateways 176
-based messages 177

178
reads 179

180
ly 181

182
183
184

a 185
ow! 186
se questions? 187

188

bjects 189
 applicability 190

191
Liveness Problems 124
Progress properties — fair choice 125
Progress properties 126
Progress properties 127
Progress analysis 128
Deadlock 129
Waits-for cycle 130
Deadlock analysis - primitive processes 131
The Dining Philosophers Problem 132
Deadlocked diners 133
Dining Philosophers, Safety and Liveness 134
Dining Philosophers ... 135
Modeling Dining Philosophers 136
Dining Philosophers Analysis 137
Eliminating Deadlock 138
Dining Philosopher Solutions 139
What you should know! 140
Can you answer these questions? 141

6. Liveness and Guarded Methods 142
Achieving Liveness 143
Pattern: Guarded Methods 144
Guarded Methods — applicability 145
Applicability ... 146
Guarded Methods — design steps 147
Step: Separate interface from policy 148
Step: Check guard conditions 149
Step: Check guard conditions ... 150
Step: Handle interrupts 151
Step: Signal state changes 152
Notify() vs notifyall() 153
Step: Structure notifications 154
Encapsulating assignment 156

Tracking State
Tracking State Varia
Delegating notifica
Delegating notifica
What you should kn
Can you answer the

7. Lab session I

8. Liveness and Async
Pattern: Asynchron
Asynchronous Invoc
Asynchronous Invoc
Simple Relays — thr
Variant: Direct invo
Direct invocations .
Variant: Thread-bas
Thread-based mess
Thread-per-messag
Variant: Command
Tail calls
Tail calls with new th
Early Reply
Simulating Early Rep
Early Reply in Java
Futures
A Future Class
Using Futures in Jav
What you should kn
Can you answer the

9. Condition Objects
Pattern: Condition O
Condition Objects —
Condition Objects

CP — Titech Winter 2001 iv.

224
225

s Policies 226
227

s example 228
s example 229
s example 230
s example 231

ethods 232
 — design steps 233

234
235
236
237

ded Counter 238
ded Counter 239
ow! 240
se questions? 241

242

s for Concurrency 243

244
re 245

246
les 247
-Passing 248
ication Architectures 249
red Designs 250

251
252
253
254
255
A Simple Condition Object 192
The Nested Monitor problem 193
The Nested Monitor problem ... 194
The Nested Monitor problem ... 195
Nested Monitors in FSP 196
Nested Monitors in FSP ... 197
Nested Monitors in FSP ... 198
Solving the Nested Monitors problem 199
Solving Nested Monitors ... 200
Example solution 201
Pattern: Permits and Semaphores 202
Permits and Semaphores — design steps 203
Design steps ... 204
Variants 205
Semaphores in Java 206
Using Semaphores 207
Using Semaphores ... 208
Using Semaphores ... 209
What you should know! 210
Can you answer these questions? 211

10. Fairness and Optimism 212
Pattern: Concurrently Available Methods 213
Concurrent Methods — design steps 214
Priority 215
Fairness 216
Interception 217
Concurrent Reader and Writers 218
Readers/Writers Model 219
A Simple RW Protocol 220
Safety properties 221
Safety properties ... 222
Composing the Readers and Writers 223

Progress properties
Starvation
Readers and Writer
Policies ...
Readers and Writer
Readers and Writer
Readers and Writer
Readers and Writer
Pattern: Optimistic M
Optimistic Methods
Detect failure ...
Detect failure ...
Handle conflicts ...
Ensure progress ...
An Optimistic Boun
An Optimistic Boun
What you should kn
Can you answer the

11. Lab session II

12. Architectural Style
Sources
Software Architectu
Architectural style
Communication Sty
Simulated Message
Three-layered Appl
Problems with Laye
Flow Architectures
Unix Pipes
Unix Pipes
Flow Stages
Flow Policies

CP — Titech Winter 2001 v.

sumers 288
289

undedness 290
lock 291

292
293
294
295

i nets 296
nets 297
s 298

mes 299
300

ction 301
ow! 302
se questions? 303
Limiting Flow 256
Example: a Pull-based Prime Sieve 257
Using Put-Take Buffers 258
The PrimeSieve 259
Pull-based integer sources 260
The ActivePrime Class 261
The ActivePrime Class 262
The ActivePrime Class ... 263
The ActivePrime Class ... 264
Blackboard Architectures 265
Result Parallelism 266
Agenda Parallelism 267
Specialist Parallelism 268
Linda 269
Linda primitives 270
Example: Fibonacci 271
Evaluating Fibonacci 272
Evaluating Fibonacci 273
Evaluating Fibonacci 274
Evaluating Fibonacci 275
Evaluating Fibonacci 276
Evaluating Fibonacci 277
What you should know! 278
Can you answer these questions? 279

13. Petri Nets 280
Petri nets: a definition 281
Firing transitions 282
Modelling with Petri nets 283
Concurrency 284
Conflict 285
Mutual Exclusion 286
Fork and Join 287

Producers and Con
Bounded Buffers
Reachability and Bo
Liveness and Dead
Related Models
Finite State Nets
Zero-testing Nets
Other Variants
Applications of Petr
Implementing Petri
Centralized scheme
Decentralized sche
Transactions
Coordinated intera
What you should kn
Can you answer the

CP — Titech Winter 2001 1.

Concurrent Programming

mming

scar/cp/

mming in Java:
terns

, Addison-

currency: State

 Wiley, 1999
© O. Nierstrasz — U. Berne

1. Concurrent Progra

NB: Room change to W8-1008

Lecturer Prof. Oscar Nierstrasz
Assistant Kentarou Fukuchi

WWW matsu-www.is.titech.ac.jp/~o

Texts

☞ D. Lea, Concurrent Progra
Design Principles and Pat
Wesley, 1996

☞ J. Magee, J. Kramer, Con
Models & Java Programs,

http://matsu-www.is.titech.ac.jp/~oscar/cp/

CP — Titech Winter 2001 2.

Concurrent Programming

se

rency

oncurrency

ng techniques

© O. Nierstrasz — U. Berne

Goals of this cour
❑ Introduce basic concepts of concur

☞ safety, liveness, fairness

❑ Present tools for reasoning about c
☞ LTS, Petri nets

❑ Learn the best practice programmi
☞ idioms and patterns

❑ Get experience with the techniques
☞ lab sessions

CP — Titech Winter 2001 3.

Concurrent Programming

ation

Methods

ny

or Concurrency

© O. Nierstrasz — U. Berne

Schedule
1. 10 - 02 Introduction
2. 10 - 16 Concurrency and Java
3. 10 - 23 Safety and Synchroniz
4. 11 - 06 Safety Patterns
5. 11 - 13 Liveness and Deadlock
6. 11 - 20 Liveness and Guarded
7. 11 - 27 Lab session
8. 12 - 04 Liveness and Asynchro
9. 12 - 11 Condition Objects
10. 01 - 15 Fairness and Optimism
11. 01 - 22 Lab session
12. 01 - 29 Architectural Styles f
13. 02 - 05 Petri Nets
14. 02 - 19 Exam

CP — Titech Winter 2001 4.

Concurrent Programming

m ...

© O. Nierstrasz — U. Berne

Introduction
Overview

❑ Concurrency and Parallelism
❑ Applications
❑ Difficulties

☞ safety, liveness, non-determinis
Concurrent Programming Approaches

❑ Process creation
❑ Communication and synchronization

☞ Shared variables
☞ Message Passing Approaches

CP — Titech Winter 2001 5.

Concurrent Programming

ing

ing, Principles and

ublishing Co. Inc,

t and Distributed

gramming

, Addison-

rite Parallel

s, Cambridge, 1990.
© O. Nierstrasz — U. Berne

Recommended read
❑ G.R. Andrews, Concurrent Programm

Practice, The Benjamin Cummings P
1991,

❑ M. Ben-Ari, Principles of Concurren
Programming, Prentice Hall, 1990.

❑ A. Burns, G. Davies, Concurrent Pro
Wesley, 1993

❑ N. Carriero, D. Gelernter, How to W
Programs: a First Course, MIT Pres

CP — Titech Winter 2001 6.

Concurrent Programming

hread of control.

threads of control.
processes.
© O. Nierstrasz — U. Berne

Concurrency

❑ A sequential program has a single t
Its execution is called a process.

❑ A concurrent program has multiple
These may be executed as parallel

CP — Titech Winter 2001 7.

Concurrent Programming

:

ive finite progress.

one or more

s on its own
th shared memory
s on its own
ted by a network
© O. Nierstrasz — U. Berne

Parallelism
A concurrent program can be executed by

Assume only that all processes make posit

Multiprogramming: processes share
processors

Multiprocessing: each process run
processor but wi

Distributed
processing:

each process run
processor connec
to others

CP — Titech Winter 2001 8.

Concurrent Programming

 programs?

ize throughput

y

tiple CPUs
© O. Nierstrasz — U. Berne

Why do we need concurrent
Reactive programming

☞ minimize response delay; maxim
Real-time programming

☞ process control applications
Simulation

☞ modelling real-world concurrenc
Parallelism

☞ speed up execution by using mul
Distribution

☞ coordinate distributed services

CP — Titech Winter 2001 9.

Concurrent Programming

plexity:

shared data

rly coordinated

ve different results

hing and
© O. Nierstrasz — U. Berne

Difficulties
But concurrent applications introduce com

Safety
❑ concurrent processes may corrupt

Liveness
❑ processes may “starve” if not prope

Non-determinism
❑ the same program run twice may gi

Run-time overhead
❑ thread construction, context switc

synchronization take time

CP — Titech Winter 2001 10.

Concurrent Programming

icity

 and P2 complete?
© O. Nierstrasz — U. Berne

Concurrency and atom
Programs P1 and P2 execute concurrently:

{ x = 0 }

P1: x := x+1
P2: x := x+2

{ x = ? }

✎ What are possible values of x after P1

✎ What is the intended final value of x?

CP — Titech Winter 2001 11.

Concurrent Programming

ens”

s must be updated

ns may be delayed if
state
© O. Nierstrasz — U. Berne

Safety
Safety = ensuring consistency

A safety property says “nothing bad happ

❑ Mutual exclusion: shared resource
atomically

❑ Condition synchronization: operatio
shared resources are in the wrong
☞ (e.g., read from empty buffer)

CP — Titech Winter 2001 12.

Concurrent Programming

 happens”

ays access a shared

ventually access
© O. Nierstrasz — U. Berne

Liveness
Liveness = ensuring progress

A liveness property says “something good

❑ No Deadlock: some process can alw
resource

❑ No Starvation: all processes can e
shared resources

CP — Titech Winter 2001 13.

Concurrent Programming

ncy
hanisms for:

esses?

tion?

ncy?
© O. Nierstrasz — U. Berne

Expressing Concurre
A programming language must provide mec

Process creation
❑ how do you specify concurrent proc

Communication
❑ how do processes exchange informa

Synchronization
❑ how do processes maintain consiste

CP — Titech Winter 2001 14.

Concurrent Programming

iant of the following:
© O. Nierstrasz — U. Berne

Process Creation
Most concurrent languages offer some var

❑ Co-routines

❑ Fork and Join

❑ Cobegin/coend

CP — Titech Winter 2001 15.

Concurrent Programming

nd require explicit

t higher-level

Coroutine B
© O. Nierstrasz — U. Berne

Co-routines
Co-routines are only pseudo-concurrent a
transfers of control:

Co-routines can be used to implement mos
concurrent mechanisms.

Program P Coroutine A
call A

call B
resume A
resume B

return

CP — Titech Winter 2001 16.

Concurrent Programming

 processes:

te.

 care and discipline.

Program P3
© O. Nierstrasz — U. Berne

Fork and Join
Fork can be used to create any number of

Join waits for another process to termina

Fork and join are unstructured, so require

Program P1 Program P2
fork P2

fork P3
join P2

CP — Titech Winter 2001 17.

Concurrent Programming

ed:

d

f processes.

cks have terminated.

S3 S4
© O. Nierstrasz — U. Berne

Cobegin/coend
Cobegin/coend blocks are better structur

cobegin S1 || S2 || ... || Sn coen

but they can only create a fixed number o

The caller continues when all of the coblo

Main S1 S2

CP — Titech Winter 2001 18.

Concurrent Programming

ronization
aches based on
variables, processes
icate indirectly.
 synchronization
isms are needed.

x P2

P3
y

© O. Nierstrasz — U. Berne

Communication and Synch
In appro
shared
commun
Explicit
mechan

In message passing
approaches, communication
and synchronization are
combined.
Communication may be
either synchronous or
asynchronous.

x y z ...

P1 P2 P3

P1

CP — Titech Winter 2001 19.

Concurrent Programming

iques
nt in expressive

 other.

le of programming.

Message
Oriented

d
all

Message Passing
© O. Nierstrasz — U. Berne

Synchronization Techn
Different approaches are roughly equivale
power and can be used to implement each

Each approach emphasizes a different sty

Procedure
Oriented

Operation Oriente
Remote Procedure C

Semaphores

Busy-Waiting

Monitors

Path Expressions

CP — Titech Winter 2001 20.

Concurrent Programming

variables.

ment:
 a shared variable
peatedly tests the

ze correctly and
© O. Nierstrasz — U. Berne

Busy-Waiting
Busy-waiting is primitive but effective

Processes atomically set and test shared

Condition synchronization is easy to imple
❑ to signal a condition, a process sets
❑ to wait for a condition, a process re

variable

Mutual exclusion is more difficult to reali
efficiently.

CP — Titech Winter 2001 21.

Concurrent Programming

(1968) as a higher-
n.

lued variable s with

s s := s-1
s+1
© O. Nierstrasz — U. Berne

Semaphores

Semaphores were introduced by Dijkstra
level primitive for process synchronizatio

A semaphore is a non-negative, integer-va
two operations:

P(s): delays until s>0
then, atomically execute

V(s) atomically executes s:=

CP — Titech Winter 2001 22.

Concurrent Programming

phores
 semaphores, which

al Section

itical Section

x)

x)
© O. Nierstrasz — U. Berne

Programming with sema
Many problems can be solved using binary
take on values 0 or 1.

process P1
loop

 { wants to enter }
Critical Section

 { exits }
Non-critical Section

end
end

process P2
loop

Critic

Non-cr
end

end

P(mutex)

V(mutex)

P(mute

V(mute

CP — Titech Winter 2001 23.

Concurrent Programming

rations that

 procedure calls

 mutually exclusive

lized using wait and

ait and signal ...
© O. Nierstrasz — U. Berne

Monitors

A monitor encapsulates resources and ope
manipulate them:

❑ operations are invoked like ordinary

☞ invocations are guaranteed to be

☞ condition synchronization is rea
signal primitives

☞ there exist many variations of w

CP — Titech Winter 2001 24.

Concurrent Programming

itors
etch(var it : T);

 = 0 then

lots[head];
 size - 1;
 (head+1) mod N;

;
;
;

mpty.wait

l.signal
© O. Nierstrasz — U. Berne

Programming with mon
type buffer(T) = monitor

var
slots : array [0..N-1] of T;
head, tail : 0..N-1;
size : 0..N;

procedure deposit(p : T);
begin

if size = N then

slots[tail] := p;
size := size + 1;
tail := (tail+1) mod N;

end

procedure f
begin

if size

it := s
size :=
head :=

end

begin
size := 0
head := 0
tail := 0

end

notfull, notempty:condition;

notfull.wait

notempty.signal

note

notful

CP — Titech Winter 2001 25.

Concurrent Programming

ors
hores, but they are

cked
s not supported

ded to allow waiting

 signal and

gnals are not saved
ally handled to
© O. Nierstrasz — U. Berne

Problems with monit
Monitors are more structured than semap
still tricky to program:

☞ Conditions must be manually che
☞ Simultaneous signal and return i

A signalling process is temporarily suspen
processes to enter!

❑ Monitor state may change between
resumption of signaller

❑ Unlike with semaphores, multiple si
❑ Nested monitor calls must be speci

prevent deadlock

CP — Titech Winter 2001 26.

Concurrent Programming

quence of operations

 to many problems,
ral concurrent
© O. Nierstrasz — U. Berne

Path Expressions

Path expressions express the allowable se
as a kind of regular expression:

buffer : (put; get) *

Although they elegantly express solutions
path expressions are too limited for gene
programming.

CP — Titech Winter 2001 27.

Concurrent Programming

 and synchronization:

nd a destination
sses, ...

iables and a source
itly identified

ever block
he buffer is full
r must both be ready
© O. Nierstrasz — U. Berne

Message Passing
Message passing combines communication

❑ The sender specifies the message a
☞ a process, a port, a set of proce

❑ The receiver specifies message var
☞ source may or may not be explic

❑ Message transfer may be:
☞ asynchronous: send operations n
☞ buffered: sender may block if t
☞ synchronous: sender and receive

CP — Titech Winter 2001 28.

Concurrent Programming

 are explicitly named:

]

© O. Nierstrasz — U. Berne

Send and Receive
In CSP and Occam, source and destination
PROC buffer(CHAN OF INT give, take, signal)

...
SEQ

numitems := 0 ...
WHILE TRUE
ALT

numitems ≤ size &
SEQ

numitems := numitems + 1
inindex := (inindex + 1) REM size

numitems > 0 &
SEQ

numitems := numitems - 1
outindex := (outindex + 1) REM size

give?thebuffer[inindex

signal?any

take!thebuffer[outindex]

CP — Titech Winter 2001 29.

Concurrent Programming

 Rendezvous
own in advance:
© O. Nierstrasz — U. Berne

Remote Procedure Calls and
In Ada, the caller identity need not be kn
task body buffer is ...
begin loop

select
when no_of_items < size =>

 do
the_buffer(in_index) := x;

end give;
no_of_items := no_of_items + 1; ...

or
when no_of_items > 0 =>

 do
x := the_buffer(out_index);

end take;
no_of_items := no_of_items - 1; ...

end select;
end loop; ...

accept give(x : in item)

accept take(x : out item)

CP — Titech Winter 2001 30.

Concurrent Programming

ow!

s introduce?

ock and starvation?
?

anisms?
res?
 message-passing?
© O. Nierstrasz — U. Berne

What you should kn
✎ Why do we need concurrent programs?
✎ What problems do concurrent program
✎ What are safety and liveness?
✎ What is the difference between deadl
✎ How are concurrent processes created
✎ How do processes communicate?
✎ Why do we need synchronization mech
✎ How do monitors differ from semapho
✎ In what way are monitors equivalent to

CP — Titech Winter 2001 31.

Concurrent Programming

estions?
rrency and

waiting?
ting semaphores?

 using monitors?
ng semaphores?
cause?
ynchronous or
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ What is the difference between concu

parallelism?
✎ When does it make sense to use busy-
✎ Are binary semaphores as good as coun
✎ How could you implement a semaphore
✎ How would you implement monitors usi
✎ What problems could nested monitors
✎ Is it better when message passing is s

asynchronous?

CP — Titech Winter 2001 32.

Java and Concurrency

rency
© O. Nierstrasz — U. Berne

2. Java and Concur

Overview
❑ Modelling Concurrency

☞ Finite State Processes
☞ Labelled Transition Systems

❑ Java
☞ Thread creation
☞ Thread lifecycle
☞ Synchronization

Selected material © Magee and Kramer

CP — Titech Winter 2001 33.

Java and Concurrency

cy
rministic, it can be
heir properties.

 that makes it easier

f sequential
© O. Nierstrasz — U. Berne

Modelling Concurren
Because concurrent systems are non-dete
difficult to build them and reason about t

A model is an abstraction of the real world
to focus on the points of interest.

Approach:
Model concurrent systems as sets o
finite state processes

CP — Titech Winter 2001 34.

Java and Concurrency

ses
finite state process:

g a processes as a

ble traces :
n ...
© O. Nierstrasz — U. Berne

Finite State Proces
FSP is a textual notation for specifying a
SWITCH = (on -> off-> SWITCH).

LTS is a graphical notation for interpretin
labelled transition system:

The meaning of a process is a set of possi
on→off→on→off→on→off→on→off→o

SWITCH

CP — Titech Winter 2001 35.

Java and Concurrency

ix
 P) is a process that
ehaves like P.

actions start with

ing process
© O. Nierstrasz — U. Berne

FSP — Action Pref
If x is an action and P a process then (x->
initially engages in the action x and then b

ONESHOT = (once -> STOP).

Convention:
❑ Processes start with UPPERCASE,

lowercase.

terminat

CP — Titech Winter 2001 36.

Java and Concurrency
© O. Nierstrasz — U. Berne

FSP — Recursion
Repetitive behaviour uses recursion:

SWITCH = OFF,
OFF = (on -> ON),
ON = (off-> OFF).

CP — Titech Winter 2001 37.

Java and Concurrency

) is a process which
 or y.

e P; otherwise, if y

S
S

© O. Nierstrasz — U. Berne

FSP — Choice
If x and y are actions then (x->P | y->Q
initially engages in either of the actions x

If x occurs, the process then behaves lik
occurs, it behaves like Q.

DRINKS = (red ->coffee -> DRINK
| blue->tea -> DRINK
).

✎ What are the possible traces of
DRINKS?

CP — Titech Winter 2001 38.

Java and Concurrency

nism
ves as either P or Q.
© O. Nierstrasz — U. Berne

FSP — Non-determi
(x->P | x->Q) performs x and then beha

COIN = (toss -> heads -> COIN
| toss -> tails -> COIN
).

CP — Titech Winter 2001 39.

Java and Concurrency

ions
 the guard B is true

chosen.

>COUNT[i+1]
>COUNT[i-1]
© O. Nierstrasz — U. Berne

FSP — Guarded act
(when B x->P | y->Q) means that when
then either x or y may be chosen;
otherwise if B is false then only y may be

COUNT (N=3) = COUNT[0],
COUNT[i:0..N] = (when(i<N) inc-

| when(i>0) dec-
).

CP — Titech Winter 2001 40.

Java and Concurrency

bles Smalltalk:
 object-oriented
typing

ations:
twork interaction
ver network
m malicious objects

ed by users
© O. Nierstrasz — U. Berne

Java
Syntax resembles C++; semantics resem

❑ Strongly-typed, concurrent, “pure”
❑ Single-inheritance but multiple sub
❑ Automatic garbage collection

Innovation in support for network applic
❑ Standard APIs for concurrency, ne
❑ Classes can be dynamically loaded o
❑ Security model protects clients fro

Java applications do not have to be install

CP — Titech Winter 2001 41.

Java and Concurrency

 its behaviour:
{
{
ad constructor

the thread does

getName());
()*1000));
 e) { } }
etName());
© O. Nierstrasz — U. Berne

Threads
A Java Thread has a run method defining
class SimpleThread
public SimpleThread(String str)
super(str); // Call Thre

}
 { // What

for (int i=0; i<5; i++) {
System.out.println(i + " " +
try { sleep((int)(Math.random
} catch (InterruptedException

System.out.println("DONE! " + g
}

}

extends Thread

public void run()

CP — Titech Winter 2001 42.

Java and Concurrency

P
, sequential, finite

e-> STOP).

-> Print[n+1]
e -> STOP).
© O. Nierstrasz — U. Berne

SimpleThread FS
SimpleThread can be modelled as a single
state process:

Simple = ([1]->[2]->[3]->[4]-> don

Or, more generically:
const N = 5
Simple = Print[1],
Print[n:1..N] = (when(n<N) [n]

| when(n==N) don

CP — Titech Winter 2001 43.

Java and Concurrency

..
ctly but is executed

] args) {
tart it:

;
);
art()
© O. Nierstrasz — U. Berne

Multiple Threads .
A Thread’s run method is never called dire
when the Thread is started:

class TwoThreadsDemo {
public static void main (String[
// Instantiate a Thread, then s
new SimpleThread("Jamaica").
new SimpleThread("Fiji").start(

}
}

st

CP — Titech Winter 2001 44.

Java and Concurrency

sDemo

0 Jamaica
0 Fiji
1 Jamaica
1 Fiji
2 Fiji
3 Fiji
2 Jamaica
4 Fiji
3 Jamaica
DONE! Fiji
4 Jamaica
DONE! Jamaica
© O. Nierstrasz — U. Berne

Running the TwoThread
In this implementation of Java, the
execution of the two threads is
interleaved.

☞ This is not guaranteed for all
implementations!

✎ Why are the output lines never
garbled?

E.g.
0 Ja0 Fimajiica
...

CP — Titech Winter 2001 45.

Java and Concurrency

y
and concurrently

e
imple
© O. Nierstrasz — U. Berne

FSP — Concurrenc
We can relabel the transitions of Simple
compose two copies of it:

||TwoThreadsDemo = (fiji:Simpl
|| jamaica:S
).

✎ What are all the possible traces?

CP — Titech Winter 2001 46.

Java and Concurrency

n
composition will have
© O. Nierstrasz — U. Berne

FSP — Compositio
If we restrict ourselves to two steps, the
nine states:

CP — Titech Winter 2001 47.

Java and Concurrency

ation)
a.lang.Thread, or

tring name);
© O. Nierstrasz — U. Berne

java.lang.Thread (cre
A Java thread can either inherit from jav
contain a Runnable object:

public class java.lang.Thread
extends java.lang.Object

{
public ;
public ;
public Thread(Runnable target, S
public Thread(String name);

...

implements java.lang.Runnable

Thread()
Thread(Runnable target)

CP — Titech Winter 2001 48.

Java and Concurrency

hods)
ed:

;
llis)
eption;

w deprecated!
© O. Nierstrasz — U. Berne

java.lang.Thread (met
A thread must be created, and then start

...
public void run();
public synchronized void
public static void sleep(long mi

throws InterruptedExc
public static void yield();
public final String getName();

...
}

NB: suspend(), resume() and stop() are no

start()

CP — Titech Winter 2001 49.

Java and Concurrency

e
e

ritance, it is
d another class.
© O. Nierstrasz — U. Berne

java.lang.Runnabl
public interface java.lang.Runnabl
{
public abstract void run();

}

Since Java does not support multiple inhe
impossible to inherit from both Thread an

Instead, simply define:
class MyStuff extends UsefulStuff

 ...

and instantiate:
new Thread(new MyStuff);

implements Runnable

CP — Titech Winter 2001 50.

Java and Concurrency

ad States

lapsed
y() or notifyAll()
ompleted

n() exits
© O. Nierstrasz — U. Berne

Transitions between Thre

Thread

Runnable

sleep()
wait()

block on I/O

time e
notif

I/O c

ru

yield()

start()

Not Runnable

CP — Titech Winter 2001 51.

Java and Concurrency

unnable

Runnable).
© O. Nierstrasz — U. Berne

LTS for Threads
Thread = (start -> Runnable),
Runnable =
(yield -> Runnable
| {sleep, wait, blockio} -> NotR
| stop -> STOP),

NotRunnable =
({awake, notify, unblockio} ->

CP — Titech Winter 2001 52.

Java and Concurrency

 the time:

;, "Clock")
© O. Nierstrasz — U. Berne

Creating Threads
This Clock applet uses a thread to update
public class Clock
extends java.applet.Applet

{
Thread clockThread = null;
public void start() {
if (clockThread == null) {

;
}

} ...

implements Runnable

clockThread = new Thread(this
clockThread.start()

CP — Titech Winter 2001 53.

Java and Concurrency

...

 to null
{

 }
 }

ockThread)
© O. Nierstrasz — U. Berne

Creating Threads
...
public void run() {
// stops when clockThread is set

repaint();
try { ;
catch (InterruptedException e){

}
}
...

while(Thread.currentThread()==cl

clockThread.sleep(1000)

CP — Titech Winter 2001 54.

Java and Concurrency

em

10);

ts thread

trangely similar

 = null; }
© O. Nierstrasz — U. Berne

... And stopping th
...
public void paint(Graphics g) {
Date now = new Date();
g.drawString(now.getHours()
+ ":" + now.getMinutes()
+ ":" + now.getSeconds(), 5,

}
// When the applet stops, stop i
public void

}

Be careful — Applets and Threads have s
interfaces!

stop() { clockThread

CP — Titech Winter 2001 55.

Java and Concurrency

ber of threads may
object.

n a method starts!

dition!

itical section which
ing.

in locking and
© O. Nierstrasz — U. Berne

Synchronization
Without synchronization, an arbitrary num
run at any time within the methods of an

☞ Class invariant may not hold whe

☞ So can’t guarantee any post-con

A solution: consider a method to be a cr
locks access to the object while it is runn

This works as long as methods cooperate
unlocking access!

CP — Titech Winter 2001 56.

Java and Concurrency

ods

ynchronized with
:

lterOutputStream {

(String s);
(char c);
© O. Nierstrasz — U. Berne

Synchronized meth

Either: declare an entire method to be s
other synchronized methods of an object

public class PrintStream extends Fi
...
public void println
public synchronized void println
...

}

synchronized

CP — Titech Winter 2001 57.

Java and Concurrency

ks

 a method with

 resource
© O. Nierstrasz — U. Berne

Synchronized bloc

Or: synchronize an individual block within
respect to some object:

public Object aMethod() {
// unsynchronized code
...

 { // Lock
...

} // unlock resource
...

}

synchronized(resource)

CP — Titech Winter 2001 58.

Java and Concurrency

rupted:

ect val) {
it till empty

) { }
© O. Nierstrasz — U. Berne

wait and notify
Synchronization must sometimes be inter
class Slot implements Buffer {
private Object slotVal;
public void put(Obj
while (slotVal != null) { // wa
try { ; }
catch (InterruptedException e

}
slotVal = val;

;
return;

} ...
}

synchronized

wait()

notifyAll()

CP — Titech Winter 2001 59.

Java and Concurrency

an keywords:
© O. Nierstrasz — U. Berne

java.lang.Object
wait() and notify() are methods rather th

public class java.lang.Object
{
...
public final void wait()
throws InterruptedException;

public final void notify();
public final void notifyAll();
...

}

CP — Titech Winter 2001 60.

Java and Concurrency

ow!

cy?
del?
aces?
a?

or?

be synchronized?
© O. Nierstrasz — U. Berne

What you should kn
✎ What are finite state processes?
✎ How are they used to model concurren
✎ What are traces, and what do they mo
✎ How can the same FSP have multiple tr
✎ How do you create a new thread in Jav
✎ What states can a Java thread be in?

How can it change state?
✎ What is the Runnable interface good f
✎ What is a critical section?
✎ When should you declare a method to

CP — Titech Winter 2001 61.

Java and Concurrency

estions?
eatedly performs

 traces does the full

 invariant?
y outside a

 blocks rather than

n FSP?
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ How would you specify an FSP that rep

hello, but may stop at any time?
✎ How many states and how many possible

TwoThreadsDemo FSP have?
✎ When should you inherit from Thread?
✎ How can concurrency invalidate a class
✎ What happens if you call wait or notif

synchronized method or block?
✎ When is it better to use synchronized

methods?
✎ How would you model synchronization i

CP — Titech Winter 2001 62.

Safety and Synchronization

onization

tions

protocol
© O. Nierstrasz — U. Berne

3. Safety and Synchr

Overview
❑ Modelling interaction in FSP
❑ Safety — synchronizing critical sec

☞ Locking for atomicity
☞ The busy-wait mutual exclusion

❑ Conditional synchronization
☞ Slots in FSP
☞ wait(), notify() and notifyAll()
☞ Slots in Java

Selected material © Magee and Kramer

CP — Titech Winter 2001 63.

Safety and Synchronization

red actions
cesses are shared
ion:

y interleaved
y for all participants

).
© O. Nierstrasz — U. Berne

Modelling interaction — sha
Actions that are common between two pro
and can be used to model process interact

❑ Unshared actions may be arbitraril
❑ Shared actions occur simultaneousl

MAKER = (make -> ready -> MAKER
USER = (ready -> use -> USER).

||MAKER_USER = (MAKER || USER).

✎ What are the states of the LTS?
✎ The traces?

CP — Titech Winter 2001 64.

Safety and Synchronization

andshake
owledgement

 -> MAKERv2).
-> USERv2).

v2).

 LTS?
© O. Nierstrasz — U. Berne

Modelling interaction — h
A handshake is an action that signals ackn

MAKERv2 = (make -> ready -> used
USERv2 = (ready -> use -> used

||MAKER_USERv2 = (MAKERv2 || USER

✎ What are the states and traces of the

CP — Titech Winter 2001 65.

Safety and Synchronization

ple processes
e multiple processes:

d -> MAKE_A).
d -> MAKE_B).
sed -> ASSEMBLE).

ASSEMBLE).

 LTS?
© O. Nierstrasz — U. Berne

Modelling interaction — multi
Shared actions can be used to synchroniz

MAKE_A = (makeA -> ready -> use
MAKE_B = (makeB -> ready -> use
ASSEMBLE = (ready -> assemble -> u

||FACTORY = (MAKE_A || MAKE_B ||

✎ What are the states and traces of the

CP — Titech Winter 2001 66.

Safety and Synchronization

 are in a consistent

 be a critical section.

m1

m2

m3

m4

m5

methods

consistent states

?!
© O. Nierstrasz — U. Berne

Safety problems
Objects must only be accessed when they
state, formalized by a class invariant.

Each method assumes the class
invariant holds when it starts,
and it re-establishes it when
done.

If methods interleave
arbitrarily, an inconsistent state
may be accessed, and the object
may be left in a “dirty” state.

Where shared resources are updated may

incoming
requests

CP — Titech Winter 2001 67.

Safety and Synchronization

rence
© O. Nierstrasz — U. Berne

Atomicity and interfe
Consider the two processes:

{ x = 0 }
AInc: x := x+1
BInc: x := x+1

{ x = ? }

✎ How can these processes interfere?

CP — Titech Winter 2001 68.

Safety and Synchronization

 actions:

]
]).
 }

a.
© O. Nierstrasz — U. Berne

Atomic actions
Individual reads and writes may be atomic
const N = 3
range T = 0..N
Var = Var[0],
Var[u:T] = (read[u] -> Var[u

| write[v:T] -> Var[v
set VarAlpha = { read[T], write[T]

Inc =

+VarAlph

(read[v:0..N-1]
-> write[v+1]
-> STOP)

CP — Titech Winter 2001 69.

Safety and Synchronization

ur
chronization:
© O. Nierstrasz — U. Berne

Sequential behavio
A single sequential thread requires no syn

Var Inc

(Var||Inc)

CP — Titech Winter 2001 70.

Safety and Synchronization

ur
ads may interfere:
© O. Nierstrasz — U. Berne

Concurrent behavio
Without synchronization, concurrent thre

({a,b}::Var || a:Inc || b:Inc)

CP — Titech Winter 2001 71.

Safety and Synchronization

atomic:
K).

VarAlpha.
© O. Nierstrasz — U. Berne

Locking
Locks are used to make a critical section
LOCK = (acquire -> release -> LOC
INC =

+

(acquire
-> read[v:0..N-1]
-> write[v+1]
-> release
-> STOP)

CP — Titech Winter 2001 72.

Safety and Synchronization

s by sharing a lock:

INC||b:INC)
© O. Nierstrasz — U. Berne

Synchronization
Processes can synchronize critical section

({a,b}::VAR||{a,b}::LOCK||a:

CP — Titech Winter 2001 73.

Safety and Synchronization

ava
:

 use them to
© O. Nierstrasz — U. Berne

Synchronization in J
Java Threads also synchronize using locks

is just convenient syntax for:
T m() {

}

Every object has a lock, and Threads may
synchronize with each other.

synchronized T m() {
// method body

}

synchronized (this) {
// method body

}

CP — Titech Winter 2001 74.

Safety and Synchronization

n Protocol
enter its CS,
 P2:

adlock-free?

:= true
 “P1”
nter1 and
turn = “P1”
kip
l Section
:= false
tical Section
© O. Nierstrasz — U. Berne

Busy-Wait Mutual Exclusio
P1 sets enter1 := true when it wants to
but sets turn := “P2” to yield priority to

✎ Is this protocol correct? Is it fair? De

process P1
loop

enter1 := true
turn := “P2”
while enter2 and

turn = “P2”
do skip

Critical Section
enter1 := false
Non-critical Section

end
end

process P2
loop

enter2
turn :=
while e

do s
Critica
enter2
Non-cri

end
end

CP — Titech Winter 2001 75.

Safety and Synchronization

ite

-> Var[u]
-> Var[v]).

e,false}

e) = BOOL[Init],

-> BOOL[b]
ol] -> BOOL[x]).
© O. Nierstrasz — U. Berne

Atomic read and wr

We can model integer
and boolean variables
as processes with
atomic read and write
actions:

range T = 1..2

Var = Var[1],
Var[u:T] =

(read[u]
| write[v:T]

set Bool = {tru

BOOL(Init='fals
BOOL[b:Bool] =

(is[b]
| setTo[x:Bo

CP — Titech Winter 2001 76.

Safety and Synchronization

protocol
CS:

||P2)@{a,b,c,d}.

r2.setTo['true]
rite[1]

is['false] -> CS2
is['true] ->
.read[2] -> CS2
.read[1] -> Gd2)),

.setTo['false]
> d
© O. Nierstrasz — U. Berne

Modelling the busy-wait
Each process performs two actions in its

||Test = (enter1:BOOL||enter2:BOOL||turn:Var||P1

P1 = (enter1.setTo['true]
-> turn.write[2]
-> Gd1),

Gd1 =
(enter2.is['false] -> CS1
| enter2.is['true] ->

(turn.read[1] -> CS1
| turn.read[2] -> Gd1)),

CS1 = (
-> enter1.setTo['false]
-> P1).

P2 = (ente
-> turn.w
-> Gd2),

Gd2 =
(enter1.
| enter1.

(turn
| turn

CS2 = (
-> enter2
-> P2).

a -> b c -

CP — Titech Winter 2001 77.

Safety and Synchronization

ion
© O. Nierstrasz — U. Berne

Busy-wait composit

CP — Titech Winter 2001 78.

Safety and Synchronization

rs
r system with an
omicity is violated:

)
)).

l?
© O. Nierstrasz — U. Berne

Checking for erro
We can check for errors by composing ou
agent that moves to the ERROR state if at

Ok = (| b -> Ok
| | d -> Ok

✎ What happens if we break the protoco

a -> (c -> ERROR
c -> (a -> ERROR

CP — Titech Winter 2001 79.

Safety and Synchronization

ation
ready locked:

K).
© O. Nierstrasz — U. Berne

Conditional synchroniz
A lock delays an acquire request if it is al

LOCK = (acquire -> release -> LOC

Similarly, a one-slot buffer delays a put
request if it is full and delays a get
request if it is empty:

const N = 2
Slot = (put[v:0..N]

-> get[v]
-> Slot).

CP — Titech Winter 2001 80.

Safety and Synchronization

position
© O. Nierstrasz — U. Berne

Producer/Consumer com
Producer = (put[0]

-> put[1]
-> put[2]
-> Producer).

Consumer = (get[x:0..N]
-> Consumer).

||Chain = (Producer
||Slot
||Consumer)

CP — Titech Winter 2001 81.

Safety and Synchronization

ronized behaves like

d, releasing the lock
ing on that object
aiting on that object

nd notify() will

 it doesn’t matter
© O. Nierstrasz — U. Berne

Wait and notify
A Java object whose methods are all synch
a monitor

Within a synchronized method or block:
❑ wait() suspends the current threa
❑ notify() wakes up one thread wait
❑ notifyAll() wakes up all threads w

Outside of a synchronized block, wait() a
raise an IllegalMonitorStateException

Always use notifyAll() unless you are sure
which thread you wake up!

CP — Titech Winter 2001 82.

Safety and Synchronization

ect val) {

Runnable
) { }

hreads Runnable
© O. Nierstrasz — U. Berne

Slot (put)
class Slot implements Buffer {
private Object slotVal;

public void put(Obj
while (slotVal != null) {
try { ; } // become Not
catch (InterruptedException e

}
slotVal = val;

; // make waiting t
return;

}
...

synchronized

wait()

notifyAll()

CP — Titech Winter 2001 83.

Safety and Synchronization

 {

) { }
© O. Nierstrasz — U. Berne

Slot (get)
...
public Object get()
Object rval;
while (slotVal == null) {
try { ; }
catch (InterruptedException e

}
rval = slotVal;
slotVal = null;

;
return rval;

}
}

synchronized

wait()

notifyAll()

CP — Titech Winter 2001 84.

Safety and Synchronization

e slot:
 void action(int n) {
 message;
e = this.getName() + "("
ring.valueOf(n) + ")";

;
.out.println(getName()
put " + message);

put(message)
© O. Nierstrasz — U. Berne

Producer in Java
The Producer puts _count messages to th
class Producer extends Thread {

protected int _count;
protected Buffer _slot;
Producer(String name,

Buffer slot, int count) {
super(name);
_slot = slot;
_count = count;

}

public void {
int i;
for (i=1;i<=_count;i++) {

this.action(i);
}

}

protected
String
messag

+ St

System
+ "

}
}

run()

_slot.

CP — Titech Winter 2001 85.

Safety and Synchronization

only!
 {

ssage);
© O. Nierstrasz — U. Berne

Consumer in Java
... and the Consumer gets them:
class Consumer extends Producer { // code reuse

Consumer(String name, Buffer slot, int count)
super(name, slot, count);

}
protected void action(int n) {

String message;
message = (String) ;
System.out.println(getName() + " got " + me

}
}

_slot.get()

CP — Titech Winter 2001 86.

Safety and Synchronization

onsumers
are the buffer:

;
;
;

;
t();
)

© O. Nierstrasz — U. Berne

Composing Producers and C
Multiple producers and consumers may sh

public static void main(String args[]) {
Buffer slot = ;

("apple ", slot, count)
new Producer("orange", slot, count).start()
new Producer("banana", slot, count).start()

("asterix", slot, count)
new Consumer("obelix ", slot, 2*count).star

}

new Slot()
new Producer .start()

new Consumer .start(

CP — Titech Winter 2001 87.

Safety and Synchronization

ow!
?

tical about it?
nchronization?
?
ent the busy-wait

ty violations?
y outside a
© O. Nierstrasz — U. Berne

What you should kn
✎ How do you model interaction with FSP
✎ What is a critical section? What is cri
✎ Why don’t sequential programs need sy
✎ How do locks address safety problems
✎ What primitives do you need to implem

mutex protocol?
✎ How can you use FSP to check for safe
✎ What happens if you call wait or notif

synchronized method or block?
✎ When is it safe to use notifyAll()?

CP — Titech Winter 2001 88.

Safety and Synchronization

estions?
t might be violated

a?
grams without using

s) rather than

Deadlock-free?
in Java?
re complex than the
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ What is an example of an invariant tha

by interfering, concurrent threads?
✎ What constitute atomic actions in Jav
✎ Can you ensure safety in concurrent pro

locks?
✎ When should you use synchronize(thi

synchronize(someObject)?
✎ Is the busy-wait mutex protocol fair?
✎ How would you implement a Lock class
✎ Why is the Java Slot class so much mo

FSP Slot specification?

CP — Titech Winter 2001 89.

Safety Patterns

rns

g state changes

ess

ical sections”

cess
© O. Nierstrasz — U. Berne

4. Safety Patte

Overview
❑ Immutability:

☞ avoid safety problems by avoidin
❑ Full Synchronization:

☞ dynamically ensure exclusive acc
❑ Partial Synchronization:

☞ restrict synchronization to “crit
❑ Containment:

☞ structurally ensure exclusive ac

CP — Titech Winter 2001 90.

Safety Patterns

ctural Styles
 express best
ems.

ommunicating
ign problem

n schema for
© O. Nierstrasz — U. Berne

Idioms, Patterns and Archite
Idioms, patterns and architectural styles
practice in resolving common design probl

Idioms
“an implementation technique”

Design patterns
“a commonly-recurring structure of c
components that solves a general des
within a particular context”

Architectural patterns
“a fundamental structural organizatio
software systems”

CP — Titech Winter 2001 91.

Safety Patterns

lasses

ging an object’s

simple ADTs
s (java.lang.Integer)
 mutable and

ingBuffer

rld”
ent the same value
 the same integer
© O. Nierstrasz — U. Berne

Pattern: Immutable c

Intent: Bypass safety issues by not chan
state after creation.

Applicability
❑ When objects represent values of

☞ colours (java.awt.Color), number
❑ When classes can be separated into

immutable versions
☞ java.lang.String vs. java.lang.Str

❑ When updating by copying is cheap
☞ “hello” + “ ” + “world” → “hello wo

❑ When multiple instances can repres
☞ i.e., two copies of 712 represent

CP — Titech Winter 2001 92.

Safety Patterns

ts

ct’s state do not
eclared static)
l to the method

lly computed needs

mutable phase
after hardening
© O. Nierstrasz — U. Berne

Immutability varian
Variants
Stateless methods

❑ methods that do not access an obje
need to be synchronized (can be d

❑ any temporary state should be loca
Stateless objects

❑ an object whose “state” is dynamica
no synchronization!

“Hardening”
❑ object becomes immutable after a
❑ expose to concurrent threads only

CP — Titech Winter 2001 93.

Safety Patterns

ign steps
t are never changed

me Server class

als must be
ed in all
ors
© O. Nierstrasz — U. Berne

Immutable classes — des
Declare a class with instance variables tha
after construction.
class Relay { // helper for so
private final Server server_;

Relay(Server s) { // blank fin
server_ = s; // initializ

} // construct

void doIt() {
;

}
}

server_.doIt()

CP — Titech Winter 2001 94.

Safety Patterns

n immutable data
der overriding
de.

rate new objects of

al.

le, use
s for the methods
© O. Nierstrasz — U. Berne

Design steps ...
❑ Especially if the class represents a

abstraction (such as String), consi
Object.equals and Object.hashCo

❑ Consider writing methods that gene
this class.
(e.g., String concatenation)

❑ Consider declaring the class as fin

❑ If only some variables are immutab
synchronization or other technique
that are not stateless.

CP — Titech Winter 2001 95.

Safety Patterns

d Objects

nchronizing all
any point in time.

ad/write and write/
ntext in which it the

ithout waits, retries,

 a layered design in
onization of this
© O. Nierstrasz — U. Berne

Pattern: Fully Synchronize

Intent: Maintain consistency by fully sy
methods. At most one method will run at

Applicability
❑ You want to eliminate all possible re

write conflicts, regardless of the co
object is used.

❑ All methods can run to completion w
or infinite loops.

❑ You do not need to use instances in
which other objects control synchr
class.

CP — Titech Winter 2001 96.

Safety Patterns

failures, by:

cessors
cations

ncy
© O. Nierstrasz — U. Berne

Applicability ...
❑ You can avoid or deal with liveness

☞ Exploiting partial immutability
☞ Removing synchronization for ac
☞ Removing synchronization in invo
☞ Arranging per-method concurre
☞ ...

CP — Titech Winter 2001 97.

Safety Patterns

sign steps
ed

 state (i.e, no public
hat return
).

as synchronized in
n case a constructor
.

iables must either do
hods or within blocks
lass()) { ... }.
© O. Nierstrasz — U. Berne

Full Synchronization — de
❑ Declare all methods as synchroniz

☞ Do not allow any direct access to
instance variables; no methods t
references to instance variables

☞ Constructors cannot be marked
Java. Use a synchronized block i
passes this to multiple threads

☞ Methods that access static var
so via static synchronized met
of the form synchronized(getC

CP — Titech Winter 2001 98.

Safety Patterns

xits leaving the
 it exits via an

omically run to
© O. Nierstrasz — U. Berne

Design steps ...

❑ Ensure that every public method e
object in a consistent state, even if
exception.

❑ Keep methods short so they can at
completion.

CP — Titech Winter 2001 99.

Safety Patterns

 on balking:

o client if

pend on state (e.g.,
eck outside

 so that clients can
a request
© O. Nierstrasz — U. Berne

Design steps ...
❑ State-dependent actions must rely

☞ Return failure (i.e., exception) t
preconditions fail

☞ If the precondition does not de
just on the arguments), then ch
synchronized code

☞ Provide public accessor methods
check conditions before making

CP — Titech Winter 2001 100.

Safety Patterns

dCounter

/ between MIN and MAX
nt_; }

/ if pre fails
/ throw exception

/ analogous

is class were not
© O. Nierstrasz — U. Berne

Example: a BalkingBounde
public class BalkingBoundedCounter {

protected long count_ = BoundedCounter.MIN; /
public long value() { return cou
public void inc()

throws CannotIncrementException {
/
/

else
++count_;

}
public synchronized void dec() ... { ... } /

}

✎ What safety problems could arise if th
fully synchronized?

synchronized
synchronized

if (count_ >= BoundedCounter.MAX)
throw new CannotIncrementException();

CP — Titech Winter 2001 101.

Safety Patterns

eArray

lements
umber of slots used

ve some space

; }
 indexing
© O. Nierstrasz — U. Berne

Example: an Expandabl
A simplified variant of java.util.Vector:
import java.util.NoSuchElementException;
public class ExpandableArray {

protected Object[] data_; // the e
protected int size_; // the n
public ExpandableArray(int cap) {

data_ = new Object[cap]; // reser
size_ = 0;

}
public int size() { return size_
public Object at(int i) // array

throws NoSuchElementException {

else
return data_[i];

} ...

synchronized
synchronized

if (i < 0 || i >= size_)
throw new NoSuchElementException();

CP — Titech Winter 2001 102.

Safety Patterns

// add at end
// need a bigger array
// so increase ~50%
© O. Nierstrasz — U. Berne

Example ...
public void append(Object x) {

if (size_ >= data_.length) {
Object[] olddata = data_;
data_ = new Object[3 * (size_ + 1) / 2];
for (int i = 0; i < size_; ++i)

data_[i] = olddata[i];
}
data_[size_++] = x;

}
public void removeLast()

throws NoSuchElementException {

else
data_[--size_] = null;

}
}

synchronized

synchronized

if (size_ == 0)

throw new NoSuchElementException();

CP — Titech Winter 2001 103.

Safety Patterns

y
ods that perform
mic action

on to an object

eArray {
); }

this introduce?

 p) {
© O. Nierstrasz — U. Berne

Bundling Atomicit
❑ Consider adding synchronized meth

sequences of actions as a single ato

public interface Procedure { // apply an operati
public void apply(Object x);

}
public class ExpandableArrayV2 extends Expandabl

public ExpandableArrayV2(int cap) { super(cap

}

✎ What possible liveness problems does

public synchronized void applyToAll(Procedure
for (int i = 0; i < size_; ++i) {

p.apply(data_[i]);
}

}

CP — Titech Winter 2001 104.

Safety Patterns

s
edures:

(100);
// fill it up

 // print all elements

ject must be

 {
© O. Nierstrasz — U. Berne

Using inner classe
Use anonymous inner classes to pass proc
class ExpandableArrayUser {

public static void main(String[] args) {
ExpandableArrayV2 a = new ExpandableArrayV2
for (int i = 0; i < 100; ++i)

a.append(new Integer(i));
a.applyToAll(

)
}

}

NB: Any variables shared with the host ob
declared final (immutable).

new Procedure () {
public void apply(Object x)

System.out.println(x);
}

}

CP — Titech Winter 2001 105.

Safety Patterns

nization

ng only within

nd immutable

ritical section” that
 that does not.
© O. Nierstrasz — U. Berne

Pattern: Partial Synchro

Intent: Reduce overhead by synchronizi
“critical sections”.

Applicability
❑ When objects have both mutable a

instance variables.

❑ When methods can be split into a “c
deals with mutable state and a part

CP — Titech Winter 2001 106.

Safety Patterns

esign steps

ors to atomic or

s that access
r, already

 block
 access to mutable
cal section
© O. Nierstrasz — U. Berne

Partial Synchronization — d
❑ Fully synchronize all methods

❑ Remove synchronization for access
immutable values

❑ Remove synchronization for method
mutable state through a single othe
synchronized method

❑ Replace method synchronization by
synchronization for methods where
state is restricted to a single, criti

CP — Titech Winter 2001 107.

Safety Patterns

lls

 doubles are not atomic!
ed

t) {

alue_; }
 value_ = v; }

 synched!
t_ is immutable
© O. Nierstrasz — U. Berne

Example: LinkedCe
public class LinkedCell {

protected double value_; // NB:
protected final LinkedCell next_; // fix

public LinkedCell (double val, LinkedCell nex
value_ = val; next_ = next;

}

public double value() { return v
public void setValue(double v) {

// not
// nex

...

synchronized
synchronized

public LinkedCell next() {
return next_;

}

CP — Titech Winter 2001 108.

Safety Patterns

ent values
nized accessor

rch for x
ch to access value
© O. Nierstrasz — U. Berne

Example ...

...
public double sum() { // add up all elem

// get via synchro
if (next() != null)

v += next().sum();
return v;

}

public boolean includes(double x) { // sea
// syn

if (next() == null) return false;
else return next().includes(x);

}
}

double v = value();

synchronized(this) {
if (value_ == x) return true;

}

CP — Titech Winter 2001 109.

Safety Patterns

nt

d variables.
nside other objects
ime.

 to the embedded

eptualized as
© O. Nierstrasz — U. Berne

Pattern: Containme

Intent: Achieve safety by avoiding share
Unsynchronized objects are “contained” i
that have at most one thread active at a t

Applicability
❑ There is no need for shared access

objects.

❑ The embedded objects can be conc
exclusively held resources.

CP — Titech Winter 2001 110.

Safety Patterns

red as islands —
ts reachable only

reveal their

ns for compliance.

e postponements or
cts must transiently
© O. Nierstrasz — U. Berne

Applicability ...
❑ Embedded objects must be structu

communication-closed sets of objec
from a single unique reference.

They cannot contain methods that
identities to other objects.

❑ You are willing to hand-check desig

❑ You can deal with or avoid indefinit
deadlocks in cases where host obje
acquire multiple resources.

CP — Titech Winter 2001 111.

Safety Patterns

ign steps
 host object.

or, a Composite, or a
ed access to an

 synchronized, or is
© O. Nierstrasz — U. Berne

Contained Objects — des
❑ Define the interface for the outer

☞ The host could be, e.g., an Adapt
Proxy, that provides synchroniz
existing, unsynchronized class

❑ Ensure that the host is either fully
in turn a contained object.

CP — Titech Winter 2001 112.

Safety Patterns

unique references to

s cannot leak outside

ations that ensure
ally unique!

r clone contained
re unique
© O. Nierstrasz — U. Berne

Design steps ...

❑ Define instances variables that are
the contained objects.

☞ Make sure that these reference
the host!

☞ Establish policies and implement
that acquired references are re

☞ Consider methods to duplicate o
objects, to ensure that copies a

CP — Titech Winter 2001 113.

Safety Patterns

ip

l resources:

 something that you

e has it.

 then you no longer

will ever have it.
© O. Nierstrasz — U. Berne

Managed Ownersh

❑ Model contained objects as physica

☞ If you have one, then you can do
couldn't do otherwise.

☞ If you have one, then no one els

☞ If you give one to someone else,
have it.

☞ If you destroy one, then no one

CP — Titech Winter 2001 114.

Safety Patterns

 ...

 among hosts, define

give, take, exchange

 to manage transfer
© O. Nierstrasz — U. Berne

Managed Ownership

❑ If contained objects can be passed
a transfer protocol.

☞ Hosts should be able to acquire,
and forget resources

☞ Consider using a dedicated class

CP — Titech Winter 2001 115.

Safety Patterns

col class
between threads:

res; }

 {

?

n ref_; }
© O. Nierstrasz — U. Berne

A minimal transfer proto
A simple buffer for transferring objects

public class ResourceVariable {
protected Object ref_;
public ResourceVariable(Object res) { ref_ =
public Object
public Object

Object old = ref_;
ref_ = r;
return old;

}
}

✎ What are the weaknesses of this class
✎ How would you fix them?

synchronized resource() { retur
synchronized exchange(Object r)

CP — Titech Winter 2001 116.

Safety Patterns

ow!
safe?
ronized?

hod balk?
 than full

for synchronization?
© O. Nierstrasz — U. Berne

What you should kn
✎ Why are immutable classes inherently
✎ Why doesn’t a “relay” need to be synch
✎ What is “balking”? When should a met
✎ When is partial synchronization better

synchronization?
✎ How does containment avoid the need

CP — Titech Winter 2001 117.

Safety Patterns

estions?
e methods as

explicitly named

dableArray methods

onization introduce?
ate critical sections

synchronized or not?
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ When is it all right to declare only som

synchronized?
✎ When is an inner class better than an

class?
✎ What could happen if any of the Expan

were not synchronized?
✎ What liveness problems can full synchr
✎ Why is it a bad idea to have two separ

in a single method?
✎ Does it matter if a contained object is

CP — Titech Winter 2001 118.

Liveness and Deadlock

dlock
© O. Nierstrasz — U. Berne

5. Liveness and Dea

Overview
❑ Safety revisited

☞ ERROR conditions
❑ Liveness

☞ Progress Properties
❑ Deadlock

☞ The Dining Philosophers problem
☞ Detecting and avoiding deadlock

Selected material © Magee and Kramer

CP — Titech Winter 2001 119.

Liveness and Deadlock

ad happens

haviour

R
mmand -> ACTION),

spond -> ACTUATOR
mmand -> ERROR).
© O. Nierstrasz — U. Berne

Safety revisited
A safety property asserts that nothing b

ERROR process (-1) to detect erroneous be

Trace to ERROR: command command

command

command

respond

-1 0 1

ACTUATO
= (co

ACTION
= (re
|co

CP — Titech Winter 2001 120.

Liveness and Deadlock

ification
d

o specify directly

E_ACTUATOR:

SAFE_ACTUATOR
and
spond
FE_ACTUATOR
© O. Nierstrasz — U. Berne

Safety — property spec
ERROR conditions state what is not require

In complex systems, it is usually better t
what is required.

Trace to property violation in SAF
command command

command

respond

command

respond

-1 0 1

property
= (comm
-> re
-> SA
).

CP — Titech Winter 2001 121.

Liveness and Deadlock

s
ic process that
 the alphabet of P is

a property are
ty with a set of

rrect behaviour.
tes the safety

ansparent.
© O. Nierstrasz — U. Berne

Safety propertie
A safety property P defines a determinist
asserts that any trace including actions in
accepted by P.

Transparency of safety properties:
❑ Since all actions in the alphabet of

eligible choices, composing a proper
processes does not affect their co

❑ If a behaviour can occur which viola
property, then ERROR is reachable.

Properties must be deterministic to be tr

CP — Titech Winter 2001 122.

Liveness and Deadlock

s
ster, never occurs?

 to include all the
t.
© O. Nierstrasz — U. Berne

Safety propertie
How can we specify that some action, disa

property CALM = STOP + {disaster}.

A safety property must be specified so as
acceptable, valid behaviours in its alphabe

disaster

-1 0

CP — Titech Winter 2001 123.

Liveness and Deadlock

g good eventually

ays the case that an

e name given to a
 an action is never
© O. Nierstrasz — U. Berne

Liveness
A liveness property asserts that somethin
happens.

A progress property asserts that it is alw
action is eventually executed.

Progress is the opposite of starvation, th
concurrent programming situation in which
executed.

CP — Titech Winter 2001 124.

Liveness and Deadlock

s
 various kinds of

ent”)
ess, but some

 up

 be

, each waiting for
© O. Nierstrasz — U. Berne

Liveness Problem
A program may be “safe”, yet suffer from
liveness problems:
Starvation: (AKA “indefinite postponem

❑ The system as a whole makes progr
individual processes don’t

Dormancy:
❑ A waiting process fails to be woken

Premature termination:
❑ A process is killed before it should

Deadlock:
❑ Two or more processes are blocked

resources held by another

CP — Titech Winter 2001 125.

Liveness and Deadlock

ir choice
nsitions is executed
he set will be

toss

tails

1 2

s->heads->COIN
s->tails->COIN).
© O. Nierstrasz — U. Berne

Progress properties — fa
Fair Choice: If a choice over a set of tra
infinitely often, then every transition in t
executed infinitely often.

If a coin were tossed an
infinite number of times,
we would expect that both
heads and tails would each
be chosen infinitely often.

This assumes fair choice !

toss

heads

0

COIN = (tos
|tos

CP — Titech Winter 2001 126.

Liveness and Deadlock

s

target system,
ll be executed
© O. Nierstrasz — U. Berne

Progress propertie
progress P = {a1,a2..an}

asserts that in an infinite execution of a
at least one of the actions a1,a2...an wi
infinitely often.

COIN system:
progress HEADS = {heads}
progress TAILS = {tails}

...

No progress violations detected.

CP — Titech Winter 2001 127.

Liveness and Deadlock

s
 trick coin

),

->tails->COIN).

ls}

toss

heads

4 5
© O. Nierstrasz — U. Berne

Progress propertie
Suppose we have both a normal coin and a

TWOCOIN = (pick->COIN|pick->TRICK
TRICK = (toss->heads->TRICK),
COIN = (toss->heads->COIN|toss
progress HEADS = {heads}
progress TAILS = {tails}
progress HEADSorTAILS = {heads,tai

pick

pick toss

he ads

toss

tails

0 1 2 3

CP — Titech Winter 2001 128.

Liveness and Deadlock

ick
ads}

ery state is mutually
the set.

roperty TAILS

toss

heads

4 5
© O. Nierstrasz — U. Berne

Progress analysis
Progress violation: TAILS
Trace to terminal set of states: p
Actions in terminal set: {toss, he

A terminal set of states is one in which ev
reachable but no transitions leads out of

The terminal set {1, 2} violates progress p

pick

pick toss

he ads

toss

tails

0 1 2 3

CP — Titech Winter 2001 129.

Liveness and Deadlock

locked
utual exclusion.
ld on to acquired
ditional ones.
cess, resources
ased voluntarily.
xists in which
 its successor in
© O. Nierstrasz — U. Berne

Deadlock
Four necessary and sufficient conditions:

Serially reusable resources: the dead
processes share resources under m

Incremental acquisition: processes ho
resources while waiting to obtain ad

No pre-emption: once acquired by a pro
cannot be pre-empted but only rele

Wait-for cycle: a cycle of processes e
each process holds a resource which
the cycle is waiting to acquire.

CP — Titech Winter 2001 130.

Liveness and Deadlock

B

Has B awaits C

Has C awaits D
© O. Nierstrasz — U. Berne

Waits-for cycle

A

CD

E

Has A awaits B

Has E awaits A

Has D awaits E

CP — Titech Winter 2001 131.

Liveness and Deadlock

e processes
utgoing transitions

orth, south}
orth north

2

orth->STOP)).
© O. Nierstrasz — U. Berne

Deadlock analysis - primitiv
❑ A deadlocked state is one with no o
❑ In FSP: STOP process

Progress violation for actions: {n
Trace to terminal set of states: n
Actions in terminal set: {}

M OVE
north north

south

0 1

MOVE = (north->(south->MOVE|n

CP — Titech Winter 2001 132.

Liveness and Deadlock

Problem
© O. Nierstrasz — U. Berne

The Dining Philosophers
❑ Philosophers alternate

between thinking and
eating.

❑ A philosopher needs two
forks to eat.

❑ No two philosophers may
hold the same fork
simultaneously.

❑ There must be no
deadlock and no
starvation.

❑ Want efficient
behaviour under absence
of contention.

CP — Titech Winter 2001 133.

Liveness and Deadlock

s

© O. Nierstrasz — U. Berne

Deadlocked diner

A deadlock occurs if a
waits-for cycle arises in
which each philosopher
grabs one fork and waits
for the other.

CP — Titech Winter 2001 134.

Liveness and Deadlock

and Liveness
al safety and

sed by one
me
s two forks to eat

 forks ...

 forks to each
© O. Nierstrasz — U. Berne

Dining Philosophers, Safety
Dining Philosophers illustrate many classic
liveness issues:

Mutual Exclusion Each fork can be u
philosopher at a ti

Condition
synchronization

A philosopher need

Shared variable
communication

Philosophers share

Message-based
communication

... or they can pass
other

CP — Titech Winter 2001 135.

Liveness and Deadlock

...
poll for forks ...
woken by a

n grab the left
 for the right ...
one and wait (sleep)

 starve if the left
rs are always
 the forks
© O. Nierstrasz — U. Berne

Dining Philosophers
Busy-waiting A philosopher can

Blocked waiting ... or can sleep till
neighbour

Livelock All philosophers ca
fork and busy-wait

Deadlock ... or grab the left
for the right

Starvation
A philosopher may
and right neighbou
faster at grabbing

CP — Titech Winter 2001 136.

Liveness and Deadlock

phers

N].right}::).

 eat

FORK
© O. Nierstrasz — U. Berne

Modeling Dining Philoso
PHIL = (sitdown

-> arise -> PHIL).

FORK = (get -> put -> FORK).

||DINERS(N=5)=
forall [i:0..N-1]
(phil[i]:
||{phil[i].left,phil[((i-1)+N)%

✎ Is this system safe? Is it live?

-> right.get -> left.get ->
-> left.put -> right.put

PHIL

CP — Titech Winter 2001 137.

Liveness and Deadlock

alysis

e waits-for cycle
© O. Nierstrasz — U. Berne

Dining Philosophers An
Trace to terminal set of states:
phil.0.sitdown
phil.0.right.get
phil.1.sitdown
phil.1.right.get
phil.2.sitdown
phil.2.right.get
phil.3.sitdown
phil.3.right.get
phil.4.sitdown
phil.4.right.get

Actions in terminal set: {}

No further progress is possible due to th

CP — Titech Winter 2001 138.

Liveness and Deadlock

ck
proaches to

les. When detected,
ase its resources.
s; the victim should

or cycle cannot
© O. Nierstrasz — U. Berne

Eliminating Deadlo
There are two fundamentally different ap
eliminating deadlock.

Deadlock detection:
❑ Repeatedly check for waits-for cyc

choose a victim and force it to rele
☞ Common in transactional system

“roll-back” and try again

Deadlock avoidance:
❑ Design the system so that a waits-f

possibly arise.

CP — Titech Winter 2001 139.

Liveness and Deadlock

utions
g Philosophers
ramming styles and
eness guarantees:

red fork first.

o sit
© O. Nierstrasz — U. Berne

Dining Philosopher Sol
There are countless solutions to the Dinin
problem that use various concurrent prog
patterns, and offer varying degrees of liv

Number the forks
❑ Philosophers grab the lowest numbe

Philosophers queue to sit down
❑ allow no more than four at a time t

✎ Do these solutions avoid deadlock?
✎ What about starvation?
✎ Are they “fair”?

CP — Titech Winter 2001 140.

Liveness and Deadlock

ow!
they modelled in

ccur in concurrent

 a safety issue?
it?

ditions for deadlock?
 you avoid it?
© O. Nierstrasz — U. Berne

What you should kn
✎ What are safety properties? How are

FSP?
✎ What kinds of liveness problems can o

programs?
✎ Why is progress a liveness rather than
✎ What is fair choice? Why do we need
✎ What is a terminal set of states?
✎ What are necessary and sufficient con
✎ How can you detect deadlock? How can

CP — Titech Winter 2001 141.

Liveness and Deadlock

estions?
 property?
inistic to be

ss property?
ation and deadlock?
-for cycle?
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ How would you manually check a safety
✎ Why must safety properties be determ

transparent?
✎ How would you manually check a progre
✎ What is the difference between starv
✎ How would you manually detect a waits
✎ What is fairness?

CP — Titech Winter 2001 142.

Liveness and Guarded Methods

 Methods
© O. Nierstrasz — U. Berne

6. Liveness and Guarded

Overview
❑ Guarded Methods

☞ Checking guard conditions
☞ Handling interrupts
☞ Structuring notification

➪ Encapsulating assignment
➪ Tracking state
➪ Tracking state variables
➪ Delegating notifications

CP — Titech Winter 2001 143.

Liveness and Guarded Methods

s
es to ensure liveness:

ely remove

ly add safety

e need for

 avoid cyclic
© O. Nierstrasz — U. Berne

Achieving Livenes
There are various strategies and techniqu

❑ Start with safe design and selectiv
synchronization

❑ Start with live design and selective

❑ Adopt design patterns that limit th
synchronization

❑ Adopt standard architectures that
dependencies

CP — Titech Winter 2001 144.

Liveness and Guarded Methods

thods
 thread when an
equest, and wait for
aising an exception).

Client 2
© O. Nierstrasz — U. Berne

Pattern: Guarded Me
Intent: Temporarily suspend an incoming
object is not in the right state to fulfil a r
the state to change rather than balking (r

notifyAll()
wait()

dec()

inc()

Client 1 BoundedCounter

CP — Titech Winter 2001 145.

Liveness and Guarded Methods

licability
ponement.

d states are
sts), or if not, that it

occur after all
 consider a design

 problems due to
onization locks.
© O. Nierstrasz — U. Berne

Guarded Methods — app
❑ Clients can tolerate indefinite post

(Otherwise, use a balking design.)

❑ You can guarantee that the require
eventually reached (via other reque
is acceptable to block forever.

❑ You can arrange that notifications
relevant state changes. (Otherwise
based on a busy-wait spin loop.)

❑ You can avoid or cope with liveness
waiting threads retaining all synchr

CP — Titech Winter 2001 146.

Liveness and Guarded Methods

cates describing the
(Otherwise consider

 within a single
actional form.)
© O. Nierstrasz — U. Berne

Applicability ...
❑ You can construct computable predi

state in which actions will succeed.
an optimistic design.)

❑ Conditions and actions are managed
object. (Otherwise consider a trans

CP — Titech Winter 2001 147.

Liveness and Guarded Methods

ign steps
ional loop to block
All to wake up

ce() {

) { }

e ...
© O. Nierstrasz — U. Berne

Guarded Methods — des
The basic recipe is to use wait in a condit
until it is safe to proceed, and use notify
blocked threads.

public Object servi
while (wrong State) {
try { }
catch (InterruptedException e

}
// fill request and change stat

return result;
}

synchronized

wait();

notifyAll();

CP — Titech Winter 2001 148.

Liveness and Guarded Methods

rom policy
, so that classes can
ing to different

; // min value
0; // max value
N <= value() <= MAX
ue() == MIN
e() < MAX
e() > MIN
© O. Nierstrasz — U. Berne

Step: Separate interface f
❑ Define interfaces for the methods

implement guarded methods accord
policies.

public BoundedCounter {
public static final long MIN = 0
public static final long MAX = 1
public long value(); // inv’t: MI

// init: val
public void inc(); // pre: valu
public void dec(); // pre: valu

}

interface

CP — Titech Winter 2001 149.

Liveness and Guarded Methods

ditions
escribes the
 proceed.
er method.)

 a guarded wait loop

 ex) { ... }

 a helper
© O. Nierstrasz — U. Berne

Step: Check guard con
❑ Define a predicate that precisely d

conditions under which actions may
(This can be encapsulated as a help

❑ Precede the conditional actions with
of the form:

while (!condition)
try { wait(); }
catch (InterruptedException

Optionally, encapsulate this code as
method.

CP — Titech Winter 2001 150.

Liveness and Guarded Methods

tions ...
ion to check in this
nd notifications are
ue, then there is no
r returning from

stent state (i.e., the
ng any wait (since
ck).

form the guards
© O. Nierstrasz — U. Berne

Step: Check guard condi
❑ If there is only one possible condit

class (and all plausible subclasses), a
issued only when the condition is tr
need to re-check the condition afte
wait()

❑ Ensure that the object is in a consi
class invariant holds) before enteri
wait releases the synchronization lo
The easiest way to do this is to per
before taking any actions.

CP — Titech Winter 2001 151.

Liveness and Guarded Methods

upts
rruptedExceptions.

 catch clause), which
 expense of liveness.
top). This preserves
commended.)
g an exception. This
re the caller to take
y.

e proceeding.
e guard can never
llaborating threads
© O. Nierstrasz — U. Berne

Step: Handle interr
❑ Establish a policy to deal with Inte

Possibilities include::
☞ Ignore interrupts (i.e., an empty

preserves safety at the possible
☞ Terminate the current thread (s

safety, though brutally! (Not re
☞ Exit the method, possibly raisin

preserves liveness but may requi
special action to preserve safet

☞ Cleanup and restart.
☞ Ask for user intervention befor

Interrupts can be useful to signal that th
become true because, for example, the co
have terminated.

CP — Titech Winter 2001 152.

Liveness and Guarded Methods

anges

od of the class that
ffect the value of a

eads that are
ject.
© O. Nierstrasz — U. Berne

Step: Signal state ch

❑ Add notification code to each meth
changes state in any way that can a
guard condition. Some options are:

☞ use notifyAll to wake up all thr
blocked in waits for the host ob

...

CP — Titech Winter 2001 153.

Liveness and Guarded Methods

ll()

hread (if any exist).
ization where:
sarily waiting for
me notifications,
led by any given

 of them becomes

se notification
yAll. (For example,
 to provide certain
© O. Nierstrasz — U. Berne

Notify() vs notifya
...
☞ use notify to wake up only one t

This is best treated as an optim
➪ all blocked threads are neces

conditions signalled by the sa
➪ only one of them can be enab

notification, and
➪ it does not matter which one

enabled.

☞ You build your own special-purpo
methods using notify and notif
to selectively notify threads, or
fairness guarantees.)

CP — Titech Winter 2001 154.

Liveness and Guarded Methods

ations
y at least one

 end of every
y state change (i.e.,
ble).
ay cause

o each variable
ndition in a helper

e notification after
© O. Nierstrasz — U. Berne

Step: Structure notific
❑ Ensure that each wait is balanced b

notification. Options include:

Blanket
Notifications

Place a notification at the
method that can cause an
assigns any instance varia
Simple and reliable, but m
performance problems ...

Encapsulating
Assignment

Encapsulate assignment t
mentioned in any guard co
method that performs th
updating the variable.

CP — Titech Winter 2001 155.

Liveness and Guarded Methods

or the particular
 actually unblock
rove performance,
(i.e., subclassing

able that

nges state, invoke
evaluates the
e notifications if
cted.
intain aspects of
ers issue the
© O. Nierstrasz — U. Berne

Tracking
State

Only issue notifications f
state changes that could
waiting threads. May imp
at the cost of flexibility
becomes harder.)

Tracking
State

Variables

Maintain an instance vari
represents control state.
Whenever the object cha
a helper method that re-
control state and will issu
guard conditions are affe

Delegating
Notifications

Use helper objects to ma
state and have these help
notifications.

CP — Titech Winter 2001 156.

Liveness and Guarded Methods

ent
 in helper methods:

 return count_; }
© O. Nierstrasz — U. Berne

Encapsulating assignm
Guards and assignments are encapsulated
public class BoundedCounterV1

implements BoundedCounter {
protected long count_ = MIN;
public synchronized long value() {
public synchronized void inc() {

}
public synchronized void dec() {
awaitDecrementable();
setCount(count_ - 1);

}

awaitIncrementable();
setCount(count_ + 1);

CP — Titech Winter 2001 157.

Liveness and Guarded Methods

ncrementable() {

ecrementable() {

{ };

t(long newValue) {

};
© O. Nierstrasz — U. Berne

 synchronized void awaitI

}
protected synchronized void awaitD
while (count_ <= MIN)
try { wait(); }
catch(InterruptedException ex)

}
 synchronized void setCoun

}
}

protected
while (count_ >= MAX)
try { wait(); }
catch(InterruptedException ex) {

protected
count_ = newValue;
notifyAll();

CP — Titech Winter 2001 158.

Liveness and Guarded Methods

ect waiting threads
tes top and bottom:

...

) {};

left bottom state
© O. Nierstrasz — U. Berne

Tracking State
The only transitions that can possibly aff
are those that step away from logical sta
public class BoundedCounterVST

implements BoundedCounter {
protected long count_ = MIN; //
public synchronized void inc() {
while (count_ == MAX)
try { wait(); }
catch(InterruptedException ex

// just
}
...

}

if (count_++ == MIN)
notifyAll();

CP — Titech Winter 2001 159.

Liveness and Guarded Methods

bles

logical states

/ state variable

lt logical state

) {};
y actual state
logical state
© O. Nierstrasz — U. Berne

Tracking State Varia
public class BoundedCounterVSV

implements BoundedCounter {
static final int ; //
static final int MIDDLE = 1;
static final int TOP = 2;
protected int ; /
protected long count_ = MIN;
public synchronized void inc() {
while () // consu
try { wait(); }
catch(InterruptedException ex

++count_; // modif
; // sync

} ...

BOTTOM = 0

state_ = BOTTOM

state_ == TOP

checkState()

CP — Titech Winter 2001 160.

Liveness and Guarded Methods

 ... }
{ return count_; }

 {

 = BOTTOM;
 = TOP;
 = MIDDLE;

kState()

))
© O. Nierstrasz — U. Berne

...
public synchronized void dec() {
public synchronized long value()

 synchronized void
int oldState = state_;
if (count_ == MIN) state_
else if (count_ == MAX) state_
else state_

}
}

protected chec

if (state_ != oldState
&& (oldState == TOP
|| oldState == BOTTOM

notifyAll();

CP — Titech Winter 2001 161.

Liveness and Guarded Methods

ions

ong v) {

{ return value_; }

; }

: must be synched!
© O. Nierstrasz — U. Berne

Delegating notificat
public class NotifyingLong {
private long value_;
private Object observer_;
public NotifyingLong(Object o, l

 value_ = v;
}
public synchronized long value()
public void setValue(long v) {
synchronized(this) { value_ = v

// NB

}
}

observer_ = o;

synchronized(observer_) {
observer_.notifyAll();

}

CP — Titech Winter 2001 162.

Liveness and Guarded Methods

ns ...
ject:

) {};
© O. Nierstrasz — U. Berne

Delegating notificatio
Notification is delegated to the helper ob
public class BoundedCounterVNL

implements BoundedCounter {
private NotifyingLong c_ =
new NotifyingLong(this, MIN);

public synchronized void inc() {
while (c_.value() >= MAX)
try { wait(); }
catch(InterruptedException ex

}
...

}

c_.setValue(c_.value()+1);

CP — Titech Winter 2001 163.

Liveness and Guarded Methods

ow!
ods pattern?
onditions after

ll() to notify()?
ication?
ariant before calling

n

ing state and using
© O. Nierstrasz — U. Berne

What you should kn
✎ When can you apply the Guarded Meth
✎ When should methods recheck guard c

waking from a wait()?
✎ Why should you usually prefer notifyA
✎ When and where should you issue notif
✎ Why must you re-establish the class inv

wait()?
✎ What should you do when you receive a

InterruptedException?
✎ What is the difference between track

state-tracking variables?

CP — Titech Winter 2001 164.

Liveness and Guarded Methods

estions?
n balking?

o implement guarded

rded methods for a
 others to define

notifications
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ When are guarded methods better tha
✎ When should you use helper methods t

methods?
✎ What is the best way to structure gua

class if you would like it to be easy for
correctly functioning subclasses?

✎ When is the complexity of delegating
worthwhile?

CP — Titech Winter 2001 165.

Lab session I

I

course web page:

scar/cp/
© O. Nierstrasz — U. Berne

7. Lab session

The lab exercises will be available on the

matsu-www.is.titech.ac.jp/~o

http://matsu-www.is.titech.ac.jp/~oscar/cp/

CP — Titech Winter 2001 166.

Liveness and Asynchrony

chrony

eways
© O. Nierstrasz — U. Berne

8. Liveness and Asyn

Overview
❑ Asynchronous invocations

☞ Simple Relays
➪ Direct Invocations
➪ Thread-based messages; Gat
➪ Command-based messages

☞ Tail calls
☞ Early replies
☞ Futures

CP — Titech Winter 2001 167.

Liveness and Asynchrony

vocations
e serviced by

services amongst

ly need the result of
ul work.
 asynchronous,
ed using threads.
d methods are split
d reduce liveness
© O. Nierstrasz — U. Berne

Pattern: Asynchronous In
Intent: Avoid waiting for a request to b
decoupling sending from receiving.

Applicability
❑ When a host object can distribute

multiple helper objects.
❑ When an object does not immediate

an invocation to continue doing usef
❑ When invocations that are logically

regardless of whether they are cod
❑ During refactoring, when classes an

in order to increase concurrency an
problems.

CP — Titech Winter 2001 168.

Liveness and Asynchrony

 — form
e this:

 before invocation
ion
 in parallel
 after completion
© O. Nierstrasz — U. Berne

Asynchronous Invocations
Asynchronous invocation typically looks lik

class Host {
public service() {
pre(); // code to run

// the invocat
during(); // code to run
post(); // code to run

}
}

invokeHelper();

CP — Titech Winter 2001 169.

Liveness and Asynchrony

design steps

f, e.g., the Helper
ns results directly
e Host’s caller!
t depend on the kind
quest ...
n the during() code

f service() is
ed or if pre()
es the Host’s state
© O. Nierstrasz — U. Berne

Asynchronous Invocations —
Consider the following issues:

Does the Host need results back
from the Helper?

Not i
retur
to th

Can the Host process new requests
while the Helper is running?

Migh
of re

Can the Host do something while
the Helper is running?

i.e., i

Does the Host need to synchronize
pre-invocation processing?

i.e., i
guard
updat

CP — Titech Winter 2001 170.

Liveness and Asynchrony

f post() updates
ost’s state

does the host have
it for other
tions?
ew one generated
lp with each new
ce request?
© O. Nierstrasz — U. Berne

Does the Host need to synchronize
post-invocation processing?

i.e., i
the H

Does post-invocation processing
only depend on the Helper’s result?

... or
to wa
condi

Is the same Helper always used?
Is a n
to he
servi

CP — Titech Winter 2001 171.

Liveness and Asynchrony

variants
 by delegating to the
ost() actions.

directly, but

 thread to

equest to
© O. Nierstrasz — U. Berne

Simple Relays — three
A relay method obtains all its functionality
helper, without any pre(), during(), or p

Direct invocations: Invoke the Helper
without synchronization

Thread-based messages: Create a new
invoke the Helper

Command-based messages: Pass the r
another object that will run it

Relays are commonly seen in Adaptors.

CP — Titech Winter 2001 172.

Liveness and Asynchrony

tions
onization.

elper();
synchronized!
tateless method)

synchronized!

s, while the Host’s
© O. Nierstrasz — U. Berne

Variant: Direct invoca
Asynchrony is achieved by avoiding synchr
class Host {
protected Helper helper_ = new H
public void service() { // un
invokeHelper(); // (s

}
protected void invokeHelper() {
helper_.help(); // un

}
}

The Host is free to accept other request
caller must wait for the reply.

CP — Titech Winter 2001 173.

Liveness and Asynchrony

...
d with an accessor:

elper();
lper() {

chronized
ally synchronized
© O. Nierstrasz — U. Berne

Direct invocations
If helper_ is mutable, it can be protecte

class Host2 extends Host {
protected Helper helper_ = new H
protected Helper he
return helper_;

}
public void service() { // unsyn
helper().help(); // parti

}
}

synchronized

CP — Titech Winter 2001 174.

Liveness and Asynchrony

essages
 new thread:

/ An inner class
/ Must be final!
; }
© O. Nierstrasz — U. Berne

Variant: Thread-based m
The invocation can be performed within a

protected void invokeHelper() {
 { /

 Helper h_ = helper_; /
public void

} ;
}

new Thread()
final

run() { h_.help()
.start()

CP — Titech Winter 2001 175.

Liveness and Asynchrony

es ...
d outweigh the

dlessly)

 are invoked
© O. Nierstrasz — U. Berne

Thread-based messag
The cost of evaluating Helper.help() shoul
overhead of creating a thread!

❑ If the Helper is a daemon (loops en

❑ If the Helper does I/O

❑ Possibly, if multiple helper methods

CP — Titech Winter 2001 176.

Liveness and Asynchrony

teways
ervice each request.

le, byte[] data) {

 }

 {
ld arguments

te[] data) { ... }
ite to file ...

e, data)).start();

le
© O. Nierstrasz — U. Berne

Thread-per-message Ga
The Host may construct a new Helper to s
public class FileIO {
public void writeBytes(String fi

}
public void readBytes(...) { ...

}
class FileWriter
private String nm_; // ho
private byte[] d_;
public FileWriter(String name, by

// wr
}

new Thread (new FileWriter(fil

implements Runnab

public void run() { ... }

CP — Titech Winter 2001 177.

Liveness and Asynchrony

messages
 a queue for another

ul for:

ks

));
© O. Nierstrasz — U. Berne

Variant: Command-based
The Host can also put a Command object in
object that will invoke the Helper:

protected q_;
protected invokeHelper() {

}

Command-based forms are especially usef
❑ scheduling of helpers
❑ undo and replay capabilities
❑ transporting messages over networ

EventQueue

q_.put(new HelperMessage(helper_

CP — Titech Winter 2001 178.

Liveness and Asynchrony

t statement of a

// not synched
// synched
// not synched

// synched

// not synched

t new requests
© O. Nierstrasz — U. Berne

Tail calls
Applies when the helper method is the las
method. Only pre() code is synchronized.
class Subject {

protected Observer obs_ = new ...;
protected double state_;
public void updateState(double d) {

}
protected doUpdate(double d) {

state_ = d;
}
protected void sendNotification() {

obs_.changeNotification(this);
}

}

The host is immediately available to accep

doUpdate(d);
sendNotification();

synchronized

CP — Titech Winter 2001 179.

Liveness and Asynchrony

reads
 a separate thread:

te(double d) {

.this);
© O. Nierstrasz — U. Berne

Tail calls with new th
Alternatively, the tail call may be made in

public void updateSta
state_ = d;

 {
 Observer o_ = obs_;

public void {
o_.changeNotification(Subject

}
} ;

}

synchronized

new Thread()
final

run()

.start()

CP — Titech Winter 2001 180.

Liveness and Asynchrony

l activities after

gramming languages.
 built-in feature.

Host retains
synchronization!
© O. Nierstrasz — U. Berne

Early Reply
Early reply allows a host to perform usefu
returning a result to the client:

Early reply is a built-in feature in some pro
It can be easily simulated when it is not a

service()

reply

Client Host

CP — Titech Winter 2001 181.

Liveness and Asynchrony

ply
he reply from a

that can be used to
abstractions ...

new
start()

put()

Helper
© O. Nierstrasz — U. Berne

Simulating Early Re
A one-slot buffer can be used to pick up t
helper thread:

A one-slot buffer is a simple abstraction
implement many higher-level concurrency

service()

reply

new

get()

Slot

HostClient

CP — Titech Winter 2001 182.

Liveness and Asynchrony

a

unsynchronized

Helper

;
retain lock

early reply
© O. Nierstrasz — U. Berne

Early Reply in Jav
public class Host { ...
public Object service() { //
final Slot reply = new Slot();
final Host host = this;

 { //
public void run() {

 {

host.cleanup(); //
} }

}.start();
; //

} ...
}

new Thread()

synchronized (host)
reply.put(host.compute())

return reply.get()

CP — Titech Winter 2001 183.

Liveness and Asynchrony

el with a host until

t()

w
Future
© O. Nierstrasz — U. Berne

Futures
Futures allow a client to continue in parall
the future value is needed:

pu
value()

service()
ne

HostClient

returns future

returns value

CP — Titech Winter 2001 184.

Liveness and Asynchrony

bstraction around a

ly null
with some worker
© O. Nierstrasz — U. Berne

A Future Class
Futures can be implemented as a layer of a
shared Slot:
class Future {
private Object val_; // initial
private Slot slot_; // shared
public Future(Slot slot) {
slot_ = slot;

}
public Object value() {

return val_;
}

}

if (val_ == null)
val_ = slot_.get();

CP — Titech Winter 2001 185.

Liveness and Asynchrony

va
nt must explicitly

unsynchronized

ute() { ... }
© O. Nierstrasz — U. Berne

Using Futures in Ja
Without special language support, the clie
request a value() from the future object.
public Future service () { //
final Slot slot = new Slot();
new Thread() {
public void run() {

;
}

}.start();
;

}
protected Object comp

slot.put(compute())

return new Future(slot)

synchronized

CP — Titech Winter 2001 186.

Liveness and Asynchrony

ow!
us invocation take?
ronous invocations?
e “asynchronous”?

sses to implement

you use it?
u use them?
eplies in Java?
© O. Nierstrasz — U. Berne

What you should kn
✎ What general form does an asynchrono
✎ When should you consider using asynch
✎ In what sense can a direct invocation b
✎ Why (and how) would you use inner cla

asynchrony?
✎ What is “early reply”, and when would
✎ What are “futures”, and when would yo
✎ How can implement futures and early r

CP — Titech Winter 2001 187.

Liveness and Asynchrony

estions?
rrency on a single-

 as thread-per-

s we have discussed
slot-buffers as the

plies? Vice versa?
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ Why might you want to increase concu

processor machine?
✎ Why are servers commonly structured

message gateways?
✎ Which of the concurrency abstraction

till now can be implemented using one-
only synchronized objects?

✎ When are futures better than early re

CP — Titech Winter 2001 188.

Condition Objects

cts
© O. Nierstrasz — U. Berne

9. Condition Obje

Overview
❑ Condition Objects

☞ Simple Condition Objects
☞ The “Nested Monitor Problem”
☞ Permits and Semaphores
☞ Using Semaphores

CP — Titech Winter 2001 189.

Condition Objects

jects
e waits and

ing waiting and

unding the use of
e cases the use of

ather than decrease
© O. Nierstrasz — U. Berne

Pattern: Condition Ob
Intent: Condition objects encapsulate th
notifications used in guarded methods.

Applicability
❑ To simplify class design by off-load

notification mechanics.
☞ Because of the limitations surro

condition objects in Java, in som
condition objects will increase r
design complexity!

CP — Titech Winter 2001 190.

Condition Objects

licability

ften avoid notifying
ssibly proceed given

l scheduling policies
ple to impose

itions take the form
© O. Nierstrasz — U. Berne

Condition Objects — app
❑ As an efficiency manoeuvre.

☞ By isolating conditions, you can o
waiting threads that could not po
a particular state change.

❑ As a means of encapsulating specia
surrounding notifications, for exam
fairness or prioritization policies.

❑ In the particular cases where cond
of “permits” or “latches”.

CP — Titech Winter 2001 191.

Condition Objects

s
e:

r some condition
that condition

il another object
© O. Nierstrasz — U. Berne

Condition Object
Condition objects implement this interfac

public interface Condition {
public void (); // wait fo
public void (); // signal

}

A client that awaits a condition blocks unt
signals that the condition now may hold.

await
signal

CP — Titech Winter 2001 192.

Condition Objects

bject
 this class:

 {

 {}

) {

itor Problem”
© O. Nierstrasz — U. Berne

A Simple Condition O
We can encapsulate guard conditions with
public class SimpleConditionObject

implements Condition
{
public void ()
try { ; }
catch (InterruptedException ex)

}
public void (

();
}

}

Careless use can lead to the “Nested Mon

synchronized await
wait()

synchronized signal
notifyAll

CP — Titech Winter 2001 193.

Condition Objects

roblem
eads by separately

ax:

;

ject();
 {

bject()
© O. Nierstrasz — U. Berne

The Nested Monitor p
We want to avoid waking up the wrong thr
notifying the conditions notMin and notM
public class BoundedCounterVBAD
implements BoundedCounter {
protected long count_ = MIN;
protected Condition

protected Condition
notMax_ = new SimpleConditionOb

public synchronized long value()
return count_;

}
...

notMin_ = new SimpleConditionO

CP — Titech Winter 2001 194.

Condition Objects

blem ...

till count not MIN

// can’t get in!

ver get here!
© O. Nierstrasz — U. Berne

The Nested Monitor pro
public void dec() {
while (count_ == MIN)

; // wait
if (count_-- == MAX)

;
}
public void inc() {
while (count_ == MAX)
notMax_.await();

if (count_++ == MIN)
; // we ne

}
}

synchronized

notMin_.await()

notMax_.signal()

synchronized

notMin_.signal()

CP — Titech Winter 2001 195.

Condition Objects

blem ...

a blocked thread
e method that would
k the wait.

dition is
 signalled

wait()

wait()

D

SimpleConditionObject
© O. Nierstrasz — U. Berne

The Nested Monitor pro

Nested monitor lockouts occur whenever
holds the lock for an object containing th
otherwise provide a notification to unbloc

So con
never

a
dec()

inc()

Client 1 Client 2 BoundedCounterVBA

Counter is
still locked!

CP — Titech Winter 2001 196.

Condition Objects

FSP
synchronized object

lot).

protocol using a

 -> ReplySlot
ReplySlot).
k

© O. Nierstrasz — U. Berne

Nested Monitors in
Nested Monitors typically arise when one
is implemented using another.

Recall our one Slot buffer in FSP:
const N = 2
Slot = (put[v:0..N] -> get[v] -> S

Suppose we try to implement a call/reply
private instance of Slot:
ReplySlot =
(-> my.put[v] ->
| get -> my.get[v] -> ret[v] ->

put[v:0..N] ac

CP — Titech Winter 2001 197.

Condition Objects

P ...
ew protocol:

oducer).

nsumer).

||Consumer).:Slot
© O. Nierstrasz — U. Berne

Nested Monitors in FS
Our producer/consumer chain obeys the n

Producer = (put[0] -> ack
-> put[1] -> ack
-> put[2] -> ack -> Pr

Consumer = (get-> ret[x:0..N]->Co

||Chain = (Producer||ReplySlot||my

CP — Titech Winter 2001 198.

Condition Objects

P ...

ut.0, ack, put.1,
2, get, my.get.2,
© O. Nierstrasz — U. Berne

Nested Monitors in FS
But now the chain may deadlock:

Progress violation for actions: {p
put.2, my.put.0, my.put.1, my.put.
ret.2...........}
Trace to terminal set of states:
get
ret.0

Actions in terminal set: {}

CP — Titech Winter 2001 199.

Condition Objects

rs problem

zation is held on the

everses the
ty version.

d be enclosed within
ition object.
© O. Nierstrasz — U. Berne

Solving the Nested Monito
You must ensure that:

❑ Waits do not occur while synchroni
host object.
☞ This leads to a guard loop that r

synchronization seen in the faul

❑ Notifications are never missed.
☞ The entire guard wait loop shoul

synchronized blocks on the cond
...

CP — Titech Winter 2001 200.

Condition Objects

rs ...

rmed only upon
xcept for the

istent.
ny state, it must
f the host, and if it
that access is
© O. Nierstrasz — U. Berne

Solving Nested Monito
...

❑ Notifications do not deadlock.
☞ All notifications should be perfo

release of all synchronization (e
notified condition object).

❑ Helper and host state must be cons
☞ If the helper object maintains a

always be consistent with that o
shares any state with the host,
properly synchronized.

CP — Titech Winter 2001 201.

Condition Objects

dCounter { ...
ynched!
d notification condition
 on condition object
uard loop

 and act

e host synch before wait

 release all synchs!
© O. Nierstrasz — U. Berne

Example solution
public class BoundedCounterVCV implements Bounde

public void dec() { // not s
boolean wasMax = false; // recor

 { // synch
while (true) { // new g

 {
if (count_ > MIN) { // check

wasMax = (count_ == MAX);
count_--;
break;

}
}

; // releas
}

}
if (wasMax) ; // first

}
}

synchronized(notMin_)

synchronized(this)

notMin_.await()

notMax_.signal()

CP — Titech Winter 2001 202.

Condition Objects

aphores
ition object when
 counter.

 only if there have

 signal increments
s”.
 of missed signals.

oke Condition
ode.

 semaphores work
ait after another
 proceed.
© O. Nierstrasz — U. Berne

Pattern: Permits and Sem
Intent: Bundle synchronization in a cond
synchronization depends on the value of a
Applicability

❑ When any given await may proceed
been more signals than awaits.
☞ I.e., when await decrements and

the number of available “permit
❑ You need to guarantee the absence

☞

❑ The host classes can arrange to inv
methods outside of synchronized c

Unlike simple condition objects,
even if one thread enters its aw
thread has signalled that it may

CP — Titech Winter 2001 203.

Condition Objects

design steps
ion that maintains a
ses await if there

ents Condition {

();

inc(); }
ec(); }
© O. Nierstrasz — U. Berne

Permits and Semaphores —
❑ Define a class implementing Condit

permit count, and immediately relea
are already enough permits.
☞ e.g., BoundedCounter

public class CountCondition implem
protected BoundedCounter
counter_ = new BoundedCounterV0

public void
public void signal() { counter_.

}

await() { counter_.d

CP — Titech Winter 2001 204.

Condition Objects

s, their clients must
ronized code.
gn of the form:

 synched
ched
 m1()
 synched

... }
© O. Nierstrasz — U. Berne

Design steps ...
❑ As with all kinds of condition object

avoid invoking await inside of synch
☞ You can use a before/after desi

class Host {
Condition aCondition_; ...
public method m1() {

; // not
doM1(); // syn
for each Condition c enabled by

; // not
}
protected doM1() {

}

aCondition_.await()

c.signal()

synchronized

CP — Titech Winter 2001 205.

Condition Objects

s)
permits”
l if class is final

iting on a

 in separate methods
ck so locks can be

d always stays true
© O. Nierstrasz — U. Berne

Variants
Permit Counters: (Counting Semaphore

❑ Just keep track of the number of “
❑ Can use notify instead of notifyAl

Fair Semaphores:
❑ Maintain FIFO queue of threads wa

SimpleCondition

Locks and Latches:
❑ Locks can be acquired and released
❑ Keep track of thread holding the lo

reentrant!
❑ A latch is set to true by signal, an

See the On-line supplement for details!

CP — Titech Winter 2001 206.

Condition Objects

va
 version

value = initial; }
// AKA V

t one thread!

{ // AKA P

) { };
© O. Nierstrasz — U. Berne

Semaphores in Ja
public class Semaphore { // simple
private int value;
public Semaphore (int initial) {

 public void up() {
++value;

; // wake up jus
}

 public void down()
while (value==0)
try { ; }
catch(InterruptedException ex

--value;
}

}

synchronized

notify()

synchronized

wait()

CP — Titech Winter 2001 207.

Condition Objects

s

mber of items
mber of slots
© O. Nierstrasz — U. Berne

Using Semaphore
public class BoundedCounterVSem

implements BoundedCounter {
protected long count_ = MIN;
protected Semaphore mutex;
protected Semaphore full; // nu
protected Semaphore empty; // nu

BoundedCounterVSem() {
mutex = new Semaphore(1);

;
empty = new Semaphore(MAX-MIN);

}
...

full = new Semaphore(0)

CP — Titech Winter 2001 208.

Condition Objects

...

e resource

 it

slot
e is important!

 an item
© O. Nierstrasz — U. Berne

Using Semaphores
public long value() {

; // grab th
long val = count_;

; // release
return val;

}
public void inc() {

; // grab a
; // sequenc

count_ ++;
;
; // release

}
...

mutex.down()

mutex.up()

empty.down()
mutex.down()

mutex.up()
full.up()

CP — Titech Winter 2001 209.

Condition Objects

...
lem!

 locks out BADdec!

locks out BADinc!
© O. Nierstrasz — U. Berne

Using Semaphores
These would cause a nested monitor prob

public void BADinc() {
 //

count_ ++;
full.up(); mutex.up();

}

public void BADdec() {
 //

count_ --;
empty.up(); mutex.up();

}

mutex.down(); empty.down();

mutex.down(); full.down();

CP — Titech Winter 2001 210.

Condition Objects

ow!
 they make your life

?
lems?
n is it natural to use

imple condition

y() instead of
© O. Nierstrasz — U. Berne

What you should kn
✎ What are “condition objects”? How can

easier? Harder?
✎ What is the “nested monitor problem”
✎ How can you avoid nested monitor prob
✎ What are “permits” and “latches”? Whe

them?
✎ How does a semaphore differ from a s

object?
✎ Why (when) can semaphores use notif

notifyAll()?

CP — Titech Winter 2001 211.

Condition Objects

estions?
ed any instance

ested monitor

 violate?
 semaphores (in

res?
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ Why doesn’t SimpleConditionObject ne

variables?
✎ What is the easiest way to avoid the n

problem?
✎ What assumptions do nested monitors
✎ How can the obvious implementation of

Java) violate fairness?
✎ How would you implement fair semapho

CP — Titech Winter 2001 212.

Fairness and Optimism

timism
© O. Nierstrasz — U. Berne

10. Fairness and Op

❑ Concurrently available methods
☞ Priority
☞ Interception
☞ Readers and Writers

❑ Optimistic methods

Selected material © Magee and Kramer

CP — Titech Winter 2001 213.

Fairness and Optimism

ble Methods
de concurrently
le and disable
unning methods.

 different threads.
terdependent, so
al exclusion.
r some methods by

ntal or malicious
er holding its lock.
ly make host objects
 problems.
© O. Nierstrasz — U. Berne

Pattern: Concurrently Availa
Intent: Non-interfering methods are ma
available by implementing policies to enab
methods based on the current state and r
Applicability

❑ Host objects are accessed by many
❑ Host services are not completely in

need not be performed under mutu
❑ You need to improve throughput fo

eliminating nonessential blocking.
❑ You want to prevent various accide

starvation due to some client forev
❑ Full synchronization would needless

prone to deadlock or other liveness

CP — Titech Winter 2001 214.

Fairness and Optimism

sign steps
hanism by:

ly?
hod is invoked?
 tasks?

d enforce policy.

lic messages and
ate conditions to
rform the actions.
© O. Nierstrasz — U. Berne

Concurrent Methods — de
Layer concurrency control policy over mec
Policy Definition:

❑ When may methods run concurrent
❑ What happens when a disabled met
❑ What priority is assigned to waiting

Instrumentation:
❑ Define state variables to detect an

Interception:
❑ Have the host object intercept pub

then relay them under the appropri
protected methods that actually pe

CP — Titech Winter 2001 215.

Fairness and Optimism

 instance variables).
st, price, or urgency.
me condition.
ed to a queue.
aiting task will

letion of each task.
h task.
sks.
pleted.
© O. Nierstrasz — U. Berne

Priority
Priority may depend on any of:

❑ Intrinsic attributes of tasks (class &
❑ Representations of task priority, co
❑ The number of tasks waiting for so
❑ The time at which each task is add
❑ Fairness — guarantees that each w

eventually run.
❑ Expected duration or time to comp
❑ The desired completion time of eac
❑ Termination dependencies among ta
❑ The number of tasks that have com
❑ The current time.

CP — Titech Winter 2001 216.

Fairness and Optimism

finitions of fairness:
ly makes a
d.
equest infinitely

quest, it will be
s granted the

s makes a
hat of any
© O. Nierstrasz — U. Berne

Fairness
There are subtle differences between de
Weak fairness: If a process continuous

request, eventually it will be grante
Strong fairness: If a process makes a r

often, eventually it will be granted.
Linear waiting: If a process makes a re

granted before any other process i
request more than once.

FIFO (first-in first out): If a proces
request, it will be granted before t
process making a later request.

CP — Titech Winter 2001 217.

Fairness and Optimism

t of immutable
imply relays all
nized methods.

 class, split the
th subsets of

s contain
g calls to non-
form the
© O. Nierstrasz — U. Berne

Interception
Interception strategies include:
Pass-Throughs: The host maintains a se

references to helper objects and s
messages to them within unsynchro

Lock-Splitting: Instead of splitting the
synchronization locks associated wi
the state.

Before/After methods: Public method
before/after processing surroundin
public methods in the host that per
services.

CP — Titech Winter 2001 218.

Fairness and Optimism

Writers
urrency control
accessors) may
ters” (mutative,
ive access..

()

ite()

Writer1 Writer2
© O. Nierstrasz — U. Berne

Concurrent Reader and
“Readers and Writers” is a family of conc
designs in which “Readers” (non-mutating
concurrently access resources while “Wri
state-changing operations) require exclus

read()
write

read()

read()

wr

Reader1 Reader2 Host

CP — Titech Winter 2001 219.

Fairness and Optimism

odel
ets access:
seRead,

DER)

TER)
© O. Nierstrasz — U. Berne

Readers/Writers M
We are interested only in capturing who g
set Actions = { acquireRead, relea
acquireWrite, releaseWrite}

READER = (
-> examine
-> -> REA

 +Actions \{examine}.

WRITER = (acquireWrite
-> modify
-> releaseWrite -> WRI

+Actions \{modify}.

acquireRead

releaseRead

CP — Titech Winter 2001 220.

Fairness and Optimism

col
imum readers
imum writers

 =

aders+1][writing]
aders-1][writing]

aders][True]
aders][False]
© O. Nierstrasz — U. Berne

A Simple RW Proto
const Nread = 2 // Max
const Nwrite = 2 // Max

RW_LOCK = RW[0][False],
RW[readers:0..Nread][writing:Bool]
(when (!writing)

acquireRead -> RW[re
| releaseRead -> RW[re
| when (readers==0 && !writing)

acquireWrite -> RW[re
| releaseWrite -> RW[re
).

CP — Titech Winter 2001 221.

Fairness and Optimism

s

DING[1]
TING),

DING[i+1]
DING[i-1]
E_RW

E_RW).
© O. Nierstrasz — U. Berne

Safety propertie
We specify the safe interactions:
property SAFE_RW =
(acquireRead -> REA
| acquireWrite -> WRI

READING[i:1..Nread] =
(acquireRead -> REA
| when(i>1) releaseRead -> REA
| when(i==1) releaseRead -> SAF
),

WRITING = (releaseWrite -> SAF

CP — Titech Winter 2001 222.

Fairness and Optimism

...

_RW).
© O. Nierstrasz — U. Berne

Safety properties
And compose them with RW_LOCK:
||READWRITELOCK = (RW_LOCK || SAFE

CP — Titech Winter 2001 223.

Fairness and Optimism

d Writers
 with the protocol

LOCK).
© O. Nierstrasz — U. Berne

Composing the Readers an
We compose the READERS and WRITERS
and check for safety violations:

||READERS_WRITERS =
(reader[1..Nread]:READER
|| writer[1..Nwrite]:WRITER
|| {reader[1..Nread],

writer[1..Nwrite]}::READWRITE

No deadlocks/errors

CP — Titech Winter 2001 224.

Fairness and Optimism

s

Read,
te}.
er[i].acquireWrite
er[i].acquireRead
2

releaseRead,
eleaseRead}
© O. Nierstrasz — U. Berne

Progress propertie
We similarly specify liveness properties:
||RW_PROGRESS = READERS_WRITERS

>>{reader[1..Nread].release
writer[1..Nread].releaseWri

progress WRITE[i:1..Nwrite] = writ
progress READ[i:1..Nwrite] = read
Progress violation: WRITE.1 WRITE.
Trace to terminal set of states:
reader.1.acquireRead tau

Actions in terminal set:
{reader.1.acquireRead, reader.1.
reader.2.acquireRead, reader.2.r

CP — Titech Winter 2001 225.

Fairness and Optimism
© O. Nierstrasz — U. Berne

Starvation

CP — Titech Winter 2001 226.

Fairness and Optimism

olicies

 Readers even if a

rs decreases

iting for a Writer to
?
dom? Alternate?
ers finish.

thout having to give
© O. Nierstrasz — U. Berne

Readers and Writers P
Individual policies must address:

❑ Can new Readers join already active
Writer is waiting?
☞ if yes, Writers may starve
☞ if not, the throughput of Reade

❑ If both Readers and Writers are wa
finish, which should you let in first
☞ Readers? A Writer? FCFS? Ran
☞ Similar choices exist after Read

❑ Can Readers upgrade to Writers wi
up access?

CP — Titech Winter 2001 227.

Fairness and Optimism

 waiting Writers.

threads

ay to implement
© O. Nierstrasz — U. Berne

Policies ...
A typical set of choices:

❑ Block incoming Readers if there are

❑ “Randomly” choose among incoming
(i.e., let the scheduler choose).

❑ No upgrade mechanisms.

Before/after methods are the simplest w
Readers and Writers policies.

CP — Titech Winter 2001 228.

Fairness and Optimism

xample

; // zero or more
; // zero or one
;

0;

// define in
; // subclass

0

© O. Nierstrasz — U. Berne

Readers and Writers e
Implement state tracking variables

public abstract class RWVT {
protected int
protected int activeWriters_ = 0
protected int
protected int waitingWriters_ =

protected abstract void read_();
protected abstract void write_()

...

activeReaders_ = 0

waitingReaders_ =

CP — Titech Winter 2001 229.

Fairness and Optimism

xample
er methods

ronized
access
 service
 access
© O. Nierstrasz — U. Berne

Readers and Writers e
Public methods call protected before/aft
...
public void read() { // unsynch

// obtain
// perform
// release

}
public void write() {
beforeWrite();
write_();
afterWrite();

}
...

beforeRead();
read_();
afterRead();

CP — Titech Winter 2001 230.

Fairness and Optimism

xample
tain state variables

reRead() {
le to subclasses

x) {}

rRead() {

ders_;
© O. Nierstrasz — U. Berne

Readers and Writers e
Synchronized before/after methods main
...
protected void befo

; // availab
while (!allowReader())
try { ; }
catch (InterruptedException e

}
protected void afte

}
...

synchronized
++waitingReaders_

wait()

--waitingReaders_; ++activeRea

synchronized
--activeReaders_; notifyAll();

CP — Titech Winter 2001 231.

Fairness and Optimism

xample
 variables ...

 // default policy

ethods for Writers?
© O. Nierstrasz — U. Berne

Readers and Writers e
Different policies can use the same state
...
protected boolean allowReader() {
return

}
...

✎ Can you define suitable before/after m

waitingWriters_ == 0
&& activeWriters_ == 0;

CP — Titech Winter 2001 232.

Fairness and Optimism

thods
ions, but rollback
ack, they either
ions.

r retries.
ethods .

fore failure checks
s of each performed
other objects, they
ages”
act, delaying
s ruled out.
© O. Nierstrasz — U. Berne

Pattern: Optimistic Me
Intent: Optimistic methods attempt act
state in case of interference. After rollb
throw failure exceptions or retry the act

Applicability
❑ Clients can tolerate either failure o

☞ If not, consider using guarded m
❑ You can avoid or cope with livelock.
❑ You can undo actions performed be

☞ Rollback/Recovery: undo effect
action. If messages are sent to
must be undone with “anti-mess

☞ Provisional action: “pretend” to
commitment until interference i

CP — Titech Winter 2001 233.

Fairness and Optimism

sign steps
so that it can be

olding values of all

ake it mutable (allow
dditionally include a
tifier) field or even

 version number, in
o take as arguments
s of these variables.
t state.
...
© O. Nierstrasz — U. Berne

Optimistic Methods — de
Collect and encapsulate all mutable state
tracked as a unit:

❑ Define an immutable helper class h
instance variables.

❑ Define a representation class, but m
instance variables to change), and a
version number (or transaction iden
a sufficiently precise time stamp.

❑ Embed all instance variables, plus a
the host class, but define commit t
all assumed values and all new value

❑ Maintain a serialized copy of objec
❑ Various combinations of the above

CP — Titech Winter 2001 234.

Fairness and Optimism

.
etects version
od of the form:
code sketch
immutable values

t)

;e_ == assumed)
© O. Nierstrasz — U. Berne

Detect failure ..
Provide an operation that simultaneously d
conflicts and performs updates via a meth
class Optimistic { //
private State currentState_; //

 boolean
commit(State assumed, State nex

{
boolean success =

return success;
}

}

synchronized

(currentStat
if (success)
currentState_ = next;

CP — Titech Winter 2001 235.

Fairness and Optimism

.
 method as follows:

 optimistically

utNotChangingIt();
© O. Nierstrasz — U. Berne

Detect failure ..
Structure the main actions of each public

State ;
State next = ... // compute

else
otherActionsDependingOnNewStateB

assumed = currentState()

if (!commit(assumed, next))
rollback();

CP — Titech Winter 2001 236.

Fairness and Optimism

..
ith commit failures:

ilure that tells a

succeeds.

es, or until a timeout
n.

d methods which
© O. Nierstrasz — U. Berne

Handle conflicts .
Choose and implement a policy for dealing w

❑ Throw an exception upon commit fa
client that it may retry.

❑ Internally retry the action until it

❑ Retry some bounded number of tim
occurs, finally throwing an exceptio

❑ Pessimistically synchronize selecte
should not fail.

CP — Titech Winter 2001 237.

Fairness and Optimism

..
s

erproductive!

l threads have
scheduler at least
iting tasks (which it
© O. Nierstrasz — U. Berne

Ensure progress .
Ensure progress in case of internal retrie

❑ Immediately retrying may be count

❑ Yielding may only be effective if al
reasonable priorities and the Java
approximates fair choice among wa
is not guaranteed to do)!

❑ Limit retries to avoid livelock

CP — Titech Winter 2001 238.

Fairness and Optimism

Counter

(MIN);

dc);
© O. Nierstrasz — U. Berne

An Optimistic Bounded
public class BoundedCounterVOPT

implements BoundedCounter
{
protected Long count_ = new Long
protected boolean
commit(Long oldc, Long newc)

{
boolean success = (count_ == ol

}
...

synchronized

if (success) count_ = newc;
return success;

CP — Titech Winter 2001 239.

Fairness and Optimism

Counter

nt_.longValue(); }

d busy-wait!
ongValue();
Long(v+1)))

);
© O. Nierstrasz — U. Berne

An Optimistic Bounded
...
public long value() { return cou
public void inc() {
for (;;) { // thinly disguise
Long c = count_; long v = c.l

// is there another thread?!
}

}
...

if (v < MAX && commit(c, new
break;

Thread.currentThread().yield(

CP — Titech Winter 2001 240.

Fairness and Optimism

ow!
ize threads?
s of fairness?
s?
rs pose?

stic methods?
w do you detect
© O. Nierstrasz — U. Berne

What you should kn
✎ What criteria might you use to priorit
✎ What are different possible definition
✎ What are readers and writers problem
✎ What difficulties do readers and write
✎ When should you consider using optimi
✎ How can an optimistic method fail? Ho

failure?

CP — Titech Winter 2001 241.

Fairness and Optimism

estions?
? How does it work?
pgrading readers to

ava) scheduler
al section?
s of encapsulating
ethods?
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ When does it make sense to split locks
✎ When should you provide a policy for u

writers?
✎ What are the dangers in letting the (J

choose which writer may enter a critic
✎ What are advantages and disadvantage

synchronization conditions as helper m
✎ How can optimistic methods livelock?

CP — Titech Winter 2001 242.

Lab session II

II

course web page:

scar/cp/
© O. Nierstrasz — U. Berne

11. Lab session

The lab exercises will be available on the

matsu-www.is.titech.ac.jp/~o

http://matsu-www.is.titech.ac.jp/~oscar/cp/

CP — Titech Winter 2001 243.

Architectural Styles for Concurrency

yles for

ure
© O. Nierstrasz — U. Berne

12. Architectural St
Concurrency

Overview
❑ What is Software Architecture?
❑ Three-layered application architect
❑ Flow architectures

☞ Active Prime Sieve
❑ Blackboard architectures

☞ Fibonacci with Linda

CP — Titech Winter 2001 244.

Architectural Styles for Concurrency

rchitecture:
line, Prentice-Hall,

ted Software
rns, John Wiley,

Java — Design
eries, Addison-

o Write Parallel
s, Cambridge, 1990.
© O. Nierstrasz — U. Berne

Sources
❑ M. Shaw and D. Garlan, Software A

Perspectives on an Emerging Discip
1996.

❑ F. Buschmann, et al., Pattern-Orien
Architecture — A System of Patte
1996.

❑ D. Lea, Concurrent Programming in
principles and Patterns, The Java S
Wesley, 1996.

❑ N. Carriero and D. Gelernter, How t
Programs: a First Course, MIT Pres

CP — Titech Winter 2001 245.

Architectural Styles for Concurrency

ure
stem in terms of
ctions amongst

ily of systems in
nization.

ecture, pp. 3, 19
© O. Nierstrasz — U. Berne

Software Architect
A Software Architecture defines a sy
computational components and intera
those components.

An Architectural Style defines a fam
terms of a pattern of structural orga

— cf. Shaw & Garlan, Software Archit

CP — Titech Winter 2001 246.

Architectural Styles for Concurrency

le
kinds of properties:

 and “sinks”
nstrain compositions
nate in a linear

m its input stream
tream
rmed
”, no deadlock can
ss in tandem
© O. Nierstrasz — U. Berne

Architectural sty
Architectural styles typically entail four

❑ A vocabulary of design elements
☞ e.g., “pipes”, “filters”, “sources”,

❑ A set of configuration rules that co
☞ e.g., pipes and filters must alter

sequence
❑ A semantic interpretation

☞ e.g., each filter reads bytes fro
and writes bytes to its output s

❑ A set of analyses that can be perfo
☞ e.g., if filters are “well-behaved

occur, and all filters can progre

CP — Titech Winter 2001 247.

Architectural Styles for Concurrency

les
red Variables
esses communicate
ectly.

licit synchronization
hanisms are needed.

P2
© O. Nierstrasz — U. Berne

Communication Sty
Sha
Proc
indir
Exp
mec

Message-Passing
Communication and
synchronization are
combined.

P1 P2 P3

P1

P3

CP — Titech Winter 2001 248.

Architectural Styles for Concurrency

ssing
es can be simulated

ciating message

s

© O. Nierstrasz — U. Berne

Simulated Message-Pa
Most concurrency and communication styl
by one another:

Message-passing can be modelled by asso
queues to each process.

Unsynchronized object

Synchronized objects

CP — Titech Winter 2001 249.

Architectural Styles for Concurrency

rchitectures

onitor problems by
 layer.
© O. Nierstrasz — U. Berne

Three-layered Application A

This kind of architecture avoids nested m
restricting concurrency control to a single

Interaction with external world
Generating threads

Concurrency control
Locking, waiting, failing

Basic mechanisms

CP — Titech Winter 2001 250.

Architectural Styles for Concurrency

Designs
use:

nformation
le
.g., message history)

nt layers may

urrent policy
© O. Nierstrasz — U. Berne

Problems with Layered
Hard to extend beyond three layers beca

❑ Control may depend on unavailable i
☞ Because it is not safely accessib
☞ Because it is not represented (e

❑ Synchronization policies of differe
conflict
☞ E.g., nested monitor lockouts

❑ Ground actions may need to know c
☞ E.g., blocking vs. failing

CP — Titech Winter 2001 251.

Architectural Styles for Concurrency

s
ided by arranging
e direction from

e connected in a

by sensors,
s.

ts flow through
© O. Nierstrasz — U. Berne

Flow Architecture
Many synchronization problems can be avo
things so that information only flows in on
sources to filters to sinks.

Unix “pipes and filters”: Processes ar
linear sequence.

Control systems: events are picked up
processed, and generate new event

Workflow systems: Electronic documen
workflow procedures.

CP — Titech Winter 2001 252.

Architectural Styles for Concurrency

ect producer and
lters):

to output stream
 word on one line

f each word
erical order
ult
© O. Nierstrasz — U. Berne

Unix Pipes
Unix pipes are bounded buffers that conn
consumer processes (sources, sinks and fi

cat file # send file contents
| tr -c ’a-zA-Z’ ’\012’ # put each
| sort # sort the words
| uniq -c # count occurrences o
| sort -rn # sort in reverse num
| more # and display the res

CP — Titech Winter 2001 253.

Architectural Styles for Concurrency

t and write to

“broken pipes”!

ed by the O/S.

e I/O system
© O. Nierstrasz — U. Berne

Unix Pipes
Processes should read from standard inpu
standard output streams:

❑ Misbehaving processes give rise to

Process creation and scheduling are handl

Synchronization is handled implicitly by th
(through buffering).

CP — Titech Winter 2001 254.

Architectural Styles for Concurrency

r or both:

ple successors
ltiple consumers
gst consumers

tiple predecessors
 single consumer
t to produce a single

essors and
© O. Nierstrasz — U. Berne

Flow Stages
Every flow stage is a producer or consume

❑ Splitters (Multiplexers) have multi
☞ Multicasters clone results to mu
☞ Routers distribute results amon

❑ Mergers (Demultiplexers) have mul
☞ Collectors interleave inputs to a
☞ Combiners process multiple inpu

result

❑ Conduits have both multiple predec
consumers

CP — Titech Winter 2001 255.

Architectural Styles for Concurrency

ixture:
sults from Producers
ults to Consumers

t push-based stages
ffers) connect pull-

) push-based stages

ke Consumer
© O. Nierstrasz — U. Berne

Flow Policies
Flow can be pull-based, push-based, or a m

❑ Pull-based flow: Consumers take re
❑ Push-based flow: Producers put res
❑ Buffers:

☞ Put-only buffers (relays) connec
☞ Take-only buffers (pre-fetch bu

based stages
☞ Put-Take buffers connect (adapt

to pull-based stages

Producer buffer
put

ta

CP — Titech Winter 2001 256.

Architectural Styles for Concurrency

faster than
ailable memory

hreads can
ckly than

ays full or
 speed of

ge than bounded
© O. Nierstrasz — U. Berne

Limiting Flow
Unbounded buffers: If producers are

consumers, buffers may exhaust av

Unbounded threads: Having too many t
exhaust system resources more qui
unbounded buffers

Bounded buffers: Tend to be either alw
always empty, depending on relative
producers and consumers

Bounded thread pools: Harder to mana
buffers

CP — Titech Winter 2001 257.

Architectural Styles for Concurrency

ime Sieve
, pass on candidates,

get()

ctivePrime(5)

ActivePrime(7)
© O. Nierstrasz — U. Berne

Example: a Pull-based Pr
Primes are agents that reject non-primes
or instantiate new prime agents:

4

5

3

6

5

7 7

8

get()

new

new

new

get()

get()

ActivePrime(2)TestForPrime

ActivePrime(3)

A

CP — Titech Winter 2001 258.

Architectural Styles for Concurrency

fers
o feed values to the

 2, gets values from
ime instances

5

© O. Nierstrasz — U. Berne

Using Put-Take Buf
Each ActivePrime uses a one-slot buffer t
next ActivePrime.

The first ActivePrime holds the seed value
a TestForPrime, and creates new ActivePr
whenever it detects a prime value.

72... 10 9 8 3

CP — Titech Winter 2001 259.

Architectural Styles for Concurrency

tial configuration

rgs[]) {

 n) {

ForPrime(n));
© O. Nierstrasz — U. Berne

The PrimeSieve
The main PrimeSieve class creates the ini
public class PrimeSieve {
public static void main(String a
genPrimes(1000);

}
public static void genPrimes(int
try {
ActivePrime firstPrime =

} catch (Exception e) { }
}

}

new ActivePrime(2, new Test

CP — Titech Winter 2001 260.

Architectural Styles for Concurrency

urces
IntSource:
; }
ource {

ue = max;

t synched!
urn nextValue++; }
© O. Nierstrasz — U. Berne

Pull-based integer so
Active primes get values to test from an
interface IntSource { int getInt()
class TestForPrime implements IntS
private int nextValue;
private int maxValue;
public TestForPrime(int max) {
this.nextValue = 3; this.maxVal

}
public int getInt() { // no
if (nextValue < maxValue) { ret
else { return 0; }

}
}

CP — Titech Winter 2001 261.

Architectural Styles for Concurrency

ass
ource

 {
me; // shared
s prime
 square
s to test
pass values on

ource
© O. Nierstrasz — U. Berne

The ActivePrime Cl
ActivePrimes themselves implement IntS

class ActivePrime
extends Thread

private IntSource lastPri
private int value; // thi
private int square; // its
private IntSource intSrc; // int

// to
...

implements IntS
static

private Slot slot;

CP — Titech Winter 2001 262.

Architectural Styles for Concurrency

ass

tSource intSrc)

rivate
chronized (safe!)
e active

ed out of order!
© O. Nierstrasz — U. Berne

The ActivePrime Cl
...
public ActivePrime(int value, In
throws ActivePrimeFailure

{
this.value = value;
...

 // NB: p
// unsyn
// becom

}
...

It is impossible for primes to be discover

slot = new Slot();
lastPrime = this;
this.start();

CP — Titech Winter 2001 263.

Architectural Styles for Concurrency

s ...

 // may block

 // may block
intValue();

Slot class.
© O. Nierstrasz — U. Berne

The ActivePrime Clas
...
public int value() {
return this.value;

}
 void putInt(int val) {

(new Integer(val));
}
public int getInt() {
return ((Integer)).

}
...

The only synchronization is hidden in the

private
slot.put()

slot.get()

CP — Titech Winter 2001 264.

Architectural Styles for Concurrency

s ...

; // may block
// stop

{ // got a prime

;
ak; } // exit loop
value) > 0) {

// may block

// may block

// stop next

)

, lastPrime)
© O. Nierstrasz — U. Berne

The ActivePrime Clas
public void run() {
int testValue =
while (testValue != 0) {
if (this.square > testValue)
try {

} catch (Exception e) { bre
} else if ((testValue % this.

;
}
testValue = ;

}
putInt(0);

}

intSrc.getInt(

new ActivePrime(testValue

this.putInt(testValue)

intSrc.getInt()

CP — Titech Winter 2001 265.

Architectural Styles for Concurrency

ures
ization in a
xchange messages.

, but post messages
 either by reading
r by posing a query
© O. Nierstrasz — U. Berne

Blackboard Architect
Blackboard architectures put all synchron
“coordination medium” where agents can e

Agents do not exchange messages directly
to the blackboard, and retrieve messages
from a specific location (i.e., a channel), o
(i.e., a pattern to match).

?

CP — Titech Winter 2001 266.

Architectural Styles for Concurrency

tural style in which
 whole.

..
© O. Nierstrasz — U. Berne

Result Parallelism
Result parallelism is a blackboard architec
workers produce parts of a more complex

Workers may be arranged hierarchically .

CP — Titech Winter 2001 267.

Architectural Styles for Concurrency

 which workers
ard, and may

verything is done.
itrary tasks.
© O. Nierstrasz — U. Berne

Agenda Parallelism
Agenda parallelism is a blackboard style in
retrieve tasks to perform from a blackbo
generate new tasks to perform.

Workers repeatedly retrieve tasks until e
Workers are typically able to perform arb

CP — Titech Winter 2001 268.

Architectural Styles for Concurrency

sm
ach worker is

ge-passing, and are
th each specialist
o consume.
© O. Nierstrasz — U. Berne

Specialist Paralleli
Specialist parallelism is a style in which e
specialized to perform a particular task.

Specialist designs are equivalent to messa
often organized as flow architectures, wi
producing results for the next specialist t

CP — Titech Winter 2001 269.

Architectural Styles for Concurrency

iated primitives for
an be added to an

 which can contain:

ales (numbers,

re evaluated and
© O. Nierstrasz — U. Berne

Linda
Linda is a coordination medium, with assoc
coordinating concurrent processes, that c
existing programming language.

The coordination medium is a tuple-space,

❑ data tuples — tuples of primitives v
strings ...)

❑ active tuples — expressions which a
eventually turn into data tuples

CP — Titech Winter 2001 270.

Architectural Styles for Concurrency

 (non-blocking)
”, 35000)

ching S (blocking)
, ?salary)

 (blocking)

blocking)

ace
© O. Nierstrasz — U. Berne

Linda primitives
Linda’s coordination primitives are:
out(T) output a tuple T to the medium

e.g., out(“employee”, “pingu
in(S) destructively input a tuple mat

e.g., in(“employee”, “pingu”
rd(S) non-destructively input a tuple
inp(S)
rdp(S)

try to input a tuple
report success or failure (non-

eval(E) evaluate E in a new process
leave the result in the tuple sp

CP — Titech Winter 2001 271.

Architectural Styles for Concurrency

ci
i numbers with Linda:

non-blocking

non-blocking

; // asynch
blocks

fibn) == True

2))
© O. Nierstrasz — U. Berne

Example: Fibonac
A (convoluted) way of computing Fibonacc
int fib(int n) {
if () //
return fibn;

if (n<2) {
; //

return 1;
}

; //
return(fibn);

} // Post-condition: rdp(“fib”,n,?

rdp("fib", n, ?fibn)

out(“fib”, n, 1)

eval("fib", n, fib(n-1) + fib(n-
rd("fib", n, ?fibn)

CP — Titech Winter 2001 272.

Architectural Styles for Concurrency

ci

fib(4)+fib(3))
© O. Nierstrasz — U. Berne

Evaluating Fibonac

eval(“fib”,5,

fib(5) rdp fails, so start eval

CP — Titech Winter 2001 273.

Architectural Styles for Concurrency

ci

fib(4)+fib(3))

ib(3)+fib(2))
© O. Nierstrasz — U. Berne

Evaluating Fibonac

rd(“fib”,5,?fn)

eval(“fib”,5,

fib(5)

eval(“fib”,4,f

fib(4)+fib(3)

blocks for result

CP — Titech Winter 2001 274.

Architectural Styles for Concurrency

ci

fib(4)+fib(3))

ib(3)+fib(2))

fib(2)+fib(1))

fib(1)+fib(0))

ase level succeeds
© O. Nierstrasz — U. Berne

Evaluating Fibonac

rd

rd

rd(“fib”,5,?fn)

rd

eval(“fib”,5,

fib(5)

fib(4)+fib(3)

eval(“fib”,4,f

eval(“fib”,3,

fib(3)+fib(2)

eval(“fib”,2,
fib(2)+fib(1)

(“fib”,1,1)
fib(1)+fib(0) b

CP — Titech Winter 2001 275.

Architectural Styles for Concurrency

ci

fib(4)+fib(3))

ib(3)+fib(2))

fib(2)+fib(1))

”,2,2)

(“fib”,0,1)

assive tuple
© O. Nierstrasz — U. Berne

Evaluating Fibonac

rd

rd

rd(“fib”,5,?fn)

rd

eval(“fib”,5,

fib(5)

fib(4)+fib(3)

eval(“fib”,4,f

eval(“fib”,3,

fib(3)+fib(2)

(“fib
fib(2)+fib(1)

(“fib”,1,1)

eval yields p

CP — Titech Winter 2001 276.

Architectural Styles for Concurrency

ci

fib(4)+fib(3))

ib(3)+fib(2))

fib(2)+fib(1))

”,2,2)

(“fib”,0,1)
© O. Nierstrasz — U. Berne

Evaluating Fibonac

rd

rd(“fib”,5,?fn)

rd

eval(“fib”,5,

fib(5)

fib(4)+fib(3)

eval(“fib”,4,f

eval(“fib”,3,

fib(3)+fib(2)

(“fib
fib(2)+fib(1)

(“fib”,1,1)
cached values are reused

CP — Titech Winter 2001 277.

Architectural Styles for Concurrency

ci

”,2,2)

(“fib”,0,1)

,4,5)

”,3,3)

”,5,8)
© O. Nierstrasz — U. Berne

Evaluating Fibonac
fib(5)

(“fib

(“fib”,1,1)

(“fib”

(“fib

(“fib

CP — Titech Winter 2001 278.

Architectural Styles for Concurrency

ow!

s of Layered

e the options and

hat are the options

 agenda parallelism?
f concurrent agents?
© O. Nierstrasz — U. Berne

What you should kn
✎ What is a Software Architecture?
✎ What are advantages and disadvantage

Architectures?
✎ What is a Flow Architecture? What ar

tradeoffs?
✎ What are Blackboard Architectures? W

and tradeoffs?
✎ How does result parallelism differ from
✎ How does Linda support coordination o

CP — Titech Winter 2001 279.

Architectural Styles for Concurrency

estions?
 agents in Java?
rchitectures?

n’t yet discussed?
e Sieve is correct?
ill join the chain in

hen we have multiple

hreads on a

urrent Fibonacci
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ How would you model message-passing
✎ How would you classify Client/Server a
✎ Are there other useful styles we have
✎ How can we prove that the Active Prim

Are you sure that new Active Primes w
the correct order?

✎ Which Blackboard styles are better w
processors?

✎ Which are better when we just have t
monoprocessor?

✎ What will happen if you start two conc
computations?

CP — Titech Winter 2001 280.

Petri Nets

ts

chemes
heory and the
l, 1983.
© O. Nierstrasz — U. Berne

13. Petri Nets

Overview
❑ Definition:

☞ places, transitions, inputs, outpu
☞ firing enabled transitions

❑ Modelling:
☞ concurrency and synchronization

❑ Properties of nets:
☞ liveness, boundedness

❑ Implementing Petri net models:
☞ centralized and decentralized s

Reference: J. L. Peterson, Petri Nets T
Modelling of Systems, Prentice Hal

CP — Titech Winter 2001 281.

Petri Nets

tion

o bags of places)

y

a

© O. Nierstrasz — U. Berne

Petri nets: a defini
A Petri net C = 〈P,T,I,O〉 consists of:

1. A finite set P of places
2. A finite set T of transitions
3. An input function I: T → N P (maps t
4. An output function O: T → N P

A marking of C is a mapping µ: P → N
Example:

P = { x, y }
T = { a, b }
I(a) = { x }, I(b) = { x, x }
O(a) = { x, y },O(b) = { y }
µ = { x, x }

x

b

CP — Titech Winter 2001 282.

Petri Nets

µ ≥ I(t)
: µ′ = µ - I(t) + O(t)

y

a

b

y

a

b

b

a

✄

© O. Nierstrasz — U. Berne

Firing transitions
To fire a transition t:

1. There must be enough input tokens:
2. Consume inputs and generate output

x

y

a

b

x

y

a

b

x

x

y

a

b

x

a

b

x

y

a

b

b

a

CP — Titech Winter 2001 283.

Petri Nets

nets
© O. Nierstrasz — U. Berne

Modelling with Petri

Petri nets are good for modelling:
❑ concurrency
❑ synchronization

Tokens can represent:
❑ resource availability
❑ jobs to perform
❑ flow of control
❑ synchronization conditions ...

CP — Titech Winter 2001 284.

Petri Nets

iring of transitions
© O. Nierstrasz — U. Berne

Concurrency
Independent inputs permit “concurrent” f

CP — Titech Winter 2001 285.

Petri Nets

lict
© O. Nierstrasz — U. Berne

Conflict
Overlapping inputs put transitions in conf

Only one of a or b may fire

a

b

CP — Titech Winter 2001 286.

Petri Nets

e

© O. Nierstrasz — U. Berne

Mutual Exclusion
The two subnets are forced to synchroniz

CP — Titech Winter 2001 287.

Petri Nets
© O. Nierstrasz — U. Berne

Fork and Join

CP — Titech Winter 2001 288.

Petri Nets

mers
consumer
© O. Nierstrasz — U. Berne

Producers and Consu
producer

CP — Titech Winter 2001 289.

Petri Nets
© O. Nierstrasz — U. Berne

Bounded Buffers

occupied
slots

free
slots

CP — Titech Winter 2001 290.

Petri Nets

edness

 C is the set of all
arking µ.

 if places always hold

es never hold more

 number of tokens is
© O. Nierstrasz — U. Berne

Reachability and Bound
Reachability:

❑ The reachability set R(C,µ) of a net
markings µ′ reachable from initial m

Boundedness:
❑ A net C with initial marking µ is safe

at most 1 token.
❑ A marked net is (k-)bounded if plac

than k tokens.
❑ A marked net is conservative if the

constant.

CP — Titech Winter 2001 291.

Petri Nets

ock

never fire.
eadlock.

c

b

y z

d? Are they live?
© O. Nierstrasz — U. Berne

Liveness and Deadl
Liveness:

❑ A transition is deadlocked if it can
❑ A transition is live if it can never d

This net is both safe and
conservative.
Transition a is deadlocked.
Transitions b and c are live.
The reachability set is {{y}, {z}}.

✎

a

x

Are the examples we have seen bounde

CP — Titech Winter 2001 292.

Petri Nets

rvative nets

b

c

d

© O. Nierstrasz — U. Berne

Related Models
Finite State Processes

❑ Equivalent to regular expressions
❑ Can be modelled by one-token conse

The FSA for: a(b|c)*d
a

CP — Titech Winter 2001 293.

Petri Nets

s

odelled by FSPs?

{u, w}

b
{u, x}

a
c

{v, x}
© O. Nierstrasz — U. Berne

Finite State Net
Some Petri nets can be modelled by FSPs

✎ Precisely which nets can (cannot) be m

a

c

vu

xw b

{v, w}
a

b

CP — Titech Winter 2001 294.

Petri Nets

s
lete

b

c
d

© O. Nierstrasz — U. Berne

Zero-testing Net
Petri nets are not computationally comp

❑ Cannot model “zero testing”
❑ Cannot model priorities

A zero-testing net:
An equal number of
a and b transitions may fire
as a sequence during any
sequence of matching
c and d transitions.
(#a ≥ #b, #c ≥ #d)

a

CP — Titech Winter 2001 295.

Petri Nets

ts

red” to
rces

itionally depend

ted with each
© O. Nierstrasz — U. Berne

Other Variants
There exist countless variants of Petri ne

Coloured Petri nets: Tokens are “colou
represent different kinds of resou

Augmented Petri nets: Transitions add
on external conditions

Timed Petri nets: A duration is associa
transition

CP — Titech Winter 2001 296.

Petri Nets

nets
© O. Nierstrasz — U. Berne

Applications of Petri

Modelling information systems:
❑ Workflow
❑ Hypertext (possible transitions)
❑ Dynamic aspects of OODB design

CP — Titech Winter 2001 297.

Petri Nets

nets
ither centralized or

 current state of the

e shared resources,
okens.
© O. Nierstrasz — U. Berne

Implementing Petri
We can implement Petri net structures in e
decentralized fashion:

Centralized:
❑ A single “net manager” monitors the

net, and fires enabled transitions.

Decentralized:
❑ Transitions are processes, places ar

and transitions compete to obtain t

CP — Titech Winter 2001 298.

Petri Nets

es
anager selects and

ired in parallel.

e lead to?

deadlocked

 marking
© O. Nierstrasz — U. Berne

Centralized schem
In one possible centralized scheme, the M
fires enabled transitions.

Concurrently enabled transitions can be f

✎ What liveness problems can this schem

Identify enabled

Select and fire
found some got new

Net Manager

transitions

transitions

CP — Titech Winter 2001 299.

Petri Nets

es
rocesses and tokens

-per-message
ed more than once if

b

y

get()
© O. Nierstrasz — U. Berne

Decentralized schem
In decentralized schemes transitions are p
are resources held by places:

Transitions can be implemented as thread
gateways so the same transition can be fir
enough tokens are available.

x y

a b
a

x

CP — Titech Winter 2001 300.

Petri Nets

heir input tokens as
dlock even though

t processes, and x
eadlock even though
 waits for y.
© O. Nierstrasz — U. Berne

Transactions
Transitions attempting to fire must grab t
an atomic transaction, or the net may dea
there are enabled transitions!

If a and b are implemented by independen
and y by shared resources, this net can d
b is enabled if a (incorrectly) grabs x and

a

b

x y

CP — Titech Winter 2001 301.

Petri Nets

tion
the entire net as a

g transitions.
 distributed setting?
© O. Nierstrasz — U. Berne

Coordinated interac
A simple solution is to treat the state of
single, shared resource:

After a transition fires, it notifies waitin
✎ How could you refine this scheme for a

a

b

x y

a b

get()

CP — Titech Winter 2001 302.

Petri Nets

ow!

ynchronization?
? How can you

led by finite state

ri net deadlock even

y is it a good idea to
sage gateways”?
© O. Nierstrasz — U. Berne

What you should kn
✎ How are Petri nets formally specified?
✎ How can nets model concurrency and s
✎ What is the “reachability set” of a net

compute this set?
✎ What kinds of Petri nets can be model

processes?
✎ How can a (bad) implementation of a Pet

though there are enabled transitions?
✎ If you implement a Petri net model, wh

realize transitions as “thread-per-mes

CP — Titech Winter 2001 303.

Petri Nets

estions?
uaranteeing that a

ophers problem as a
 conservative? Live?

ake them Turing-

tri net to make it
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ What are some simple conditions for g

net is bounded?
✎ How would you model the Dining Philos

Petri net? Is such a net bounded? Is it
✎ What could you add to Petri nets to m

complete?
✎ What constraints could you put on a Pe

fair?

	Concurrent Programming
	Table of Contents
	1. Concurrent Programming
	Goals of this course
	Schedule
	Introduction
	Recommended reading
	Concurrency
	Parallelism
	Why do we need concurrent programs?
	Difficulties
	Concurrency and atomicity
	Safety
	Liveness
	Expressing Concurrency
	Process Creation
	Co-routines
	Fork and Join
	Cobegin/coend
	Communication and Synchronization
	Synchronization Techniques
	Busy-Waiting
	Semaphores
	Programming with semaphores
	Monitors
	Programming with monitors
	Problems with monitors
	Path Expressions
	Message Passing
	Send and Receive
	Remote Procedure Calls and Rendezvous
	What you should know!
	Can you answer these questions?

	2. Java and Concurrency
	Modelling Concurrency
	Finite State Processes
	FSP — Action Prefix
	FSP — Recursion
	FSP — Choice
	FSP — Non-determinism
	FSP — Guarded actions
	Java
	Threads
	SimpleThread FSP
	Multiple Threads ...
	Running the TwoThreadsDemo
	FSP — Concurrency
	FSP — Composition
	java.lang.Thread (creation)
	java.lang.Thread (methods)
	java.lang.Runnable
	Transitions between Thread States
	LTS for Threads
	Creating Threads
	Creating Threads ...
	... And stopping them
	Synchronization
	Synchronized methods
	Synchronized blocks
	wait and notify
	java.lang.Object
	What you should know!
	Can you answer these questions?

	3. Safety and Synchronization
	Modelling interaction — shared actions
	Modelling interaction — handshake
	Modelling interaction — multiple processes
	Safety problems
	Atomicity and interference
	Atomic actions
	Sequential behaviour
	Concurrent behaviour
	Locking
	Synchronization
	Synchronization in Java
	Busy-Wait Mutual Exclusion Protocol
	Atomic read and write
	Modelling the busy-wait protocol
	Busy-wait composition
	Checking for errors
	Conditional synchronization
	Producer/Consumer composition
	Wait and notify
	Slot (put)
	Slot (get)
	Producer in Java
	Consumer in Java
	Composing Producers and Consumers
	What you should know!
	Can you answer these questions?

	4. Safety Patterns
	Idioms, Patterns and Architectural Styles
	Pattern: Immutable classes
	Immutability variants
	Immutable classes — design steps
	Design steps ...
	Pattern: Fully Synchronized Objects
	Applicability ...
	Full Synchronization — design steps
	Design steps ...
	Design steps ...
	Example: a BalkingBoundedCounter
	Example: an ExpandableArray
	Example ...
	Bundling Atomicity
	Using inner classes
	Pattern: Partial Synchronization
	Partial Synchronization — design steps
	Example: LinkedCells
	Example ...
	Pattern: Containment
	Applicability ...
	Contained Objects — design steps
	Design steps ...
	Managed Ownership
	Managed Ownership ...
	A minimal transfer protocol class
	What you should know!
	Can you answer these questions?

	5. Liveness and Deadlock
	Safety revisited
	Safety — property specification
	Safety properties
	Safety properties
	Liveness
	Liveness Problems
	Progress properties — fair choice
	Progress properties
	Progress properties
	Progress analysis
	Deadlock
	Waits-for cycle
	Deadlock analysis - primitive processes
	The Dining Philosophers Problem
	Deadlocked diners
	Dining Philosophers, Safety and Liveness
	Dining Philosophers ...
	Modeling Dining Philosophers
	Dining Philosophers Analysis
	Eliminating Deadlock
	Dining Philosopher Solutions
	What you should know!
	Can you answer these questions?

	6. Liveness and Guarded Methods
	Achieving Liveness
	Pattern: Guarded Methods
	Guarded Methods — applicability
	Applicability ...
	Guarded Methods — design steps
	Step: Separate interface from policy
	Step: Check guard conditions
	Step: Check guard conditions ...
	Step: Handle interrupts
	Step: Signal state changes
	Notify() vs notifyall()
	Step: Structure notifications
	Encapsulating assignment
	Tracking State
	Tracking State Variables
	Delegating notifications
	Delegating notifications ...
	What you should know!
	Can you answer these questions?

	7. Lab session I
	8. Liveness and Asynchrony
	Pattern: Asynchronous Invocations
	Asynchronous Invocations — form
	Asynchronous Invocations — design steps
	Simple Relays — three variants
	Variant: Direct invocations
	Direct invocations ...
	Variant: Thread-based messages
	Thread-based messages ...
	Thread-per-message Gateways
	Variant: Command-based messages
	Tail calls
	Tail calls with new threads
	Early Reply
	Simulating Early Reply
	Early Reply in Java
	Futures
	A Future Class
	Using Futures in Java
	What you should know!
	Can you answer these questions?

	9. Condition Objects
	Pattern: Condition Objects
	Condition Objects — applicability
	Condition Objects
	A Simple Condition Object
	The Nested Monitor problem
	The Nested Monitor problem ...
	The Nested Monitor problem ...
	Nested Monitors in FSP
	Nested Monitors in FSP ...
	Nested Monitors in FSP ...
	Solving the Nested Monitors problem
	Solving Nested Monitors ...
	Example solution
	Pattern: Permits and Semaphores
	Permits and Semaphores — design steps
	Design steps ...
	Variants
	Semaphores in Java
	Using Semaphores
	Using Semaphores ...
	Using Semaphores ...
	What you should know!
	Can you answer these questions?

	10. Fairness and Optimism
	Pattern: Concurrently Available Methods
	Concurrent Methods — design steps
	Priority
	Fairness
	Interception
	Concurrent Reader and Writers
	Readers/Writers Model
	A Simple RW Protocol
	Safety properties
	Safety properties ...
	Composing the Readers and Writers
	Progress properties
	Starvation
	Readers and Writers Policies
	Policies ...
	Readers and Writers example
	Readers and Writers example
	Readers and Writers example
	Readers and Writers example
	Pattern: Optimistic Methods
	Optimistic Methods — design steps
	Detect failure ...
	Detect failure ...
	Handle conflicts ...
	Ensure progress ...
	An Optimistic Bounded Counter
	An Optimistic Bounded Counter
	What you should know!
	Can you answer these questions?

	11. Lab session II
	12. Architectural Styles for Concurrency
	Sources
	Software Architecture
	Architectural style
	Communication Styles
	Simulated Message-Passing
	Three-layered Application Architectures
	Problems with Layered Designs
	Flow Architectures
	Unix Pipes
	Unix Pipes
	Flow Stages
	Flow Policies
	Limiting Flow
	Example: a Pull-based Prime Sieve
	Using Put-Take Buffers
	The PrimeSieve
	Pull-based integer sources
	The ActivePrime Class
	The ActivePrime Class
	The ActivePrime Class ...
	The ActivePrime Class ...
	Blackboard Architectures
	Result Parallelism
	Agenda Parallelism
	Specialist Parallelism
	Linda
	Linda primitives
	Example: Fibonacci
	Evaluating Fibonacci
	Evaluating Fibonacci
	Evaluating Fibonacci
	Evaluating Fibonacci
	Evaluating Fibonacci
	Evaluating Fibonacci
	What you should know!
	Can you answer these questions?

	13. Petri Nets
	Petri nets: a definition
	Firing transitions
	Modelling with Petri nets
	Concurrency
	Conflict
	Mutual Exclusion
	Fork and Join
	Producers and Consumers
	Bounded Buffers
	Reachability and Boundedness
	Liveness and Deadlock
	Related Models
	Finite State Nets
	Zero-testing Nets
	Other Variants
	Applications of Petri nets
	Implementing Petri nets
	Centralized schemes
	Decentralized schemes
	Transactions
	Coordinated interaction
	What you should know!
	Can you answer these questions?

