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Goals of this course

Introduce basic concepts of concurrency
(0 safety, liveness, fairness

Present tools for reasoning about concurrency
0 LTS, Petri nets

Learn the best practice programming techniques
0 idioms and patterns

Get experience with the techniques
0 lab sessions
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Introduction

Overview
[0 Concurrency and Parallelism
O Applications
O Difficulties
[ safety, liveness, non-determinism ...
Concurrent Programming Approaches
[ Process creation

[0 Communication and synchronization
[0 Shared variables

[0 Message Passing Approaches




Recommended reading

G.R. Andrews, Concurrent Programming, Principles and
Practice, The Benjamin Cummings Publishing Co. Inc,
1991,

M. Ben-Ari, Principles of Concurrent and Distributed
Programming, Prentice Hall, 1990.

A. Burns, G. Davies, Concurrent Programming, Addison-
Wesley, 1993

N. Carriero, D. Gelernter, How to Write Parallel
Programs: a First Course, MIT Press, Cambridge, 1990.




Concurrency

[0 A sequential program has a single thread of control.
Its execution is called a process.

0 A concurrent program has multiple threads of control.
These may be executed as parallel processes.




Parallelism

A concurrent program can be executed by:

Multivroaramming: | Processes share one or more
prog g processors
. . each process runs on its own
Multiprocessing: P .
processor but with shared memory
o each process runs on its own
Distributed P
L processor connected by a network
processing.
to others

Assume only that all processes make positive finite progress.




Why do we need concurrent programs?

Reactive programming

[0 minimize response delay; maximize throughput
Real-time programming

0 process control applications

Simulation
0 modelling real-world concurrency

Parallelism
[ speed up execution by using multiple CPUs

Distribution
[1 coordinate distributed services




Difficulties

But concurrent applications introduce complexity:

Safety
0 concurrent processes may corrupt shared data

Liveness
0 processes may "starve” if not properly coordinated

Non-determinism
[0 the same program run twice may give different results

Run-time overhead

[0 thread construction, context switching and
synchronization take time




Concurrency and atomicity

Programs P1 and P2 execute concurrently:

{ x=01}
P1: X 1= x+1
P2: X = X+2

{ x =71}

[J What are possible values of x after P1 and P2 complete?

[1 What is the intended final value of x?




Safety

Safety = ensuring consistency

A safety property says "nothing bad happens”

0 Mutual exclusion: shared resources must be updated
atomically

[0 Condition synchronization: operations may be delayed if
shared resources are in the wrong state

0 (e.g., read from empty buffer)




Liveness

Liveness = ensuring progress

A liveness property says "something good happens”

[0 No Deadlock: some process can always access a shared
resource

0 No Starvation: all processes can eventually access
shared resources




Expressing Concurrency

A programming language must provide mechanisms for:

Process creation
0 how do you specify concurrent processes?

Communication
0 how do processes exchange information?

Synchronization
0 how do processes maintain consistency?
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Process Creation

Most concurrent languages offer some variant of the following:

[1 Co-routines

0 Fork and Join

[0 Cobegin/coend

@ O. Nierstrasz — U. Berne

Concurrent Programming




Co-routines

Co-routines are only pseudo-concurrent and require explicit
transfers of control.

Program P Coroutine A Coroutine B
| call A i |
| call B |
| | resume A
| resume B
l return

T |

Co-routines can be used to implement most higher-level
concurrent mechanisms.




Fork and Join

Fork can be used to create any number of processes:

Program P1 Program P2 Program P3

fork P2 i |
. fork P3 |
oin P2

|

Join waits for another process to terminate.

Fork and join are unstructured, so require care and discipline.




Cobegin/coend

Cobegin/coend blocks are better structured.

cobegin S1 || S2 || ... || Sn coend

but they can only create a fixed number of processes.

Main sl 52 53 54
] g g ; ;

=

The caller continues when all of the coblocks have terminated.




Communication and Synchronization

In approaches based on
a @ e shared variables, processes
communicate indirectly.

Explicit synchronization
Xy Z|... mechanisms are needed.

In message passing

approaches, communication X
and synchronization are

combined. Y
Communication may be
either synchronous or

asynchronous.




Synchronization Techniques

Different approaches are roughly equivalent in expressive
power and can be used to implement each other.

Procedure Busy-Waiting Message

Oriented Sem ;h es Oriented
'/- emaphore —\

Monitors Message Passing

Path Expressions
Remote Procedure Call

Operation Oriented
Each approach emphasizes a different style of programming.




Busy-Waiting

Busy-waiting is primitive but effective
Processes atomically set and test shared variables.

Condition synchronization is easy to implement:
[0 to signal a condition, a process sets a shared variable

O to wait for a condition, a process repeatedly tests the
variable

Mutual exclusion is more difficult to realize correctly and
efficiently.




Semaphores

Semaphores were introduced by Dijkstra (1968) as a higher-
level primitive for process synchronization.

A semaphore is a non-negative, integer-valued variable s with
two operations:

P(s): delays until s>0
then, atomically executes s := s-1

V(s) atomically executes s:= s+1




Programming with semaphores

Many problems can be solved using binary semaphores, which
take on values O or 1.

process P1 process P2
| oop | oop
P(mutex) { wants to enter } P( mut ex)
Critical Section Critical Section
V(mutex) { exits } V( nut ex)
Non-critical Section Non-critical Section
end end
end end




Monitors

A monitor encapsulates resources and operations that
manipulate them:

[0 operations are invoked like ordinary procedure calls
0 invocations are guaranteed to be mutually exclusive

0 condition synchronization is realized using wait and
signal primitives

0 there exist many variations of wait and signal ...




Programming with monitors

type buffer(T) = nonitor
var

slots : array [0..N1] of T,

head, tail 0..N1:
size : 0..N
notfull, notenpty:condition;

procedure deposit(p : T);

begi n

I f size = N then
notfull.wait

slots[tail] := p;
Size := size + 1;
tail := (tail+1) nod N,
not enpt y. si gnal

end

procedure fetch(var it : T);
begin
I f size = 0 then
not enpt y. wai t
It := slots[head];
Size :=size - 1;
head : = (head+1l) nod N
notful | . signal

end
begi n
size := 0;
head : = 0;
tail := 0;
end




Problems with monitors

Monitors are more structured than semaphores, but they are
still tricky to program:

0 Conditions must be manually checked
0 Simultaneous signal and return is not supported

A signalling process is temporarily suspended to allow waiting
processes to enter!

O Monitor state may change between signal and
resumption of signaller

0 Unlike with semaphores, multiple signals are not saved

0 Nested monitor calls must be specially handled to
prevent deadlock




Path Expressions

Path expressions express the allowable sequence of operations
as a kind of regular expression:

buffer : (put; get) *

Although they elegantly express solutions to many problems,
path expressions are too limited for general concurrent
programming.




Message Passing

Message passing combines communication and synchronization:

[ The sender specifies the message and a destination
0 aprocess, a port, a set of processes, ...

0 The receiver specifies message variables and a source
[ source may or may hot be explicitly identified

[0 Message transfer may be:
0 asynchronous: send operations never block
(0 buffered: sender may block if the buffer is full
[0 synchronous: sender and receiver must both be ready




Send and Receive

In CSP and Occam, source and destination are explicitly named:
PROC buffer(CHAN OF I NT give, take, signal)

SEQ

numtens :=0 ...
VH LE TRUE
ALT
numtens < size & give?thebuffer[inindex]
SEQ
numtens .= numtens + 1
I nindex := (inindex + 1) REM si ze
numtens > 0 & signal ?any
SEQ
t ake! t hebuf f er[ outi ndex]
numtens := numtens - 1

outindex := (outindex + 1) REM size




Remote Procedure Calls and Rendezvous

In Ada, the caller identity need not be known in advance:

task body buffer is ...
begin | oop
sel ect
when no of items < size =>
accept give(x : initem do
the buffer(in_index) := x;
end give;
no of items := no of itens + 1,
or
when no of itens > 0 =>
accept take(x : out item do
X := the buffer(out _index);

end t ake;
no of itens := no of itenms - 1,
end sel ect;

end | oop;
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What you should know!

Why do we need concurrent programs?

What problems do concurrent programs introduce?

What are safety and liveness?

What is the difference between deadlock and starvation?
How are concurrent processes created?

How do processes communicate?

Why do we need synchronization mechanisms?

How do monitors differ from semaphores?

In what way are monitors equivalent to message-passing?
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Can you answer these questions?

What is the difference between concurrency and
parallelism?

When does it make sense to use busy-waiting?

Are binary semaphores as good as counting semaphores?
How could you implement a semaphore using monitors?
How would you implement monitors using semaphores?
What problems could nested monitors cause?

Is it better when message passing is synchronous or
asynchronous?




2. Java and Concurrency

Overview
[0 Modelling Concurrency
[ Finite State Processes
[0 Labelled Transition Systems
[0 Java
0 Thread creation
0 Thread lifecycle
0 Synchronization

Selected material © Magee and Kramer




Modelling Concurrency

Because concurrent systems are non-deterministic, it can be
difficult to build them and reason about their properties.

A model is an abstraction of the real world that makes it easier
to focus on the points of interest.

Approach:
Model concurrent systems as sets of sequential
finite state processes




Finite State Processes

FSPis a textual notation for specifying a finite state process:
SWTCH = (on -> off-> SWTCH).

LTS is a graphical notation for interpreting a processes as a
labelled transition system:

ulil

SWTCH ( ED

off

The meaning of a process is a set of possible traces:
on-off son-off son-off ~on-off -on ...




FSP — Action Prefix

If x is an action and P a process then (x- > P) is a process that
initially engages in the action x and then behaves like P.

ONESHOT = (once -> STOP).

Once

_—

- ————."‘————______
./ \GD terminating process

Convention:

0 Processes start with UPPERCASE, actions start with
lowercase.




FSP — Recursion

Repetitive behaviour uses recursion:

SWTCH = OFF,
OFF = (on -> ON),
ON = (of f-> OFF).




FSP — Choice

If x and y are actions then (x->P | y->Q is a process which
initially engages in either of the actions x ory.

If x occurs, the process then behaves like P; otherwise, if y
occurs, it behaves like Q.

DRINKS = ( red ->coffee -> DRI NKS blue
| bl ue->tea -> DRI NKS ot

).
o
[1 What are the possible traces of

DRINKS? coffes

1ea




FSP — Non-determinism

(x->P | x->Q performs x and then behaves as either P or Q

CON = ( toss -> heads -> CON
| toss ->tails -> CON

).

1033




FSP — Guarded actions

(when B x->P | y->Q means that when the guard B is true
then either x or y may be chosen;

otherwise if B is false then only y may be chosen.

COUNT ( N=3)
COUNT[ i : 0. . N

COUNT[ 0] ,

( when(i<N) Inc->COUNT[I +1]
| when(i>0) dec->COUNT[I - 1]
).

ine ine ine

SN

dec deq dec




Java

Syntax resembles C++; semantics resembles Smalltalk:
0 Strongly-typed, concurrent, “pure” object-oriented
0 Single-inheritance but multiple subtyping
0 Automatic garbage collection

Innovation in support for network applications:
[0 Standard APIs for concurrency, network interaction
0 Classes can be dynamically loaded over network
0 Security model protects clients from malicious objects

Java applications do not have to be installed by users




Threads

A Java Thread has a I un method defining its behaviour:
cl ass Sinpl eThread extends Thread {
public SinpleThread(String str) {
super(str); [/ Call Thread constructor
}
public void run() { [/ What the thread does
for (int 1=0; 1<5; 1++) {
Systemout.printin(i +" " + getNanme()
try { sleep((int)(Math.randon()*1000))
} catch (InterruptedExceptione) { } }
Systemout.println("DONE!l " + get Nanme());

J
}

? ;




SimpleThread FSP

SimpleThread can be modelled as a single, sequential, finite
state process:

Sinple = ([1]->[2]->[3]->[4]-> done-> STCP).
©» @ & @ &
Or, more generically:
const N =5

Sinple
Print[n:1. .N|

Print[1],
( when(n<N) [n] -> Print[n+]]
| when(n==N) done -> STOP).




Multiple Threads ...

A Thread's run method is never called directly but is executed
when the Thread is started.

cl ass TwoThreadsDeno {
public static void main (String[] args) {
[/l Instantiate a Thread, then start it:
new Si npl eThread("Janmai ca").start()
new Si npl eThread("Fiji1").start();

J
}




Running the TwoThreadsDemo

In this implementation of Java, the

, , 0 Janmi ca
execution of the two threads is 0 Fijl
interleaved. 1 Jamaica

- 1 Fiji
[0 Thisis not guaranteedforall 2 Fiji
implementations! 3 Fiji
2 Jamail ca
[1 Why are the output lines never 4 Fiji
garblea? 3 Janai ca
DONE! Fij i
E.g. 4 Janal ca

0 Ja0 Fimgjiica DONE! Janai ca




FSP — Concurrency

We can relabel the transitions of Simple and concurrently
compose two copies of it:

| | TwoThr eadsDenp = ( fiji:Sinple
|| jamaica:Sinple

).

fiji. 1 fiji. 2 fiji. 5 fiji. 4 fiji. done

jarmaica. 1 jamaica. 2 jamaica. 3 jarmaica. 4 jamaica.done

[1 What are all the possible traces?




FSP — Composition

If we restrict ourselves to two steps, the composition will have
hine states:

fiji. 1
fiji.1
jamaica. 1 jamaica.done fiji. 1 fiji.done fiji.done fiji. done

do e e e ow

jamaica. done jamaica.done  jarmadca. 1 jarmaica. 1




java.lang.Thread (creation)

A Java thread can either inherit from java.lang.Thread, or
contain a Runnable object:

public class java.lang. Thread
extends | ava.l ang. Qbj ect
| npl enents j ava. | ang. Runnabl e
{
public Thread() :
publ i ¢ Thread(Runnabl e target):
(
(

publ i ¢ Thread(Runnable target, String nane);
public Thread(String nane);




java.lang.Thread (methods)

A thread must be created, and then started.:

public void run();

publ i ¢ synchroni zed void start();

public static void sleep(long mllis)
throws | nterruptedException;

public static void yield();

public final String getNane();

j..

NB: suspend(), resume() and stop() are now deprecated!




java.lang.Runnable

public interface java.lang. Runnabl e

{

public abstract void run();

}

Since Java does not support multiple inheritance, it is
impossible to inherit from both Thread and another class.

Instead, simply define:
class MyStuff extends Useful Stuff
| npl ements Runnable ...

and instantiate:
new Thread(new MyStuff);




Transitions between Thread States

-
T
hread vieldO
start() ' run() exits
¢ ’( Runnable )
sleep() time elapsed
wait() notify() or notifyAll()
block on I/0 I/0 completed
(No’r Runnable)




LTS for Threads

Thread = ( start -> Runnable ),
Runnabl e =

( yield -> Runnabl e

| {sleep, wait, blockio} -> NotRunnable
| stop -> STOP ),
Not Runnabl e =

( {awake, notify,

unbl ocki o} -> Runnable ).

blockio

wradt
sleep




Creating Threads

This Clock applet uses a thread to update the time:
public class C ock
ext ends java. appl et. Appl et
| npl ement' s Runnabl e
{
Thread cl ockThread = nul|;
public void start() {
I f (clockThread == null) {
cl ockThread = new Thread(this, "d ock"):
cl ockThread. start():

}
VoL




Creating Threads ...

public void run() {
/] stops when clockThread is set to null
whi | e( Thread. current Thread() ==cl ockThr ead) {
repaint();
try { clockThread. sl eep(1000); }
catch (InterruptedException e){ }

}
}




... And stopping them

public void paint(Gaphics g) {
Dat e now = new Date();
g. drawst ri ng( now. get Hour s()
+ ":" + now. get M nut es()
+ ":" + now. get Seconds(), 5, 10);
}
[/ When the applet stops, stop its thread
public void stop() { clockThread = null; }

}

Be careful — Applets and Threads have strangely similar
interfaces!




Synchronization

Without synchronization, an arbitrary number of threads may
run at any time within the methods of an object.

0 Class invariant may not hold when a method starts!

[0 So can't guarantee any post-condition

A solution: consider a method to be a critical section which
locks access to the object while it is running.

This works as long as methods cooperate in locking and

unlocking access!




Synchronized methods

Either: declare an entire method to be synchronized with
other synchronized methods of an object:

public class PrintStreamextends FilterQutputStream/{

public synchronized void println(String s);
public synchroni zed void println(char c);




Synchronized blocks

Or: synchronize an individual block within a method with
respect o some object:

public Qoject aMethod() {
[/ unsynchroni zed code

synchroni zed(resource) { // Lock resource

} /1 unlock resource




wait and notify

Synchronization must sometimes be interrupted:
class Slot Inplenments Buffer {
private (oject slotVal;
public synchroni zed void put(Qoject val) {
while (slotval '=null) { // wait till enpty
try { wait(); }
catch (InterruptedException e) { }

}

sl otVal = val:
noti fyAll();
return:




java.lang.Object
wait() and notify() are methods rather than keywords:

public class java.lang. Obj ect

{

public final void wait()
throws | nterruptedException;

public final void notify();

public final void notifyAll();
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What you should know!

What are finite state processes?

How are they used to model concurrency?
What are traces, and what do they model?
How can the same FSP have multiple traces?
How do you create a new thread in Java?

What states can a Java thread be in?
How can it change state?

What is the Runnabl e interface good for?
What is a critical section?
When should you declare a method to be synchroni zed?
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Can you answer these questions?

How would you specify an FSP that repeatedly performs
hel | o, but may stop at any time?

How many states and how many possible traces does the full
TwoThr eadsDeno FSP have?

When should you inherit from Thr ead?
How can concurrency invalidate a class invariant?

What happens if you call wai t ornotify outside a
synchronized method or block?

When is it better to use synchronized blocks rather than
methods?

How would you model synchronization in FSP?




3. Safety and Synchronization

Overview
[0 Modelling interaction in FSP
0 Safety — synchronizing critical sections
0 Locking for atomicity
0 The busy-wait mutual exclusion protocol
O Conditional synchronization
0 Slots in FSP

0 wait(), notify() and notifyAll()
[0 Slots in Java

Selected material © Magee and Kramer




Modelling interaction — shared actions

Actions that are common between two processes are shared
and can be used to model process interaction:

0 Unshared actions may be arbitrarily interleaved
[0 Shared actions occur simultaneously for all participants

MAKER
USER

( make -> ready -> MAKER ).
( ready -> use -> USER ).

| | MAKER USER = ( MAKER || USER ).

[1 What are the states of the LTS?
[1 The traces?




Modelling interaction — handshake

A handshake is an action that signals acknowledgement

MAKERV 2
USERv 2

make -> ready -> used -> MAKERvZ ).
ready -> use -> used -> USERv2 ).

(
(
| | MAKER USERv2 = ( MAKERv2 || USERv2 ).

[1 What are the states and traces of the LTS?




Modelling interaction — multiple processes

Shared actions can be used to synchronize multiple processes:

MAKE A = ( makeA -> ready -> used -> MAKE A ).
MAKE B = ( nmakeB -> ready -> used -> MAKE B ).
ASSEMBLE = ( ready -> assenble -> used -> ASSEMBLE ).

|| FACTORY = ( MAKE A || MAKE B || ASSEMBLE ).

[1 What are the states and traces of the LTS?




Safety problems

Objects must only be accessed when they are in a consistent
state, formalized by a class invariant.

- m1 consistent states
Each method assumes the class
invariant holds when it starts, incoming |
and it re-establishes it when requests
done. ol M3
If methods interleave m4
arbitrarily, an inconsistent state
may be accessed, and the object ms
may be left in a "dirty” state. methods

Where shared resources are updated may be a critical section.




Atomicity and interference

Consider the two processes:

{ x =0}
Al nc: X = X+1
Bl nc: X = X+t1

{ x =71}

[1 How can these processes interfere?




Atomic actions

Individual reads and writes may be atomic actions:
const N = 3
range T = 0..N
Var = Var|[ 0],
Var[u: T] = ( read[ u] -> Var [ u]
| wite[v:T] -> Var[v]).
set VarAlpha = { read[T], wite[T] }

Inc =( read[v:0..N1]
-> write[v+]l]
-> STCP )  +Var Al pha.




Sequential behaviour

A single sequential thread requires no synchronization:

wrrite .




Concurrent behaviour

Without synchronization, concurrent threads may interfere:

a.read. 0
a.read. 0
a.wte. ]
boead O bowrdte. ] armead.l a w2 b w1 A, write. a.wrie.l boead.
b wrte. 1
b.read. 0

({a,b}::Var || a:lnc || b:lnc) >we2




Locking

Locks are used to make a critical section atomic:
LOCK = ( acquire -> release -> LOCK ).
INC = ( acquire
-> read[v:0..N1]
-> wWite[v+]]
-> rel ease
-> STCP ) +Var Al pha.

read. 2

read. 1

A ire : : write. 1 release write. 2 write .3

00906000

a3e

release




Synchronization

Processes can synchronize critical sections by sharing a lock:

a.ang Mire

hacquire boread .0 b wrrite. 1 borelease a.acguive a.mead. 1 a write. 2 a.telease a.read .0 a.write. 1 a.releaseb acqguire boread . 1 bowrrite 2

QDT @WEHET® @i

b elease

({a,b}::VAR| | {a, b}::LOCK| |a: I NC | b: | NC)




Synchronization in Java

Java Threads also synchronize using locks:
synchronized T n() {
/[ method body

}

is just convenient syntax for:
T ) {
synchroni zed (this) {
[/ method body

}
}

Every object has a lock, and Threads may use them to
synchronize with each other.




Busy-Wait Mutual Exclusion Protocol

Pl setsenterl := true when it wants to enter its CS,

but setsturn := “P2” Yo yield priority to P2:
process Pl process P2
| oop | oop
enterl := true enter2 .= true
turn ;= “P2” turn ;= “Pl”
whil e enter2 and while enterl and
turn = “ P27 turn = “P1”
do skip do skip

Critical Section
enterl := fal se
Non-critical Section
end
end

Critical Section
enter2 := fal se
Non-critical Section
end
end

[J Is this protocol correct? Is it fair? Deadlock-free?




Atomic read and write

range T = 1..2

Var = Var[1],
. V, " T] =
We can model integer ar([ureid[u] > Var[ ]
and boolean variables | write[v:T] -> var[v]).
as processes with
atomic read and write set Bool = {true,fal se}
actions:
BOOL(Init="false) = BOOL[Init],
BOOL[ b: Bool ] =
(is[b] -> BOOL[ b]

| set To[ x: Bool ] -> BOOL[ X]).




Modelling the busy-wait protocol

Each process performs two actions in its CS:

Pl = ( enterl.setTo['true]
-> turn.witef 2]
-> 1),
&l =
( enter2.is['false] -> CS1
| enter2.is['true] ->
( turn.read[1] -> CS1
| turn.read[2] -> 1)),
CSl =( a->0b
-> enterl.setTo['false]
-> P1).

P2 = ( enter2.setTo['true]

-> turn.wite[ 1]

-> @2),
&2 =
( enterl.is['false] -> CS2
| enterl.is['true] ->

( turn.read[2] -> CS2

| turn.read[1l] -> d2)),
Cs2 =(c->d

-> enter2.setTo[' fal se]

-> P2).

|| Test = (enter1: BOOL||enter2: BOOL||turn:Var||Pl]|P2) @a,b,c, d}.




Busy-wait composition

13
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Checking for errors

We can check for errors by composing our system with an
agent that moves to the ERROR state if atomicity is violated:

k= (a->(c->ERROR| b ->&)
| c->(a->ERROR| d -> &k )).

[N "SD"D"D"D"—————=1IT5A - busywait.lts =

[ Edit || Results || Stop | Target

Mo deadlocks/errors

[J What happens if we break the protocol?




Conditional synchronization

A lock delays an acquire request if it is already locked:

LOCK = ( acquire -> release -> LOCK ).

Similarly, a one-slot buffer delays a put
request if it is full and delays a get
request if it is empty:

put.2

const N = 2

Slot = ( put[v:0..N
-> get[ V]
-> Slot ).




Producer/Consumer composition

Producer = ( put[0] poo el

Consuner

| | Chai n

-> put [ 1]
-> put [ 2]
-> Producer).

put.2

= ( get[x:0..N| f:jilﬂn

-> Consuner ). et 1

get.2

— ( PI’ OdUCer put.d getd putl getl put2

1Sl ot DIOIOIOI0)

| | Consuner )

et 2




Wait and notify

A Java object whose methods are all synchronized behaves like
a monitor

Within a synchronized method or block:
[0 wait() suspends the current thread, releasing the lock
O notify() wakes up one thread waiting on that object
O notifyAll () wakes up all threads waiting on that object

Outside of a synchronized block, wai t () and notify() will
raise an | | | egal Moni t or St at eExcepti on

Alwaz’/s use notifyAll() unless you are sure it doesn't matter
which thread you wake up!




Slot (put)

class Slot inplements Buffer {
private (nject slotVal;

public synchroni zed voi d put(Qoject val) {
while (slotVal !'= null) {

try { wait(); } // beconme Not Runnabl e
catch (InterruptedException e) { }

}

sl otVal = val:

notifyAll(); // make waiting threads Runnabl e
return;




Slot (get)

public synchroni zed Cbject get() {
(bj ect rval;
while (slotVal == null) {

try { wait(); }

catch (InterruptedException e) { }
}

rval = sl ot Val;
slotVal = null;
noti fyAll();
return rval;




Producer in Java

The Producer puts _count messages to the slot:

cl ass Producer extends Thread {

protected int _count;
protected Buffer _slot;
Producer (String nang,

Buffer slot, int count) {

super (nane) ;

_slot = slot;

_count = count;

}

public void run() {
int i;
for (i=1;i<=_count;i++) {
this.action(i);
}
}

protected void action(int n) {
String nessage;
message = this.getName() + "("
+ String.valueO(n) +")";
_slot. put (nessage) ;
Systemout. println(get Name()
+ " put " + nessage);




Consumer in Java

... and the Consumer gets them:

cl ass Consuner extends Producer { // code reuse only!

Consuner (String nane, Buffer slot, int count) {
super (nane, slot, count);

}

protected void action(int n) {
String nessage;
message = (String) _slot.get();
Systemout.println(getName() + " got " + nessage);

}
}




Composing Producers and Consumers

Multiple producers and consumers may share the buffer:

(| lava Console

.pple put apple {1}
sterix got apple 1)

pUbl Ic static vol d nal n( St Ml ng ar gS[] ) { range put orangefl )
belix got orangedl)

BUf f er Sl ot = new SI ot () , range put Dr‘unge{%}}

" n belix got orongelZ

new Producer ("apple ", slot, count).start(): Pple pat opple (2)

" " sterix got apple {2}

new Producer("orange", slot, count).start(); anana put bananati )

" " sterix got banana{l}

new Producer ("banana", slot, count).start(); range put orange(3

sterix got orange(3)
pple put apple {3}
sterix got apple {3}

new Consurrer (" aS'[ erl X" y Sl Ot y Count) . St al"[ () , anana put banana2 )

n : n * belix got bananafz)

new Consuner ("obelix ", slot, 2*count).start(); range put orange(d)
belix got orangefd)

} pple put apple {4}

belix got apple {4}
pple put apple (52
belix got apple (52
range put orangefS)
belix got orange(S)
anana put banana{3}
belix got bananaf3)
anana put bananadd )
belix got bananadd)
anand put bananaS)
belix got bananafs)
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What you should know!

How do you model interaction with FSP?

What is a critical section? What is critical about it?
Why don’t sequential programs need synchronization?
How do locks address safety problems?

What primitives do you need to implement the busy-wait
mutex protocol?

How can you use FSP to check for safety violations?

What happens if you callwait ornotify outside a
synchronized method or block?

When is it safe to usenotifyAl | () ?
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Can you answer these questions?

What is an example of an invariant that might be violated
by interfering, concurrent threads?

What constitute atomic actions in Java?

Can you ensure safety in concurrent programs without using
locks?

When should you use synchroni ze(t hi s) rather than
synchroni ze(sone(hj ect) ?

Is the busy-wait mutex protocol fair? Deadlock-free?
How would you implement a Lock class in Java?

Why is the Java Slot class so much more complex than the
FSP Slot specification?




4. Safety Patterns

Overview
0 Immutability:
0 avoid safety problems by avoiding state changes
O Full Synchronization:
O dynamically ensure exclusive access
O Partial Synchronization:
0 restrict synchronization to “critical sections”
[0 Containment:
0 structurally ensure exclusive access




Idioms, Patterns and Architectural Styles

Idioms, patterns and architectural styles express best
practice in resolving common design problems.

Idioms
"an implementation technigue”
Design patterns

"a commonly-recurring structure of communicating
components that solves a general design problem
within a particular context”

Architectural patterns

"a fundamental structural organization schema for
software systems”




Pattern: Immutable classes

Intent: Bypass safety issues by not changing an object's
state after creation.

Applicability
0 When objects represent values of simple ADTs
0 colours (java.awt.Color), numbers (java.lang.Integer)

0 When classes can be separated into mutable and
immutable versions

0 java.lang.String vs. java.lang.StringBuffer

0 When updating by copying is cheap
O “hello” +" "+ "world" - “hello world"

0 When multiple instances can represent the same value
0 i.e., two copies of 712 represent the same integer




Immutability variants

Variants
Stateless methods

0 methods that do not access an object’'s state do not
heed to be synchroni zed (can be declared st ati c)

0 any temporary state should be local to the method
Stateless objects

0 an object whose "state” is dynamically computed needs
no synchronization

"Hardening”
[ object becomes immutable after a mutable phase
[0 expose to concurrent threads only after hardening




Immutable classes — design steps

Declare a class with instance variables that are never changed
after construction.

class Relay { Il helper for sone Server class
private final Server server_,;

Rel ay( Server s) { [l blank finals nust be

}

server = Ss; [l 1nitialized in all
/| constructors

void dolt() {

}
}

server _.dolt();




Design steps ...

Especially if the class represents an immutable data
abstraction (such as String), consider overriding
bj ect . equal s and bj ect . hashCode.

Consider writing methods that generate new objects of
this class.
(e.g., String concatenation)

Consider declaring the class as fi nal .

If only some variables are immutable, use
sz\nchroniza’rion or other techniques for the methods
that are not stateless.




Pattern: Fully Synchronized Objects

Intent: Maintain consistency by fully synchronizing all
methods. At most one method will run at any point in time.

Applicability
0 You want to eliminate all possible read/write and write/

write conflicts, regardless of the context in which it the
object is used.

O Allmethods can run to completionwithout waits, retries,
or infinite loops.

0 You do not need to use instances in a layered design in
which other objects control synchronization of this
class.




Applicability ...

0 You can avoid or deal with liveness failures, by:
0 Exploiting partial immutability
Removing synchronization for accessors
Removing synchronization in invocations
Arranging per-method concurrency

I I R R




Full Synchronization — design steps

[0 Declare all methods as synchroni zed

[0 Do not allow any direct access to state(i.e, no public
instance variables; no methods that return
references to instance variables).

[0 Constructors cannot be marked as synchroni zed in
Java. Use a synchronized block in case a constructor
passes t hi s to multiple threads.

[0 Methods that access st at i ¢ variables must either do
soviastati c synchroni zed methods or within blocks
of the form synchroni zed(getC ass()) { ... }.




Design steps ...

[0 Ensure that every publ i c method exits leaving the
object in a consistent state, even if it exits via an
exception.

[0 Keep methods short so they can atomically run to
completion.




Design steps ...

[0 State-dependent actions must rely on balking:

0 Return failure (i.e., exception) to client if
preconditions fail

0 If the precondition does not depend on state (e.q.,
just on the arguments), then check outside
synchronized code

0 Provide public accessor methods so that clients can
check conditions before making a request




Example: a BalkingBoundedCounter

public class Bal ki ngBoundedCounter {
protected | ong count = BoundedCounter.MN;, // between M N and MAX
public synchroni zed |ong value() { return count ; }
public synchroni zed void inc()
t hrows Cannot I ncrenment Exception {

i f (count_ >= BoundedCount er. MAX) [l if pre fails
t hrow new Cannot | ncrement Exception(); // throw exception
el se
++count _;
}
public synchronized void dec() ... { ... } [/ analogous

[J What safety problems could arise if this class were not
fully synchronized?




Example: an ExpandableArray

A simplified variant of java.util.Vector:

| nport java.util.NoSuchEl ement Excepti on;
public class Expandabl eArray {

protected (bject[] data_; /] the elenments
protected int size ; /] the nunmber of slots used
publ i c Expandabl eArray(int cap) {
data_ = new (bj ect[cap]; /| reserve some space
size = 0;
}

public synchronized int size() { return size_; }
public synchronized Cbject at(int i) // array indexing
t hrows NoSuchEl enent Exception {
It (i <0 || 1 >= size_
t hrow new NoSuchEl enent Excepti on();
el se
return data [i];




Example ...

public synchroni zed voi d append(Coject x) { /] add at end

I f (size_ >= data .length) { /'l need a bigger array
(bject[] olddata = data_; /] so increase ~50%
data_ = new (oject[3 * (size_+ 1) [ 2];
for (int i =0; I < size ; ++i)

data [i] = olddata[i];

}

data [size ++] = Xx;
}
public synchroni zed voi d renovelLast ()

t hrows NoSuchEl enent Exception {

i f (size_ == 0)

t hrow new NoSuchEl enent Excepti on();

el se
data [--size ] = null;




Bundling Atomicity

[0 Consider adding synchronized methods that perform
sequences of actions as a single atomic action

public interface Procedure { // apply an operation to an object
public void apply(Object x);
}
public class Expandabl eArrayV2 extends Expandabl eArray {
publ i ¢ Expandabl eArrayV2(int cap) { super(cap); }
public synchroni zed void appl yToAl | (Procedure p) {
for (int i =0; i <size ; ++i) {
} p.apply(data_[i]);

}
}

[1 What possible liveness problems does this introduce?




Using inner classes

Use anonymous inner classes to pass procedures:

cl ass Expandabl eArrayUser {
public static void main(String[] args) {
Expandabl eArrayV2 a = new Expandabl eArrayV2(100);

for (int L =0; i < 100; ++i) [l fill it up
a. append(new I nteger(i));
a. appl yToAl | ( new Procedure () { [l print all elenents

public void apply(Ooject x) {
Systemout. println(x);
}
}
)
}
}

NB: Any variables shared with the host object must be
declaredfinal (immutable).




Pattern: Partial Synchronization

Intent: Reduce overhead by synchronizing only within
‘critical sections”.

Applicability
0 When objects have both mutable and immutable
instance variables.

0 When methods can be split into a “critical section” that
deals with mutable state and a part that does not.




Partial Synchronization — design steps

O Fully synchronize all methods

0 Remove synchronization for accessors to atomic or
immutable values

0 Remove synchronization for methods that access
mutable state through a single other, already
synchronized method

0 Replace method synchronization by block
synchronization for methods where access to mutable
state is restricted to a single, critical section




Example: LinkedCells

public class LinkedCell {
prot ected doubl e val ue_; /1 NB:. doubles are not atom c!

protected final LinkedCell next _; /] fixed

public LinkedCell (double val, LinkedCell next) {

val ue_ = val; next_ = next;
}
public synchroni zed double value() { return value_; }
public synchroni zed voi d setVal ue(double v) { value = v; }
public LinkedCell next() { /1 not synched!
return next_; [l next _is immutable

}




}

public double sun() {
double v = val ue();
if (next() !'= null)
v += next().sum);
return v;

Example ...

/] add up all elenent val ues
/] get via synchroni zed accessor

}
public bool ean includes(double x) { /| search for x
synchroni zed(t his) { /] synch to access val ue
I f (value_ == Xx) return true;
}
I f (next() == null) return fal se;
el se return next().includes(x);
}




Pattern: Containment

Intent: Achieve safety by avoiding shared variables.
Unsynchronized objects are “contained” inside other objects
that have at most one thread active at a time.

Applicability
[0 There is no need for shared access to the embedded
objects.

[0 The embedded objects can be conceptualized as
exclusively held resources.




Applicability ...

0 Embedded objects must be structured as islands —
communication-closed sets of objects reachable only
from a single unique reference.

They cannot contain methods that reveal their
identities to other objects.

O You are willing to hand-check designs for compliance.

0 You can deal with or avoid indefinite postponements or
deadlocks in cases where host objects must transiently
acquire multiple resources.




Contained Objects — design steps

[0 Define the interface for the outer host object.

0 The host could be, e.g., an Adaptor, a Composite, or a
Proxy, that provides synchronized access to an
existing, unsynchronized class

[0 Ensure that the host is either fully synchronized, or is
in turn a contained object.




Design steps ...

[0 Define instances variables that are unigue references to
the contained objects.

[0 Make sure that these references cannot leak outside
the host!

0 Establish policies and implementations that ensure
that acquired references are really unique!

[0 Consider methods to duplicate or clone contained
objects, to ensure that copies are unique




Managed Ownership

[0 Model contained objects as physical resources:

O If you have one, then you can do something that you
couldn’t do otherwise.

O If you have one, then no one else has it.

0 If you give one to someone else, then you no longer
have it.

O If you destroy one, then no one will ever have it.




Managed Ownership ...

0 If contained objects can be passed among hosts, define
a transfer protocol.

[0 Hosts should be able to acquire, give, take, exchange
and forget resources

[0 Consider using a dedicated class to manage transfer




A minimal transfer protocol class

A simple buffer for transferring objects between threads:

public class ResourceVariable {
protected Object ref _;
public ResourceVariable(Object res) { ref  =res; }
public synchronized Object resource() { return ref_; }
public synchroni zed Object exchange(Ooject r) {
(bject old = ref_;
ref  =r;
return ol d;
}
}

[1 What are the weaknesses of this class?
[0 How would you fix them?




O OOoOonO

What you should know!

Why are immutable classes inherently safe?
Why doesn’t a “relay” need to be synchronized?

What is "balking”? When should a method balk?

When is partial synchronization better than full
synchronization?

How does containment avoid the need for synchronization?




o OO GO O O

Can you answer these questions?

When is it all right to declare only some methods as
synchroni zed?

When is an inner class better than an explicitly named
class?

What could happen if any of the ExpandableArray methods
were not synchronized?

What liveness problems can full synchronization introduce?

Why is it a bad idea to have two separate critical sections
in a single method?

Does it matter if a contained object is synchronized or not?




5. Liveness and Deadlock

Overview

0 Safety revisited
[0 ERROR conditions

[0 Liveness
[0 Progress Properties

0 Deadlock
[0 The Dining Philosophers problem
[0 Detecting and avoiding deadlock

Selected material © Magee and Kramer




Safety revisited

A safety property asserts that nothing bad happens
ERROR process (-1) to detect erroneous behaviour

command

ACTUATOR
= (command -> ACTI ON),
-1 1 Ao on
\<_/ / = (respond -> ACTUATOR
respond | command - > ERROR).
command

Trace to ERROR command command




Safety — property specification

ERROR conditions state what is not required

In complex systems, it is usually better to specify directly
what /s required.

command
property SAFE ACTUATOR
1 1 = (conmmand
-> respond
\%\«/ / -> SAFE ACTUATOR
spond respond ) |
command

Trace to property violation in SAFE ACTUATOR
command comand




Safety properties

A safety property P defines a deterministic process that
asserts that any trace including actions in the alphabet of P is
accepted by P.

Transparency of safety properties:

0 Since all actions in the alphabet of a property are
eligible choices, composing a property with a set of
processes does not affect their correct behaviour.

O If abehaviour can occur which violates the safety
property, then ERROR is reachable.

Properties must be deterministic to be transparent.




Safety properties

How can we specify that some action, disaster, never occurs?

e

disaster

property CALM = STOP + {di saster}.

A safety property must be specified so as to include all the
acceptable, valid behaviours in its alphabet.




Liveness

A liveness property asserts that something good eventually
happens.

A progress property asserts that it is always the case that an
action is eventually executed.

Progress is the opposite of starvation, the name given to a
concurrent programming situation in which an action is never
executed.




Liveness Problems

A program may be "safe”, yet suffer from various kinds of
liveness problems:
Starvation: (AKA “indefinite postponement”)
0 The system as a whole makes progress, but some
individual processes don't
Dormancy:
0 A waiting process fails to be woken up

Premature termination:
0 A process is killed before it should be

Deadlock:

0 Two or more Fr'ocesses are blocked, each waiting for
resources held by another




Progress properties — fair choice

Fair Choice: If achoiceoverasetof transitionsisexecuted
infinitely often, then every transition in the set will be
executed infinitely often.

toss

If a coin were tossed an
infinite number of times,
we would expect that both
heads and tails would each 1 2
be chosen infinitely of ten.

toss

heads

This assumes fair choice ! tails

CON = (toss->heads->CO N
|toss->tails->CAN).




Progress properties
progress P = {al, a2..an}

asserts that in an infinite execution of a target system,

at least one of the actions al, a2. .. an will be executed
infinitely often.

COIN system:

progress HEADS = {heads}
progress TAILS = {tails}

No progress violations detected.




Progress properties

Suppose we have both a normal coin and a frick coin

pick
toss
FHéE/JH/JIJt:;sg;HXXR\\\\\\\\ tOSSffﬁ’**ﬁﬂwxx\R\
f’\ P /KFH\
1 2 3 4 5

s m//
he ads tai

heads

TWOCO N (pi ck->CA N pi ck->TRI CK) ,
TRI CK (t oss->heads- >TRI CK),

CO N = (toss->heads->CO N toss->tails->CON).
progress HEADS = {heads}

progress TAILS = {tail s}

progress HEADSor TAILS = {heads, tail s}




Progress analysis

Progress violation: TAILS
Trace to termnal set of states: pick
Actions in termnal set: {toss, heads}

pick
toss
;ﬂéE/I//JJJt:;s¥L¥Hx\\\\\\\\\ tOSSffﬁ’*‘Hai\\\\\
f»\ P //jfh\
1 2 3 4 5

e WM//
he ads tai

heads

A terminal set of states is one in which every state is mutually
reachable but no transitions leads out of the set.

The terminal set {1, 2} violates progress property TAI LS




Deadlock

Four necessary and sufficient conditions:

Serially reusable resources: the deadlocked
processes share resources under mutual exclusion.

Incremental acquisition: processes hold on to acquired
resources while waiting to obtain additional ones.

No pre-emption: once acquired b?/ a process, resources
cannot be pre-empted but only released voluntarily.

Wait-for cycle: a cycle of processes exists in which
each process holds a resource which its successor in
the cycle is waiting to acquire.




Waits-for cycle

Has A awaits B

Has E awaits A Lias B awaits

Has C awaits D

Has D awaits E




Deadlock analysis - primitive processes

[0 A deadlocked state is one with no outgoing transitions
0 In FSP: STOP process

MOVE = (north->(south->MOVE |north->STOP)).

north north

M OVE N

south

Progress violation for actions: {north, south}
Trace to termnal set of states: north north
Actions in termnal set: {}




The Dining Philosophers Problem

Philosophers alternate
between thinking and
eating.

A philosopher needs fwo
forks to eat.

No two philosophers may
hold the same fork
simultaneously.

There must be no
deadlock and no
starvation.

Want efficient
behaviour under absence
of contention.

® ®
D®




Deadlocked diners

A deadlock occurs if a @ @

waits-for cycle arises in

which each philosopher D ED
rabs one fork and waits

?or' the other.




Dining Philosophers, Safety and Liveness

Dining Philosophers illustrate many classical safety and

liveness issues:

Mutual Exclusion

Each fork can be used by one
philosopher at a time

Condition
synchronization

A philosopher needs two forks to eat

Shared variable
communication

Philosophers share forks ...

Message-based
communication

... or they can pass forks to each
other




Dining Philosophers ...

Busy-waiting A philosopher can poll for forks ...

... or can sleep till woken by a

Blocked waiting .
neighbour
. All philosophers can grab the left
Livelock fork and busy-wait for the right ...
Deadlock ... or grab the left one and wait (sleep)

for the right

A philosopher may starve if the left
Starvation and right neighbours are always
faster at grabbing the forks




Modeling Dining Philosophers

PHL = ( sitdown
-> right.get -> left.get -> eat
-> |eft.put -> right. put
-> arise -> PHL ).

FORK = ( get -> put -> FORK ).

| | DI NERS( N=5) =
forall [1:0..N1]
(phil[1]:PHL

|[{phil[i].left,phil [((i-1)+N)9%\.right}:: FORK).

[J Is this system safe? Is it live?




Dining Philosophers Analysis

Trace to termnal set of states:

phil.0.sitdown
phil.0.right.get
phil.1.sitdown
phil.1.right.get
phil.2.sitdown
phil.2.right.get
phil. 3. sitdown
phil.3.right.get
phil.4.sitdown
phil.4.right. get

Actions in termnal set: {}
No further progress is possible due to the waits-for cycle




Eliminating Deadlock

There are two fundamentally different approaches to
eliminating deadlock.

Deadlock detection:

0 Repeatedly check for waits-for cycles. When detected,
choose a victim and force it to release its resources.

[0 Common in transactional systems; the victim should
“roll-back” and try again

Deadlock avoidance:

[0 Design the system so that a waits-for cycle cannot
possibly arise.




Dining Philosopher Solutions

There are countless solutions to the Dining Philosophers
problem that use various concurrent programming styles and
patterns, and offer varying degrees of liveness guarantees:

Number the forks
[ Philosophers grab the lowest numbered fork first.

Philosophers queue to sit down
0 allow no more than four at a time to sit

[1 Do these solutions avoid deadlock?
[7 What about starvation?
[J Are they "fair"?
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What you should know!

What are safety properties? How are they modelled in
FSP?

What kinds of liveness problems can occur in concurrent
programs?

Why is progress a liveness rather than a safety issue?
What is fair choice? Why do we need it?

What is a terminal set of states?

What are necessary and sufficient conditions for deadlock?
How can you detect deadlock? How can you avoid it?
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Can you answer these questions?

How would you manually check a safety property?

Why must safety properties be deterministic to be
transparent?

How would you manually check a progress property?
What is the difference between starvation and deadlock?

How would you manually detect a waits-for cycle?
What is fairness?




6. Liveness and Guarded Methods

Overview
[0 Guarded Methods

0 Checking guard conditions

0 Handling interrupts

0 Structuring notification
0 Encapsulating assignment
[0 Tracking state
[0 Tracking state variables
[0 Delegating notifications




Achieving Liveness

There are various strategies and techniques to ensure liveness:

0 Start with safe design and selectively remove
synchronization

0 Start with /ive design and selectively add safety

0 Adopt design patterns that limit the need for
synchronization

0 Adopt standard architectures that avoid cyclic
dependencies




Pattern: Guarded Methods

Intent: Temporarily suspend an incoming thread when an
object is not in the right state to fulfil a request, and wait for
the state to change rather than balking (raising an exception).

Client 1 BoundedCounter Client 2

ﬂ dec() | '

wait() l

notifyAll) '« l
= :

S

D)
~
~—’




Guarded Methods — applicability

Clients can tolerate indefinite postponement.
(Otherwise, use a balking design.)

You can /guaran‘ree that the required states are
eventually reached (via other requests), or if not, that it
is accepmble to block forever.

You can arrange that notifications occur after all
relevant state changes. (Otherwise consider a design
based on a busy-wait spin loop.)

You can avoid or cope with liveness problems due to
waiting threads retaining all synchronization locks.




Applicability ...

0 You can construct computable predicates describing the
state in which actions will succeed. (Otherwise consider
an optimistic design.)

[0 Conditions and actions are managed within a single
object. (Otherwise consider a transactional form.)




Guarded Methods — design steps

The basic recipe is to use wai t in a conditional loop to block

until it is safe to proceed, and use noti fyAl'| to wake up
blocked threads.

public synchroni zed Object service() {
while (wong State) {

try { wait(): }
catch (InterruptedException e) { }

}
[/ fill request and change state ...
noti fyAll ();

return result:

}




Step: Separate interface from policy

[0 Define interfaces for the methods, so that classes can
implement guarded methods according to different
policies.

public interface BoundedCounter {
public static final long MN =0; // mn value
public static final long MAX = 10; // max val ue
public long value(); // invit: MN<=value() <= MAX
[/ init: value() == MN
public void inc(); [/ pre: value() < MAX
public void dec(); // pre: value() > MN




Step: Check guard conditions

[0 Define a predicate that precisely describes the
conditions under which actions may proceed.

(This can be encapsulated as a helper method.)

[0 Precede the conditional actions with a guarded wait loop
of the form:

while (!condition)

try { wait(); }
catch (InterruptedException ex) { ... }

Optionally, encapsulate this code as a helper
method.




Step: Check guard conditions ...

[0 If there is only one possible condition to check in this
class (and all KIUSIb e subclasses), and notifications are
|ssued only when the condition is true, then there is no
need to re-check the condition after reTurnmg from
wai t ()

[0 Ensure that the object is in a consistent state (i.e., the
class invariant holds) before entering any wai t (since
wait releases the synchronization lock).

The easiest way to do this is to perform the guards
before taking any actions.




Step: Handle interrupts

0 Establish a policy to deal with | nt errupt edExcept i ons.
Possibilities include::

O Ignore interrupts(i.e.,an emp’r?/ cat ch clause), which

preserves safety at the possible expense of liveness.

0 Terminate the current thread (st op). This preserves
safety, though brutally! (Not recommended.)

0 Exit the method, possibly raising an exception. This
preserves liveness but may require the caller to take
special action to preserve safety.

O Cleanup and restart.
0 Ask for user intervention before proceeding.

Interrupts can be useful to signal that the guard can never
become true because, for example, the collaborating threads
have terminated.




Step: Signal state changes

0 Add notification code o each method of the class that
changes state in any way that can affect the value of a
guard condition. Some options are:

0 usenotifyAl to wake UE all threads that are
blocked in waits for the host object.




Notify() vs notifyall()

0 usenotify to wake up only one thread (if any exist).
This is best treated as an optimization where:

O all blocked threads are necessarily waiting for
conditions signalled by the same notifications,

0 only one of them can be enabled by any given
notification, and

(1 it does not matter which one of them becomes
enabled.

0 You build your own special-purpose notification
methods using notify and noti fyAl | . (For example,
to selectively notify threads, or to provide certain
fairness guarantees.)




Step: Structure notifications

[0 Ensure that each wait is balanced by at least one
notification. Options include:

Place a notification at the end of every
method that can cause any state change (i.e.,
assigns any instance variable).

Simple and reliable, but may cause
performance problems ...

Blanket
Notifications

Encapsulate assignment to each variable
Encapsulating | mentioned in any guard condition in a helper

Assignment | method that performs the notification after
updating the variable.




Only issue notifications for the particular
state changes that could actually unblock

Tgcﬂ;:gg waiting threads. May improve performance,
at the cost of flexibility (i.e., subclassing
becomes harder.)

Maintain an instance variable that

Trackin represents control state.

9 | Whenever the object changes state, invoke
State

Variables | @ helper method ‘rhq'r re-evaluq’rgs The |
control state and will issue notifications if
guard conditions are affected.

Delegating Use helper objects to maintain aspects of
NS state and have these helpers issue the
Notifications

notifications.




Encapsulating assignment

Guards and assignments are encapsulated in helper methods:
publ i ¢ cl ass BoundedCount er V1
| npl enment s BoundedCount er {
protected |l ong count _ = MN,
public synchronized | ong value() { return count ; }
public synchroni zed void inc() {
awal t I ncrenent abl e() ;
set Count (count _ + 1);
}
public synchroni zed void dec() {
awal t Decr ement abl e() ;
set Count (count _ - 1);

}




protected synchroni zed void awaitlncrenentable() {
whil e (count _ >= NAX)
try { wait(); }
catch(InterruptedException ex) {};

}

protected synchroni zed voi d awai t Decrenment abl e() {
while (count _ <= MN)

try { wait(); }
catch(I nterruptedException ex) { };

}

prot ect ed synchroni zed voi d set Count (| ong newval ue) {
count = newval ue;
noti fyAll ();

}

}




Tracking State

The only transitions that can possibly affect waiting threads
are those that step away from logical states top and bottom:

publ i ¢ cl ass BoundedCount er VST
| npl ement s BoundedCount er {
protected long count = MN, [/ ...
public synchroni zed void inc() {
while (count == )
try { wait(); }
catch(InterruptedException ex) {};
If (count _++ == MN)
notifyA | (); [/ just left bottomstate




Tracking State Variables

publ i ¢ cl ass BoundedCount er VSV
| npl enent s BoundedCount er {
static final int BOTTOM = 0; // logical states
static final int MDDLE = 1;
static final Int TOP 2;
protected int state = BOITOM // state variable
protected ong count = MN;
public synchroni zed void inc() {
while (state_ == TOP) // consult |ogical state
try { wait(); }
catch( I nterruptedException ex) {};
++count _; [/l nodify actual state
checkState(); Il sync |ogical state

b




public synchronized void dec() { ... }
publ i c synchroni zed | ong value() { return count _; }

protected synchronized void checkState() {
Int oldState = state_;

If (count_ == MN) state = BOITOM
else if (count_ == ) state_ = TOP,

el se state = M DDLE;
If (state_ != oldState

& & (ol dState == TOP
|| oldState == BOTTOM )
noti fyAll ();




Delegating notifications

public class NotifyingLong {

}

private | ong val ue_;
private (bj ect observer ;
public NotifyinglLong(Object o, long v) {
observer = o; value = v;
}
publ i c synchroni zed | ong value() { return value_; }
public void setValue(long v) {
synchroni zed(this) { value =v; }
synchroni zed( observer ) {
observer _.notifyAll(); // NB: nmust be synched!

}
}




Delegating notifications ...

Notification is delegated to the helper object:
publ i ¢ cl ass BoundedCount er VNL
| npl enment s BoundedCount er {
private NotifyingLong c_ =
new NotifyingLong(this, MN);
public synchronized void inc() {
while (c_.value() >= MAX
try { wait(); }
catch(InterruptedException ex) {};
c_.setValue(c .value()+l);

}




o 0O OO0 OO

What you should know!

When can you apply the Guarded Methods pattern?

When should methods recheck guard conditions after
waking from awai t () ?

Why should you usually prefer notifyAll () tonotify()?
When and where should you issue notification?

Why must you re-establish the class invariant before calling
wait()?

What should you do when you receive an

| nt errupt edException?

What is the difference between tracking state and using
state-tracking variables?




Can you answer these questions?

[J When are guarded methods better than balking?

[1 When should you use helper methods to implement guarded
methods?

[J What is the best way to structure guarded methods for a
class if you would like it to be easy for others to define
correctly functioning subclasses?

[1 When is the complexity of delegating notifications
worthwhile?




/. Lab session I

The lab exercises will be available on the course web page:

matsu-www.is.titech.ac.jp/~oscar/cp/



http://matsu-www.is.titech.ac.jp/~oscar/cp/

Overview

8. Liveness and Asynchrony

[0 Asynchronous invocations

[]

1 OO0 O

Simple Relays

[0 Direct Invocations

[0 Thread-based messages; Gateways
[0 Command-based messages

Tail calls

Early replies

Futures




Pattern: Asynchronous Invocations

Intent: Avoid waiting for a request to be serviced by
decoupling sending from receiving.

Applicability
[0 When a host object can distribute services amongst
multiple helper objects.

0 Whenanobject does not immediately need the result of
an invocation to continue doing useful work.

[0 When invocations that are /ogically asynchronous,
regardless of whether they are coded using threads.

O During refactoring, when classes and methods are split
in order to increase concurrency and reduce liveness
problems.




Asynchronous Invocations — form

Asynchronous invocation typically looks like this:

cl ass Host {
public service() {
pre();
| nvokeHel per ();
during();

post () ;
}
}

[
[
[
[

code to run before i nvocation
t he 1 nvocati on

code to run In parallel

code to run after conpletion




Asynchronous Invocations — design steps

Consider the following issues:

Does the Host need results back
from the Helper?

Not if, e.g., the Helper
returns results directly
to the Host's caller!

Can the Host process new requests
while the Helper is running?

Might depend on the kind
of request ...

Can the Host do something while
the Helper is running?

i.e., in the during() code

Does the Host need to synchronize
pre-invocation processing?

i.e., if service() is
guarded or if pre()
updates the Host's state




Does the Host need to synchronize |i.e., if post () updates
post-invocation processing? the Host's state

... or does the host have
to wait for other
conditions?

Does post-invocation processing
only depend on the Helper's result?

Is a new one generated

Is the same Helper always used? |to help with each new
service request?




Simple Relays — three variants

A relay method obtains all its functionality by delegating to the
helper, without any pre(), during(), or post() actions.

Direct invocations: Invoke the Helper directly, but
without synchronization

Thread-based messages: Create a new thread to
invoke the Helper

Command-based messages: Pass the request to
another object that will run it

Relays are commonly seen in Adaptors.




Variant: Direct invocations

Asynchrony is achieved by avoiding synchronization.

cl ass Host {
protected Hel per hel per_ = new Hel per();

public void service() { [/ unsynchroni zed!
| nvokeHel per () ; /] (statel ess nethod)
}
protected void i nvokeHel per() {
hel per . hel p(); /[ unsynchroni zed!
}

}

The Host is free to accept other requests, while the Host's
caller must wait for the reply.




Direct invocations ...

If hel per _ is mutable, it can be protected with an accessor:

cl ass Host2 extends Host {
protected Hel per hel per _ = new Hel per();
protected synchroni zed Hel per hel per() {

}

}

return hel per_;

public void service() { // unsynchroni zed

}

hel per (). hel p(); /| partially synchronized




Variant: Thread-based messages

The invocation can be performed within a new thread:

protected void invokeHel per() {

new Thread() { [/ An inner class
final Hel per h_ = hel per_; [/ Must be final!
public void run() { h_.help() ; }

}.start();
}




Thread-based messages ...

The cost of evaluating Helper.help() should outweigh the
overhead of creating a thread!

0 If the Helper is a daemon (loops endlessly)

0 If the Helper does I/O

[ Possibly, if multiple helper methods are invoked




Thread-per-message Gateways

The Host may construct a new Helper to service each request.

public class Filel O {
public void witeBytes(String file, byte[] data) {
new Thread (new FileWiter(file, data)).start();

}
public void readBytes(...) { ... }

}

class FileWiter inplenments Runnabl e {
private String nm; /1 hold argunents
private byte[] d_;
public FileWiter(String name, byte[] data) { ... }
public void run() { ... } [/ wite to file ...

J




Variant: Command-based messages

The Host can also put a Command object in a gueue for another
object that will invoke the Helper:

protected Event Queue q_;
protected invokeHel per() {
d_. put (new Hel per Message( hel per ));

}

Command-based forms are especially useful for:
0 scheduling of helpers
0 wundo and replay capabilities
0 transporting messages over networks




Tail calls

Applies when the helper method is the /ast statement of a
method. Only pre() code is synchronized.

cl ass Subject {

protected Cbserver obs = new...;

protected double state ;

public void updateState(double d) { // not synched
doUpdat e(d); /'l synched
sendNot i fication(); /1 not synched

}

protected synchroni zed doUpdat e(double d) { /'l synched
state_ = d;

}

protected void sendNotification() { /'l not synched

obs . changeNotification(this);

}
}

The host is immediately available to accept new requests




Tail calls with new threads

Alternatively, the tail call may be made in a separate thread:

public synchroni zed voi d updateState(double d) {
state = d;
new Thread() {
final Qoserver o = obs_;
public void run() {
o_.changeNotification(Subject.this);

}
}.start();

}




Early Reply

Early reply allows a host to perform useful activities after
returning a result to the client:

Client Host

Host retains

I

H service() |
I

| synchronization!

-

reply -

I T
Early reply is a built-in feature in some programming languages.
I't can be easily simulated when it is not a built-in feature.




Simulating Early Reply

A one-slot buffer can be used to pick up the reply from a
helper thread:

A one-slof buffer is a simple abstraction that can be used to
implement many higher-level concurrency abstractions ..

Client Host

ﬂ service() Slot

: new - new Helper
| — start()
| get()

I T—— 1. but()

0 reply l *




Early Reply in Java

public class Host { ...

public Object service() { [/ unsynchroni zed
final Slot reply = new Slot();
final Host host = this;
new Thread() { /| Hel per
public void run() {
synchroni zed (host) {
reply. put (host. conpute());

host . ¢l eanup(); [/ retain | ock
b}
}.start();

return reply.get(); [l early reply




Futures

Futures allow a client to continue in parallel with a host until
the future value is needed:

returns value ™

Client Host
. | _i
H service() | Future
| new ,
o >
! |
returns future ™ |
I
L | I
I
put () |
| val ue() - -
: 1
[
|
I
I




A Future Class

Futures can be implemented as a layer of abstraction around a
shared Slot:

class Future {

private oject val ; [/ initially null
private Slot slot_; /] shared with sone worker
public Future(Slot slot) {

slot = slot;
}
public Object value() {

if (val _ == null)

val = slot _.get();

return val _;

}

}




Using Futures in Java

Without special language S%pom‘, the client must explicitly
request a value() from the future object.

public Future service () { [/ unsynchroni zed

final Slot slot = new Slot();
new Thread() {

public void run() {

sl ot. put (conpute());

}
}.start();
return new Future(slot);

}

protected synchroni zed Object conmpute() { ... }
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What you should know!

What general form does an asynchronous invocation take?
When should you consider using asynchronous invocations?
In what sense can a direct invocation be “asynchronous”?

Why (and how) would you use inner classes to implement
asynchrony?

What is "early reply”, and when would you use it?
What are "futures”, and when would you use them?
How can implement futures and early replies in Java?




Can you answer these questions?

[J Why might you want to increase concurrency on a single-
processor machine?

[J Why are servers commonly structured as thread-per-
message gateways?

[1 Which of the concurrency abstractions we have discussed

till now can be implemented using one-slot-buffers as the
only synchronized objects?

[1 When are futures better than early replies? Vice versa?




9. Condition Objects

Overview
0 Condition Objects
0 Simple Condition Objects
0 The "Nested Monitor Problem”
0 Permits and Semaphores
0 Using Semaphores




Pattern: Condition Objects

Intent: Condition objects encapsulate the waits and
notifications used in guarded methods.

Applicability
0 To simplify class design by off-loading waiting and
notification mechanics.

[ Because of the limitations surrounding the use of
condition objects in Java, in some cases the use of

condition ob ],ec’rs will increase rather than decrease
design complexity!




Condition Objects — applicability

As an efficiency manoeuvre.

0 By isolating conditions, you can often avoid notifying
waiting threads that could not possibly proceed given
a particular state change.

As a means of encapsulating special scheduling policies
surrounding notifications, for example to impose
fairness or prioritization policies.

In the particular cases where conditions take the form
of “permits”or “latches”.




Condition Objects

Condition objects implement this interface:

public interface Condition {
public void await(); // wait for some condition
public void signal (); // signal that condition

}

A client that awaits a condition blocks until another object
signals that the condition how may hold.




A Simple Condition Object

We can encapsulate guard conditions with this class:
public class SinpleConditionObject
| npl ements Condition
{
public synchroni zed void await () {
try { wait(); }
catch (I nterruptedException ex) {}
}
publ i c synchroni zed void signal () {
noti fyAll ();
}
}

Careless use can lead to the "Nested Monitor Problem”




The Nested Monitor problem

We want to avoid waking up the wrong threads by separately
notifying the conditions notMin and notMax:

publ i ¢ cl ass BoundedCount er VBAD
| npl ement' s BoundedCount er {
protected |ong count = MN;
protected Condition
notMn_ = new Sinpl eConditionChject();
protected Condition
not Max_ = new Si npl eCondi ti onQoj ect () ;
public synchroni zed | ong val ue() {
return count _;

}




The Nested Monitor problem ...

publ i c synchroni zed void dec() {

while (count _ == MN)
notMn_.await(); [/ wait till count not MN
If (count -- == )
not Max_.signal ();
}
public synchroni zed void inc() { // can't get in!
while (count == )

not Max_. awai t();
If (count _++ == MN)
notMn_.signal (); [/ we never get here!




The Nested Monitor problem ...

Client 1 || Client 2 BoundedCoun’rerVBADJ

ﬁ ' dec() i rSimpleConditfonObject
I |

| | awai t () |

I | I

| | .

' wal t

: i nc() | () —

| | | |

| | | |

| Counter is | |

still locked!

So condition is
never signalled

Nested monitor lockouts occur whenever a blocked thread
holds the lock for an object containing the method that would
otherwise provide a notification to unblock the wait.




Nested Monitors in FSP

Nested Monitors typically arise when one synchronized ob ject
is implemented using another.

Recall our one Slot buffer in FSP:
const N = 2
Slot = (put[v:0..N] -> get[v] -> Slot).

Suppose we try to implement a call/reply protocol using a
private instance of Slot:

Repl ySl ot =
( put[v:0..N] -> ny.put[v] -> ack -> ReplySl ot
| get -> ny.get[v] ->ret[v] -> ReplySlot ).




Nested Monitors in FSP ...

Our producer/consumer chain obeys the new protocol:

Pr oducer

( put[0]
-> put[1]
-> put| 2]

-> ack
-> ack
-> ack -> Producer ).

Consuner = ( get-> ret[x:0..N ->Consuner ).

|| Chain = (Producer|| ReplySlot || ny:Slot]|| Consumner).
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Nested Monitors in FSP ...

But now the chain may deadlock:

Progress violation for actions: {put.0, ack, put.1,

put.2, ny.put.0, nmy.put.l, ny.put.2, get,

Trace to termnal set of states:
get
ret.0

Actions in termnal set: {}

ny. get. 2,

@ O. Nierstrasz — U. Berne

Condition Objects




Solving the Nested Monitors problem

You must ensure that:

0 Waits do not occur while synchronization is held on the
host object.

[0 This leads to a guard loop that reverses the
synchronization seen in the faulty version.

[0 Notifications are never missed.

0 The entire guard wait loop should be enclosed within
synchronized blocks on the condition object.




Solving Nested Monitors ...

[0 Notifications do not deadlock.

O All notifications should be performed only upon
release of all synchronization (except for the
notified condition object).

0 Helper and host state must be consistent.

0 If the helper object maintains any state, it must
always be consistent with that of the host, and if it
shares any state with the host, that access is
properly synchronized.




Example solution

public class BoundedCounterVCV i npl enents BoundedCounter { ...

public void dec() { /'l not synched!
bool ean wasMax = fal se; /] record notification condition
synchroni zed(notM n_) { /] synch on condition object
while (true) { /1 new guard | oop
synchroni zed(t his) {
I f (count _ > MN) { /'l check and act
wasMax = (count == MAX);
count --;
br eak:
}
}
notMn_.await(); /] release host synch before wait
}
}
I f (wasMax) not Max_.signal () ; /] first release all synchs!
}




Pattern: Permits and Semaphores

Intent: Bundle synchronization in a condition object when
synchronization depends on the value of a counter.

Applicability
[0 When any given awai t may proceed only if there have
been more signals than awaits.

0 I.e.,whenawait decrements and si gnal increments
the number of available "permits”.

[0 You need to guarantee the absence of missed signals.

[1 Unlike simple condition objects, semaphores work
even if one thread enters its await after another
thread has signalled that it may proceed.

0 The host classes can arrange to invoke Condi ti on
methods outside of synchronized code.




Permits and Semaphores — design steps

0 Define a class implementing Condi ti on that maintains a
permit count, and immediately releases await if there

are already enough permits.
[l e.g., BoundedCount er

public class CountCondition inplenents Condition {

prot ect ed BoundedCount er
counter = new BoundedCount er VO();

public void await() { counter .dec(); }
public void signal() { counter .inc(); }

}




Design steps ...

0 Aswith all kinds of condition objects, their clients must
avoid invoking await inside of synchronized code.

[0 You can use a before/after design of the form:

cl ass Host {
Condi tion aCondition_;
public nmethod mi() {
aCondition _.await(); /1 not synched
doML() ; /| synched
for each Condition c enabled by ml()
c.signal (); /] not synched

}
protected synchronized doML() { ... }

}




Variants

Permit Counters: (Counting Semaphores)
0 Just keep track of the number of "permits”
[0 Canusenotify instead of notifyAl |l if classisfi nal

Fair Semaphores:

0 Maintain FIFO queue of threads waiting on a
Si npl eCondi ti on

Locks and Latches:
0 Locks can be acquired and released in separate methods

0 Keep track of thread holding the lock so locks can be
reentrant!

0 A latch is set to true by si gnal , and always stays true

See the On-line supplement for details!




Semaphores in Java

public class Semaphore { // sinple version
private iInt value;
public Semaphore (int initial) { value =1initial; }

synchroni zed public void up() { [ AKA V
++val ue;
notify(); [/ wake up Jjust one thread!
}

synchroni zed public void down() { [l AKA P
whi | e (val ue==0)
try { wait(); }
catch(InterruptedException ex) { };
- -val ue;

}
}




Using Semaphores

publ i c cl ass BoundedCount er VSem
| npl enent s BoundedCount er {

protected long count = MN
prot ected Senmaphore nutex;
protected Semaphore full; [l nunmber of itens

protected Semaphore enpty; // nunber of slots

BoundedCount er VSen() {

mut ex = new Senaphore(1);

full = new Semaphore(0) :

enpty = new Semaphore( MAX-M N) ;
}




Using Semaphores ...

public long value() {

mut ex. down() ; [/ grab the resource
| ong val = count _;
mut ex. up() ; [l release it
return val;
}
public void inc() {
empty. down() ; [/ grab a sl ot
mut ex. down() ; /| sequence Is Inportant!
count _ ++;
mut ex. up() ;
full.up(); /] release an item




Using Semaphores ...

These would cause a nested monitor problem!
public void BAD nc() {
mut ex. down(); enpty.down(); // |ocks out BADdec!
count _ ++;
full.up(); nutex.up();

}

public void BADdec() {
mut ex. down(); full.down(); // Iocks out BAD nc!
count _ --:

enpty. up() mut ex. up() ;
}
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What you should know!

What are "condition objects"? How can they make your life
easier? Harder?

What is the "nested monitor problem”?
How can you avoid nested monitor problems?

What are "permits” and “latches”? When is it natural to use
them?

How does a semaphore differ from a simple condition
object?

Why (when) can semaphores use noti fy() instead of
noti fyAll () ?




Can you answer these questions?

[J Why doesn't SimpleConditionObject need any instance
variables?

[J What is the easiest way to avoid the nested monitor
problem?

[J What assumptions do nested monitors violate?

[J How can the obvious implementation of semaphores (in
Java) violate fairness?

[J How would you implement fair semaphores?




10. Fairness and Optimism

J Concurrently available methods
[0 Priority
[l Interception
[0 Readers and Writers

0 Optimistic methods

Selected material © Magee and Kramer




Pattern: Concurrently Available Methods

Intent: Non-interfering methods are made concurrently
available by implementing policies to enable and disable
methods based on the current state and running methods.

Applicability
0 Host objects are accessed by many different threads.

0 Host services are not completely interdependent, so
need not be performed under mutual exclusion.

0 You need to improve throughput for some methods by
eliminating nonessential blocking.

0 You want to prevent various accidental or malicious
starvation due to some client forever holding its lock.

0 Full synchronization would needlessly make host objects
prone to deadlock or other /iveness problems.




Concurrent Methods — design steps

Layer concurrency control policy over mechanism by:
Policy Definition:
0 When may methods run concurrently?
0 What happens when a disabled method is invoked?
0 What priority is assigned to waiting tasks?

Instrumentation:
0 Define state variables to detect and enforce policy.

Interception:

0 Have the host object intercept public messages and
then relay them under the appropriate conditions to
protected methods that actually perform the actions.




Priority

Priority may depend on any of:

0 Intrinsic attributes of tasks (class & instance variables).
Representations of task priority, cost, price, or urgency.
The number of tasks waiting for some condition.

The time at which each task is added to a queue.

Fairness — guarantees that each waiting task will
eventually run.

Expected duration or time to completion of each task.
The desired completion time of each task.
Termination dependencies among tasks.

The number of tasks that have completed.

The current time.
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Fairness

There are subtle differences between definitions of fairness:

Weak fairness: If aprocess continuously makes a
request, eventually it will be granted.

Strong fairness: If aprocessmakesarequest infinitely
often, eventually it will be granted.

Linear waiting: If a process makes arequest, it will be
granted before any other process is granted the
request more than once.

FIFO (first-in first out): If aprocess makes a
request, it will be /gram‘ed before that of any
process making a /ater request.




Interception

Interception strategies include:

Pass-Throughs: The host maintains a set of immutable
references to helper objects and simply relays all
messages to them within unsynchronized methods.

Lock-Splitting: Instead of splitting the class, split the
synchronization locks associated with subsets of
the state.

Before/After methods: Public methods contain
before/after processing surrounding calls to non-
public methods in the host that perform the
services.




Concurrent Reader and Writers

"Readers and Writers”is a family of concurrency control
designs in which "Readers” (non-mutating accessors) may
concurrently access resources while "Writers" (mutative,
state-changing operations) require exclusive access..

Readerl | | Reader2 Host Writerl || Writer2

fread() | | |

read() wite()

<




Readers/Writers Model

We are interested only in capturing who gets access:
set Actions = { acquireRead, releaseRead,
acquireWite, releaseWite}

READER = (  acqui reRead
-> exam ne
-> rel easeRead -> READER )
+Actions \{exam ne}.

VRl TER

[
~—~~

acquireWite

-> nodify

-> releaseWite -> WRITER)
+Actions \{nodify}.




A Simple RW Protocol

2 [ Maxi mum r eaders
2 [/ Maximumwiters

const Nread
const Nwite

RWLOCK = RN O] [ Fal se],
RWreaders:0..Nread][witing:Bool] =
( when (!'witing)

acqui r eRead -> RWreaders+1][witing]
| rel easeRead -> RWreaders-1][witing]
| when (readers==0 && !'writing)

acquireWite -> RWreaders] [ True]

| releaseWite -> RWreaders]|[ Fal se]

).




Safety properties

We specify the safe interactions:
property SAFE RW =

( acqui reRead -> READI NG 1]

| acquireWite -> VWRITING ),
READING i :1..Nread] =

( acqui reRead -> READI NG i +1]

| when(i>1) releaseRead -> READINJI -1]
| when(i==1) releaseRead -> SAFE RW

),
WRITING = ( releaseWite -> SAFE RW).




Safety properties ...

And compose them with RW_LOCK:
| | READWRI TELOCK = (RW LOCK || SAFE RW.

acquireRHead

acg nive Write acquireFead

releaseRead
alease VWit

releazeRead

releazeRead releaseRead

release VWTite

acanireRead
release Wiite




Composing the Readers and Writers

We compose the READERS and WRITERS with the protocol
and check for safety violations:

| | READERS WRI TERS =
(  reader[1..Nread]: READER
|| witer[1..Nwite]: WRITER
|| {reader[1..Nread],
witer[1l..Nwite]}:: READWRI TELOCK).

No deadl ocks/errors




Progress properties

We similarly specify liveness properties:
| | RW PROGRESS = READERS WRI TERS
>>{reader[1l.. Nread].rel easeRead,
witer[1l..Nread].rel easeWite}.
progress WRITE[i1:1. . Nwite] = witer[i].acquireWite
progress READ[I:1.. N\Wwite] = reader[i].acquireRead
Progress violation: WRITE.1 WRITE. 2
Trace to termnal set of states:
reader. 1. acquireRead tau

Actions in termnal set:
{reader. 1. acquireRead, reader.1.rel easeRead,

reader. 2. acqui reRead, reader. 2.rel easeRead}




Starvation

reader. 1. acguireRead

reader. 2. acquireRead

/D’Tlter. 1.acquire W rite

iter. 2. acg UineWiite

h,
reader.l . acquireRead reader. 2. meleaseRead

write. 2. release Wiite

eader. 1. mleazeRead  meader. 2. acquireRead

wrriter. 1. release VWit




Readers and Writers Policies

Individual policies must address:
[0 Can new Readers join already active Readers even if a
Writer is waiting?
0 if yes, Writers may starve
O if not, the throughput of Readers decreases

[0 If bothReadersand Writers are waiting for a Writer to
finish, which should you let in first?

[1 Readers? A Writer? FCFS? Random? Alternate?
[1 Similar choices exist after Readers finish.

[0 Can Readers upgrade to Writers without having to give
up access?




Policies ...

A typical set of choices:
O Block incoming Readers if there are waiting Writers.

0 "Randomly” choose among incoming threads
(i.e., let the scheduler choose).

0 No upgrade mechanisms.

Before/after methods are the simplest way to implement
Readers and Writers policies.




Readers and Writers example

Implement state tracking variables

public abstract class RWT {
protected int activeReaders = 0; [/

protected int activeWiters =0; [/
protected int waitingReaders = O;
protected int waitingWiters = O;
protected abstract void read ():; [

protected abstract void wite (); //

Zero or nore
Zero or one

define In
subcl ass




Readers and Writers example

Public methods call protected before/after methods

public void read() { [/

}

bef or eRead( ) ;
read ();
af t er Read( ) ;

public void wite() {

}

beforeWite();
wite ();
afterWite();

[
[
[

unsynchroni zed
obtai n access
perform service
rel ease access




Readers and Writers example

Synchronized before/after methods maintain state variables

protected synchroni zed voi d beforeRead() {
++wail ti ngReaders _; // available to subclasses
while (!all owReader())
try { wait(); }
catch (InterruptedException ex) {}
--wai ti ngReaders_; ++activeReaders_;
}
protected synchroni zed void afterRead() {
--activeReaders ; notifyAll();

}




Readers and Writers example

Different policies can use the same state variables ...
prot ect ed bool ean al |l owReader () { // default policy

return waitingWiters_ ==
&% activeWiters_ == 0;

[J Can you define suitable before/after methods for Writers?




Pattern: Optimistic Methods

Intent: Optimistic methods attempt actions, but rollback
state in case of interference. After rollback, they either
throw failure exceptions or retry the actions.

Applicability
[0 Clients can tolerate either failure or retries.
[0 TIf not, consider using guarded methods .
0 You can avoid or cope with /ivelock.
0 You can undo actions performed before failure checks

0 Rollback/Recovery: undo effects of each performed
action. If messages are sent to other objects, they
must be undone with "anti-messages”

O Provisional action: "pretend” to act, delaying
commitment until interference is ruled out.




Optimistic Methods — design steps

Collect and encapsulate all mutable state so that it can be
tracked as a unit:
0 Define an immutable helper class holding values of all
instance variables.
[0 Define arepresentation class, but make it mutable (allow
instance variables to change), and additionally include a

version number (or transaction identifier) field or even
a sufficiently precise time stamp.

0 Embed all instance variables, plus a version number, in
the host class, but define commi t to take as arguments
all assumed values and all new values of these variables.

0 Maintain a serialized copy of object state.
0 Various combinations of the above ...




Detect failure ...

Provide an operation that simultaneously detects version
conflicts and performs updates via a method of the form:

class Optimstic { /| code sketch
private State currentState ; // 1 mutabl e val ues

synchroni zed bool ean
commt(State assuned, State next)

{

bool ean success = (currentState == assuned) ;

I f (success)
currentState

return success;

}
}

next




Detect failure ...

Structure the main actions of each public method as follows:

State assuned = currentState();

State next = ... /| conpute optimstically
If (!commt(assuned, next))

rol | back();
el se

ot her Act i onsDependi ngOnNewsSt at eBut Not Changi ngl t () ;




Handle conflicts ...

Choose and implement a policy for dealing with commit failures:

0 Throw an exception upon commit failure that tells a
client that it may retry.

O ZInternally retry the action until it succeeds.

[0 Retry some bounded number of times, or until a timeout
occurs, finally throwing an exception.

O Pessimistically synchronize selected methods which
should not fail.




Ensure progress ...

Ensure progress in case of internal retries
0 Immediately retrying may be counterproductivel

0 VYielding may only be effective if all threads have
reasonable priorities and the Java scheduler at least
approximates fair choice among waiting tasks (which it
is not guaranteed to do)!

0 Limit retries to avoid livelock




An Optimistic Bounded Counter

publ i ¢ cl ass BoundedCount er VOPT
| npl enment s BoundedCount er
{
protected Long count = new Long(M N);
protected synchroni zed bool ean
comm t (Long ol dc, Long newc)
{
bool ean success = (count == ol dc);
I f (success) count = newc;
return success;




An Optimistic Bounded Counter

public long value() { return count .longValue(); }
public void | () {
for (;;) { [/ thinly disguised busy-wait!

Long ¢ = count ; long v = c.longVal ue();
If (v < MAX && commt(c, new Long(v+1)))
br eak;

Thread. current Thread().yiel d();
/] 1s there another thread?!

}
}
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What you should know!

What criteria might you use to prioritize threads?
What are different possible definitions of fairness?
What are readers and writers problems?

What difficulties do readers and writers pose?
When should you consider using optimistic methods?

How can an optimistic method fail? How do you detect
failure?
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Can you answer these questions?

When does it make sense to split locks? How does it work?

When should you provide a policy for upgrading readers to
writers?

What are the dangers in letting the (Java) scheduler
choose which writer may enter a critical section?

What are advantages and disadvantages of encapsulating
synchronization conditions as helper methods?

How can optimistic methods livelock?




11. Lab session IT

The lab exercises will be available on the course web page:

matsu-www.is.titech.ac.jp/~oscar/cp/



http://matsu-www.is.titech.ac.jp/~oscar/cp/

12. Architectural Styles for

Concurrency

Overview

[]
[]
[]

[]

What is Software Architecture?
Three-layered application architecture
Flow architectures

0 Active Prime Sieve

Blackboard architectures

O Fibonacci with Linda




Sources

0 M. Shaw and D. Garlan, Software Architecture:

Perspectives on an Emerging Discipline, Prentice-Hall,
1996.

0 F. Buschmann, et al., Pattern-Oriented Software
Architecture — A System of Patterns, John Wiley,
1996.

[0 D. Lea, Concurrent Programming in Java — Design
principles and Patterns, The Java Series, Addison-
Wesley, 1996.

0 N. Carriero and D. Gelernter, How to Write Parallel
Programs: a First Course, MIT Press, Cambridge, 1990.




Software Architecture

A Software Architecture defines a system in terms of
computational components and interactions amongst
those components.

An Architectural Style defines a family of systems in
terms of a pattern of structural organization.

— cf. Shaw & Garlan, Software Architecture, pp. 3, 19




Architectural style

Architectural styles typically entail four kinds of properties:
0 A vocabulary of design elements
0 e.g., "pipes”, "filters", "sources”, and "sinks"
0 A set of configuration rules that constrain compositions

0 e.g., pipes and filters must alternate in a linear
sequence

[l A semantic interpretation

0 e.g., each filter reads bytes from its input stream
and writes bytes to its output stream

0 A set of analyses that can be performed

0 e.g., if filters are "well-behaved"”, no deadlock can
occur, and all filters can progress in tandem




Communication Styles
Shared Variables

° ° e Processes communicate
indirectly.

— X Explicit synchronization

mechanisms are needed.

Message-Passing

Communication and
synchronization are

combined.

5

ok




Simulated Message-Passing

Most concurrency and communication styles can be simulated
by one another:

Unsynchronized objects

: o

Synchronized objects

|

Message-passing can be modelled by associating message
queues to each process.




Three-layered Application Architectures

Interaction with external world
Generating threads

Concurrency control
Locking, waiting, failing

Basic mechanisms

This kind of architecture avoids nested monitor problems by
restricting concurrency control to a single layer.




Problems with Layered Designs

Hard to extend beyond three layers because:

0 Control may depend on unavailable information
[0 Because it is not safely accessible
[0 Because it is not represented (e.g., message history)

[0 Synchronization policies of different layers may
conflict

[0 E.g., nested monitor lockouts

0 Ground actions may need to know current policy
0 E.g., blocking vs. failing




Flow Architectures

Many synchronization problems can be avoided by arranging
things so that information only flows in one direction from
sources to filters to sinks.

Unix "pipes and filters”: Processes are connectedina
linear sequence.

Control systems: events are picked up by sensors,
processed, and generate new events.

Workflow systems: Electronic documents flow through
workflow procedures.




Unix Pipes

Unix pipes are bounded buffers that connect producer and
consumer processes (sources, sinks and filters):

cat file # send file contents to output stream
tr -c "a-zA-Z '\012" # put each word on one |line
sort # sort the words
unig -c # count occurrences of each word

sort -rn # sort I1n reverse nunerical order
nmor e # and display the result




Unix Pipes

Processes should read from standard input and write to
standard output streams:

[0 Misbehaving processes give rise to "broken pipes”!
Process creation and scheduling are handled by the O/S.

Synchronization is handled implicitly by the I/O system
(through buffering).




Flow Stages

Every flow stage is a producer or consumer or both:

O Splitters (Multiplexers) have multiple successors
O Multicasters clone results to multiple consumers
[0 Routers distribute results amongst consumers

0 Mergers (Demultiplexers) have multiple predecessors
[0 Collectors interleave inputs to a single consumer
[0 Combiners process multiple input to produce a single

result

0 Conduits have both multiple predecessors and

consumers




Flow Policies

Flow can be pull-based, push-based, or a mixture:
O Pull-based flow: Consumers take results from Producers
0 Push-based flow: Producers put results to Consumers
0 Buffers:
0 Put-only buffers (relays) connect push-based stages

0 Take-only buffers (pre-fetch buffers) connect pull-
based stages

[0 Put-Take buffers connect (adapt) push-based stages
to pull-based stages

t




Limiting Flow

Unbounded buffers: If producersare faster than
consumers, buffers may exhaust available memory

Unbounded threads: Having too many threads can
exhaust system resources more quickly than
unbounded buffers

Bounded buffers: Tend to be either always full or
CI/W?/S‘ empty, depending on relative speed of
producers and consumers

Bounded thread pools: Harder to manage than bounded
buffers




Example: a Pull-based Prime Sieve

Primes are agents that reject non-primes, pass on candidates,
or instantiate new prime agents:

TestForPrime ActivePrime(2)

—get(
3!» new ActivePrime(3)
< et i
4I> < g () :
| |
> | . .
5{» 5| : new ActivePrime(5)
- - | get () "
6.. -oetl
! | |
~ | | ActivePrime(7)
/. 7. new —
< < ' get () |
8, | I T
L L | | |




Using Put-Take Buffers

Each ActivePrime uses a one-slot buffer to feed values to the
next ActivePrime.

(e ) D (O

The first ActivePrime holds the seed value 2, gets values from
a TestForPrime, and creates new ActivePrime instances
whenever it detects a prime value.




The PrimeSieve

The main PrimeSieve class creates the initial configuration
public class PrinmeSieve {
public static void main(String args[]) {
genPrinmes(1000);
}

public static void genPrines(int n) {
try {
ActivePrinme firstPrinme =
new ActivePrime(2, new TestForPrine(n));
} catch (Exception e) { }

}
}




Pull-based integer sources

Active primes get values to test from an| nt Sour ce:
Interface IntSource { int getint(); }
class TestForPrinme inplenments |ntSource {
private iInt nextVal ue;
private int nmaxVal ue;
public TestForPrine(int max) {
this.nextValue = 3; this.nmxVal ue = nax;

}

public int getlnt() { /] not synched!
| f (nextValue < maxVal ue) { return nextVal ue++; }
else { return 0; }

}

}




The ActivePrime Class

ActivePrimes themselves implement IntSource

cl ass ActivePrine
extends Thread inplenents |ntSource {
private static IntSource |lastPrinme; // shared
private i nt val ue; [l this prine
private int square; [l 1ts square
private IntSource intSrc; // ints to test
private Sl ot slot; /] to pass val ues on




The ActivePrime Class

public ActivePrinme(int value, IntSource intSrc)
throws ActivePrineFailure

{
this.val ue = val ue;
slot = new Slot(); [/ NB:. private
lastPrime = this; [/ unsynchroni zed (safe!)
this.start(); /| become active
}

It is impossible for primes to be discovered out of order!




The ActivePrime Class ...

public int value() {
return this.val ue:

}

private void putlint(int val) { [l may bl ock
slot.put()(new I nteger(val));

}

public int getlint() { [l may bl ock

return ((Integer) slot.get()).intValue();
}

The only synchronization is hidden in the Slot class.




The ActivePrime Class ...

public void run() {
int testValue = intSrc.getint(): // may bl ock

while (testValue !'= 0) { /] stop
If (this.square > testValue) { // got a prine
try {

new ActivePrine(testValue, |astPrine);
} catch (Exception e) { break; } // exit |oop
} else if ((testValue %this.value) > 0) {

this.putlnt(testValue); /'l may bl ock
}
testValue = intSrc.getlnt(): /1 may bl ock
}
putlnt(0); /] stop next




Blackboard Architectures

Blackboard architectures put all synchronization in a
"coordination medium” where agents can exchange messages.

SN

R
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Agents do not exchange messages directly, but post messages
to the blackboard, and retrieve messages either by reading
from a specific location (i.e., a channe/?, or by posing a query
(i.e., a pattern to match).




Result Parallelism

Result parallelism is a blackboard architectural style in which
workers produce parts of a more complex whole.

A

4R T
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Workers may be arranged hierarchically ...




Agenda Parallelism

Agenda parallelism is a blackboard style in which workers
retrieve tasks to perform from a blackboard, and may
generate new tasks to perform.

QOO A
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Workers repeatedly retrieve tasks until everything is done.
Workers are typically able to perform arbitrary tasks.




Specialist Parallelism

Specialist parallelism is a style in which each worker is
specialized to perform a particular task.

Specialist designs are equivalent fo message-passing, and are
often organized as flow architectures, with each specialist
producing results for the next specialist o consume.




Linda

Linda is a coordination medium, with associated primitives for
coordinating concurrent processes, that can be added to an
existing programming language.

The coordination medium is a fuple-space, which can contain:

0 data tuples — tuples of primitives vales (numbers,
strings ...)

0 active tuples — expressions which are evaluated and
eventually turn into data tuples




Linda primitives

Linda’s coordination primitives are:

out (T) |output a tuple T to the medium (non-blocking)
e.g., out (“enpl oyee”, “pingu”, 35000)

in(S) |destructively input a tuple matching S (blocking)
e.g., i n(“enpl oyee”, “pingu”, 7?salary)

rd(S) |non-destructively input a tuple (blocking)

i np(S) | fry to input a tuple
rdp(S) |report success or failure (non-blocking)

eval (E) |evaluate E in a new process
leave the result in the tuple space




Example: Fibonacci

A (convoluted) way of computing Fibonacci numbers with Linda:
int fib(int n) {

I f (rdp("fib", n, ?fibn)) /1 non- Dbl ocki ng
return fibn;

i f (n<2) {
out(“fib”, n, 1); /'l non- Dbl ocki ng
return 1;
}
eval ("fib", n, fib(n-1) + fib(n-2)); // asynch
rd("fib", n, ?fibn); /'l bl ocks

return(fibn);

} [l Post-condition: rdp(“fib”,n, ?fibn) == True




CP — Titech Winter 2001 272.

Evaluating Fibonacci

Cf 1 b(5) D\f‘d/mi/s, so start evaﬁ

™eval (“fib”, 5, fib(4)+fib(3))

© O. Nierstrasz — U. Berne Architectural Styles for Concurrency
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Evaluating Fibonacci

(Fib(5) = rd(“fib", 5, 2 n)

blocks for result I

Gi b(4) +f i b(B))\ eval (“fib”,5,fib(4)+fib(3))

eval (“fib”, 4, fib(3)+ib(2))

© O. Nierstrasz — U. Berne Architectural Styles for Concurrency
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Evaluating Fibonacci
(fib(5) = rd(“fib’,5,?2fn)

eval (“fib",5,fib(4)+fib(3))

G‘ib(4)+fib(3) >

| (“fib”, 4, fib(3)+ib(2
G‘ib(3)+fib(2))w\ eval LT 1 03) i)
rd | feval (“fib”,3,fib(2)+fib(1))

fib(2)+f1b(1
CI (2)+11 ())*\d eval (“fib”,2,fib(1)+fib(0))

r

base level succeeds Iﬁ

(fib(1)+ib(0) }-

(“fib",1,1)

© O. Nierstrasz — U. Berne Architectural Styles for Concurrency
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Evaluating Fibonacci
(fib(5) = rd(“fib’,5,?2fn)

eval (“fib",5,fib(4)+fib(3))

G‘ib(4)+fib(3) >

| (“fib”, 4, fib(3)+ib(2
G‘ib(3)+fib(2))w\ eval LT 1 03) i)
rd | feval (“fib”,3,fib(2)+fib(1))

G‘ i b(2) +fi b( 1))"\ eval yields passive tuple ™\
rd (“fib”,2,2)

(“fip,1,1)] [Lf1b",0 1)

© O. Nierstrasz — U. Berne Architectural Styles for Concurrency
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Evaluating Fibonacci
(fib(5) = rd(“fib’,5,?2fn)

eval (“fib",5,fib(4)+fib(3))

G‘ib(4)+fib(3) >

(“fib". 4 fib(3)+fib(2
G‘ib(3)+fib(2))w\ eval LT 1 03) i)
eval (“fib", 3 fib(2)+ib(1))

rd
Gib(2)+fib(1)):<\ T

cached values are reuse

N(fip, 11| [Lf107,01)

© O. Nierstrasz — U. Berne Architectural Styles for Concurrency




Evaluating Fibonacci

(f1 b(5)l\

(“fib”,5,8)

(“fib”, 4, 5)

(“fib”,3,3)

(“fib”,2,2)

(“fib", 1,1)

(“fib”, 0, 1)
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What you should know!

What is a Software Architecture?

What are advantages and disadvantages of Layered
Architectures?

What is a Flow Architecture? What are the options and
tradeoffs?

What are Blackboard Architectures? What are the options
and tradeoffs?

How does result parallelism differ from agenda parallelism?
How does Linda support coordination of concurrent agents?
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Can you answer these questions?

How would you model message-passing agents in Java?
How would you classify Client/Server architectures?
Are there other useful styles we haven't yet discussed?

How can we prove that the Active Prime Sieve is correct?
Are you sure that new Active Primes will join the chain in
the correct order?

Which Blackboard styles are better when we have multiple
processors?

Which are better when we just have threads on a
monoprocessor?

What will happen if you start two concurrent Fibonacci
computations?




13. Petri Nets

Overview
0 Definition:
0 places, transitions, inputs, outputs
0 firing enabled transitions
0 Modelling:
[0 concurrency and synchronization
0 Properties of nets:
0 liveness, boundedness
0 Implementing Petri net models:
0 centralized and decentralized schemes

Reference: J.L.Peterson, Petri Nets Theory and the
Modelling of Systems, Prentice Hall, 1983.




Petri nets: a definition

A Petri net C = [R,T,I,Olconsists of:
1. A finite set P of places
2. A finite set T of transitions

3. An input function I: T — N* (maps to bags of places)

4. An output function O: T - wF
A marking of C is a mapping : P - N

Example:
P={x,y} X a
T={a,b}
I(a)={x}, I(b)={x x}
O(a)={x,y},0Mb)={y} b Y

u={x, x}




Firing transitions

To fire a transition t:
1. There must be enough input tokens: p = I(t)
2. Consume inputs and generate output: p' = p - I(t) + O(t)




Modelling with Petri nets

Petri nets are good for modelling:
LI concurrency
0 synchronization

Tokens can represent:
0 resource availability
[ jobs to perform
0 flow of control
0 synchronization conditions ...




Concurrency

Independent inputs permit "concurrent” firing of transitions
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Conflict

Overlapping inputs put transitions in conflict
o

b

of

Only one of a or b may fire




Mutual Exclusion

The two subnets are forced to synchronize
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Fork and Join
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Producers and Consumers
producer consumer
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Bounded Buffers
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Reachability and Boundedness

Reachability:

[0 The reachability set R(C,1) of a net C is the set of all
markings ' reachable from initial marking p.

Boundedness:

0 A net Cwithinitial marking pis safe if places always hold
at most 1 token.

0 A marked net is (k-)bounded if places never hold more
than k tokens.

[0 A marked net is conservative if the number of tokens is
constant.




Liveness and Deadlock

Liveness:
[1 A transition is deadlocked if it can never fire.
0 A transition is /ive if it can never deadlock.

b
This net is both safe and a
conservaftive.
Transition a is deadlocked. Q_'{_’@'
Transitions b and c are /ive. X 4
The reachability set is {{y}, {z}}. C

[J Are the examples we have seen bounded? Are they live?




Related Models

Finite State Processes
0 Equivalent to regular expressions
0 Can be modelled by one-token conservative nets

b
a d
The FSA for: a(b|c)*d O_g_g
C




Finite State Nets
Some Petri nets can be modelled by FSPs

[1 Precisely which nets can (cannot) be modelled by FSPs?




Zero-testing Nets

Petri nets are not computationally complete
[0 Cannot model “zero testing”
0 Cannot model priorities

A zero-testing net:

An equal number of

a and b transitions may fire
as a sequence during any
sequence of matching

¢ and d transitions.

(#a = #b, #c = #d)




Other Variants

There exist countless variants of Petri nets

Coloured Petri nets: Tokens are "coloured” to
represent different kinds of resources

Augmented Petri nets: Transitions additionally depend
on external conditions

Timed Petri nets: A durationis associated with each
transition




Applications of Petri nets

Modelling information systems:
0 Workflow
0 Hypertext (possible transitions)
0 Dynamic aspects of OODB design




Implementing Petri nets

We can implement Petri net structures in either centralized or
decentralized fashion:

Centralized:

0 Asingle "net manager”monitors the current state of the
net, and fires enabled transitions.

Decentralized:

0 Transitions are processes, places are shared resources,
and transitions compete to obtain tokens.




Centralized schemes

In one possible centralized scheme, the Manager selects and
fires enabled transitions.

" Net Manager A
>[Idem‘ify enabledw deadlocked

transitions ) ~®©
found some ¢ T got new marking
[Selec’r and fir'e]
_ transitions y

Concurrently enabled transitions can be fired in parallel.

[J What liveness problems can this scheme lead to?




Decentralized schemes

In decentralized schemes transitions are processes and tokens
are resources held by places:

X Y X y

° get() G

Transitions can be implemented as thread-per-message
gateways so the same transition can be fired more than once if
enough tokens are available.




Transactions

Transitions attempting to fire must grab their input tokens as
an atomic transaction, or the net may deadlock even though
there are enabled transitions!

b

a

If a and b are implemented by independent processes, and x
and y by shared resources, this net can deadlock even though
b is enabled if a (incorrectly) grabs x and waits for'y.




Coordinated interaction

A simple solution is to treat the state of the entire net as a
single, shared resource:

X Y
a

get ()

After a transition fires, it notifies waiting transitions.
[J How could you refine this scheme for a distributed setting?
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What you should know!

How are Petri nets formally specified?
How can nets model concurrency and synchronization?

What is the “reachability set” of a net? How can you
compute this set?

What kinds of Petri nets can be modelled by finite state
processes?

How can a (bad) implementation of a Petri net deadlock even
though there are enabled transitions?

If you implement a Petri net model, why is it a good idea to
realize transitions as "thread-per-message gateways”?




Can you answer these questions?

[1 What are some simple conditions for guaranteeing that a
net is bounded?

How would you model the Dining Philosophers problem as a
Petri net? Is such a net bounded? Is it conservative? Live?

[]

[J What could you add to Petri nets to make them Turing-
complete?

L[]

What constraints could you put on a Petri net to make it
fair?
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