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1. Concurrent Progra

NB: Room change to W8-1008

Lecturer Prof. Oscar Nierstrasz
Assistant Kentarou Fukuchi

WWW matsu-www.is.titech.ac.jp/~o

Texts

☞ D. Lea, Concurrent Progra
Design Principles and Pat
Wesley, 1996 

☞ J. Magee, J. Kramer, Con
Models & Java Programs,

http://matsu-www.is.titech.ac.jp/~oscar/cp/
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Goals of this cour
❑ Introduce basic concepts of concur

☞ safety, liveness, fairness

❑ Present tools for reasoning about c
☞ LTS, Petri nets

❑ Learn the best practice programmi
☞ idioms and patterns

❑ Get experience with the techniques
☞ lab sessions
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Schedule
1. 10 - 02 Introduction 
2. 10 - 16 Concurrency and Java
3. 10 - 23 Safety and Synchroniz
4. 11 - 06 Safety Patterns
5. 11 - 13 Liveness and Deadlock
6. 11 - 20 Liveness and Guarded 
7. 11 - 27 Lab session
8. 12 - 04 Liveness and Asynchro
9. 12 - 11 Condition Objects
10. 01 - 15 Fairness and Optimism
11. 01 - 22 Lab session
12. 01 - 29 Architectural Styles f
13. 02 - 05 Petri Nets
14. 02 - 19 Exam
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Introduction
Overview

❑ Concurrency and Parallelism
❑ Applications
❑ Difficulties

☞ safety, liveness, non-determinis
Concurrent Programming Approaches

❑ Process creation 
❑ Communication and synchronization

☞ Shared variables
☞ Message Passing Approaches
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Recommended read
❑ G.R. Andrews, Concurrent Programm

Practice, The Benjamin Cummings P
1991,

❑ M. Ben-Ari, Principles of Concurren
Programming, Prentice Hall, 1990.

❑ A. Burns, G. Davies, Concurrent Pro
Wesley, 1993

❑ N. Carriero, D. Gelernter, How to W
Programs: a First Course, MIT Pres
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Concurrency

❑ A sequential program has a single t
Its execution is called a process. 

❑ A concurrent program has multiple 
These may be executed as parallel 
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Parallelism
A concurrent program can be executed by

Assume only that all processes make posit

Multiprogramming: processes share 
processors

Multiprocessing: each process run
processor but wi

Distributed 
processing:

each process run
processor connec
to others
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Why do we need concurrent
Reactive programming

☞ minimize response delay; maxim
Real-time programming

☞ process control applications
Simulation

☞ modelling real-world concurrenc
Parallelism

☞ speed up execution by using mul
Distribution

☞ coordinate distributed services
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Difficulties
But concurrent applications introduce com

Safety
❑ concurrent processes may corrupt 

Liveness
❑ processes may “starve” if not prope

Non-determinism
❑ the same program run twice may gi

Run-time overhead
❑ thread construction, context switc

synchronization take time
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Concurrency and atom
Programs P1 and P2 execute concurrently:

{ x = 0 }

P1: x := x+1
P2: x := x+2

{ x = ? }

✎ What are possible values of x after P1

✎ What is the intended final value of x?
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Safety
Safety = ensuring consistency

A safety property says “nothing bad happ

❑ Mutual exclusion: shared resource
atomically

❑ Condition synchronization: operatio
shared resources are in the wrong 
☞ (e.g., read from empty buffer)
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Liveness
Liveness = ensuring progress

A liveness property says “something good

❑ No Deadlock: some process can alw
resource

❑ No Starvation: all processes can e
shared resources
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Expressing Concurre
A programming language must provide mec

Process creation
❑ how do you specify concurrent proc

Communication
❑ how do processes exchange informa

Synchronization
❑ how do processes maintain consiste
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iant of the following:
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Process Creation
Most concurrent languages offer some var

❑ Co-routines

❑ Fork and Join

❑ Cobegin/coend
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Coroutine B
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Co-routines
Co-routines are only pseudo-concurrent a
transfers of control:

Co-routines can be used to implement mos
concurrent mechanisms.

Program P Coroutine A
call A

call B
resume A
resume B

return
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 processes:
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 care and discipline.

Program P3
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Fork and Join
Fork can be used to create any number of

Join waits for another process to termina

Fork and join are unstructured, so require

Program P1 Program P2
fork P2

fork P3
join P2
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ed:
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f processes.

cks have terminated.

S3 S4
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Cobegin/coend
Cobegin/coend blocks are better structur

cobegin S1 || S2 || ... || Sn coen

but they can only create a fixed number o

The caller continues when all of the coblo

Main S1 S2
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ronization
aches based on 
variables, processes 
icate indirectly.
 synchronization 
isms are needed.

x P2

P3
y
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Communication and Synch
In appro
shared 
commun
Explicit
mechan

In message passing 
approaches, communication 
and synchronization are 
combined.
Communication may be 
either synchronous or 
asynchronous.

x y z ...

P1 P2 P3

P1
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le of programming.

Message 
Oriented

d
all

Message Passing
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Synchronization Techn
Different approaches are roughly equivale
power and can be used to implement each

Each approach emphasizes a different sty

Procedure 
Oriented

Operation Oriente
Remote Procedure C

Semaphores

Busy-Waiting

Monitors

Path Expressions



CP — Titech Winter 2001 20.

Concurrent Programming

variables. 

ment:
 a shared variable
peatedly tests the 

ze correctly and 
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Busy-Waiting
Busy-waiting is primitive but effective

Processes atomically set and test shared 

Condition synchronization is easy to imple
❑ to signal a condition, a process sets
❑ to wait for a condition, a process re

variable

Mutual exclusion is more difficult to reali
efficiently.
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(1968) as a higher-
n.

lued variable s with 

s s := s-1
s+1
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Semaphores

Semaphores were introduced by Dijkstra 
level primitive for process synchronizatio

A semaphore is a non-negative, integer-va
two operations:

P(s): delays until s>0
then, atomically execute

V(s) atomically executes s:= 
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al Section

itical Section

x)
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Programming with sema
Many problems can be solved using binary
take on values 0 or 1.

process P1
loop

 { wants to enter }
Critical Section

 { exits }
Non-critical Section

end
end

process P2
loop

Critic

Non-cr
end

end

P(mutex)

V(mutex)

P(mute

V(mute
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 procedure calls

 mutually exclusive

lized using wait and 

ait and signal ...
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Monitors

A monitor encapsulates resources and ope
manipulate them:

❑ operations are invoked like ordinary

☞ invocations are guaranteed to be

☞ condition synchronization is rea
signal primitives

☞ there exist many variations of w
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itors
etch(var it : T);

 = 0 then

lots[head];
 size - 1;
 (head+1) mod N;

;
;
;

mpty.wait

l.signal
© O. Nierstrasz — U. Berne

Programming with mon
type buffer(T) = monitor

var
slots : array [0..N-1] of T;
head, tail : 0..N-1;
size : 0..N;

procedure deposit(p : T);
begin

if size = N then

slots[tail] := p;
size := size + 1;
tail := (tail+1) mod N;

end

procedure f
begin

if size

it := s
size :=
head :=

end

begin
size := 0
head := 0
tail := 0

end

notfull, notempty:condition;

notfull.wait

notempty.signal

note

notful
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Problems with monit
Monitors are more structured than semap
still tricky to program:

☞ Conditions must be manually che
☞ Simultaneous signal and return i

A signalling process is temporarily suspen
processes to enter!

❑ Monitor state may change between
resumption of signaller

❑ Unlike with semaphores, multiple si
❑ Nested monitor calls must be speci

prevent deadlock
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quence of operations 

 to many problems, 
ral concurrent 
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Path Expressions

Path expressions express the allowable se
as a kind of regular expression:

buffer : (put; get) *

Although they elegantly express solutions
path expressions are too limited for gene
programming.
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ever block
he buffer is full
r must both be ready 
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Message Passing
Message passing combines communication

❑ The sender specifies the message a
☞ a process, a port, a set of proce

❑ The receiver specifies message var
☞ source may or may not be explic

❑ Message transfer may be:
☞ asynchronous: send operations n
☞ buffered: sender may block if t
☞ synchronous: sender and receive
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 are explicitly named:

]
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Send and Receive
In CSP and Occam, source and destination
PROC buffer(CHAN OF INT give, take, signal)

...
SEQ

numitems := 0 ...
WHILE TRUE
ALT

numitems ≤ size & 
SEQ

numitems := numitems + 1
inindex := (inindex + 1) REM size

numitems > 0 & 
SEQ

numitems := numitems - 1
outindex := (outindex + 1) REM size

give?thebuffer[inindex

signal?any

take!thebuffer[outindex]
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 Rendezvous
own in advance:
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Remote Procedure Calls and
In Ada, the caller identity need not be kn
task body buffer is ...
begin loop

select
when no_of_items < size =>

 do
the_buffer(in_index) := x;

end give;
no_of_items := no_of_items + 1; ...

or
when no_of_items > 0 =>

 do
x := the_buffer(out_index);

end take;
no_of_items := no_of_items - 1; ...

end select;
end loop; ...

accept give(x : in item)

accept take(x : out item)
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What you should kn
✎ Why do we need concurrent programs?
✎ What problems do concurrent program
✎ What are safety and liveness?
✎ What is the difference between deadl
✎ How are concurrent processes created
✎ How do processes communicate?
✎ Why do we need synchronization mech
✎ How do monitors differ from semapho
✎ In what way are monitors equivalent to
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estions?
rrency and 

waiting?
ting semaphores?

 using monitors?
ng semaphores?
cause?
ynchronous or 
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ What is the difference between concu

parallelism?
✎ When does it make sense to use busy-
✎ Are binary semaphores as good as coun
✎ How could you implement a semaphore
✎ How would you implement monitors usi
✎ What problems could nested monitors 
✎ Is it better when message passing is s

asynchronous?
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rency
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2. Java and Concur

Overview
❑ Modelling Concurrency

☞ Finite State Processes 
☞ Labelled Transition Systems

❑ Java
☞ Thread creation
☞ Thread lifecycle
☞ Synchronization

Selected material © Magee and Kramer
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heir properties.

 that makes it easier 

f sequential 
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Modelling Concurren
Because concurrent systems are non-dete
difficult to build them and reason about t

A model is an abstraction of the real world
to focus on the points of interest.

Approach:
Model concurrent systems as sets o
finite state processes



CP — Titech Winter 2001 34.

Java and Concurrency

ses
finite state process:
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Finite State Proces
FSP is a textual notation for specifying a 
SWITCH = (on -> off-> SWITCH).

LTS is a graphical notation for interpretin
labelled transition system:

The meaning of a process is a set of possi
on→off→on→off→on→off→on→off→o

SWITCH
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ix
 P) is a process that 
ehaves like P.

actions start with 

ing process
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FSP — Action Pref
If x is an action and P a process then (x->
initially engages in the action x and then b

ONESHOT = (once -> STOP).

Convention: 
❑ Processes start with UPPERCASE, 

lowercase.

terminat
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FSP — Recursion
Repetitive behaviour uses recursion:

SWITCH = OFF,
OFF = (on -> ON),
ON = (off-> OFF).
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) is a process which 
 or y. 

e P; otherwise, if y 

S
S
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FSP — Choice
If x and y are actions then (x->P | y->Q
initially engages in either of the actions x

If x occurs, the process then behaves lik
occurs, it behaves like Q.

DRINKS = ( red ->coffee -> DRINK
| blue->tea -> DRINK
).

✎ What are the possible traces of 
DRINKS?
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nism
ves as either P or Q.
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FSP — Non-determi
(x->P | x->Q) performs x and then beha

COIN = ( toss -> heads -> COIN
| toss -> tails -> COIN
).
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ions
 the guard B is true 

chosen.

>COUNT[i+1]
>COUNT[i-1]
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FSP — Guarded act
(when B x->P | y->Q) means that when
then either x or y may be chosen; 
otherwise if B is false then only y may be 

COUNT (N=3) = COUNT[0],
COUNT[i:0..N] = ( when(i<N) inc-

| when(i>0) dec-
).
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m malicious objects
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Java
Syntax resembles C++; semantics resem

❑ Strongly-typed, concurrent, “pure”
❑ Single-inheritance but multiple sub
❑ Automatic garbage collection

Innovation in support for network applic
❑ Standard APIs for concurrency, ne
❑ Classes can be dynamically loaded o
❑ Security model protects clients fro

Java applications do not have to be install
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 its behaviour:
{
{
ad constructor

the thread does

getName());
()*1000));
 e) { } }
etName());
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Threads
A Java Thread has a run method defining
class SimpleThread  
public SimpleThread(String str) 
super(str); // Call Thre

}
 { // What 

for (int i=0; i<5; i++) {
System.out.println(i + " " + 
try { sleep((int)(Math.random
} catch (InterruptedException

System.out.println("DONE! " + g
}

}

extends Thread

public void run()
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P
, sequential, finite 

e-> STOP).

-> Print[n+1]
e -> STOP).
© O. Nierstrasz — U. Berne

SimpleThread FS
SimpleThread can be modelled as a single
state process:

Simple = ([1]->[2]->[3]->[4]-> don

Or, more generically:
const N = 5
Simple = Print[1],
Print[n:1..N] = ( when(n<N) [n] 

| when(n==N) don



CP — Titech Winter 2001 43.

Java and Concurrency

..
ctly but is executed 

] args) {
tart it:

;
);
art()
© O. Nierstrasz — U. Berne

Multiple Threads .
A Thread’s run method is never called dire
when the Thread is started:

class TwoThreadsDemo {
public static void main (String[
// Instantiate a Thread, then s
new SimpleThread("Jamaica").
new SimpleThread("Fiji").start(

}
}

st
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sDemo

0 Jamaica
0 Fiji
1 Jamaica
1 Fiji
2 Fiji
3 Fiji
2 Jamaica
4 Fiji
3 Jamaica
DONE! Fiji
4 Jamaica
DONE! Jamaica
© O. Nierstrasz — U. Berne

Running the TwoThread
In this implementation of Java, the 
execution of the two threads is 
interleaved.

☞ This is not guaranteed for all 
implementations!

✎ Why are the output lines never 
garbled?

E.g.
0 Ja0 Fimajiica
...
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y
and concurrently 

e
imple
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FSP — Concurrenc
We can relabel the transitions of Simple 
compose two copies of it:

||TwoThreadsDemo = ( fiji:Simpl
|| jamaica:S
).

✎ What are all the possible traces?
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n
composition will have 
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FSP — Compositio
If we restrict ourselves to two steps, the 
nine states:
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a.lang.Thread, or 

tring name);
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java.lang.Thread (cre
A Java thread can either inherit from jav
contain a Runnable object:

public class java.lang.Thread
extends java.lang.Object

{
public ;
public ;
public Thread(Runnable target, S
public Thread(String name);

...

implements java.lang.Runnable

Thread()
Thread(Runnable target)
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ed:

;
llis)
eption;

w deprecated!
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java.lang.Thread (met
A thread must be created, and then start

...
public void run();
public synchronized void 
public static void sleep(long mi

throws InterruptedExc
public static void yield();
public final String getName();

...
}

NB: suspend(), resume() and stop() are no

start()
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e
e

ritance, it is 
d another class.
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java.lang.Runnabl
public interface java.lang.Runnabl
{
public abstract void run();

}

Since Java does not support multiple inhe
impossible to inherit from both Thread an

Instead, simply define:
class MyStuff extends UsefulStuff

 ...

and instantiate:
new Thread(new MyStuff);

implements Runnable
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ad States

lapsed
y() or notifyAll()
ompleted

n() exits
© O. Nierstrasz — U. Berne

Transitions between Thre

Thread

Runnable

sleep()
wait()

block on I/O

time e
notif

I/O c

ru

yield()

start()

Not Runnable
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unnable

Runnable ).
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LTS for Threads
Thread = ( start -> Runnable ),
Runnable =
( yield -> Runnable
| {sleep, wait, blockio} -> NotR
| stop -> STOP ),

NotRunnable = 
( {awake, notify, unblockio} -> 
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 the time:

;, "Clock")
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Creating Threads
This Clock applet uses a thread to update
public class Clock
extends java.applet.Applet

{
Thread clockThread = null;
public void start() {
if (clockThread == null) {

;
}

} ...

implements Runnable

clockThread = new Thread(this
clockThread.start()
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...

 to null
{

 }
 }

ockThread)
© O. Nierstrasz — U. Berne

Creating Threads 
...
public void run() {
// stops when clockThread is set

repaint();
try { ;
catch (InterruptedException e){

}
}
...

while(Thread.currentThread()==cl

clockThread.sleep(1000)
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em

10);

ts thread

trangely similar 

 = null; }
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... And stopping th
...
public void paint(Graphics g) {
Date now = new Date();
g.drawString(now.getHours()
+ ":" + now.getMinutes()
+ ":" + now.getSeconds(), 5, 

}
// When the applet stops, stop i
public void 

}

Be careful — Applets and Threads have s
interfaces!

stop() { clockThread
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ber of threads may 
object.

n a method starts!

dition!

itical section which 
ing.

in locking and 
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Synchronization
Without synchronization, an arbitrary num
run at any time within the methods of an 

☞ Class invariant may not hold whe

☞ So can’t guarantee any post-con

A solution: consider a method to be a cr
locks access to the object while it is runn

This works as long as methods cooperate 
unlocking access!
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ynchronized with 
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lterOutputStream {

(String s);
(char c);
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Synchronized meth

Either: declare an entire method to be s
other synchronized methods of an object

public class PrintStream extends Fi
...
public  void println
public synchronized void println
...

}

synchronized
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ks

 a method with 

 resource 
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Synchronized bloc

Or: synchronize an individual block within
respect to some object:

public Object aMethod() {
// unsynchronized code
...

 { // Lock
...

} // unlock resource
...

}

synchronized(resource)
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rupted:

ect val) {
it till empty

) { }
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wait and notify
Synchronization must sometimes be inter
class Slot implements Buffer {
private Object slotVal;
public  void put(Obj
while (slotVal != null) { // wa
try { ; }
catch (InterruptedException e

}
slotVal = val;

;
return;

} ...
}

synchronized

wait()

notifyAll()
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an keywords:
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java.lang.Object
wait() and notify() are methods rather th

public class java.lang.Object
{
...
public final void wait()
throws InterruptedException;

public final void notify();
public final void notifyAll();
...

}
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ow!

cy?
del?
aces?
a?

or?

be synchronized?
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What you should kn
✎ What are finite state processes?
✎ How are they used to model concurren
✎ What are traces, and what do they mo
✎ How can the same FSP have multiple tr
✎ How do you create a new thread in Jav
✎ What states can a Java thread be in? 

How can it change state?
✎ What is the Runnable interface good f
✎ What is a critical section?
✎ When should you declare a method to 
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estions?
eatedly performs 

 traces does the full 

 invariant?
y outside a 

 blocks rather than 

n FSP?
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Can you answer these qu
✎ How would you specify an FSP that rep

hello, but may stop at any time?
✎ How many states and how many possible

TwoThreadsDemo FSP have?
✎ When should you inherit from Thread?
✎ How can concurrency invalidate a class
✎ What happens if you call wait or notif

synchronized method or block?
✎ When is it better to use synchronized

methods?
✎ How would you model synchronization i
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onization

tions

protocol
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3. Safety and Synchr

Overview
❑ Modelling interaction in FSP
❑ Safety — synchronizing critical sec

☞ Locking for atomicity
☞ The busy-wait mutual exclusion 

❑ Conditional synchronization
☞ Slots in FSP
☞ wait(), notify() and notifyAll()
☞ Slots in Java

Selected material © Magee and Kramer
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cesses are shared 
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y interleaved
y for all participants

).
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Modelling interaction — sha
Actions that are common between two pro
and can be used to model process interact

❑ Unshared actions may be arbitraril
❑ Shared actions occur simultaneousl

MAKER = ( make -> ready -> MAKER 
USER = ( ready -> use -> USER ).

||MAKER_USER = ( MAKER || USER ).

✎ What are the states of the LTS? 
✎ The traces?
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andshake
owledgement

 -> MAKERv2 ).
-> USERv2 ).

v2 ).

 LTS?
© O. Nierstrasz — U. Berne

Modelling interaction — h
A handshake is an action that signals ackn

MAKERv2 = ( make -> ready -> used
USERv2 = ( ready -> use -> used 

||MAKER_USERv2 = ( MAKERv2 || USER

✎ What are the states and traces of the
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e multiple processes:

d -> MAKE_A ).
d -> MAKE_B ).
sed -> ASSEMBLE ).

ASSEMBLE ).

 LTS?
© O. Nierstrasz — U. Berne

Modelling interaction — multi
Shared actions can be used to synchroniz

MAKE_A   = ( makeA -> ready -> use
MAKE_B   = ( makeB -> ready -> use
ASSEMBLE = ( ready -> assemble -> u

||FACTORY = ( MAKE_A || MAKE_B || 

✎ What are the states and traces of the
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 are in a consistent 

 be a critical section.

m1

m2

m3

m4

m5

methods

consistent states

?!
© O. Nierstrasz — U. Berne

Safety problems
Objects must only be accessed when they
state, formalized by a class invariant.

Each method assumes the class 
invariant holds when it starts, 
and it re-establishes it when 
done.

If methods interleave 
arbitrarily, an inconsistent state 
may be accessed, and the object 
may be left in a “dirty” state.

Where shared resources are updated may

incoming
requests
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rence
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Atomicity and interfe
Consider the two processes:

{ x = 0 }
AInc: x := x+1
BInc: x := x+1

{ x = ? }

✎ How can these processes interfere?
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 actions:

] 
]).
 }

a.
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Atomic actions
Individual reads and writes may be atomic
const N = 3
range T = 0..N
Var = Var[0],
Var[u:T] = ( read[u] -> Var[u

| write[v:T] -> Var[v
set VarAlpha = { read[T], write[T]

Inc =

+VarAlph

( read[v:0..N-1]
-> write[v+1]
-> STOP )
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ur
chronization:
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Sequential behavio
A single sequential thread requires no syn

Var Inc

(Var||Inc)
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Concurrent behavio
Without synchronization, concurrent thre

({a,b}::Var || a:Inc || b:Inc)
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atomic:
K ).

VarAlpha.
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Locking
Locks are used to make a critical section 
LOCK = ( acquire -> release -> LOC
INC =

+

( acquire
-> read[v:0..N-1]
-> write[v+1]
-> release
-> STOP )
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s by sharing a lock:

INC||b:INC)
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Synchronization
Processes can synchronize critical section

({a,b}::VAR||{a,b}::LOCK||a:
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ava
:

 use them to 
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Synchronization in J
Java Threads also synchronize using locks

is just convenient syntax for:
T m() {

}

Every object has a lock, and Threads may
synchronize with each other.

synchronized T m() {
// method body

}

synchronized (this) {
// method body

}
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n Protocol
enter its CS,
 P2:

adlock-free?

:= true
 “P1”
nter1 and 
turn = “P1”
kip
l Section
:= false
tical Section
© O. Nierstrasz — U. Berne

Busy-Wait Mutual Exclusio
P1 sets enter1 := true when it wants to 
but sets turn := “P2” to yield priority to

✎ Is this protocol correct? Is it fair? De

process P1
loop

enter1 := true 
turn := “P2”
while enter2 and

turn = “P2”
do skip

Critical Section
enter1 := false
Non-critical Section

end
end

process P2
loop

enter2 
turn :=
while e

do s
Critica
enter2 
Non-cri

end
end
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-> Var[u]
-> Var[v]).

e,false}

e) = BOOL[Init],

-> BOOL[b]
ol] -> BOOL[x]).
© O. Nierstrasz — U. Berne

Atomic read and wr

We can model integer 
and boolean variables 
as processes with 
atomic read and write 
actions:

range T = 1..2

Var = Var[1],
Var[u:T] =

( read[u]   
| write[v:T]

set Bool = {tru

BOOL(Init='fals
BOOL[b:Bool] =

( is[b]
| setTo[x:Bo



CP — Titech Winter 2001 76.

Safety and Synchronization

protocol
CS:

||P2)@{a,b,c,d}.

r2.setTo['true]
rite[1]

is['false] -> CS2
is['true] ->
.read[2] -> CS2
.read[1] -> Gd2)),

.setTo['false]
> d
© O. Nierstrasz — U. Berne

Modelling the busy-wait 
Each process performs two actions in its 

||Test = (enter1:BOOL||enter2:BOOL||turn:Var||P1

P1 = ( enter1.setTo['true]
-> turn.write[2]
-> Gd1),

Gd1 =
( enter2.is['false] -> CS1
| enter2.is['true] ->

( turn.read[1] -> CS1
| turn.read[2] -> Gd1)),

CS1 = ( 
-> enter1.setTo['false]
-> P1).

P2 = ( ente
-> turn.w
-> Gd2),

Gd2 =
( enter1.
| enter1.

( turn
| turn

CS2 = ( 
-> enter2
-> P2).

a -> b c -



CP — Titech Winter 2001 77.

Safety and Synchronization

ion
© O. Nierstrasz — U. Berne

Busy-wait composit
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r system with an 
omicity is violated:

 )
 )).

l?
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Checking for erro
We can check for errors by composing ou
agent that moves to the ERROR state if at

Ok = (  | b -> Ok
|  | d -> Ok

✎ What happens if we break the protoco

a -> ( c -> ERROR
c -> ( a -> ERROR
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ation
ready locked:

K ).
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Conditional synchroniz
A lock delays an acquire request if it is al

LOCK = ( acquire -> release -> LOC

Similarly, a one-slot buffer delays a put 
request if it is full and delays a get 
request if it is empty:

const N = 2
Slot = ( put[v:0..N]

-> get[v] 
-> Slot ).
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position
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Producer/Consumer com
Producer = ( put[0]

-> put[1] 
-> put[2]
-> Producer).

Consumer = ( get[x:0..N]
-> Consumer ).

||Chain = ( Producer
||Slot
||Consumer )
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ronized behaves like 

d, releasing the lock
ing on that object
aiting on that object

nd notify() will 

 it doesn’t matter 
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Wait and notify
A Java object whose methods are all synch
a monitor

Within a synchronized method or block:
❑ wait() suspends the current threa
❑ notify() wakes up one thread wait
❑ notifyAll() wakes up all threads w

Outside of a synchronized block, wait() a
raise an IllegalMonitorStateException

Always use notifyAll() unless you are sure
which thread you wake up!
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ect val) {

Runnable
) { }

hreads Runnable
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Slot (put)
class Slot implements Buffer {
private Object slotVal;

public  void put(Obj
while (slotVal != null) {
try { ; } // become Not
catch (InterruptedException e

}
slotVal = val;

; // make waiting t
return;

}
...

synchronized

wait()

notifyAll()
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 {

) { }
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Slot (get)
...
public  Object get()
Object rval;
while (slotVal == null) {
try { ; }
catch (InterruptedException e

}
rval = slotVal;
slotVal = null;

;
return rval;

}
}

synchronized

wait()

notifyAll()
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e slot:
 void action(int n) {
 message;
e = this.getName() + "("
ring.valueOf(n) + ")";

;
.out.println(getName() 
put " + message);

put(message)
© O. Nierstrasz — U. Berne

Producer in Java
The Producer puts _count messages to th
class Producer extends Thread {

protected int _count;
protected Buffer _slot;
Producer(String name, 

Buffer slot, int count) {
super(name);
_slot = slot;
_count = count;

}

public void  {
int i;
for (i=1;i<=_count;i++) {

this.action(i);
}

}

protected
String
messag

+ St

System
+ " 

}
}

run()

_slot.
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ssage);
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Consumer in Java
... and the Consumer gets them:
class Consumer extends Producer { // code reuse 

Consumer(String name, Buffer slot, int count)
super(name, slot, count);

}
protected void action(int n) {

String message;
message = (String) ;
System.out.println(getName() + " got " + me

}
}

_slot.get()
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onsumers
are the buffer:

;
;
;

;
t();
)
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Composing Producers and C
Multiple producers and consumers may sh

public static void main(String args[]) {
Buffer slot = ;

("apple ", slot, count)
new Producer("orange", slot, count).start()
new Producer("banana", slot, count).start()

("asterix", slot, count)
new Consumer("obelix ", slot, 2*count).star

}

new Slot()
new Producer .start()

new Consumer .start(
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ow!
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tical about it?
nchronization?
?
ent the busy-wait 

ty violations?
y outside a 
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What you should kn
✎ How do you model interaction with FSP
✎ What is a critical section? What is cri
✎ Why don’t sequential programs need sy
✎ How do locks address safety problems
✎ What primitives do you need to implem

mutex protocol?
✎ How can you use FSP to check for safe
✎ What happens if you call wait or notif

synchronized method or block?
✎ When is it safe to use notifyAll()?
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estions?
t might be violated 

a?
grams without using 

s) rather than 

Deadlock-free?
in Java?
re complex than the 
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Can you answer these qu
✎ What is an example of an invariant tha

by interfering, concurrent threads?
✎ What constitute atomic actions in Jav
✎ Can you ensure safety in concurrent pro

locks?
✎ When should you use synchronize(thi

synchronize(someObject)?
✎ Is the busy-wait mutex protocol fair? 
✎ How would you implement a Lock class 
✎ Why is the Java Slot class so much mo

FSP Slot specification?
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4. Safety Patte

Overview
❑ Immutability:

☞ avoid safety problems by avoidin
❑ Full Synchronization:

☞ dynamically ensure exclusive acc
❑ Partial Synchronization:

☞ restrict synchronization to “crit
❑ Containment:

☞ structurally ensure exclusive ac
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 express best 
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ign problem 

n schema for 
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Idioms, Patterns and Archite
Idioms, patterns and architectural styles
practice in resolving common design probl

Idioms 
“an implementation technique”

Design patterns 
“a commonly-recurring structure of c
components that solves a general des
within a particular context”

Architectural patterns 
“a fundamental structural organizatio
software systems”
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ging an object’s 

simple ADTs 
s (java.lang.Integer) 
 mutable and 

ingBuffer

rld”
ent the same value
 the same integer
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Pattern: Immutable c

Intent: Bypass safety issues by not chan
state after creation.

Applicability
❑ When objects represent values of 

☞ colours (java.awt.Color), number
❑ When classes can be separated into

immutable versions
☞ java.lang.String vs. java.lang.Str

❑ When updating by copying is cheap
☞ “hello” + “ ” + “world” → “hello wo

❑ When multiple instances can repres
☞ i.e., two copies of 712 represent
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ct’s state do not 
eclared static)
l to the method

lly computed needs 

mutable phase
after hardening
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Immutability varian
Variants
Stateless methods

❑ methods that do not access an obje
need to be synchronized (can be d

❑ any temporary state should be loca
Stateless objects

❑ an object whose “state” is dynamica
no synchronization!

“Hardening”
❑ object becomes immutable after a 
❑ expose to concurrent threads only 
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t are never changed 
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als must be 
ed in all 
ors
© O. Nierstrasz — U. Berne

Immutable classes — des
Declare a class with instance variables tha
after construction.
class Relay { // helper for so
private final Server server_;

Relay(Server s) { // blank fin
server_ = s; // initializ

} // construct

void doIt() { 
;

}
}

server_.doIt()
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n immutable data 
der overriding 
de.

rate new objects of 

al. 

le, use 
s for the methods 
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Design steps ...
❑ Especially if the class represents a

abstraction (such as String), consi
Object.equals and Object.hashCo

❑ Consider writing methods that gene
this class. 
(e.g., String concatenation)

❑ Consider declaring the class as fin

❑ If only some variables are immutab
synchronization or other technique
that are not stateless. 
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d Objects

nchronizing all 
any point in time.

ad/write and write/
ntext in which it the 

ithout waits, retries, 

 a layered design in 
onization of this 
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Pattern: Fully Synchronize

Intent: Maintain consistency by fully sy
methods. At most one method will run at 

Applicability
❑ You want to eliminate all possible re

write conflicts, regardless of the co
object is used. 

❑ All methods can run to completion w
or infinite loops.

❑ You do not need to use instances in
which other objects control synchr
class.
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failures, by:

cessors
cations

ncy
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Applicability ...
❑ You can avoid or deal with liveness 

☞ Exploiting partial immutability 
☞ Removing synchronization for ac
☞ Removing synchronization in invo
☞ Arranging per-method concurre
☞ ...
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sign steps
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 state (i.e, no public 
hat return 
).

as synchronized in 
n case a constructor 
.

iables must either do 
hods or within blocks 
lass()) { ... }. 
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Full Synchronization — de
❑ Declare all methods as synchroniz

☞ Do not allow any direct access to
instance variables; no methods t
references to instance variables

☞ Constructors cannot be marked 
Java. Use a synchronized block i
passes this to multiple threads

☞ Methods that access static var
so via static synchronized met
of the form synchronized(getC
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xits leaving the 
 it exits via an 

omically run to 
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Design steps ...

❑ Ensure that every public method e
object in a consistent state, even if
exception.

❑ Keep methods short so they can at
completion.



CP — Titech Winter 2001 99.

Safety Patterns

 on balking:

o client if 

pend on state (e.g., 
eck outside 

 so that clients can 
a request
© O. Nierstrasz — U. Berne

Design steps ...
❑ State-dependent actions must rely

☞ Return failure (i.e., exception) t
preconditions fail

☞ If the precondition does not de
just on the arguments), then ch
synchronized code

☞ Provide public accessor methods
check conditions before making 
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dCounter

/ between MIN and MAX
nt_; }

/ if pre fails
/ throw exception

/ analogous

is class were not 
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Example: a BalkingBounde
public class BalkingBoundedCounter {

protected long count_ = BoundedCounter.MIN; /
public  long value() { return cou
public  void inc()

throws CannotIncrementException {
/
/

else
++count_;

}
public synchronized void dec() ... { ... } /

}

✎ What safety problems could arise if th
fully synchronized?

synchronized
synchronized

if (count_ >= BoundedCounter.MAX) 
throw new CannotIncrementException();
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lements
umber of slots used

ve some space

; }
 indexing
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Example: an Expandabl
A simplified variant of java.util.Vector:
import java.util.NoSuchElementException;
public class ExpandableArray {

protected Object[] data_; // the e
protected int size_; // the n
public ExpandableArray(int cap) {

data_ = new Object[cap]; // reser
size_ = 0;

}
public  int size() { return size_
public  Object at(int i) // array

throws NoSuchElementException {

else
return data_[i];

} ...

synchronized
synchronized

if (i < 0 || i >= size_ ) 
throw new NoSuchElementException();
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// add at end
// need a bigger array
// so increase ~50%
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Example ...
public  void append(Object x) { 

if (size_ >= data_.length) { 
Object[] olddata = data_;
data_ = new Object[3 * (size_ + 1) / 2];
for (int i = 0; i < size_; ++i) 

data_[i] = olddata[i];
}
data_[size_++] = x;

}
public  void removeLast() 

throws NoSuchElementException {

else
data_[--size_] = null;

}
}

synchronized

synchronized

if (size_ == 0)

throw new NoSuchElementException();
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y
ods that perform 
mic action

on to an object

eArray {
); }

this introduce?

 p) {
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Bundling Atomicit
❑ Consider adding synchronized meth

sequences of actions as a single ato

public interface Procedure { // apply an operati
public void apply(Object x);

}
public class ExpandableArrayV2 extends Expandabl

public ExpandableArrayV2(int cap) { super(cap

}

✎ What possible liveness problems does 

public synchronized void applyToAll(Procedure
for (int i = 0; i < size_; ++i) {

p.apply(data_[i]);
}

}
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s
edures:

(100);
// fill it up

 // print all elements

ject must be 

 {
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Using inner classe
Use anonymous inner classes to pass proc
class ExpandableArrayUser {

public static void main(String[] args) {
ExpandableArrayV2 a = new ExpandableArrayV2
for (int i = 0; i < 100; ++i)

a.append(new Integer(i)); 
a.applyToAll(

)
}

}

NB: Any variables shared with the host ob
declared final (immutable).

new Procedure () {
public void apply(Object x)

System.out.println(x); 
}

}
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nization

ng only within 

nd immutable 

ritical section” that 
 that does not.
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Pattern: Partial Synchro

Intent: Reduce overhead by synchronizi
“critical sections”.

Applicability
❑ When objects have both mutable a

instance variables.

❑ When methods can be split into a “c
deals with mutable state and a part
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esign steps

ors to atomic or 

s that access 
r, already 

 block 
 access to mutable 
cal section
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Partial Synchronization — d
❑ Fully synchronize all methods

❑ Remove synchronization for access
immutable values

❑ Remove synchronization for method
mutable state through a single othe
synchronized method

❑ Replace method synchronization by
synchronization for methods where
state is restricted to a single, criti
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lls

 doubles are not atomic!
ed

t) {

alue_; }
 value_ = v; }

 synched!
t_ is immutable
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Example: LinkedCe
public class LinkedCell {

protected double value_; // NB:
protected final LinkedCell next_; // fix

public LinkedCell (double val, LinkedCell nex
value_ = val; next_ = next;

}

public  double value() { return v
public  void setValue(double v) {

// not
// nex

...

synchronized
synchronized

public LinkedCell next() {
return next_;

}
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ent values
nized accessor 

rch for x
ch to access value
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Example ...

...
public double sum() { // add up all elem

// get via synchro
if (next() != null)

v += next().sum();
return v;

}

public boolean includes(double x) { // sea
// syn

if (next() == null) return false;
else return next().includes(x);

}
}

double v = value();

synchronized(this) {
if (value_ == x) return true;

}
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nt

d variables. 
nside other objects 
ime.

 to the embedded 

eptualized as 
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Pattern: Containme

Intent: Achieve safety by avoiding share
Unsynchronized objects are “contained” i
that have at most one thread active at a t

Applicability
❑ There is no need for shared access

objects. 

❑ The embedded objects can be conc
exclusively held resources.
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red as islands — 
ts reachable only 

reveal their 

ns for compliance. 

e postponements or 
cts must transiently 
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Applicability ...
❑ Embedded objects must be structu

communication-closed sets of objec
from a single unique reference. 

They cannot contain methods that 
identities to other objects.

❑ You are willing to hand-check desig

❑ You can deal with or avoid indefinit
deadlocks in cases where host obje
acquire multiple resources.
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ign steps
 host object. 

or, a Composite, or a 
ed access to an 

 synchronized, or is 
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Contained Objects — des
❑ Define the interface for the outer

☞ The host could be, e.g., an Adapt
Proxy, that provides synchroniz
existing, unsynchronized class

❑ Ensure that the host is either fully
in turn a contained object.
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unique references to 

s cannot leak outside 

ations that ensure 
ally unique!

r clone contained 
re unique
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Design steps ...

❑ Define instances variables that are 
the contained objects.

☞ Make sure that these reference
the host!

☞ Establish policies and implement
that acquired references are re

☞ Consider methods to duplicate o
objects, to ensure that copies a
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ip

l resources:

 something that you 

e has it. 

 then you no longer 

will ever have it. 
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Managed Ownersh

❑ Model contained objects as physica

☞ If you have one, then you can do
couldn't do otherwise. 

☞ If you have one, then no one els

☞ If you give one to someone else,
have it. 

☞ If you destroy one, then no one 
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 ...

 among hosts, define 

give, take, exchange 

 to manage transfer
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Managed Ownership

❑ If contained objects can be passed
a transfer protocol.

☞ Hosts should be able to acquire, 
and forget resources

☞ Consider using a dedicated class
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col class
between threads:

res; }

 {

?

n ref_; }
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A minimal transfer proto
A simple buffer for transferring objects 

public class ResourceVariable {
protected Object ref_;
public ResourceVariable(Object res) { ref_ = 
public  Object 
public  Object 

Object old = ref_; 
ref_ = r; 
return old;

}
}

✎ What are the weaknesses of this class
✎ How would you fix them?

synchronized resource() { retur
synchronized exchange(Object r)
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ow!
safe?
ronized?

hod balk?
 than full 

for synchronization?
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What you should kn
✎ Why are immutable classes inherently 
✎ Why doesn’t a “relay” need to be synch
✎ What is “balking”? When should a met
✎ When is partial synchronization better

synchronization?
✎ How does containment avoid the need 
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estions?
e methods as 

explicitly named 

dableArray methods 

onization introduce?
ate critical sections 

synchronized or not?
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Can you answer these qu
✎ When is it all right to declare only som

synchronized?
✎ When is an inner class better than an 

class?
✎ What could happen if any of the Expan

were not synchronized?
✎ What liveness problems can full synchr
✎ Why is it a bad idea to have two separ

in a single method?
✎ Does it matter if a contained object is 
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dlock
© O. Nierstrasz — U. Berne

5. Liveness and Dea

Overview
❑ Safety revisited

☞ ERROR conditions
❑ Liveness

☞ Progress Properties
❑ Deadlock

☞ The Dining Philosophers problem
☞ Detecting and avoiding deadlock

Selected material © Magee and Kramer
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ad happens

haviour

R
mmand -> ACTION),

spond -> ACTUATOR
mmand -> ERROR).
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Safety revisited
A safety property asserts that nothing b

ERROR process (-1) to detect erroneous be

Trace to ERROR: command command

command

command

respond

-1 0 1

ACTUATO
= (co

ACTION
= (re
|co
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ification
d

o specify directly 

E_ACTUATOR:

SAFE_ACTUATOR 
and
spond
FE_ACTUATOR
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Safety — property spec
ERROR conditions state what is not require

In complex systems, it is usually better t
what is required. 

Trace to property violation in SAF
command command

command

respond

command

respond

-1 0 1

property 
= (comm
-> re
-> SA
).
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s
ic process that 
 the alphabet of P is 

a property are 
ty with a set of 

rrect behaviour.
tes the safety 

ansparent. 
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Safety propertie
A safety property P defines a determinist
asserts that any trace including actions in
accepted by P.

Transparency of safety properties: 
❑ Since all actions in the alphabet of 

eligible choices, composing a proper
processes does not affect their co

❑ If a behaviour can occur which viola
property, then ERROR is reachable.

Properties must be deterministic to be tr



CP — Titech Winter 2001 122.

Liveness and Deadlock

s
ster, never occurs?

 to include all the 
t.
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Safety propertie
How can we specify that some action, disa

property CALM = STOP + {disaster}.

A safety property must be specified so as
acceptable, valid behaviours in its alphabe

disaster

-1 0
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g good eventually 

ays the case that an 

e name given to a 
 an action is never 
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Liveness
A liveness property asserts that somethin
happens.

A progress property asserts that it is alw
action is eventually executed. 

Progress is the opposite of starvation, th
concurrent programming situation in which
executed.
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s
 various kinds of 

ent”)
ess, but some 

 up

 be

, each waiting for 
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Liveness Problem
A program may be “safe”, yet suffer from
liveness problems:
Starvation: (AKA “indefinite postponem

❑ The system as a whole makes progr
individual processes don’t

Dormancy:
❑ A waiting process fails to be woken

Premature termination:
❑ A process is killed before it should

Deadlock:
❑ Two or more processes are blocked

resources held by another
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ir choice
nsitions is executed 
he set will be 

toss

tails

1 2

s->heads->COIN
s->tails->COIN).
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Progress properties — fa
Fair Choice: If a choice over a set of tra
infinitely often, then every transition in t
executed infinitely often.

If a coin were tossed an 
infinite number of times, 
we would expect that both 
heads and tails would each 
be chosen infinitely often. 

This assumes fair choice ! 

toss

heads

0

COIN = (tos
|tos
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s

target system, 
ll be executed 
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Progress propertie
progress P = {a1,a2..an}

asserts that in an infinite execution of a 
at least one of the actions a1,a2...an wi
infinitely often.

COIN system:
progress HEADS = {heads} 
progress TAILS = {tails}

...

No progress violations detected.
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s
 trick coin 

),

->tails->COIN).

ls}

toss

heads

4 5
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Progress propertie
Suppose we have both a normal coin and a

TWOCOIN = (pick->COIN|pick->TRICK
TRICK = (toss->heads->TRICK),
COIN = (toss->heads->COIN|toss
progress HEADS = {heads}
progress TAILS = {tails}
progress HEADSorTAILS = {heads,tai

pick

pick toss

he ads

toss

tails

0 1 2 3
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ads}

ery state is mutually 
the set.

roperty TAILS

toss

heads

4 5
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Progress analysis
Progress violation: TAILS
Trace to terminal set of states: p
Actions in terminal set: {toss, he

A terminal set of states is one in which ev
reachable but no transitions leads out of 

The terminal set {1, 2} violates progress p

pick

pick toss

he ads

toss

tails

0 1 2 3
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locked 
utual exclusion.
ld on to acquired 
ditional ones.
cess, resources 
ased voluntarily.
xists in which 
 its successor in 
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Deadlock
Four necessary and sufficient conditions:

Serially reusable resources: the dead
processes share resources under m

Incremental acquisition: processes ho
resources while waiting to obtain ad

No pre-emption: once acquired by a pro
cannot be pre-empted but only rele

Wait-for cycle: a cycle of processes e
each process holds a resource which
the cycle is waiting to acquire.
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B

Has B awaits C

Has C awaits D
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Waits-for cycle

A

CD

E

Has A awaits B

Has E awaits A

Has D awaits E
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e processes
utgoing transitions

orth, south}
orth north

2

orth->STOP)).
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Deadlock analysis - primitiv
❑ A deadlocked state is one with no o
❑ In FSP: STOP process

Progress violation for actions: {n
Trace to terminal set of states: n
Actions in terminal set: {}

M OVE
north north

south

0 1

MOVE = (north->(south->MOVE|n
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Problem
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The Dining Philosophers 
❑ Philosophers alternate 

between thinking and 
eating.

❑ A philosopher needs two 
forks to eat.

❑ No two philosophers may 
hold the same fork 
simultaneously.

❑ There must be no 
deadlock and no 
starvation.

❑ Want efficient 
behaviour under absence 
of contention.
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s
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Deadlocked diner

A deadlock occurs if a 
waits-for cycle arises in 
which each philosopher 
grabs one fork and waits 
for the other.
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and Liveness
al safety and 

sed by one 
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s two forks to eat

 forks ...

 forks to each 
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Dining Philosophers, Safety 
Dining Philosophers illustrate many classic
liveness issues:

Mutual Exclusion Each fork can be u
philosopher at a ti

Condition 
synchronization

A philosopher need

Shared variable 
communication

Philosophers share

Message-based 
communication

... or they can pass
other
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...
poll for forks ...
woken by a 

n grab the left 
 for the right ...
one and wait (sleep) 

 starve if the left 
rs are always 
 the forks
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Dining Philosophers 
Busy-waiting A philosopher can 

Blocked waiting ... or can sleep till 
neighbour

Livelock All philosophers ca
fork and busy-wait

Deadlock ... or grab the left 
for the right

Starvation
A philosopher may
and right neighbou
faster at grabbing
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phers

N].right}:: ).

 eat

FORK
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Modeling Dining Philoso
PHIL = ( sitdown 

-> arise -> PHIL ).

FORK = ( get -> put -> FORK ).

||DINERS(N=5)=
forall [i:0..N-1] 
(phil[i]:
||{phil[i].left,phil[((i-1)+N)%

✎ Is this system safe? Is it live?

-> right.get -> left.get ->
-> left.put -> right.put

PHIL
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alysis
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Dining Philosophers An
Trace to terminal set of states:
phil.0.sitdown
phil.0.right.get
phil.1.sitdown
phil.1.right.get
phil.2.sitdown
phil.2.right.get
phil.3.sitdown
phil.3.right.get
phil.4.sitdown
phil.4.right.get

Actions in terminal set: {}

No further progress is possible due to th
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proaches to 

les. When detected, 
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s; the victim should 

or cycle cannot 
© O. Nierstrasz — U. Berne

Eliminating Deadlo
There are two fundamentally different ap
eliminating deadlock.

Deadlock detection:
❑ Repeatedly check for waits-for cyc

choose a victim and force it to rele
☞ Common in transactional system

“roll-back” and try again

Deadlock avoidance:
❑ Design the system so that a waits-f

possibly arise.
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eness guarantees:

red fork first.
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Dining Philosopher Sol
There are countless solutions to the Dinin
problem that use various concurrent prog
patterns, and offer varying degrees of liv

Number the forks
❑ Philosophers grab the lowest numbe

Philosophers queue to sit down
❑ allow no more than four at a time t

✎ Do these solutions avoid deadlock?
✎ What about starvation?
✎ Are they “fair”?
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ow!
they modelled in 

ccur in concurrent 

 a safety issue?
it?

ditions for deadlock?
 you avoid it?
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What you should kn
✎ What are safety properties? How are 

FSP?
✎ What kinds of liveness problems can o

programs?
✎ Why is progress a liveness rather than
✎ What is fair choice? Why do we need 
✎ What is a terminal set of states?
✎ What are necessary and sufficient con
✎ How can you detect deadlock? How can
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ation and deadlock?
-for cycle?
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ How would you manually check a safety
✎ Why must safety properties be determ

transparent?
✎ How would you manually check a progre
✎ What is the difference between starv
✎ How would you manually detect a waits
✎ What is fairness?
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 Methods
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6. Liveness and Guarded

Overview
❑ Guarded Methods

☞ Checking guard conditions
☞ Handling interrupts
☞ Structuring notification

➪ Encapsulating assignment
➪ Tracking state
➪ Tracking state variables
➪ Delegating notifications
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s
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ly add safety
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 avoid cyclic 
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Achieving Livenes
There are various strategies and techniqu

❑ Start with safe design and selectiv
synchronization

❑ Start with live design and selective

❑ Adopt design patterns that limit th
synchronization

❑ Adopt standard architectures that
dependencies
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thods
 thread when an 
equest, and wait for 
aising an exception).

Client 2
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Pattern: Guarded Me
Intent: Temporarily suspend an incoming
object is not in the right state to fulfil a r
the state to change rather than balking (r

notifyAll()
wait()

dec()

inc()

Client 1 BoundedCounter
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licability
ponement. 

d states are 
sts), or if not, that it 

occur after all 
 consider a design 

 problems due to 
onization locks.
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Guarded Methods — app
❑ Clients can tolerate indefinite post

(Otherwise, use a balking design.)

❑ You can guarantee that the require
eventually reached (via other reque
is acceptable to block forever. 

❑ You can arrange that notifications 
relevant state changes. (Otherwise
based on a busy-wait spin loop.) 

❑ You can avoid or cope with liveness
waiting threads retaining all synchr
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cates describing the 
(Otherwise consider 

 within a single 
actional form.)
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Applicability ...
❑ You can construct computable predi

state in which actions will succeed. 
an optimistic design.)

❑ Conditions and actions are managed
object. (Otherwise consider a trans
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ional loop to block 
All to wake up 

ce() {

) { }

e ...
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Guarded Methods — des
The basic recipe is to use wait in a condit
until it is safe to proceed, and use notify
blocked threads.

public  Object servi
while (wrong State) {
try {  }
catch (InterruptedException e

}
// fill request and change stat

return result;
}

synchronized

wait();

notifyAll();
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, so that classes can 
ing to different 

; // min value
0; // max value
N <= value() <= MAX
ue() == MIN
e() < MAX
e() > MIN
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Step: Separate interface f
❑ Define interfaces for the methods

implement guarded methods accord
policies.

public  BoundedCounter {
public static final long MIN = 0
public static final long MAX = 1
public long value(); // inv’t: MI

// init: val
public void inc(); // pre: valu
public void dec(); // pre: valu

}

interface
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ditions
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 proceed. 
er method.)

 a guarded wait loop 

 ex) { ... }

 a helper 
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Step: Check guard con
❑ Define a predicate that precisely d

conditions under which actions may
(This can be encapsulated as a help

❑ Precede the conditional actions with
of the form:

while (!condition)
try { wait(); }
catch (InterruptedException

Optionally, encapsulate this code as
method. 
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tions ...
ion to check in this 
nd notifications are 
ue, then there is no 
r returning from 

stent state (i.e., the 
ng any wait (since 
ck).

form the guards 
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Step: Check guard condi
❑ If there is only one possible condit

class (and all plausible subclasses), a
issued only when the condition is tr
need to re-check the condition afte
wait()

❑ Ensure that the object is in a consi
class invariant holds) before enteri
wait releases the synchronization lo
The easiest way to do this is to per
before taking any actions.
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upts
rruptedExceptions. 

 catch clause), which 
 expense of liveness.
top). This preserves 
commended.)
g an exception. This 
re the caller to take 
y. 

e proceeding. 
e guard can never 
llaborating threads 
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Step: Handle interr
❑ Establish a policy to deal with Inte

Possibilities include::
☞ Ignore interrupts (i.e., an empty

preserves safety at the possible
☞ Terminate the current thread (s

safety, though brutally! (Not re
☞ Exit the method, possibly raisin

preserves liveness but may requi
special action to preserve safet

☞ Cleanup and restart.
☞ Ask for user intervention befor

Interrupts can be useful to signal that th
become true because, for example, the co
have terminated.
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od of the class that 
ffect the value of a 

eads that are 
ject. 
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Step: Signal state ch

❑ Add notification code to each meth
changes state in any way that can a
guard condition. Some options are:

☞ use notifyAll to wake up all thr
blocked in waits for the host ob

...
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ll()

hread (if any exist). 
ization where:
sarily waiting for 
me notifications, 
led by any given 

 of them becomes 

se notification 
yAll. (For example, 
 to provide certain 
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Notify() vs notifya
...
☞ use notify to wake up only one t

This is best treated as an optim
➪ all blocked threads are neces

conditions signalled by the sa
➪ only one of them can be enab

notification, and 
➪ it does not matter which one

enabled.

☞ You build your own special-purpo
methods using notify and notif
to selectively notify threads, or
fairness guarantees.)
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ations
y at least one 

 end of every 
y state change (i.e., 
ble).
ay cause 

o each variable 
ndition in a helper 

e notification after 
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Step: Structure notific
❑ Ensure that each wait is balanced b

notification. Options include:

Blanket 
Notifications

Place a notification at the
method that can cause an
assigns any instance varia
Simple and reliable, but m
performance problems ...

Encapsulating 
Assignment

Encapsulate assignment t
mentioned in any guard co
method that performs th
updating the variable.
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or the particular 
 actually unblock 
rove performance, 
(i.e., subclassing 

able that 

nges state, invoke 
evaluates the 
e notifications if 
cted.
intain aspects of 
ers issue the 
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Tracking 
State

Only issue notifications f
state changes that could
waiting threads. May imp
at the cost of flexibility 
becomes harder.)

Tracking 
State 

Variables

Maintain an instance vari
represents control state.
Whenever the object cha
a helper method that re-
control state and will issu
guard conditions are affe

Delegating 
Notifications

Use helper objects to ma
state and have these help
notifications.



CP — Titech Winter 2001 156.

Liveness and Guarded Methods

ent
 in helper methods:

 return count_; }
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Encapsulating assignm
Guards and assignments are encapsulated
public class BoundedCounterV1 

implements BoundedCounter {
protected long count_ = MIN;
public synchronized long value() {
public synchronized void inc() {

}
public synchronized void dec() {
awaitDecrementable();
setCount(count_ - 1);

}

awaitIncrementable(); 
setCount(count_ + 1);
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ncrementable() {

ecrementable() {

{ };

t(long newValue) {

};
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 synchronized void awaitI

}
protected synchronized void awaitD
while (count_ <= MIN)
try { wait(); }
catch(InterruptedException ex) 

}
 synchronized void setCoun

}
}

protected
while (count_ >= MAX)
try { wait(); }
catch(InterruptedException ex) {

protected
count_ = newValue;
notifyAll();
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ect waiting threads 
tes top and bottom:

...

) {};

left bottom state
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Tracking State
The only transitions that can possibly aff
are those that step away from logical sta
public class BoundedCounterVST 

implements BoundedCounter {
protected long count_ = MIN; // 
public synchronized void inc() {
while (count_ == MAX)
try { wait(); }
catch(InterruptedException ex

// just 
}
...

}

if (count_++ == MIN)
notifyAll();
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bles

logical states

/ state variable

 
lt logical state

) {};
y actual state
logical state
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Tracking State Varia
public class BoundedCounterVSV 

implements BoundedCounter {
static final int ; // 
static final int MIDDLE = 1;
static final int TOP = 2;
protected int ; /
protected long count_ = MIN;
public synchronized void inc() {
while ( ) // consu
try { wait(); }
catch(InterruptedException ex

++count_; // modif
; // sync 

} ...

BOTTOM = 0

state_ = BOTTOM

state_ == TOP

checkState()
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 ... }
{ return count_; }

 {

 = BOTTOM;
 = TOP;
 = MIDDLE;

kState()

))
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...
public synchronized void dec() {
public synchronized long value() 

 synchronized void 
int oldState = state_;
if (count_ == MIN) state_
else if (count_ == MAX) state_
else state_

}
}

protected chec

if (state_ != oldState
&& (oldState == TOP
|| oldState == BOTTOM

notifyAll();
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ions

ong v) {

{ return value_; }

; }

: must be synched!
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Delegating notificat
public class NotifyingLong {
private long value_;
private Object observer_;
public NotifyingLong(Object o, l

 value_ = v; 
}
public synchronized long value() 
public void setValue(long v) {
synchronized(this) { value_ = v

// NB

}
}

observer_ = o;

synchronized(observer_) { 
observer_.notifyAll();

}
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Delegating notificatio
Notification is delegated to the helper ob
public class BoundedCounterVNL 

implements BoundedCounter {
private NotifyingLong c_ = 
new NotifyingLong(this, MIN);

public synchronized void inc() {
while (c_.value() >= MAX)
try { wait(); }
catch(InterruptedException ex

}
...

}

c_.setValue(c_.value()+1);
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ow!
ods pattern?
onditions after 

ll() to notify()?
ication?
ariant before calling 
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ing state and using 
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What you should kn
✎ When can you apply the Guarded Meth
✎ When should methods recheck guard c

waking from a wait()?
✎ Why should you usually prefer notifyA
✎ When and where should you issue notif
✎ Why must you re-establish the class inv

wait()?
✎ What should you do when you receive a

InterruptedException?
✎ What is the difference between track

state-tracking variables?
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estions?
n balking?

o implement guarded 

rded methods for a 
 others to define 

notifications 
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Can you answer these qu
✎ When are guarded methods better tha
✎ When should you use helper methods t

methods?
✎ What is the best way to structure gua

class if you would like it to be easy for
correctly functioning subclasses?

✎ When is the complexity of delegating 
worthwhile?
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7. Lab session 

The lab exercises will be available on the 

matsu-www.is.titech.ac.jp/~o

http://matsu-www.is.titech.ac.jp/~oscar/cp/
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8. Liveness and Asyn

Overview
❑ Asynchronous invocations

☞ Simple Relays
➪ Direct Invocations
➪ Thread-based messages; Gat
➪ Command-based messages

☞ Tail calls
☞ Early replies
☞ Futures
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vocations
e serviced by 

services amongst 

ly need the result of 
ul work.
 asynchronous, 
ed using threads. 
d methods are split 
d reduce liveness 
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Pattern: Asynchronous In
Intent: Avoid waiting for a request to b
decoupling sending from receiving.

Applicability
❑ When a host object can distribute 

multiple helper objects.
❑ When an object does not immediate

an invocation to continue doing usef
❑ When invocations that are logically

regardless of whether they are cod
❑ During refactoring, when classes an

in order to increase concurrency an
problems.
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 — form
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 before invocation
ion
 in parallel
 after completion
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Asynchronous Invocations
Asynchronous invocation typically looks lik

class Host {
public service() {
pre(); // code to run

// the invocat
during(); // code to run
post(); // code to run

}
}

invokeHelper();
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design steps

f, e.g., the Helper 
ns results directly 
e Host’s caller!
t depend on the kind 
quest ...
n the during() code

f service() is 
ed or if pre() 
es the Host’s state
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Asynchronous Invocations — 
Consider the following issues:

Does the Host need results back 
from the Helper?

Not i
retur
to th

Can the Host process new requests 
while the Helper is running?

Migh
of re

Can the Host do something while 
the Helper is running?

i.e., i

Does the Host need to synchronize 
pre-invocation processing?

i.e., i
guard
updat
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f post() updates 
ost’s state

does the host have 
it for other 
tions?
ew one generated 
lp with each new 
ce request? 
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Does the Host need to synchronize 
post-invocation processing?

i.e., i
the H

Does post-invocation processing 
only depend on the Helper’s result?

... or 
to wa
condi

Is the same Helper always used? 
Is a n
to he
servi
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variants
 by delegating to the 
ost() actions.

directly, but 

 thread to 

equest to 
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Simple Relays — three 
A relay method obtains all its functionality
helper, without any pre(), during(), or p

Direct invocations: Invoke the Helper 
without synchronization

Thread-based messages: Create a new
invoke the Helper

Command-based messages: Pass the r
another object that will run it

Relays are commonly seen in Adaptors.
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tions
onization.

elper();
synchronized!
tateless method)

synchronized!

s, while the Host’s 
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Variant: Direct invoca
Asynchrony is achieved by avoiding synchr
class Host {
protected Helper helper_ = new H
public void service() { // un
invokeHelper(); // (s

}
protected void invokeHelper() {
helper_.help(); // un

}
}

The Host is free to accept other request
caller must wait for the reply.
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...
d with an accessor:

elper();
lper() {

chronized
ally synchronized
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Direct invocations 
If helper_ is mutable, it can be protecte

class Host2 extends Host {
protected Helper helper_ = new H
protected  Helper he
return helper_;

}
public void service() { // unsyn
helper().help(); // parti

}
}

synchronized
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essages
 new thread:

/ An inner class
/ Must be final!
; }
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Variant: Thread-based m
The invocation can be performed within a

protected void invokeHelper() { 
 { /

 Helper h_ = helper_; /
public void 

} ;
}

new Thread()
final

run() { h_.help() 
.start()
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es ...
d outweigh the 

dlessly)

 are invoked
© O. Nierstrasz — U. Berne

Thread-based messag
The cost of evaluating Helper.help() shoul
overhead of creating a thread!

❑ If the Helper is a daemon (loops en

❑ If the Helper does I/O

❑ Possibly, if multiple helper methods
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teways
ervice each request.

le, byte[] data) {

 }

 {
ld arguments 

te[] data) { ... }
ite to file ... 

e, data)).start();

le
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Thread-per-message Ga
The Host may construct a new Helper to s
public class FileIO {
public void writeBytes(String fi

}
public void readBytes(...) { ...

}
class FileWriter 
private String nm_; // ho
private byte[] d_;
public FileWriter(String name, by

// wr
}

new Thread (new FileWriter(fil

implements Runnab

public void run() { ... }
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messages
 a queue for another 

ul for:

ks

));
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Variant: Command-based 
The Host can also put a Command object in
object that will invoke the Helper:

protected  q_;
protected invokeHelper() { 

}

Command-based forms are especially usef
❑ scheduling of helpers
❑ undo and replay capabilities
❑ transporting messages over networ

EventQueue

q_.put(new HelperMessage(helper_
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t statement of a 

// not synched
// synched
// not synched

// synched

// not synched

t new requests
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Tail calls
Applies when the helper method is the las
method. Only pre() code is synchronized.
class Subject {

protected Observer obs_ = new ...;
protected double state_;
public void updateState(double d) {

}
protected  doUpdate(double d) {

state_ = d;
}
protected void sendNotification() {

obs_.changeNotification(this);
}

}

The host is immediately available to accep

doUpdate(d);
sendNotification();

synchronized
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reads
 a separate thread: 

te(double d) { 

.this);
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Tail calls with new th
Alternatively, the tail call may be made in

public  void updateSta
state_ = d;

 {
 Observer o_ = obs_;

public void  {
o_.changeNotification(Subject

}
} ;

}

synchronized

new Thread()
final

run()

.start()
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l activities after 

gramming languages.
 built-in feature.

Host retains 
synchronization!
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Early Reply
Early reply allows a host to perform usefu
returning a result to the client:

Early reply is a built-in feature in some pro
It can be easily simulated when it is not a

service()

reply

Client Host



CP — Titech Winter 2001 181.

Liveness and Asynchrony

ply
he reply from a 

that can be used to 
abstractions ...

new
start()

put()

Helper
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Simulating Early Re
A one-slot buffer can be used to pick up t
helper thread:

A one-slot buffer is a simple abstraction 
implement many higher-level concurrency 

service()

reply

new

get()

Slot

HostClient
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a

unsynchronized

Helper

;
retain lock

early reply
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Early Reply in Jav
public class Host { ...
public Object service() { // 
final Slot reply = new Slot();
final Host host = this;

 { // 
public void run() {

 {

host.cleanup(); // 
} }

}.start();
; // 

} ... 
}

new Thread()

synchronized (host)
reply.put(host.compute())

return reply.get()
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el with a host until 

t()

w
Future
© O. Nierstrasz — U. Berne

Futures
Futures allow a client to continue in parall
the future value is needed:

pu
value()

service()
ne

HostClient

returns future

returns value
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ly null
with some worker
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A Future Class
Futures can be implemented as a layer of a
shared Slot:
class Future {
private Object val_; // initial
private Slot slot_; // shared 
public Future(Slot slot) {
slot_ = slot;

}
public Object value() {

return val_;
}

}

if (val_ == null)
val_ = slot_.get();
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va
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unsynchronized

ute() { ... }
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Using Futures in Ja
Without special language support, the clie
request a value() from the future object.
public Future service () { // 
final Slot slot = new Slot();
new Thread() {
public void run() {

;
}

}.start();
;

}
protected  Object comp

slot.put(compute())

return new Future(slot)

synchronized
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e “asynchronous”?

sses to implement 

you use it?
u use them?
eplies in Java?
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What you should kn
✎ What general form does an asynchrono
✎ When should you consider using asynch
✎ In what sense can a direct invocation b
✎ Why (and how) would you use inner cla

asynchrony?
✎ What is “early reply”, and when would 
✎ What are “futures”, and when would yo
✎ How can implement futures and early r
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rrency on a single-

 as thread-per-

s we have discussed 
slot-buffers as the 

plies? Vice versa?
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Can you answer these qu
✎ Why might you want to increase concu

processor machine?
✎ Why are servers commonly structured

message gateways?
✎ Which of the concurrency abstraction

till now can be implemented using one-
only synchronized objects?

✎ When are futures better than early re
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9. Condition Obje

Overview
❑ Condition Objects

☞ Simple Condition Objects
☞ The “Nested Monitor Problem”
☞ Permits and Semaphores
☞ Using Semaphores
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ing waiting and 

unding the use of 
e cases the use of 
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Pattern: Condition Ob
Intent: Condition objects encapsulate th
notifications used in guarded methods.

Applicability
❑ To simplify class design by off-load

notification mechanics.
☞ Because of the limitations surro

condition objects in Java, in som
condition objects will increase r
design complexity!
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licability

ften avoid notifying 
ssibly proceed given 

l scheduling policies 
ple to impose 

itions take the form 
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Condition Objects — app
❑ As an efficiency manoeuvre. 

☞ By isolating conditions, you can o
waiting threads that could not po
a particular state change.

❑ As a means of encapsulating specia
surrounding notifications, for exam
fairness or prioritization policies.

❑ In the particular cases where cond
of “permits” or “latches”.
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r some condition
that condition
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Condition Object
Condition objects implement this interfac

public interface Condition { 
public void (); // wait fo
public void (); // signal 

}

A client that awaits a condition blocks unt
signals that the condition now may hold.

await
signal
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A Simple Condition O
We can encapsulate guard conditions with
public class SimpleConditionObject

implements Condition 
{ 
public  void ()
try { ; }
catch (InterruptedException ex)

}
public  void (

(); 
}

}

Careless use can lead to the “Nested Mon

synchronized await
wait()

synchronized signal
notifyAll
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The Nested Monitor p
We want to avoid waking up the wrong thr
notifying the conditions notMin and notM
public class BoundedCounterVBAD 
implements BoundedCounter {
protected long count_ = MIN; 
protected Condition

protected Condition
notMax_ = new SimpleConditionOb

public synchronized long value()
return count_;

}
...

notMin_ = new SimpleConditionO
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till count not MIN

// can’t get in!

ver get here!
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The Nested Monitor pro
public  void dec() {
while (count_ == MIN)

; // wait 
if (count_-- == MAX)

;
}
public  void inc() {
while (count_ == MAX)
notMax_.await();

if (count_++ == MIN)
; // we ne

}
}

synchronized

notMin_.await()

notMax_.signal()

synchronized

notMin_.signal()
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a blocked thread 
e method that would 
k the wait.

dition is 
 signalled

wait()

wait()

D

SimpleConditionObject
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The Nested Monitor pro

Nested monitor lockouts occur whenever 
holds the lock for an object containing th
otherwise provide a notification to unbloc

So con
never

a
dec()

inc()

Client 1 Client 2 BoundedCounterVBA

Counter is 
still locked!
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 -> ReplySlot
ReplySlot ).
k
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Nested Monitors in 
Nested Monitors typically arise when one 
is implemented using another.

Recall our one Slot buffer in FSP:
const N = 2
Slot = (put[v:0..N] -> get[v] -> S

Suppose we try to implement a call/reply 
private instance of Slot:
ReplySlot =
(  -> my.put[v] -> 
| get -> my.get[v] -> ret[v] -> 

put[v:0..N] ac
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Nested Monitors in FS
Our producer/consumer chain obeys the n

Producer = ( put[0] -> ack
-> put[1] -> ack 
-> put[2] -> ack -> Pr

Consumer = ( get-> ret[x:0..N]->Co

||Chain = (Producer||ReplySlot||my
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ut.0, ack, put.1,
2, get, my.get.2,
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Nested Monitors in FS
But now the chain may deadlock:

Progress violation for actions: {p
put.2, my.put.0, my.put.1, my.put.
ret.2...........}
Trace to terminal set of states:
get
ret.0

Actions in terminal set: {}



CP — Titech Winter 2001 199.

Condition Objects

rs problem
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ty version.

d be enclosed within 
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Solving the Nested Monito
You must ensure that:

❑ Waits do not occur while synchroni
host object.
☞ This leads to a guard loop that r

synchronization seen in the faul

❑ Notifications are never missed.
☞ The entire guard wait loop shoul

synchronized blocks on the cond
...
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rmed only upon 
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ny state, it must 
f the host, and if it 
that access is 
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Solving Nested Monito
...

❑ Notifications do not deadlock.
☞ All notifications should be perfo

release of all synchronization (e
notified condition object). 

❑ Helper and host state must be cons
☞ If the helper object maintains a

always be consistent with that o
shares any state with the host, 
properly synchronized.
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ynched!
d notification condition
 on condition object
uard loop

 and act

e host synch before wait

 release all synchs!
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Example solution
public class BoundedCounterVCV implements Bounde

public void dec() { // not s
boolean wasMax = false; // recor

 { // synch
while (true) { // new g

 {
if (count_ > MIN) { // check

wasMax = (count_ == MAX);
count_--;
break;

}
}

; // releas
} 

}
if (wasMax) ; // first

}
}

synchronized(notMin_)

synchronized(this)

notMin_.await()

notMax_.signal()
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aphores
ition object when 
 counter.

 only if there have 

 signal increments 
s”.
 of missed signals.

oke Condition 
ode. 

 semaphores work 
ait after another 
 proceed. 
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Pattern: Permits and Sem
Intent: Bundle synchronization in a cond
synchronization depends on the value of a
Applicability

❑ When any given await may proceed
been more signals than awaits.
☞ I.e., when await decrements and

the number of available “permit
❑ You need to guarantee the absence

☞

❑ The host classes can arrange to inv
methods outside of synchronized c

Unlike simple condition objects,
even if one thread enters its aw
thread has signalled that it may
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design steps
ion that maintains a 
ses await if there 

ents Condition {

();

inc(); }
ec(); }
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Permits and Semaphores — 
❑ Define a class implementing Condit

permit count, and immediately relea
are already enough permits.
☞ e.g., BoundedCounter

public class CountCondition implem
protected BoundedCounter
counter_ = new BoundedCounterV0

public void 
public void signal() { counter_.

}

await() { counter_.d
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s, their clients must 
ronized code. 
gn of the form: 

 synched
ched
 m1() 
 synched

... }
© O. Nierstrasz — U. Berne

Design steps ...
❑ As with all kinds of condition object

avoid invoking await inside of synch
☞ You can use a before/after desi

class Host {
Condition aCondition_; ...
public method m1() {

; // not
doM1(); // syn
for each Condition c enabled by

; // not
}
protected  doM1() { 

}

aCondition_.await()

c.signal()

synchronized
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s)
permits”
l if class is final

iting on a 

 in separate methods
ck so locks can be 

d always stays true
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Variants
Permit Counters: (Counting Semaphore

❑ Just keep track of the number of “
❑ Can use notify instead of notifyAl

Fair Semaphores:
❑ Maintain FIFO queue of threads wa

SimpleCondition

Locks and Latches:
❑ Locks can be acquired and released
❑ Keep track of thread holding the lo

reentrant!
❑ A latch is set to true by signal, an

See the On-line supplement for details!
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va
 version

value = initial; }
// AKA V

t one thread!

{ // AKA P

) { };
© O. Nierstrasz — U. Berne

Semaphores in Ja
public class Semaphore { // simple
private int value;
public Semaphore (int initial) { 

 public void up() {
++value;

; // wake up jus
}

 public void down() 
while (value==0)
try { ; }
catch(InterruptedException ex

--value;
}

}

synchronized

notify()

synchronized

wait()
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Using Semaphore
public class BoundedCounterVSem 

implements BoundedCounter {
protected long count_ = MIN;
protected Semaphore mutex;
protected Semaphore full; // nu
protected Semaphore empty; // nu

BoundedCounterVSem() {
mutex = new Semaphore(1);

;
empty = new Semaphore(MAX-MIN);

}
...

full = new Semaphore(0)
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...

e resource

 it

slot
e is important!

 an item
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Using Semaphores 
public long value() {

; // grab th
long val = count_;

; // release
return val;

}
public void inc() {

; // grab a 
; // sequenc

count_ ++;
;
; // release

}
...

mutex.down()

mutex.up()

empty.down()
mutex.down()

mutex.up()
full.up()
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...
lem!

 locks out BADdec!

locks out BADinc!
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Using Semaphores 
These would cause a nested monitor prob

public void BADinc() {
 //

count_ ++;
full.up(); mutex.up();

}

public void BADdec() {
 // 

count_ --;
empty.up(); mutex.up();

}

mutex.down(); empty.down();

mutex.down(); full.down();
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ow!
 they make your life 

? 
lems?
n is it natural to use 

imple condition 

y() instead of 
© O. Nierstrasz — U. Berne

What you should kn
✎ What are “condition objects”? How can

easier? Harder?
✎ What is the “nested monitor problem”
✎ How can you avoid nested monitor prob
✎ What are “permits” and “latches”? Whe

them?
✎ How does a semaphore differ from a s

object?
✎ Why (when) can semaphores use notif

notifyAll()?
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estions?
ed any instance 

ested monitor 

 violate?
 semaphores (in 

res?
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Can you answer these qu
✎ Why doesn’t SimpleConditionObject ne

variables?
✎ What is the easiest way to avoid the n

problem?
✎ What assumptions do nested monitors
✎ How can the obvious implementation of

Java) violate fairness?
✎ How would you implement fair semapho
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timism
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10. Fairness and Op

❑ Concurrently available methods
☞ Priority
☞ Interception
☞ Readers and Writers

❑ Optimistic methods

Selected material © Magee and Kramer
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de concurrently 
le and disable 
unning methods.

 different threads. 
terdependent, so 
al exclusion. 
r some methods by 

ntal or malicious 
er holding its lock. 
ly make host objects 
 problems. 
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Pattern: Concurrently Availa
Intent: Non-interfering methods are ma
available by implementing policies to enab
methods based on the current state and r
Applicability

❑ Host objects are accessed by many
❑ Host services are not completely in

need not be performed under mutu
❑ You need to improve throughput fo

eliminating nonessential blocking.
❑ You want to prevent various accide

starvation due to some client forev
❑ Full synchronization would needless

prone to deadlock or other liveness
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sign steps
hanism by: 

ly?
hod is invoked?
 tasks?

d enforce policy. 

lic messages and 
ate conditions to 
rform the actions.
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Concurrent Methods — de
Layer concurrency control policy over mec
Policy Definition: 

❑ When may methods run concurrent
❑ What happens when a disabled met
❑ What priority is assigned to waiting

Instrumentation: 
❑ Define state variables to detect an

Interception: 
❑ Have the host object intercept pub

then relay them under the appropri
protected methods that actually pe
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 instance variables). 
st, price, or urgency. 
me condition. 
ed to a queue. 
aiting task will 

letion of each task. 
h task. 
sks. 
pleted. 
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Priority
Priority may depend on any of:

❑ Intrinsic attributes of tasks (class &
❑ Representations of task priority, co
❑ The number of tasks waiting for so
❑ The time at which each task is add
❑ Fairness — guarantees that each w

eventually run. 
❑ Expected duration or time to comp
❑ The desired completion time of eac
❑ Termination dependencies among ta
❑ The number of tasks that have com
❑ The current time. 
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finitions of fairness:
ly makes a 
d.
equest infinitely 

quest, it will be 
s granted the 

s makes a 
hat of any 
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Fairness
There are subtle differences between de
Weak fairness: If a process continuous

request, eventually it will be grante
Strong fairness: If a process makes a r

often, eventually it will be granted.
Linear waiting: If a process makes a re

granted before any other process i
request more than once.

FIFO (first-in first out): If a proces
request, it will be granted before t
process making a later request.
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t of immutable 
imply relays all 
nized methods.

 class, split the 
th subsets of 

s contain 
g calls to non-
form the 
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Interception
Interception strategies include:
Pass-Throughs: The host maintains a se

references to helper objects and s
messages to them within unsynchro

Lock-Splitting: Instead of splitting the
synchronization locks associated wi
the state.

Before/After methods: Public method
before/after processing surroundin
public methods in the host that per
services. 
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Writers
urrency control 
accessors) may 
ters” (mutative, 
ive access..

()

ite()

Writer1 Writer2
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Concurrent Reader and 
“Readers and Writers” is a family of conc
designs in which “Readers” (non-mutating 
concurrently access resources while “Wri
state-changing operations) require exclus

read()
write

read()

read()

wr

Reader1 Reader2 Host
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seRead,

DER )

TER )
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Readers/Writers M
We are interested only in capturing who g
set Actions = { acquireRead, relea
acquireWrite, releaseWrite}

READER = (
-> examine
-> -> REA

  +Actions \{examine}.

WRITER = ( acquireWrite
-> modify
-> releaseWrite -> WRI

+Actions \{modify}.

acquireRead

releaseRead
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col
imum readers
imum writers

 =

aders+1][writing]
aders-1][writing]

aders][True]
aders][False]
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A Simple RW Proto
const Nread = 2 // Max
const Nwrite = 2 // Max

RW_LOCK = RW[0][False],
RW[readers:0..Nread][writing:Bool]
( when (!writing) 

acquireRead -> RW[re
| releaseRead -> RW[re
| when (readers==0 && !writing) 

acquireWrite -> RW[re
| releaseWrite -> RW[re
).
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s

DING[1] 
TING ),

DING[i+1]
DING[i-1]
E_RW

E_RW ).
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Safety propertie
We specify the safe interactions:
property SAFE_RW =
( acquireRead -> REA
| acquireWrite -> WRI

READING[i:1..Nread] = 
( acquireRead -> REA
| when(i>1) releaseRead -> REA
| when(i==1) releaseRead -> SAF
),

WRITING = ( releaseWrite -> SAF
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...

_RW).
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Safety properties 
And compose them with RW_LOCK:
||READWRITELOCK = (RW_LOCK || SAFE
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d Writers
 with the protocol 

LOCK).
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Composing the Readers an
We compose the READERS and WRITERS
and check for safety violations:

||READERS_WRITERS =
( reader[1..Nread]:READER 
|| writer[1..Nwrite]:WRITER 
|| {reader[1..Nread],

writer[1..Nwrite]}::READWRITE

No deadlocks/errors
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s

Read,
te}. 
er[i].acquireWrite
er[i].acquireRead
2

releaseRead,
eleaseRead}
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Progress propertie
We similarly specify liveness properties:
||RW_PROGRESS = READERS_WRITERS 

>>{reader[1..Nread].release
writer[1..Nread].releaseWri

progress WRITE[i:1..Nwrite] = writ
progress READ[i:1..Nwrite] = read
Progress violation: WRITE.1 WRITE.
Trace to terminal set of states:
reader.1.acquireRead tau

Actions in terminal set:
{reader.1.acquireRead, reader.1.
reader.2.acquireRead, reader.2.r
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Starvation
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 Readers even if a 

rs decreases

iting for a Writer to 
?
dom? Alternate? 
ers finish.

thout having to give 
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Readers and Writers P
Individual policies must address:

❑ Can new Readers join already active
Writer is waiting?
☞ if yes, Writers may starve
☞ if not, the throughput of Reade

❑ If both Readers and Writers are wa
finish, which should you let in first
☞ Readers? A Writer? FCFS? Ran
☞ Similar choices exist after Read

❑ Can Readers upgrade to Writers wi
up access? 
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 waiting Writers. 

threads 

ay to implement 
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Policies ...
A typical set of choices:

❑ Block incoming Readers if there are

❑ “Randomly” choose among incoming 
(i.e., let the scheduler choose).

❑ No upgrade mechanisms.

Before/after methods are the simplest w
Readers and Writers policies.
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xample

; // zero or more
; // zero or one
;

0;

// define in
; // subclass

0

© O. Nierstrasz — U. Berne

Readers and Writers e
Implement state tracking variables

public abstract class RWVT {
protected int 
protected int activeWriters_ = 0
protected int 
protected int waitingWriters_ = 

protected abstract void read_();
protected abstract void write_()

...

activeReaders_ = 0

waitingReaders_ = 
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er methods

ronized
access
 service
 access
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Readers and Writers e
Public methods call protected before/aft
...
public void read() { // unsynch

// obtain 
// perform
// release

}
public void write() {
beforeWrite();
write_();
afterWrite();

}
...

beforeRead();
read_();
afterRead();
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xample
tain state variables

reRead() {
le to subclasses

x) {}

rRead() { 

ders_;
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Readers and Writers e
Synchronized before/after methods main
...
protected  void befo

; // availab
while (!allowReader())
try { ; }
catch (InterruptedException e

}
protected  void afte

}
...

synchronized
++waitingReaders_

wait()

--waitingReaders_; ++activeRea

synchronized
--activeReaders_; notifyAll();
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xample
 variables ...

 // default policy

ethods for Writers?
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Readers and Writers e
Different policies can use the same state
...
protected boolean allowReader() {
return  

}
...

✎ Can you define suitable before/after m

waitingWriters_ == 0 
&& activeWriters_ == 0;
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ack, they either 
ions. 

r retries.
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other objects, they 
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act, delaying 
s ruled out.
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Pattern: Optimistic Me
Intent: Optimistic methods attempt act
state in case of interference. After rollb
throw failure exceptions or retry the act

Applicability
❑ Clients can tolerate either failure o

☞ If not, consider using guarded m
❑ You can avoid or cope with livelock.
❑ You can undo actions performed be

☞ Rollback/Recovery: undo effect
action. If messages are sent to 
must be undone with “anti-mess

☞ Provisional action: “pretend” to 
commitment until interference i
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sign steps
so that it can be 

olding values of all 

ake it mutable (allow 
dditionally include a 
tifier) field or even 

 version number, in 
o take as arguments 
s of these variables.
t state. 
...
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Optimistic Methods — de
Collect and encapsulate all mutable state 
tracked as a unit:

❑ Define an immutable helper class h
instance variables.

❑ Define a representation class, but m
instance variables to change), and a
version number (or transaction iden
a sufficiently precise time stamp. 

❑ Embed all instance variables, plus a
the host class, but define commit t
all assumed values and all new value

❑ Maintain a serialized copy of objec
❑ Various combinations of the above 
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.
etects version 
od of the form: 
code sketch
immutable values

t)

;e_ == assumed)
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Detect failure ..
Provide an operation that simultaneously d
conflicts and performs updates via a meth
class Optimistic { // 
private State currentState_; // 

 boolean
commit(State assumed, State nex

{
boolean success = 

return success;
}

}

synchronized

(currentStat
if (success) 
currentState_ = next;
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.
 method as follows:

 optimistically

utNotChangingIt();
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Detect failure ..
Structure the main actions of each public

State ;
State next = ... // compute

else
otherActionsDependingOnNewStateB

assumed = currentState()

if (!commit(assumed, next))
rollback();
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..
ith commit failures: 

ilure that tells a 

succeeds. 

es, or until a timeout 
n. 

d methods which 
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Handle conflicts .
Choose and implement a policy for dealing w

❑ Throw an exception upon commit fa
client that it may retry. 

❑ Internally retry the action until it 

❑ Retry some bounded number of tim
occurs, finally throwing an exceptio

❑ Pessimistically synchronize selecte
should not fail.
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..
s 

erproductive!

l threads have 
scheduler at least 
iting tasks (which it 
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Ensure progress .
Ensure progress in case of internal retrie

❑ Immediately retrying may be count

❑ Yielding may only be effective if al
reasonable priorities and the Java 
approximates fair choice among wa
is not guaranteed to do)!

❑ Limit retries to avoid livelock



CP — Titech Winter 2001 238.

Fairness and Optimism

Counter

(MIN);

dc);
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An Optimistic Bounded 
public class BoundedCounterVOPT

implements BoundedCounter
{
protected Long count_ = new Long
protected  boolean
commit(Long oldc, Long newc)

{
boolean success = (count_ == ol

}
...

synchronized

if (success) count_ = newc;
return success;
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Counter

nt_.longValue(); }

d busy-wait!
ongValue();
Long(v+1)))

);
© O. Nierstrasz — U. Berne

An Optimistic Bounded 
...
public long value() { return cou
public void inc() { 
for (;;) { // thinly disguise
Long c = count_; long v = c.l

// is there another thread?!
}

}
...

if (v < MAX && commit(c, new 
break;

Thread.currentThread().yield(
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stic methods?
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What you should kn
✎ What criteria might you use to priorit
✎ What are different possible definition
✎ What are readers and writers problem
✎ What difficulties do readers and write
✎ When should you consider using optimi
✎ How can an optimistic method fail? Ho

failure?
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pgrading readers to 

ava) scheduler 
al section?
s of encapsulating 
ethods?
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Can you answer these qu
✎ When does it make sense to split locks
✎ When should you provide a policy for u

writers?
✎ What are the dangers in letting the (J

choose which writer may enter a critic
✎ What are advantages and disadvantage

synchronization conditions as helper m
✎ How can optimistic methods livelock?
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11. Lab session 

The lab exercises will be available on the 

matsu-www.is.titech.ac.jp/~o

http://matsu-www.is.titech.ac.jp/~oscar/cp/
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12. Architectural St
Concurrency

Overview
❑ What is Software Architecture?
❑ Three-layered application architect
❑ Flow architectures

☞ Active Prime Sieve
❑ Blackboard architectures

☞ Fibonacci with Linda
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rchitecture: 
line, Prentice-Hall, 

ted Software 
rns, John Wiley, 

Java — Design 
eries, Addison-

o Write Parallel 
s, Cambridge, 1990. 
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Sources
❑ M. Shaw and D. Garlan, Software A

Perspectives on an Emerging Discip
1996.

❑ F. Buschmann, et al., Pattern-Orien
Architecture — A System of Patte
1996. 

❑ D. Lea, Concurrent Programming in 
principles and Patterns, The Java S
Wesley, 1996. 

❑ N. Carriero and D. Gelernter, How t
Programs: a First Course, MIT Pres
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nization.

ecture, pp. 3, 19
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Software Architect
A Software Architecture defines a sy
computational components and intera
those components.

An Architectural Style defines a fam
terms of a pattern of structural orga

— cf. Shaw & Garlan, Software Archit
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le
kinds of properties:

 and “sinks”
nstrain compositions
nate in a linear 

m its input stream 
tream
rmed
”, no deadlock can 
ss in tandem
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Architectural sty
Architectural styles typically entail four 

❑ A vocabulary of design elements
☞ e.g., “pipes”, “filters”, “sources”,

❑ A set of configuration rules that co
☞ e.g., pipes and filters must alter

sequence
❑ A semantic interpretation

☞ e.g., each filter reads bytes fro
and writes bytes to its output s

❑ A set of analyses that can be perfo
☞ e.g., if filters are “well-behaved

occur, and all filters can progre
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les
red Variables
esses communicate 
ectly.

licit synchronization 
hanisms are needed.

P2
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Communication Sty
Sha
Proc
indir
Exp
mec

Message-Passing
Communication and 
synchronization are 
combined.

P1 P2 P3

P1

P3
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ssing
es can be simulated 

ciating message 

s
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Simulated Message-Pa
Most concurrency and communication styl
by one another:

Message-passing can be modelled by asso
queues to each process.

Unsynchronized object

Synchronized objects
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rchitectures

onitor problems by 
 layer.
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Three-layered Application A

This kind of architecture avoids nested m
restricting concurrency control to a single

Interaction with external world
Generating threads

Concurrency control
Locking, waiting, failing

Basic mechanisms
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Designs
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nformation
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.g., message history)

nt layers may 

urrent policy
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Problems with Layered 
Hard to extend beyond three layers beca

❑ Control may depend on unavailable i
☞ Because it is not safely accessib
☞ Because it is not represented (e

❑ Synchronization policies of differe
conflict 
☞ E.g., nested monitor lockouts

❑ Ground actions may need to know c
☞ E.g., blocking vs. failing
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s
ided by arranging 
e direction from 

e connected in a 

by sensors, 
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ts flow through 
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Flow Architecture
Many synchronization problems can be avo
things so that information only flows in on
sources to filters to sinks.

Unix “pipes and filters”: Processes ar
linear sequence.

Control systems: events are picked up 
processed, and generate new event

Workflow systems: Electronic documen
workflow procedures.



CP — Titech Winter 2001 252.

Architectural Styles for Concurrency
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 word on one line

f each word
erical order
ult
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Unix Pipes
Unix pipes are bounded buffers that conn
consumer processes (sources, sinks and fi

cat file # send file contents 
| tr -c ’a-zA-Z’ ’\012’ # put each
| sort # sort the words
| uniq -c # count occurrences o
| sort -rn # sort in reverse num
| more # and display the res
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“broken pipes”!

ed by the O/S.

e I/O system 
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Unix Pipes
Processes should read from standard inpu
standard output streams:

❑ Misbehaving processes give rise to 

Process creation and scheduling are handl

Synchronization is handled implicitly by th
(through buffering).
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r or both:

ple successors
ltiple consumers
gst consumers

tiple predecessors
 single consumer
t to produce a single 

essors and 
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Flow Stages
Every flow stage is a producer or consume

❑ Splitters (Multiplexers) have multi
☞ Multicasters clone results to mu
☞ Routers distribute results amon

❑ Mergers (Demultiplexers) have mul
☞ Collectors interleave inputs to a
☞ Combiners process multiple inpu

result

❑ Conduits have both multiple predec
consumers
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ixture:
sults from Producers
ults to Consumers

t push-based stages
ffers) connect pull-

) push-based stages 

ke Consumer
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Flow Policies
Flow can be pull-based, push-based, or a m

❑ Pull-based flow: Consumers take re
❑ Push-based flow: Producers put res
❑ Buffers:

☞ Put-only buffers (relays) connec
☞ Take-only buffers (pre-fetch bu

based stages
☞ Put-Take buffers connect (adapt

to pull-based stages

Producer buffer
put

ta
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faster than 
ailable memory

hreads can 
ckly than 

ays full or 
 speed of 

ge than bounded 
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Limiting Flow
Unbounded buffers: If producers are 

consumers, buffers may exhaust av

Unbounded threads: Having too many t
exhaust system resources more qui
unbounded buffers

Bounded buffers: Tend to be either alw
always empty, depending on relative
producers and consumers

Bounded thread pools: Harder to mana
buffers
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ime Sieve
, pass on candidates, 

get()

ctivePrime(5)

ActivePrime(7)
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Example: a Pull-based Pr
Primes are agents that reject non-primes
or instantiate new prime agents:

4

5

3

6

5

7 7

8

get()

new

new

new

get()

get()

ActivePrime(2)TestForPrime

ActivePrime(3)

A
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fers
o feed values to the 

 2, gets values from 
ime instances 

5
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Using Put-Take Buf
Each ActivePrime uses a one-slot buffer t
next ActivePrime.

The first ActivePrime holds the seed value
a TestForPrime, and creates new ActivePr
whenever it detects a prime value.

72... 10 9 8 3



CP — Titech Winter 2001 259.

Architectural Styles for Concurrency

tial configuration

rgs[]) {

 n) {

ForPrime(n));
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The PrimeSieve
The main PrimeSieve class creates the ini
public class PrimeSieve {
public static void main(String a
genPrimes(1000); 

}
public static void genPrimes(int
try {
ActivePrime firstPrime =

} catch (Exception e) { }
}

}

new ActivePrime(2, new Test
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urces
IntSource:
; }
ource {

ue = max;

t synched!
urn nextValue++; }
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Pull-based integer so
Active primes get values to test from an 
interface IntSource { int getInt()
class TestForPrime implements IntS
private int nextValue;
private int maxValue;
public TestForPrime(int max) {
this.nextValue = 3; this.maxVal

}
public int getInt() { // no
if (nextValue < maxValue) { ret
else { return 0; }

}
}
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ass
ource

 {
me; // shared
s prime
 square
s to test
pass values on

ource
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The ActivePrime Cl
ActivePrimes themselves implement IntS

class ActivePrime 
extends Thread 

private  IntSource lastPri
private int value; // thi
private int square; // its
private IntSource intSrc; // int

// to 
...

implements IntS
static

private Slot slot;
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ass

tSource intSrc) 

rivate
chronized (safe!)
e active

ed out of order!
© O. Nierstrasz — U. Berne

The ActivePrime Cl
...
public ActivePrime(int value, In
throws ActivePrimeFailure

{
this.value = value;
...

 // NB: p
// unsyn
// becom

}
...

It is impossible for primes to be discover

slot = new Slot();
lastPrime = this;
this.start();
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s ...

 // may block

 // may block
intValue();

Slot class.
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The ActivePrime Clas
...
public int value() {
return this.value;

}
 void putInt(int val) {

(new Integer(val));
}
public int getInt() {
return ((Integer) ).

}
...

The only synchronization is hidden in the 

private
slot.put()

slot.get()
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s ...

; // may block
// stop

{ // got a prime

;
ak; } // exit loop
value) > 0) {

// may block

// may block

// stop next

)

, lastPrime)
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The ActivePrime Clas
public void run() {
int testValue = 
while (testValue != 0) {
if (this.square > testValue) 
try {

} catch (Exception e) { bre
} else if ((testValue % this.

;
}
testValue = ;

}
putInt(0);

}

intSrc.getInt(

new ActivePrime(testValue

this.putInt(testValue)

intSrc.getInt()
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ures
ization in a 
xchange messages.

, but post messages 
 either by reading 
r by posing a query 
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Blackboard Architect
Blackboard architectures put all synchron
“coordination medium” where agents can e

Agents do not exchange messages directly
to the blackboard, and retrieve messages
from a specific location (i.e., a channel), o
(i.e., a pattern to match).

?
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Result Parallelism
Result parallelism is a blackboard architec
workers produce parts of a more complex

Workers may be arranged hierarchically .
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 which workers 
ard, and may 

verything is done.
itrary tasks.
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Agenda Parallelism
Agenda parallelism is a blackboard style in
retrieve tasks to perform from a blackbo
generate new tasks to perform.

Workers repeatedly retrieve tasks until e
Workers are typically able to perform arb
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ach worker is 

ge-passing, and are 
th each specialist 
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Specialist Paralleli
Specialist parallelism is a style in which e
specialized to perform a particular task.

Specialist designs are equivalent to messa
often organized as flow architectures, wi
producing results for the next specialist t
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 which can contain:
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re evaluated and 
© O. Nierstrasz — U. Berne

Linda
Linda is a coordination medium, with assoc
coordinating concurrent processes, that c
existing programming language.

The coordination medium is a tuple-space,

❑ data tuples — tuples of primitives v
strings ...)

❑ active tuples — expressions which a
eventually turn into data tuples
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 (non-blocking)
”, 35000)

ching S (blocking)
, ?salary)

 (blocking)

blocking)

ace
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Linda primitives
Linda’s coordination primitives are:
out(T) output a tuple T to the medium

e.g., out(“employee”, “pingu
in(S) destructively input a tuple mat

e.g., in(“employee”, “pingu”
rd(S) non-destructively input a tuple
inp(S)
rdp(S)

try to input a tuple
report success or failure (non-

eval(E) evaluate E in a new process
leave the result in the tuple sp
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ci
i numbers with Linda:

non-blocking

non-blocking

; // asynch
blocks

fibn) == True

2))
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Example: Fibonac
A (convoluted) way of computing Fibonacc
int fib(int n) {
if ( ) // 
return fibn;

if (n<2) {
; // 

return 1;
}

; // 
return(fibn);

} // Post-condition: rdp(“fib”,n,?

rdp("fib", n, ?fibn)

out(“fib”, n, 1)

eval("fib", n, fib(n-1) + fib(n-
rd("fib", n, ?fibn)
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ci

fib(4)+fib(3))
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Evaluating Fibonac

eval(“fib”,5,

fib(5) rdp fails, so start eval
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fib(4)+fib(3))

ib(3)+fib(2))
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Evaluating Fibonac

rd(“fib”,5,?fn)

eval(“fib”,5,

fib(5)

eval(“fib”,4,f

fib(4)+fib(3)

blocks for result
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ci

fib(4)+fib(3))

ib(3)+fib(2))

fib(2)+fib(1))

fib(1)+fib(0))

ase level succeeds
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Evaluating Fibonac

rd

rd

rd(“fib”,5,?fn)

rd

eval(“fib”,5,

fib(5)

fib(4)+fib(3)

eval(“fib”,4,f

eval(“fib”,3,

fib(3)+fib(2)

eval(“fib”,2,
fib(2)+fib(1)

(“fib”,1,1)
fib(1)+fib(0) b
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ci

fib(4)+fib(3))

ib(3)+fib(2))

fib(2)+fib(1))

”,2,2)

(“fib”,0,1)

assive tuple
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Evaluating Fibonac

rd

rd

rd(“fib”,5,?fn)

rd

eval(“fib”,5,

fib(5)

fib(4)+fib(3)

eval(“fib”,4,f

eval(“fib”,3,

fib(3)+fib(2)

(“fib
fib(2)+fib(1)

(“fib”,1,1)

eval yields p
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ci

fib(4)+fib(3))

ib(3)+fib(2))

fib(2)+fib(1))

”,2,2)

(“fib”,0,1)
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Evaluating Fibonac

rd

rd(“fib”,5,?fn)

rd

eval(“fib”,5,

fib(5)

fib(4)+fib(3)

eval(“fib”,4,f

eval(“fib”,3,

fib(3)+fib(2)

(“fib
fib(2)+fib(1)

(“fib”,1,1)
cached values are reused
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”,2,2)

(“fib”,0,1)

,4,5)

”,3,3)

”,5,8)
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Evaluating Fibonac
fib(5)

(“fib

(“fib”,1,1)

(“fib”

(“fib

(“fib
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e the options and 
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 agenda parallelism?
f concurrent agents?
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What you should kn
✎ What is a Software Architecture?
✎ What are advantages and disadvantage

Architectures?
✎ What is a Flow Architecture? What ar

tradeoffs?
✎ What are Blackboard Architectures? W

and tradeoffs?
✎ How does result parallelism differ from
✎ How does Linda support coordination o
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rchitectures? 

n’t yet discussed?
e Sieve is correct? 
ill join the chain in 

hen we have multiple 

hreads on a 

urrent Fibonacci 
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Can you answer these qu
✎ How would you model message-passing
✎ How would you classify Client/Server a
✎ Are there other useful styles we have
✎ How can we prove that the Active Prim

Are you sure that new Active Primes w
the correct order?

✎ Which Blackboard styles are better w
processors?

✎ Which are better when we just have t
monoprocessor?

✎ What will happen if you start two conc
computations?
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13. Petri Nets

Overview
❑ Definition:

☞ places, transitions, inputs, outpu
☞ firing enabled transitions

❑ Modelling:
☞ concurrency and synchronization

❑ Properties of nets:
☞ liveness, boundedness

❑ Implementing Petri net models:
☞ centralized and decentralized s

Reference: J. L. Peterson, Petri Nets T
Modelling of Systems, Prentice Hal
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o bags of places)
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Petri nets: a defini
A Petri net C = 〈P,T,I,O〉 consists of:

1. A finite set P of places
2. A finite set T of transitions
3. An input function I: T → N P (maps t
4. An output function O: T → N P 

A marking of C is a mapping µ: P → N
Example:

P = { x, y }
T = { a, b }
I(a) = { x }, I(b) = { x, x }
O(a) = { x, y },O(b) = { y }
µ = { x, x }

x

b
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µ ≥ I(t)
: µ′ = µ - I(t) + O(t)

y

a

b

y

a

b

b

a

✄
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Firing transitions
To fire a transition t:

1. There must be enough input tokens: 
2. Consume inputs and generate output

x

y

a

b

x

y

a

b

x

x

y

a

b

x

a

b

x

y

a

b

b

a
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Modelling with Petri 

Petri nets are good for modelling:
❑ concurrency
❑ synchronization

Tokens can represent:
❑ resource availability
❑ jobs to perform
❑ flow of control
❑ synchronization conditions ...
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iring of transitions
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Concurrency
Independent inputs permit “concurrent” f
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lict
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Conflict
Overlapping inputs put transitions in conf

Only one of a or b may fire

a

b



CP — Titech Winter 2001 286.

Petri Nets

e
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Mutual Exclusion
The two subnets are forced to synchroniz
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Fork and Join
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mers
consumer
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Producers and Consu
producer
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Bounded Buffers

occupied 
slots

free 
slots
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edness

 C is the set of all 
arking µ.

 if places always hold 

es never hold more 

 number of tokens is 
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Reachability and Bound
Reachability:

❑ The reachability set R(C,µ) of a net
markings µ′ reachable from initial m

Boundedness:
❑ A net C with initial marking µ is safe

at most 1 token.
❑ A marked net is (k-)bounded if plac

than k tokens.
❑ A marked net is conservative if the

constant.
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ock

never fire.
eadlock.

c

b

y z

d? Are they live?
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Liveness and Deadl
Liveness:

❑ A transition is deadlocked if it can 
❑ A transition is live if it can never d

This net is both safe and 
conservative.
Transition a is deadlocked.
Transitions b and c are live.
The reachability set is {{y}, {z}}.

✎

a

x

Are the examples we have seen bounde
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rvative nets

b
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d
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Related Models
Finite State Processes

❑ Equivalent to regular expressions
❑ Can be modelled by one-token conse

The FSA for: a(b|c)*d
a
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s

odelled by FSPs?

{u, w}

b
{u, x}

a
c

{v, x}
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Finite State Net
Some Petri nets can be modelled by FSPs

✎ Precisely which nets can (cannot) be m

a

c

vu

xw b

{v, w}
a

b
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Zero-testing Net
Petri nets are not computationally comp

❑ Cannot model “zero testing”
❑ Cannot model priorities

A zero-testing net:
An equal number of
a and b transitions may fire
as a sequence during any
sequence of matching
c and d transitions.
(#a ≥ #b, #c ≥ #d)

a
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rces

itionally depend 

ted with each 
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Other Variants
There exist countless variants of Petri ne

Coloured Petri nets: Tokens are “colou
represent different kinds of resou

Augmented Petri nets: Transitions add
on external conditions

Timed Petri nets: A duration is associa
transition
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nets
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Applications of Petri 

Modelling information systems:
❑ Workflow
❑ Hypertext (possible transitions)
❑ Dynamic aspects of OODB design
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 current state of the 

e shared resources, 
okens.
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Implementing Petri 
We can implement Petri net structures in e
decentralized fashion:

Centralized:
❑ A single “net manager” monitors the

net, and fires enabled transitions.

Decentralized:
❑ Transitions are processes, places ar

and transitions compete to obtain t
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anager selects and 

ired in parallel.

e lead to?

deadlocked

 marking
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Centralized schem
In one possible centralized scheme, the M
fires enabled transitions.

Concurrently enabled transitions can be f

✎ What liveness problems can this schem

Identify enabled

Select and fire
found some got new

Net Manager

transitions

transitions
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rocesses and tokens 

-per-message 
ed more than once if 

b

y

get()
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Decentralized schem
In decentralized schemes transitions are p
are resources held by places:

Transitions can be implemented as thread
gateways so the same transition can be fir
enough tokens are available.

x y

a b
a

x
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t processes, and x 
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Transactions
Transitions attempting to fire must grab t
an atomic transaction, or the net may dea
there are enabled transitions!

If a and b are implemented by independen
and y by shared resources, this net can d
b is enabled if a (incorrectly) grabs x and

a

b

x y
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the entire net as a 

g transitions.
 distributed setting?
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Coordinated interac
A simple solution is to treat the state of 
single, shared resource:

After a transition fires, it notifies waitin
✎ How could you refine this scheme for a

a

b

x y

a b

get()
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ynchronization?
? How can you 

led by finite state 

ri net deadlock even 

y is it a good idea to 
sage gateways”?
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What you should kn
✎ How are Petri nets formally specified?
✎ How can nets model concurrency and s
✎ What is the “reachability set” of a net

compute this set?
✎ What kinds of Petri nets can be model

processes?
✎ How can a (bad) implementation of a Pet

though there are enabled transitions?
✎ If you implement a Petri net model, wh

realize transitions as “thread-per-mes
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uaranteeing that a 
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 conservative? Live?
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tri net to make it 
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Can you answer these qu
✎ What are some simple conditions for g

net is bounded?
✎ How would you model the Dining Philos

Petri net? Is such a net bounded? Is it
✎ What could you add to Petri nets to m

complete?
✎ What constraints could you put on a Pe

fair?
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