Concurrent Programming

Prof. O. Nierstrasz
Tokyo Institute of Technology
Winter 2000/2001

1. Concurrent Programming

Goals of this course

Schedule

Introduction

Recommended reading
Concurrency

Parallelism

Why do we need concurrent programs?
Difficulties

Concurrency and atomicity

Safety

Liveness

Expressing Concurrency

Process Creation

Co-routines

Fork and Join

Cobegin/coend

Communication and Synchronization
Synchronization Techniques
Busy-Waiting

Semaphores

Programming with semaphores
Monitors

Programming with monitors

Problems with monitors

Path Expressions

Message Passing

Send and Receive

Remote Procedure Calls and Rendezvous
What you should know!

Table of Contents

O NON OO WN -~

W NNDNPNDNDNDNDNNNDNDNNDNNODN 2 & — — — — — — — -
O V00O NO O M WN—0O0VIONO OO DdwWN-—O-O

Can you answer these questions?

2. Java and Concurrency

Modelling Concurrency
Finite State Processes

FSP — Action Prefix

FSP — Recursion

FSP — Choice

FSP — Non-determinism

FSP — Guarded actions
Java

Threads

SimpleThread FSP

Multiple Threads ...

Running the TwoThreadsDemo
FSP — Concurrency

FSP — Composition
java.lang.Thread (creation)
java.lang.Thread (methods)
jova.lang.Runnable
Transitions between Thread States
LTS for Threads

Creating Threads

Creating Threads ...

... And stopping them
Synchronization
Synchronized methods
Synchronized blocks

wait and notify
java.lang.Object

31

32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59

What you should know! 60 Immutability variants 92

Can you answer these questions? 61 Immutable classes — design steps 93
3. Safety and Synchronization 62 Design steps ... 94
Modelling interaction — shared actions 63 Pattern: Fully Synchronized Objects 95
Modelling interaction — handshake 64 Applicability ... 96
Modelling interaction — multiple processes 65 Full Synchronization — design steps 97
Safety problems 66 Design steps ... 98
Atomicity and interference 67 Design steps ... 99
Atomic actions 68 Example: a BalkingBoundedCounter 100
Sequential behaviour 69 Example: an ExpandableArray 101
Concurrent behaviour 70 Example ... 102
Locking 71 Bundling Atomicity 103
Synchronization 72 Using inner classes 104
Synchronization in Java 73 Pattern. Partial Synchronization 105
Busy-Wait Mutual Exclusion Protocol 74 Partial Synchronization — design steps 106
Atomic read and write 75 Example: LinkedCells 107
Modelling the busy-wait protocol 76 Example ... 108
Busy-wait composition 77 Pattern: Containment 109
Checking for errors 78 Applicability ... 110
Conditional synchronization 79 Contained Objects — design steps 11
Producer/Consumer composition 80 Design steps ... 112
Wait and notify 81 Managed Ownership 113
Slot (put) 82 Managed Ownership ... 114
Slot (get) 83 A minimal transfer protocol class 115
Producer in Java 84 What you should know! 116
Consumer in Java 85 Can you answer these questions? 117
Composing Producers and Consumers 86 5. Liveness and Deadlock 118
What you should know! 87 Safety revisited 119
Can you answer these questions? 88 Safety — property specification 120
4. Safety Patterns 89 Safety properties 121
Idioms, Patterns and Architectural Styles Q0 Safety properties 122

Pattern: Immutable classes 91 Liveness 123

Liveness Problems

Progress properties — fair choice
Progress properties

Progress properties

Progress analysis

Deadlock

Waits-for cycle

Deadlock analysis - primitive processes
The Dining Philosophers Problem
Deadlocked diners

Dining Philosophers, Safety and Liveness
Dining Philosophers ...

Modeling Dining Philosophers

Dining Philosophers Analysis
Eliminating Deadlock

Dining Philosopher Solutions

What you should know!

Can you answer these questions?

6. Liveness and Guarded Methods
Achieving Liveness
Pattern: Guarded Methods
Guarded Methods — applicability
Applicability ...
Guarded Methods — design steps
Step: Separate interface from policy
Step: Check guard conditions
Step: Check guard conditions ...
Step: Handle interrupts
Step: Signal state changes
Notify() vs notifyall()
Step: Structure nofifications
Encapsulating assignment

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

142
143
144
145
146
147
148
149
150
1561

162
163
154
156

Tracking State

Tracking State Variables
Delegating nofifications
Delegating notifications ...

What you should know!

Can you answer these questions?

7. Lab session |
8. Liveness and Asynchrony

Pattern: Asynchronous Invocations
Asynchronous Invocations — form
Asynchronous Invocations — design steps
Simple Relays — three variants
Variant: Direct invocations

Direct invocations ...

Variant: Thread-based messages
Thread-based messages ...
Thread-per-message Gateways
Variant: Command-based messages
Tail calls

Tail calls with new threads

Early Reply

Simulating Early Reply

Early Reply in Java

Futures

A Future Class

Using Futures in Java

What you should know!

Can you answer these questions?

. Condition Objects

Pattern: Condition Objects
Condition Objects — applicability
Condition Objects

168
169
161
162
163
164

165

166
167
168
169
171

172
173
174
175
176
177
178
179
180
181

182
183
184
185
186
187

188
189
190
191

A Simple Condition Object 192 Progress properties 224

The Nested Monitor problem 193 Starvation 225
The Nested Monitor problem ... 194 Readers and Writers Policies 226
The Nested Monitor problem ... 195 Policies ... 227
Nested Monitors in FSP 196 Readers and Writers example 228
Nested Monitors in FSP ... 197 Readers and Writers example 229
Nested Monitors in FSP ... 198 Readers and Writers example 230
Solving the Nested Monitors problem 199 Readers and Writers example 231
Solving Nested Monitors ... 200 Pattern: Optimistic Methods 232
Example solution 201 Optimistic Methods — design steps 233
Pattern: Permits and Semaphores 202 Detect failure ... 234
Permits and Semaphores — design steps 203 Detect failure ... 235
Design steps ... 204 Handle conflicts ... 236
Variants 205 Ensure progress ... 237
Semaphores in Java 206 An Optimistic Bounded Counter 238
Using Semaphores 207 An Opfimistic Bounded Counter 239
Using Semaphores ... 208 What you should know! 240
Using Semaphores ... 209 Can you answer these gquestions? 241
What you should know! 210 11. Lab session Il 242
Can you answer fhese questions? 211 12, Architectural Styles for Concurrency 243
10. Fairness and Optimism 212 Sources 244
Pattern: Concurrently Available Methods 213 Software Architecture 245
Concurrent Methods — design steps 214 Architectural style 246
Priority 215 Communication Styles 247
Fairness 216 Simulated Message-Passing 248
Interception 217 Three-layered Application Architectures 249
Concurrent Reader and Writers 218 Problems with Layered Designs 250
Readers/Writers Model 219 Flow Architectures 251
A Simple RW Protocol 220 Unix Pipes 252
Safety properties 221 Unix Pipes 253
Safety properties ... 222 Flow Stages 254

Composing the Readers and Writers 223 Flow Policies 255

Limiting Flow

Example: a Pull-based Prime Sieve
Using Put-Take Buffers

The PrimeSieve

Pull-based integer sources
The ActivePrime Class

The ActivePrime Class

The ActivePrime Class ...
The ActivePrime Class ...
Blackboard Architectures
Result Parallelism

Agenda Parallelism
Specialist Parallelism
Linda

Linda primitives

Example: Fibonacci
Evaluating Fibonacci
Evaluating Fibonacci
Evaluating Fibonacci
Evaluating Fibonacci
Evaluating Fibonacci
Evaluating Fibonacci
What you should know!
Can you answer these questions?

13. Petri Nets

Petri nets: a definition
Firing transitions
Modelling with Petri nets
Concurrency

Conflict

Mutual Exclusion

Fork and Join

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

280
281

282
283
284
285
286
287

Producers and Consumers
Bounded Buffers

Reachability and Boundedness
Liveness and Deadlock
Related Models

Finite State Nets

Zero-testing Nets

Other Variants

Applications of Petri nets
Implementing Petri nets
Centralized schemes
Decentralized schemes
Transactions

Coordinated interaction

What you should know!

Can you answer these questions?

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

1. Concurrent Programming

Lecturer |Prof. Oscar Nierstrasz

Assistant | Kentarou Fukuchi

WWW matsu-www.is.titech.ac.jp/~oscar/cp/

[0 D. Lea, Concurrent Programming in Java:
Design Principles and Patterns, Addison-

Texts Wesley, 1996

[0 J. Magee, J. Kramer, Concurrency: State
Models & Java Programs, Wiley, 1999

NB: Room change to W8-1008

http://matsu-www.is.titech.ac.jp/~oscar/cp/

Goals of this course

Introduce basic concepts of concurrency
(0 safety, liveness, fairness

Present tools for reasoning about concurrency
0 LTS, Petri nets

Learn the best practice programming techniques
0 idioms and patterns

Get experience with the techniques
0 lab sessions

— = e —_
RSB 00N OAWN!

10 -02
10 -16
10 -23
11 -06
11 -13
11 -20
11 -27
12 -04
12 -11

. 01-15
. 01-22
. 01-29
. 02-05
. 02-19

Schedule

Introduction

Concurrency and Java

Safety and Synchronization
Safety Patterns

Liveness and Deadlock
Liveness and Guarded Methods
Lab session

Liveness and Asynchrony
Condition Objects

Fairness and Optimism

Lab session

Architectural Styles for Concurrency
Petri Nets

Exam

Introduction

Overview
[0 Concurrency and Parallelism
O Applications
O Difficulties
[safety, liveness, non-determinism ...
Concurrent Programming Approaches
[Process creation

[0 Communication and synchronization
[0 Shared variables

[0 Message Passing Approaches

Recommended reading

G.R. Andrews, Concurrent Programming, Principles and
Practice, The Benjamin Cummings Publishing Co. Inc,
1991,

M. Ben-Ari, Principles of Concurrent and Distributed
Programming, Prentice Hall, 1990.

A. Burns, G. Davies, Concurrent Programming, Addison-
Wesley, 1993

N. Carriero, D. Gelernter, How to Write Parallel
Programs: a First Course, MIT Press, Cambridge, 1990.

Concurrency

[0 A sequential program has a single thread of control.
Its execution is called a process.

0 A concurrent program has multiple threads of control.
These may be executed as parallel processes.

Parallelism

A concurrent program can be executed by:

Multivroaramming: | Processes share one or more
prog g processors
. . each process runs on its own
Multiprocessing: P .
processor but with shared memory
o each process runs on its own
Distributed P
L processor connected by a network
processing.
to others

Assume only that all processes make positive finite progress.

Why do we need concurrent programs?

Reactive programming

[0 minimize response delay; maximize throughput
Real-time programming

0 process control applications

Simulation
0 modelling real-world concurrency

Parallelism
[speed up execution by using multiple CPUs

Distribution
[1 coordinate distributed services

Difficulties

But concurrent applications introduce complexity:

Safety
0 concurrent processes may corrupt shared data

Liveness
0 processes may "starve” if not properly coordinated

Non-determinism
[0 the same program run twice may give different results

Run-time overhead

[0 thread construction, context switching and
synchronization take time

Concurrency and atomicity

Programs P1 and P2 execute concurrently:

{ x=01}
P1: X 1= x+1
P2: X = X+2

{ x =71}

[J What are possible values of x after P1 and P2 complete?

[1 What is the intended final value of x?

Safety

Safety = ensuring consistency

A safety property says "nothing bad happens”

0 Mutual exclusion: shared resources must be updated
atomically

[0 Condition synchronization: operations may be delayed if
shared resources are in the wrong state

0 (e.g., read from empty buffer)

Liveness

Liveness = ensuring progress

A liveness property says "something good happens”

[0 No Deadlock: some process can always access a shared
resource

0 No Starvation: all processes can eventually access
shared resources

Expressing Concurrency

A programming language must provide mechanisms for:

Process creation
0 how do you specify concurrent processes?

Communication
0 how do processes exchange information?

Synchronization
0 how do processes maintain consistency?

CP — Titech Winter 2001

14.

Process Creation

Most concurrent languages offer some variant of the following:

[1 Co-routines

0 Fork and Join

[0 Cobegin/coend

@ O. Nierstrasz — U. Berne

Concurrent Programming

Co-routines

Co-routines are only pseudo-concurrent and require explicit
transfers of control.

Program P Coroutine A Coroutine B
| call A i |
| call B |
| | resume A
| resume B
l return

T |

Co-routines can be used to implement most higher-level
concurrent mechanisms.

Fork and Join

Fork can be used to create any number of processes:

Program P1 Program P2 Program P3

fork P2 i |
. fork P3 |
oin P2

|

Join waits for another process to terminate.

Fork and join are unstructured, so require care and discipline.

Cobegin/coend

Cobegin/coend blocks are better structured.

cobegin S1 || S2 || ... || Sn coend

but they can only create a fixed number of processes.

Main sl 52 53 54
] g g ; ;

=

The caller continues when all of the coblocks have terminated.

Communication and Synchronization

In approaches based on
a @ e shared variables, processes
communicate indirectly.

Explicit synchronization
Xy Z|... mechanisms are needed.

In message passing

approaches, communication X
and synchronization are

combined. Y
Communication may be
either synchronous or

asynchronous.

Synchronization Techniques

Different approaches are roughly equivalent in expressive
power and can be used to implement each other.

Procedure Busy-Waiting Message

Oriented Sem ;h es Oriented
'/- emaphore —\

Monitors Message Passing

Path Expressions
Remote Procedure Call

Operation Oriented
Each approach emphasizes a different style of programming.

Busy-Waiting

Busy-waiting is primitive but effective
Processes atomically set and test shared variables.

Condition synchronization is easy to implement:
[0 to signal a condition, a process sets a shared variable

O to wait for a condition, a process repeatedly tests the
variable

Mutual exclusion is more difficult to realize correctly and
efficiently.

Semaphores

Semaphores were introduced by Dijkstra (1968) as a higher-
level primitive for process synchronization.

A semaphore is a non-negative, integer-valued variable s with
two operations:

P(s): delays until s>0
then, atomically executes s := s-1

V(s) atomically executes s:= s+1

Programming with semaphores

Many problems can be solved using binary semaphores, which
take on values O or 1.

process P1 process P2
| oop | oop
P(mutex) { wants to enter } P(mut ex)
Critical Section Critical Section
V(mutex) { exits } V(nut ex)
Non-critical Section Non-critical Section
end end
end end

Monitors

A monitor encapsulates resources and operations that
manipulate them:

[0 operations are invoked like ordinary procedure calls
0 invocations are guaranteed to be mutually exclusive

0 condition synchronization is realized using wait and
signal primitives

0 there exist many variations of wait and signal ...

Programming with monitors

type buffer(T) = nonitor
var

slots : array [0..N1] of T,

head, tail 0..N1:
size : 0..N
notfull, notenpty:condition;

procedure deposit(p : T);

begi n

I f size = N then
notfull.wait

slots[tail] := p;
Size := size + 1;
tail := (tail+1) nod N,
not enpt y. si gnal

end

procedure fetch(var it : T);
begin
I f size = 0 then
not enpt y. wai t
It := slots[head];
Size :=size - 1;
head : = (head+1l) nod N
notful | . signal

end
begi n
size := 0;
head : = 0;
tail := 0;
end

Problems with monitors

Monitors are more structured than semaphores, but they are
still tricky to program:

0 Conditions must be manually checked
0 Simultaneous signal and return is not supported

A signalling process is temporarily suspended to allow waiting
processes to enter!

O Monitor state may change between signal and
resumption of signaller

0 Unlike with semaphores, multiple signals are not saved

0 Nested monitor calls must be specially handled to
prevent deadlock

Path Expressions

Path expressions express the allowable sequence of operations
as a kind of regular expression:

buffer : (put; get) *

Although they elegantly express solutions to many problems,
path expressions are too limited for general concurrent
programming.

Message Passing

Message passing combines communication and synchronization:

[The sender specifies the message and a destination
0 aprocess, a port, a set of processes, ...

0 The receiver specifies message variables and a source
[source may or may hot be explicitly identified

[0 Message transfer may be:
0 asynchronous: send operations never block
(0 buffered: sender may block if the buffer is full
[0 synchronous: sender and receiver must both be ready

Send and Receive

In CSP and Occam, source and destination are explicitly named:
PROC buffer(CHAN OF I NT give, take, signal)

SEQ

numtens :=0 ...
VH LE TRUE
ALT
numtens < size & give?thebuffer[inindex]
SEQ
numtens .= numtens + 1
I nindex := (inindex + 1) REM si ze
numtens > 0 & signal ?any
SEQ
t ake! t hebuf f er[outi ndex]
numtens := numtens - 1

outindex := (outindex + 1) REM size

Remote Procedure Calls and Rendezvous

In Ada, the caller identity need not be known in advance:

task body buffer is ...
begin | oop
sel ect
when no of items < size =>
accept give(x : initem do
the buffer(in_index) := x;
end give;
no of items := no of itens + 1,
or
when no of itens > 0 =>
accept take(x : out item do
X := the buffer(out _index);

end t ake;
no of itens := no of itenms - 1,
end sel ect;

end | oop;

I N [Wy N W R W R B W R

What you should know!

Why do we need concurrent programs?

What problems do concurrent programs introduce?

What are safety and liveness?

What is the difference between deadlock and starvation?
How are concurrent processes created?

How do processes communicate?

Why do we need synchronization mechanisms?

How do monitors differ from semaphores?

In what way are monitors equivalent to message-passing?

T [O R O

Can you answer these questions?

What is the difference between concurrency and
parallelism?

When does it make sense to use busy-waiting?

Are binary semaphores as good as counting semaphores?
How could you implement a semaphore using monitors?
How would you implement monitors using semaphores?
What problems could nested monitors cause?

Is it better when message passing is synchronous or
asynchronous?

2. Java and Concurrency

Overview
[0 Modelling Concurrency
[Finite State Processes
[0 Labelled Transition Systems
[0 Java
0 Thread creation
0 Thread lifecycle
0 Synchronization

Selected material © Magee and Kramer

Modelling Concurrency

Because concurrent systems are non-deterministic, it can be
difficult to build them and reason about their properties.

A model is an abstraction of the real world that makes it easier
to focus on the points of interest.

Approach:
Model concurrent systems as sets of sequential
finite state processes

Finite State Processes

FSPis a textual notation for specifying a finite state process:
SWTCH = (on -> off-> SWTCH).

LTS is a graphical notation for interpreting a processes as a
labelled transition system:

ulil

SWTCH (ED

off

The meaning of a process is a set of possible traces:
on-off son-off son-off ~on-off -on ...

FSP — Action Prefix

If x is an action and P a process then (x- > P) is a process that
initially engages in the action x and then behaves like P.

ONESHOT = (once -> STOP).

Once

_—

- ————."‘————______
./ \GD terminating process

Convention:

0 Processes start with UPPERCASE, actions start with
lowercase.

FSP — Recursion

Repetitive behaviour uses recursion:

SWTCH = OFF,
OFF = (on -> ON),
ON = (of f-> OFF).

FSP — Choice

If x and y are actions then (x->P | y->Q is a process which
initially engages in either of the actions x ory.

If x occurs, the process then behaves like P; otherwise, if y
occurs, it behaves like Q.

DRINKS = (red ->coffee -> DRI NKS blue
| bl ue->tea -> DRI NKS ot

).
o
[1 What are the possible traces of

DRINKS? coffes

1ea

FSP — Non-determinism

(x->P | x->Q performs x and then behaves as either P or Q

CON = (toss -> heads -> CON
| toss ->tails -> CON

).

1033

FSP — Guarded actions

(when B x->P | y->Q means that when the guard B is true
then either x or y may be chosen;

otherwise if B is false then only y may be chosen.

COUNT (N=3)
COUNT[i : 0. . N

COUNT[0] ,

(when(i<N) Inc->COUNT[I +1]
| when(i>0) dec->COUNT[I - 1]
).

ine ine ine

SN

dec deq dec

Java

Syntax resembles C++; semantics resembles Smalltalk:
0 Strongly-typed, concurrent, “pure” object-oriented
0 Single-inheritance but multiple subtyping
0 Automatic garbage collection

Innovation in support for network applications:
[0 Standard APIs for concurrency, network interaction
0 Classes can be dynamically loaded over network
0 Security model protects clients from malicious objects

Java applications do not have to be installed by users

Threads

A Java Thread has a I un method defining its behaviour:
cl ass Sinpl eThread extends Thread {
public SinpleThread(String str) {
super(str); [/ Call Thread constructor
}
public void run() { [/ What the thread does
for (int 1=0; 1<5; 1++) {
Systemout.printin(i +" " + getNanme()
try { sleep((int)(Math.randon()*1000))
} catch (InterruptedExceptione) { } }
Systemout.println("DONE!l " + get Nanme());

J
}

? ;

SimpleThread FSP

SimpleThread can be modelled as a single, sequential, finite
state process:

Sinple = ([1]->[2]->[3]->[4]-> done-> STCP).
©» @ & @ &
Or, more generically:
const N =5

Sinple
Print[n:1. .N|

Print[1],
(when(n<N) [n] -> Print[n+]]
| when(n==N) done -> STOP).

Multiple Threads ...

A Thread's run method is never called directly but is executed
when the Thread is started.

cl ass TwoThreadsDeno {
public static void main (String[] args) {
[/l Instantiate a Thread, then start it:
new Si npl eThread("Janmai ca").start()
new Si npl eThread("Fiji1").start();

J
}

Running the TwoThreadsDemo

In this implementation of Java, the

, , 0 Janmi ca
execution of the two threads is 0 Fijl
interleaved. 1 Jamaica

- 1 Fiji
[0 Thisis not guaranteedforall 2 Fiji
implementations! 3 Fiji
2 Jamail ca
[1 Why are the output lines never 4 Fiji
garblea? 3 Janai ca
DONE! Fij i
E.g. 4 Janal ca

0 Ja0 Fimgjiica DONE! Janai ca

FSP — Concurrency

We can relabel the transitions of Simple and concurrently
compose two copies of it:

| | TwoThr eadsDenp = (fiji:Sinple
|| jamaica:Sinple

).

fiji. 1 fiji. 2 fiji. 5 fiji. 4 fiji. done

jarmaica. 1 jamaica. 2 jamaica. 3 jarmaica. 4 jamaica.done

[1 What are all the possible traces?

FSP — Composition

If we restrict ourselves to two steps, the composition will have
hine states:

fiji. 1
fiji.1
jamaica. 1 jamaica.done fiji. 1 fiji.done fiji.done fiji. done

do e e e ow

jamaica. done jamaica.done jarmadca. 1 jarmaica. 1

java.lang.Thread (creation)

A Java thread can either inherit from java.lang.Thread, or
contain a Runnable object:

public class java.lang. Thread
extends | ava.l ang. Qbj ect
| npl enents j ava. | ang. Runnabl e
{
public Thread() :
publ i ¢ Thread(Runnabl e target):
(
(

publ i ¢ Thread(Runnable target, String nane);
public Thread(String nane);

java.lang.Thread (methods)

A thread must be created, and then started.:

public void run();

publ i ¢ synchroni zed void start();

public static void sleep(long mllis)
throws | nterruptedException;

public static void yield();

public final String getNane();

j..

NB: suspend(), resume() and stop() are now deprecated!

java.lang.Runnable

public interface java.lang. Runnabl e

{

public abstract void run();

}

Since Java does not support multiple inheritance, it is
impossible to inherit from both Thread and another class.

Instead, simply define:
class MyStuff extends Useful Stuff
| npl ements Runnable ...

and instantiate:
new Thread(new MyStuff);

Transitions between Thread States

-
T
hread vieldO
start() ' run() exits
¢ ’(Runnable)
sleep() time elapsed
wait() notify() or notifyAll()
block on I/0 I/0 completed
(No’r Runnable)

LTS for Threads

Thread = (start -> Runnable),
Runnabl e =

(yield -> Runnabl e

| {sleep, wait, blockio} -> NotRunnable
| stop -> STOP),
Not Runnabl e =

({awake, notify,

unbl ocki o} -> Runnable).

blockio

wradt
sleep

Creating Threads

This Clock applet uses a thread to update the time:
public class C ock
ext ends java. appl et. Appl et
| npl ement' s Runnabl e
{
Thread cl ockThread = nul|;
public void start() {
I f (clockThread == null) {
cl ockThread = new Thread(this, "d ock"):
cl ockThread. start():

}
VoL

Creating Threads ...

public void run() {
/] stops when clockThread is set to null
whi | e(Thread. current Thread() ==cl ockThr ead) {
repaint();
try { clockThread. sl eep(1000); }
catch (InterruptedException e){ }

}
}

... And stopping them

public void paint(Gaphics g) {
Dat e now = new Date();
g. drawst ri ng(now. get Hour s()
+ ":" + now. get M nut es()
+ ":" + now. get Seconds(), 5, 10);
}
[/ When the applet stops, stop its thread
public void stop() { clockThread = null; }

}

Be careful — Applets and Threads have strangely similar
interfaces!

Synchronization

Without synchronization, an arbitrary number of threads may
run at any time within the methods of an object.

0 Class invariant may not hold when a method starts!

[0 So can't guarantee any post-condition

A solution: consider a method to be a critical section which
locks access to the object while it is running.

This works as long as methods cooperate in locking and

unlocking access!

Synchronized methods

Either: declare an entire method to be synchronized with
other synchronized methods of an object:

public class PrintStreamextends FilterQutputStream/{

public synchronized void println(String s);
public synchroni zed void println(char c);

Synchronized blocks

Or: synchronize an individual block within a method with
respect o some object:

public Qoject aMethod() {
[/ unsynchroni zed code

synchroni zed(resource) { // Lock resource

} /1 unlock resource

wait and notify

Synchronization must sometimes be interrupted:
class Slot Inplenments Buffer {
private (oject slotVal;
public synchroni zed void put(Qoject val) {
while (slotval '=null) { // wait till enpty
try { wait(); }
catch (InterruptedException e) { }

}

sl otVal = val:
noti fyAll();
return:

java.lang.Object
wait() and notify() are methods rather than keywords:

public class java.lang. Obj ect

{

public final void wait()
throws | nterruptedException;

public final void notify();

public final void notifyAll();

OO OOOoOo0On

What you should know!

What are finite state processes?

How are they used to model concurrency?
What are traces, and what do they model?
How can the same FSP have multiple traces?
How do you create a new thread in Java?

What states can a Java thread be in?
How can it change state?

What is the Runnabl e interface good for?
What is a critical section?
When should you declare a method to be synchroni zed?

o 0O O O O

Can you answer these questions?

How would you specify an FSP that repeatedly performs
hel | o, but may stop at any time?

How many states and how many possible traces does the full
TwoThr eadsDeno FSP have?

When should you inherit from Thr ead?
How can concurrency invalidate a class invariant?

What happens if you call wai t ornotify outside a
synchronized method or block?

When is it better to use synchronized blocks rather than
methods?

How would you model synchronization in FSP?

3. Safety and Synchronization

Overview
[0 Modelling interaction in FSP
0 Safety — synchronizing critical sections
0 Locking for atomicity
0 The busy-wait mutual exclusion protocol
O Conditional synchronization
0 Slots in FSP

0 wait(), notify() and notifyAll()
[0 Slots in Java

Selected material © Magee and Kramer

Modelling interaction — shared actions

Actions that are common between two processes are shared
and can be used to model process interaction:

0 Unshared actions may be arbitrarily interleaved
[0 Shared actions occur simultaneously for all participants

MAKER
USER

(make -> ready -> MAKER).
(ready -> use -> USER).

| | MAKER USER = (MAKER || USER).

[1 What are the states of the LTS?
[1 The traces?

Modelling interaction — handshake

A handshake is an action that signals acknowledgement

MAKERV 2
USERv 2

make -> ready -> used -> MAKERvZ).
ready -> use -> used -> USERv2).

(
(
| | MAKER USERv2 = (MAKERv2 || USERv2).

[1 What are the states and traces of the LTS?

Modelling interaction — multiple processes

Shared actions can be used to synchronize multiple processes:

MAKE A = (makeA -> ready -> used -> MAKE A).
MAKE B = (nmakeB -> ready -> used -> MAKE B).
ASSEMBLE = (ready -> assenble -> used -> ASSEMBLE).

|| FACTORY = (MAKE A || MAKE B || ASSEMBLE).

[1 What are the states and traces of the LTS?

Safety problems

Objects must only be accessed when they are in a consistent
state, formalized by a class invariant.

- m1 consistent states
Each method assumes the class
invariant holds when it starts, incoming |
and it re-establishes it when requests
done. ol M3
If methods interleave m4
arbitrarily, an inconsistent state
may be accessed, and the object ms
may be left in a "dirty” state. methods

Where shared resources are updated may be a critical section.

Atomicity and interference

Consider the two processes:

{ x =0}
Al nc: X = X+1
Bl nc: X = X+t1

{ x =71}

[1 How can these processes interfere?

Atomic actions

Individual reads and writes may be atomic actions:
const N = 3
range T = 0..N
Var = Var|[0],
Var[u: T] = (read[u] -> Var [u]
| wite[v:T] -> Var[v]).
set VarAlpha = { read[T], wite[T] }

Inc =(read[v:0..N1]
-> write[v+]l]
-> STCP) +Var Al pha.

Sequential behaviour

A single sequential thread requires no synchronization:

wrrite .

Concurrent behaviour

Without synchronization, concurrent threads may interfere:

a.read. 0
a.read. 0
a.wte.]
boead O bowrdte.] armead.l a w2 b w1 A, write. a.wrie.l boead.
b wrte. 1
b.read. 0

({a,b}::Var || a:lnc || b:lnc) >we2

Locking

Locks are used to make a critical section atomic:
LOCK = (acquire -> release -> LOCK).
INC = (acquire
-> read[v:0..N1]
-> wWite[v+]]
-> rel ease
-> STCP) +Var Al pha.

read. 2

read. 1

A ire : : write. 1 release write. 2 write .3

00906000

a3e

release

Synchronization

Processes can synchronize critical sections by sharing a lock:

a.ang Mire

hacquire boread .0 b wrrite. 1 borelease a.acguive a.mead. 1 a write. 2 a.telease a.read .0 a.write. 1 a.releaseb acqguire boread . 1 bowrrite 2

QDT @WEHET® @i

b elease

({a,b}::VAR| | {a, b}::LOCK| |a: I NC | b: | NC)

Synchronization in Java

Java Threads also synchronize using locks:
synchronized T n() {
/[method body

}

is just convenient syntax for:
T) {
synchroni zed (this) {
[/ method body

}
}

Every object has a lock, and Threads may use them to
synchronize with each other.

Busy-Wait Mutual Exclusion Protocol

Pl setsenterl := true when it wants to enter its CS,

but setsturn := “P2” Yo yield priority to P2:
process Pl process P2
| oop | oop
enterl := true enter2 .= true
turn ;= “P2” turn ;= “Pl”
whil e enter2 and while enterl and
turn = “ P27 turn = “P1”
do skip do skip

Critical Section
enterl := fal se
Non-critical Section
end
end

Critical Section
enter2 := fal se
Non-critical Section
end
end

[J Is this protocol correct? Is it fair? Deadlock-free?

Atomic read and write

range T = 1..2

Var = Var[1],
. V, " T] =
We can model integer ar([ureid[u] > Var[]
and boolean variables | write[v:T] -> var[v]).
as processes with
atomic read and write set Bool = {true,fal se}
actions:
BOOL(Init="false) = BOOL[Init],
BOOL[b: Bool] =
(is[b] -> BOOL[b]

| set To[x: Bool] -> BOOL[X]).

Modelling the busy-wait protocol

Each process performs two actions in its CS:

Pl = (enterl.setTo['true]
-> turn.witef 2]
-> 1),
&l =
(enter2.is['false] -> CS1
| enter2.is['true] ->
(turn.read[1] -> CS1
| turn.read[2] -> 1)),
CSl =(a->0b
-> enterl.setTo['false]
-> P1).

P2 = (enter2.setTo['true]

-> turn.wite[1]

-> @2),
&2 =
(enterl.is['false] -> CS2
| enterl.is['true] ->

(turn.read[2] -> CS2

| turn.read[1l] -> d2)),
Cs2 =(c->d

-> enter2.setTo[' fal se]

-> P2).

|| Test = (enter1: BOOL||enter2: BOOL||turn:Var||Pl]|P2) @a,b,c, d}.

Busy-wait composition

13
tan

AT RL 5
GO0 e‘ezop wge;
\\&‘ ‘\‘»&‘«-

i S -
‘ 2 |
Tan,
d

Checking for errors

We can check for errors by composing our system with an
agent that moves to the ERROR state if atomicity is violated:

k= (a->(c->ERROR| b ->&)
| c->(a->ERROR| d -> &k)).

[N "SD"D"D"D"—————=1IT5A - busywait.lts =

[Edit || Results || Stop | Target

Mo deadlocks/errors

[J What happens if we break the protocol?

Conditional synchronization

A lock delays an acquire request if it is already locked:

LOCK = (acquire -> release -> LOCK).

Similarly, a one-slot buffer delays a put
request if it is full and delays a get
request if it is empty:

put.2

const N = 2

Slot = (put[v:0..N
-> get[V]
-> Slot).

Producer/Consumer composition

Producer = (put[0] poo el

Consuner

| | Chai n

-> put [1]
-> put [2]
-> Producer).

put.2

= (get[x:0..N| f:jilﬂn

-> Consuner). et 1

get.2

— (PI’ OdUCer put.d getd putl getl put2

1Sl ot DIOIOIOI0)

| | Consuner)

et 2

Wait and notify

A Java object whose methods are all synchronized behaves like
a monitor

Within a synchronized method or block:
[0 wait() suspends the current thread, releasing the lock
O notify() wakes up one thread waiting on that object
O notifyAll () wakes up all threads waiting on that object

Outside of a synchronized block, wai t () and notify() will
raise an | | | egal Moni t or St at eExcepti on

Alwaz’/s use notifyAll() unless you are sure it doesn't matter
which thread you wake up!

Slot (put)

class Slot inplements Buffer {
private (nject slotVal;

public synchroni zed voi d put(Qoject val) {
while (slotVal !'= null) {

try { wait(); } // beconme Not Runnabl e
catch (InterruptedException e) { }

}

sl otVal = val:

notifyAll(); // make waiting threads Runnabl e
return;

Slot (get)

public synchroni zed Cbject get() {
(bj ect rval;
while (slotVal == null) {

try { wait(); }

catch (InterruptedException e) { }
}

rval = sl ot Val;
slotVal = null;
noti fyAll();
return rval;

Producer in Java

The Producer puts _count messages to the slot:

cl ass Producer extends Thread {

protected int _count;
protected Buffer _slot;
Producer (String nang,

Buffer slot, int count) {

super (nane) ;

_slot = slot;

_count = count;

}

public void run() {
int i;
for (i=1;i<=_count;i++) {
this.action(i);
}
}

protected void action(int n) {
String nessage;
message = this.getName() + "("
+ String.valueO(n) +")";
_slot. put (nessage) ;
Systemout. println(get Name()
+ " put " + nessage);

Consumer in Java

... and the Consumer gets them:

cl ass Consuner extends Producer { // code reuse only!

Consuner (String nane, Buffer slot, int count) {
super (nane, slot, count);

}

protected void action(int n) {
String nessage;
message = (String) _slot.get();
Systemout.println(getName() + " got " + nessage);

}
}

Composing Producers and Consumers

Multiple producers and consumers may share the buffer:

(| lava Console

.pple put apple {1}
sterix got apple 1)

pUbl Ic static vol d nal n(St Ml ng ar gS[]) { range put orangefl)
belix got orangedl)

BUf f er Sl ot = new SI ot () , range put Dr‘unge{%}}

" n belix got orongelZ

new Producer ("apple ", slot, count).start(): Pple pat opple (2)

" " sterix got apple {2}

new Producer("orange", slot, count).start(); anana put bananati)

" " sterix got banana{l}

new Producer ("banana", slot, count).start(); range put orange(3

sterix got orange(3)
pple put apple {3}
sterix got apple {3}

new Consurrer (" aS'[erl X" y Sl Ot y Count) . St al"[() , anana put banana2)

n : n * belix got bananafz)

new Consuner ("obelix ", slot, 2*count).start(); range put orange(d)
belix got orangefd)

} pple put apple {4}

belix got apple {4}
pple put apple (52
belix got apple (52
range put orangefS)
belix got orange(S)
anana put banana{3}
belix got bananaf3)
anana put bananadd)
belix got bananadd)
anand put bananaS)
belix got bananafs)

O OO OO0o0omfb

What you should know!

How do you model interaction with FSP?

What is a critical section? What is critical about it?
Why don’t sequential programs need synchronization?
How do locks address safety problems?

What primitives do you need to implement the busy-wait
mutex protocol?

How can you use FSP to check for safety violations?

What happens if you callwait ornotify outside a
synchronized method or block?

When is it safe to usenotifyAl | () ?

oo O OO0 O

Can you answer these questions?

What is an example of an invariant that might be violated
by interfering, concurrent threads?

What constitute atomic actions in Java?

Can you ensure safety in concurrent programs without using
locks?

When should you use synchroni ze(t hi s) rather than
synchroni ze(sone(hj ect) ?

Is the busy-wait mutex protocol fair? Deadlock-free?
How would you implement a Lock class in Java?

Why is the Java Slot class so much more complex than the
FSP Slot specification?

4. Safety Patterns

Overview
0 Immutability:
0 avoid safety problems by avoiding state changes
O Full Synchronization:
O dynamically ensure exclusive access
O Partial Synchronization:
0 restrict synchronization to “critical sections”
[0 Containment:
0 structurally ensure exclusive access

Idioms, Patterns and Architectural Styles

Idioms, patterns and architectural styles express best
practice in resolving common design problems.

Idioms
"an implementation technigue”
Design patterns

"a commonly-recurring structure of communicating
components that solves a general design problem
within a particular context”

Architectural patterns

"a fundamental structural organization schema for
software systems”

Pattern: Immutable classes

Intent: Bypass safety issues by not changing an object's
state after creation.

Applicability
0 When objects represent values of simple ADTs
0 colours (java.awt.Color), numbers (java.lang.Integer)

0 When classes can be separated into mutable and
immutable versions

0 java.lang.String vs. java.lang.StringBuffer

0 When updating by copying is cheap
O “hello” +" "+ "world" - “hello world"

0 When multiple instances can represent the same value
0 i.e., two copies of 712 represent the same integer

Immutability variants

Variants
Stateless methods

0 methods that do not access an object’'s state do not
heed to be synchroni zed (can be declared st ati c)

0 any temporary state should be local to the method
Stateless objects

0 an object whose "state” is dynamically computed needs
no synchronization

"Hardening”
[object becomes immutable after a mutable phase
[0 expose to concurrent threads only after hardening

Immutable classes — design steps

Declare a class with instance variables that are never changed
after construction.

class Relay { Il helper for sone Server class
private final Server server_,;

Rel ay(Server s) { [l blank finals nust be

}

server = Ss; [l 1nitialized in all
/| constructors

void dolt() {

}
}

server _.dolt();

Design steps ...

Especially if the class represents an immutable data
abstraction (such as String), consider overriding
bj ect . equal s and bj ect . hashCode.

Consider writing methods that generate new objects of
this class.
(e.g., String concatenation)

Consider declaring the class as fi nal .

If only some variables are immutable, use
sz\nchroniza’rion or other techniques for the methods
that are not stateless.

Pattern: Fully Synchronized Objects

Intent: Maintain consistency by fully synchronizing all
methods. At most one method will run at any point in time.

Applicability
0 You want to eliminate all possible read/write and write/

write conflicts, regardless of the context in which it the
object is used.

O Allmethods can run to completionwithout waits, retries,
or infinite loops.

0 You do not need to use instances in a layered design in
which other objects control synchronization of this
class.

Applicability ...

0 You can avoid or deal with liveness failures, by:
0 Exploiting partial immutability
Removing synchronization for accessors
Removing synchronization in invocations
Arranging per-method concurrency

I I R R

Full Synchronization — design steps

[0 Declare all methods as synchroni zed

[0 Do not allow any direct access to state(i.e, no public
instance variables; no methods that return
references to instance variables).

[0 Constructors cannot be marked as synchroni zed in
Java. Use a synchronized block in case a constructor
passes t hi s to multiple threads.

[0 Methods that access st at i ¢ variables must either do
soviastati c synchroni zed methods or within blocks
of the form synchroni zed(getC ass()) { ... }.

Design steps ...

[0 Ensure that every publ i c method exits leaving the
object in a consistent state, even if it exits via an
exception.

[0 Keep methods short so they can atomically run to
completion.

Design steps ...

[0 State-dependent actions must rely on balking:

0 Return failure (i.e., exception) to client if
preconditions fail

0 If the precondition does not depend on state (e.q.,
just on the arguments), then check outside
synchronized code

0 Provide public accessor methods so that clients can
check conditions before making a request

Example: a BalkingBoundedCounter

public class Bal ki ngBoundedCounter {
protected | ong count = BoundedCounter.MN;, // between M N and MAX
public synchroni zed |ong value() { return count ; }
public synchroni zed void inc()
t hrows Cannot I ncrenment Exception {

i f (count_ >= BoundedCount er. MAX) [l if pre fails
t hrow new Cannot | ncrement Exception(); // throw exception
el se
++count _;
}
public synchronized void dec() ... { ... } [/ analogous

[J What safety problems could arise if this class were not
fully synchronized?

Example: an ExpandableArray

A simplified variant of java.util.Vector:

| nport java.util.NoSuchEl ement Excepti on;
public class Expandabl eArray {

protected (bject[] data_; /] the elenments
protected int size ; /] the nunmber of slots used
publ i c Expandabl eArray(int cap) {
data_ = new (bj ect[cap]; /| reserve some space
size = 0;
}

public synchronized int size() { return size_; }
public synchronized Cbject at(int i) // array indexing
t hrows NoSuchEl enent Exception {
It (i <0 || 1 >= size_
t hrow new NoSuchEl enent Excepti on();
el se
return data [i];

Example ...

public synchroni zed voi d append(Coject x) { /] add at end

I f (size_ >= data .length) { /'l need a bigger array
(bject[] olddata = data_; /] so increase ~50%
data_ = new (oject[3 * (size_+ 1) [2];
for (int i =0; I < size ; ++i)

data [i] = olddata[i];

}

data [size ++] = Xx;
}
public synchroni zed voi d renovelLast ()

t hrows NoSuchEl enent Exception {

i f (size_ == 0)

t hrow new NoSuchEl enent Excepti on();

el se
data [--size] = null;

Bundling Atomicity

[0 Consider adding synchronized methods that perform
sequences of actions as a single atomic action

public interface Procedure { // apply an operation to an object
public void apply(Object x);
}
public class Expandabl eArrayV2 extends Expandabl eArray {
publ i ¢ Expandabl eArrayV2(int cap) { super(cap); }
public synchroni zed void appl yToAl | (Procedure p) {
for (int i =0; i <size ; ++i) {
} p.apply(data_[i]);

}
}

[1 What possible liveness problems does this introduce?

Using inner classes

Use anonymous inner classes to pass procedures:

cl ass Expandabl eArrayUser {
public static void main(String[] args) {
Expandabl eArrayV2 a = new Expandabl eArrayV2(100);

for (int L =0; i < 100; ++i) [l fill it up
a. append(new I nteger(i));
a. appl yToAl | (new Procedure () { [l print all elenents

public void apply(Ooject x) {
Systemout. println(x);
}
}
)
}
}

NB: Any variables shared with the host object must be
declaredfinal (immutable).

Pattern: Partial Synchronization

Intent: Reduce overhead by synchronizing only within
‘critical sections”.

Applicability
0 When objects have both mutable and immutable
instance variables.

0 When methods can be split into a “critical section” that
deals with mutable state and a part that does not.

Partial Synchronization — design steps

O Fully synchronize all methods

0 Remove synchronization for accessors to atomic or
immutable values

0 Remove synchronization for methods that access
mutable state through a single other, already
synchronized method

0 Replace method synchronization by block
synchronization for methods where access to mutable
state is restricted to a single, critical section

Example: LinkedCells

public class LinkedCell {
prot ected doubl e val ue_; /1 NB:. doubles are not atom c!

protected final LinkedCell next _; /] fixed

public LinkedCell (double val, LinkedCell next) {

val ue_ = val; next_ = next;
}
public synchroni zed double value() { return value_; }
public synchroni zed voi d setVal ue(double v) { value = v; }
public LinkedCell next() { /1 not synched!
return next_; [l next _is immutable

}

}

public double sun() {
double v = val ue();
if (next() !'= null)
v += next().sum);
return v;

Example ...

/] add up all elenent val ues
/] get via synchroni zed accessor

}
public bool ean includes(double x) { /| search for x
synchroni zed(t his) { /] synch to access val ue
I f (value_ == Xx) return true;
}
I f (next() == null) return fal se;
el se return next().includes(x);
}

Pattern: Containment

Intent: Achieve safety by avoiding shared variables.
Unsynchronized objects are “contained” inside other objects
that have at most one thread active at a time.

Applicability
[0 There is no need for shared access to the embedded
objects.

[0 The embedded objects can be conceptualized as
exclusively held resources.

Applicability ...

0 Embedded objects must be structured as islands —
communication-closed sets of objects reachable only
from a single unique reference.

They cannot contain methods that reveal their
identities to other objects.

O You are willing to hand-check designs for compliance.

0 You can deal with or avoid indefinite postponements or
deadlocks in cases where host objects must transiently
acquire multiple resources.

Contained Objects — design steps

[0 Define the interface for the outer host object.

0 The host could be, e.g., an Adaptor, a Composite, or a
Proxy, that provides synchronized access to an
existing, unsynchronized class

[0 Ensure that the host is either fully synchronized, or is
in turn a contained object.

Design steps ...

[0 Define instances variables that are unigue references to
the contained objects.

[0 Make sure that these references cannot leak outside
the host!

0 Establish policies and implementations that ensure
that acquired references are really unique!

[0 Consider methods to duplicate or clone contained
objects, to ensure that copies are unique

Managed Ownership

[0 Model contained objects as physical resources:

O If you have one, then you can do something that you
couldn’t do otherwise.

O If you have one, then no one else has it.

0 If you give one to someone else, then you no longer
have it.

O If you destroy one, then no one will ever have it.

Managed Ownership ...

0 If contained objects can be passed among hosts, define
a transfer protocol.

[0 Hosts should be able to acquire, give, take, exchange
and forget resources

[0 Consider using a dedicated class to manage transfer

A minimal transfer protocol class

A simple buffer for transferring objects between threads:

public class ResourceVariable {
protected Object ref _;
public ResourceVariable(Object res) { ref =res; }
public synchronized Object resource() { return ref_; }
public synchroni zed Object exchange(Ooject r) {
(bject old = ref_;
ref =r;
return ol d;
}
}

[1 What are the weaknesses of this class?
[0 How would you fix them?

O OOoOonO

What you should know!

Why are immutable classes inherently safe?
Why doesn’t a “relay” need to be synchronized?

What is "balking”? When should a method balk?

When is partial synchronization better than full
synchronization?

How does containment avoid the need for synchronization?

o OO GO O O

Can you answer these questions?

When is it all right to declare only some methods as
synchroni zed?

When is an inner class better than an explicitly named
class?

What could happen if any of the ExpandableArray methods
were not synchronized?

What liveness problems can full synchronization introduce?

Why is it a bad idea to have two separate critical sections
in a single method?

Does it matter if a contained object is synchronized or not?

5. Liveness and Deadlock

Overview

0 Safety revisited
[0 ERROR conditions

[0 Liveness
[0 Progress Properties

0 Deadlock
[0 The Dining Philosophers problem
[0 Detecting and avoiding deadlock

Selected material © Magee and Kramer

Safety revisited

A safety property asserts that nothing bad happens
ERROR process (-1) to detect erroneous behaviour

command

ACTUATOR
= (command -> ACTI ON),
-1 1 Ao on
\<_/ / = (respond -> ACTUATOR
respond | command - > ERROR).
command

Trace to ERROR command command

Safety — property specification

ERROR conditions state what is not required

In complex systems, it is usually better to specify directly
what /s required.

command
property SAFE ACTUATOR
1 1 = (conmmand
-> respond
\%\«/ / -> SAFE ACTUATOR
spond respond) |
command

Trace to property violation in SAFE ACTUATOR
command comand

Safety properties

A safety property P defines a deterministic process that
asserts that any trace including actions in the alphabet of P is
accepted by P.

Transparency of safety properties:

0 Since all actions in the alphabet of a property are
eligible choices, composing a property with a set of
processes does not affect their correct behaviour.

O If abehaviour can occur which violates the safety
property, then ERROR is reachable.

Properties must be deterministic to be transparent.

Safety properties

How can we specify that some action, disaster, never occurs?

e

disaster

property CALM = STOP + {di saster}.

A safety property must be specified so as to include all the
acceptable, valid behaviours in its alphabet.

Liveness

A liveness property asserts that something good eventually
happens.

A progress property asserts that it is always the case that an
action is eventually executed.

Progress is the opposite of starvation, the name given to a
concurrent programming situation in which an action is never
executed.

Liveness Problems

A program may be "safe”, yet suffer from various kinds of
liveness problems:
Starvation: (AKA “indefinite postponement”)
0 The system as a whole makes progress, but some
individual processes don't
Dormancy:
0 A waiting process fails to be woken up

Premature termination:
0 A process is killed before it should be

Deadlock:

0 Two or more Fr'ocesses are blocked, each waiting for
resources held by another

Progress properties — fair choice

Fair Choice: If achoiceoverasetof transitionsisexecuted
infinitely often, then every transition in the set will be
executed infinitely often.

toss

If a coin were tossed an
infinite number of times,
we would expect that both
heads and tails would each 1 2
be chosen infinitely of ten.

toss

heads

This assumes fair choice ! tails

CON = (toss->heads->CO N
|toss->tails->CAN).

Progress properties
progress P = {al, a2..an}

asserts that in an infinite execution of a target system,

at least one of the actions al, a2. .. an will be executed
infinitely often.

COIN system:

progress HEADS = {heads}
progress TAILS = {tails}

No progress violations detected.

Progress properties

Suppose we have both a normal coin and a frick coin

pick
toss
FHéE/JH/JIJt:;sg;HXXR\\\\\\\\ tOSSffﬁ’**ﬁﬂwxx\R\
f’\ P /KFH\
1 2 3 4 5

s m//
he ads tai

heads

TWOCO N (pi ck->CA N pi ck->TRI CK) ,
TRI CK (t oss->heads- >TRI CK),

CO N = (toss->heads->CO N toss->tails->CON).
progress HEADS = {heads}

progress TAILS = {tail s}

progress HEADSor TAILS = {heads, tail s}

Progress analysis

Progress violation: TAILS
Trace to termnal set of states: pick
Actions in termnal set: {toss, heads}

pick
toss
;ﬂéE/I//JJJt:;s¥L¥Hx\\\\\\\\\ tOSSffﬁ’*‘Hai\\\\\
f»\ P //jfh\
1 2 3 4 5

e WM//
he ads tai

heads

A terminal set of states is one in which every state is mutually
reachable but no transitions leads out of the set.

The terminal set {1, 2} violates progress property TAI LS

Deadlock

Four necessary and sufficient conditions:

Serially reusable resources: the deadlocked
processes share resources under mutual exclusion.

Incremental acquisition: processes hold on to acquired
resources while waiting to obtain additional ones.

No pre-emption: once acquired b?/ a process, resources
cannot be pre-empted but only released voluntarily.

Wait-for cycle: a cycle of processes exists in which
each process holds a resource which its successor in
the cycle is waiting to acquire.

Waits-for cycle

Has A awaits B

Has E awaits A Lias B awaits

Has C awaits D

Has D awaits E

Deadlock analysis - primitive processes

[0 A deadlocked state is one with no outgoing transitions
0 In FSP: STOP process

MOVE = (north->(south->MOVE |north->STOP)).

north north

M OVE N

south

Progress violation for actions: {north, south}
Trace to termnal set of states: north north
Actions in termnal set: {}

The Dining Philosophers Problem

Philosophers alternate
between thinking and
eating.

A philosopher needs fwo
forks to eat.

No two philosophers may
hold the same fork
simultaneously.

There must be no
deadlock and no
starvation.

Want efficient
behaviour under absence
of contention.

® ®
D®

Deadlocked diners

A deadlock occurs if a @ @

waits-for cycle arises in

which each philosopher D ED
rabs one fork and waits

?or' the other.

Dining Philosophers, Safety and Liveness

Dining Philosophers illustrate many classical safety and

liveness issues:

Mutual Exclusion

Each fork can be used by one
philosopher at a time

Condition
synchronization

A philosopher needs two forks to eat

Shared variable
communication

Philosophers share forks ...

Message-based
communication

... or they can pass forks to each
other

Dining Philosophers ...

Busy-waiting A philosopher can poll for forks ...

... or can sleep till woken by a

Blocked waiting .
neighbour
. All philosophers can grab the left
Livelock fork and busy-wait for the right ...
Deadlock ... or grab the left one and wait (sleep)

for the right

A philosopher may starve if the left
Starvation and right neighbours are always
faster at grabbing the forks

Modeling Dining Philosophers

PHL = (sitdown
-> right.get -> left.get -> eat
-> |eft.put -> right. put
-> arise -> PHL).

FORK = (get -> put -> FORK).

| | DI NERS(N=5) =
forall [1:0..N1]
(phil[1]:PHL

|[{phil[i].left,phil [((i-1)+N)9%\.right}:: FORK).

[J Is this system safe? Is it live?

Dining Philosophers Analysis

Trace to termnal set of states:

phil.0.sitdown
phil.0.right.get
phil.1.sitdown
phil.1.right.get
phil.2.sitdown
phil.2.right.get
phil. 3. sitdown
phil.3.right.get
phil.4.sitdown
phil.4.right. get

Actions in termnal set: {}
No further progress is possible due to the waits-for cycle

Eliminating Deadlock

There are two fundamentally different approaches to
eliminating deadlock.

Deadlock detection:

0 Repeatedly check for waits-for cycles. When detected,
choose a victim and force it to release its resources.

[0 Common in transactional systems; the victim should
“roll-back” and try again

Deadlock avoidance:

[0 Design the system so that a waits-for cycle cannot
possibly arise.

Dining Philosopher Solutions

There are countless solutions to the Dining Philosophers
problem that use various concurrent programming styles and
patterns, and offer varying degrees of liveness guarantees:

Number the forks
[Philosophers grab the lowest numbered fork first.

Philosophers queue to sit down
0 allow no more than four at a time to sit

[1 Do these solutions avoid deadlock?
[7 What about starvation?
[J Are they "fair"?

oo O O

What you should know!

What are safety properties? How are they modelled in
FSP?

What kinds of liveness problems can occur in concurrent
programs?

Why is progress a liveness rather than a safety issue?
What is fair choice? Why do we need it?

What is a terminal set of states?

What are necessary and sufficient conditions for deadlock?
How can you detect deadlock? How can you avoid it?

oo 0Om%

Can you answer these questions?

How would you manually check a safety property?

Why must safety properties be deterministic to be
transparent?

How would you manually check a progress property?
What is the difference between starvation and deadlock?

How would you manually detect a waits-for cycle?
What is fairness?

6. Liveness and Guarded Methods

Overview
[0 Guarded Methods

0 Checking guard conditions

0 Handling interrupts

0 Structuring notification
0 Encapsulating assignment
[0 Tracking state
[0 Tracking state variables
[0 Delegating notifications

Achieving Liveness

There are various strategies and techniques to ensure liveness:

0 Start with safe design and selectively remove
synchronization

0 Start with /ive design and selectively add safety

0 Adopt design patterns that limit the need for
synchronization

0 Adopt standard architectures that avoid cyclic
dependencies

Pattern: Guarded Methods

Intent: Temporarily suspend an incoming thread when an
object is not in the right state to fulfil a request, and wait for
the state to change rather than balking (raising an exception).

Client 1 BoundedCounter Client 2

ﬂ dec() | '

wait() l

notifyAll) '« l
= :

S

D)
~
~—’

Guarded Methods — applicability

Clients can tolerate indefinite postponement.
(Otherwise, use a balking design.)

You can /guaran‘ree that the required states are
eventually reached (via other requests), or if not, that it
is accepmble to block forever.

You can arrange that notifications occur after all
relevant state changes. (Otherwise consider a design
based on a busy-wait spin loop.)

You can avoid or cope with liveness problems due to
waiting threads retaining all synchronization locks.

Applicability ...

0 You can construct computable predicates describing the
state in which actions will succeed. (Otherwise consider
an optimistic design.)

[0 Conditions and actions are managed within a single
object. (Otherwise consider a transactional form.)

Guarded Methods — design steps

The basic recipe is to use wai t in a conditional loop to block

until it is safe to proceed, and use noti fyAl'| to wake up
blocked threads.

public synchroni zed Object service() {
while (wong State) {

try { wait(): }
catch (InterruptedException e) { }

}
[/ fill request and change state ...
noti fyAll ();

return result:

}

Step: Separate interface from policy

[0 Define interfaces for the methods, so that classes can
implement guarded methods according to different
policies.

public interface BoundedCounter {
public static final long MN =0; // mn value
public static final long MAX = 10; // max val ue
public long value(); // invit: MN<=value() <= MAX
[/ init: value() == MN
public void inc(); [/ pre: value() < MAX
public void dec(); // pre: value() > MN

Step: Check guard conditions

[0 Define a predicate that precisely describes the
conditions under which actions may proceed.

(This can be encapsulated as a helper method.)

[0 Precede the conditional actions with a guarded wait loop
of the form:

while (!condition)

try { wait(); }
catch (InterruptedException ex) { ... }

Optionally, encapsulate this code as a helper
method.

Step: Check guard conditions ...

[0 If there is only one possible condition to check in this
class (and all KIUSIb e subclasses), and notifications are
|ssued only when the condition is true, then there is no
need to re-check the condition after reTurnmg from
wai t ()

[0 Ensure that the object is in a consistent state (i.e., the
class invariant holds) before entering any wai t (since
wait releases the synchronization lock).

The easiest way to do this is to perform the guards
before taking any actions.

Step: Handle interrupts

0 Establish a policy to deal with | nt errupt edExcept i ons.
Possibilities include::

O Ignore interrupts(i.e.,an emp’r?/ cat ch clause), which

preserves safety at the possible expense of liveness.

0 Terminate the current thread (st op). This preserves
safety, though brutally! (Not recommended.)

0 Exit the method, possibly raising an exception. This
preserves liveness but may require the caller to take
special action to preserve safety.

O Cleanup and restart.
0 Ask for user intervention before proceeding.

Interrupts can be useful to signal that the guard can never
become true because, for example, the collaborating threads
have terminated.

Step: Signal state changes

0 Add notification code o each method of the class that
changes state in any way that can affect the value of a
guard condition. Some options are:

0 usenotifyAl to wake UE all threads that are
blocked in waits for the host object.

Notify() vs notifyall()

0 usenotify to wake up only one thread (if any exist).
This is best treated as an optimization where:

O all blocked threads are necessarily waiting for
conditions signalled by the same notifications,

0 only one of them can be enabled by any given
notification, and

(1 it does not matter which one of them becomes
enabled.

0 You build your own special-purpose notification
methods using notify and noti fyAl | . (For example,
to selectively notify threads, or to provide certain
fairness guarantees.)

Step: Structure notifications

[0 Ensure that each wait is balanced by at least one
notification. Options include:

Place a notification at the end of every
method that can cause any state change (i.e.,
assigns any instance variable).

Simple and reliable, but may cause
performance problems ...

Blanket
Notifications

Encapsulate assignment to each variable
Encapsulating | mentioned in any guard condition in a helper

Assignment | method that performs the notification after
updating the variable.

Only issue notifications for the particular
state changes that could actually unblock

Tgcﬂ;:gg waiting threads. May improve performance,
at the cost of flexibility (i.e., subclassing
becomes harder.)

Maintain an instance variable that

Trackin represents control state.

9 | Whenever the object changes state, invoke
State

Variables | @ helper method ‘rhq'r re-evaluq’rgs The |
control state and will issue notifications if
guard conditions are affected.

Delegating Use helper objects to maintain aspects of
NS state and have these helpers issue the
Notifications

notifications.

Encapsulating assignment

Guards and assignments are encapsulated in helper methods:
publ i ¢ cl ass BoundedCount er V1
| npl enment s BoundedCount er {
protected |l ong count _ = MN,
public synchronized | ong value() { return count ; }
public synchroni zed void inc() {
awal t I ncrenent abl e() ;
set Count (count _ + 1);
}
public synchroni zed void dec() {
awal t Decr ement abl e() ;
set Count (count _ - 1);

}

protected synchroni zed void awaitlncrenentable() {
whil e (count _ >= NAX)
try { wait(); }
catch(InterruptedException ex) {};

}

protected synchroni zed voi d awai t Decrenment abl e() {
while (count _ <= MN)

try { wait(); }
catch(I nterruptedException ex) { };

}

prot ect ed synchroni zed voi d set Count (| ong newval ue) {
count = newval ue;
noti fyAll ();

}

}

Tracking State

The only transitions that can possibly affect waiting threads
are those that step away from logical states top and bottom:

publ i ¢ cl ass BoundedCount er VST
| npl ement s BoundedCount er {
protected long count = MN, [/ ...
public synchroni zed void inc() {
while (count ==)
try { wait(); }
catch(InterruptedException ex) {};
If (count _++ == MN)
notifyA | (); [/ just left bottomstate

Tracking State Variables

publ i ¢ cl ass BoundedCount er VSV
| npl enent s BoundedCount er {
static final int BOTTOM = 0; // logical states
static final int MDDLE = 1;
static final Int TOP 2;
protected int state = BOITOM // state variable
protected ong count = MN;
public synchroni zed void inc() {
while (state_ == TOP) // consult |ogical state
try { wait(); }
catch(I nterruptedException ex) {};
++count _; [/l nodify actual state
checkState(); Il sync |ogical state

b

public synchronized void dec() { ... }
publ i c synchroni zed | ong value() { return count _; }

protected synchronized void checkState() {
Int oldState = state_;

If (count_ == MN) state = BOITOM
else if (count_ ==) state_ = TOP,

el se state = M DDLE;
If (state_ != oldState

& & (ol dState == TOP
|| oldState == BOTTOM)
noti fyAll ();

Delegating notifications

public class NotifyingLong {

}

private | ong val ue_;
private (bj ect observer ;
public NotifyinglLong(Object o, long v) {
observer = o; value = v;
}
publ i c synchroni zed | ong value() { return value_; }
public void setValue(long v) {
synchroni zed(this) { value =v; }
synchroni zed(observer) {
observer _.notifyAll(); // NB: nmust be synched!

}
}

Delegating notifications ...

Notification is delegated to the helper object:
publ i ¢ cl ass BoundedCount er VNL
| npl enment s BoundedCount er {
private NotifyingLong c_ =
new NotifyingLong(this, MN);
public synchronized void inc() {
while (c_.value() >= MAX
try { wait(); }
catch(InterruptedException ex) {};
c_.setValue(c .value()+l);

}

o 0O OO0 OO

What you should know!

When can you apply the Guarded Methods pattern?

When should methods recheck guard conditions after
waking from awai t () ?

Why should you usually prefer notifyAll () tonotify()?
When and where should you issue notification?

Why must you re-establish the class invariant before calling
wait()?

What should you do when you receive an

| nt errupt edException?

What is the difference between tracking state and using
state-tracking variables?

Can you answer these questions?

[J When are guarded methods better than balking?

[1 When should you use helper methods to implement guarded
methods?

[J What is the best way to structure guarded methods for a
class if you would like it to be easy for others to define
correctly functioning subclasses?

[1 When is the complexity of delegating notifications
worthwhile?

/. Lab session I

The lab exercises will be available on the course web page:

matsu-www.is.titech.ac.jp/~oscar/cp/

http://matsu-www.is.titech.ac.jp/~oscar/cp/

Overview

8. Liveness and Asynchrony

[0 Asynchronous invocations

[]

1 OO0 O

Simple Relays

[0 Direct Invocations

[0 Thread-based messages; Gateways
[0 Command-based messages

Tail calls

Early replies

Futures

Pattern: Asynchronous Invocations

Intent: Avoid waiting for a request to be serviced by
decoupling sending from receiving.

Applicability
[0 When a host object can distribute services amongst
multiple helper objects.

0 Whenanobject does not immediately need the result of
an invocation to continue doing useful work.

[0 When invocations that are /ogically asynchronous,
regardless of whether they are coded using threads.

O During refactoring, when classes and methods are split
in order to increase concurrency and reduce liveness
problems.

Asynchronous Invocations — form

Asynchronous invocation typically looks like this:

cl ass Host {
public service() {
pre();
| nvokeHel per ();
during();

post () ;
}
}

[
[
[
[

code to run before i nvocation
t he 1 nvocati on

code to run In parallel

code to run after conpletion

Asynchronous Invocations — design steps

Consider the following issues:

Does the Host need results back
from the Helper?

Not if, e.g., the Helper
returns results directly
to the Host's caller!

Can the Host process new requests
while the Helper is running?

Might depend on the kind
of request ...

Can the Host do something while
the Helper is running?

i.e., in the during() code

Does the Host need to synchronize
pre-invocation processing?

i.e., if service() is
guarded or if pre()
updates the Host's state

Does the Host need to synchronize |i.e., if post () updates
post-invocation processing? the Host's state

... or does the host have
to wait for other
conditions?

Does post-invocation processing
only depend on the Helper's result?

Is a new one generated

Is the same Helper always used? |to help with each new
service request?

Simple Relays — three variants

A relay method obtains all its functionality by delegating to the
helper, without any pre(), during(), or post() actions.

Direct invocations: Invoke the Helper directly, but
without synchronization

Thread-based messages: Create a new thread to
invoke the Helper

Command-based messages: Pass the request to
another object that will run it

Relays are commonly seen in Adaptors.

Variant: Direct invocations

Asynchrony is achieved by avoiding synchronization.

cl ass Host {
protected Hel per hel per_ = new Hel per();

public void service() { [/ unsynchroni zed!
| nvokeHel per () ; /] (statel ess nethod)
}
protected void i nvokeHel per() {
hel per . hel p(); /[unsynchroni zed!
}

}

The Host is free to accept other requests, while the Host's
caller must wait for the reply.

Direct invocations ...

If hel per _ is mutable, it can be protected with an accessor:

cl ass Host2 extends Host {
protected Hel per hel per _ = new Hel per();
protected synchroni zed Hel per hel per() {

}

}

return hel per_;

public void service() { // unsynchroni zed

}

hel per (). hel p(); /| partially synchronized

Variant: Thread-based messages

The invocation can be performed within a new thread:

protected void invokeHel per() {

new Thread() { [/ An inner class
final Hel per h_ = hel per_; [/ Must be final!
public void run() { h_.help() ; }

}.start();
}

Thread-based messages ...

The cost of evaluating Helper.help() should outweigh the
overhead of creating a thread!

0 If the Helper is a daemon (loops endlessly)

0 If the Helper does I/O

[Possibly, if multiple helper methods are invoked

Thread-per-message Gateways

The Host may construct a new Helper to service each request.

public class Filel O {
public void witeBytes(String file, byte[] data) {
new Thread (new FileWiter(file, data)).start();

}
public void readBytes(...) { ... }

}

class FileWiter inplenments Runnabl e {
private String nm; /1 hold argunents
private byte[] d_;
public FileWiter(String name, byte[] data) { ... }
public void run() { ... } [/ wite to file ...

J

Variant: Command-based messages

The Host can also put a Command object in a gueue for another
object that will invoke the Helper:

protected Event Queue q_;
protected invokeHel per() {
d_. put (new Hel per Message(hel per));

}

Command-based forms are especially useful for:
0 scheduling of helpers
0 wundo and replay capabilities
0 transporting messages over networks

Tail calls

Applies when the helper method is the /ast statement of a
method. Only pre() code is synchronized.

cl ass Subject {

protected Cbserver obs = new...;

protected double state ;

public void updateState(double d) { // not synched
doUpdat e(d); /'l synched
sendNot i fication(); /1 not synched

}

protected synchroni zed doUpdat e(double d) { /'l synched
state_ = d;

}

protected void sendNotification() { /'l not synched

obs . changeNotification(this);

}
}

The host is immediately available to accept new requests

Tail calls with new threads

Alternatively, the tail call may be made in a separate thread:

public synchroni zed voi d updateState(double d) {
state = d;
new Thread() {
final Qoserver o = obs_;
public void run() {
o_.changeNotification(Subject.this);

}
}.start();

}

Early Reply

Early reply allows a host to perform useful activities after
returning a result to the client:

Client Host

Host retains

I

H service() |
I

| synchronization!

-

reply -

I T
Early reply is a built-in feature in some programming languages.
I't can be easily simulated when it is not a built-in feature.

Simulating Early Reply

A one-slot buffer can be used to pick up the reply from a
helper thread:

A one-slof buffer is a simple abstraction that can be used to
implement many higher-level concurrency abstractions ..

Client Host

ﬂ service() Slot

: new - new Helper
| — start()
| get()

I T—— 1. but()

0 reply l *

Early Reply in Java

public class Host { ...

public Object service() { [/ unsynchroni zed
final Slot reply = new Slot();
final Host host = this;
new Thread() { /| Hel per
public void run() {
synchroni zed (host) {
reply. put (host. conpute());

host . ¢l eanup(); [/ retain | ock
b}
}.start();

return reply.get(); [l early reply

Futures

Futures allow a client to continue in parallel with a host until
the future value is needed:

returns value ™

Client Host
. | _i
H service() | Future
| new ,
o >
! |
returns future ™ |
I
L | I
I
put () |
| val ue() - -
: 1
[
|
I
I

A Future Class

Futures can be implemented as a layer of abstraction around a
shared Slot:

class Future {

private oject val ; [/ initially null
private Slot slot_; /] shared with sone worker
public Future(Slot slot) {

slot = slot;
}
public Object value() {

if (val _ == null)

val = slot _.get();

return val _;

}

}

Using Futures in Java

Without special language S%pom‘, the client must explicitly
request a value() from the future object.

public Future service () { [/ unsynchroni zed

final Slot slot = new Slot();
new Thread() {

public void run() {

sl ot. put (conpute());

}
}.start();
return new Future(slot);

}

protected synchroni zed Object conmpute() { ... }

oo OO0

What you should know!

What general form does an asynchronous invocation take?
When should you consider using asynchronous invocations?
In what sense can a direct invocation be “asynchronous”?

Why (and how) would you use inner classes to implement
asynchrony?

What is "early reply”, and when would you use it?
What are "futures”, and when would you use them?
How can implement futures and early replies in Java?

Can you answer these questions?

[J Why might you want to increase concurrency on a single-
processor machine?

[J Why are servers commonly structured as thread-per-
message gateways?

[1 Which of the concurrency abstractions we have discussed

till now can be implemented using one-slot-buffers as the
only synchronized objects?

[1 When are futures better than early replies? Vice versa?

9. Condition Objects

Overview
0 Condition Objects
0 Simple Condition Objects
0 The "Nested Monitor Problem”
0 Permits and Semaphores
0 Using Semaphores

Pattern: Condition Objects

Intent: Condition objects encapsulate the waits and
notifications used in guarded methods.

Applicability
0 To simplify class design by off-loading waiting and
notification mechanics.

[Because of the limitations surrounding the use of
condition objects in Java, in some cases the use of

condition ob],ec’rs will increase rather than decrease
design complexity!

Condition Objects — applicability

As an efficiency manoeuvre.

0 By isolating conditions, you can often avoid notifying
waiting threads that could not possibly proceed given
a particular state change.

As a means of encapsulating special scheduling policies
surrounding notifications, for example to impose
fairness or prioritization policies.

In the particular cases where conditions take the form
of “permits”or “latches”.

Condition Objects

Condition objects implement this interface:

public interface Condition {
public void await(); // wait for some condition
public void signal (); // signal that condition

}

A client that awaits a condition blocks until another object
signals that the condition how may hold.

A Simple Condition Object

We can encapsulate guard conditions with this class:
public class SinpleConditionObject
| npl ements Condition
{
public synchroni zed void await () {
try { wait(); }
catch (I nterruptedException ex) {}
}
publ i c synchroni zed void signal () {
noti fyAll ();
}
}

Careless use can lead to the "Nested Monitor Problem”

The Nested Monitor problem

We want to avoid waking up the wrong threads by separately
notifying the conditions notMin and notMax:

publ i ¢ cl ass BoundedCount er VBAD
| npl ement' s BoundedCount er {
protected |ong count = MN;
protected Condition
notMn_ = new Sinpl eConditionChject();
protected Condition
not Max_ = new Si npl eCondi ti onQoj ect () ;
public synchroni zed | ong val ue() {
return count _;

}

The Nested Monitor problem ...

publ i c synchroni zed void dec() {

while (count _ == MN)
notMn_.await(); [/ wait till count not MN
If (count -- ==)
not Max_.signal ();
}
public synchroni zed void inc() { // can't get in!
while (count ==)

not Max_. awai t();
If (count _++ == MN)
notMn_.signal (); [/ we never get here!

The Nested Monitor problem ...

Client 1 || Client 2 BoundedCoun’rerVBADJ

ﬁ ' dec() i rSimpleConditfonObject
I |

| | awai t () |

I | I

| | .

' wal t

: i nc() | () —

| | | |

| | | |

| Counter is | |

still locked!

So condition is
never signalled

Nested monitor lockouts occur whenever a blocked thread
holds the lock for an object containing the method that would
otherwise provide a notification to unblock the wait.

Nested Monitors in FSP

Nested Monitors typically arise when one synchronized ob ject
is implemented using another.

Recall our one Slot buffer in FSP:
const N = 2
Slot = (put[v:0..N] -> get[v] -> Slot).

Suppose we try to implement a call/reply protocol using a
private instance of Slot:

Repl ySl ot =
(put[v:0..N] -> ny.put[v] -> ack -> ReplySl ot
| get -> ny.get[v] ->ret[v] -> ReplySlot).

Nested Monitors in FSP ...

Our producer/consumer chain obeys the new protocol:

Pr oducer

(put[0]
-> put[1]
-> put| 2]

-> ack
-> ack
-> ack -> Producer).

Consuner = (get-> ret[x:0..N ->Consuner).

|| Chain = (Producer|| ReplySlot || ny:Slot]|| Consumner).

CP — Titech Winter 2001

198.

Nested Monitors in FSP ...

But now the chain may deadlock:

Progress violation for actions: {put.0, ack, put.1,

put.2, ny.put.0, nmy.put.l, ny.put.2, get,

Trace to termnal set of states:
get
ret.0

Actions in termnal set: {}

ny. get. 2,

@ O. Nierstrasz — U. Berne

Condition Objects

Solving the Nested Monitors problem

You must ensure that:

0 Waits do not occur while synchronization is held on the
host object.

[0 This leads to a guard loop that reverses the
synchronization seen in the faulty version.

[0 Notifications are never missed.

0 The entire guard wait loop should be enclosed within
synchronized blocks on the condition object.

Solving Nested Monitors ...

[0 Notifications do not deadlock.

O All notifications should be performed only upon
release of all synchronization (except for the
notified condition object).

0 Helper and host state must be consistent.

0 If the helper object maintains any state, it must
always be consistent with that of the host, and if it
shares any state with the host, that access is
properly synchronized.

Example solution

public class BoundedCounterVCV i npl enents BoundedCounter { ...

public void dec() { /'l not synched!
bool ean wasMax = fal se; /] record notification condition
synchroni zed(notM n_) { /] synch on condition object
while (true) { /1 new guard | oop
synchroni zed(t his) {
I f (count _ > MN) { /'l check and act
wasMax = (count == MAX);
count --;
br eak:
}
}
notMn_.await(); /] release host synch before wait
}
}
I f (wasMax) not Max_.signal () ; /] first release all synchs!
}

Pattern: Permits and Semaphores

Intent: Bundle synchronization in a condition object when
synchronization depends on the value of a counter.

Applicability
[0 When any given awai t may proceed only if there have
been more signals than awaits.

0 I.e.,whenawait decrements and si gnal increments
the number of available "permits”.

[0 You need to guarantee the absence of missed signals.

[1 Unlike simple condition objects, semaphores work
even if one thread enters its await after another
thread has signalled that it may proceed.

0 The host classes can arrange to invoke Condi ti on
methods outside of synchronized code.

Permits and Semaphores — design steps

0 Define a class implementing Condi ti on that maintains a
permit count, and immediately releases await if there

are already enough permits.
[l e.g., BoundedCount er

public class CountCondition inplenents Condition {

prot ect ed BoundedCount er
counter = new BoundedCount er VO();

public void await() { counter .dec(); }
public void signal() { counter .inc(); }

}

Design steps ...

0 Aswith all kinds of condition objects, their clients must
avoid invoking await inside of synchronized code.

[0 You can use a before/after design of the form:

cl ass Host {
Condi tion aCondition_;
public nmethod mi() {
aCondition _.await(); /1 not synched
doML() ; /| synched
for each Condition c enabled by ml()
c.signal (); /] not synched

}
protected synchronized doML() { ... }

}

Variants

Permit Counters: (Counting Semaphores)
0 Just keep track of the number of "permits”
[0 Canusenotify instead of notifyAl |l if classisfi nal

Fair Semaphores:

0 Maintain FIFO queue of threads waiting on a
Si npl eCondi ti on

Locks and Latches:
0 Locks can be acquired and released in separate methods

0 Keep track of thread holding the lock so locks can be
reentrant!

0 A latch is set to true by si gnal , and always stays true

See the On-line supplement for details!

Semaphores in Java

public class Semaphore { // sinple version
private iInt value;
public Semaphore (int initial) { value =1initial; }

synchroni zed public void up() { [AKA V
++val ue;
notify(); [/ wake up Jjust one thread!
}

synchroni zed public void down() { [l AKA P
whi | e (val ue==0)
try { wait(); }
catch(InterruptedException ex) { };
- -val ue;

}
}

Using Semaphores

publ i c cl ass BoundedCount er VSem
| npl enent s BoundedCount er {

protected long count = MN
prot ected Senmaphore nutex;
protected Semaphore full; [l nunmber of itens

protected Semaphore enpty; // nunber of slots

BoundedCount er VSen() {

mut ex = new Senaphore(1);

full = new Semaphore(0) :

enpty = new Semaphore(MAX-M N) ;
}

Using Semaphores ...

public long value() {

mut ex. down() ; [/ grab the resource
| ong val = count _;
mut ex. up() ; [l release it
return val;
}
public void inc() {
empty. down() ; [/ grab a sl ot
mut ex. down() ; /| sequence Is Inportant!
count _ ++;
mut ex. up() ;
full.up(); /] release an item

Using Semaphores ...

These would cause a nested monitor problem!
public void BAD nc() {
mut ex. down(); enpty.down(); // |ocks out BADdec!
count _ ++;
full.up(); nutex.up();

}

public void BADdec() {
mut ex. down(); full.down(); // Iocks out BAD nc!
count _ --:

enpty. up() mut ex. up() ;
}

O 0O OO0 O

What you should know!

What are "condition objects"? How can they make your life
easier? Harder?

What is the "nested monitor problem”?
How can you avoid nested monitor problems?

What are "permits” and “latches”? When is it natural to use
them?

How does a semaphore differ from a simple condition
object?

Why (when) can semaphores use noti fy() instead of
noti fyAll () ?

Can you answer these questions?

[J Why doesn't SimpleConditionObject need any instance
variables?

[J What is the easiest way to avoid the nested monitor
problem?

[J What assumptions do nested monitors violate?

[J How can the obvious implementation of semaphores (in
Java) violate fairness?

[J How would you implement fair semaphores?

10. Fairness and Optimism

J Concurrently available methods
[0 Priority
[l Interception
[0 Readers and Writers

0 Optimistic methods

Selected material © Magee and Kramer

Pattern: Concurrently Available Methods

Intent: Non-interfering methods are made concurrently
available by implementing policies to enable and disable
methods based on the current state and running methods.

Applicability
0 Host objects are accessed by many different threads.

0 Host services are not completely interdependent, so
need not be performed under mutual exclusion.

0 You need to improve throughput for some methods by
eliminating nonessential blocking.

0 You want to prevent various accidental or malicious
starvation due to some client forever holding its lock.

0 Full synchronization would needlessly make host objects
prone to deadlock or other /iveness problems.

Concurrent Methods — design steps

Layer concurrency control policy over mechanism by:
Policy Definition:
0 When may methods run concurrently?
0 What happens when a disabled method is invoked?
0 What priority is assigned to waiting tasks?

Instrumentation:
0 Define state variables to detect and enforce policy.

Interception:

0 Have the host object intercept public messages and
then relay them under the appropriate conditions to
protected methods that actually perform the actions.

Priority

Priority may depend on any of:

0 Intrinsic attributes of tasks (class & instance variables).
Representations of task priority, cost, price, or urgency.
The number of tasks waiting for some condition.

The time at which each task is added to a queue.

Fairness — guarantees that each waiting task will
eventually run.

Expected duration or time to completion of each task.
The desired completion time of each task.
Termination dependencies among tasks.

The number of tasks that have completed.

The current time.

I I R R

N I O B B

Fairness

There are subtle differences between definitions of fairness:

Weak fairness: If aprocess continuously makes a
request, eventually it will be granted.

Strong fairness: If aprocessmakesarequest infinitely
often, eventually it will be granted.

Linear waiting: If a process makes arequest, it will be
granted before any other process is granted the
request more than once.

FIFO (first-in first out): If aprocess makes a
request, it will be /gram‘ed before that of any
process making a /ater request.

Interception

Interception strategies include:

Pass-Throughs: The host maintains a set of immutable
references to helper objects and simply relays all
messages to them within unsynchronized methods.

Lock-Splitting: Instead of splitting the class, split the
synchronization locks associated with subsets of
the state.

Before/After methods: Public methods contain
before/after processing surrounding calls to non-
public methods in the host that perform the
services.

Concurrent Reader and Writers

"Readers and Writers”is a family of concurrency control
designs in which "Readers” (non-mutating accessors) may
concurrently access resources while "Writers" (mutative,
state-changing operations) require exclusive access..

Readerl | | Reader2 Host Writerl || Writer2

fread() | | |

read() wite()

<

Readers/Writers Model

We are interested only in capturing who gets access:
set Actions = { acquireRead, releaseRead,
acquireWite, releaseWite}

READER = (acqui reRead
-> exam ne
-> rel easeRead -> READER)
+Actions \{exam ne}.

VRl TER

[
~—~~

acquireWite

-> nodify

-> releaseWite -> WRITER)
+Actions \{nodify}.

A Simple RW Protocol

2 [Maxi mum r eaders
2 [/ Maximumwiters

const Nread
const Nwite

RWLOCK = RN O] [Fal se],
RWreaders:0..Nread][witing:Bool] =
(when (!'witing)

acqui r eRead -> RWreaders+1][witing]
| rel easeRead -> RWreaders-1][witing]
| when (readers==0 && !'writing)

acquireWite -> RWreaders] [True]

| releaseWite -> RWreaders]|[Fal se]

).

Safety properties

We specify the safe interactions:
property SAFE RW =

(acqui reRead -> READI NG 1]

| acquireWite -> VWRITING),
READING i :1..Nread] =

(acqui reRead -> READI NG i +1]

| when(i>1) releaseRead -> READINJI -1]
| when(i==1) releaseRead -> SAFE RW

),
WRITING = (releaseWite -> SAFE RW).

Safety properties ...

And compose them with RW_LOCK:
| | READWRI TELOCK = (RW LOCK || SAFE RW.

acquireRHead

acg nive Write acquireFead

releaseRead
alease VWit

releazeRead

releazeRead releaseRead

release VWTite

acanireRead
release Wiite

Composing the Readers and Writers

We compose the READERS and WRITERS with the protocol
and check for safety violations:

| | READERS WRI TERS =
(reader[1..Nread]: READER
|| witer[1..Nwite]: WRITER
|| {reader[1..Nread],
witer[1l..Nwite]}:: READWRI TELOCK).

No deadl ocks/errors

Progress properties

We similarly specify liveness properties:
| | RW PROGRESS = READERS WRI TERS
>>{reader[1l.. Nread].rel easeRead,
witer[1l..Nread].rel easeWite}.
progress WRITE[i1:1. . Nwite] = witer[i].acquireWite
progress READ[I:1.. N\Wwite] = reader[i].acquireRead
Progress violation: WRITE.1 WRITE. 2
Trace to termnal set of states:
reader. 1. acquireRead tau

Actions in termnal set:
{reader. 1. acquireRead, reader.1.rel easeRead,

reader. 2. acqui reRead, reader. 2.rel easeRead}

Starvation

reader. 1. acguireRead

reader. 2. acquireRead

/D’Tlter. 1.acquire W rite

iter. 2. acg UineWiite

h,
reader.l . acquireRead reader. 2. meleaseRead

write. 2. release Wiite

eader. 1. mleazeRead meader. 2. acquireRead

wrriter. 1. release VWit

Readers and Writers Policies

Individual policies must address:
[0 Can new Readers join already active Readers even if a
Writer is waiting?
0 if yes, Writers may starve
O if not, the throughput of Readers decreases

[0 If bothReadersand Writers are waiting for a Writer to
finish, which should you let in first?

[1 Readers? A Writer? FCFS? Random? Alternate?
[1 Similar choices exist after Readers finish.

[0 Can Readers upgrade to Writers without having to give
up access?

Policies ...

A typical set of choices:
O Block incoming Readers if there are waiting Writers.

0 "Randomly” choose among incoming threads
(i.e., let the scheduler choose).

0 No upgrade mechanisms.

Before/after methods are the simplest way to implement
Readers and Writers policies.

Readers and Writers example

Implement state tracking variables

public abstract class RWT {
protected int activeReaders = 0; [/

protected int activeWiters =0; [/
protected int waitingReaders = O;
protected int waitingWiters = O;
protected abstract void read ():; [

protected abstract void wite (); //

Zero or nore
Zero or one

define In
subcl ass

Readers and Writers example

Public methods call protected before/after methods

public void read() { [/

}

bef or eRead() ;
read ();
af t er Read() ;

public void wite() {

}

beforeWite();
wite ();
afterWite();

[
[
[

unsynchroni zed
obtai n access
perform service
rel ease access

Readers and Writers example

Synchronized before/after methods maintain state variables

protected synchroni zed voi d beforeRead() {
++wail ti ngReaders _; // available to subclasses
while (!all owReader())
try { wait(); }
catch (InterruptedException ex) {}
--wai ti ngReaders_; ++activeReaders_;
}
protected synchroni zed void afterRead() {
--activeReaders ; notifyAll();

}

Readers and Writers example

Different policies can use the same state variables ...
prot ect ed bool ean al |l owReader () { // default policy

return waitingWiters_ ==
&% activeWiters_ == 0;

[J Can you define suitable before/after methods for Writers?

Pattern: Optimistic Methods

Intent: Optimistic methods attempt actions, but rollback
state in case of interference. After rollback, they either
throw failure exceptions or retry the actions.

Applicability
[0 Clients can tolerate either failure or retries.
[0 TIf not, consider using guarded methods .
0 You can avoid or cope with /ivelock.
0 You can undo actions performed before failure checks

0 Rollback/Recovery: undo effects of each performed
action. If messages are sent to other objects, they
must be undone with "anti-messages”

O Provisional action: "pretend” to act, delaying
commitment until interference is ruled out.

Optimistic Methods — design steps

Collect and encapsulate all mutable state so that it can be
tracked as a unit:
0 Define an immutable helper class holding values of all
instance variables.
[0 Define arepresentation class, but make it mutable (allow
instance variables to change), and additionally include a

version number (or transaction identifier) field or even
a sufficiently precise time stamp.

0 Embed all instance variables, plus a version number, in
the host class, but define commi t to take as arguments
all assumed values and all new values of these variables.

0 Maintain a serialized copy of object state.
0 Various combinations of the above ...

Detect failure ...

Provide an operation that simultaneously detects version
conflicts and performs updates via a method of the form:

class Optimstic { /| code sketch
private State currentState ; // 1 mutabl e val ues

synchroni zed bool ean
commt(State assuned, State next)

{

bool ean success = (currentState == assuned) ;

I f (success)
currentState

return success;

}
}

next

Detect failure ...

Structure the main actions of each public method as follows:

State assuned = currentState();

State next = ... /| conpute optimstically
If (!commt(assuned, next))

rol | back();
el se

ot her Act i onsDependi ngOnNewsSt at eBut Not Changi ngl t () ;

Handle conflicts ...

Choose and implement a policy for dealing with commit failures:

0 Throw an exception upon commit failure that tells a
client that it may retry.

O ZInternally retry the action until it succeeds.

[0 Retry some bounded number of times, or until a timeout
occurs, finally throwing an exception.

O Pessimistically synchronize selected methods which
should not fail.

Ensure progress ...

Ensure progress in case of internal retries
0 Immediately retrying may be counterproductivel

0 VYielding may only be effective if all threads have
reasonable priorities and the Java scheduler at least
approximates fair choice among waiting tasks (which it
is not guaranteed to do)!

0 Limit retries to avoid livelock

An Optimistic Bounded Counter

publ i ¢ cl ass BoundedCount er VOPT
| npl enment s BoundedCount er
{
protected Long count = new Long(M N);
protected synchroni zed bool ean
comm t (Long ol dc, Long newc)
{
bool ean success = (count == ol dc);
I f (success) count = newc;
return success;

An Optimistic Bounded Counter

public long value() { return count .longValue(); }
public void | () {
for (;;) { [/ thinly disguised busy-wait!

Long ¢ = count ; long v = c.longVal ue();
If (v < MAX && commt(c, new Long(v+1)))
br eak;

Thread. current Thread().yiel d();
/] 1s there another thread?!

}
}

COooOo0gonQ

What you should know!

What criteria might you use to prioritize threads?
What are different possible definitions of fairness?
What are readers and writers problems?

What difficulties do readers and writers pose?
When should you consider using optimistic methods?

How can an optimistic method fail? How do you detect
failure?

O O O Ofn

Can you answer these questions?

When does it make sense to split locks? How does it work?

When should you provide a policy for upgrading readers to
writers?

What are the dangers in letting the (Java) scheduler
choose which writer may enter a critical section?

What are advantages and disadvantages of encapsulating
synchronization conditions as helper methods?

How can optimistic methods livelock?

11. Lab session IT

The lab exercises will be available on the course web page:

matsu-www.is.titech.ac.jp/~oscar/cp/

http://matsu-www.is.titech.ac.jp/~oscar/cp/

12. Architectural Styles for

Concurrency

Overview

[]
[]
[]

[]

What is Software Architecture?
Three-layered application architecture
Flow architectures

0 Active Prime Sieve

Blackboard architectures

O Fibonacci with Linda

Sources

0 M. Shaw and D. Garlan, Software Architecture:

Perspectives on an Emerging Discipline, Prentice-Hall,
1996.

0 F. Buschmann, et al., Pattern-Oriented Software
Architecture — A System of Patterns, John Wiley,
1996.

[0 D. Lea, Concurrent Programming in Java — Design
principles and Patterns, The Java Series, Addison-
Wesley, 1996.

0 N. Carriero and D. Gelernter, How to Write Parallel
Programs: a First Course, MIT Press, Cambridge, 1990.

Software Architecture

A Software Architecture defines a system in terms of
computational components and interactions amongst
those components.

An Architectural Style defines a family of systems in
terms of a pattern of structural organization.

— cf. Shaw & Garlan, Software Architecture, pp. 3, 19

Architectural style

Architectural styles typically entail four kinds of properties:
0 A vocabulary of design elements
0 e.g., "pipes”, "filters", "sources”, and "sinks"
0 A set of configuration rules that constrain compositions

0 e.g., pipes and filters must alternate in a linear
sequence

[l A semantic interpretation

0 e.g., each filter reads bytes from its input stream
and writes bytes to its output stream

0 A set of analyses that can be performed

0 e.g., if filters are "well-behaved"”, no deadlock can
occur, and all filters can progress in tandem

Communication Styles
Shared Variables

° ° e Processes communicate
indirectly.

— X Explicit synchronization

mechanisms are needed.

Message-Passing

Communication and
synchronization are

combined.

5

ok

Simulated Message-Passing

Most concurrency and communication styles can be simulated
by one another:

Unsynchronized objects

: o

Synchronized objects

|

Message-passing can be modelled by associating message
queues to each process.

Three-layered Application Architectures

Interaction with external world
Generating threads

Concurrency control
Locking, waiting, failing

Basic mechanisms

This kind of architecture avoids nested monitor problems by
restricting concurrency control to a single layer.

Problems with Layered Designs

Hard to extend beyond three layers because:

0 Control may depend on unavailable information
[0 Because it is not safely accessible
[0 Because it is not represented (e.g., message history)

[0 Synchronization policies of different layers may
conflict

[0 E.g., nested monitor lockouts

0 Ground actions may need to know current policy
0 E.g., blocking vs. failing

Flow Architectures

Many synchronization problems can be avoided by arranging
things so that information only flows in one direction from
sources to filters to sinks.

Unix "pipes and filters”: Processes are connectedina
linear sequence.

Control systems: events are picked up by sensors,
processed, and generate new events.

Workflow systems: Electronic documents flow through
workflow procedures.

Unix Pipes

Unix pipes are bounded buffers that connect producer and
consumer processes (sources, sinks and filters):

cat file # send file contents to output stream
tr -c "a-zA-Z '\012" # put each word on one |line
sort # sort the words
unig -c # count occurrences of each word

sort -rn # sort I1n reverse nunerical order
nmor e # and display the result

Unix Pipes

Processes should read from standard input and write to
standard output streams:

[0 Misbehaving processes give rise to "broken pipes”!
Process creation and scheduling are handled by the O/S.

Synchronization is handled implicitly by the I/O system
(through buffering).

Flow Stages

Every flow stage is a producer or consumer or both:

O Splitters (Multiplexers) have multiple successors
O Multicasters clone results to multiple consumers
[0 Routers distribute results amongst consumers

0 Mergers (Demultiplexers) have multiple predecessors
[0 Collectors interleave inputs to a single consumer
[0 Combiners process multiple input to produce a single

result

0 Conduits have both multiple predecessors and

consumers

Flow Policies

Flow can be pull-based, push-based, or a mixture:
O Pull-based flow: Consumers take results from Producers
0 Push-based flow: Producers put results to Consumers
0 Buffers:
0 Put-only buffers (relays) connect push-based stages

0 Take-only buffers (pre-fetch buffers) connect pull-
based stages

[0 Put-Take buffers connect (adapt) push-based stages
to pull-based stages

t

Limiting Flow

Unbounded buffers: If producersare faster than
consumers, buffers may exhaust available memory

Unbounded threads: Having too many threads can
exhaust system resources more quickly than
unbounded buffers

Bounded buffers: Tend to be either always full or
CI/W?/S‘ empty, depending on relative speed of
producers and consumers

Bounded thread pools: Harder to manage than bounded
buffers

Example: a Pull-based Prime Sieve

Primes are agents that reject non-primes, pass on candidates,
or instantiate new prime agents:

TestForPrime ActivePrime(2)

—get(
3!» new ActivePrime(3)
< et i
4I> < g () :
| |
> | . .
5{» 5| : new ActivePrime(5)
- - | get () "
6.. -oetl
! | |
~ | | ActivePrime(7)
/. 7. new —
< < ' get () |
8, | I T
L L | | |

Using Put-Take Buffers

Each ActivePrime uses a one-slot buffer to feed values to the
next ActivePrime.

(e) D (O

The first ActivePrime holds the seed value 2, gets values from
a TestForPrime, and creates new ActivePrime instances
whenever it detects a prime value.

The PrimeSieve

The main PrimeSieve class creates the initial configuration
public class PrinmeSieve {
public static void main(String args[]) {
genPrinmes(1000);
}

public static void genPrines(int n) {
try {
ActivePrinme firstPrinme =
new ActivePrime(2, new TestForPrine(n));
} catch (Exception e) { }

}
}

Pull-based integer sources

Active primes get values to test from an| nt Sour ce:
Interface IntSource { int getint(); }
class TestForPrinme inplenments |ntSource {
private iInt nextVal ue;
private int nmaxVal ue;
public TestForPrine(int max) {
this.nextValue = 3; this.nmxVal ue = nax;

}

public int getlnt() { /] not synched!
| f (nextValue < maxVal ue) { return nextVal ue++; }
else { return 0; }

}

}

The ActivePrime Class

ActivePrimes themselves implement IntSource

cl ass ActivePrine
extends Thread inplenents |ntSource {
private static IntSource |lastPrinme; // shared
private i nt val ue; [l this prine
private int square; [l 1ts square
private IntSource intSrc; // ints to test
private Sl ot slot; /] to pass val ues on

The ActivePrime Class

public ActivePrinme(int value, IntSource intSrc)
throws ActivePrineFailure

{
this.val ue = val ue;
slot = new Slot(); [/ NB:. private
lastPrime = this; [/ unsynchroni zed (safe!)
this.start(); /| become active
}

It is impossible for primes to be discovered out of order!

The ActivePrime Class ...

public int value() {
return this.val ue:

}

private void putlint(int val) { [l may bl ock
slot.put()(new I nteger(val));

}

public int getlint() { [l may bl ock

return ((Integer) slot.get()).intValue();
}

The only synchronization is hidden in the Slot class.

The ActivePrime Class ...

public void run() {
int testValue = intSrc.getint(): // may bl ock

while (testValue !'= 0) { /] stop
If (this.square > testValue) { // got a prine
try {

new ActivePrine(testValue, |astPrine);
} catch (Exception e) { break; } // exit |oop
} else if ((testValue %this.value) > 0) {

this.putlnt(testValue); /'l may bl ock
}
testValue = intSrc.getlnt(): /1 may bl ock
}
putlnt(0); /] stop next

Blackboard Architectures

Blackboard architectures put all synchronization in a
"coordination medium” where agents can exchange messages.

SN

R

?

Agents do not exchange messages directly, but post messages
to the blackboard, and retrieve messages either by reading
from a specific location (i.e., a channe/?, or by posing a query
(i.e., a pattern to match).

Result Parallelism

Result parallelism is a blackboard architectural style in which
workers produce parts of a more complex whole.

A

4R T
55 o8

Workers may be arranged hierarchically ...

Agenda Parallelism

Agenda parallelism is a blackboard style in which workers
retrieve tasks to perform from a blackboard, and may
generate new tasks to perform.

QOO A

77

Workers repeatedly retrieve tasks until everything is done.
Workers are typically able to perform arbitrary tasks.

Specialist Parallelism

Specialist parallelism is a style in which each worker is
specialized to perform a particular task.

Specialist designs are equivalent fo message-passing, and are
often organized as flow architectures, with each specialist
producing results for the next specialist o consume.

Linda

Linda is a coordination medium, with associated primitives for
coordinating concurrent processes, that can be added to an
existing programming language.

The coordination medium is a fuple-space, which can contain:

0 data tuples — tuples of primitives vales (numbers,
strings ...)

0 active tuples — expressions which are evaluated and
eventually turn into data tuples

Linda primitives

Linda’s coordination primitives are:

out (T) |output a tuple T to the medium (non-blocking)
e.g., out (“enpl oyee”, “pingu”, 35000)

in(S) |destructively input a tuple matching S (blocking)
e.g., i n(“enpl oyee”, “pingu”, 7?salary)

rd(S) |non-destructively input a tuple (blocking)

i np(S) | fry to input a tuple
rdp(S) |report success or failure (non-blocking)

eval (E) |evaluate E in a new process
leave the result in the tuple space

Example: Fibonacci

A (convoluted) way of computing Fibonacci numbers with Linda:
int fib(int n) {

I f (rdp("fib", n, ?fibn)) /1 non- Dbl ocki ng
return fibn;

i f (n<2) {
out(“fib”, n, 1); /'l non- Dbl ocki ng
return 1;
}
eval ("fib", n, fib(n-1) + fib(n-2)); // asynch
rd("fib", n, ?fibn); /'l bl ocks

return(fibn);

} [l Post-condition: rdp(“fib”,n, ?fibn) == True

CP — Titech Winter 2001 272.

Evaluating Fibonacci

Cf 1 b(5) D\f‘d/mi/s, so start evaﬁ

™eval (“fib”, 5, fib(4)+fib(3))

© O. Nierstrasz — U. Berne Architectural Styles for Concurrency

CP — Titech Winter 2001 273.

Evaluating Fibonacci

(Fib(5) = rd(“fib", 5, 2 n)

blocks for result I

Gi b(4) +f i b(B))\ eval (“fib”,5,fib(4)+fib(3))

eval (“fib”, 4, fib(3)+ib(2))

© O. Nierstrasz — U. Berne Architectural Styles for Concurrency

CP — Titech Winter 2001 274.

Evaluating Fibonacci
(fib(5) = rd(“fib’,5,?2fn)

eval (“fib",5,fib(4)+fib(3))

G‘ib(4)+fib(3) >

| (“fib”, 4, fib(3)+ib(2
G‘ib(3)+fib(2))w\ eval LT 1 03) i)
rd | feval (“fib”,3,fib(2)+fib(1))

fib(2)+f1b(1
CI (2)+11 ())*\d eval (“fib”,2,fib(1)+fib(0))

r

base level succeeds Iﬁ

(fib(1)+ib(0) }-

(“fib",1,1)

© O. Nierstrasz — U. Berne Architectural Styles for Concurrency

CP — Titech Winter 2001 275.

Evaluating Fibonacci
(fib(5) = rd(“fib’,5,?2fn)

eval (“fib",5,fib(4)+fib(3))

G‘ib(4)+fib(3) >

| (“fib”, 4, fib(3)+ib(2
G‘ib(3)+fib(2))w\ eval LT 1 03) i)
rd | feval (“fib”,3,fib(2)+fib(1))

G‘ i b(2) +fi b(1))"\ eval yields passive tuple ™\
rd (“fib”,2,2)

(“fip,1,1)] [Lf1b",0 1)

© O. Nierstrasz — U. Berne Architectural Styles for Concurrency

CP — Titech Winter 2001 276.

Evaluating Fibonacci
(fib(5) = rd(“fib’,5,?2fn)

eval (“fib",5,fib(4)+fib(3))

G‘ib(4)+fib(3) >

(“fib". 4 fib(3)+fib(2
G‘ib(3)+fib(2))w\ eval LT 1 03) i)
eval (“fib", 3 fib(2)+ib(1))

rd
Gib(2)+fib(1)):<\ T

cached values are reuse

N(fip, 11| [Lf107,01)

© O. Nierstrasz — U. Berne Architectural Styles for Concurrency

Evaluating Fibonacci

(f1 b(5)l\

(“fib”,5,8)

(“fib”, 4, 5)

(“fib”,3,3)

(“fib”,2,2)

(“fib", 1,1)

(“fib”, 0, 1)

oo O O O8%

What you should know!

What is a Software Architecture?

What are advantages and disadvantages of Layered
Architectures?

What is a Flow Architecture? What are the options and
tradeoffs?

What are Blackboard Architectures? What are the options
and tradeoffs?

How does result parallelism differ from agenda parallelism?
How does Linda support coordination of concurrent agents?

O 0O0on0

3

Can you answer these questions?

How would you model message-passing agents in Java?
How would you classify Client/Server architectures?
Are there other useful styles we haven't yet discussed?

How can we prove that the Active Prime Sieve is correct?
Are you sure that new Active Primes will join the chain in
the correct order?

Which Blackboard styles are better when we have multiple
processors?

Which are better when we just have threads on a
monoprocessor?

What will happen if you start two concurrent Fibonacci
computations?

13. Petri Nets

Overview
0 Definition:
0 places, transitions, inputs, outputs
0 firing enabled transitions
0 Modelling:
[0 concurrency and synchronization
0 Properties of nets:
0 liveness, boundedness
0 Implementing Petri net models:
0 centralized and decentralized schemes

Reference: J.L.Peterson, Petri Nets Theory and the
Modelling of Systems, Prentice Hall, 1983.

Petri nets: a definition

A Petri net C = [R,T,I,Olconsists of:
1. A finite set P of places
2. A finite set T of transitions

3. An input function I: T — N* (maps to bags of places)

4. An output function O: T - wF
A marking of C is a mapping : P - N

Example:
P={x,y} X a
T={a,b}
I(a)={x}, I(b)={x x}
O(a)={x,y},0Mb)={y} b Y

u={x, x}

Firing transitions

To fire a transition t:
1. There must be enough input tokens: p = I(t)
2. Consume inputs and generate output: p' = p - I(t) + O(t)

Modelling with Petri nets

Petri nets are good for modelling:
LI concurrency
0 synchronization

Tokens can represent:
0 resource availability
[jobs to perform
0 flow of control
0 synchronization conditions ...

Concurrency

Independent inputs permit "concurrent” firing of transitions

SN

Q/’ —
—O
of

Conflict

Overlapping inputs put transitions in conflict
o

b

of

Only one of a or b may fire

Mutual Exclusion

The two subnets are forced to synchronize

D

o<~ oo/

Fork and Join

ool

Producers and Consumers
producer consumer

Y 9

(OZdh]

Bounded Buffers

occupied

5(1(35/

/ -

ﬁ
slots

—O- /J ©

@%} -9

Reachability and Boundedness

Reachability:

[0 The reachability set R(C,1) of a net C is the set of all
markings ' reachable from initial marking p.

Boundedness:

0 A net Cwithinitial marking pis safe if places always hold
at most 1 token.

0 A marked net is (k-)bounded if places never hold more
than k tokens.

[0 A marked net is conservative if the number of tokens is
constant.

Liveness and Deadlock

Liveness:
[1 A transition is deadlocked if it can never fire.
0 A transition is /ive if it can never deadlock.

b
This net is both safe and a
conservaftive.
Transition a is deadlocked. Q_'{_’@'
Transitions b and c are /ive. X 4
The reachability set is {{y}, {z}}. C

[J Are the examples we have seen bounded? Are they live?

Related Models

Finite State Processes
0 Equivalent to regular expressions
0 Can be modelled by one-token conservative nets

b
a d
The FSA for: a(b|c)*d O_g_g
C

Finite State Nets
Some Petri nets can be modelled by FSPs

[1 Precisely which nets can (cannot) be modelled by FSPs?

Zero-testing Nets

Petri nets are not computationally complete
[0 Cannot model “zero testing”
0 Cannot model priorities

A zero-testing net:

An equal number of

a and b transitions may fire
as a sequence during any
sequence of matching

¢ and d transitions.

(#a = #b, #c = #d)

Other Variants

There exist countless variants of Petri nets

Coloured Petri nets: Tokens are "coloured” to
represent different kinds of resources

Augmented Petri nets: Transitions additionally depend
on external conditions

Timed Petri nets: A durationis associated with each
transition

Applications of Petri nets

Modelling information systems:
0 Workflow
0 Hypertext (possible transitions)
0 Dynamic aspects of OODB design

Implementing Petri nets

We can implement Petri net structures in either centralized or
decentralized fashion:

Centralized:

0 Asingle "net manager”monitors the current state of the
net, and fires enabled transitions.

Decentralized:

0 Transitions are processes, places are shared resources,
and transitions compete to obtain tokens.

Centralized schemes

In one possible centralized scheme, the Manager selects and
fires enabled transitions.

" Net Manager A
>[Idem‘ify enabledw deadlocked

transitions) ~®©
found some ¢ T got new marking
[Selec’r and fir'e]
_ transitions y

Concurrently enabled transitions can be fired in parallel.

[J What liveness problems can this scheme lead to?

Decentralized schemes

In decentralized schemes transitions are processes and tokens
are resources held by places:

X Y X y

° get() G

Transitions can be implemented as thread-per-message
gateways so the same transition can be fired more than once if
enough tokens are available.

Transactions

Transitions attempting to fire must grab their input tokens as
an atomic transaction, or the net may deadlock even though
there are enabled transitions!

b

a

If a and b are implemented by independent processes, and x
and y by shared resources, this net can deadlock even though
b is enabled if a (incorrectly) grabs x and waits for'y.

Coordinated interaction

A simple solution is to treat the state of the entire net as a
single, shared resource:

X Y
a

get ()

After a transition fires, it notifies waiting transitions.
[J How could you refine this scheme for a distributed setting?

O 0O O OO0

What you should know!

How are Petri nets formally specified?
How can nets model concurrency and synchronization?

What is the “reachability set” of a net? How can you
compute this set?

What kinds of Petri nets can be modelled by finite state
processes?

How can a (bad) implementation of a Petri net deadlock even
though there are enabled transitions?

If you implement a Petri net model, why is it a good idea to
realize transitions as "thread-per-message gateways”?

Can you answer these questions?

[1 What are some simple conditions for guaranteeing that a
net is bounded?

How would you model the Dining Philosophers problem as a
Petri net? Is such a net bounded? Is it conservative? Live?

[]

[J What could you add to Petri nets to make them Turing-
complete?

L[]

What constraints could you put on a Petri net to make it
fair?

	Concurrent Programming
	Table of Contents
	1. Concurrent Programming
	Goals of this course
	Schedule
	Introduction
	Recommended reading
	Concurrency
	Parallelism
	Why do we need concurrent programs?
	Difficulties
	Concurrency and atomicity
	Safety
	Liveness
	Expressing Concurrency
	Process Creation
	Co-routines
	Fork and Join
	Cobegin/coend
	Communication and Synchronization
	Synchronization Techniques
	Busy-Waiting
	Semaphores
	Programming with semaphores
	Monitors
	Programming with monitors
	Problems with monitors
	Path Expressions
	Message Passing
	Send and Receive
	Remote Procedure Calls and Rendezvous
	What you should know!
	Can you answer these questions?

	2. Java and Concurrency
	Modelling Concurrency
	Finite State Processes
	FSP — Action Prefix
	FSP — Recursion
	FSP — Choice
	FSP — Non-determinism
	FSP — Guarded actions
	Java
	Threads
	SimpleThread FSP
	Multiple Threads ...
	Running the TwoThreadsDemo
	FSP — Concurrency
	FSP — Composition
	java.lang.Thread (creation)
	java.lang.Thread (methods)
	java.lang.Runnable
	Transitions between Thread States
	LTS for Threads
	Creating Threads
	Creating Threads ...
	... And stopping them
	Synchronization
	Synchronized methods
	Synchronized blocks
	wait and notify
	java.lang.Object
	What you should know!
	Can you answer these questions?

	3. Safety and Synchronization
	Modelling interaction — shared actions
	Modelling interaction — handshake
	Modelling interaction — multiple processes
	Safety problems
	Atomicity and interference
	Atomic actions
	Sequential behaviour
	Concurrent behaviour
	Locking
	Synchronization
	Synchronization in Java
	Busy-Wait Mutual Exclusion Protocol
	Atomic read and write
	Modelling the busy-wait protocol
	Busy-wait composition
	Checking for errors
	Conditional synchronization
	Producer/Consumer composition
	Wait and notify
	Slot (put)
	Slot (get)
	Producer in Java
	Consumer in Java
	Composing Producers and Consumers
	What you should know!
	Can you answer these questions?

	4. Safety Patterns
	Idioms, Patterns and Architectural Styles
	Pattern: Immutable classes
	Immutability variants
	Immutable classes — design steps
	Design steps ...
	Pattern: Fully Synchronized Objects
	Applicability ...
	Full Synchronization — design steps
	Design steps ...
	Design steps ...
	Example: a BalkingBoundedCounter
	Example: an ExpandableArray
	Example ...
	Bundling Atomicity
	Using inner classes
	Pattern: Partial Synchronization
	Partial Synchronization — design steps
	Example: LinkedCells
	Example ...
	Pattern: Containment
	Applicability ...
	Contained Objects — design steps
	Design steps ...
	Managed Ownership
	Managed Ownership ...
	A minimal transfer protocol class
	What you should know!
	Can you answer these questions?

	5. Liveness and Deadlock
	Safety revisited
	Safety — property specification
	Safety properties
	Safety properties
	Liveness
	Liveness Problems
	Progress properties — fair choice
	Progress properties
	Progress properties
	Progress analysis
	Deadlock
	Waits-for cycle
	Deadlock analysis - primitive processes
	The Dining Philosophers Problem
	Deadlocked diners
	Dining Philosophers, Safety and Liveness
	Dining Philosophers ...
	Modeling Dining Philosophers
	Dining Philosophers Analysis
	Eliminating Deadlock
	Dining Philosopher Solutions
	What you should know!
	Can you answer these questions?

	6. Liveness and Guarded Methods
	Achieving Liveness
	Pattern: Guarded Methods
	Guarded Methods — applicability
	Applicability ...
	Guarded Methods — design steps
	Step: Separate interface from policy
	Step: Check guard conditions
	Step: Check guard conditions ...
	Step: Handle interrupts
	Step: Signal state changes
	Notify() vs notifyall()
	Step: Structure notifications
	Encapsulating assignment
	Tracking State
	Tracking State Variables
	Delegating notifications
	Delegating notifications ...
	What you should know!
	Can you answer these questions?

	7. Lab session I
	8. Liveness and Asynchrony
	Pattern: Asynchronous Invocations
	Asynchronous Invocations — form
	Asynchronous Invocations — design steps
	Simple Relays — three variants
	Variant: Direct invocations
	Direct invocations ...
	Variant: Thread-based messages
	Thread-based messages ...
	Thread-per-message Gateways
	Variant: Command-based messages
	Tail calls
	Tail calls with new threads
	Early Reply
	Simulating Early Reply
	Early Reply in Java
	Futures
	A Future Class
	Using Futures in Java
	What you should know!
	Can you answer these questions?

	9. Condition Objects
	Pattern: Condition Objects
	Condition Objects — applicability
	Condition Objects
	A Simple Condition Object
	The Nested Monitor problem
	The Nested Monitor problem ...
	The Nested Monitor problem ...
	Nested Monitors in FSP
	Nested Monitors in FSP ...
	Nested Monitors in FSP ...
	Solving the Nested Monitors problem
	Solving Nested Monitors ...
	Example solution
	Pattern: Permits and Semaphores
	Permits and Semaphores — design steps
	Design steps ...
	Variants
	Semaphores in Java
	Using Semaphores
	Using Semaphores ...
	Using Semaphores ...
	What you should know!
	Can you answer these questions?

	10. Fairness and Optimism
	Pattern: Concurrently Available Methods
	Concurrent Methods — design steps
	Priority
	Fairness
	Interception
	Concurrent Reader and Writers
	Readers/Writers Model
	A Simple RW Protocol
	Safety properties
	Safety properties ...
	Composing the Readers and Writers
	Progress properties
	Starvation
	Readers and Writers Policies
	Policies ...
	Readers and Writers example
	Readers and Writers example
	Readers and Writers example
	Readers and Writers example
	Pattern: Optimistic Methods
	Optimistic Methods — design steps
	Detect failure ...
	Detect failure ...
	Handle conflicts ...
	Ensure progress ...
	An Optimistic Bounded Counter
	An Optimistic Bounded Counter
	What you should know!
	Can you answer these questions?

	11. Lab session II
	12. Architectural Styles for Concurrency
	Sources
	Software Architecture
	Architectural style
	Communication Styles
	Simulated Message-Passing
	Three-layered Application Architectures
	Problems with Layered Designs
	Flow Architectures
	Unix Pipes
	Unix Pipes
	Flow Stages
	Flow Policies
	Limiting Flow
	Example: a Pull-based Prime Sieve
	Using Put-Take Buffers
	The PrimeSieve
	Pull-based integer sources
	The ActivePrime Class
	The ActivePrime Class
	The ActivePrime Class ...
	The ActivePrime Class ...
	Blackboard Architectures
	Result Parallelism
	Agenda Parallelism
	Specialist Parallelism
	Linda
	Linda primitives
	Example: Fibonacci
	Evaluating Fibonacci
	Evaluating Fibonacci
	Evaluating Fibonacci
	Evaluating Fibonacci
	Evaluating Fibonacci
	Evaluating Fibonacci
	What you should know!
	Can you answer these questions?

	13. Petri Nets
	Petri nets: a definition
	Firing transitions
	Modelling with Petri nets
	Concurrency
	Conflict
	Mutual Exclusion
	Fork and Join
	Producers and Consumers
	Bounded Buffers
	Reachability and Boundedness
	Liveness and Deadlock
	Related Models
	Finite State Nets
	Zero-testing Nets
	Other Variants
	Applications of Petri nets
	Implementing Petri nets
	Centralized schemes
	Decentralized schemes
	Transactions
	Coordinated interaction
	What you should know!
	Can you answer these questions?

