/066 Concurrent Programming

Prof. O. Nierstrasz

Wintersemester 1997/98

Table of Contents

. Concurrent Programming
Schedule

Overview

Concurrency and Parallelism
Applications of Concurrency
Limitations

Atomicity

Safety and Liveness

Idioms, Patterns and Architectural Styles
Java

Threads

Running the TwoThreadsTest
java.lang.Thread

Transitions between Thread States
java.lang.Runnable

Creating Threads

Synchronization

wait and notify

java.lang.Object

Summary

. Safety

Safety problems

Immutable classes

Immutability variants

Immutable classes — design steps
Fully Synchronized Objects

Fully Synchronization — design steps
Example: a BalkingBoundedCounter
Example: an ExpandableArray
Bundling Atomicity

Inner classes

© 0O NO Ol WDN R .

N R R R RRR R R R
O © o ~NO UM WNIRO

W W NN DNDNDNDNDDNDNN
N P O 0 ~NO Ol WDN R

Table of Contents

wW

Partial Synchronization

Example: LinkedCells
Containment

Contained Objects — design steps
Managed Ownership

A minimal transfer protocol class
Summary

. State-dependent Action

Liveness Problems

Achieving Liveness

The Dining Philosophers Problem
Dining Philosophers, Safety and Liveness
Dining Philosopher Solutions
Fairness

Guarded Methods

Guarded Methods — design steps
Separate interface from policy
Check guard conditions

Handle interrupts

Signal state changes

Structure notifications
Encapsulating assignment
Tracking State

Tracking State Variables
Delegating notifications
Delegating notifications ...

Using template methods
Summary

4. Asynchronous Methods

Asynchronous Invocations
Asynchronous Invocations — form
Asynchronous Invocations — design steps

33
34
35
36
37
38
39

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

61
62
63
64

Simple Relays

Direct invocations
Thread-based massages
Thread-per-message Gateways
Command-based messages
Tail calls

Tail calls with new threads
Early Reply

Simulating Early Reply

A One-Slot Buffer

Early Reply in Java

Futures

A Future Class

Using Futures in Java
Summary

5. Fine-grained Synchronization

Condition Objects

A Simple Condition Object

The Nested Monitor problem

Solving the Nested Monitors problem
Example solution

Permits and Semaphores

Permits and Semaphores — design steps
Variants

Concurrently Available Methods
Concurrent Methods — design steps
Priority

Interception

Concurrent Reader and Writers
Readers and Writers example
Optimistic Methods

Optimistic Methods — design steps
Detect failure ...

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
96
97
98

Table of Contents

Handle conflicts ...

Ensure progress ...

An optimistic Bounded Counter
Summary

6. Architectural Styles for Concurrency

Software Architecture
Architectural style
Communication Styles
Simulated Message-Passing
Three-layered Application Architectures
Problems with Layered Designs
Flow Architectures

Flow Stages

Flow Policies

Limiting Flow

Example: a Pull-based Prime Sieve
Using Put-Take Buffers
Pull-based integer sources

A Put-Take Buffer

The ActivePrime Class
ActivePrime ...

Blackboard Architectures
Result Parallelism

Agenda Parallelism

Specialist Parallelism

Summary

. Coordination Models and Languages
Coordinated Systems

Why they may need to coordinate actions?
What is Coordination?

Coordination Language and Model

Model vs. Language

Coordination Models

Coordination Language and Model
Programming Model

99
100
101
102

103
104
105
106
107
108
109
110
111
112
113
114
115
117
118
119
120
121
122
123
124
125

126
127
128
129
130
131
132
133
134

Linda Coordination Model

Linda Operations

Examples

Example: Fibonacci

JavaSpace- (Java + Linda)

Multiset Rewriting-The Gamma Model
Examples:

Object Oriented Coordination Languages
FLO/C

Example:

ATOM

Example: Per-Object Synchronization
Example: Inter-Object Coordination
SCG Coordination Research

. Coordination Components in Java

Coordination for Open Distributed Systems
Approach: Coordination Components
Network communication

A design for the multicast solution

The Connection components

The LineReader in Java

Synchronization: Shared Resource
Requirements for scheduling policy
Scheduling Policy Design

Explicit Commands

Explicit Policies

The Configuration Object

The adapted readers/writer policy
Composing abstractions: distributed access
A design for a distributed shared resource
An Adapter in Java

Distributed transactions

Transactions in a nutshell

a design for distributed transactions

135
136
137
138
139
142
143
144
145
146
147
148
150
153

154
155
156
157
158
159
160
161
162
163
164
165
166
167
169
170
171
172
173
174

9. Object-Based Concurrency

What is an OBCL?
Overview of OBCLs
Requirements for OBCLs
Expression of Concurrency
Objects and Processes
Passive Object Models
Active/Passive Models
Active Object Models
Granularity of Concurrency
Sequential Objects
Quasi-Concurrent Objects
Concurrent Objects
Process Creation
Asynchronous Objects
Asynchronous Invocation
Futures

Communication and Synchronization
Local Delays

Local Delays

Transactions

Classifying OBCLs
Evaluation

Summary

10. Petri Nets

Petri nets: a definition
Firing transitions

Modelling with Petri nets
Concurrency

Conflict

Mutual Exclusion

Fork and Join

Producers and Consumers
Bounded Buffers
Properties

ii.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

199
200
201
202
203
204
205
206
207
208
209

Table of Contents

Liveness and Boundedness
Related Models
Computational Power
Applications of Petri nets
Implementing Petri nets
Centralized schemes
Decentralized schemes
Transactions

Coordinated interaction
Summary

11. The pi Calculus

Introduction

Basic ideas

Simple examples

The polyadic pi calculus

Church’s encoding of boolean in pi
Observable equivalence

Observable equivalence |l

Process typing

A simplification - polyadic mini pi-calculus
Objects in the pi-calculus

A basic object model in the pi calculus
The pL-calculus

PICT

Abstract Syntax of (Untyped) Core PICT
Binding Channels

Typed Channels

Synchrony and Asynchrony
Synchronizing Concurrent Clients
Modelling Booleans

Modelling Language Constructs
Natural Numbers

Counting

Arithmetic

Functional Notation

210
211
212
213
214
215
216
217
218
219

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

Functions as Processes
Functions as Processes
Sequencing

A Concurrent Queue

Implementing the Concurrent Queue

12. JPict - the pi-Calculus in Java

Motivation

The Architecture
Synchronization

Running Agents
Example: replicated Reader
No one is an island
Environment
Environment Il

Package jpict

Values

PiL - Forms
Implementing Forms
Modelling Boolean in PiL
Extending the Boolean

Towards a programming language...

Functions, Assignment...
Example

Java-Threads and Pi-Process
Java-Threads and Pi-Process I
Concurrent Queue in Pil
Interested?

245
246
247
248
249

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

fil.

Concurrent programming — WS 97/98 1.

1. Concurrent Programming

Lecturer: Prof. O. Nierstrasz
Schitzenmattstr. 14/103, Tel. 631.4618
Secr.: Frau |. Huber, Tel. 631.4692
Assistants: M. Lumpe, F. Achermann, J.C. Cruz, S. Tichelaar
WWW: http://lamwww.unibe.ch/~scg/Lectures/
Text:

0 D. Lea, Concurrent Programming in Java: Design Principles and Patterns,
Addison-Wesley, 1996

Other Sources;

[0 D. Lea, Online Supplement to Concurrent Programming in Java,
http://gee.cs.oswego.edu/dl/cpj/index.html

[0 N. Carriero and D. Gelernter, How to Write Parallel Programs: a First Course,
MIT Press, Cambridge, 1990.

[0 A.Burns and G. Davies, Concurrent Programming, Addison-Wesley, 1993

Universitét Bern Concurrent Programming

Concurrent programming — WS 97/98

Schedule

10.24
10.31
11.07
11.14
11.21
11.28
12.05
12.12
12.19
01.09
01.16
01.23
01.30
02.06

(N e) D I

Universitat Bern

9.

0 ~NOoOUAWNPR

Introduction — Concurrency and Java

. Safety

. State-dependent Action

. Asynchronous Methods

. Fine-grained Synchronization

. Architectural Styles for Concurrency
. Coordination Languages

. Coordination Components in Java

No lecture
Object-Based Concurrency

10. Petri Nets
11. Pi Calculus and Pict
12. JPict — Pict in Java

Open ...

— Juan Carlos Cruz
— Sander Tichelaar

— Juan Carlos Cruz

— Markus Lumpe
— Franz Achermann

Concurrent Programming

Concurrent programming — WS 97/98 3.

Overview

[0 Concurrency and Parallelism
[1 Applications of Concurrency

[0 Limitations
1 safety, liveness, non-determinism ...

[0 Approach
[idioms, patterns and architectural styles

[0 Java and concurrency

Universitét Bern Concurrent Programming

Concurrent programming — WS 97/98 4.

Concurrency and Parallelism

“A sequential program specifies sequential execution of a list of statements; its execution
Is called a process. A concurrent program specifies two or more sequential programs that
may be executed concurrently as parallel processes.”

A concurrent program can be executed by:

1. Multiprogramming: processes share one or more processors

2. Multiprocessing: each process runs on its own processor
but with shared memory

3. Distributed processing: each process runs on its own processor

connected by a network to others

Assume only that all processes make positive finite progress.

Universitét Bern Concurrent Programming

Concurrent programming — WS 97/98 5.

Applications of Concurrency

There are many good reasons to build concurrent programs:

[1 Reactive programming
[0 minimize response delay; maximize throughput

[Real-time programming
[1 process control applications

1 Simulation
[0 modelling real-world concurrency

[0 Parallelism
[0 exploit multiple CPUs for number-crunching; exploit parallel algorithms

[1 Distribution
[1 coordinate distributed services

Universitét Bern Concurrent Programming

Concurrent programming — WS 97/98 6.

Limitations

But concurrent applications introduce complexity:

[]

Safety
[1 synchronization mechanisms are needed to maintain consistency

Liveness
[1 special techniques may be needed to guarantee progress

Non-determinism
[1 debugging is harder because results may depend on “race conditions”

Communication complexity
[0 communicating with a thread is more complex than a method call

Run-time overhead
[J thread construction, context switching and synchronization take time

Universitét Bern Concurrent Programming

Concurrent programming — WS 97/98

Atomicity

Programs P1 and P2 execute concurrently:

{x=0}
P1: X = X+1
P2: X 1= X+2
{x=7?}

What are possible values of x after P1 and P2 complete?
What is the intended final value of x?

Synchronization mechanisms are needed to restrict the possible interleavings of
processes so that sets of actions can be seen as atomic.

Mutual exclusion ensures that statements within a critical section are treated atomically.

Universitét Bern Concurrent Programming

Concurrent programming — WS 97/98 8.

Safety and Liveness

There are two principal difficulties in implementing concurrent programs:

Safety — ensuring consistency:
[0 Mutual exclusion — shared resources must be updated atomically

[0 Condition synchronization — operations may need to be delayed if shared
resources are not in an appropriate state (e.g., read from empty buffer)

Liveness — ensuring progress:
[0 No Deadlock — some process can always access a shared resource
[0 No Starvation — all processes can eventually access shared resources

Notations for expressing concurrent computation must address:
1. Process Creation: how is concurrent execution specified?
2. Communication: how do processes communicate?
3. Synchronization: how is consistency maintained?

Universitét Bern Concurrent Programming

Concurrent programming — WS 97/98 9.

Idioms, Patterns and Architectural Styles

ldioms, patterns and architectural styles express best practice in resolving common
design problems.

[1 Idioms

[“alow-level pattern specific to a programming language”
— or more generally: “an implementation technique”

[0 Design patterns

[“a commonly-recurring structure of communicating components that
solves a general design problem within a particular context”

[0 Architectural patterns (styles)
[0 “afundamental structural organization schema for software systems”

— cf. Buschmann et al., Pattern-Oriented Software Architecture, pp. 12-14

Universitét Bern Concurrent Programming

Concurrent programming — WS 97/98 10.

Java

Language design influenced by existing OO languages (C++, Smalltalk ...):
[0 Strongly-typed, concurrent, pure object-oriented language
1 Syntax, type model influenced by C++
[0 Single-inheritance but multiple subtyping
[1 Garbage collection

Innovation in support for network applications:
[0 Standard API for language features, basic GUI, 10, concurrency, network
Compiled to bytecode; interpreted by portable abstract machine
Support for native methods
Classes can be dynamically loaded over network
Security model protects clients from malicious objects

N O O B

Java applications do not have to be installed and maintained by users

Universitét Bern Concurrent Programming

Concurrent programming — WS 97/98 11.

Threads

A Thread defines its behaviour in its run method, but is started by calling start()
Il Copyright (c) 1995, 1996 Sun Microsystems, Inc. All Rights Reserved.

class TwoThreadsTest {
public static void main (String(] args) {
new SimpleThread("Jamaica").start(); Il Instantiate, then start
new SimpleThread("Fiji").start();

}

class SimpleThread extends Thread {
public SimpleThread(String str) {
super(str); /l Call Thread constructor

}
public void run () { I What the thread does

for (int 1=0;i1<10;i++) {
System.out.printin(i + " " + getName());
try {
sleep((int)(Math.random() * 1000));
} catch (InterruptedException e){}

}
System.out.printin("DONE! " + getName());

Universitét Bern Concurrent Programming

Concurrent programming — WS 97/98 12.

Running the TwoThreadsTest

0 Jamaica

0 Fiji

1 Jamaica

1 Fij

2 Jamaica In this implementation of Java, the execution

:23 I of the two threads is interleaved.
Jamaica

3 Fiji

ji]:?}imalca This is not guaranteed for all implementations!
5 Jamaica

6 Jamaica [1 Why are the output lines never garbled?
5 Fiji

6 Fiji

7 Fiji E.Q.

7 Jamaica

8 Jamaica

9 Jamaica

8 Fiji

DONE! Jamaica
9 Fiji

DONE! Fiji

00 JaFimajicai

Universitét Bern Concurrent Programming

Concurrent programming — WS 97/98 13.

java.lang.Thread

The Thread class encapsulates all information concerning running threads of control:

public class Jjava.lang.Thread
extends java.lang.Object implements java.lang.Runnable

{
public Thread(); /l Public constructors
public Thread(Runnable target):
public Thread(Runnable target, String name);
public Thread(String name);
public static void sleep(long millis) // Current thread sleeps
throws InterruptedException;
public static void yield(); Il Yield control (equal priority)
public final String getName();
public void run (); Il “main()” method
public synchronized void start (); Il Starts a thread running
public final void suspend (); Il Temporarily halts a thread
public final void resume (); Il Allow to resume after suspend|()
public final void stop (); Il Throws a ThreadDeath error
public final void join_ () /l Waits for thread to die
throws InterruptedException;
}

Universitét Bern Concurrent Programming

Concurrent programming — WS 97/98 14.

ransitions between Thread States

yield()
\ start()
< New Thread >< Runnable)4 ><Not Runnable>
stop() ,or
run exits
stop() U stop()
Y
< Dead
Runnable- « Not Runnable
sleep() time elapsed
suspend() resume()
wait() notify() or notifyAll()
blocked on I/O I/O completed

Universitét Bern Concurrent Programming

Concurrent programming — WS 97/98 15.

java.lang.Runnable

Since multiple inheritance is not supported, it is not possible to inherit from both Thread
and from another class providing useful behaviour (like Applet).

In these cases it is sufficient to define a class that implements the Runnable interface,
and to call the Thread constructor with an instance of that class as a parameter:

public interface java.lang.Runnable

{
}

public abstract void run ();

Universitét Bern Concurrent Programming

Concurrent programming — WS 97/98 16.

Creating Threads

A Clock object updates the time as an Applet with its own Thread :

import java.awt.Graphics; // Copyright (c) 1995, 1996 Sun Microsystems, Inc. All Rights Reserved.
import java.util.Date;

public class Clock extends java.applet.Applet implements Runnable {
Thread clockThread = null;

public void start() {
if (clockThread == null) {

clockThread = new Thread(this, "Clock™); Il NB: creates its own thread
clockThread.start();

}

public void run () {
Il loop terminates when clockThread is set to null in stop()
while (Thread.currentThread() == clockThread) {
repaint();
try { clockThread.sleep(1000); }
catch (InterruptedException e){ }

}

public void paint(Graphics) {
Date now = new Date();

g.drawString(now.getHours() + ":" + now.getMinutes() + ":" + now.getSeconds(), 5, 10);

}
public void stop() { clockThread = null; }

Universitét Bern Concurrent Programming

Concurrent programming — WS 97/98 17.

Synchronization

Without synchronization, an arbitrary number of threads may be running at any time
within the methods of an object.

One can either declare an entire method to be synchronized with other synchronized
methods of an object:

public class PrintStream extends FilterOutputStream {
public synchronized void printin(String s);/l Only one may run at a time

public synchronized void printin(char C);

}

or an individual block within a method may be synchronized with respect to some object:
synchronized (resource) { // Lock resource before using it

}

Universitét Bern Concurrent Programming

Concurrent programming — WS 97/98

wait and notify

18.

Sometimes threads must be delayed until a resource is in a suitable state:

class Slot { /l
private int contents;
private boolean available = false; Il
public synchronized int

get() { I
while (available == false) {
try{ wait ();} Il

catch (InterruptedException e){}
}
available = false;
notify (); I
return contents;
}
public synchronized void put(int value) {//
while (available == true) {
ry{ wait ();} Il
catch (InterruptedException e){}
}
contents = value;
available = true;
notify (); Il
}

Universitat Bern

Implements a one-slot buffer

the condition variable
put contents, if available

wait until there is something to get()

wake up the producer

put value, if there is room

wait until there is room to put()

wake up the consumer

Concurrent Programming

Concurrent programming — WS 97/98

java.lang.Object

19.

Unlike synchronized ,wait() and notify() are methods rather than keywords:

public class Jjava.lang.Object

{

public Object();

public boolean equals(Object obj);
public final Class getClass();
public int hashCode();

public String toString();

public final void wait ()

throws InterruptedException, IllegalMonitorStateException;
public final void wait(long timeout)

throws InterruptedException, IllegalMonitorStateException;
public final void wait(long timeout, int nanos)

throws InterruptedException, lllegalMonitorStateException;
public final void notify () throws lllegalMonitorStateException;
public final void notifyAll () throws lllegalMonitorStateException;
protected Object clone

throws CloneNotSupportedException, OutOfMemoryException;
protected void finalize() throws Throwable;

Universitat Bern

Concurrent Programming

Concurrent programming — WS 97/98 20.

Ssummary

You Should Know The Answers To These Questions:

[0 What is the distinction between “concurrency” and “parallelism”?
What are classical applications of concurrent programming?

Why are concurrent programs more complex than sequential ones?
What are “safety” and “liveness”? Give examples.

How do you create a new thread in Java?

What states can a Java thread be in? How does it change state?
When should you declare a method to be synchronized ?

O O0O00nd

Can You Answer The Following Questions?

[]
[]

[]
[]
[]

What is an example of a “race condition”?

When will a concurrent program run faster than an equivalent sequential one?
When will it be slower?

What is the difference between deadlock and starvation?
What happens if you callwait ornotify outside a synchronized method or block?
When is it better to use synchronized blocks rather than methods?

Universitét Bern Concurrent Programming

Concurrent programming — WS 97/98 21.

2. Safety

Overview
0 Immutability:
[0 avoid safety problems by avoiding state changes
[0 Full Synchronization:
[0 dynamically ensure exclusive access
[0 Partial Synchronization:
[1 restrict synchronization to "critical sections"
[0 Containment:
[0 structurally ensure exclusive access

Sources

0 D. Lea, Concurrent Programming in Java: Design Principles and Patterns,
Addison-Wesley, 1996

[0 D. Lea, On-line Supplement to Concurrent Programming in Java,
http://gee.cs.oswego.edu/dl/cpj/index.html

Universitét Bern Safety

Concurrent programming — WS 97/98 22.

Safety problems

Objects must only be accessed when they are in a consistent state
[0 methods must maintain class (state and representation) invariants

Each method may assume
>~ ml abstract states that the object is in a “clean”,
consistent state when it
incoming requests m2 start;s,_and it. must ensure
that it is left in a clean state
when it is done.
> m3
If methods interleave
m4 arbitrarily, an inconsistent
state may be accessed, and
the object may be left in a
md “dirty” state.
methods

Universitét Bern Safety

Concurrent programming — WS 97/98 23.

Immutable classes

Intent

Bypass safety issues by not changing an object’s state after creation.

Applicability

[]

When objects represent values of simple ADTs

[0 colours (java.awt.Color), numbers (java.lang.Integer) and strings
(java.lang.String)

When classes can be separated into mutable and immutable versions
[java.lang.String vs. java.lang.StringBuffer

When updating by copying is cheap

O “hello” +*” + “world” - “hello world”

When multiple instances can represent the same value

0 i.e., two distinct copies of the integer 712 represent the same value

Universitét Bern Safety

Concurrent programming — WS 97/98 24.

Immutability variants

Variants
[1 Stateless methods

[0 methods that do not access an object’s state do not need to be
synchronized (such methods can be declared static)

[0 any temporary state should be purely local to the method

[J Stateless objects
[0 an object whose “state” is dynamically computed needs no synchronization

[0 “Hardening”
[J object becomes immutable after a mutable phase
[1 be sure that object is exposed to concurrent threads only after hardening

Universitét Bern Safety

Concurrent programming — WS 97/98 25.

Immutable classes — design steps

[Declare a class with instance variables that are never changed after

construction.
class Relay { /l a within-package helper for some Server class
private final Server server_;// “blank final” (in Java 1.1)
Relay(Server s) { Il blank finals must be initialized
server_=s; Il in all constructors
}
void dolt() {

server_.dolt();

}

[0 Especially if the class represents an immutable data abstraction (such as
String), consider overriding Object.equals and Object.hashCode

[0 Consider writing methods that generate new objects of this class.
(e.g., String concatenation)

Consider declaring the class as final

If only some variables are immutable, use synchronization or other techniques
for the methods that are not stateless.

1 O

Universitét Bern Safety

Concurrent programming — WS 97/98 26.

Fully Synchronized Objects

Intent

Maintain consistency by fully synchronizing all methods.At most one method will run at
any point in time.

Applicability
[0 Youwantto eliminate all possible read/write and write/write conflicts, regardless
of the context in which it the object is used.
0 All methods can run to completion without waits, retries, or infinite loops.
[0 You do not need to use instances in a layered design in which other objects
control synchronization of this class.
[0 You can avoid or deal with liveness failures, for example, by:

[0 Exploiting partial immutability

[0 Removing synchronization for accessors.
[0 Removing synchronization in invocations.
[0 Arranging per-method concurrency.

Universitét Bern Safety

Concurrent programming — WS 97/98 27.

Fully Synchronization — design steps

[1 Declare all methods as synchronized

[]

[]

[]

Do not allow any direct access to state (i.e, no public instance variables;
no methods that return references to instance variables).

Constructors cannot be marked as synchronized in Java. Use a
synchronized block in case a constructor passes this to multiple threads.

Methods that access static variables must either do so via static
synchronized methods or within blocks of the form
synchronized(getClass()) { ... }

[0 Ensure that every public method exits leaving the object in a consistent state,
even if it exits via an exception.

[0 Keep methods short so they can atomically run to completion. State-dependent
actions must rely on balking:

[]
[]

[]

Universitat Bern

Return failure (i.e., exception) to client if preconditions falil

If the precondition does not depend on state (e.g., just on the arguments),
then no need to run check in synchronized code!

Provide public accessor methods so that clients can check conditions
before making request!

Safety

Concurrent programming — WS 97/98 28.

Example: a BalkingBoundedCounter

A Bounded Counter holds a value between MIN and MAX.

If the preconditions for inc() or dec() fail, an exception is raised:

public class BalkingBoundedCounter {
protected long count_ = BoundedCounter.MIN;

public synchronized long value() { return count_; }
public synchronized void inc() throws CannotincrementException {

if (count_ >= BoundedCounter.MAX)
throw new CannotincrementException();

else
++count_;
}
public synchronized void dec() throws CannotDecrementException {
if (count_ <= BoundedCounter.MIN)
throw new CannotDecrementException();
else
--count_;
}

[1 What safety problems would arise if this class were not fully synchronized?

Universitét Bern Safety

Concurrent programming — WS 97/98

29.

Example: an ExpandableArray

This Expandable Array is a simplified variant of java.util.Vector:

import java.util.NoSuchElementException;

public class ExpandableArray {

private Object[] data_; /l

private int size_; /l

public ExpandableArray(int cap) {
data_ = new Object[cap]; /l
size =0;

}

public synchronized int size() { return size_; }

public synchronized Object at(int) Il

throws NoSuchElementException {
if(i<0]|i>=size_)

throw new NoSuchElementException();
else

return data_[i];

Universitat Bern

the elements
the number of slots used

reserve some space

subscripted access

Safety

Concurrent programming — WS 97/98

public class ExpandableArray {

public synchronized void append(Objectx) { //
if (size_ >= data_.length) { /l
Object(] olddata = data_;
data_ = new Object[3 * (size_+ 1)/ 2];/l
for (inti=0;i<size_; ++i)
data_[i] = olddatali];
}
data_[size_++] = X;

}

public synchronized void removel ast()
throws NoSuchElementException {
if (size_==0)
throw new NoSuchElementException();
else
data_[--size_] = null;

30.

add at end
need a bigger array

increase by ~ 50%

[0 What could happen if any of these methods were not synchronized?

Universitat Bern

Safety

Concurrent programming — WS 97/98 31.

Bundling Atomicity

[0 Consider adding synchronized methods that perform frequently desired
sequences of actions as single atomic action, so that clients do not need to
Impose extra synchronization or control.

public interface Procedure { /l apply some operation to a single object
public void apply(Object x);
}

public class ExpandableArrayV2 extends ExpandableArray {
public ExpandableArrayV2(int cap) { super(cap); }

public synchronized void applyToAll(Procedure p){
for (inti=0;i<size_;++i){ // oops -- SIZE _ and data_
p.apply(data_[i]); Il should have been protected!

}

[0 What possible liveness problems does this technique introduce?

Universitét Bern Safety

Concurrent programming — WS 97/98

Inner classes

32.

Anonymous inner classes (in Java 1.1) are the OO equivalent of lambda expressions:

class ExpandbleArrayUser {

public static void main(String(] args) {
ExpandableArrayV2 a = new ExpandableArrayV2(100);
for (inti=0; i< 100; ++i) Il fill it up
a.append(new Integer(i));
a.applyToAll(new Procedure { Il print all elements
public void apply(Object x) { System.out.printin(x); }
}

Any variables shared with the host object must be declared final

(immutable).

Universitat Bern

Safety

Concurrent programming — WS 97/98 33.

Partial Synchronization

Intent

Reduce overhead by synchronizing only within “critical sections”.

Applicability
[0 When objects have both mutable and immutable instance variables.
[0 When methods can be split into a “critical section” that deals with mutable state

and a part that does not.

Design steps

[]
[]
[]

Fully synchronize all methods
Remove synchronization for accessors to atomic or immutable values

Remove synchronization for methods that access mutable state through a
single other, already synchronized method

Replace method synchronization by block synchronization for methods where
access to mutable state is restricted to a single, critical section

Universitét Bern Safety

Concurrent programming — WS 97/98

Example: LinkedCells

public class LinkedCell {
protected double value_; Il
protected final LinkedCell next_; Il

34.

doubles are not atomic!
fixed

public LinkedCell (double v, LinkedCell t) { value_=v; next_=t; }

public synchronized double value() { return value_;}

public synchronized void setValue(double v) {value =v;}

public LinkedCell next() { return next_; } Il
public double sum() { /l
double v =value(); Il
if (next() != null) /l
v += next().sum();
return v,
}
public boolean includes(double X) { Il
synchronized(this) { Il
if (value_ == x) return true;
}

if (next() == null) return false;
else return next().includes(x);

Universitat Bern

no synch needed

add up all element values
get value via
synchronized accessor

search for x
synch to access value

Safety

Concurrent programming — WS 97/98 35.

Containment

Intent

Achieve safety by avoiding shared variables. Unsynchronized objects are “contained”
inside other objects that have at most one thread active at a time.

Applicability

[0 There is no need for shared access to the embedded objects.

[0 The embedded objects can be conceptualized as exclusively held resources

[0 You can tolerate the additional context dependence for embedded objects.

[Embedded objects must be structured as islands — communication-closed sets
of objects ultimately reachable from a single unique reference. They cannot
contain methods that reveal their identities to other objects.

[0 You are willing to hand-check designs for compliance.

[0 You can deal with or avoid indefinite postponements or deadlocks in cases

where host objects must transiently acquire multiple resources.

Universitét Bern Safety

Concurrent programming — WS 97/98 36.

Contained Objects — design steps

[1 Define the interface for the outer host object.

[0 The host could be, e.g., an Adaptor, a Composite, or a Proxy, that provides
synchronized access to an existing, unsynchronized class

[0 Ensure that the host is either fully synchronized, or is in turn a contained object.

[0 Define instances variables that are unique references to the contained objects.
[Make sure that these references cannot leak outside the host!

[1 Establish policies and implementations that ensure that acquired
references are really unique!

[Consider methods to duplicate or clone contained object, to ensure that
copies are unique

Universitét Bern Safety

Concurrent programming — WS 97/98 37.

Managed Ownership

[Model contained objects as physical resources:
[0 If you have one, then you can do something that you couldn't do otherwise.
[1 If you have one, then no one else has it.
[1 If you give one to someone else, then you no longer have it.
[J If you destroy one, then no one will ever have it.

[1 If contained objects can be passed among hosts, define a transfer protocol.
[0 Hosts should be able to acquire, give, take, exchange and forget resources
[0 Consider using a dedicated class to manage transfer

Universitét Bern Safety

Concurrent programming — WS 97/98 38.

A minimal transfer protocol class

This class is essentially a one-slot buffer for transferring resources between hosts in
separate threads.

public class ResourceVariable {
protected Object ref_;

public ResourceVariable(Object res) { ref_=res; }

public synchronized Object resource() { return ref_; }
public synchronized Object exchange(Object N {

Object old = ref_;
ref_=r;
return old;

NB: exchange() is enough to implement most transfer operations, e.g., take() is
implemented by exchange(null)

Universitét Bern Safety

Concurrent programming — WS 97/98 39.

Ssummary

You Should Know The Answers To These Questions:
[0 Why are immutable classes inherently safe?
Why doesn’t a “relay” need to be synchronized?
What is “balking”? When should a method balk?
When is partial synchronization better than full synchronization?
How does containment avoid the need for synchronization?

OO O

Can You Answer The Following Questions?

When is it all right to declare only some methods as synchronized ?

When is an inner class better than an explicitly named class?

What liveness problems can full synchronization introduce?

Why is it a bad idea to have two separate critical sections in a single method?
Does it matter if a contained object is synchronized or not?

OO0 O

Universitét Bern Safety

Concurrent programming — WS 97/98 40.

3. State-dependent Action

Overview
[0 Liveness and Fairness
[1 The Dining Philosophers problem
[0 Guarded Methods
[0 Checking guard conditions
Handling interrupts
Structuring notification
Tracking state
Delegating notifications

O O O

Sources
[0 A.Burns and G. Davies, Concurrent Programming, Addison-Wesley, 1993

0 D. Lea, Concurrent Programming in Java: Design Principles and Patterns,
Addison-Wesley, 1996

[0 D. Lea, On-line Supplement to Concurrent Programming in Java,
http://gee.cs.oswego.edu/dl/cpj/index.html

Universitét Bern State-dependent Action

Concurrent programming — WS 97/98 41.

Liveness Problems

Liveness properties guarantee that your (concurrent) programs will make progress.
A program may be “safe”, yet suffer from various kinds of liveness problems:
[1 Contention:

0 AKA “starvation” or “indefinite postponement” — the system as a whole
makes progress, but some individual processes don't

[J Dormancy:
[1 A waiting process fails to be woken up

[1 Deadlock:;

[Two or more processes are blocked, waiting for resources held by the
others (i.e., in a cycle)

[1 Premature termination:
[1 A process is killed before it should be

Universitét Bern State-dependent Action

Concurrent programming — WS 97/98 42.

Achieving Liveness

There are various strategies and techniques to ensure liveness:
[1 Start with safe design and selectively remove synchronization
1 Start with live design and selectively add safety
[0 Adopt design patterns that limit the need for synchronization

[0 Adopt standard architectures that avoid cyclic dependencies

Universitét Bern State-dependent Action

Concurrent programming — WS 97/98 43.

The Dining Philosophers Problem

Philosophers alternate between
thinking and eating.

A philosopher needs two forks to eat.

No two philosophers may hold the
same fork simultaneously.

>
&

/ <)
K/
< &
Z - ",4;\‘\‘
PN
A\
(&2
\ 2

A ——

There should be no deadlock and no
starvation.

Want efficient behaviour under
absence of contention.

Universitét Bern State-dependent Action

Concurrent programming — WS 97/98 44,

Dining Philosophers, Safety and Liveness

Dining Philosophers illustrates many classical safety and liveness issues:

Mutual Exclusion: Each chopstick can be used by one philosopher at a time
Condition synchronization: A philosopher needs two forks to eat

Shared variable communication: Philosophers share forks ...
Message-based communication: ... or they can pass forks to each other
Busy-waiting: A philosopher can poll for forks ...

Blocked waiting: ... or can sleep till woken by a neighbour

Livelock: All philosophers can grab the left fork and busy-wait for the right ...
Deadlock: ... or grab the left one and walit (sleep) for the right

Starvation: A philosopher may starve if the left and right neighbours are always
faster at grabbing the forks

(N O I O I B

Universitét Bern State-dependent Action

Concurrent programming — WS 97/98 45,

Dining Philosopher Solutions

There are countless solutions to the Dining Philosophers problem that use various
concurrent programming styles and patterns, and offer varying degrees of liveness
guarantees:

[0 Number the forks;
philosophers grab the lowest numbered fork first.

[0 Have philosophers leave the table while they think;
allow at most four to sit at a time;
philosophers queue to sit down.

0 Is deadlock possible in either case?
[1 What about starvation?
[1 Are these solutions “fair”?

Universitét Bern State-dependent Action

Concurrent programming — WS 97/98 46.

Fairness

There are subtle differences between definitions of fairness:

Weak fairness:

[If a process continuously makes a request, eventually it will be granted.
Strong fairness:

[0 If a process makes a request infinitely often, eventually it will be granted.
Linear waiting:
[If a process makes arequest, it will be granted before any other process is
granted the request more than once.
FIFO (first-in first out):

[0 If a process makes a request, it will be granted before that of any process
making a later request.

Universitét Bern State-dependent Action

Concurrent programming — WS 97/98 47.

Guarded Methods

Intent

Temporarily suspend an incoming thread when an object is not in the right state to fulfil
a request, and wait for the state to change rather than balking (raising an exception).

Applicability

[0 Clients can tolerate indefinite postponement. (Otherwise, use a balking design.)

[0 You can guarantee that the required states are eventually reached (via other
requests), or if not, that it is acceptable to block forever.

[0 You can arrange that notifications occur after all relevant state changes.
(Otherwise consider a design based on a busy-wait spin loop.)

[0 You can avoid or cope with liveness problems due to waiting threads retaining
all synchronization locks (except for that of the host).

[0 You can construct computable predicates describing the state in which actions
will succeed. (Otherwise consider an optimistic design.)

[1 Conditions and actions are managed within a single object. (Otherwise consider
a transactional form.)

[0 You have no need to encapsulate waiting and notification mechanics within

special condition objects.

Universitét Bern State-dependent Action

Concurrent programming — WS 97/98 48.

Guarded Methods — design steps

The basic recipe is to use wait in a conditional loop to block until it is safe to proceed,
and use notifyAll to wake up blocked threads.

public synchronized Object service() {
while (wrong State) {
try { wait (); }
catch (InterruptedException e){}

}
Il fill request

I/l and change state

notifyAll 0; Il NB: use notify() only if it does not matter
return result; I which waiting thread you wake up

Universitét Bern State-dependent Action

Concurrent programming — WS 97/98 49.

Separate interface from policy

[0 Define interfaces for the methods, so that classes can implement guarded
methods according to different policies.

public interface BoundedCounter {
public static final long MIN = 0; // minimum allowed value
public static final long MAX = 10;// maximum allowed value
public long value(); /l invariant: MIN <= value() <= MAX
Il Initial condition: value() == MIN
public void inc(); Il increment only when value() < MAX
public void dec(); Il decrement only when value() > MIN
}

Universitét Bern State-dependent Action

Concurrent programming — WS 97/98 50.

Check guard conditions

[1 Define a predicate that precisely describes the conditions under which actions
may proceed. (This can be encapsulated as a helper method.)

[0 Precede the conditional actions with a guarded wait loop of the form:

while (!condition)
try { wait(); } catch (InterruptedException ex) { ... }

Optionally, encapsulate this code as a helper method.

[1 If there is only one possible condition to check in this class (and all plausible
subclasses), and notifications are issued only when the condition is true, then
there is no need to re-check the condition after returning from wait()

[0 Ensure that the object is in a consistent state (i.e., the class invariant holds)
before entering any wait (since wait releases the synchronization lock). The
easiest way to do this is to perform the guards before taking any actions.

Universitét Bern State-dependent Action

Concurrent programming — WS 97/98 51.

Handle interrupts

[1 Establish a policy for dealing with InterruptedExceptions (which will also
force a return from wait). Possible policies are:

[]

[]

[

[]
[]

Ignore interrupts (i.e., have an empty catch clause), which preserves
safety at the possible expense of liveness.

Terminate the current thread (via stop). This also preserves safety, though
brutally!

Exit the method, possibly raising an exception. This preserves liveness but
may require the caller to take special action to preserve safety.

Take some pre-planned action; such as cleanup and restart.
Ask for user intervention before taking further action.

Interrupts can be useful to signal that the guard can never become true
because, for example, the collaborating threads have terminated.

Universitat Bern

State-dependent Action

Concurrent programming — WS 97/98 52.

Signal state changes

1 Add notification code to each method of the class that changes state in any way
that can affect the value of a guard condition. Some options are:

[0 notifyAll wakes up all threads that are blocked in waits for the host
object. Calls to notifyAll (as well as notify) must be enclosed within
a synchronized method or block.

0 notify wakes up only one thread (if any exist). This is best treated as an
optimization where (i) all blocked threads are necessarily waiting for
conditions signalled by the same naotifications, (ii) only one of them can be
enabled by any given notification, and (iii) it does not matter which one of
them becomes enabled.

[0 You build your own special-purpose notification methods using notify
and notifyAll . (For example, to selectively notify threads, or to provide
certain fairness guarantees.)

Universitét Bern State-dependent Action

Concurrent programming — WS 97/98 53.

Structure notifications

[Ensure that each wait is balanced by at least one notification. Options include:

[0 Blanket Notifications: Place a notification at the end of every method that
can cause any state change (i.e., assigns any instance variable). While
simple and reliable, this approach can cause performance problems ...

[0 Encapsulating Assignment: Encapsulate assignment to each variable
mentioned in any guard condition in a helper method that performs the
notification after updating the variable.

[0 Tracking state: Only issue naotifications for the particular state changes that
could actually unblock waiting threads. This approach may improve
performance, at the cost of flexibility. (I.e., subclassing becomes harder.)

[1 Tracking State Variables: Maintain an instance variable that represents
control state. After each method that changes state, invoke a helper
method that re-evaluates the variable and checks if the state change might
affect a guard condition, and if so, issues a naotification.

[0 Delegating Notifications: If aspects of state are maintained by completely
contained helper objects, have these helpers issue the notifications.

Universitét Bern State-dependent Action

Concurrent programming — WS 97/98 54.

Encapsulating assignment

public class BoundedCounterVO implements BoundedCounter {
protected long count_ = MIN;

public synchronized long value() { return count_; }
public synchronized void inc() {

awaitlncrementable();
setCount(count_ + 1);

}
public synchronized void dec() {

awaitDecrementable();

setCount(count_ - 1);
}
protected synchronized void setCount(long newValue) {

count_ = newValue;

notifyAll(); Il wake up any thread depending on new value
}
protected synchronized void awaitincrementable() {

while (count_ >= MAX) try { wait(); } catch(InterruptedException ex) {};
}
protected synchronized void awaitDecrementable() {

while (count_ <= MIN) try { wait(); } catch(InterruptedException ex) {};
}

Universitét Bern State-dependent Action

Concurrent programming — WS 97/98 55.

Tracking State

The only transitions that could possibly affect waiting threads in BoundedCounter are
those that step away from logical states bottom and top:

public class BoundedCounterVST implements BoundedCounter {
protected long count_ = MIN;
public synchronized long value() {
return count_;
}
public synchronized void inc() {
while (count_ == MAX)
try { wait(); } catch(InterruptedException ex) {};
if (count_++ == MIN) Il signal if previously in bottom state
notifyAll();
}
public synchronized void dec() {
while (count_ == MIN)
try { wait(); } catch(InterruptedException ex) {};
if (count_-- == MAX) Il signal if previously in top state
notifyAll();
}

}

Universitét Bern State-dependent Action

Concurrent programming — WS 97/98 56.

Tracking State Variables

public class BoundedCounterVSW implements BoundedCounter {
static final int BOTTOM= 0; /l logical states
static final int MIDDLE= 1,
static final int TOP =2;

protected int state = BOTTOM,; Il the state variable
protected long count_ = MIN;

protected synchronized void checkState() {
int oldState = state_;
if (count_ == MIN) state = BOTTOM,;
else if (count_ == MAX) state = TOP;
else state = MIDDLE;
if (state_ != oldState && Il notify on transition
(oldState == TOP || oldState == BOTTOM))
notifyAll();
}
public synchronized long value() { return count_; }
public synchronized void inc() {
while (state_ == TOP) Il only consult logical state
try { wait(); } catch(InterruptedException ex) {};
++count_;
checkState();
} Il dec() is similar ...

Universitét Bern State-dependent Action

Concurrent programming — WS 97/98 57.

Delegating notifications

NotifyingLong class can be used to issue a notifyAll to any observer object
whenever it changes value:

public class NotifyingLong {
private long value_;
private Object observer_;

public NotifyingLong(Object o, long v) {
observer_ = 0;
value =v;

}

public synchronized long value() { return value_; }

public void setValue(long v) {
synchronized(this) {

value =v;
}
synchronized(observer_) {
observer_.notifyAll();

}

Universitét Bern State-dependent Action

Concurrent programming — WS 97/98 58.

Delegating notifications ...

The resulting BoundedCounter class differs from an Adapter only in that the helper
object provides the change notifications on behalf of the host:

public class BoundedCounterVNL implements BoundedCounter {
private NotifyingLong ¢_ = new NotifyingLong(this, MIN);

public synchronized long value() {
return c_.value();

}

public synchronized void inc() {
while (c_.value() >= MAX)
try { wait(); } catch(InterruptedException ex) {};
c_.setValue(c_.value()+1);
}
public synchronized void dec() {
while (c_.value() <= MIN)
try { wait(); } catch(InterruptedException ex) {};
c_.setValue(c_.value()-1);

Universitét Bern State-dependent Action

Concurrent programming — WS 97/98 59.

Using template methods

To improve extensibility, consider separating out the code that (unconditionally) performs
the action in a separate (non-public) method. The same action code can then be used
within different guarded methods:

public class BoundedCounterVSG implements BoundedCounter {

protected long count_ = MIN;
Il non-public actions
protected long value () { return count_; }

protected void inc_() { ++count_; }
protected void dec_() { --count_; }
Il possibly guarded public methods

public synchronized long value() {
return value_();

}

public synchronized void inc() {
while (value_() >= MAX)
try { wait(); } catch(InterruptedException ex) {};
inc_();
notifyAll();
}

/Il eftc....

Universitét Bern State-dependent Action

Concurrent programming — WS 97/98 60.

Ssummary

You Should Know The Answers To These Questions:

[0 What kinds of liveness problems can occur in concurrent programs?

What is the difference between livelock and deadlock?

When should methods recheck guard conditions after waking from a wait() ?
Why should you usually prefer notifyAll() to notify() 7

When and where should you issue notification?

OO O

Can You Answer The Following Questions?

[]

0 O O

]

How can you detect deadlock? How can you avoid it?
What is the easiest way to guarantee fairness?
When are guarded methods better than balking?

What is the best way to structure guarded methods for a class if you would like it to
be easy for others to define correctly functioning subclasses?

Is the complexity of delegating notifications worth it?

Universitét Bern State-dependent Action

Concurrent programming — WS 97/98 61.

4. Asynchronous Methods

Overview
[1 Asynchronous invocations
[0 Simple Relays
[0 Direct Invocations
[0 Thread-based messages; Gateways
[0 Command-based messages
0 Tail calls
[0 Early replies
[1 Futures
Sources

0 D. Lea, Concurrent Programming in Java: Design Principles and Patterns,
Addison-Wesley, 1996

[0 Doug Lea, On-line Supplement to Concurrent Programming in Java,
http://gee.cs.oswego.edu/dl/cpj/index.html

Universitét Bern Asynchronous Methods

Concurrent programming — WS 97/98 62.

Asynchronous Invocations

Intent

Avoid waiting for a request to be serviced by decoupling sending from receiving.

Applicability

[0 When a host object can distribute services amongst multiple helper objects.

[0 When an object does not need the result of an invocation to continue doing
useful work, for example:
[0 Notifications: inform the target object of a certain state of affairs
[0 Activations: construct and start daemon objects may never terminate
[0 Multicast: invoke independent services on a group of helpers
[0 Relays: hand off work to be performed by a helper

[0 When invocations that are /logically asynchronous, regardless of whether they
are coded using threads.

[0 During refactoring, when classes and methods are split in order to increase

concurrency and reduce liveness problems.

Universitét Bern Asynchronous Methods

Concurrent programming — WS 97/98 63.

Asynchronous Invocations — form

Generally, asynchronous invocation designs take the following form:

class Host {

public service() {

pre(); Il code that must execute before invocation
invokeHelper(); /l the invocation

during(); Il code that may run at the same time as invocation
post(); Il code that must execute after completion

Universitét Bern Asynchronous Methods

Concurrent programming — WS 97/98 64.

Asynchronous Invocations — design steps

Consider the following issues:

[]

[]

Does the Host need to get results back from the Helper?

[0 Notif, e.g., the Helper returns results directly to the Host’s caller!
Can the Host process new requests while the Helper is running?

[1 Might depend on the kind of request ...

Does the Host need to do something while the Helper is running?

[0 le.,inthe during code

Does the Host need to do synchronized pre-invocation processing?
O le., if service() Is guarded or if pre() updates the Host's state
Does the Host need to do synchronized post-invocation processing?
[0 le., ifpost() updatesthe Host's state

Does post-invocation processing only depend on the Helper’s result?
[0 ... or does the host have to wait for other conditions?

Is the same Helper always used?

I Is a new one generated to help with each new service request?

Universitét Bern Asynchronous Methods

Concurrent programming — WS 97/98 65.

Simple Relays

A relay method is obtains all its functionality by delegating to the helper, without any
pre() ,during() ,orpost() actions.

Three common forms:
[1 Direct invocations

[0 Invoke the Helper directly, but without synchronization

[0 Thread-based massages
[1 Create a new thread to invoke the Helper

[Command-based messages
[J Pass the request as a Command object to another object that will run it

Relays are commonly seen in Adaptors.

Universitét Bern Asynchronous Methods

Concurrent programming — WS 97/98 66.

Direct invocations

Although the invocation is not strictly asynchronous, we have many of the same benefits
since the Host is free to accept other requests, while the Host’s caller must wait for the
reply. This is a special case of stateless method.

class Host {
protected Helper helper_ = new Helper();
public void service() { Il no synch
invokeHelper();

}
protected void invokeHelper() { helper_.help(); } Il no synch

If helper_ is mutable, it may be necessary to protect it with an accessor:

protected synchronized Helper helper() { return helper_; }

public void service() { Il no synch
helper().help();

}

Universitét Bern Asynchronous Methods

Concurrent programming — WS 97/98 67.

Thread-based massages

The invocation can be performed within a new thread:

protected void invokeHelper() {
Runnable r = new Runnable { Il NB: an inner class
final Helper h_ = helper_;
public void run() { h_.help() ; }

}
new Thread(r).start();
}

The cost of evaluating Helper.help() should outweigh the overhead of creating a thread!
[If the Helper is a daemon (loops endlessly)
0 If the Helper does IO
[0 Possibly, if multiple helper methods are invoked

NB: If helper _ is mutable, service() should be synchronized

Universitét Bern Asynchronous Methods

Concurrent programming — WS 97/98 68.

Thread-per-message Gateways

Variant: the host may construct a new Helper to service each request.

public class FilelO {
public void writeBytes(String fileName, byte]] data) {
new Thread (new FileWriter(fileName, data)).start();

}
public void readBytes(String fileName, byte[] data) {
new Thread (new FileReader(fileName, data)).start();
}
}
class FileWriter implements Runnable {
private String nm_; I/ hold arguments

private byte[] d_;

public FileWriter(String name, byte[] data) {
nm_ = name;
d = data;

}

public void run() {
Il write bytes in d_ to file nm_ ...
}

} Il etc.

Universitét Bern Asynchronous Methods

Concurrent programming — WS 97/98 69.

Command-based messages

Instead of invoking the Helper directly, or starting a thread to do so, the Host can put a
message in a queue to be read by another object that will invoke the Helper:

protected EventQueue q_;

protected invokeHelper() {
g_.put(new HelperMessage(helper_));

}

Command-based forms are most appropriate when you need to support special
scheduling, undo, or replay capabilities, or are transporting messages over networks.

Universitét Bern Asynchronous Methods

Concurrent programming — WS 97/98 70.

Tail calls

Tail-call designs apply when the helper method can be performed as the /ast
statement(s) of a method; i.e., when there is no post() processing. All pre() code can
be performed under synchronization, released before the call. The host is then
immediately available to accept other messages after issuing the helper invocation.

Observer designs often take this form, where Host is Subject , service is

updateState , pre is doUpdate , Helper is Observer , and help is
changeNotification ;

class Subject {
protected Observer obs = new ...;
protected double state_;
public void updateState(double d){ Il not synched
doUpdate(d); Il synched
sendNotification(); Il not synched

}
protected synchronized doUpdate(double d) {state =d;}
protected void sendNotification() { obs_.changeNotification(this); }

Universitét Bern Asynchronous Methods

Concurrent programming — WS 97/98 71.

rail calls with new threads

Rather than direct invocations, the tail call may be performed in a thread. For example:

public synchronized void updateState(double d) {
state =d;
Runnable r =new Runnable {
final Observer o_ = obs_;
public void run() { o_.changeNotification(Subject.this); }

}

new Thread(r).start();

Universitét Bern Asynchronous Methods

Concurrent programming — WS 97/98

Early Reply

72.

Early reply allows a host to perform useful activities after returning a result to the client:

Client Host
' |
H service() :
I
| reply
[I

T I
I I
|

Early reply is a built-in feature in some programming languages.

It can be easily simulated when it is not a built-in feature.

Universitat Bern

Asynchronous Methods

Concurrent programming — WS 97/98 73.

Simulating Early Reply

A one-slot buffer can be used to pick up the reply from a helper thread:

Client Host
| service() : Slot
| new Helper
| > new
: : start() |
| get() :
| | g B put()
I I |
| reply - | |

A one-slot buffer is a simple abstraction that can be used to implement many higher-level
concurrency abstractions ...

Universitét Bern Asynchronous Methods

Concurrent programming — WS 97/98

A One-Slot Buffer

Slot { I/
private Object slotVal_; /l

put(Object val) {

class

public synchronized void
while (slotVal_ != null) {
try { wait(); }
catch (InterruptedException e) { }
}
slotVal = val;
notifyAll(); Il
return; Il

} I

public synchronized Object get() {
Object rval,
while (slotVal_ == null) {
try { wait(); }
catch (InterruptedException e) { }
}
rval = slotVal_;
slotvVal_ = null;
notifyAll();
return rval;

Universitat Bern

/4.

a one-slot buffer
initially null

same as notify(),
if only one producer
and one consumer

Asynchronous Methods

Concurrent programming — WS 97/98 75.

Early Reply in Java

The Helper thread can be easily implemented using an anonymous “inner” class:

public static Stuff service() {
final Slot reply = new Slot(); I/ NB: shared variable must be immutable
new Thread(new Runnable () { Il anonymous inner class
public void run() {
Stuff result;
Il compute result
reply.put(result); Il early reply via shared Slot
I/l do other stuff
}

}).start();
return (Stuff) reply.get(); Il wait till reply is ready

Universitét Bern Asynchronous Methods

Concurrent programming — WS 97/98

/6.

Futures
Futures allow a host to continue in parallel with a helper until the future value is needed:
Host Helper
pre |
, H service() :
invokeHelper - Future

. | (returns future) new -
during] |
I
I
I
I
I
value() :
>
put() |

(returns value)

Universitat Bern

Asynchronous Methods

Concurrent programming — WS 97/98 77.

A Future Class

Futures can be implemented as a layer of abstraction around a shared Slot:

class Future {

private Object val_; Il initially null
private Slot slot_; /l shared with some worker
public Future(Slot slot) {
slot_ = slot;
}
public Object value() {
if (val_ == null)
val_ = slot_.get(); Il be sure to only get() once!
return val_;
}

Universitét Bern Asynchronous Methods

Concurrent programming — WS 97/98 78.

Using Futures in Java

WIth futures, the client, rather than the host, proceeds in parallel with a helper thread.

public static Future service () {
final Slot slot = new Slot(); /l immutable shared slot
new Thread(new Runnable () { Il start anonymous inner helper

public void run() {
Il compute result

slot.put(result); /l pass result to Future
}
}.start();
return new Future(slot); Il immediately return Future
} Il client will wait when result needed

Without special language support, futures are less transparent than early replies, since
the client must explicitly request a value() from the future object.

Universitét Bern Asynchronous Methods

Concurrent programming — WS 97/98 79.

Ssummary

You Should Know The Answers To These Questions:

[]

O O0O00nd

What general form does an asynchronous invocation take?

When should you consider using asynchronous invocations?

In what sense can a direct invocation be “asynchronous”™?

Why (and how) would you use “inner classes” to implement asynchrony?
What is “early reply”, and when would you use it?

What are “futures”, and when would you use them?

How can implement futures and early replies in Java?

Can You Answer The Following Questions?
O Why are servers commonly structured as thread-per-message gateways?

0 Which of the concurrency abstractions we have discussed till now can be
implemented using one-slot-buffers as the only synchronized objects?

0 When are futures better than early replies? Vice versa?

Universitét Bern Asynchronous Methods

Concurrent programming — WS 97/98 80.

5. Fine-grained Synchronization

Overview
[0 Condition Objects
[0 The “Nested Monitor Problem”
[0 Permits and Semaphores
[0 Concurrently available methods
[0 Priority
[Interception
[Readers and WRiters
[1 Optimistic Methods
Sources

0 D. Lea, Concurrent Programming in Java: Design Principles and Patterns,
Addison-Wesley, 1996

[0 Doug Lea, On-line Supplement to Concurrent Programming in Java,
http://gee.cs.oswego.edu/dl/cpj/index.html

Universitét Bern Fine-grained Synchronization

Concurrent programming — WS 97/98 81.

Condition Objects

Intent
Condition objects encapsulate the waits and notifications used in guarded methods.

Applicability
[0 To simplify class design by off-loading waiting and notification mechanics.

[0 Because of the limitations surrounding the use of condition objects in Java,

In some cases the use of condition objects will increase rather than
decrease design complexity!

[0 As an efficiency manoeuvre. By isolating conditions, you can often avoid

notifying waiting threads that could not possibly proceed given a particular state
change.

[As a means of encapsulating special scheduling policies surrounding
notifications, for example to impose fairness or prioritization policies.

[0 Inthe particular cases where conditions take the form of “permits” or “latches.”

Universitét Bern Fine-grained Synchronization

Concurrent programming — WS 97/98 82.

A Simple Condition Object

Condition objects implement this interface:

public interface Condition {

public void await(); Il wait for some condition

public void signal(); /l signal that some condition holds
}

Suppose we tried to encapsulate guard conditions with this class:

public class SimpleConditionObject implements Condition {
public synchronized void await() {
try { wait(); } catch (InterruptedException ex) {}
}
public synchronized void signal() {
notifyAll();
}

Careless use of this class can lead to the “Nested Monitor Problem”

Universitét Bern Fine-grained Synchronization

Concurrent programming — WS 97/98 83.

The Nested Monitor problem

Avoid designs like this!

public class BoundedCounterVBAD implements BoundedCounter { // DO NOT USE!!!
protected long count_ = MIN;
protected Condition notMin_ = new SimpleConditionObject();
protected Condition notMax_ = new SimpleConditionObject();

public synchronized long value() { return count_; }

public synchronized void inc() {
while (count_ == MAX)

notMax_.await() ; Il wait until count is not at max allowed value
if (count_++ == MIN)
notMin__.signal(); Il signal that count is not at min allowed value

}
public synchronized void dec(){
while (count_ == MIN)
notMin_.await();
if (count_-- == MAX)
notMax__.signal() ; Il can’t get here if locked out by inc()!!!

}

Nested monitor lockouts occur whenever a blocked thread holds the lock for an object
containing the method that would otherwise provide a notification to unblock the wait.

Universitét Bern Fine-grained Synchronization

Concurrent programming — WS 97/98 84.

Solving the Nested Monitors problem

You must ensure that:
[0 Waits do not occur while synchronization is held on the host object.

[0 This leads to a guard loop that reverses the synchronization seen in the
faulty version.

[1 Notifications are never missed.

[0 The entire guard wait loop should be enclosed within synchronized blocks
on the condition object.

[1 Notifications do not deadlock.

[All notifications should be performed only upon release of all
synchronization except of that for the notified condition object.

[0 If the helper object maintains any state, that it is always consistent with that of
the host, and if it shares any state with the host, that access is properly
synchronized.

Universitét Bern Fine-grained Synchronization

Concurrent programming — WS 97/98 85.

Example solution

public class BoundedCounterVCV implements BoundedCounter {
protected long count_ = MIN;
protected Condition notMin_ = new SimpleConditionObject();
protected Condition notMax_ = new SimpleConditionObject();

public synchronized long value() { return count_; }
public void inc() { Il NOT synched!
boolean wasMin = false; Il record notification condition for later
synchronized(notMax) { Il synch guard loop on condition object
for (;;) { Il the recast guard loop
synchronized(this) {
if (count_ < MAX) { /l check and act
wasMin = (count_++ == MIN);
break;
}
}
notMax_.await() ; Il release host synch before wait
}
}
if (wasMin) notMin__.signal() . Il release all sync before signal
}

public void dec() { Il symmetric

Universitét Bern Fine-grained Synchronization

Concurrent programming — WS 97/98 86.

Permits and Semaphores

Intent

Bundle synchronization in a condition object when synchronization is mainly concerned
with tracking the value of a counter.

Applicability
[0 When any given await may proceed only if there have been more signals than
awaits.

[0 More generally, if there are enough “permits”, where every signal
increments and every await decrements the number of permits.

[0 You need to guarantee the absence of missed signals.

[0 Unlike simple condition objects, semaphores work even if one thread
enters its await after another thread has signalled that it may proceed.

[0 The host classes using them can arrange to invoke Condition methods
outside of synchronized methods or code blocks.

Universitét Bern Fine-grained Synchronization

Concurrent programming — WS 97/98

87.

Permits and Semaphores — design steps

[0 Define a class implementing Condition that maintains a permit count, and
immediately releases await if there are already enough permits.

[0 As with all kinds of condition objects, the classes using them must avoid
invoking await inside of synchronized methods and code blocks.

[One way to help ensure this is to use a before/after design of the form:

class Host {
Condition aCondition_;
Condition anotherCondition_;
Condition aThirdCondition_;

public method ~ mi() {

aCondition_.await(); /l
doM1(); I
for each Condition ¢ enabled by m1()
c.signal(); /l
}
protected synchronized doM1() { /*

Universitat Bern

not synched
synched

not synched

the actions of m1() *}

Fine-grained Synchronization

Concurrent programming — WS 97/98 88.

variants

[0 Permit Counters (Counting Semaphores)
[0 Just keep track of the number of “permits”
[Canuse notify instead of notifyAll If class is final

[0 Fair Semaphores
[0 Maintain FIFO queue of threads waiting on a SimpleCondition

[1 Locks and Latches
[0 Locks can be acquired and released in separate methods
[1 Keep track of thread holding the lock so locks can be reentrant!
[0 Alatchis setto true by signal , and always stays true

See the On-line supplement for details.

Universitét Bern Fine-grained Synchronization

Concurrent programming — WS 97/98 89.

Concurrently Available Methods

Intent

Non-interfering methods comprising a service an be made concurrently available by
splitting them into different objects or aspects of the same object, while tracking state and
execution conditions to enable and disable the methods according to a given
concurrency control policy.

Applicability

[0 Host objects are typically accessed across many different threads.

[0 Host services are not completely interdependent, so need not be performed
under mutual exclusion.

[J You need better throughput for one or more of the services provided by the
object, and need to eliminate nonessential blocking on synchronization locks.

[0 You want to prevent various accidental or malicious denial of service attacks in
which synchronized methods on a host block because some client forever holds
its lock.

[0 Use of full synchronization would needlessly make host objects prone to

deadlock or other liveness problems.

Universitét Bern Fine-grained Synchronization

Concurrent programming — WS 97/98 90.

Concurrent Methods — design steps

Layer concurrency control policy over mechanism by:

1 Policy Definition:
[0 When may methods run concurrently?
[0 What happens when a disabled method is invoked?
[0 What priority is assigned to waiting tasks?

[Instrumentation:
[1 Define state variables that can detect and enforce policy.

[0 Interception:

[Have the host object intercept public messages and then relay them under
the appropriate conditions to the methods that actually perform the actions.

Universitét Bern Fine-grained Synchronization

Concurrent programming — WS 97/98 91.

Priority

[1 Priority may depend on any of:

Intrinsic attributes of the tasks (class and instance variable values).
Representations of task priority, cost, price, or urgency.

The number of tasks waiting for some condition.

The time at which each task is added to a queue.

Fairness — guarantees that each waiting task will eventually run.
The expected duration or time to completion of each task.

The desired completion time of each task.

Termination dependencies among tasks.

The number of tasks that have completed.

The current time.

O OoO00d0dodddgdgd

Universitét Bern Fine-grained Synchronization

Concurrent programming — WS 97/98 92.

Interception

Interception strategies include:

[1 Pass-Throughs

[0 The host maintains a set of immutable references to helper objects and
simply relays all messages to them within unsynchronized methods.

[0 Lock-Splitting

[1 Instead of splitting the class, split the synchronization locks associated with
subsets of functionality

[1 Before/After methods

[0 Public methods contain before/after processing surrounding calls to non-
public methods in the host that perform the services.

Universitét Bern Fine-grained Synchronization

Concurrent programming — WS 97/98 93.

Concurrent Reader and Writers

“Readers and Writers” is a family of concurrency control designs that provide various
policies governing concurrent invocation of non-mutating accessors (“Readers”) and
mutative, state-changing operations (“Writers”).

The basic idea is to let any number of readers to concurrently execute as long as there
are no writers, but writers have exclusive access.

Individual policies must address:
[0 Can new Readers join already active Readers even if a Writer is waiting?
O If yes, Writers may starve; if not, the throughput of Readers decreases.

[0 If both Readers and Writers are waiting for a Writer to finish, which should you
let in first?

[1 Readers? A Writer? Earliest first? Random? Alternate?
[1 Similar choices are available after termination of Readers.
[0 Can Readers upgrade to Writers without having to give up access?

Before/after methods are the simplest way to implement Readers and Writers policies.

Universitét Bern Fine-grained Synchronization

Concurrent programming — WS 97/98 94.

Readers and Writers example

The following example illustrates a common set of choices:
[1 Block incoming Readers if there are waiting Writers.

[0 “Randomly” choose among incoming threads. (l.e., leave the choice to the
native Java scheduler)

[No upgrade mechanisms.

public abstract class RWVT
protected int activeReaders_ = 0; // threads executing read_
protected int activeWriters_ = 0; /l always zero or one
protected int waitingReaders_ = 0; /l threads not yet in read _
protected int waitingWriters_ = 0; Il same for write _
protected abstract void read_(); /l implement in subclasses
protected abstract void write_();
public void read() { beforeRead(); read_(); afterRead(); }
public void write() { beforeWrite(); write_(); afterWrite(); }
protected boolean allowReader() {

return waitingWriters_ == 0 && activeWriters_ == 0;

}

Universitét Bern Fine-grained Synchronization

Concurrent programming — WS 97/98

protected boolean allowWriter() {
return activeReaders == 0 && activeWriters_ ==

}

protected synchronized void beforeRead() {
++waitingReaders_;
while ('allowReader())
try { wait(); } catch (InterruptedException ex) {}
--waitingReaders_;

++activeReaders_;

}

protected synchronized void afterRead() {
--activeReaders_; notifyAll();

}

protected synchronized void beforeWrite() {
++waitingWriters_;
while ('allowWriter())

try { wait(); } catch (InterruptedException ex) {}

--waitingWriters_;
++activeWriters_;

}

protected synchronized void afterWrite() {
--activeWriters_; notifyAll();

}

Universitat Bern

95.

Fine-grained Synchronization

Concurrent programming — WS 97/98 96.

Optimistic Methods

Intent

Optimistic methods attempt actions, but rollback state if the actions could have been
interfered with by the actions of other threads. After rollback, they either throw failure
exceptions or retry the actions.

Applicability
[1 Clients can tolerate either failure or retries.
[0 If not, consider using guarded methods .
[0 You can avoid or cope with livelock.
[0 You have a way to deal with actions occurring before failure detection

[0 Provisional action: “pretend” to act, delaying commitment of effects until the
possibility of failure has been ruled out.

[0 Rollback/Recovery: undo the effects of each performed action. If
messages are sent to other objects, they must be undone with “anti-
messages”

Universitét Bern Fine-grained Synchronization

Concurrent programming — WS 97/98 97.

Optimistic Methods — design steps

[1 Collect and encapsulate all mutable state so that it can be tracked as a unit.

[]
[]

1 O

Universitat Bern

Define an immutable helper class holding values of all instance variables.

Define a representation class, but make it mutable (allow instance
variables to change), and additionally include a version number (or
transaction identifier) field or even a sufficiently precise time stamp.

Embed all instance variables, plus a version number, in the host class, but
define commit to take as arguments all assumed values and all new
values of these variables.

Maintain a serialized copy of object state.
Various mixtures of the above ...

Fine-grained Synchronization

Concurrent programming — WS 97/98 98.

Detect faillure ...

[0 Provide an operation that simultaneously detects version conflicts and performs
updates via a method of the form:

class Optimistic { /l generic code sketch
private State currentState_; /l State is any type
synchronized boolean commit(State assumed, State next) {
boolean success = (currentState == assumed);

If (success)
currentState = next;
return success,;

[0 Structure the main actions of each public method as

State assumed = currentState();

State next = ...

if (lcommit(assumed, next))
rollback();

else
otherActionsDependingOnNewStateButNotChanginglt();

Universitét Bern Fine-grained Synchronization

Concurrent programming — WS 97/98 99.

Handle conflicts ...

[0 Choose and implement a policy for dealing with commitment failure:

1 Throw an exception upon commit failure that tells a client that it may retry.
(Of course, this kicks the decision back to the caller, which may or may not
be in a better position to decide whether to retry.)

Internally retry the action until it succeeds.

Retry some bounded number of times, or until a timeout occurs, finally
throwing an exception.

[0 Synchronize the method, precluding commit failure. This can be done even
when other methods in the class use exceptions or retries.

1 [

[1 Take precautions to ensure that retries are based upon accurate, current values
of instance variables.

0 If state is maintained in an immutable helper object accessed via a single
reference in the class, then this reference should be declared volatile
All accessor methods can be left as unsynchronized.

volatile specifies that a variable changes asynchronously and the compiler should not
attempt optimizations with it (such as using a copy stored in a register).

Universitét Bern Fine-grained Synchronization

Concurrent programming — WS 97/98 100.

Ensure progress ...

[Take precautions to ensure progress in case of internal retries within
state-dependent methods.

[1 Optimistic state-dependent methods require use of a busy-wait spin loop in
which it is counterproductive to immediately retry the method.

[0 Yielding may not be effective unless all threads have reasonable priorities
and the Java scheduler at least approximates fair choice among waiting
tasks (which it is not guaranteed to do)!

[1 Limit retries.

[0 Unless there is some independent assurance that the method will
eventually succeed, retries can result in livelock.

Universitét Bern Fine-grained Synchronization

Concurrent programming — WS 97/98 101.

An optimistic Bounded Counter

public class BoundedCounterVOPT implements BoundedCounter {
protected volatile Long count_ = new Long(MIN);

protected synchronized boolean commit(Long oldc, Long newc) {
boolean success = (count_ == oldc);
if (success) count_ = newc;
return success;

}

public long value() { return count_.longValue(); }
public void inc() {
for (;;) { Il thinly disguised busy-wait!
Long c = count_; long v = c.longValue();
if (v < MAX && commit(c, new Long(v+1))) break;

Thread.currentThread().yield(); Il is there another thread?!
}
}
public void dec() {
for (;;) {
Long c = count_; long v = c.longValue();
if (v > MIN && commit(c, new Long(v-1))) break;
Thread.currentThread().yield();
}
}

Universitét Bern Fine-grained Synchronization

Concurrent programming — WS 97/98 102.

Ssummary

You Should Know The Answers To These Questions:

[0 What are “condition objects™? How can they make your life easier? Harder?
What is the “nested monitor problem™? How can you avoid it?
What are “permits” and “semaphores”™? When is it natural to use them?
Why (when) can semaphores use notify() instead of notifyAll() ?
When should you consider allowing methods to be concurrently available?
What kinds of policies can apply to concurrent Readers and Writers?
How do optimistic methods differ from guarded methods?

O O0O00nd

Can You Answer The Following Questions?

What is the easiest way to avoid the nested monitor problem?

What assumptions do nested monitors violate?

How can the obvious implementation of semaphores (in Java) violate fairness?
How does “partial synchronization” differ from “concurrently available methods”?
When should you prefer optimistic methods to guarded methods?

OO0 O

Universitét Bern Fine-grained Synchronization

Concurrent programming — WS 97/98 103.

6. Architectural Styles for Concurrency

Overview
[0 What is Software Architecture?
[0 Three-layered application architecture
[0 Flow architectures
[0 Blackboard architectures
Sources

0 M. Shaw and D. Garlan, Software Architecture: Perspectives on an Emerging
Discipline, Prentice-Hall, 1996.

0 F. Buschmann, et al., Pattern-Oriented Software Architecture — A System of
Patterns, John Wiley, 1996.

0 D. Lea, Concurrent Programming in Java — Design principles and Patterns,
The Java Series, Addison-Wesley, 1996.

[0 N. Carriero and D. Gelernter, How to Write Parallel Programs: a First Course,
MIT Press, Cambridge, 1990.

Universitét Bern Architectural Styles for Concurrency

Concurrent programming — WS 97/98 104.

Software Architecture

A Software Architecture defines a system in terms of computational
components and interactions amongst those components.

An Architectural Style defines a family of systems in terms of a pattern of
structural organization.

— cf. Shaw & Garlan, Software Architecture, pp. 3, 19

Universitét Bern Architectural Styles for Concurrency

Concurrent programming — WS 97/98 105.

Architectural style

Architectural styles typically entail four kinds of properties:

[]

A vocabulary of design elements
[0 e.g., “pipes”, “filters”, “sources”, and “sinks”

A set of configuration rules that constrain compositions
[1 e.g., pipes and filters must alternate in a linear sequence

A semantic interpretation

[0 e.g., each filter reads bytes from its input stream and writes bytes to its
output stream

A set of analyses that can be performed

[0 e.g., iffilters are “well-behaved”, no deadlock can occur, and all filters can
progress in tandem

Universitét Bern Architectural Styles for Concurrency

Concurrent programming — WS 97/98 106.

Communication Styles

Shared Variables:

Message-Passing:

Universitét Bern Architectural Styles for Concurrency

Concurrent programming — WS 97/98 107.

Simulated Message-Passing

Most concurrency and communication styles can be simulated by one another:

Unsynchronized objects

o O

Synchronized objects

Message-passing can be modelled by associating message queues to each process.

Universitét Bern Architectural Styles for Concurrency

Concurrent programming — WS 97/98 108.

Three-layered Application Architectures

Interaction with external world
Generating threads

/\

Concurrency control
Locking, waiting, failing

O O
N
D

This kind of architecture avoids nested monitor problems by restricting concurrency
control to a single layer.

Basic mechanisms

Universitét Bern Architectural Styles for Concurrency

Concurrent programming — WS 97/98 1009.

Problems with Layered Designs

Hard to extend beyond three layers because:
[0 Control is restricted to before/after — not within
[1 Control may depend on unavailable information
[1 Because it is not safely accessible
[Because it is not represented (e.g., message history)
[1 Actions in control code may encounter conflicting policies
[0 E.g., nested monitor lockouts
[0 Ground actions may need to know current policy
[0 E.g., blocking vs. failing

Partial solutions:
[0 Explicit policy compatibility constraints
[1 Explicit nesting constraints
[0 Delegated control

Universitét Bern Architectural Styles for Concurrency

Concurrent programming — WS 97/98 110.

Flow Architectures

Many synchronization problems can be avoided by arranging things so that information
only flows in one direction from sources to filters to sinks:

I Unix “pipes and filters”:
[Processes are connected in a linear sequence

[0 Control systems:
[1 events are picked up by sensors, processed, and generate new events

[0 Workflow systems
[1 Electronic documents flow through workflow procedures

Universitét Bern Architectural Styles for Concurrency

Concurrent programming — WS 97/98 111.

Flow Stages

Every flow stage is a producer or consumer or both:

[Splitters (forks) have multiple successors
[0 Multicasters clone results to multiple consumers
[1 Routers divide results amongst consumers

[0 Mergers have multiple predecessors
[0 Collectors (Multiplexers) interleave inputs to a single consumer

[0 Combiners process multiple input to produce a single result

[0 Conduits have both multiple predecessors and consumers

Universitét Bern Architectural Styles for Concurrency

Concurrent programming — WS 97/98 112.

Flow Policies

Flow can be pull-based, push-based, or a mixture:

[0 Pull-based flow: Consumers take results from Producers
[Push-based flow: Producers put results to Consumers
[0 Buffers:
[0 Put-only buffers (relays) connect push-based stages
[0 Take-only buffers (pre-fetch buffers) connect pull-based stages
1 Put-Take buffers connect push-based stages to pull-based stages

put
Producer) take

Universitét Bern Architectural Styles for Concurrency

Concurrent programming — WS 97/98 113.

Limiting Flow

[1 Unbounded buffers:

I If producers are faster than consumers, buffers may exhaust available
memory

[1 Unbounded threads:

[0 Having too many threads can exhaust system resources more quickly than
unbounded buffers

[1 Bounded buffers:

[0 Tend to be either always full or always empty, depending on relative speed
of producers and consumers

[Bounded thread pools:
[0 Harder to manage than bounded buffers

Universitét Bern Architectural Styles for Concurrency

Concurrent programming — WS 97/98 114.
Example: a Pull-based Prime Sieve
In this design, each prime
TestForPrime ActivePrime(2) number is an active agent
get() that tests integers, and either
- 5 creates a new agent if a
3 ™ new ActivePrime(3) Prime is detected, or passes
the number to test on to the
- 4| = get() | next agent in the chain
- |
< I
| . .
5 - | new ActivePrime(5)
- - < get() |
i : :
- | ! . .
7 | | ActivePrime(7)
R | new |
- - I get() |
8 . : :< |
. L I I I
I I I

Universitat Bern

Architectural Styles for Concurrency

Concurrent programming — WS 97/98 115.

Using Put-Take Buffers

Each ActivePrime will use a one-slot buffer to feed values to the next ActivePrime;

Initially we create an ActivePrime for the value 2, connected to a TestForPrime
generator:

public class PrimeSieve {
public static void main(String args|]) {
genPrimes(1000);
}
public static void genPrimes(int n) {
try {

ActivePrime firstPrime = new ActivePrime(2, new TestForPrime(n));
} catch (Exception e) {}

Universitét Bern Architectural Styles for Concurrency

Concurrent programming — WS 97/98 116.

Universitét Bern Architectural Styles for Concurrency

Concurrent programming — WS 97/98 117.

Pull-based integer sources

Active primes get numbers to test from an IntSource interface:

interface IntSource {
int getint();

}

class TestForPrime implements IntSource {
private int nextValue;
private int maxValue,

public TestForPrime(int max) {
this.nextValue = 3;
this.maxValue = max;

}

public int getint() { Il No synchronization need
If (nextValue < maxValue) { return nextValue++; }
else { return O; }

}

Universitét Bern Architectural Styles for Concurrency

Concurrent programming — WS 97/98 118.

A Put-Take Buffer

class Slot { I/ a one-slot buffer
private Object slotVal; Il initially null
public synchronized void put(Object val) { Il This is the only
while (slotVal != null) { Il synchronized object

try { wait(); }
catch (InterruptedException e) { }

}

slotVal = val,

notifyAll(); Il same as notify(),

return; Il if only one producer
} I/l and one consumer
public synchronized Object get() {

Object rval,

while (slotVal == null) {
try { wait(); }
catch (InterruptedException e) { }
}
rval = slotVal;
slotVal = null;
notifyAll();
return rval;

Universitét Bern Architectural Styles for Concurrency

Concurrent programming — WS 97/98 1109.

The ActivePrime Class

class ActivePrime extends Thread implements IntSource {

private static IntSource lastPrime; // where to link the next prime
private int value; /l value of this prime
private int square; Il square of this prime
private IntSource intSrc; Il source of ints to test
private Slot slot; Il to pass test value to next ActivePrime
public ActivePrime(int value, IntSource intSrc) throws ActivePrimeFailure
{
this.value = value;
this.square = value*value;
this.intSrc = intSrc;
slot = new Slot(); /l NB: private
lastPrime = this; I/ NB: set class variable
System.out.print(value + " ");
System.out.flush();
this.start(); Il become active
}

public int value() { return this.value; }

Universitét Bern Architectural Styles for Concurrency

Concurrent programming — WS 97/98

ActivePrime ...

ActivePrime

class

private void

public int getint() {
int rval;
rval = ((Integer) slot.get()).intValue(); Il
return rval;
}
public void run() {
int testValue = intSrc.getint(); /l

while (testValue !'=0) {
if (testValue < this.square) {
try { new ActivePrime(testValue, lastPrime); }
catch (Exception e) { testValue = 0; } //
} else if ((testValue % this.value) > 0) {

this.putint(testValue); Il
}
testValue = intSrc.getint(); /l
}
putint(0);

Universitat Bern

extends Thread implements IntSource {

putint(int val) { slot.put(new Integer(val)); }

120.

may block

may block

stop the thread
may block
may block

Il stop condition

Architectural Styles for Concurrency

Concurrent programming — WS 97/98 121.

Blackboard Architectures

Blackboard architectures put all synchronization in a “coordination medium” where
agents can exchange messages.

O Q

R

\@

Agents do not exchange messages directly, but post messages to the blackboard, and
retrieve messages either by reading from a specific location (i.e., a channel), or by posing
a query (i.e., a pattern to match).

Linda is a “coordination language” that provides primitives for implementing blackboard
architectures ...

Universitét Bern Architectural Styles for Concurrency

Concurrent programming — WS 97/98 122.

Result Parallelism

Result parallelism is a blackboard architectural style in which workers are spawned to
produce each part of a more complex problem.

e
FE
O O

Workers may be arranged hierarchically ...

|
.

Universitét Bern Architectural Styles for Concurrency

Concurrent programming — WS 97/98

Agenda Parallelism

123.

Agenda parallelism is a blackboard style in which workers retrieve tasks to perform from
a blackboard, and may generate new tasks to perform.

RIS

Workers repeatedly retrieve tasks until everything is done.

L

.

Ik

Workers are typically able to perform arbitrary tasks.

Universitat Bern

Architectural Styles for Concurrency

Concurrent programming — WS 97/98 124.

Specialist Parallelism

Specialist parallelism is a style in which each workers is specialized to perform a
particular task.

Specialist designs are equivalent to message-passing, and are generally organized as
flow architectures, with each specialist producing results for the next specialist to
consume.

Universitét Bern Architectural Styles for Concurrency

Concurrent programming — WS 97/98 125.

Ssummary

You Should Know The Answers To These Questions:

[0 What is a Software Architecture?

[0 What are advantages and disadvantages of Layered Architectures?

[0 What is a Flow Architecture? What are the options of tradeoffs?

[0 What are Blackboard Architectures? What are the options and tradeoffs?

Can You Answer The Following Questions?

[]
[]

[

[]

How would you model message-passing agents in Java?

How would you classify Client/Server architectures?
Are there other useful styles we haven't yet discussed?

How can we prove that the Active Prime Sieve is correct? Are you sure that new
Active Primes will join the chain in the correct order?

Which Blackboard styles are better when we have multiple processors?
Which are better when we just have threads on a monoprocessor?

Universitét Bern Architectural Styles for Concurrency

Concurrent programming — WS 97/98 126.

/. Coordination Models and Languages

Overview

[Coordinated Systems
Coordination Languages
Coordination Models
Blackboard Coordination Models
[0 Linda
[0 JavaSpace - Jada
[0 Multiset Coordination Models

[I

0 GAMMA

[Object Oriented Coordination Languages
0 FLO/C
0 ATOM

[0 SCG Coordination Research

sources
[0 N.Carriero and D.Gelernter, How to Write Parallel Programs, MIT Press, 1991
[0 P. Ciancarini, Tutorial: Coordination and Software Enginnering, 1997

Juan Carlos Cruz, cruz@iam.unibe.ch, http.//www.iam.unibe.ch/~cruz

Universitét Bern Coordination Models and Languages

Concurrent programming — WS 97/98 127.

Coordinated Systems

Modern software systems are systems composed of encapsulated software

entities (I.e. active objects, agents, actors, etc.) that run asynchronously and
process information concurrently.

— cf. Hewitt “Offices are Open Systems”, pp 270-287

Banking-System Bank X

<—>‘<+<Accounts X) Transfer
1 \ WEB *
Server |

—

- » Accounts Y) _ Solde
Online Bank X

Bank Y

Withdraw A
| T

Transfer
-— — >

Software entities that compose those systems cooperate in complex ways in order to

produce results. It is also because of they cooperate, that they may need to coordinate
their actions.

Universitét Bern Coordination Models and Languages

Concurrent programming — WS 97/98 128.

Why they may need to coordinate actions?

[0 No entity has enough competence to solve the entire problem

[0 ATMs don’t know how to make Withdraws or Transfers on accounts,
different banks can apply different policies (i.e. taxes, etc.)

[No entity has enough resources to solve the entire problem

[0 ATMs don’t not have infinite disk-space to keep the information of all the
accounts in the system

[1 No entity has enough information to solve the entire problem

[1 ATMs and Online Servers do not have the account’s information to realize
the banking operations (i.e they may need to verify soldes, etc.)

[0 There are dependencies between the activities they execute
[J Concurrent banking operations may modify a same account at the same
time
[0 There are some global constraints they have to respect
0 All ATM may realize banking operations on whatever bank in the system

Managing Coordination is a key aspect in the development of modern software systems.
— cf. T.Malone“The Implications of The Digital Age”, Int. Comp., V1 N3, May 97, pp 8-20

Universitét Bern Coordination Models and Languages

Concurrent programming — WS 97/98 129.

What is Coordination?

Coordination concerns the organisation in time and in space of the behaviour
of a group of entities in order to either improve their collective results, or to

reduce their conflicts.
—cf. Cruz et al. “A Coordination Component Framework for Open Systems”

From the viewpoint of the Software Engineering Coordination can be defined as:

Coordination refers to the process of building programs by gluing together
active pieces.
— cf. Carriero & Gelernter, How to Write Parallel Programs, pp. 8

An active piece may be a process, task, thread or any other locus of
execution that executes concurrently and asynchronously with the rest.

Universitét Bern Coordination Models and Languages

Concurrent programming — WS 97/98 130.

Coordination Language and Model

A Coordination Language provides the “glue” that binds separate active
pieces into software systems. The “glue “must allow these independent
pieces to communicate and to synchronize with each other exactly as the
need to.

— cf. Carriero & Gelernter, How to Write Parallel Programs, pp. 8

All Coordination Language embodies a Coordination Model.

A Coordination Model is an abstract (semantic) framework useful to study
and understand coordination problems when designing coordinated
systems.

— cf. Ciancarini, “Coordination and Software Engineering”, pp. 4

A coordination model defines how active pieces (i.e agents) interact and how their
Interactions can be controlled. This includes:

Creation and destruction of agents, control of communication flows among
agents, control of spatial distribution and mobility of agents as well as
synchronization and distribution of actions over time. — cf. Ciancarini,

Universitét Bern Coordination Models and Languages

Concurrent programming — WS 97/98 131.

Model vs. Language

A model is an abstraction of something for the purpose of understanding and studying it.
Because a model omits nonessential details, it is easier to manipulate than the original

entity. Abstraction is a fundamental human capability that permits us to deal with
complexity.

Person Model
Name “A particular way of
Age thinking about a
Color problem”
Nationality

Abstraction

Computer Language
“A way to realize

Class Person { or implement a
String name; a model in a
int age, computer”
Real World Color color,
) String Nationality

Universitét Bern Coordination Models and Languages

Concurrent programming — WS 97/98 132.

Coordination Models
A Coordination Model is a triple (E,M,L), where: .

. E are the coordinable entities (components):

These are the active agents which are coordinated (i.e. agents,
processes, active objects, tuples, atoms, etc.). E

. M are the coordinating media (connectors):

These are the coordinators of interagent entities (i.e. channels,
shared variables, tuple spaces, bags, etc.)

. L are the coordination laws:

They rule actions of coordinable entities (I.e. associative access,
guards, synchr. constraints)

— cf. Ciancarini, “Coordination and Software Engineering”, pp. 7

Universitét Bern Coordination Models and Languages

Concurrent programming — WS 97/98 133.

Coordination Language and Model

A Coordination Language provides the “glue” that binds separate active
pieces into software systems. The “glue “must allow these independent
pieces to communicate and to synchronize with each other exactly as the
need to.

— cf. Carriero & Gelernter, How to Write Parallel Programs, pp. 8

All Coordination Language embodies a Coordination Model.

A Coordination Model is an abstract (semantic) framework useful to study
and understand coordination problems when designing coordinated
systems.

— cf. Ciancarini, “Coordination and Software Engineering”, pp. 4

A coordination model defines how active pieces (i.e agents) interact and how their
Interactions can be controlled. This includes:

Creation and destruction of agents, control of communication flows among
agents, control of spatial distribution and mobility of agents as well as
synchronization and distribution of actions over time. — cf. Ciancarini,

Universitét Bern Coordination Models and Languages

Concurrent programming — WS 97/98 134.

Programming Model

We can build a complete programming model out of two separate pieces -
the computational model and the coordination model.

— cf. Carriero & Gelernter “Coord. Lang. and their Significance, pp. 97

The computational model allows programmers to build single computational activities

The coordination model is the glue that binds separate activities into an assemble.

Programs = Coordination + Computation

Advantages:

[1 Separation of concerns
[0 Reusability of the separate pieces

Universitét Bern Coordination Models and Languages

Concurrent programming — WS 97/98 135.

Linda Coordination Model

The Linda model is a blackboard model. Linda blackboard (called tuple space) consists
of a collection of logical tuples.

O (“astring”, 15.01, x), (1, O, “Hello™)
Tuple Space

Process-Tuple

| |
| |
| |
: <—— Data-Tuple :
| |
| |
| |

There are two kinds of tuples:
[1 Process-Tuples which are under active evaluation.
[0 Data-Tuples which are passive.

Process-Tuples execute simultaneously. They exchange data by generating, reading
and consuming Data-Tuples. A Process-Tuple that is finished executing turns into a

Data-Tuple.

Universitét Bern Coordination Models and Languages

Concurrent programming — WS 97/98 136.

LInda Operations

[0 out(t) causes a tuple t to be added to tuple space; the executing process
continues immediately.

[0 in(s) causes some tuple t that matches anti-tuple s to be withdrawn from tuple
space. Once in(s) has found a matching tuple, the values of the actuals int are
assigned to the corresponding formals in s (i.e actual-to-formal assignment).

An anti-tuple is a tuple with typed fields; some are values (or “actuals”),
others are typed place-holders (or “formals”). A formal is prefixed with a “?”
marker.

O (“astring”, ?2f, ?2i, x)
0 rd(s) is the same as in(s), except that the matched tuple remains in tuple space.

If not matching t is available when in(s) or rd(s) executes, the executing
process suspends (i.e. blocks) until one is, then proceeds as before.

[0 eval(t) is the same as out(t), except that t is evaluated after rather than before
it enters tuple space.

O inp(s), rdp(s) , attempt to locate a matching tuple and return O if they fail;
otherwise they return 1, and perform actual-to-formal assignment.

Universitét Bern Coordination Models and Languages

Concurrent programming — WS 97/98 137.

Examples

1) x=2 Tuple Space
out (“a string”, 15.01, 17, x)
2) out(O,l) (“a string”, 15.01, 17, 2)
(“a string”, 15.01, 17, 2)
(0,1)
3 y=2
in (“a string”, ?f, ?i, y) (0,1)
f=15.01,i=17
4) y=2 (“a string”, 15.01, 17, 2)
rd (“a string”, ?f, ?i, y) (0,1)
. | = =
Time | f=15.01,i=17
. |
\
5) eval (‘sum”y, f(y)) (“sum’”, 2, 3)

f= 3il<=i<=y

Universitét Bern Coordination Models and Languages

Concurrent programming — WS 97/98

Example: Fibonacci

How to calculate the N-th fibonacci number?

fibonacci(n):/* fib(n+2)=fib(n)+fib(n+1) */

if (rdp(“fibonacci”,n-1,?fibn_1)==0)
eval(“fibonacci”’,n-1,fibonacci(n-1))

rd(“fibonacci’,n-1,?fibn_1)
rd(“fibonacci’,n-2,?fibn_2)
out(“fibonacci”,n, fion_2+fibn_1)

out(“fibonacci”, 0, 0)
out(“fibonacci”, 1, 1)

eval(“fibonacci”,5, fibonacci(5))

in(“fibonacci”, 5, ?fib)

fib = ??

Universitat Bern

138.

Coordination Models and Languages

Concurrent programming — WS 97/98 139.

JavaSpace- (Java + Linda)

The JavaSpace package provides a distributed persistence and object exchange
mechanism for code written in the Java programming language.

JADA language (Java+tLinda): An implementation of the JavaSpace Specification
— P. Ciancarini and D.Rossi, “Esprit Project Page Space “ Project #20197

import jada.Tuple ;
import jada.ObjectSpace
import java.lang.*;

class CalculFibo implements Runnable {
ObjectSpace tpspc;
int nfib = 0;

public CalculFibo(ObjectSpace tp, int n) {
tpspc = tp;
nfib =n;

}

Universitét Bern Coordination Models and Languages

Concurrent programming — WS 97/98 140.

public void run() {

int f1, f2;
Tuple fib2 = (Tuple) tpspc. read_nb (new Tuple(“fibo”,
new Integer(nfib-2),
Tuple.IntegerClass()));
if (fib2 == null) {

new Thread(new CalculFibo(tpspc, nfib-2)).start();
fib2 = (Tuple) tpspc. read (new Tuple(“fibo”, new Integer(nfib-2),
Tuple.IntegerClass()));

f2 = ((Integer)fib2.getltem(2)).intValue();

Universitét Bern Coordination Models and Languages

Concurrent programming — WS 97/98 141.

Tuple fibl = (Tuple) tpspc. read_nb (new Tuple(“fibo”,
new Integer(nfib-1),
Tuple.IntegerClass()));
if (fibl == null) {
new Thread(new CalculFibo(tpspc, nfib-1)).start();
fibl = (Tuple) tpspc. read (new Tuple(“fibo”, new Integer(nfib-1),
Tuple.IntegerClass()));

}
f1 = ((Integer)fibl.getitem(2)).intValue();

tpspc. out (new Tuple(*fibo”, new Integer(nfib), new Integer(f1+f2)));

Universitét Bern Coordination Models and Languages

Concurrent programming — WS 97/98 142.

Multiset Rewriting-The Gamma Model

Gamma is a coordination model whose main data structure is a multiset (or bag) and
whose unique control structure is the I operator.

— cf.Banatre & Le Metayer “Programming by Multiset Transf’, CACM’93, pp.98

((R1,Al),...,(Rm,Am))(M) =
if Ui €[1,m], Ox1,...,xn not Ri(x1,...,xn)
then M
else let x1,....xn €M, let i € [1,m] such that Ri(x1,..xn) in
((R1,Al),...,(Rm,Am)) (M-{x1,...,xn}) + Ai(x1,...,xn))

0 {...} represents multisets
[0 (Ri,Ai) are pairs of closed functions specifying reactions

The effect of (Ri,Ai) on multiset M is to replace in M a subset of elements {x1,..,xn}
such that Ri(x1,..,xn) is true by the elements of Ai(x1,...,xn).

[0 T is a fixpoint operator: reactions continue until no new reaction is possible

Universitét Bern Coordination Models and Languages

Concurrent programming — WS 97/98 143.

Examples:

1) prime_numbers(N) = I (R,A))
({2,..,N}) where
R(x,y) = multiple(x,y)
Axy) = {y}

prime_numbers(10)

.

fact(4)

._>.

Universitét Bern Coordination Models and Languages

—
2) fact(n)= G ((R,A)) ({1,...,n}) where
R(x,y) = true
A(xy) = {x*y}

Concurrent programming — WS 97/98 144.

Object Oriented Coordination Languages
The main motivation behind coordination is to allow coordination patterns to
be specified separately from the implementation of individual objects.

— cf. Papathomas “ATOM”, pp. 4

Most of the research done in the development of O.O coordination languages have focus
in the design of mechanisms for the specification and reuse of per-object synchronization
constraints (i.e. per-object coordination).

BOUNDED-BUFFER

put conditions=
put: if buffer != full
get: if buffer '= empty
B states =
get full = usedSlots !'= numSlots
usedSlots = 3 empty = usedSlots ==
numsSlots = 5

Recently, we have a lot of work in multi-object coordination (i.e coordination of group of
objects). In SCG we have for example FLO/C: an O.O. coordination language for active
objects based on the constraint of methods invocations.

Universitét Bern Coordination Models and Languages

Concurrent programming — WS 97/98 145.

FLO/C

This languages provide abstractions called Connectors that specify and prescribe the
inter-object coordination. Connectors react upon messages sends to the objects they
control. Their reaction is coded into rules.

def connector <name> (Role [,Role]*)
Rule = Precondition Operator Consequences [; Rule]*

Operators: Rolel.MessageA (arg) Operator Role2.MessageB(arg)

impliesLater: Asynchronous Communication
implies: Synchronous Communication
impliesBefore: Synchronous Communication
permittedlf: Conditional Synchronization
waitUntil: Conditional blocking Synchronization

\ R1.A implies R2.B
Message A

Message B

N O O O B

Universitét Bern Coordination Models and Languages

Concurrent programming — WS 97/98

Example:

class Buffer {
Vector buff = Null;
int buffsize = 0;

public Buffer(int size){

buff = new Vector(size);
buffsize = size;}

public void put (Object x) {
buff.addElement(x); }

public Object get () {

Object x = buff.firstelement();
buff.removeElement(x); return x;

}

public boolean full (){
return buff.size()==buffsize;}

public boolean empty () {
return buff.size()==0;}

Universitat Bern

146.

def connector ProdCons(Bu,Pr,Co):
Pr.produce(x) implies Bu.put(x)
Pr.produce(x) permittedif !Bu.full()
Pr.consume() implies Bu.get(return x)
Pr.consume() permittedif 'Bu.empty()

class Producer extends Runnable {
private Buffer buffer = Null,
public Producer(Buffer buf) {
buffer = buf;}
public void produce(Object x) {}

}

class Consumer extends Runnable {
private Buffer buffer = Null,
public Consumer(Buffer buf) {
buffer = buf;}
public Object consume() {}

Coordination Models and Languages

Concurrent programming — WS 97/98 147.

ATOM

A Coordination Language for Active Objects based on State Notifications

Active Object = Objects are active entities that can process the request from
other objects, they can delay requests and process them in an order that is
most suitable to them (i.e they have control over the synchronization of
concurrent request).

0 In ATOM request are processed by threads that execute quasi-concurrently
within an object

threa

_ object’state

Universitét Bern Coordination Models and Languages

Concurrent programming — WS 97/98 148.

Example: Per-Object Synchronization

from ao import *

class BoundedBuffer(ActiveObjectSupport):

Abstract
states = [‘empty’,full’] » States

i g Synchronization
methods = ['put, “get] / onstraints

conditions = { ‘put’: (lambda o:not o.atState((‘full’,)),),
‘get’: (lambda o:not o.atState((‘empty’,)),)}

def __init__ (self,size):
self.inbuffer = 0
self.lim = size
self.store =[] State Empty

¥
def empty(self,state):

return self.inbuffer ==

Universitét Bern Coordination Models and Languages

Concurrent programming — WS 97/98 1409.

def full(self,state): _a—State Full

return self.inbuffer == self.lim

def put(self,data):
self.store.append(data)
self.inbuffer = self.inbuffer + 1

def get(self):
self.inbuffer = self.inbuffer -1
d = self.store[0]
del self.store[0]
return d

Python 1.4 (Jun 4 1997) [GCC 2.7.2]

>>> b = ActiveObject(BoundedBuffer)(10)
>>> b.put(3) x

>>> p.get()

Universitét Bern Coordination Models and Languages

Concurrent programming — WS 97/98

150.

Example: Inter-Object Coordination

from ao import *
class BoundedBuffer(ActiveObjectSupport):
methods = ['put’, ‘get’, ‘capacity’]

def capacity(self):
return self.lim

Python 1.4 (Jun 4 1997) [GCC 2.7.2]

>>> b = ActiveObject(BoundedBuffer)(10)
>>> p = ActiveObject(Producer)(b)

>>> ¢ = ActiveObject(Consumer)(b)

Universitat Bern

Producer Consumer
put A :
get

“The producer only produces when the
buffer is empty and the consumer only
consumes when the buffer is full”

Coordination Models and Languages

Concurrent programming — WS 97/98 151.

class Consumer(ActiveObjectSupport):

def __init__(self, buff):

self.buff = buff Notification Request from

/ the Consumer to the Buffer
def Activity(self):

self.noti = self.buff. notifyRequest ((‘full’,))
while (1):
print “consumer | will wait until full”
self. suspendUntil (self.noti)
print “consumer now is full” Empties the Buffer
for i in range(self.buff.capacity()): /
x = self.buff.get()
print “I'm getting from the buffer”,i
self.noti = self.buff. notifyRequest ((‘full’,))

Universitét Bern Coordination Models and Languages

Concurrent programming — WS 97/98 152.

class Producer(ActiveObjectSupport):

def __init__ (self, buff):

self.buff = buff Notification Request from
/ the Producer to the Buffer
def Activity(self):
self.noti = self.buff. notifyRequest ((‘fempty’,))
while(1):

print “producer | will wait until empty”
self. suspendUntil (self.noti)
print “producer Is empty”

for i in range(self.buff.capacity()): / Fills the Buffer
self.buff.put(i)
print “I'm putting in the buffer”,i

self.noti = self.buff. notifyRequest ((‘fempty’,))

Universitét Bern Coordination Models and Languages

Concurrent programming — WS 97/98 153.

SCG Coordination Research*
Foundations
1. Coordination Patterns and Architectures
[0 Classification of coordination abstractions, patterns and architectural styles
2. Composition Contracts for Concurrent Objects
[1 Composition Contracts
Components
3. Component-Oriented Approach to Coordination:
[CoCo: A coordination-component framework
Language Design and Experiments
1. A scripting language for CORBA
2. FLOJ/C: a coordination language for object-oriented systems.
3. Piccola: a Small Composition Language
4. ProCoordBroker: A Programmable Coordination Broker

Applications
1. Re-engineering: FAMOOS?

1. ESPRIT Working Group 24512 - “Coordina: Coordination Models and Languages”
2. ESPRIT Project 21975 — “Framework-based Approach for Mastering Object-Oriented Software Evolution”

Universitét Bern Coordination Models and Languages

Concurrent programming — WS 97/98 154.

8. Coordination Components in Java

Overview
[0 The context
[0 Coordination for Open Distributed Systems
[0 Components
[0 Communication components: network communication
[1 Synchronization components: shared resource
[1 Composing abstractions: distributed coordination
[1 distributed shared resource
[J distributed transactions
sources
[0 Gamma et al., Design Patterns, Addison-Wesley, 1994,

0 D. Lea, Concurrent Programming in Java: Design Principles and Patterns,
Addison-Wesley, 1996.

Universitét Bern Coordination Components in Java

Concurrent programming — WS 97/98 155.

Coordination for Open Distributed Systems

Coordination /s the act of managing the interaction between activities of
entities

An Open Distributed System /s a collection of loosely coupled entities in a

distributed environment, working together to achieve a goal. The system is
extendable and heterogeneous.

Programs = Coordination + Computation

«— entity

medium

Universitét Bern Coordination Components in Java

Concurrent programming — WS 97/98 156.

Approach: Coordination Components

A Component is a generic blackbox abstraction which is reconfigurable and
composable by plugs

Glue is the element of programming concerned with “putting things together”

Coordination Component T Glue

<«—— Adapters

Z

-<«+—— Application
Components

®
N

[0 Goal: an open, flexible and reusable coordination layer

Universitét Bern Coordination Components in Java

Concurrent programming — WS 97/98 157.

Network communication

Coordination Problem: how to distribute messages over a network to a set of
interested clients?
Example: a chat environment that multicasts the lines of the participants to all other
participants

multicasting server

/
client /

client
client

client /

\
w \
NN

connection
components

Universitét Bern Coordination Components in Java

Concurrent programming — WS 97/98 158.

A design for the multicast solution

client | server
|

connector Luna .‘ Acceptor MCConnectionManager

/

Connection

putSocket(Socket)

/

MulticastConnection

putConnection(Connection)

register(Dispatcher)
unregister(Dispatcher)
writeLine(String)

\
\

N Dis

patcher
O _
ChatClient

[0 Connector and Acceptor take care of setting up the connection
[0 MulticastConnection multicasts to all connected clients
[Dispatcher interface ensures that there is a dispatch(String line) method

Universitét Bern Coordination Components in Java

Concurrent programming — WS 97/98

The Connection components

159.

LineReader I/

Connection

SocketConnection

Socket

Connection

MulticastConnection

Dispatcher
=0

Multicaster

>

dispatch(String)o

writes string
to all connections

Universitat Bern

Coordination Components in Java

Concurrent programming — WS 97/98

The LineReader in Java

public class LineReader implements Runnable {

public void run () {
for(;;) {

line = conn.readLine(); // waits for line

class LineHandler implements Runnable {
public LineHandler (Dispatcher target, String line) {
(new Thread(this)).start()

}
public void run () { target.dispatch(line) : }

}

new LineHandler(target, line)

Universitat Bern

160.

Coordination Components in Java

Concurrent programming — WS 97/98 161.

Synchronization: Shared Resource

Coordination Problem: how to deal with concurrent requests that want to access a
resource (while keeping the resource consistent)?

scheduling
policy

\

bankaccount X

database
»

ATM

Universitét Bern Coordination Components in Java

Concurrent programming — WS 97/98 162.

Requirements for scheduling policy

[]
[]
[]
[]

dispatch concurrent requests

resource stays consistent

bank and database independent of policy
policy independent of bank and database

[0 why do we want this independence?
1 what control policies are possible?
1 what are possible problems concerning the independence?

The solution consists of a set of design and concurrency patterns:

[]

N O O O B B

Universitat Bern

explicit commands (Command pattern)

explicit policy (Policy pattern (aka Strategy pattern))
explicit properties

early replies

different synchronization policies

configuration objects

Coordination Components in Java

Concurrent programming — WS 97/98

Scheduling Policy Design

Command
execute()

‘f

163.

Resource
request()

O

Resource.request(); Ij

policy component

- Interface
@ RN ConcreteCommand
request() o-.

...... > execute()o .

: @
incoming
requests ﬁ

¢ = new ConcreteCommand;
@ Policy
L| put(Command c)
N
FIFOPolicy ReadersWriterPolicy

Universitat Bern

PriorityPolicy

RW(Configuration

PrConfiguration

Coordination Components in Java

Concurrent programming — WS 97/98 164.

Explicit Commands

Command
Propert
execute() <> perty
setProperty(Property p)
Property getProperty()
A
ConcreteProperty
ReturnCommand aProperty
setResult(Object res)
getResult()
or
ConcreteCommand

execute() o------- ...

"""""" Resource.request(); ﬁ

[1 uses the Command pattern (see Gamma et al)
[0 the ReturnCommand uses the early reply mechanism (see slide 72 a.f.)

Universitét Bern Coordination Components in Java

Concurrent programming — WS 97/98 165.

Explicit Policies

<<interface>>
Policy

put(Command c)
A

username priority
FIFOPolicy ReadersWriterPolicy PriorityPolicy orofessor 15
| assistant 10
‘ student 5
\
b) _ classname isReader \\
no conﬂguratlon ObjeCt GetBalanceCommand | true - .
because no need for SetBalanceCommand | false - __configuration
extra information objects

[I the policies are not all completely independent: some need application specific
information !!

Universitét Bern Coordination Components in Java

Concurrent programming — WS 97/98

The Configuration Object

classname ISReader

GetBalanceCommand true
SetBalanceCommand false

Hashtable table = new Hashtable(); // available in java.util
public void add (String classname, boolean isReader) {
table.put(classname,new Boolean(isReader));

}

public void remove (String classname) {
table.remove(classname);

}
public boolean iIsSReader (Command c) {

return ((Boolean)table.get(c.getClass().getName()
}

Universitat Bern

166.

)).booleanValue();

Coordination Components in Java

Concurrent programming — WS 97/98 167.

The adapted readers/writer policy

The policy of slide 94 is slightly adapted. Instead of:
public void read() {
beforeRead(); read (); afterRead();

}
public void write() {

beforeWrite(); write_(); afterWrite();

we now have:

public void dispatchReadCommand(Command c) {
beforeRead(); c.execute(); afterRead();

}

public void dispatchWriteCommand(Command c) {
beforeWrite(); c.execute(); afterWrite();

}

Universitét Bern Coordination Components in Java

Concurrent programming — WS 97/98 168.

Which enables the policy to give every command its own thread and execute it according
to the RWVT policy implementation:

public class ReadersWriterPolicy implements Policy {
private RWConf conf; // configuration object
private RWVT rwvt = new RWVT(); // actual policyholder
public ReadersWriterPolicy (RWConf conf) { this.conf = conf;}

public void put (Command c) {
class RWCommandHandlerimplements Runnable {

public RWCommandHandler(Command cmd, boolean isReader) {
this.cmd = cmd; this.isReader = isReader;
(new Thread(this)).start();
}
public void run () {
if (isReader) { rwvt.dispatchReadCommand(cmd); }
else { rwvt.dispatchWriteCommand(cmd);}

}

new RWCommandHandler(c,conf.isReader(c)) '}

Universitét Bern Coordination Components in Java

Concurrent programming — WS 97/98

169.

Composing abstractions: distributed access

communication

server-side access

client

0 a simple layered architecture

Universitat Bern

resource

Coordination Components in Java

Concurrent programming — WS 97/98 170.

A design for a distributed shared resource

Connection ‘. - .‘ Connection

ClientAdapter ServerAdapter
SharedResourcelnterface Policy
Client Server

[1 the adapter converts, for instance, the synchronous calls of the lockpolicy to the
asynchronous calls of the communication layer. The adapter could be converting to
CORBA or RMI or whatever communication mechanism as well

Universitét Bern Coordination Components in Java

Concurrent programming — WS 97/98 171.

An Adapter in Java

public class ServerAdapter implements Dispatcher {
Connection conn;

Resourcelnterface bank;

public void dispatch (String line) {
java.util.StringTokenizer strtok = new java.util.StringTokenizer(line,"&");
if (strtok.nextToken() == “getBalance”) {
int value = bank.getBalance();

conn.writeLine(“&getBalance&™+value);

}

elseif

L1 this adapter converts from asynchronous line sends to synchronous method calls

[line can have more information (for instance, parameters like account number) that
will have to be parsed as well

Universitét Bern Coordination Components in Java

Concurrent programming — WS 97/98

Distributed transactions

172.

communication

transactionalclient

transactionalresource

client

resource

[In a (distributed) transaction the client has first to grep a set of resources before it can
do actions on them. If something goes wrong during the transaction it is rolled-back:
the initial state of the participants is restored.

Universitat Bern

Coordination Components in Java

Concurrent programming — WS 97/98 173.

fransactions in a nutshell

The client view. iImplementation in Java

try {
Object key = new Obiject();

resourcel.join(key);
resource2.join(key);

Idea
atomic {

resourcel.dolt(); resourcel.dolt(key);
resource2.dolt(); » resource2.dolt(key);

resourcel.commit(key);
resource2.commit(key);

}

catch(TransactionException e){
resourcel.abort(key);
resource2.abort(key);

Universitét Bern Coordination Components in Java

Concurrent programming — WS 97/98 174.

a design for distributed transactions

Connection ‘.------------------.‘ Connection

N\

ClientAdapter ServerAdapter
- . TransactionalResource
TransactionalClient join(Object key)
commit(Object key)
% abort(Object key)
Client Resourcelnterface

. ¢ dolt(Object key)

if (key == rightkey)) T
resource.dolt()

Resource

dolt()

[l operations {o organize recover or resource state are not shown

Universitét Bern Coordination Components in Java

Concurrent programming — WS 97/98

9. Object-Based Concurrency

Overview
[0 Whatis an OBCL?
[0 Dimensions of OO Languages
[1 Expression of Concurrency
[Objects and Processes
[0 Granularity of Concurrency
[0 Creating Processes
[0 Communication and Synchronization
[0 Intra-Object and Inter-Object Synchronization
Evaluating OBCLs
Research Topics

1 [

Universitat Bern

175.

Object-Based Concurrency

Concurrent programming — WS 97/98

What is an OBCL?

An Object-Based Concurrent Language supports:
[1 Encapsulation
[1 objects encapsulate data and operations
[0 Concurrency
[0 multiple processes may be concurrently active
[need to: specify, create and synchronize processes

Why do we need OBCLsS?
[0 Inherent application (real-world) concurrency
1 Distributed applications
[1 Application integration and interoperability
[0 Parallel applications

176.

Universitat Bern

Object-Based Concurrency

Concurrent programming — WS 97/98

Overview of OBCLs

[1 Traditional OBLSs:
[0 Smalltalk-80, C++, Objective C, Ada
[1 libraries

[0 Extended OBLs:
[0 CLU: Argus
[0 Smalltalk-80: ConcurrentSmalltalk, Actalk, PO
[0 C++: ACT++, Arjuna, Avalon, Karos
O Eiffell/

[0 Concurrent OBLSs:
[0 Actors, ABCL, POOL, Guide, Hybrid, Java

Universitat Bern

177.

Object-Based Concurrency

Concurrent programming — WS 97/98 178.

Requirements for OBCLs

[1 Object autonomy:
[1 protection from concurrent requests

[I Internal concurrency:
[1 should be transparent to clients

[1 Local delay transparency:
[0 handling of local delays should be transparent to the client

[Remote delay transparency:
[0 handling of remote delays should be transparent to the service provider

[0 Composable synchronization policies:
[0 subclasses should share synchronization code with superclasses

REF. Papathomas, PhD thesis, 1992.

Universitét Bern Object-Based Concurrency

Concurrent programming — WS 97/98 179.

Expression of Concurrency

[0 Objects and Processes:
[0 How are processes and objects related?

[0 Granularity of Concurrency:
[0 How many processes can be associated with an object?

[0 Process Creation:
[How are processes created?

Universitét Bern Object-Based Concurrency

Concurrent programming — WS 97/98 180.

Objects and Processes

How are processes related to objects?

Three Classes of OBCL:

[0 Passive Objects: objects & concurrency independent
(Smalltalk-80, C++, Objective-C, Emerald, Java)

[0 Active/Passive: passive + “concurrent” objects
(PAL)
1 Active Objects: objects and processes are unified

(ABCL/1, Hybrid, POOL ...)

Universitét Bern Object-Based Concurrency

Concurrent programming — WS 97/98 181.

Passive Object Models

@ Process Process

T D]

a

Concurrent processes access passive objects.
Processes synchronize according to a shared memory model:
[0 objects must be designed to be shared, or
[0 processes must explicitly synchronize via locks, etc.

Smalltalk-80, C++, Objective-C, Emerald, Java

Universitét Bern Object-Based Concurrency

Concurrent programming — WS 97/98 182.

Active/Passive Models

Active Objects

Passive Objects —

Active Objects are identified with processes

Passive objects are protected by the active objects containing them
0 lightweight/heavyweight distinction
[J two class hierarchies are incompatible

PAL

Universitét Bern Object-Based Concurrency

Concurrent programming — WS 97/98 183.

Active Object Models

Active Obijects

|\

Objects and processes are integrated:
[0 each operation invocation is a potentially concurrent thread
[0 an object with a running operation is active
[J every object is autonomous and synchronizes its own threads

ABCL, Hybrid, POOL, ...

Universitét Bern Object-Based Concurrency

Concurrent programming — WS 97/98 184.

Granularity of Concurrency

Approaches to Concurrency:

Inter-Object Concurrency:
[1 Sequential Objects Ada, POOL

Intra-Object Concurrency:
[0 Quasi-Concurrent Objects ABCL, Hybrid

[0 Concurrent Objects:
[0 Client-Driven: Passive Objects Smalltalk, Java
[1 Server-Driven: Active Objects Sina, PO, Eiffel//

Universitét Bern Object-Based Concurrency

Concurrent programming — WS 97/98 185.

Sequential Objects

EEEE —

In a sequential object model, requests are serialised in a wait-queue
[1 each operation runs to completion before the next request is handled
[1 concurrency is introduced by having more objects

Universitét Bern Object-Based Concurrency

Concurrent programming — WS 97/98 186.

Quasi-Concurrent Objects

Quasi-concurrent objects may switch attention between multiple requests:
0 In Hybrid, a delegated call to another object allows the serving object to
switch to another request
0 In ABCL, an express message may interrupt the thread servicing an
ordinary invocation

Universitét Bern Object-Based Concurrency

Concurrent programming — WS 97/98 187.

Concurrent Objects

Concurrent Objects may serve multiple requests concurrently:
[1 Passive Objects require explicit synchronization of threads
[0 Active Objects control when to accept new requests
[0 may create additional internal threads to service a single request

Passive: Smalltalk-80, Java, ...
Active: Sina, PO, Eiffel//, ...

Universitét Bern Object-Based Concurrency

Concurrent programming — WS 97/98

Process Creation

[1 Asynchronous Objects
1 Explicit bodies
[0 Implicit bodies

[1 Asynchronous Messages

[one-way message-passing
[1 futures

Universitat Bern

188.

Object-Based Concurrency

Concurrent programming — WS 97/98 189.

Asynchronous Objects

: Instantiation

independent execution

The “body” of an active object may be:
[0 Implicit and inaccessible — standard scheduler
[1 Explicit and customizable — initialization, scheduling, synchronization ...

Implicit: Actalk, Act++, Actors
Explicit: Ada, Eiffel//, Pool

Universitét Bern Object-Based Concurrency

Concurrent programming — WS 97/98 190.

Asynchronous Invocation

Clients do not wait for the reply to continue executing
[one-way message-passing:
O reply (if any) sent by another invocation

[futures:
[0 reply sent to a future object

Universitét Bern Object-Based Concurrency

Concurrent programming — WS 97/98 191.

Futures

The reply to an asynchronous request is sent to a future object..

[The client obtains the result when needed.

[1 Clients block only if the result is not yet available when needed
Futures may be created either explicitly by clients or implicitly for all requests.

Explicit: ACT++, ABCL, PO, ConcurrentSmalltalk
Implicit: Eiffel//, Karos, Meld

Universitét Bern Object-Based Concurrency

Concurrent programming — WS 97/98 192.

Communication and Synchronization

[0 Intra-Object Synchronization:
[Remote Delays: asynchronous invocations
[1 Local Delays: condition synchronization

[0 Inter-Object Synchronization:
[0 Transactions

Universitét Bern Object-Based Concurrency

Concurrent programming — WS 97/98

Local Delays

193.

An object may need to delay selected requests to avoid local inconsistency.

[Unconditional acceptance
[0 Conditional acceptance
[0 Centralized acceptance
[1 Explicit acceptance
[0 Reflective computation
[1 Distributed activation conditions

[Representation specific
1 Abstract

Universitat Bern

Emerald, Smalltalk-80, Java

Ada, POOL, ABCL

Actalk, ABCL/R

Guide, Hybrid, SINA
Procol, ACT++, Rosette

Object-Based Concurrency

Concurrent programming — WS 97/98 194.

Local Delays

Unconditional acceptance Explicit acceptance

\@

Representation specific delays Abstract synchronization conditions

=

Universitét Bern Object-Based Concurrency

Concurrent programming — WS 97/98 195.

Transactions

[1 Concurrency atomicity:

[0 intermediate effects on shared objects are invisible to other transactions
(serialisability or isolation)

[1 Failure atomicity:

[J transactions either complete successfully, or are aborted with no visible
effect on shared objects (the “all-or-nothing” property)

Transactions may be associated with transaction blocks (explicit start and end), or may
be realized as atomic invocations (implicit with operation start and end).

Universitét Bern Object-Based Concurrency

Concurrent programming — WS 97/98 196.

Classifying OBCLs

[Object Models
[1 Active or Passive Objects?

[0 Granularity of Concurrency
[0 Sequential, Quasi-Concurrent or Concurrent?

[0 Process Creation
[0 Asynchronous Objects or Asynchronous Invocations?

[0 Local Delays
[1 Conditional or Unconditional Acceptance?
[0 Centralized or Distributed Activation Conditions?
[0 Explicit or Reflective / Abstract or Representation-specific?

Universitét Bern Object-Based Concurrency

Concurrent programming — WS 97/98 197.

Evaluation

[1 Object autonomy:
[1 active objects

[I Internal concurrency:
[0 server-driven

[1 Local delay transparency:
[1 various approaches ...

[Remote delay transparency:
[1 futures or internal threads

[Composable synchronization policies:
[composable abstract synchronization policies ...

Universitét Bern Object-Based Concurrency

Concurrent programming — WS 97/98 198.

Ssummary

You Should Know The Answers To These Questions:

[0 What is the difference between active and passive objects?
What is the difference between client- and server-driven concurrency?
What different ways are there to introduce concurrency in applications?
What are local and remote delays?
What are the usual ways to implement local delays?
How can an object avoid remote delays?

N I I O By

Can You Answer The Following Questions?

What kinds of problems cannot be easily solved with purely sequential objects?
When is the active/passive model useful when programming in Java?

How could you implement an active object in Java? Why would you do so?
How would you implement futures in Java?

Suppose you want to extend a class that makes use ofsynchronize ,wait() and
notify() — what would you have to be careful about in your subclass extensions?

OO0 O

Universitét Bern Object-Based Concurrency

Concurrent programming — WS 97/98 199.

10. Petri Nets

Overview
[0 Definition:
[0 places, transitions, inputs, outputs
[firing enabled transitions
[0 Modelling:
[1 concurrency and synchronization
[1 Properties of nets:
0 liveness, boundedness
[0 Implementing Petri net models:
[0 centralized and decentralized schemes
Sources

0 J. L. Peterson, Petri Nets Theory and the Modelling of Systems, Prentice Hall,
1983.

[0 D. Lea, Concurrent Programming in Java — Design principles and Patterns,
The Java Series, Addison-Wesley, 1996.

Universitéat Bern Petri Nets

Concurrent programming — WS 97/98 200.

Petri nets: a definition

A Petri net C = [P,T,l,0consists of:
1. Afinite set P of places
A finite set T of transitions

2
3. AninputfunctionI: T — NP (maps to bags of places)
4. An output function O: T - NP

A marking of C is a mapping 4: P - N

Example:

P:{X’y} X

T={a,b}

I(a) = {x}, I(b) = {x, x}

O(@)={x,y}, O()={y} y
H={X X}

Universitéat Bern Petri Nets

Concurrent programming — WS 97/98 201.

Firing transitions

To fire a transition t:
1. There must be enough input tokens: u = I(t)
2. Consume inputs and generate output: 1’ = - I(t) + O(t)

Universitéat Bern Petri Nets

Concurrent programming — WS 97/98

Modelling with Petri nets

Petri nets are good for modelling:
[J concurrency
[1 synchronization

Tokens can represent:
[0 resource availability
[J jobs to perform
[0 flow of control
[0 synchronization conditions ...

Universitat Bern

202.

Petri Nets

Concurrent programming — WS 97/98 203.

Concurrency

Independent inputs permit “concurrent” firing of transitions

Universitéat Bern Petri Nets

Concurrent programming — WS 97/98 204.

Conflict

Overlapping inputs put transitions in conflict

O

Only one of a or b may fire

Universitéat Bern Petri Nets

Concurrent programming — WS 97/98

Mutual Exclusion

The two subnets are forced to synchronize

ko

'/_\

\ T

Universitat Bern

205.

Petri Nets

Concurrent programming — WS 97/98 206.

Fork and Join

Q

(o~

Universitéat Bern Petri Nets

Concurrent programming — WS 97/98 207.

Producers and Consumers

producer consumer

Y P

\o~" T/

Universitéat Bern Petri Nets

Concurrent programming — WS 97/98 208.

Bounded Buffers

/

free slots J

s

Universitéat Bern Petri Nets

Concurrent programming — WS 97/98 209.

Properties

Reachability:

[1 The reachability set R(C,|1) of a net C is the set of all markings ' reachable from
initial marking p.

Boundedness:
[0 A net Cis safe if places always hold at most 1 token.
0 Anetis (k-)bounded if places never hold more than k tokens.
[0 A netis conservative if the number of tokens is constant.

Liveness:
[1 A transition is deadlocked if it can never fire.
[1 A transition is /ive if it can never deadlock.

Universitéat Bern Petri Nets

Concurrent programming — WS 97/98 210.

Liveness and Boundedness

This net is both safe and conservative.
Transition a is deadlocked.
Transitions b and c are both /ive.

The reachability set is {{y}, {z}}.

Universitéat Bern Petri Nets

Concurrent programming — WS 97/98 211.

Related Models

Finite State Automata
[0 Equivalent to regular expressions
[0 Can be modelled by one-token conservative nets
[0 Cannot model unbounded Petri nets

a »

The FSA for: a(b|c)*d

Universitéat Bern Petri Nets

Concurrent programming — WS 97/98 212,

Computational Power

Petri nets are not computationally complete
[0 Cannot model “zero testing”
[Cannot model priorities

b
A zero-testing net: r
An equal number of a

a and b transitions may fire
as a sequence during any
sequence of matching

c and d transitions.

(#a = #Db, #c = #d)

Sl

Universitéat Bern Petri Nets

Concurrent programming — WS 97/98

Applications of Petri nets

Modelling information systems:
[0 Workflow
[0 Hypertext (possible transitions)
[0 Dynamic aspects of OODB design

Universitat Bern

213.

Petri Nets

Concurrent programming — WS 97/98 214.

Implementing Petri nets

We can implement Petri net structures in either centralized or decentralized fashion:

[1 Centralized:

[1 A single “net manager” monitors the current state of the net, and fires
enabled transitions.

[1 Decentralized:

[0 Transitions are processes, places are shared resources, and transitions
compete to obtain tokens.

Universitéat Bern Petri Nets

Concurrent programming — WS 97/98 215.

Centralized schemes

In one possible centralized scheme, the Manager selects and fires enabled transitions.
When no transitions are enabled, it waits for tokens to be returned to its input queue:

ST NS

a b C

Manager

L—/ @ Transitions

[0 What liveness problems can this scheme lead to?

Universitéat Bern Petri Nets

Concurrent programming — WS 97/98 216.

Decentralized schemes

In decentralized schemes transitions are processes and tokens are resources held by
places:

OO

Transitions can be implemented as thread-per-message gateways so the same transition
can be fired more than once if enough tokens are available.

Tokens must be grabbed in a consistent order, or the net can deadlock even though
transitions are enabled!

Universitéat Bern Petri Nets

Concurrent programming — WS 97/98 217.

Transactions

Transitions attempting to fire must grab their input tokens as an atomic transaction, or the
net may deadlock even though there are enabled transitions:

b

a

If a and b are implemented by independent processes, and x and y by shared resources,
this net can deadlock even though b is enabled if a (incorrectly) grabs x and waits for y.

Universitéat Bern Petri Nets

Concurrent programming — WS 97/98 218.

Coordinated interaction

A simple solution is to treat the state of the entire net as a single, shared resource:

get()

If a transition is not enabled, it waits and releases the nettill it changes state again. When
a transition fires and updates the net, it notifies all waiting transitions.

[1 How could you refine this scheme to work in a distributed setting?

Universitéat Bern Petri Nets

Concurrent programming — WS 97/98 219.

Ssummary

You Should Know The Answers To These Questions:
[0 How are Petri nets formally specified?
How can nets model concurrency and synchronization?
What is the “reachability set” of a net? How can you compute this set?
What kinds of Petri nets can be modelled by finite state automata?

How can a (bad) implementation of a Petri net deadlock even though there are
enabled transitions?

If you implement a Petri net model, why is it a good idea to realize transitions as
“‘gateways”?

OO O

]

Can You Answer The Following Questions?
0 What are some simple conditions for guaranteeing that a net is bounded?

0 How would you model the Dining Philosophers problem as a Petri net?
Is such a net bounded? Is it conservative? Is it live?

0 What could you add to Petri nets to make them Turing-complete?
[0 What constraints could you put on a Petri net to make it fair?

Universitéat Bern Petri Nets

Concurrent programming — WS 97/98 220.

11. The pi Calculus

Overview
[1 Basic ideas

The polyadic 1-calculus

Simple examples

Observable equivalence, Process typing
A simplification

Objects in the 1-calculus

PICT

Programming in PICT

O O O o o

Universitét Bern The pi Calculus

Concurrent programming — WS 97/98 221.

Introduction

[]

[]

The 1-calculus is a model of concurrent computation based
upon the notion of naming

The trcalculus is a calculus in which the topology of
communication can evolve dynamically during evaluation.

In the 1calculus communication links are identified by
namesand computation is represented purely as the
communication of names across links.

The 1-calculus is an extension of the process algebra CCS,
following work by Engberg and Nielsen who added mobility
to CCS while preserving its algebraic properties.

The most popular versions of the te-calculus are the
monadic tecalculus, the polyadic m-calculus, and the
simplified polyadic tecalculus.

Universitét Bern The pi Calculus

Concurrent programming — WS 97/98 222,

Basic ideas

The most primitive entity in the te-calculus is a name Names, infinitely many, are x, y, ...
[IN; they have no structure. In the basic version of the tecalculus we only have one other
kind of entity: a processProcesses are P, Q, ... Pr and build from names by the following

syntax:
Pr= Sig WPy [PIQ [P | (wxP

Here | is a finite indexing set; in the case | = [1 we write the sum as 0. In a summand 1P
the prefix Ttrepresents an atomic action the first action performed by 1.P. There are two
basic forms of prefix:

X(Y), which binds y in the prefixed process, means
“Input some name - call it y - along the link named X,

Xy, which does not bind y, means
“output the name y along the link named x”.

In each case we call x the subject and y the object of an action.

Universitét Bern The pi Calculus

Concurrent programming — WS 97/98 223.

Simple examples

xy.0 | x(u).uv.0| xz.0
can evolve to
0| yv.0| xz.00r xy.0| zv.0| O

(LX)(xy.0 | x(u).uv.0)| xz.0
evolve to
0] yv.0| xz.0

xy.0 | Ix(u).uv.0| xz.0
can evolve to
0] yv.0 ['X(u).uv.0| xz.00r xy.0| zv.0 |'x(u).uv.0| O
and
0] yv.0 |'x(u).uv.0 |zv.0| O

Universitét Bern The pi Calculus

Concurrent programming — WS 97/98 224,

The polyadic pi calculus

Parallel composition

Restriction IP=P|IP

Summation P=P|O0 P=P+0
Input PIQ=Q|P P+Q=Q+P
Output PIQIR=P[(QIR)
Replication P+Q+R=P+(Q+R)

Null (LXx)P[Q=(ux)(P| Q) x UV(Q)

Q- R ’ P> Q Q=Q P-Q
PIQ-P|R P-Q (LX)P - (LX)Q

(P + Xy, oo Xpl.Q) [(€Y1, oo YR+ S) — { X3, coey Xp VY1, -, VR }Q| R

Universitét Bern The pi Calculus

Concurrent programming — WS 97/98 225,

Church’s encoding of boolean in pi

True = Atrue.Afalsetrue
A " False = Arue\falsefalse

m Not = Aarg.Atrue.Afalsearg false true

Not True = (Aarg.Atrue.Afalsearg false truetrue.Afalsetrue
— Atrue.Afalse(Atrue’.Afalse’true’) false true
— Atrue.Afalsefalse
= False

1-[' True(b) =b(t, f)t
s False(b)=b(t, f)F
Not (b, ¢) = b(t, f)<(f, 1)

(U)(Not(b, ¢) | True(c)) = False (b) ’?
L O(b(t,)S(f, t) | c(t,)f)=b(t,) 4

Universitét Bern The pi Calculus

Concurrent programming — WS 97/98 226.

Observable equivalence

Definition:

Two systems are equivalent whenever by interacting with them from the
outside world, no difference can be observed.

Observation predicate:
A process P is observable at a, written P! 4, if some a.A occurs unguarded in P.

if P =9¢T a[y] + b[x] + 1.C
thenwe have{z:Pi,}={a,b}and{z: P, }={a,b,c}

Definition:
(Strong) reduction equivalence, ~, is the largest equivalence relation | over
processes such that P [Q implies

1.1fP - P, then Q - Q' for some Q' such that P’ E Q".
2. For each a, if Pl 4 then Q| .

Universitét Bern The pi Calculus

Concurrent programming — WS 97/98 227.

Observable equivalence ll

Definition:
(Strong) reduction congruence, ~, is the largest congruence relation over
processes such that P ~, Q implies that for all process contexts C[|,

C[PT = CIQ].

A process context C[] is a process term with a single hole, such that placing
a process in the hole yields a well-formed process.

True(b) =b(t,f)t
False(b) =b(t, f)f
Not (b, ¢) = b(t, f)(f, 1)

(u c)(Not(b, c) | True(c)) ~, False (b)
(o) (b(t, f)c(f, t)|c(t,f)t)~ b(t, f)f

Universitét Bern The pi Calculus

Concurrent programming — WS 97/98 228.

Process typing

[1 In the trcalculus processes do not have types.
[1 Types are only assigned to names (channels).

[1 The type of a name (channel) remains constant throughout
its lifetime.

[1 We do not specify temporal properties of names (channels).

Types:
0:="0 ..,04 Channel type

True(b) =b(t, f)t : [0, M
False(b) = b(t, f)f : [, "I
Not(b, c)=b(t, f).c(f, § : [, I

Universitét Bern The pi Calculus

Concurrent programming — WS 97/98 229.

A simplification - polyadic mini pi-calculus

P,Q:=P|P Parallel composition
(LX) P Restriction IP=P|IP
X[X1, .-y Xp]-P Input P=P|0 P|Q=Q|P
X[Xq, .o X,] Output PIQIR=P|(QIR

P Replication (Input)
0 Null (LX)P[Q=(ux)(P|Q)xUv(Q)

Q- R ! P - Q ! P_-Q
PIQ-P|R P-Q (LX)P - (LX)Q

C[X1s «oor Xn]- Q| €Y1y os YRl-R = { X1, vots Xp \ V1, o0, Yn Q| R

Universitét Bern The pi Calculus

Concurrent programming — WS 97/98 230.

Objects in the pi-calculus

Sangiorgi’s translation of an untyped OC(Adabi/Cardelli) into the
polyadic tecalculus:

[{jo1.nli =2)-b} 1, =2 PIXLIXILLYL(Mgy, {1 = 1) [b 1)
[a.kT, =d¢t (v a)([allq | alxIX1;.p.4)

[a. O (y).bl, =0T (u a)([allyl alXI-PXnew-Xnewll.1.Y1-
((=1;)[bD, | 0 2)XLey]))

[xT, =det p[x]

Universitét Bern The pi Calculus

Concurrent programming — WS 97/98 231.

A basic object model in the pi calculus

IRefCell[init, result].
(L contents set get)
(contentsJinit]

| result] set, get]
| Iset[value, ack].contents[dummy].(contents[value] | ack)
| 'get[result].contents[value].(contents[value] | result[value]))

Universitét Bern The pi Calculus

Concurrent programming — WS 97/98

The iL-calculus

Parallel composition
Restriction

Input

Output

Replication (Input)
Null

F.=X|e|F<l=x>
X, Y, z:=alX

A- B A=A A - B

IA=A| A
A=A|O0 A|B=B|A
(AIB)|C=A[(B|C)
e(X).A=0 e(F)=0
(LX)P Q= (ux)(P|Q)xL(Q)

A-B

C|A-C|B A - B

(L xX)A - (L X)B

cX).A|C(F) > {X{y ey Xy \ Y1, o0y Yy JA

Universitat Bern

232.

The pi Calculus

Concurrent programming — WS 97/98

PICT

Overview

[]

N O R N O

PICT core syntax

Creating new channels
Channel types

Modelling language constructs
A concurrent queue

Universitat Bern

233.

The pi Calculus

Concurrent programming — WS 97/98 234.

Abstract Syntax of (Untyped) Core PICT

Proc = Val? Abs Val = Name

Val ?* Abs BasicVal

Val! val [Val, ...]

Proc | Proc record end

let new Name in Proc end Val with Id = Val end
Abs = Pat> Proc Name = Id
Pat= Name BasicVal = String

[Pat, ...]

record /d = Pat, ... end

Name @ Pat

Universitét Bern The pi Calculus

Concurrent programming — WS 97/98 235.

Binding Channels

All channel names must be bound, either by “let new” or by an input pattern:

run
let new X in

X[]
| (X?[>print!"Got it!")
end

NB: print is a built-in channel

Universitét Bern The pi Calculus

Concurrent programming — WS 97/98 236.

Typed Channels

Channels in PICT are typed, and may only carry values matching their type:

Type= " Type
I Type
? Type
[Type, ...]
Record end

Type with Id: Type end
Top

In most cases, types can be automatically inferred, and declarations are unnecessary:

run
let new x : M[]in
xI[]
| (X?[>print!"Got it!")
end

Universitét Bern The pi Calculus

Concurrent programming — WS 97/98 237.

Synchrony and Asynchrony

Although PICT uses asynchronous message-passing, synchrony can be recovered by
waiting for a response on a (fresh) channel:

def sem [p,v] >

(p?r>r11])
| (v?*r>rl[]| (p?r>rl[])

A definition is syntactic sugar for a (new) replicated process

let new sem

run (sem?*[p,v] >
(p?r>rl[])
| (v?r>r[]] (p?r>r[])))

Note that all channel names are bound, and that channels can be passed as values.

Universitét Bern The pi Calculus

Concurrent programming — WS 97/98 238.

Synchronizing Concurrent Clients

def client [p,v] >
let new r, s1, s2 in
p'r
| (r?[] > pr!['FIRST\n",s1))
| (s1?[] > pr'["'SECOND\n",s2])
| (s2?[] > VIr | (r?[] > skip))
end

run

let new p, vin

sem![p,v]

| client![p,V]

| client![p,V]

| client![p,V]
end

Universitét Bern The pi Calculus

Concurrent programming — WS 97/98

Modelling Booleans

def tt [b] > b?*[t,_] >t]
def ff [b] > b?*[_,f] > fI[]

def test [b] >
let new t, fin
b![t,f]
| (t?[] > print!"True")
| (f?[] > print!"False")
end

def notB [b,c] > c?*[t,f] > b![f,{]

run
let new b, c In
ffi[b] | notB![b,c] | test![c]
end

Universitat Bern

2309.

The pi Calculus

Concurrent programming — WS 97/98

Modelling Language Constructs

Higher-level language constructs are modelled by translation to core PICT:

run

let new x in
x!false

| (x?b>
if b
then print!"True"
else print!"False"
end)

end

IS translated to:

run

let new x in
x!false

| (x?b>
let new t,fin

primif![b,t,f]

| (t?[]> print!"True")
| (f?[] > print!"False")
end)

end

Universitat Bern

240.

The pi Calculus

Concurrent programming — WS 97/98 241.

Natural Numbers

A natural number n can be modelled by a channel n that reads a pair [p,z] of channels,
and either sends z![] if it is equal to zero, or else sends p![k] where k represents n-1.

def zero [p,z] > z![]
def one [p,z] > p![zero]
def two [p,z] > p![one]
def three [p,z] > p![twO]

def count [n] >
let new p,z in
n![p,z]
| (z?[] > print!"0")
| (p?[m] > print!"1+" | count![m])
end

run count![three]

Universitét Bern The pi Calculus

Concurrent programming — WS 97/98 242,

Counting

New numbers can be generated by constructing a successor process:

def succ [n, r] >
let new s in
rls

| (s?*[p,z] > p![n])
end

run
let new rin
succl![three,r]
| (r?s > count![s])
end

Universitét Bern The pi Calculus

Concurrent programming — WS 97/98

Arithmetic

Arithmetic operators can be built up in the same way:

def add [m,n,r] >
let new p, z in
m![p,z]
| (z?[]>r'n)
| (pP?[pm] >
let new rn in
succ![n,rn]
| (rn?sn>add![pm,sn,r])
end)
end

run let new rin
add![two,three,r]
| (r?s > count![s])
end

Universitat Bern

243.

The pi Calculus

Concurrent programming — WS 97/98 244.

Functional Notation

Infix notation and functional application are syntactic sugar for communication:
run printi!(2+5)

translates to:
run printi!((+)[2,5])

which translates to:

run
let new r in
(H)'[2,5,r] | (r?value > printilvalue)
end

Universitét Bern The pi Calculus

Concurrent programming — WS 97/98

Functions as Processes

Functions can be defined as processes:

def double [n] = n+n

translates to:
def double [n,r] > ri(n+n)

which translates to:

def double [n,r] >
let new rl in
(+)![n,n,r1]
| (r1?value > rlvalue)
end

run printi!(double[5])

Universitat Bern

245.

The pi Calculus

Concurrent programming — WS 97/98

Functions as Processes

def fact [n] =
if n ==
then 1 translates to:

else n * fact[n-1]
end

run printi!(fact[5])

120

Universitat Bern

246.

def fact [n,r] >
let new br in
(==)"[n,0,br]
| (br?b>
let new t, fin
primif![b,t,f]
| (t?[]>r!1)
| (?[]1>
let new nr in
(-)'[n,1,nr]
| (nr?k >
let new Kfr in
fact![k, kfr]
| (kfr?kf >
let new frin
(), kf,fr]
| (fr2f > rlf)
end)
end)
end)
end)
end

The pi Calculus

Concurrent programming — WS 97/98

Sequencing

run
pr[*hello ";
pr["world\n"];
skip

translates to:

run
let new r in
pr!["hello " r]
| (?[]>
let new r in
pri[*world\n",r]
| (r?[] > skip)
end)
end

Universitat Bern

247.

The pi Calculus

Concurrent programming — WS 97/98 248.

A Concurrent Queue

nextl}

get![r] rl[value]

The head accepts a get request to yield its l link!next”
value and trigger the next cell.

A cell waits to be triggered by the head, and
then itself becomes the head of the queue.

The tail services put requests by rval W
constructing a new cell that waits for the put![value,r] :
next trigger from the cell in front of it.

TifkInext’

Universitét Bern The pi Calculus

Concurrent programming — WS 97/98 249.

Implementing the Concurrent Queue

new get, put deftail []>
let new link, init in
link!init
def head[value, next] > | (put?*[value,r] >
get?[r] > rlvalue | next![] link?ready >

let new next in

I
def cell[value, ready, next] > cellifvalue,ready,next]

ready?[] > head![value, next] I Irllr[“;!neXt
end)
| init][]
run end
let new r in
taill[]

| (put['one"]; put['good"]; put[‘turn"]; put['deserves"];
put["another"]; skip)
| getlr]
| getlr]
| get![r]
| get![r]
| get![r]
| (r ?* s> printls)
end

Universitét Bern The pi Calculus

Concurrent programming — WS 97/98 250.

12. JPict - the pi-Calculus in Java

Overview
[1 Motivation

The Model: Agents, Channels, and Values
PiL: Forms

Extensible Boolean in PiL

Some optimization

Concurrent Queue in PIL

ToDo...

OO 0O O o

Universitét Bern JPict - the pi-Calculus in Java

Concurrent programming — WS 97/98

Motivation

[]

[]
[]
[]

251.

The pi-calculus as a model for composition: A | B

Implement pi-Model using Java-threads
A real application of threads
Notion of channels is extensible:

[1 internal communication
[J user interaction
[1 distributed communication: sockets

Glue environment: A biotop for agents

[1 E.g. Agents can listen on http-connections

Universitat Bern

JPict - the pi-Calculus in Java

Concurrent programming — WS 97/98 252,

The Architecture

Active elements (agents) are threads, that communicate by exchanging passive data
(values) along channels.

1. Parallel Agents: A|B
2. Restricted Agent: new x A
3. Sender X!y
4. Receiver X?y>A
5. Replicated Receiver X?2*y>A
[0 a Java-thread executes an agent.
[replicated and parallel agents start new threads
[each agent or thread needs its own Environment, modelling the mapping

from identifiers to values.

Universitét Bern JPict - the pi-Calculus in Java

Concurrent programming — WS 97/98 253.

Synchronization

Synchronization is achieved by channels. A channel has put() and get() methods:

public class Channel {
protected Vector queue;

public synchronized Object get() {
while (queue.size() == 0) {
try { wait(); } catch (InterruptedException e) {} }
Object v = queue.firstElement();
gueue.removeElementAt(0);
returnv; // return head of queue

}

public synchronized void put(Object val) {
gueue.addElement(val); // add to tail of queue

notify();

[0 What happens, if notifyall() would be used instead of notify()

Here, we implement channels as FIFO-Buffers. We could also return a randomly chosen
element from the queue in get()

Universitét Bern JPict - the pi-Calculus in Java

Concurrent programming — WS 97/98 254,

Running Agents

A running agent needs a program (an agent) and an environment (instance Env). What
are the synchronization issues?

[0 Agentis immutable (read only)

[0 Environment is written. We have to give each (new) thread a copy of the
Environment.

public class Running implements Runnable {
protected Agent p_ = null;
protected Env e_ = null;
public Running(Agent p, Env e) {
Thread t = new Thread(this);
P_=p;€_=¢
t.start();
}
public void run() {
Running r = this;
while (r '= null)
r=r.p_.iter(r);

Universitét Bern JPict - the pi-Calculus in Java

Concurrent programming — WS 97/98 255,

Example: replicated Reader

public abstract class Agent {
public abstract Running iter(Running r) throws Exception;
// run an arbitrary Agent (from outside)
public void run(Env e) {
Running r = new Running(this, e);

}
}

public class RepAgent {

protected ldentToken chan_;

protected ldentToken pattern_:

protected Agent next_;

public Running iter(Running r) {
/Il get the channel
Channel t = (Channel)r.getEnv().valueOfld(chan_);
/I get the Object
Object v = t.get(r);
run((Env)r.getenv().clone());// start replicated Agent
r.getEnv().bind(pattern_, v);// bind Value to Pattern__
r.setA(next), /Il set next Agent
return r;

}
0 What would happen, ifrun() would be before t.get(r)

Universitét Bern JPict - the pi-Calculus in Java

Concurrent programming — WS 97/98 256.

No one Is an island

We need agents to be able to communicate values with the rest of the world: extern
channels are channels, where one part of the communicator is not an agent but (for
example) an ordinary Java-Method:

public interface Extern {
public void run(Obiject v) throws Exception;

}

public class Print implements Extern {
public void run(Object v) {
System.out.printin(v);

}
}

public class ExtChannel extends StdChannel {
protected final String theclass_;
public synchronized void put(Object val) throws Exception {
/l load Class theclass
Class dest = Class.forName(theclass);
/] create a new Instance
Object o0 = dest.newlInstance();
// invoke this Instance
((Extern)o).run(val);

Universitét Bern JPict - the pi-Calculus in Java

Concurrent programming — WS 97/98 257.

Environment
We can implement the environment as an ordinary Java Hashtable, which must be
cloned. (Unfortunately. java.utils.Hashtable IS not cloneable) This is reasonable

to get a first running version. But it is tedious slow.

There are two situations, when the environment must be cloned:
[1 Parallel Composition A | B
[Replicated Reading a ?* x> A

A look at the theory:
{new x A} | B=new x {A | B} x I fv(B)

this means, that A | B can share the same environment, as long as they use distinct
variables. This is easy, since variables are renamed by a-conversion. But we cannot
move new across replicated agents:

a?*z>{newx Al |alb|la!c—> a?*znew x A| new x A| new x A

Universitét Bern JPict - the pi-Calculus in Java

Concurrent programming — WS 97/98 258.

Environment Il

Using a-renaming, we can derive that each Identifier is only bound once (before all
reads) for a environment. We can model the environment as a tree, where value lookup
start at the leaves:

[1 no need to clone the environment for a

new XA - newXxA parallel agent

\ '| 0 no need to copy anything when

\ V replicating an agent.

Z. Z. [1 lookup length is calculated in advance

M [0 Performance is factors faster, but

C. implementation needed some thought
y
b.
y
a.

Universitét Bern JPict - the pi-Calculus in Java

Concurrent programming — WS 97/98

Package jpict

a hierarchy of agents:
java.lang.Object

|
+----jpict.Agent

|
+----jpict.ChaAgent

| |
| +----jpict. ExtAgent

|
+----jpict.ParAgent

I
+----jpict.LocatedAgent

|
+----jpict.SndAgent

|
+----jpict.RecAgent

I
+----jpict.RepAgent

Universitat Bern

2509.

Lexer, Parser 8 Classes
Syntax Tree 15 Classes
Agents 11 Classes
Runtime 7 Classes
Exceptions 3 Classes

approx. 8'000 LOC (incl. comments)

JPict - the pi-Calculus in Java

Concurrent programming — WS 97/98 260.

Values
[1 What kind of values are exchanged via Channels
Name Values
MonadicTecalculus Channels
Polyadicrecalculus Tupels

HOP-Calculi Agents / Abstractions
TiL Forms

Translations exists between (some of) these different r=Versions. In JPict, we can send
and receive Objects along Channel s.

Universitét Bern JPict - the pi-Calculus in Java

Concurrent programming — WS 97/98 261.

PiL - Forms

Forms are partial mappings from labels to channels (or Numbers, Strings). Forms can be
extended yielding a new form, and projected against a label returning a channel.

y<reply =a> A new form, y extended with a binding for label reply

y.reply Denotes the value, bound by reply in formy

Forms behave much like the environments above. They are extended once, but read
several times concurrently:

fl x<reply=b>| f! x<reply=c>| ?* y> y.reply! <>

Universitét Bern JPict - the pi-Calculus in Java

Concurrent programming — WS 97/98

Implementing Forms

262.

This implementation yields immutable forms. We can forget about synchronization and

sharing...

public class Form {
private final Form prev_;// the predecessor Form (null for the empty Form)
private final Object label_; // label of what | am extended from
private final Object ch_; // Object bound by label

public Form() { prev_ = null; label_ = null; ch_ = null; }
private Form(Form prev, Object label, Object ch) {
prev_ = prev; label_=label; ch_ = ch;
}
public Object project(Object label) {
if (label.equals(label)) return ch_;
else if (prev_ = null) return prev_.project(label);
else return null; /* since we are the empty Form */

}

public Form extend(Object label, Object name) {
return new Form(this, label, name);

}
}
0 How would you implement mutable (extensible) Forms

Universitat Bern

JPict - the pi-Calculus in Java

Concurrent programming — WS 97/98 263.

Modelling Boolean in PIL

A boolean is a modelled by a form, with labels true and false

This agent receives a boolean and sends the empty form along the true channel of it. It
sets the boolean to true:

b?X>X.true! <>
The True agent waits to get a channel b, which he can instantiate to true:
True ?* b > b.val ? X > X.true ! <>

An agent, testing a boolean b: But you can’t send Strings along
new truecase new falsecase Channels. The Translator reads:
run { truecase ?* _ > print ! "it's true” } print ! <val = “it’s true”>

run { falsecase ?* _ > print ! “it's false” }
run {b ! <true = truecase><false = falsecase>}
True!b

This agent swaps true and false
Not ?* a > a.out ? X > a.in | X<true = X.false><false = X.true>

Not True:

... new ¢ { Not ! <in = c><out = b> | True ! ¢}

Universitét Bern JPict - the pi-Calculus in Java

Concurrent programming — WS 97/98 264.

Extending the Boolean

A tree values logic has: true, false, unknown. not unknown = unknown.

We can reuse the encoding from the previous encoding. We only add a case for
unknown:

Unknown ?* b > b.val ? X > X.unknown ! <>

and recode the test agent:

run {
new truecase new falsecase new unknowncase
run { truecase ?* _ > print ! "it's still true" }
run { falsecase ?* _ > print ! "it's still false" }
run { unknowncase ?* _ > print ! "it's unknown" }

/| create the boolean channel
new b
new c

b ! <true = truecase><false = falsecase><unknown = unknowncase>
| Not ! <in = c><out = b>
| Unknown! c

[1 If we encoded Not as
Not ?* a > a.out ? X > a.in ! <true = X.false><false = X.true>
what would change?

Universitét Bern JPict - the pi-Calculus in Java

Concurrent programming — WS 97/98 265.

Towards a programming language...

Often, we like to send an agent abstraction along a channel, where the receiver of the
abstraction can invoke it:

This is an abstraction: when it receives a form a, it sends along print the value of
a.val

\a > print ! a.val

new x
run {

x '\a > print ! a.val

x ? f>f!<val ="A String”>

}

But, we can’t send abstractions. We can only send the location of an abstraction. The
location is the channel, at which the agent listens:
new X
run {
run{newfx!f|f?*a>print!a.val}
x ?f>f!<val ="A String”>

}

0 Why is it necessary to use a replicated Agent at f?

Universitét Bern JPict - the pi-Calculus in Java

Concurrent programming — WS 97/98 266.

Functions, Assignment...

[0 Instead of communicating complex things we communicate
(restricted) channels giving access to the thing.

Syntax Mapped to
: : newfr! <val=f>|f
|
Sending an Abstraction !r\x > A oty > A
Function \x. E \x > x.reply ' E
Send the Result Ir f(x) fl x<reply =r>
Assignment letx= E;Alnewrrl E[r?x>A

If X, fetc. is a form, we cannot send something along it. Write therefore x.val! E
instead of x! E.

Universitét Bern JPict - the pi-Calculus in Java

Concurrent programming — WS 97/98 267.

Example

extern "extern.Concat" ++
extern "extern.StdOut" pr
extern "extern.Subtraction"” -
extern "extern.Smaller" It
extern "extern.Addition" +

def fib x > if (x It 3)
then x.reply ! 1
else x.reply ! fib(x - 2) + (fib(x - 1));

let result := fib(8);
pr(“It's " ++ result);

Prints out: It's 21

Although the code is purely sequential, the translation creates agents that wait on some
channels, create new agents, and finally send something along another channel.

Some statistics: approx.: 800 ms
287 threads
[We should try to optimize this...

Universitét Bern JPict - the pi-Calculus in Java

Concurrent programming — WS 97/98 268.

Java-Threads and Pi-Process

al x|a?y>B
Reader executes get() on channel a -> thread blocks
Java thread context switch
Sender executed put() -> notify of Reader
Java thread context switch
Reader receives value x and continues

|ldea: reader stores his Running on the channel when getting a value and the channel
IS empty. The sender then returns this Running instance after put() , which is the
natural continuation.

[0 channel is more complex
[1 No wait(), notify() needed in channel
I Fib(8) in 600 ms, but still as many threads

But we still have a lot of threads...

Universitat Bern

JPict - the pi-Calculus in Java

Concurrent programming — WS 97/98 269.

Java-Threads and Pi-Process |l

The translation of higher order expression often contains a pattern like
newrA|r?x>B

where A is an Agent sending a form along the reply channel r, and B is an agent doing
something with the form received from r. Executing Aand r ? x> Bin two threads is a
waste, since the reader cannot proceed until A has really sent something along r.

ldea:

— iter() the reader agent. This just performs one get() on the (empty)
channel

— then execute agent A.

So, instead of instantiating a parallel agent, we use a sequential agent, that does not start
a new thread forr ? x> B

[0 needs a subclass of a parallel agent
O Fib(8) now in 400 ms, with 2 threads

Universitét Bern JPict - the pi-Calculus in Java

Concurrent programming — WS 97/98

Concurrent Queue In Pil

new get new put
def head x > {get ? y > {y ! <val = x> | X.next I<>}};
def cell x > x.ready ? _ > head ! <val = x><next = x.next>;

def tail _ > {
new link new init run {link ! init}
put ?* x > {
link ? ready > {

new next
cell ! x<ready = ready><next = next>
| link ! next
| x.reply ! <>}

}
| init | <>
%
run {
new r
tail | <>
| {put("one"); put("good"); put(“turn”); put("deserves"); put("another");{}}
|get!r|get!r|get!r|get!r|get!r
| r 2* x > print I X

Uses 50 threads

Universitat Bern

270.

JPict - the pi-Calculus in Java

Concurrent programming — WS 97/98 271.

Interested?

[1 Visualizing agents

using Java-GUI/Applet technigues to see the agents at
work

[1 Debugging (visually) running agents

[1 Using agents to script WWW-Servers
viewing http-demons as agents that wait for some forms
and return Information. Then build up an agent that
communicates with these...

Universitét Bern JPict - the pi-Calculus in Java

	7066 Concurrent Programming
	Table of Contents
	1. Concurrent Programming 1
	2. Safety 21
	3. State-dependent Action 40
	4. Asynchronous Methods 61
	5. Fine-grained Synchronization 80
	6. Architectural Styles for Concurrency 103
	7. Coordination Models and Languages 126
	8. Coordination Components in Java 154
	9. Object-Based Concurrency 175
	10. Petri Nets 199
	11. The pi Calculus 220
	12. JPict - the pi-Calculus in Java 250

	1. Concurrent Programming
	Schedule
	Overview
	Concurrency and Parallelism
	Applications of Concurrency
	Limitations
	Atomicity
	Safety and Liveness
	Idioms, Patterns and Architectural Styles
	Java
	Threads
	Running the TwoThreadsTest
	java.lang.Thread
	Transitions between Thread States
	java.lang.Runnable
	Creating Threads
	Synchronization
	wait and notify
	java.lang.Object
	Summary

	2. Safety
	Safety problems
	Immutable classes
	Immutability variants
	Immutable classes — design steps
	Fully Synchronized Objects
	Fully Synchronization — design steps
	Example: a BalkingBoundedCounter
	Example: an ExpandableArray
	Bundling Atomicity
	Inner classes
	Partial Synchronization
	Example: LinkedCells
	Containment
	Contained Objects — design steps
	Managed Ownership
	A minimal transfer protocol class
	Summary

	3. State-dependent Action
	Liveness Problems
	Achieving Liveness
	The Dining Philosophers Problem
	Dining Philosophers, Safety and Liveness
	Dining Philosopher Solutions
	Fairness
	Guarded Methods
	Guarded Methods — design steps
	Separate interface from policy
	Check guard conditions
	Handle interrupts
	Signal state changes
	Structure notifications
	Encapsulating assignment
	Tracking State
	Tracking State Variables
	Delegating notifications
	Delegating notifications ...
	Using template methods
	Summary

	4. Asynchronous Methods
	Asynchronous Invocations
	Asynchronous Invocations — form
	Asynchronous Invocations — design steps
	Simple Relays
	Direct invocations
	Thread-based massages
	Thread-per-message Gateways
	Command-based messages
	Tail calls
	Tail calls with new threads
	Early Reply
	Simulating Early Reply
	A One-Slot Buffer
	Early Reply in Java
	Futures
	A Future Class
	Using Futures in Java
	Summary

	5. Fine-grained Synchronization
	Condition Objects
	A Simple Condition Object
	The Nested Monitor problem
	Solving the Nested Monitors problem
	Example solution
	Permits and Semaphores
	Permits and Semaphores — design steps
	Variants
	Concurrently Available Methods
	Concurrent Methods — design steps
	Priority
	Interception
	Concurrent Reader and Writers
	Readers and Writers example
	Optimistic Methods
	Optimistic Methods — design steps
	Detect failure ...
	Handle conflicts ...
	Ensure progress ...
	An optimistic Bounded Counter
	Summary

	6. Architectural Styles for Concurrency
	Software Architecture
	Architectural style
	Communication Styles
	Simulated Message-Passing
	Three-layered Application Architectures
	Problems with Layered Designs
	Flow Architectures
	Flow Stages
	Flow Policies
	Limiting Flow
	Example: a Pull-based Prime Sieve
	Using Put-Take Buffers
	Pull-based integer sources
	A Put-Take Buffer
	The ActivePrime Class
	ActivePrime ...
	Blackboard Architectures
	Result Parallelism
	Agenda Parallelism
	Specialist Parallelism
	Summary

	7. Coordination Models and Languages
	Coordinated Systems
	Why they may need to coordinate actions?
	What is Coordination?
	Coordination Language and Model
	Model vs. Language
	Coordination Models
	Coordination Language and Model
	Programming Model
	Linda Coordination Model
	LInda Operations
	Examples
	Example: Fibonacci
	JavaSpace- (Java + Linda)
	Multiset Rewriting-The Gamma Model
	Examples:
	Object Oriented Coordination Languages
	FLO/C
	Example:
	ATOM
	Example: Per-Object Synchronization
	Example: Inter-Object Coordination
	SCG Coordination Research

	8. Coordination Components in Java
	Coordination for Open Distributed Systems
	Approach: Coordination Components
	Network communication
	A design for the multicast solution
	The Connection components
	The LineReader in Java
	Synchronization: Shared Resource
	Requirements for scheduling policy
	Scheduling Policy Design
	Explicit Commands
	Explicit Policies
	The Configuration Object
	The adapted readers/writer policy
	Composing abstractions: distributed access
	A design for a distributed shared resource
	An Adapter in Java
	Distributed transactions
	Transactions in a nutshell
	a design for distributed transactions

	9. Object-Based Concurrency
	What is an OBCL?
	Overview of OBCLs
	Requirements for OBCLs
	Expression of Concurrency
	Objects and Processes
	Passive Object Models�
	Active/Passive Models
	Active Object Models
	Granularity of Concurrency
	Sequential Objects
	Quasi-Concurrent Objects
	Concurrent Objects
	Process Creation
	Asynchronous Objects
	Asynchronous Invocation
	Futures
	Communication and Synchronization
	Local Delays
	Local Delays
	Transactions
	Classifying OBCLs
	Evaluation
	Summary

	10. Petri Nets
	Petri nets: a definition
	Firing transitions
	Modelling with Petri nets
	Concurrency
	Conflict
	Mutual Exclusion
	Fork and Join
	Producers and Consumers
	Bounded Buffers
	Properties
	Liveness and Boundedness
	Related Models
	Computational Power
	Applications of Petri nets
	Implementing Petri nets
	Centralized schemes
	Decentralized schemes
	Transactions
	Coordinated interaction
	Summary

	11. The pi Calculus
	Introduction
	Basic ideas
	Simple examples
	The polyadic pi calculus
	Church’s encoding of boolean in pi
	Observable equivalence
	Observable equivalence II
	Process typing
	A simplification - polyadic mini pi-calculus
	Objects in the pi-calculus
	A basic object model in the pi calculus
	The pL-calculus
	PICT
	Abstract Syntax of (Untyped) Core PICT
	Binding Channels
	Typed Channels
	Synchrony and Asynchrony
	Synchronizing Concurrent Clients
	Modelling Booleans
	Modelling Language Constructs
	Natural Numbers
	Counting
	Arithmetic
	Functional Notation
	Functions as Processes
	Functions as Processes
	Sequencing
	A Concurrent Queue
	Implementing the Concurrent Queue

	12. JPict - the pi-Calculus in Java
	Motivation
	The Architecture
	Synchronization
	Running Agents
	Example: replicated Reader
	No one is an island
	Environment
	Environment II
	Package jpict
	Values
	PiL - Forms
	Implementing Forms
	Modelling Boolean in PiL
	Extending the Boolean
	Towards a programming language...
	Functions, Assignment...
	Example
	Java-Threads and Pi-Process
	Java-Threads and Pi-Process II
	Concurrent Queue in Pil
	Interested?

