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niversität Bern

1. Concurrent Programming

Lecturer: Prof. Oscar Nierstrasz
Schützenmattstr. 14/103, Tel. 631.4618,

Assistants: Dr. Markus Lumpe, Franz Achermann
WWW: www.iam.unibe.ch/~scg/Lectures

Text:
❑ D. Lea, Concurrent Programming in Java: Design

Addison-Wesley, 1996
Other Sources:

❑ D. Lea, Online Supplement to Concurrent Program
http://gee.cs.oswego.edu/dl/cpj/inde

❑ N. Carriero, D. Gelernter, How to Write Parallel Pr
Press, Cambridge, 1990. 

❑ A. Burns, G. Davies, Concurrent Programming, A
❑ J. Magee, J. Kramer, Concurrency: State Models &
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rrent components
niversität Bern

Schedule

1. 01.11 Introduction — Concurrency and Java
2. 08.11 Safety
3. 15.11 Liveness
4. 22.11 Lab session
5. 29.11 Asynchronous Methods
6. 06.12 Fine-grained Synchronization
7. 13.12 Lab session
8. 20.12 Architectural Styles for Concurrency
9. 10.01 Concurrent Programming Approaches
10. 17.01 Petri Nets
11. 24.01 Pi Calculus (I)
12. 31.01 Pi Calculus (II)
13. 07.02 Piccola — a language for scripting concu
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niversität Bern

Introduction

Overview
❑ Concurrency and Parallelism
❑ Applications of Concurrency
❑ Limitations

☞ safety, liveness, non-determinism ...
❑ Approach

☞ idioms, patterns and architectural styles
❑ Java and concurrency
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t of statements; its execution 

grams that may be executed 

r more processors
its own processor
ry
its own processor
k to others

s.
niversität Bern

Concurrency and Parallelism

“A sequential program specifies sequential execution of a lis
is called a process. 

A concurrent program specifies two or more sequential pro
concurrently as parallel processes.”

A concurrent program can be executed by:
1. Multiprogramming: processes share one o
2. Multiprocessing: each process runs on 

but with shared memo
3. Distributed processing: each process runs on 

connected by a networ

Assume only that all processes make positive finite progres
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s:

ut

exploit parallel algorithms
niversität Bern

Applications of Concurrency

There are many good reasons to build concurrent program

❑ Reactive programming
☞ minimize response delay; maximize throughp

❑ Real-time programming
☞ process control applications

❑ Simulation
☞ modelling real-world concurrency

❑ Parallelism
☞ exploit multiple CPUs for number-crunching; 

❑ Distribution
☞ coordinate distributed services
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aintain consistency

tee progress

end on “race conditions”

x than a method call

nchronization take time
niversität Bern

Limitations

But concurrent applications introduce complexity:

❑ Safety
☞ synchronization mechanisms are needed to m

❑ Liveness
☞ special techniques may be needed to guaran

❑ Non-determinism
☞ debugging is harder because results may dep

❑ Communication complexity
☞ communicating with a thread is more comple

❑ Run-time overhead
☞ thread construction, context switching and sy
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ssible interleavings of 

ection are treated atomically.
niversität Bern

Atomicity

Programs P1 and P2 execute concurrently:

{ x = 0 }
P1: x := x+1
P2: x := x+2

{ x = ? }

What are possible values of x after P1 and P2 complete?
What is the intended final value of x?

Synchronization mechanisms are needed to restrict the po
processes so that sets of actions can be seen as atomic.
Mutual exclusion ensures that statements within a critical s
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ress:

cified?

?

niversität Bern

Expressing Concurrency

Notations for expressing concurrent computation must add

1. Process Creation:how is concurrent execution spe

2. Communication: how do processes communicate

3. Synchronization: how is consistency maintained?
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nt programs:

e updated atomically
need to be delayed if shared 
., read from empty buffer)

cess a shared resource
 access shared resources
niversität Bern

Safety and Liveness

There are two principal difficulties in implementing concurre

Safety — ensuring consistency: 
☞ Mutual exclusion — shared resources must b
☞ Condition synchronization — operations may 

resources are not in an appropriate state (e.g

i.e., “Nothing bad happens”

Liveness — ensuring progress: 
☞ No Deadlock — some process can always ac
☞ No Starvation — all processes can eventually

i.e., “Something good happens”
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ral Styles

tice in resolving common 

ming language”
 technique”

unicating components that 
 particular context”

hema for software systems”

Architecture, pp. 12-14
niversität Bern

Idioms, Patterns and Architectu

Idioms, patterns and architectural styles express best prac
design problems.

❑ Idioms
➪ “a low-level pattern specific to a program

— or more generally: “an implementation

❑ Design patterns
➪ “a commonly-recurring structure of comm

solves a general design problem within a

❑ Architectural patterns (styles)
➪ “a fundamental structural organization sc

— cf. Buschmann et al., Pattern-Oriented Software 
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+, Smalltalk ...):
nguage

, concurrency, network
tract machine

ects

d by users
niversität Bern

Java

Language design influenced by existing OO languages (C+
❑ Strongly-typed, concurrent, pure object-oriented la
❑ Syntax, type model influenced by C++
❑ Single-inheritance but multiple subtyping
❑ Garbage collection

Innovation in support for network applications:
❑ Standard API for language features, basic GUI, IO
❑ Compiled to bytecode; interpreted by portable abs
❑ Support for native methods
❑ Classes can be dynamically loaded over network
❑ Security model protects clients from malicious obj

Java applications do not have to be installed and maintaine
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l Thread constructor

t the thread does

me());

));
 }

e());
niversität Bern

Threads

A Java Thread has a run method defining its behaviour:

class SimpleThread extends Thread {
public SimpleThread(String str) {

super(str); // Cal
}
public void run() { // Wha

for (int i = 0; i < 10; i++) {
System.out.println(i + " " + getNa
try {

sleep((int)(Math.random() * 1000
} catch (InterruptedException e) {

}
System.out.println("DONE! " + getNam

}
}
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d when the Thread is started:

) {
it:
niversität Bern

Threads ...

A Thread’s run method is never called directly but is execute

class TwoThreadsTest {
public static void main (String[] args

// Instantiate a Thread, then start 
new SimpleThread("Jamaica").start();
new SimpleThread("Fiji").start();

}
}
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f Java, the execution 
rleaved.

r all implementations!

 lines never garbled?
niversität Bern

Running the TwoThreadsTest
0 Jamaica
0 Fiji
1 Jamaica
1 Fiji
2 Jamaica
2 Fiji
3 Jamaica
3 Fiji
4 Jamaica
4 Fiji
5 Jamaica
6 Jamaica
5 Fiji
6 Fiji
7 Fiji
7 Jamaica
8 Jamaica
9 Jamaica
8 Fiji
DONE! Jamaica
9 Fiji
DONE! Fiji

In this implementation o
of the two threads is inte

This is not guaranteed fo

✎ Why are the output

E.g.
00 JaFimajicai
...
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running threads of control:

va.lang.Runnable

name);

erruptedException;
niversität Bern

java.lang.Thread
The Thread class encapsulates all information concerning 

public class java.lang.Thread
extends java.lang.Object implements ja

{
public Thread();
public Thread(Runnable target);
public Thread(Runnable target, String 
public Thread(String name);

...
public static void sleep(long millis)

throws Int
public static void yield();

...
public final String getName();
public void run();
public synchronized void start();

...
}
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tes

run() exits

psed
or notifyAll()
pleted
niversität Bern

Transitions between Thread Sta

Thread

Not Runnable

Runnable
start()

yield()

sleep()
wait()

block on I/O

time ela
notify() 
I/O com
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 to inherit from both Thread 
let).

nts the Runnable interface, 
lass as a parameter:
niversität Bern

java.lang.Runnable

Since multiple inheritance is not supported, it is not possible
and from another class providing useful behaviour (like App

In these cases it is sufficient to define a class that impleme
and to call the Thread constructor with an instance of that c

public interface java.lang.Runnable
{

public abstract void run();
}
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n Thread:

.Applet

ock");
n thread
niversität Bern

Creating Threads

A Clock object updates the time as an Applet with its ow

import java.awt.Graphics;
import java.util.Date;
public class Clock extends java.applet

implements Runnable
{

Thread clockThread = null;
public void start() {

if (clockThread == null) {
clockThread = new Thread(this, "Cl

// NB: creates its ow
clockThread.start();

}
}
...
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t to null in stop()
ckThread) {

now.getMinutes()
), 5, 10);

l; }
niversität Bern

Creating Threads ...

...
public void run() {

// terminates when clockThread is se
while (Thread.currentThread() == clo

repaint();
try { clockThread.sleep(1000); }
catch (InterruptedException e){ }

}
}
public void paint(Graphics g) {

Date now = new Date();
g.drawString(now.getHours() + ":" + 

+ ":" + now.getSeconds(
}
public void stop() { clockThread = nul

}



Concurrent Programming 20.

U Concurrent Programming

y run at any time within the 

variant holds

od will ensure its post-

ction which locks access to 

locking access!
niversität Bern

Synchronization

Without synchronization, an arbitrary number of threads ma
methods of an object.

➪ Methods cannot assume that the class in
(since another method may be running)

➪ There is no way to guarantee that a meth
condition

A simple solution is to consider a method to be a critical se
the object while it is running.

This works as long as methods cooperate in locking and un
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d with other synchronized 

utputStream {

g s);
c);

 with respect to some object:

ce before using it
niversität Bern

Synchronization ...

One can either declare an entire method to be synchronize
methods of an object:

public class PrintStream extends FilterO
...
public synchronized void println(Strin
public synchronized void println(char 
...

}

or an individual block within a method may be synchronized

synchronized (resource) { // Lock resour
...

}
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 suitable state:
e-slot buffer
ially null
contents,
here is room
rwise wait

 up waiting consumer

rn contents,

vailable
rwise wait

 up waiting producer
niversität Bern

wait and notify
Sometimes threads must be delayed until a resource is in a
class Slot { // a on

private Object slotVal_; // init
public synchronized void put(Object val) { // put 

while (slotVal_ != null) { // if t
try { wait(); } // othe
catch (InterruptedException e) { }

}
slotVal_ = val;
notifyAll(); // wake
return;

}
public synchronized Object get() { // retu

Object rval;
while (slotVal_ == null) { // if a

try { wait(); } // othe
catch (InterruptedException e) { }

}
rval = slotVal_;
slotVal_ = null;
notifyAll(); // wake
return rval;

}
}
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ods rather than keywords:

uptedException;

ruptedException;
nt nanos)
ruptedException;
niversität Bern

java.lang.Object

Unlike synchronized, wait() and notify() are meth

public class java.lang.Object
{

...
public final void wait() throws Interr

public final void wait(long timeout)
throws Inter

public final void wait(long timeout, i
throws Inter

public final void notify();
public final void notifyAll();
...

}
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 “parallelism”?
ramming?
 sequential ones?

 change state?
onized?

ivalent sequential one? 

n?
nchronized method or block?
n methods?
niversität Bern

Summary

You Should Know The Answers To These Questions:
❑ What is the distinction between “concurrency” and
❑ What are classical applications of concurrent prog
❑ Why are concurrent programs more complex than
❑ What are “safety” and “liveness”? Give examples.
❑ How do you create a new thread in Java?
❑ What states can a Java thread be in? How does it
❑ When should you declare a method to be synchr

Can You Answer The Following Questions?
✎ What is an example of a “race condition”?
✎ When will a concurrent program run faster than an equ

When will it be slower?
✎ What is the difference between deadlock and starvatio
✎ What happens if you call wait or notify outside a sy
✎ When is it better to use synchronized blocks rather tha
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ges
niversität Bern

2. Safety

Overview
❑ Immutability:

☞ avoid safety problems by avoiding state chan

❑ Full Synchronization:
☞ dynamically ensure exclusive access

❑ Partial Synchronization:
☞ restrict synchronization to “critical sections”

❑ Containment:
☞ structurally ensure exclusive access
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nt state
sentation) invariants

ormally each method may 
ssume the class invariant 
olds when it starts, (i.e., that 
e object is in a consistent 

tate) and it must ensure it 
hen it is done.

 methods interleave 
rbitrarily, an inconsistent 
tate may be accessed, and 
e object may be left in a 
irty” state.
niversität Bern

Safety problems

Objects must only be accessed when they are in a consiste
☞ methods must maintain class (state and repre

m1

m2

m3

m4

m5

incoming requests

methods

abstract states
N
a
h
th
s
w

If
a
s
th
“d

?!
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r creation.

Integer) and strings 

 immutable versions

value
resent the same value
niversität Bern

Immutable classes

Intent
Bypass safety issues by not changing an object’s state afte

Applicability
❑ When objects represent values of simple ADTs 

☞ colours (java.awt.Color), numbers (java.lang.
(java.lang.String)

❑ When classes can be separated into mutable and
☞ java.lang.String vs. java.lang.StringBuffer

❑ When updating by copying is cheap
☞ “hello” + “ ” + “world” → “hello world”

❑ When multiple instances can represent the same 
☞ i.e., two distinct copies of the integer 712 rep
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do not need to be 
 static)
 the method

ted needs no synchronization

ase
hreads only after hardening
niversität Bern

Immutability variants

Variants
❑ Stateless methods

☞ methods that do not access an object’s state 
synchronized (such methods can be declared

☞ any temporary state should be purely local to

❑ Stateless objects
☞ an object whose “state” is dynamically compu

❑ “Hardening”
☞ object becomes immutable after a mutable ph
☞ be sure that object is exposed to concurrent t
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eps

ver changed after 

some Server class

must be initialized 
uctors
niversität Bern

Immutable classes — design st

❑ Declare a class with instance variables that are ne
construction.

class Relay { // a helper for 
private final Server server_;

Relay(Server s) { // blank finals 
server_ = s; // in all constr

}

void doIt() { 
server_.doIt();

}
}
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ta abstraction (such as 
nd Object.hashCode.

ts of this class. 

nization or other techniques 
niversität Bern

Design steps ...

❑ Especially if the class represents an immutable da
String), consider overriding Object.equals a

❑ Consider writing methods that generate new objec
(e.g., String concatenation)

❑ Consider declaring the class as final. 

❑ If only some variables are immutable, use synchro
for the methods that are not stateless. 
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most one method will run at 

ite/write conflicts, regardless 

etries, or infinite loops.
ign in which other objects 

ample, by:
niversität Bern

Fully Synchronized Objects

Intent
Maintain consistency by fully synchronizing all methods.At 
any point in time.

Applicability
❑ You want to eliminate all possible read/write and wr

of the context in which it the object is used. 
❑ All methods can run to completion without waits, r
❑ You do not need to use instances in a layered des

control synchronization of this class.
❑ You can avoid or deal with liveness failures, for ex

☞ Exploiting partial immutability 
☞ Removing synchronization for accessors. 
☞ Removing synchronization in invocations. 
☞ Arranging per-method concurrency. 
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teps

 public instance variables; 
 variables).

nized in Java. Use a 
ses this to multiple threads.

 either do so via static 
the form 
 

niversität Bern

Full Synchronization — design s

❑ Declare all methods as synchronized

☞ Do not allow any direct access to state (i.e, no
no methods that return references to instance

☞ Constructors cannot be marked as synchro
synchronized block in case a constructor pas

☞ Methods that access static variables must
synchronized methods or within blocks of 
synchronized(getClass()) { ... }.



Concurrent Programming 33.

U Safety

e object in a consistent state, 

ompletion. State-dependent 

onditions fail

e.g., just on the arguments), 
de!

ts can check conditions 
niversität Bern

Design steps ...

❑ Ensure that every public method exits leaving th
even if it exits via an exception.

❑ Keep methods short so they can atomically run to c
actions must rely on balking:

☞ Return failure (i.e., exception) to client if prec

☞ If the precondition does not depend on state (
then no need to run check in synchronized co

☞ Provide public accessor methods so that clien
before making request!
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unter

is raised:

.MIN;
urn count_; }

();

.. }

t fully synchronized?
niversität Bern

Example: a BalkingBoundedCo
A Bounded Counter holds a value between MIN and MAX.
If the preconditions for inc() or dec() fail, an exception 

public class BalkingBoundedCounter {
protected long count_ = BoundedCounter
public synchronized long value() { ret
public synchronized void inc()

throws CannotIncrementException {
if (count_ >= BoundedCounter.MAX) 

throw new CannotIncrementException
else 

++count_;
}
public synchronized void dec() ... { .

}

✎ What safety problems would arise if this class were no



Concurrent Programming 35.

U Safety

ctor:

 elements
 number of slots used

erve some space

n size_; }
/ array indexing

;

niversität Bern

Example: an ExpandableArray
This Expandable Array is a simplified variant of java.util.Ve

import java.util.NoSuchElementException;
public class ExpandableArray {

private Object[] data_; // the
private int size_; // the
public ExpandableArray(int cap) {

data_ = new Object[cap]; // res
size_ = 0;

}
public synchronized int size() { retur
public synchronized Object at(int i) /

throws NoSuchElementException {
if (i < 0 || i >= size_ ) 

throw new NoSuchElementException()
else

return data_[i];
}
...
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 x) { // add at end
need a bigger array
so increase ~50%
 / 2];

;

ynchronized?
niversität Bern

Example ...
public synchronized void append(Object

if (size_ >= data_.length) { // 
Object[] olddata = data_; // 
data_ = new Object[3 * (size_ + 1)
for (int i = 0; i < size_; ++i) 

data_[i] = olddata[i];
}
data_[size_++] = x;

}
public synchronized void removeLast() 

throws NoSuchElementException {
if (size_ == 0) 

throw new NoSuchElementException()
else

data_[--size_] = null;
}

}

✎ What could happen if any of these methods were not s
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rm frequently desired 
hat clients do not need to 

peration to an object

xpandableArray {
per(cap); }
ocedure p) {

 have been protected!

ntroduce?
niversität Bern

Bundling Atomicity

❑ Consider adding synchronized methods that perfo
sequences of actions as single atomic action, so t
impose extra synchronization or control. 

public interface Procedure { // apply an o
public void apply(Object x);

}

public class ExpandableArrayV2 extends E
public ExpandableArrayV2(int cap) { su
public synchronized void applyToAll(Pr

for (int i = 0; i < size_; ++i) {
p.apply(data_[i]);

} // oops -- SIZE _ and data_ should
}

}

✎ What possible liveness problems does this technique i
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ent of lambda expressions:

 {
ArrayV2(100);
fill it up

print all elements

 final (immutable).
niversität Bern

Using inner classes

Anonymous inner classes (in Java 1.1) are the OO equival
class ExpandableArrayUser {

public static void main(String[] args)
ExpandableArrayV2 a = new Expandable
for (int i = 0; i < 100; ++i) // 

a.append(new Integer(i)); 
a.applyToAll(new Procedure () { // 

public void apply(Object x) {
System.out.println(x); 

}
}

)
}

}

Any variables shared with the host object must be declared
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tions”.

nstance variables.
that deals with mutable state 

or immutable values
 mutable state through a 

nization for methods where 
ritical section
niversität Bern

Partial Synchronization

Intent
Reduce overhead by synchronizing only within “critical sec

Applicability
❑ When objects have both mutable and immutable i
❑ When methods can be split into a “critical section” 

and a part that does not.

Design steps
❑ Fully synchronize all methods
❑ Remove synchronization for accessors to atomic 
❑ Remove synchronization for methods that access

single other, already synchronized method
❑ Replace method synchronization by block synchro

access to mutable state is restricted to a single, c
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Example: LinkedCells

public class LinkedCell {
protected double value_; // NB: double
protected final LinkedCell next_; // 

public LinkedCell (double val, LinkedC
value_ = val; next_ = next;

}

public synchronized double value() { r
public synchronized void setValue(doub

public LinkedCell next() { // 
return next_; // 

}
...
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Example ...

...
public double sum() { // add up all 

double v = value(); // get via syn
if (next() != null)

v += next().sum();
return v;

}

public boolean includes(double x) { //
synchronized(this) { // 

if (value_ == x) return true;
}
if (next() == null) return false;
else return next().includes(x);

}
}
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Containment
Intent
Achieve safety by avoiding shared variables. Unsynchroniz
inside other objects that have at most one thread active at 

Applicability
❑ There is no need for shared access to the embed
❑ The embedded objects can be conceptualized as 
❑ You can tolerate the additional context dependenc
❑ Embedded objects must be structured as islands —

of objects ultimately reachable from a single uniqu
contain methods that reveal their identities to othe

❑ You are willing to hand-check designs for complia
❑ You can deal with or avoid indefinite postponeme

where host objects must transiently acquire multip
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Contained Objects — design s

❑ Define the interface for the outer host object. 
☞ The host could be, e.g., an Adaptor, a Compo

synchronized access to an existing, unsynchr

❑ Ensure that the host is either fully synchronized, o

❑ Define instances variables that are unique referen
☞ Make sure that these references cannot leak 
☞ Establish policies and implementations that e

references are really unique!
☞ Consider methods to duplicate or clone conta

copies are unique
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Managed Ownership

❑ Model contained objects as physical resources:
☞ If you have one, then you can do something th
☞ If you have one, then no one else has it. 
☞ If you give one to someone else, then you no
☞ If you destroy one, then no one will ever have

❑ If contained objects can be passed among hosts, 
☞ Hosts should be able to acquire, give, take, ex
☞ Consider using a dedicated class to manage 
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A minimal transfer protocol cla

This class is essentially a one-slot buffer for transferring re
separate threads.

public class ResourceVariable {
protected Object ref_;
public ResourceVariable(Object res) { 
public synchronized Object resource() 
public synchronized Object exchange(Ob

Object old = ref_; 
ref_ = r; 
return old;

}
}

NB: exchange() is enough to implement most transfer op
implemented by exchange(null)



Concurrent Programming 46.

U Safety

chronization?
nization?

nchronized?
 class?
uce?
ns in a single method?
not?
niversität Bern

Summary

You Should Know The Answers To These Questions:
❑ Why are immutable classes inherently safe?
❑ Why doesn’t a “relay” need to be synchronized?
❑ What is “balking”? When should a method balk?
❑ When is partial synchronization better than full syn
❑ How does containment avoid the need for synchro

Can You Answer The Following Questions?
✎ When is it all right to declare only some methods as sy
✎ When is an inner class better than an explicitly named
✎ What liveness problems can full synchronization introd
✎ Why is it a bad idea to have two separate critical sectio
✎ Does it matter if a contained object is synchronized or 
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3. Liveness and State

Overview
❑ Liveness and Fairness

☞ The Dining Philosophers problem

❑ Guarded Methods
☞ Checking guard conditions
☞ Handling interrupts
☞ Structuring notification
☞ Tracking state
☞ Delegating notifications
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Liveness Problems

Liveness properties guarantee that your (concurrent) progr
A program may be “safe”, yet suffer from various kinds of li

❑ Contention:
☞ AKA “starvation” or “indefinite postponement”

makes progress, but some individual process

❑ Dormancy:
☞ A waiting process fails to be woken up

❑ Deadlock:
☞ Two or more processes are blocked, waiting 

others (i.e., in a cycle) 

❑ Premature termination:
☞ A process is killed before it should be
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Achieving Liveness

There are various strategies and techniques to ensure liven

❑ Start with safe design and selectively remove syn

❑ Start with live design and selectively add safety

❑ Adopt design patterns that limit the need for synch

❑ Adopt standard architectures that avoid cyclic dep
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The Dining Philosophers Problem

Philosophers alternate between 
thinking and eating.

A philosopher needs two forks to eat.

No two philosophers may hold the 
same fork simultaneously.

There should be no deadlock and no 
starvation.

Want efficient behaviour under 
absence of contention.
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 a neighbour
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Dining Philosophers, Safety and

Dining Philosophers illustrates many classical safety and li

Mutual Exclusion Each fork can be used by on

Condition synchronization A philosopher needs two for

Shared variable communication Philosophers share forks ...

Message-based communication ... or they can pass forks to e

Busy-waiting A philosopher can poll for fo

Blocked waiting ... or can sleep till woken by

Livelock All philosophers can grab th
the right ...

Deadlock ... or grab the left one and w

Starvation A philosopher may starve if 
are always faster at grabbing
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Dining Philosopher Solutions

There are countless solutions to the Dining Philosophers p
concurrent programming styles and patterns, and offer vary
guarantees:

❑ Number the forks; 
philosophers grab the lowest numbered fork first.

❑ Have philosophers leave the table while they think
allow at most four to sit at a time;
philosophers queue to sit down.

✎ Is deadlock possible in either case?
✎ What about starvation?
✎ Are these solutions “fair”?
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Fairness

There are subtle differences between definitions of fairness

Weak fairness:
☞ If a process continuously makes a request, e

Strong fairness:
☞ If a process makes a request infinitely often, 

Linear waiting:
☞ If a process makes a request, it will be granted

granted the request more than once.
FIFO (first-in first out):

☞ If a process makes a request, it will be grante
making a later request.
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Guarded Methods

Intent
Temporarily suspend an incoming thread when an object is
a request, and wait for the state to change rather than balk

dec()

wait()

notifyAll()

Client 1 BoundedCounter

inc()
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Guarded Methods — applicab

❑ Clients can tolerate indefinite postponement. (Othe

❑ You can guarantee that the required states are ev
requests), or if not, that it is acceptable to block fo

❑ You can arrange that notifications occur after all r
(Otherwise consider a design based on a busy-wa

❑ You can avoid or cope with liveness problems due
all synchronization locks (except for that of the ho

❑ You can construct computable predicates describi
will succeed. (Otherwise consider an optimistic de

❑ Conditions and actions are managed within a singl
a transactional form.)
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Guarded Methods — design st

The basic recipe is to use wait in a conditional loop to blo
and use notifyAll to wake up blocked threads.

public synchronized Object service() {
while (wrong State) {

try { wait(); }
catch (InterruptedException e) { }

}

// fill request and change state ...

notifyAll(); // NB: use notify() o
// matter which waiti

return result;
}
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Separate interface from policy

❑ Define interfaces for the methods, so that classes
methods according to different policies.

public interface BoundedCounter {
public static final long MIN = 0; // 
public static final long MAX = 10; // 

public long value(); // invariant: 
// initial cond

public void inc(); // increment on
public void dec(); // decrement on

}
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Check guard conditions

❑ Define a predicate that precisely describes the co
may proceed. (This can be encapsulated as a hel

❑ Precede the conditional actions with a guarded wa
while (!condition)

try { wait(); }
catch (InterruptedException ex) 

Optionally, encapsulate this code as a helper met

❑ If there is only one possible condition to check in t
subclasses), and notifications are issued only whe
there is no need to re-check the condition after re

❑ Ensure that the object is in a consistent state (i.e.
before entering any wait (since wait releases the
The easiest way to do this is to perform the guard
actions.
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Handle interrupts

❑ Establish a policy for dealing with InterruptedE
force a return from wait). Possible policies are:

☞ Ignore interrupts (i.e., have an empty catch 
safety at the possible expense of liveness.

☞ Terminate the current thread (via stop). This
though brutally! (Not recommended.)

☞ Exit the method, possibly raising an exception
may require the caller to take special action t

☞ Take some pre-planned action; such as clean
☞ Ask for user intervention before taking further

Interrupts can be useful to signal that the guard ca
because, for example, the collaborating threads h
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Signal state changes

❑ Add notification code to each method of the class t
that can affect the value of a guard condition. Som

☞ notifyAll wakes up all threads that are blo
object. Calls to notifyAll (as well as noti
a synchronized method or block. 

☞ notify wakes up only one thread (if any exis
optimization where:
➪ all blocked threads are necessarily waitin

the same notifications, 
➪ only one of them can be enabled by any 
➪ it does not matter which one of them bec

☞ You build your own special-purpose notificati
and notifyAll. (For example, to selectively
certain fairness guarantees.)
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Structure notifications
❑ Ensure that each wait is balanced by at least one 

Blanket 
Notifications

Place a notification at the end of every meth
change (i.e., assigns any instance variable).
Simple and reliable, but can cause performa

Encapsulating 
Assignment

Encapsulate assignment to each variable me
condition in a helper method that performs 
updating the variable.

Tracking State
Only issue notifications for the particular st
actually unblock waiting threads. May impr
cost of flexibility (i.e., subclassing becomes

Tracking State 
Variables

Maintain an instance variable that represen
Whenever the object changes state, invoke a
evaluates the control state and will issue not
conditions are affected.

Delegating 
Notifications

Use helper objects to maintain aspects of st
issue the notifications.
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Encapsulating assignment

public class BoundedCounterV0 implements
protected long count_ = MIN;

public synchronized long value() { ret

public synchronized void inc() {
awaitIncrementable(); 
setCount(count_ + 1);

}

public synchronized void dec() {
awaitDecrementable();
setCount(count_ - 1);

}
...
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Encapsulating assignment ...
...
protected synchronized void setCount(l

count_ = newValue;
notifyAll(); // wake up any thread d

}

protected synchronized void awaitIncre
while (count_ >= MAX)
try { wait(); }
catch(InterruptedException ex) {};

}

protected synchronized void awaitDecre
while (count_ <= MIN)

try { wait(); }
catch(InterruptedException ex) { }

}
}
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Tracking State

The only transitions that could possibly affect waiting threa
those that step away from logical states bottom and top:

public class BoundedCounterVST implement
protected long count_ = MIN;
public synchronized long value() { 

return count_;
}
public synchronized void inc() {

while (count_ == MAX)
try { wait(); } catch(InterruptedE

if (count_++ == MIN)
notifyAll(); // signal if previous

}
public synchronized void dec() { ... }

}
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Tracking State Variables
public class BoundedCounterVSW implement

static final int BOTTOM= 0; // log
static final int MIDDLE= 1;
static final int TOP= 2;

protected int state_ = BOTTOM; // the
protected long count_ = MIN;

protected synchronized void checkState
int oldState = state_;
if (count_ == MIN) state_ = B
else if (count_ == MAX) state_ = T
else state_ = M
if (state_ != oldState // not

&& (oldState == TOP || oldState 
notifyAll();

}
...
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Tracking State Variables ...

...
public synchronized long value() { ret

public synchronized void inc() { 
while (state_ == TOP) // only cons

try { wait(); }
catch(InterruptedException ex) {};

++count_; // modify ac
checkState(); // re-evalua

}

public synchronized void dec() { ... }
}
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Delegating notifications
NotifyLong() encapsulates both atomic state changes and 

public class NotifyingLong {
private long value_;
private Object observer_;
public NotifyingLong(Object o, long v)

observer_ = o; 
value_ = v; 

}
public synchronized long value() { ret
public void setValue(long v) {

synchronized(this) { // NB: par
value_ = v;

}
synchronized(observer_) { 

observer_.notifyAll(); // NB: mus
}

}
}
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Delegating notifications ...

Notification is delegated to the helper object:

public class BoundedCounterVNL implement
private NotifyingLong c_ = new Notifyi
public synchronized long value() { 

return c_.value(); 
}
public synchronized void inc() { 

while (c_.value() >= MAX)
try { wait(); }
catch(InterruptedException ex) {};

c_.setValue(c_.value()+1); // wil
}
public synchronized void dec() {... }

}
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Summary

You Should Know The Answers To These Questions:
❑ What kinds of liveness problems can occur in con
❑ What is the difference between livelock and deadl
❑ When should methods recheck guard conditions a
❑ Why should you usually prefer notifyAll() to 
❑ When and where should you issue notification?

Can You Answer The Following Questions?
✎ How can you detect deadlock? How can you avoid it?
✎ What is the easiest way to guarantee fairness?
✎ When are guarded methods better than balking?
✎ What is the best way to structure guarded methods for

be easy for others to define correctly functioning subcl
✎ Is the complexity of delegating notifications worth it?
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4. Lab session
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5. Liveness and Asynchrony

Overview
❑ Asynchronous invocations

☞ Simple Relays
➪ Direct Invocations
➪ Thread-based messages; Gateways
➪ Command-based messages

☞ Tail calls
☞ Early replies
☞ Futures
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Asynchronous Invocations

Intent
Avoid waiting for a request to be serviced by decoupling se

Applicability
❑ When a host object can distribute services among

❑ When an object does not need the result of an inv
useful work.

❑ When invocations that are logically asynchronous
are coded using threads. 

❑ During refactoring, when classes and methods are
concurrency and reduce liveness problems.
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Asynchronous Invocations — fo

Generally, asynchronous invocation designs take the follow

class Host {
public service() {

pre(); // code to run befo
invokeHelper(); // the invocation
during(); // code to run in p
post(); // code to run afte

}
}
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Asynchronous Invocations — d
Consider the following issues:

Does the Host need to get results back 
from the Helper?

Not if, e.g., the H
directly to the H

Can the Host process new requests 
while the Helper is running?

Might depend on

Does the Host need to do something 
while the Helper is running?

i.e., in the duri

Does the Host need to do synchronized 
pre-invocation processing?

i.e., if service
pre() updates 

Does the Host need to do synchronized 
post-invocation processing?

i.e., if post() 

Does post-invocation processing only 
depend on the Helper’s result?

... or does the ho
conditions?

Is the same Helper always used? Is a new one gen
new service requ
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Simple Relays

A relay method is obtains all its functionality by delegating 
pre(), during(), or post() actions.

Three common forms:
❑ Direct invocations

☞ Invoke the Helper directly, but without synchr

❑ Thread-based messages
☞ Create a new thread to invoke the Helper

❑ Command-based messages
☞ Pass the request as a Command object to an

Relays are commonly seen in Adaptors.



Concurrent Programming 76.

U Liveness and Asynchrony

ation.
caller must wait for the reply.

);
ynchronized
teless method!

ynchronized

r:
 { return helper_; }
ynchronized
tially synchronized
niversität Bern

Direct invocations
Asynchrony is achieved through the absence of synchroniz
The Host is free to accept other requests, while the Host’s 

class Host {
protected Helper helper_ = new Helper(
public void service() { // uns

invokeHelper(); // sta
}
protected void invokeHelper() { // uns

helper_.help();
}

}

If helper_ is mutable, it can be protected with an accesso
protected synchronized Helper helper()
public void service() { // uns

helper().help(); // par
}
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Thread-based messages

The invocation can be performed within a new thread:

protected void invokeHelper() { 
new Thread() {

final Helper h_ = helper_;
public void run() { h_.help() ; }

}.start();
}

The cost of evaluating Helper.help() should outweigh the o
☞ If the Helper is a daemon (loops endlessly)
☞ If the Helper does I/O
☞ Possibly, if multiple helper methods are invok
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Thread-per-message Gateway

Variant: the host may construct a new Helper to service ea

public class FileIO {
public void writeBytes(String fileName

new Thread (new FileWriter(fileName,
}
public void readBytes(...) { ... }

}

class FileWriter implements Runnable {
private String nm_; /
private byte[] d_;
public FileWriter(String name, byte[] 
public void run() { ... } // write bytes

}
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Command-based messages

The Host can also put a message in a queue for another obje

protected EventQueue q_;
protected invokeHelper() { 

q_.put(new HelperMessage(helper_));
}

Command-based forms especially useful for:
❑ scheduling of helpers
❑ undo and replay capabilities
❑ transporting messages over networks
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Tail calls

Applies when the helper method is the last statement of a m
post() processing). Only pre() code is synchronized.
The host is immediately available to accept other message

class Subject {
protected Observer obs_ = new ...;
protected double state_;
public void updateState(double d) { /

doUpdate(d); /
sendNotification(); /

}
protected synchronized doUpdate(double
protected void sendNotification() {

obs_.changeNotification(this);
}

}
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Tail calls with new threads

Alternatively, the tail call may be performed in a separate th

public synchronized void updateState(dou
state_ = d;
new Thread(){

final Observer o_ = obs_;
public void run() {

o_.changeNotification(Subject.this
}

}.start();
}
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Early Reply
Early reply allows a host to perform useful activities after re

Early reply is a built-in feature in some programming langu
It can be easily simulated when it is not a built-in feature.

service()

Client Host

reply
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Helper
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Simulating Early Reply

A one-slot buffer can be used to pick up the reply from a he

A one-slot buffer is a simple abstraction that can be used to 
concurrency abstractions ...

service()

Client Host

reply

Slotnew

get()
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One-Slot Buffer
class Slot { // a on

private Object slotVal_; // init
public synchronized void put(Object val) { // put 

while (slotVal_ != null) { // if t
try { wait(); } // othe
catch (InterruptedException e) { }

}
slotVal_ = val;
notifyAll(); // wake
return;

}
public synchronized Object get() { // retu

Object rval;
while (slotVal_ == null) { // if a

try { wait(); } // othe
catch (InterruptedException e) { }

}
rval = slotVal_;
slotVal_ = null;
notifyAll(); // wake
return rval;

}
}
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Early Reply in Java

Early reply can be easily implemented using an anonymou

public Stuff service() { // uns
final Slot reply = new Slot();
new Thread() {

public void run() {
Stuff result;
synchronized (this) { // ret

// compute result
reply.put(result); // sen
// do cleanup activity

}
}

}.start();
return (Stuff) reply.get(); // ear

}
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Futures
Futures allow a client to continue in parallel with a host unt

service()

ne

Client Host

value() put

returns 
future

returns 
value
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A Future Class

Futures can be implemented as a layer of abstraction arou

class Future {
private Object val_; // initially
private Slot slot_; // shared wi
public Future(Slot slot) {

slot_ = slot;
}
public Object value() {

if (val_ == null)
val_ = slot_.get(); // be sure t

return val_;
}

}
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Using Futures in Java

WIth futures, the client, rather than the host, proceeds in pa

public Future service () { // unsynch
final Slot slot = new Slot();
new Thread() {

public void run() {
slot.put(computeResult());

}
}.start();
return new Future(slot); // immedia

}

protected synchronized Object computeR

Without special language support, futures are less transpa
the client must explicitly request a value() from the future
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Summary

You Should Know The Answers To These Questions:
❑ What general form does an asynchronous invocat
❑ When should you consider using asynchronous in
❑ In what sense can a direct invocation be “asynchr
❑ Why (and how) would you use “inner classes” to i
❑ What is “early reply”, and when would you use it?
❑ What are “futures”, and when would you use them
❑ How can implement futures and early replies in Ja

Can You Answer The Following Questions?
✎ Why are servers commonly structured as thread-per-m
✎ Which of the concurrency abstractions we have discus

implemented using one-slot-buffers as the only synchr
✎ When are futures better than early replies? Vice versa
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6. Fine-grained Synchronization

Overview
❑ Condition Objects

☞ The “Nested Monitor Problem”
☞ Permits and Semaphores

❑ Concurrently available methods
☞ Priority
☞ Interception
☞ Readers and Writers

❑ Optimistic methods
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Condition Objects

Intent
Condition objects encapsulate the waits and notifications u

Applicability
❑ To simplify class design by off-loading waiting and

☞ Because of the limitations surrounding the use
in some cases the use of condition objects w
decrease design complexity!

❑ As an efficiency manoeuvre. 
☞ By isolating conditions, you can often avoid n

could not possibly proceed given a particular 
❑ As a means of encapsulating special scheduling p

notifications, for example to impose fairness or pr
❑ In the particular cases where conditions take the f
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A Simple Condition Object

Condition objects implement this interface:
public interface Condition { 

public void await(); // wait for some
public void signal(); // signal that s

}

Suppose we tried to encapsulate guard conditions with this
public class SimpleConditionObject imple

public synchronized void await() {
try { wait(); }
catch (InterruptedException ex) {}

}
public synchronized void signal() { 

notifyAll(); 
}

}

Careless use of this class can lead to the “Nested Monitor 
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The Nested Monitor problem
public class BoundedCounterVBAD implemen

protected long count_ = MIN; 
protected Condition notMin_ = new Simp
protected Condition notMax_ = new Simp
public synchronized long value() { ret
public synchronized void dec() { 

while (count_ == MIN)
notMin_.await(); // wait till

if (count_-- == MAX)
notMax_.signal();

}
public synchronized void inc() { // 

while (count_ == MAX)
notMax_.await();

if (count_++ == MIN)
notMin_.signal(); // we never 

}
}
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wait()
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The Nested Monitor problem ...

Nested monitor lockouts occur whenever a blocked thread 
containing the method that would otherwise provide a notif

dec()

a

Client1 BoundedCounterVBAClient2

inc()

Counter is 
still locked!
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Solving the Nested Monitors pro

You must ensure that:
❑ Waits do not occur while synchronization is held o

☞ This leads to a guard loop that reverses the s
faulty version.

❑ Notifications are never missed.
☞ The entire guard wait loop should be enclose

on the condition object.

❑ Notifications do not deadlock.
☞ All notifications should be performed only upo

synchronization except of that for the notified

❑ Helper and host state must be consistent.
☞ If the helper object maintains any state, it mu

that of the host, and if it shares any state with
properly synchronized.
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Example solution
public class BoundedCounterVCV implement

...
public void inc() { // NOT synch

boolean wasMin = false; // record no
synchronized(notMax_) { // synch o

for (;;) { // the rec
synchronized(this) {

if (count_ < MAX) { // check
wasMin = (count_++ == MIN);
break;

}
}
notMax_.await(); // release ho

}
}
if (wasMin) notMin_.signal(); // fir

}
}
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Permits and Semaphores

Intent
Bundle synchronization in a condition object when synchro
with tracking the value of a counter.

Applicability
❑ When any given await may proceed only if there 

awaits.
☞ More generally, if there are enough “permits”

increments and every await decrements the n

❑ You need to guarantee the absence of missed sig
☞ Unlike simple condition objects, semaphores 

enters its await after another thread has signa

❑ The host classes using them can arrange to invok
outside of synchronized methods or code blocks. 
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Permits and Semaphores — de
❑ Define a class implementing Condition that ma

immediately releases await if there are already en
☞ e.g., BoundedCounter

❑ As with all kinds of condition objects, the classes 
invoking await inside of synchronized methods an
☞ One way to help ensure this is to use a befor

class Host {
Condition aCondition_;
Condition anotherCondition_; ...
public method m1() {

aCondition_.await(); // not s
doM1(); // synch
for each Condition c enabled b

c.signal(); // not s
}
protected synchronized doM1() { 

}
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Variants

❑ Permit Counters (Counting Semaphores)
☞ Just keep track of the number of “permits”
☞ Can use notify instead of notifyAll if cl

❑ Fair Semaphores
☞ Maintain FIFO queue of threads waiting on a 

❑ Locks and Latches
☞ Locks can be acquired and released in separ
☞ Keep track of thread holding the lock so locks
☞ A latch is set to true by signal, and always 

See the On-line supplement for details.
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Concurrently Available Method

Intent
Non-interfering methods comprising a service an be made 
splitting them into different objects or aspects of the same ob
execution conditions to enable and disable the methods ac
concurrency control policy. 

Applicability
❑ Host objects are typically accessed across many 
❑ Host services are not completely interdependent, 

under mutual exclusion. 
❑ You need better throughput for one or more of the

object, and need to eliminate nonessential blockin
❑ You want to prevent various accidental or maliciou

which synchronized methods on a host block beca
its lock. 

❑ Use of full synchronization would needlessly make
deadlock or other liveness problems. 
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Concurrent Methods — design

Layer concurrency control policy over mechanism by: 

❑ Policy Definition: 
☞ When may methods run concurrently?
☞ What happens when a disabled method is inv
☞ What priority is assigned to waiting tasks?

❑ Instrumentation: 
☞ Define state variables that can detect and en

❑ Interception: 
☞ Have the host object intercept public message

the appropriate conditions to the methods tha



Concurrent Programming 102.

U Fine-grained Synchronization

ance variable values). 
r urgency. 
on. 
eue. 
k will eventually run. 
of each task. 
niversität Bern

Priority

❑ Priority may depend on any of:
☞ Intrinsic attributes of the tasks (class and inst
☞ Representations of task priority, cost, price, o
☞ The number of tasks waiting for some conditi
☞ The time at which each task is added to a qu
☞ Fairness — guarantees that each waiting tas
☞ The expected duration or time to completion 
☞ The desired completion time of each task. 
☞ Termination dependencies among tasks. 
☞ The number of tasks that have completed. 
☞ The current time. 
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Interception

Interception strategies include:

❑ Pass-Throughs
☞ The host maintains a set of immutable refere

simply relays all messages to them within uns

❑ Lock-Splitting 
☞ Instead of splitting the class, split the synchron

subsets of functionality

❑ Before/After methods 
☞ Public methods contain before/after processin

public methods in the host that perform the se
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Concurrent Reader and Writers

“Readers and Writers” are a family of concurrency control d
policies governing concurrent invocation of non-mutating a
mutative, state-changing operations (“Writers”).

The basic idea is to let any number of readers to concurren
are no writers, but writers have exclusive access.

read()
write(

Reader1 HostReader2

read()

read()

wr
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Readers and Writers Policies

Individual policies must address:
❑ Can new Readers join already active Readers eve

☞ If yes, Writers may starve; if not, the throughp
❑ If both Readers and Writers are waiting for a Write

let in first?
☞ Readers? A Writer? Earliest first? Random? A
☞ Similar choices are available after termination

❑ Can Readers upgrade to Writers without having to

A typical set of choices:
❑ Block incoming Readers if there are waiting Write
❑ “Randomly” choose among incoming threads (i.e.
❑ No upgrade mechanisms.

Before/after methods are the simplest way to implement Re
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Readers and Writers example
public abstract class RWVT {

protected int activeReaders_ = 0; /
protected int activeWriters_ = 0; /
protected int waitingReaders_ = 0;
protected int waitingWriters_ = 0;
protected abstract void read_(); /
protected abstract void write_(); 
public void read() { /

beforeRead(); /
read_();
afterRead(); /

}
public void write() {

beforeWrite();
write_();
afterWrite();

}
...
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() {
ilable to subclasses

// default policy
eWriters_ == 0;

) { 
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Readers and Writers ...
...

protected synchronized void beforeRead
++waitingReaders_; // ava
while (!allowReader())

try { wait(); }
catch (InterruptedException ex) {}

--waitingReaders_;
++activeReaders_;

}
protected boolean allowReader() {

return waitingWriters_ == 0 && activ
}
protected synchronized void afterRead(

--activeReaders_;
notifyAll();

}
...
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// default policy
Writers_ == 0;
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Readers and Writers ...
...

protected synchronized void beforeWrit
++waitingWriters_;
while (!allowWriter()) 

try { wait(); }
catch (InterruptedException ex) {}

--waitingWriters_;
++activeWriters_;

}
protected boolean allowWriter() {

return activeReaders_ == 0 && active
}
protected synchronized void afterWrite

--activeWriters_;
notifyAll();

}
}
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Optimistic Methods

Intent
Optimistic methods attempt actions, but rollback state if the
interfered with by the actions of other threads. After rollbac
exceptions or retry the actions. 

Applicability
❑ Clients can tolerate either failure or retries.

☞ If not, consider using guarded methods . 

❑ You can avoid or cope with livelock.

❑ You have a way to deal with actions occurring bef
☞ Provisional action: “pretend” to act, delaying co

possibility of failure has been ruled out.
☞ Rollback/Recovery: undo the effects of each p

are sent to other objects, they must be undon
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Optimistic Methods — design s

❑ Collect and encapsulate all mutable state so that 

☞ Define an immutable helper class holding val

☞ Define a representation class, but make it mu
variables to change), and additionally include
transaction identifier) field or even a sufficien

☞ Embed all instance variables, plus a version n
define commit to take as arguments all assu
values of these variables.

☞ Maintain a serialized copy of object state. 

☞ Various mixtures of the above ...
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Detect failure ...

❑ Provide an operation that simultaneously detects v
updates via a method of the form: 

class Optimistic { // gen

private State currentState_; // Sta

synchronized boolean commit(State assu
boolean success = (currentState_ == 
if (success) 

currentState_ = next;
return success;

}
}



Concurrent Programming 112.

U Fine-grained Synchronization

as follows:

hangingIt();
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Detect failure ...

❑ Structure the main actions of each public method 

State assumed = currentState();
State next = ...
if (!commit(assumed, next))

rollback();
else

otherActionsDependingOnNewStateButNotC
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Handle conflicts ...

❑ Choose and implement a policy for dealing with co
☞ Throw an exception upon commit failure that 

(Of course, this kicks the decision back to the 
be in a better position to decide whether to re

☞ Internally retry the action until it succeeds. 
☞ Retry some bounded number of times, or unt

throwing an exception. 
☞ Synchronize the method, precluding commit fa

when other methods in the class use exceptio

❑ Take precautions to ensure that retries are based u
of instance variables. 
☞ If state is maintained in an immutable helper 

reference in the class, then this reference sho
All accessor methods can be left as unsynchr

volatile specifies that a variable changes asynchronous
not attempt optimizations with it (such as using a copy stor
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Ensure progress ...

❑ Take precautions to ensure progress in case of in
state-dependent methods.
☞ Optimistic state-dependent methods require u

which it is counterproductive to immediately r
☞ Yielding may not be effective unless all thread

and the Java scheduler at least approximates
tasks (which it is not guaranteed to do)!

❑ Limit retries. 
☞ Unless there is some independent assurance

eventually succeed, retries can result in livelo
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An Optimistic Bounded Counte
public class BoundedCounterVOPT implements BoundedCounter 

protected volatile Long count_ = new Long(MIN);
protected synchronized boolean commit(Long oldc, Long n

boolean success = (count_ == oldc);
if (success) count_ = newc;
return success;

}
public long value() { return count_.longValue(); }
public void inc() { 

for (;;) { // thin
Long c = count_; long v = c.longValue();
if (v < MAX && commit(c, new Long(v+1))) break;
Thread.currentThread().yield(); // is t

}
}
public void dec() { 

for (;;) {
Long c = count_; long v = c.longValue();
if (v > MIN && commit(c, new Long(v-1))) break;
Thread.currentThread().yield();

}
}

}
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Summary

You Should Know The Answers To These Questions:
❑ What are “condition objects”? How can they make
❑ What is the “nested monitor problem”? How can y
❑ What are “permits” and “semaphores”? When is it
❑ Why (when) can semaphores use notify() inst
❑ When should you consider allowing methods to be
❑ What kinds of policies can apply to concurrent Re
❑ How do optimistic methods differ from guarded m

Can You Answer The Following Questions?
✎ What is the easiest way to avoid the nested monitor pr
✎ What assumptions do nested monitors violate?
✎ How can the obvious implementation of semaphores (
✎ How does “partial synchronization” differ from “concurr
✎ When should you prefer optimistic methods to guarded
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7. Lab session
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8. Architectural Styles for Conc

Overview
❑ What is Software Architecture?
❑ Three-layered application architecture
❑ Flow architectures
❑ Blackboard architectures

Sources
❑ M. Shaw and D. Garlan, Software Architecture: Pe

Discipline, Prentice-Hall, 1996.
❑ F. Buschmann, et al., Pattern-Oriented Software A

Patterns, John Wiley, 1996. 
❑ D. Lea, Concurrent Programming in Java — Desig

The Java Series, Addison-Wesley, 1996. 
❑ N. Carriero and D. Gelernter, How to Write Paralle

MIT Press, Cambridge, 1990. 
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Software Architecture

A Software Architecture defines a system in terms of
components and interactions amongst those compon

An Architectural Style defines a family of systems in 
structural organization.

— cf. Shaw & Garlan, Software
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Architectural style

Architectural styles typically entail four kinds of properties:

❑ A vocabulary of design elements
☞ e.g., “pipes”, “filters”, “sources”, and “sinks”

❑ A set of configuration rules that constrain compos
☞ e.g., pipes and filters must alternate in a linea

❑ A semantic interpretation
☞ e.g., each filter reads bytes from its input stre

output stream

❑ A set of analyses that can be performed
☞ e.g., if filters are “well-behaved”, no deadlock

progress in tandem
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Communication Styles

Shared Variables:

Message-Passing: 

P1 P2

P1 P

P3
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Simulated Message-Passing

Most concurrency and communication styles can be simula

Message-passing can be modelled by associating messag

Unsynchronized objects

Synchronized objects
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Three-layered Application Arc

This kind of architecture avoids nested monitor problems b
control to a single layer.

Interaction with external world
Generating threads

Concurrency control
Locking, waiting, failing

Basic mechanisms
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Problems with Layered Designs

Hard to extend beyond three layers because:
❑ Control is restricted to before/after — not within
❑ Control may depend on unavailable information

☞ Because it is not safely accessible
☞ Because it is not represented (e.g., message

❑ Actions in control code may encounter conflicting 
☞ E.g., nested monitor lockouts

❑ Ground actions may need to know current policy
☞ E.g., blocking vs. failing

Partial solutions:
❑ Explicit policy compatibility constraints
❑ Explicit nesting constraints
❑ Delegated control
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Flow Architectures

Many synchronization problems can be avoided by arrangi
only flows in one direction from sources to filters to sinks:

❑ Unix “pipes and filters”:
☞ Processes are connected in a linear sequenc

❑ Control systems:
☞ events are picked up by sensors, processed,

❑ Workflow systems
☞ Electronic documents flow through workflow p
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Flow Stages

Every flow stage is a producer or consumer or both:

❑ Splitters (Multiplexers) have multiple successors
☞ Multicasters clone results to multiple consum
☞ Routers distribute results amongst consumer

❑ Mergers (Demultiplexers) have multiple predeces
☞ Collectors interleave inputs to a single consu
☞ Combiners process multiple input to produce

❑ Conduits have both multiple predecessors and co
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Flow Policies

Flow can be pull-based, push-based, or a mixture:

❑ Pull-based flow: Consumers take results from Pro
❑ Push-based flow: Producers put results to Consum
❑ Buffers:

☞ Put-only buffers (relays) connect push-based
☞ Take-only buffers (pre-fetch buffers) connect 
☞ Put-Take buffers connect push-based stages

Producer buffer
put

ta
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Limiting Flow

❑ Unbounded buffers:
☞ If producers are faster than consumers, buffe

memory

❑ Unbounded threads:
☞ Having too many threads can exhaust system

unbounded buffers

❑ Bounded buffers:
☞ Tend to be either always full or always empty,

of producers and consumers

❑ Bounded thread pools:
☞ Harder to manage than bounded buffers
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Example: a Pull-based Prime Si

4

5

3

6

5

7 7

8

get()

new

new

new

TestForPrime
In th
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nex

ActivePrime(2)

ActivePrime(3)

Act

get()

get()
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Using Put-Take Buffers

Each ActivePrime will use a one-slot buffer to feed values t
public class PrimeSieve {

public static void main(String args[])
public static void genPrimes(int n) {

try {
ActivePrime firstPrime =

new ActivePrime(2, new Te
} catch (Exception e) { }

}
}

The first ActivePrime holds the seed value 2, gets values fr
creates new ActivePrime instances whenever it detects a p

72... 10 9 8 3
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Pull-based integer sources
Active primes get numbers to test from an IntSource inte

interface IntSource {
int getInt();

}
class TestForPrime implements IntSource 

private int nextValue;
private int maxValue;
public TestForPrime(int max) {

this.nextValue = 3;
this.maxValue = max;

}
public int getInt() { // No sync

if (nextValue < maxValue) { return n
else { return 0; }

}
}
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One-Slot Buffer
class Slot { // a on

private Object slotVal_; // init
public synchronized void put(Object val) { // put 

while (slotVal_ != null) { // if t
try { wait(); } // othe
catch (InterruptedException e) { }

}
slotVal_ = val;
notifyAll(); // wake
return;

}
public synchronized Object get() { // retu

Object rval;
while (slotVal_ == null) { // if a

try { wait(); } // othe
catch (InterruptedException e) { }

}
rval = slotVal_;
slotVal_ = null;
notifyAll(); // wake
return rval;

}
}
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The ActivePrime Class
class ActivePrime extends Thread impleme

private static IntSource lastPrime; /
private int value; // value o
private int square; // square 
private IntSource intSrc; // source 
private Slot slot; // to pass
public ActivePrime(int value, IntSourc

throws ActivePrimeFailure
{

this.value = value;
this.square = value*value;
this.intSrc = intSrc;
slot = new Slot(); // NB: pri
lastPrime = this; // unsynch
System.out.print(value + " ");
System.out.flush();
this.start(); // become 

}
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The ActivePrime Class ...
...

public int value() {
return this.value;

}
private void putInt(int val) {

slot.put(new Integer(val));
}
public int getInt() {

return ((Integer) slot.get()).intVal
}

...



Concurrent Programming 135.

U Architectural Styles for Concurrency

/ may block
/ stop condition
/ must be prime

tPrime);

/ exit loop

) > 0) {
/ may block

/ may block

/ stop next prime
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The ActivePrime Class ...
...

public void run() {
int testValue = intSrc.getInt(); /
while (testValue != 0) { /

if (this.square > testValue) { /
try {

new ActivePrime(testValue, las
} catch (Exception e) {

break; /
}

} else if ((testValue % this.value
this.putInt(testValue); /

}
testValue = intSrc.getInt(); /

}
putInt(0); /

}
}
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Blackboard Architectures

Blackboard architectures put all synchronization in a “coord
agents can exchange messages.

Agents do not exchange messages directly, but post mess
retrieve messages either by reading from a specific location 
a query (i.e., a pattern to match).

Linda is a “coordination language” that provides primitives 
architectures ...

?
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Result Parallelism

Result parallelism is a blackboard architectural style in whi
produce each part of a more complex problem.

Workers may be arranged hierarchically ...
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Agenda Parallelism

Agenda parallelism is a blackboard style in which workers r
a blackboard, and may generate new tasks to perform.

Workers repeatedly retrieve tasks until everything is done.
Workers are typically able to perform arbitrary tasks.
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Specialist Parallelism

Specialist parallelism is a style in which each workers is sp
particular task.

Specialist designs are equivalent to message-passing, and
flow architectures, with each specialist producing results fo
consume.
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Summary

You Should Know The Answers To These Questions:
❑ What is a Software Architecture?
❑ What are advantages and disadvantages of Layer
❑ What is a Flow Architecture? What are the options
❑ What are Blackboard Architectures? What are the

Can You Answer The Following Questions?
✎ How would you model message-passing agents in Jav
✎ How would you classify Client/Server architectures? 

Are there other useful styles we haven’t yet discussed
✎ How can we prove that the Active Prime Sieve is corre

Active Primes will join the chain in the correct order?
✎ Which Blackboard styles are better when we have mu

Which are better when we just have threads on a mon
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9.  Concurrent Programming A

Overview
❑ Process creation 

☞ Co-routines; Fork & Join; Cobegin blocks
❑ Communication and Synchronization

☞ Synchronizing access to shared variables
☞ Message Passing Approaches

Texts:
❑ G. R. Andrews and F. B. Schneider, “Concepts an

programming,’“ACM Computing Surveys, vol. 15, 
❑ M. Ben-Ari, Principles of Concurrent and Distribut

Hall, 1990.
❑ L. Wilson & R. Clark, Comparative Programming L

1988.
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Expressing Concurrency

Recall:

Notations for expressing concurrent computation must add

1. Process Creation:how is concurrent execution spe

2. Communication: how do processes communicate

3. Synchronization: how is consistency maintained?
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Co-routines

Co-routines are only pseudo-concurrent and require explic

Co-routines can be used to implement most higher-level co

Program P Coroutine A

call A
call B

resume A
resume B

return
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Fork and Join

Fork can be used to create an arbitrary number of concurre

Join (“wait” in Unix) is used to wait for another process to te

Since fork and join are unstructured, they must be used wit

Program P1 Program P2

fork P2
fork P3

join P2
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Cobegin/coend

Cobegin/coend blocks are better structured:

cobegin S1 || S2 || ... || Sn coen

but they can only be used to create a fixed number of proc

The calling routine continues when all of the coblocks have

Main Coblock 1 Coblock 2 Co
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Communication and Synchron

x y z ...

P1 P2 P3

P1

P3

In approa
Shared V
commun
Explicit s
mechani

In Message Passing approaches, 
communication and synchronization 
are combined.
Communication may be either 
synchronous or asynchronous.
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Synchronization Techniques

Different approaches are roughly equivalent in expressive 
implemented in terms of each other.

Each approach emphasizes a different style of programmin

Busy-Waiting

Semaphores

Monitors Mess

Remote Procedure Call

Path Expressions

Procedure Oriented

Operation Oriented
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Busy-Waiting

A simple approach to synchronization is for processes to a
variables. 

Condition synchronization is easy to implement:
❑ to signal a condition, a process sets a shared vari
❑ to wait for a condition, a process repeatedly tests 

Mutual exclusion is more difficult to realize correctly and ef
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lock-free?

P2

r2 := true
 := “P1”
e enter1 and 

turn = “P1”
 skip
ical Section
r2 := false
critical Section
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Busy-Wait Mutual Exclusion Pro
P1 sets enter1 := true when it wants to enter its CS,
but sets turn := “P2” to yield priority to P2:

✎ Can you prove this protocol is correct? Is it fair? Dead

process P1
loop

enter1 := true 
turn := “P2”
while enter2 and

turn = “P2”
do skip

Critical Section
enter1 := false
Non-critical Section

end
end

process 
loop

ente
turn
whil

do
Crit
ente
Non-

end
end
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Semaphores

Semaphores were introduced by Dijkstra (1968) as a highe
synchronization.

A semaphore is a non-negative integer-valued variable s w
❑ P(s): delays until s>0; when s>0, atomically ex
❑ V(s): atomically executes s:= s+1

Many problems can be solved using binary semaphores, w

process P1
loop

P(mutex) { wants to enter }
Critical Section
V(mutex) { exits }
Non-critical Section

end
end

process 
loop

P(
Cr
V(
No

end
end
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Monitors

A monitor encapsulates resources and operations that man
❑ operations are invoked with usual procedure call s
❑ procedure invocations are guaranteed to be mutu
❑ condition synchronization is realized using signal 

☞ there exist many variations of wait and signal

type buffer(T) = monitor
var
slots : array [0..N-1] of T;
head, tail : 0..N-1;
size : 0..N;
notfull, notempty : condition;

procedure deposit(p : T);
begin

if size = N then notfull.wait
slots[tail] := p;
size := size + 1;
tail := (tail+1) mod N;
notempty.signal

end

procedure fetc
begin

if size 
it := sl
size := 
head := 
notfull.

end
begin

size := 0;
head := 0;
tail := 0;

end
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Problems with Monitors

Although monitors provide a more structured approach to p
semaphores, they suffer from various shortcomings.

A signalling process is temporarily suspended to allow wait
❑ Monitor state may change between signal and res
❑ Simultaneous signal and return is not supported
❑ Unlike with semaphores, multiple signals are not s
❑ Boolean expressions are not explicitly associated
❑ Nested monitor calls must be specially handled to
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Message Passing

Message Passing combines both communication and sync

❑ A message is sent by specifying the message and
☞ The destination may be a process, a port, a s

❑ A message is received by specifying message va
☞ The source may or may not be explicitly iden
☞ Source and destination may be statically fixed

❑ Message transfer may be synchronous or asynch
☞ With asynchronous message passing, send o
☞ With buffered message passing, sent messag

buffer ; the sender may block if the buffer is fu
☞ With synchronous message passing, both the

ready for a message to be exchanged
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Unix Pipes

Unix pipes are bounded buffers that connect producer and
(sources, sinks and filters):

cat file # send file cont
| tr -c ’a-zA-Z’ ’\012’ # put each word 
| sort # sort the words
| uniq -c # count occurren
| sort -rn # sort in revers
| more # and display th

Processes should read from standard input and write to sta
☞ Misbehaving processes give rise to broken pi

Process creation and scheduling are handled by the O/S.
Synchronization is handled implicitly by the I/O system (thr
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Send and Receive
In CSP and Occam, source and destination are explicitly n

PROC buffer(CHAN OF INT give, take, signal)
VAL INT size IS 10:
INT inindex, outindex, numitems:
[size]INT thebuffer:
SEQ

numitems := 0
inindex := 0
outindex := 0
WHILE TRUE
ALT

numitems ≤ size & give ? thebuffer[inindex]
SEQ

numitems := numitems + 1
inindex := (inindex + 1) REM size

numitems > 0 & signal ? any
SEQ

take ! thebuffer[outindex]
numitems := numitems - 1
outindex := (outindex + 1) REM size
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Remote Procedure Calls and R
In Ada, the caller identity need not be known in advance:

task body buffer is
size : constant integer := 10;
the_buffer : array (1 .. size) of item;
no_of_items : integer range 0 .. size := 0;
in_index, out_index : integer range 1 .. size := 1;

begin
loop

select
when no_of_items < size =>

accept give(x : in item) do
the_buffer(in_index) := x;

end give;
no_of_items := no_of_items + 1;
in_index := in_index mod size + 1;

or when no_of_items > 0 =>
accept take(x : out item) do

x := the_buffer(out_index);
end take;
no_of_items := no_of_items - 1;
out_index := out_index mod size + 1;

end select;
end loop;

end buffer;
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Linda

Linda is a coordination medium, with associated primitives 
processes, that can be added to an existing programming l

The coordination medium is a tuple-space, which can conta
❑ data tuples — tuples of primitives vales (numbers
❑ active tuples — expressions which are evaluated 

The coordination primitives are:
❑ out(T) — put a tuple T into the medium (non-bloc

☞ e.g., out(“employee”, “pingu”, 3500
❑ in(S) — destructively input a tuple matching the p

☞ e.g., in(“employee”, “pingu”, ?sala
❑ rd(S) — non-destructively input a tuple (blocking)
❑ inp(S), rdp(S) — try to input a tuple; report succe
❑ eval(E) — evaluate E in a new process; leave the
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Example: Fibonacci
A (convoluted) way of computing fibonacci numbers with L

int fibonacci(int n) {
if (n<2) {

out(“fibonacci”, n-1, 1); // non
return 1;

}

if (rdp(“fibonacci”,n-1,?fibn_1)==0) {
eval(“fibonacci”,n-1,fibonacci(n-1))

}

rd(“fibonacci”,n-1,?fibn_1); // block
in(“fibonacci”,n-2,?fibn_2); // block
fn = fibn_2+fibn_1;
return(fn);

} // Post-condition: rdp(fib(n-1)) == Tr
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Evaluating Fibonacci

(“fibonacci”,4,fib(5
rd()

(“fibonacci”,4,fib(5
rd()

(“fibonacci”,3,
rd()

(“fibonacci”,4,fib(5
rd()

(“fibonacci”,3,
rd()

(“fibonacci”,2,

rd()

fib(5
rd()

rd()

rd()

rd()

fib(5
rd()

rd()

rd()

rd()
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(“fibonacci”,4, 5)

rn(8)
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Evaluating Fibonacci ...

✎ What would happen if you ran fibonacci(5) twice?

(“fibonacci”,4,fib(5
rd()

(“fibonacci”,3,
rd()

(“fibonacci”,2,

rd()

(“fibonacci”,1, 1)
in()

(“fibonacci”,0, 1)

(“fibonacci”,4,fib(5
rd()

(“fibonacci”,3,
rd()

(“fibonacci”,2, 2)

rd()

(“fibonacci”,1, 1)

fib(5
rd()

rd()

fib(5
rd()

fib(5

retu
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Other Concurrency Issues

Atomic Transactions: 
☞ RPC with possible failures
☞ failure atomicity
☞ synchronization atomicity 

Real-Time Programming: 
☞ embedded systems
☞ responding to interrupts within strict time limit
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Summary

You Should Know The Answers To These Questions:
❑ How can you ensure mutual exclusion by busy-wa
❑ Are semaphores fair? In what way? Under what a
❑ How do monitors differ from semaphores?
❑ In what way are monitors equivalent to message-p
❑ What are “active tuples” in Linda?

Can You Answer The Following Questions?
✎ How could you implement a semaphore using monitor
✎ How would you implement monitors using semaphores
✎ Which concurrency mechanisms shown here are easil
✎ Which of the known problems with monitors are also p
✎ How would you implement a message buffer in Linda?
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10. Petri Nets

Overview
❑ Definition:

☞ places, transitions, inputs, outputs
☞ firing enabled transitions

❑ Modelling:
☞ concurrency and synchronization

❑ Properties of nets:
☞ liveness, boundedness

❑ Implementing Petri net models:
☞ centralized and decentralized schemes 

Sources
❑ J. L. Peterson, Petri Nets Theory and the Modellin

1983.
❑ D. Lea, Concurrent Programming in Java — Desig

The Java Series, Addison-Wesley, 1996. 
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Petri nets: a definition

A Petri net C = 〈P,T,I,O〉 consists of:
1. A finite set P of places
2. A finite set T of transitions

3. An input function I: T → NP (maps to bag

4. An output function O: T → NP

A marking of C is a mapping µ: P → N

x

b

Example:
P = { x, y }
T = { a, b }
I(a) = { x }, I(b) = { x, x }
O(a) = { x, y }, O(b) = { y }
µ = { x, x }
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 O(t)

x

y

a

b

x

y

a

b

b
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Firing transitions

To fire a transition t:
1. There must be enough input tokens: µ ≥ I(t)
2. Consume inputs and generate output: µ′ = µ - I(t) +

x

y

a

b

x

y

a

b

x

y

a

b

a a

b

x

y

a

b

b
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Modelling with Petri nets

Petri nets are good for modelling:
❑ concurrency
❑ synchronization

Tokens can represent:
❑ resource availability
❑ jobs to perform
❑ flow of control
❑ synchronization conditions ...
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Concurrency

Independent inputs permit “concurrent” firing of transitions
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Conflict

Overlapping inputs put transitions in conflict

Only one of a or b may fire

a

b
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Mutual Exclusion
The two subnets are forced to synchronize
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Fork and Join
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Producers and Consumers

producer
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Bounded Buffers

occupied slots

free slots
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Properties

Reachability:
❑ The reachability set R(C,µ) of a net C is the set of a

initial marking µ.

Boundedness:
❑ A net C with initial marking µ is safe if places alwa
❑ A marked net is (k-)bounded if places never hold 
❑ A marked net is conservative if the number of toke

Liveness:
❑ A transition is deadlocked if it can never fire.
❑ A transition is live if it can never deadlock.

✎ Are the examples we have seen bounded? Are they liv
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Liveness and Boundedness

This net is both safe and conservative.
Transition a is deadlocked.
Transitions b and c are both live.
The reachability set is {{y}, {z}}.

a

c

b

x y
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Related Models

Finite State Automata
❑ Equivalent to regular expressions
❑ Can be modelled by one-token conservative nets
❑ Cannot model unbounded Petri nets

The FSA for: a(b|c)*d

a

b

d

c
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Computational Power

Petri nets are not computationally complete
❑ Cannot model “zero testing”
❑ Cannot model priorities

a

A zero-testing net:
An equal number of
a and b transitions may fire
as a sequence during any
sequence of matching
c and d transitions.
(#a ≥ #b, #c ≥ #d)
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Applications of Petri nets

Modelling information systems:
❑ Workflow
❑ Hypertext (possible transitions)
❑ Dynamic aspects of OODB design



Concurrent Programming 178.

U Petri Nets

 or decentralized fashion:

tate of the net, and fires 

 resources, and transitions 
niversität Bern

Implementing Petri nets

We can implement Petri net structures in either centralized

❑ Centralized:
☞ A single “net manager” monitors the current s

enabled transitions.

❑ Decentralized:
☞ Transitions are processes, places are shared

compete to obtain tokens.
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Centralized schemes
In one possible centralized scheme, the Manager selects a

Concurrently enabled transitions can be fired in parallel.

✎ What liveness problems can this scheme lead to?

Identify enabled
transitions

Select and fire
transitions

found some

deadlo

got new ma

Net Manager
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Decentralized schemes

In decentralized schemes transitions are processes and to
places:

Transitions can be implemented as thread-per-message gat
can be fired more than once if enough tokens are available

Tokens must be grabbed in a consistent order, or the net c
transitions are enabled!

x y

a b

a

x
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Transactions

Transitions attempting to fire must grab their input tokens as
net may deadlock even though there are enabled transition

If a and b are implemented by independent processes, and 
this net can deadlock even though b is enabled if a (incorre

a

b

x y
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Coordinated interaction

A simple solution is to treat the state of the entire net as a s

If a transition is not enabled, it waits and releases the net till 
a transition fires and updates the net, it notifies all waiting t

✎ How could you refine this scheme to work in a distribu

a

b

x y

a b

get()
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Summary

You Should Know The Answers To These Questions:
❑ How are Petri nets formally specified?
❑ How can nets model concurrency and synchroniz
❑ What is the “reachability set” of a net? How can yo
❑ What kinds of Petri nets can be modelled by finite
❑ How can a (bad) implementation of a Petri net dea

enabled transitions?
❑ If you implement a Petri net model, why is it a good

“gateways”?

Can You Answer The Following Questions?
✎ What are some simple conditions for guaranteeing tha
✎ How would you model the Dining Philosophers problem

Is such a net bounded? Is it conservative? Is it live?
✎ What could you add to Petri nets to make them Turing
✎ What constraints could you put on a Petri net to make 
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11. Scripting Agents
Overview

❑ What is Piccola
❑ Building and Using Coordination Abstractions
❑ Example I: Reader Writer 
❑ Example II: Dining Philosophers

– core Components

– renaming Interfaces

– wiring
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An Overview of Piccola
Piccola is a small language for composition:

❑ only 4 keywords: def return root dynamic
❑ very few operators: ( ) , = # \
❑ predefined services: newChannel(), run(), 
❑ Access to Java objects

Concepts:
❑ Behaviour is represented by agents. An agent aut

– invokes services

– composes forms

❑ State is represented by channels. Channels are th
communication for agents

❑ Structure is represented by forms. A form is a finite
(other forms). 

☞ services are represented by a channel and an
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ress

ervice: Arguments, 

infinitely many copies)

tive invocation
niversität Bern

Formal Concept
❑ the πL-calculus provides the semantics 
❑ communication is the only notion for program prog

a ! F | a ? X > P ==> P[X/F]

❑ a service: 

The invocation form contains the context for the s
result channel, exception channel etc. 

P | P | ....

service location

service body (Invocation

 P | .... ac
==>
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s. 

ze.x ==> 10

.Name ==> “foo”

e.y ==> 20
niversität Bern

Forms
Forms are finite mappings from label (=identifiers) to value

❑ Projection: F.l
❑ Extension: (F, l = G)
❑ Polymorphic extension: (F, G)
❑ Restriction: (F \ l)

baseForm =
Text = "foo"
Name = Text
Size = (x = 10, y = 20)

coloredForm =
baseForm
Color = "green"

modForm =
baseForm
Size = 

baseForm.Size
x = 15

baseForm.Si

coloredForm

modForm.Siz
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Forms (cont.)
Forms are ubiquitous in Piccola:

❑ Interfaces to Components
❑ Namespaces
❑ Keyword based arguments
❑ Modules and Packages 
❑ Objects (immutable)
❑ Dictionaries (immutable)

as such, Piccola can manipulate forms as first class values
☞ explicit manipulation of interfaces
☞ explicit manipulation of argument lists
☞ explicit manipulation of environments
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ava) or in Piccola.
pose components

s.
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Intention
Scripting Components within one or more styles

❑ Components are external (foreign language, i.e. J
❑ Scripting: high level, declarative operators to com
❑ Style:

– Defines kinds of valid compositions

– may ensure system properties

How are these requirements supported by Piccola?
❑ Uniform, general interface to components by Form
❑ User defined infix and prefix operators.
❑ Any (public) Java object can be scripted.



Concurrent Programming 190.

U Scripting Agents

hannel

l ch
n a new agent and returns ()
 send() and a blocking 
niversität Bern

Communicating Agents
ch = newChannel() # create a new C
run

do:
ch.send(“Hello”) # sender agent

run
do:

v = ch.receive() # receiver agent
println(v)

☞ The whole script evaluates to a form with labe
☞ run is a service that evaluates its do: block i
☞ newChannel() returns a form with services

receive()
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il-style

put, replicated input

 along channel C
rm and run abstraction

receive
niversität Bern

Communicating Agents (cont.)
or we can use a style for Channels: 

root = (root, load(“pil”))
ch = newChannel() # redefined in p
ch ! “Hello”
ch ? \(v) = println(v)

✔ No run() invocations anymore
✔ Infix operators for sending and receiving

Components C
A

Channels
Agents

Connectors !, ?, ?* output, in

Rules C ! Form ==> A
C ? Abstraction ==> A
C ?* Abstraction ==> A

send form
receive fo
multiple 
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s. 
r result the first one delivers. 
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Coordination Abstractions
Channels are the only primitive means to coordinate agent
For example: run two agents in parallel and return whateve
Assuming the other gets blocked. 
OrJoin(X):

receptor = newBlackboard()
run (do: receptor.write(X.left()))
run (do: receptor.write(X.right()))
return receptor.remove()

stop() =
newChannel().receive() # will never remove anything

A semaphore is a channel:
newSemaphore():

ch = newChannel()
ch.send() # initially not locked 
return

lock = ch.receive
unlock = ch.send
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h
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Reader Writer
a Component with a set of intended Reader and Writer me
Need a generic wrapper:

Need core RW Policies: Safe, Fair, Writer Priority ... wit
newRWPolicy(): ...

return
preReader: ...
postReader: ...
preWriter: ...
postWriter: ...

Reader

Writer

unsync
Comp.
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 f with r1, r2 Readers 
. Then:
cy
cy()

1)

 methods r1, r2, and w1 
W Policy for f. 
niversität Bern

Wiring
Generic Wrapper:
# X.reader = form of reader methods
# X.writer = form of writer methods
# X.policy = reader writer policy
# return wrap(X.reader), wrap(X.writer)
wireRWPolicy(X) =

wrapAllLambda
form = X.reader
map(service)(Args) =

X.policy.preReader()
service(Args)
X.policy.postReader()

wrapAllLambda
form = X.writer
map(service)(Args) =

X.policy.preWriter()
service(Args)
X.policy.postWriter()

Usage: given a Form
and w1 writer method
wrappedF = wireRWPoli

policy = newRWPoli
reader = 

r1 = f.r1
r2 = f.r2

writer = (w1 = f.w

Then: wrappedF has
and guarantees the R
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ty

ing

der

der

.

postW

postR

postR

writers locked
readers empty

writers unlocked
readers ! 0

writers locked
readers ! 1
niversität Bern

Safe RW Policy
newRWPolicy():

writers = newSemaphore()
readers = newBlackboard()
readers.write(0)

return
preReader:

r = readers.remove()
if (r == 0) (then: writers.lock())
readers.write(r + 1)

postReader:
r = readers.remove()
if (r == 1) (then: writers.unlock())
readers.write(r - 1)

preWriter = writers.lock
postWriter = writers.unlock

emp

writ

1rea

2rea

...

preW

preR

preR
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IFO policy
r is waiting and vice versa
)) and a single worker:

:

RWPolicy
niversität Bern

Safe + Queue = Fair
The above version is safe, but writers may starve...

☞ serve preWriter and preReader using a F
☞ New policy blocks preReader, when a Write
☞ Use a passive queue (with put(), and get(

☞ Need a generic abstraction to queue services

preReader
preWriter

postReader

postWriter
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te this Job
for next Job in the queue
 worker agent

Job to worker
n (blocking) result
niversität Bern

Queue 
queuedService(Form) =

q = newQueue()
def worker() =

q.get().do() # execu
worker() # wait 

run(do: worker()) # start

return wrapAllLambda
form = Form
map(service)(Args) =

result = newBlackboard()
q.put(do: result.write(service(Args))) # send 
return(result.remove()) # retur

Adapting the policy:
myPolicy = rwPolicy.newRWPolicy()

myFifoPolicy = 
myPolicy
queuedService

preWriter = myPolicy.preWriter
preReader = myPolicy.preReader
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Dining Philosophers
The well known example:

Components:
❑ 5 Forks as Semaphores
❑ Group of forks to freeze/initialize
❑ Policy
❑ 5 Philosophers
❑ Group of philosophers to initialize/start
❑ View 
❑ main script to initialize and connect these 

components. 
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at runs an endless loop
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A Philosopher
newPhilosopher(X) =

running = ...    # Flag is true while philo. active
def agent():

running.raiseWhenFalse()
sleep(X.thinkTime())
X.policy.pickForks(X)
sleep(X.eatTime())
X.policy.dropForks(X)
agent()

start() =
running.setTrue()
run(do:

try
do: agent()
catch(E): println("Phil got: " + E))

stop() = running.setFalse()

☞ this is a minimal Philosopher: no Identifier ...
☞ Picking Forks is delegated to policy
☞ Active philosopher is represented by agent th
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ay
, ForkId, has, fork

left
niversität Bern

The Philosopher’s lifetime

❑ use pre- and post-hook of the Forks to notify displ
❑ use Argument Forms to pass information: PhilId

aPhilosopher aPolicy right

pickForks(X)

pick(X’)

reply

pick(X’’)

reply

reply!

hungry

hasRightFork

eating
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x start, stop. 

 such that pick() and 
clude default context 
 (PhilId, ForkId). E.g.:

getFork(leftForkId)

: f.pick
Id = PhilId
Id = leftForkId

: f.drop
Id = PhilId
Id = leftForkId
niversität Bern

Group of Philosophers
philosGroup = newAssembling # multiple

start: ()
stop: ()

def init(N) =
if (N < 5)

then:
philos = newPhilosopher

thinkTime: ...
eatTime: ...
PhilId = N
left = ... the left Fork
right = .... the right Fork
policy = ... the policy

philosGroup.extend(philos)
# add this philosopher to group

init(N + 1)

init(0)

philosGroup.group().start()

Wrap forks
drop() in
information
f = table.
left = 

pick(X)
Phil
Fork
X

drop(X)
Phil
Fork
X
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Policies
all Right handed:
policy =

pickForks(X) =
X.right.pick(has = 0, fork = "RIGHT")
X.left.pick(has = 1, fork = "LEFT")

dropForks(X) =
X.left.drop(has = 2, fork = "LEFT")
X.right.drop(has = 1, fork = "RIGHT")

Deadlock free:
policy =

pickForks(X) =
if (X.PhilId == 0) # avoid cycles

then:
X.right.pick(has = 0, fork = "RIGHT")
X.left.pick(has = 1, fork = "LEFT")

else:
X.left.pick(has = 0, fork = "LEFT")
X.right.pick(has = 1, fork = "RIGHT")

dropForks(X) = ...
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 picked and dropped:
r by the philosophers
g File etc. 

Semaphore

")

Id = 1, ForkId = 2, ...)

pick() = lock()
niversität Bern

First Class Arguments
Observe how contextual information is available a fork gets

❑ This information is needed neither by the forks no
❑ It is needed to hook in notifications for the GUI, lo

philo

policy

wrapped Fork

hooked Fork

pickForks(...)

pick(has = 0, form = "RIGHT

pick(Phil

Philosoper 1 has no forks and picks the 
right one.

...

... 
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 the display
 pre- and post methods:

onsole
UI
niversität Bern

Wiring Philosophers, Forks, and
Provide a factory service to create Forks and add hooks to
newFork() =

s = newSemaphore()
return wrapServices

form = (pick = s.lock, drop = s.unlock)
wrap =

pick =
pre(X):

CoutView.prePickFork(X) # to log c
view.view.prePickFork(X) # notify G

post(X):
CoutView.postPickFork(X)
view.view.postPickFork(X)
if (X.has == 0)

then: sleep(2500)
drop =

pre(X):
CoutView.preDropFork(X)
view.view.preDropFork(X)

post(X):
CoutView.postDropFork(X)
view.view.postDropFork(X)
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= "restart")

th a response 
listener
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A Style for GUI Events

...
restart() =

freeze()
view.reset()
philosGroup.group().start()

restartButton = awtComponent("java.awt.Button").set(Label 

restartButton ? Action(do: restart())

Components C
E
R
L

GUI-Component
Event type
Response
Listener

Connectors ( ), ?

Rules E(R) ==> L
C ? L ==> ()

compose an event type wi
connect a component to a 
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ungry !!!
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Graphical Layout
f = newFrame

newBorderPanel
center = view.img
south = newBorderPanel

center = slider
west = freezeButton
east = restartButton

view.draw()

f.show()

h
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Piccola Projects
❑ Visualization (Debugging)
❑ Reasoning
❑ Distribution (using Corba, RMI, DCOM...)
❑ Composition Workbench (including Repositories)
❑ Implementation and optimization of forms.
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The programming model

Programs proceed by means of communication.

• Communication is a fundamental and integral part of computing,
whether between different computers on a network, or between
components within a single computer.

• Robin Milner’s view: Programs are built from communicating
parts, rather than adding communication as an extra level of
activity.
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A B

C

D

Static system

D

A B

C
Node deleted

D2

D1

A B

C
Node divided

Evolving Automata

A B

C

D

Link moved
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Automata

Starting point: The components of a system are interacting automata.

An automaton is a quintuple A = ( 6, Q, q0, V, F ) with:
• a set 6 of actions (sometimes called an alphabet),
• a set Q = { q0, q1,…} of states,
• a subset F of Q called the accepting states,
• a subset V of Q u A u Q called the transitions,
• a designated start state q0.

The automaton A is said to be finite if Q is finite.

A transition (q, a, q’) ��V is usually written q'.q a�o�
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Behaviour of Automata

An automaton is deterministic if for each pair (q, a) ��Q u 6
there is exactly one transition q'.q a�o�

deterministic automata: non-deterministic automata:

q0
q2

q1
q3a3

a1

a1 a3

a2
q0

q2

q1a3

a1

a3

a2
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Vending machine

1Fr

%ODFN�%R[�&RUSRUDWLRQ

tea

coffee A tea/coffee vending machine
is implemented as black box
with a three-symbol alphabet
{1Fr, }. coffee ,tea
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Internal transition diagrams

q0 q1 q2

1Fr 1Fr

tea

coffee
q1

q3q2q0 1Fr

1Fr 1Fr

tea

coffee

Deterministic system S1: Non-deterministic system S2:

Are both systems equivalent?
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S1 = S2?

The systems S1 and S2 are language-equivalent,
but the observable behaviour is not the same.

S1: S2:

*))1(1(0

0)1(10

)010(10

0101

02

2101
110

coffeeFrteaFrq

qcoffeeFrteaFrq

qcoffeeFrqteaFrq

qcoffeeFrqteaq

qcoffeeq

qFrqteaq
qFrq

��� 

����� 

������ 

���� 

� 

��� 

�� 

H

H

H

*))1(1(0

0)1(10

)010(10

011010

012

03

312
01

21110

coffeeFrteaFrq

qcoffeeFrteaFrq

qcoffeeFrqteaFrq

qcoffeeFrFrqteaFrq

qcoffeeFrq

qcoffeeq

qFrq
qteaq

qFrqFrq

��� 

����� 

������ 

������� 

�� 

� 

� 

� 

���� 

H

H

H

H
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Automata - Summary

Language-equivalence is not suitable for all purposes. If
we are interested in interactive behaviour, then a non-
deterministic automaton cannot correctly be equated
behaviourally with a deterministic one.

A different theory is required!
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Labelled transition systems

A labelled transition system over actions Act is a pair ( Q, T )
consisting of:
• a set Q = { q0, q1,…} of states,
• a ternary relation T ���Q u Act u Q), known as a transition
relation.

If (q, D, q’) � T we write             , and we call q the source
and q’ the target of the transition.

q'q �o�
D
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States and Actions

Important conceptual changes:
• What matters about a string s - a sequence of actions -  is not
whether it drives the automaton into an accepting state (since
we cannot detect this by interaction) but whether the
automaton is able to perform the sequence of s interactively.

• A labelled transition system can be thought of as an
automaton without a start or accepting states.

• Any state can be considered as the start.

Actions consist of a set L of labels and a set    of co-labels with
                    We use D, E, … to range over actions Act.

L
}.|{ LL � aa
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Strong Simulation - Idea

• In 1981 D. Park proposed a new approach to define the
equivalence of automatons - bisimulation.

• Given a labelled transition system there exists a standard
definition of bisimulation equivalence that can be applied to
this labelled transition system.

• The definition of bisimulation is given in a coinductive style
that is, two systems are bisimular if we cannot show that they
are not.

• Informally, to say a ‘system S1 simulates system S2’ means
that S1’s observable behaviour is at least as rich as that of S2.
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Strong Simulation - Definition

Let (Q, T) be an labelled transition system, and let S be a binary
relation over Q. Then S is called a strong simulation over (Q, T)
if, whenever pSq,

   if             then there exists q’ � Q such that            and p’Sq’.

   We say that q strongly simulates p if there exists a strong
simulation S such that pSq.

'pp �o�

D 'qq �o�

D
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Strong Simulation - Example

q0 q1

q4

1Fr

1Fr

tea

coffee
q2 q3

S1:

p0

p1 p2
1Fr

1Fr

tea

coffee
p4 p5

S2:

p3
1Fr

The states q0 and p0 are different.
Therefore, the systems S1 and S2 are
not considered to  be equivalent.
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Strong Simulation - Example II

Define S by

  S = {(p0, q0), (p1, q1), (p3, q1), (p2, q4), (p4, q2), (p5, q3)}

then S is a strong simulation; hence q0 strongly simulates p0.
To verify this, for every pair (p, q) � S we have to consider
each transition of p, and show that it is properly matched by
some transition of q.

However, there exists no strong simulation R that contains
the pair (q1, p1), because one of q1’s transition could never
be matched by p1. Therefore, the states q0 and p0 are
different, and the systems S1 and S2 are not considered to  be
equivalent.
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Strong Bisimulation

The converse R-1 of any binary relation R is the set of pairs (y, x)
such that (x, y) ��R.

Let (Q, T) be an labelled transition system, and let S be a binary
relation over Q. Then S is called a strong bisimulation over (Q, T)
if both S and its converse S-1 are strong simulations. We say that p
and q are strongly bisimular or strongly equivalent, written p ~ q,
if there exists a strong bisimulation S such that pSq.
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Checking Bisimulation

S1:

S2:

q0 q1

q3

a
b q2

c

p0

p1 p2a

a
p4p3

c

b

S1 ~ S2?

To construct S start with (p0, q0) and check whether S2 can
match all transitions of S1:
   S = { (p0, q0), (p1, q1), (p3, q1), (p2, q2), (p4, q3) }

System S2 can simulate system S1. Now check, whether  S-1

is a simulation or not:
  S -1 = { (q0, p0), (q1, p1), (q1, p3), (q2, p2), (q3, p4) }

Start with (q0, p0) � S -1.
1: q0 has one transition ‘a’ that can be matched by two
    transitions of S1 (target p1 and p3, respectively) and
    we have (q1, p1) � S -1 and (q1, p3) � S -1.
2: q1 has two transitions ‘b’ and ‘c’, which, however,
    cannot appropriately be matched by the related states p1
    and p3 of system S1 (p1 has only a ‘b’ transition whilst
    p3 has only a ‘c’ transition).
    We have, therefore, S1 ~ S2./
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Some Facts on Bisimulations

~ is an equivalence relation.

If Si, i = 1, 2,... is a family of strong bisimulations, then the following
relations are also strong bisimulations:

• IdP

• S1 q S2 = {(P, Q) ��P u P  if R exists with (P, R) � S1, (R, Q) � S2 }

• Si
-1

• �
Ii

i
�

S
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Some Facts on Bisimulations II

S1 q S2 = {(P, Q) ��P u P  if R exists with (P, R) � S1, (R, Q) � S2 }

Proof:

Let (P, Q) �  S1 q S2. Then there exists a R with (P, R) � S1

and (R, Q) � S2.
(o) If                , then since (P, R) � S1 there exists R’ and
                       and (P’, R’) � S1. Furthermore, since
        (R, Q) � S2 there exists a Q’ with                and
        (R’, Q’) � S2. Due to the definition of S1 q S2 it holds
        that (P’, Q’) �  S1 q S2 as required.
(m) similar to (o).

P'  P ��o�
D

R'  R ��o�

D

Q'  Q ��o�
D
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Bisimulation - Summary

Bisimulation is an equivalence relation defined over a labelled
transition system which respects non-determinism. The
bisimulation technique can therefore be used to compare the
observable behaviour of interacting systems.

Note: Strong bisimulation does not cover unobservable behaviour
which is present in systems that have operators to define reaction
(i.e., internal actions).
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The S-Calculus

• The S-calculus is a model of concurrent computation based
upon the notion of naming.
• The S-calculus is a calculus in which the topology of
communication can evolve dynamically during evaluation.
• In the S-calculus communication links are identified by
names, and computation is represented purely as the
communication of names across links.
• The S-calculus is an extension of the process algebra CCS,
following the work by Engberg and Nielsen who added
mobility to CCS while preserving its algebraic properties.
• The most popular versions of the S-calculus are the monadic
S-calculus, the polyadic S-calculus, and the simplified polyadic
S-calculus.
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The S-Calculus - Basic Ideas

• The most primitive in the S-calculus is a name, Names,
infinitely many, are x, y,… ��N; they have no structure.
• In the S-calculus we only have one other kind of entity: a
process. We use P, Q, … to range over processes.

Polyadic prefixes:

• input prefix:
“input some names y1,…,yn along the link named x”

• output prefix:
“output the names y1,…,yn along the link named x”

)~(yx

²¢yx ~
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The S-Calculus - Syntax

Null

only)-(inputn Replicatio!

Output

Input)(

nRestrictio)(

ncompositio Parallel|

0

P
ny,...,

1
yx

.Pny,...,
1

yx

P x 

P  P::Q P,

²¢

 

X

Note: We only consider the simplified polyadic version.
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Reduction Semantics
Milner proposed first a reduction semantics technique. Using the
reduction semantics technique allows us to separate the laws
which govern the neighbourhood relation among processes from
the rules that specify their interaction.

)fn(   ),|)( (|) (
)|(||)|(

||
|
!|!

QxQ  Px  Q  Px
R  Q  P  R  Q  P

P  Q  Q  P
  P  P

P  P  P

�{

{

{
{
{

XX

0

}{|)(

)()(
'

||

n1n1n1n1
,...,zz\y,...,yP  ,...,zzx  .Py,...,yx             

Qx  Px 
QP

Q P
Q'  QQP'P'  P

P  R P  Q
RQ

�o�

�o�

�o�

�o�

�o�

�o�

�o�

²¢

{{
XX
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Evolution

²¢²¢²¢²¢²¢²¢²¢ vz  yx  or  zx  vy  to  evolve  can  zx  vu.ux  yx |||)(|

²¢²¢²¢²¢²¢ zx  vy  to  evolve  can  zx  vu.ux  yxx ||))(|)((X

²¢²¢²¢

²¢²¢²¢²¢²¢²¢

²¢²¢²¢

vz  vu.ux  vy              
and

vz  vu.ux  yx  or  zx  vu.ux  vy              

  to  evolve  can  zx  vu.ux  yx

|)(!|

|)(!||)(!|

|)(!|
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Church’s Encoding of Booleans

f.f t,b  t.f t,c  t f,c.f t,bc 
b  c  c b,c 

t f,c.f t,bc b,

f.f t,bb

t.f t,bb

)())(|)()()((
)())(|)()((

)()()(

)()(

)()(

 

 

{

{

{

X

X FalseTrueNot

Not

False

True

?
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Actions:

)
~

(ba

²¢ba
~

²¢bax 
~

)~(X

W

Input action; x is the name at which it occurs,
   is the tuple of names which are receivedb
~

Output action; x is the name at which it occurs,
   is the tuple of names which are emittedb
~

Output action; x is the name at which it occurs,
   is the tuple of names which are emitted;
denotes private names which are carried out
from their current scope (scope extrusion)

b
~

)~( x X

Silent action; this action denotes unobservable
internal communication.
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Labelled Transition Semantics

}
~

\~{)~(:IN )
~

( bxP  .Pxa ba
��� o� 0  ba ba

��� o�
²¢²¢

~~
:OUT

P'  Py 

x - b y a y P'  P 
baxy, 

bax 
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����� o�
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²¢ �z
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Some Facts
• The side conditions in the transition rules ensure that names do
not become accidentally be bound or captured.
In the rule RES the side condition prevents transitions like

}\{)()()( )( xbPx   .Pbax xa
XX ��� o�

which would violate the static binding assumed for restriction.

• In the given system bound names of an input are instantiated as
soon  as possible, namely in the rule for input - it is therefore an
early transition system. Late instantiation is done in the rule for
communication.
• The given system implements an asynchronous variant of the S-
calculus. Therefore, output action are not directly observable.
• There is no rule for D-conversion. It is assumed that D-conversion
is always possible.
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Experiments
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Experiment 2:

?

Using strong bisimulation, the systems are not equivalent.
Furthermore, an asynchronous observer can only indirectly
see that an output message has been consumed.
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Bisimulation - A Board Game

The central idea of bisimulation is that an external observer
performs experiments with both processes P and Q observing
the results in turn in order to match each others process
behaviour step-by-step.

Checking the equivalence of processes this way one can think
of this as a game played between two persons, the unbeliever,
who thinks that P and Q are not equivalent, and the believer,
who thinks that P and Q are equivalent. The underlying strategy
of this game is that the unbeliever is trying to perform a process
transition which cannot be matched by the believer.
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Synchronous Interactions

There exists two kinds of experiments to check process equivalence:
input-experiments and output-experiments. Both experiments are
triggered by their corresponding opposite action.

In the synchronous case, input actions for a process P are only
generated if there exists a matching receiver that is enabled within P.
The existence of an input transition such that P evolves to P’ reflects
precisely the fact that a message offered by the observer has actually
been consumed.



33

Asynchronous Interactions

In an synchronous system the sender of an output message does not
know when the message is actually consumed. In other words, at the
time of consumption of the message, its sender is not participating in
the event anymore. Therefore, an asynchronous observer, in contrast
to a synchronous one, cannot directly detect the input actions of the
observed process. We need therefore a different notion of input-
experiment.

Solution: Asynchronous input-experiments are incorporated into the
definition of bisimulation such that inputs of processes have to be
simulated only indirectly by observing the output behaviour of the
process in context of arbitrary messages (e.g.,             ).²¢ba  P

~
|
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The Silent Action

Strong bisimulation does not respect silent actions (W-transitions).

Silent transitions denote unobservable internal communication.
From the observer’s point of view we can only notice that the
system takes more time to respond.

Silent actions do not denote any interacting behaviour. Therefore,
we may consider two systems P and Q  to be equivalent if they
only differ in the number of internal communications.

We write               if                                 . In other words, a given
observable action can have an arbitrary number of preceding or
following internal communications.

P' P D

� P'*  P )(*)( �o��o��o�
WDW
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Asynchronous Bisimulation

A binary relation S over processes P and Q is a weak
(observable) bisimulation if it is symmetric and P S Q implies

• whenever             , where D is either W or output with
                                   , then Q’ exists such that               and
   P’ S Q’.

•                                     for all messages        .

Two processes P and Q are weakly bisimular, written           , if
there is a weak bisimulation S with P S Q.
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Some Facts

• | is an equivalence relation.

• | is a congruence relation.

• Leading W-transitions are significant, i.e., they cannot be omitted.

• Asynchronous bisimulation is the framework that enables us to
state P = Q iff P | Q and vice versa.
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An Simple Object Model
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A List

A list is either Nil or Cons of value and a list.

Node

v

h l

The constant Nil, the construction Cons( V, L), and a list of n values
are defined as follows:

    

...Nil ,VCons ,Cons ,VCons,...VV

lLvVl v,c.c n,hl v, L V,Cons

n.c n,hNil

n1n1
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A Concurrent Language

V ::= X | Y | … Variable
F ::= + | - | … | 0 | 1 | … Function symbols
C ::= V = E Assignment
         C ; C Sequential Composition
         if E then C else C Conditional Statement
         while E do C While Statement
         let D in C end Declaration
         C par C Parallel Composition
         input V Input
         output E Output
         skip
D ::= var V Variable Declaration
E ::= V Variable Expression
         F( E1,…, En) Function Call
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Ambiguous Meaning

X = 0;
X = X + 1 par X = X +2

    What is the value of X at the end of the second statement?
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Basic Elements

• We assume that each element of the source language is assigned
a process expression.

Variables:

Skip:

C1 ; C2 =

C1 par C2 =
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Expressions

X =

F(E1,…,En) =

 M[F(E1,…,En)] =
             (X arg1,…,argn)(M[E1]{ res\arg1} | …
                                       M[En]{ res\argn} | M[F] )

))()(|)()(( vres.vack  ackgetXack X

)(. res ,x ..., ,xF)(x).....arg(xarg n1nn11
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Operation Sequence

X = 0;
X = X + 1 par X = X +2

    What is the value of X at the end of the second statement?

    According to the former definitions the value of X is either
    1, 2, or 3.  The three values are possible since every atomic
    action can occur in an arbitrary and meshed order.

    To guarantee a specific result (e.g., 1 or 2), we need to
    employ semaphors.
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What have we learned?

• Classical automata theory does not cope correctly with
interacting behaviour
• Bisimulation is an equivalence relation defined over a labelled
transition system which respects non-determinism andcan
therefore be used to compare the observable behaviour of
interacting systems.
• The S-calculus is a name-passing system in which program
progress is expressed by communication.
• Which the S-calculus we can model higher-level
programming abstractions like objects and lists.
• A concurrent programming language can be assigned a
semantics based on the S-calculus.
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 Research:

• Piccola - a small composition language
• The SL-calculus - a formal foundation for software 

composition.
• COORDINA - coordination models and languages

Resources: http://www.iam.unibe.ch/~sc g
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