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Concurrent Programming

1. Concurrent Programming

Lecturer: Prof. Oscar Nierstrasz
Schiutzenmattstr. 14/103, Tel. 631.4618, oscar @ am uni be. ch
Assistants: Dr. Markus Lumpe, Franz Achermann
WWW: www. i am uni be. ch/ ~scg/ Lect ur es/
Text:

[0 D. Lea, Concurrent Programming in Java: Design Principles and Patterns,
Addison-Wesley, 1996

Other Sources:

[0 D. Lea, Online Supplement to Concurrent Programming in Java,
http://gee.cs. oswego. edu/dl /cpj/index. htm

[0 N. Carriero, D. Gelernter, How to Write Parallel Programs: a First Course, MIT
Press, Cambridge, 1990.

0 A.Burns, G. Davies, Concurrent Programming, Addison-Wesley, 1993

0 J. Magee, J. Kramer, Concurrency: State Models & Java Programs, Wiley, 1999
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Concurrent Programming 2.

Schedule

1. 01.11 Introduction — Concurrency and Java
2. 08.11 Safety

3. 15.11 Liveness

4. 22.11 Lab session

5. 29.11 Asynchronous Methods

6. 06.12 Fine-grained Synchronization

7. 13.12 Lab session

8. 20.12 Architectural Styles for Concurrency
9. 10.01 Concurrent Programming Approaches
10. 17.01 Petri Nets

11. 24.01 Pi Calculus (1)

12. 31.01 Pi Calculus (Il)

13. 07.02 Piccola — a language for scripting concurrent components
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Concurrent Programming

Introduction
Overview
[0 Concurrency and Parallelism
[0 Applications of Concurrency
[0 Limitations
[0 safety, liveness, non-determinism ...
[0 Approach
[0 idioms, patterns and architectural styles
[0 Java and concurrency

Universitat Bern
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Concurrency and Parallelism

“A sequential program specifies sequential execution of a list of statements; its execution
is called a process.

A concurrent program specifies two or more sequential programs that may be executed
concurrently as parallel processes.”

A concurrent program can be executed by:

1. Multiprogramming: processes share one or more processors

2. Multiprocessing: each process runs on its own processor
but with shared memory

3. Distributed processing: each process runs on its own processor

connected by a network to others

Assume only that all processes make positive finite progress.

Universitat Bern Concurrent Programming
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Applications of Concurrency

There are many good reasons to build concurrent programs:

[ Reactive programming
[ minimize response delay; maximize throughput

[ Real-time programming
[0 process control applications

[J  Simulation
[0 modelling real-world concurrency

[0 Parallelism
[0 exploit multiple CPUs for number-crunching; exploit parallel algorithms

[1 Distribution
[1 coordinate distributed services

Universitat Bern Concurrent Programming
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Limitations

But concurrent applications introduce complexity:

[0 Safety
[J synchronization mechanisms are needed to maintain consistency

[0 Liveness
[J special techniques may be needed to guarantee progress

[0 Non-determinism
[1 debugging is harder because results may depend on “race conditions”

[ Communication complexity
[0 communicating with a thread is more complex than a method call

[0 Run-time overhead
[0 thread construction, context switching and synchronization take time

Universitat Bern Concurrent Programming
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Atomicity

Programs P1 and P2 execute concurrently:

{x=0}
P1: X =x+1
P2: X = X+2
{x=7}

What are possible values of x after P1 and P2 complete?
What is the intended final value of x?

Synchronization mechanisms are needed to restrict the possible interleavings of
processes so that sets of actions can be seen as atomic.

Mutual exclusion ensures that statements within a critical section are treated atomically.

Universitat Bern Concurrent Programming
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Expressing Concurrency

Notations for expressing concurrent computation must address:
1. Process Creation: how is concurrent execution specified?
2. Communication: how do processes communicate?

3. Synchronization: how is consistency maintained?

Universitat Bern Concurrent Programming
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Safety and Liveness

There are two principal difficulties in implementing concurrent programs:

Safety — ensuring consistency:
[0  Mutual exclusion — shared resources must be updated atomically

[0 Condition synchronization — operations may need to be delayed if shared
resources are not in an appropriate state (e.g., read from empty buffer)

l.e., “Nothing bad happens”

Liveness — ensuring progress:
[0 No Deadlock — some process can always access a shared resource
[0 No Starvation — all processes can eventually access shared resources

l.e., “Something good happens”

Universitat Bern Concurrent Programming
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Idioms, Patterns and Architectural Styles

Idioms, patterns and architectural styles express best practice in resolving common
design problems.

[1 ldioms

0 “alow-level pattern specific to a programming language”
— or more generally: “an implementation technique”

[0 Design patterns

0 “a commonly-recurring structure of communicating components that
solves a general design problem within a particular context”

1  Architectural patterns (styles)
[0 “afundamental structural organization schema for software systems”

— cf. Buschmann et al., Pattern-Oriented Software Architecture, pp. 12-14

Universitat Bern Concurrent Programming
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Java

Language design influenced by existing OO languages (C++, Smalltalk ...):
[1  Strongly-typed, concurrent, pure object-oriented language
[0 Syntax, type model influenced by C++
[0  Single-inheritance but multiple subtyping
[J Garbage collection

Innovation in support for network applications:
[0 Standard API for language features, basic GUI, IO, concurrency, network
Compiled to bytecode; interpreted by portable abstract machine
Support for native methods
Classes can be dynamically loaded over network
Security model protects clients from malicious objects

N I I

Java applications do not have to be installed and maintained by users

Universitat Bern Concurrent Programming
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Threads

A Java Thread has a r un method defining its behaviour:

class Si npl eThread extends Thread {
public SinpleThread(String str) {

super (str); /] Call Thread constructor
}
public void run() { /]l What the thread does
for (int L =20; i < 10; i++) {
Systemout.println(i + " " + getNane());
try {
sleep((int)(Math.random() * 1000));
} catch (InterruptedException e) { }
}
Systemout.println("DONE! " + getName());
}

}

Universitat Bern Concurrent Programming
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Threads ...

A Thread’s run method is never called directly but is executed when the Thread is started:

class TwoThreadsTest {
public static void main (String[] args) {
/'l Instantiate a Thread, then start it:
new Si npl eThread("Jamai ca").start();
new Si npl eThread("Fiji").start();

}
}

Universitat Bern Concurrent Programming
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14.

Running the TwoThreadsTest

oo ~N~NOUGOoOOUPAADWWNDNEPRELPOO

DONE!

9

DONE!

Universitat Bern

Janai ca
Fiji
Janai ca
Fiji
Janai ca
Fiji
Janai ca
Fiji
Janai ca
Fiji
Janai ca
Janai ca
Fiji
Fiji
Fiji
Janai ca
Janai ca
Janai ca
Fiji

Fiji

Janal ca

Fiji

In this implementation of Java, the execution
of the two threads is interleaved.

This is not guaranteed for all implementations!
[0 Why are the output lines never garbled?

E.Q.
00 JaFi maj i cai

Concurrent Programming



Concurrent Programming 15.

java.lang.Thread

The Thread class encapsulates all information concerning running threads of control:

public class java.l ang. Thread
extends java.l ang. Cbject inplenents java.l ang. Runnabl e

{
publ i

publ i
publ i
publ i

publ i
publ i
publ i

publ i
publ i

Universitat Bern

O O 0O O

O

(@)

Thread();

Thread(Runnabl e target);
Thread(Runnabl e target, String nane);
Thread(String nane);

static void sleep(long mllis)
throws I nterruptedException;
static void yield();

final String getNane();
void run();
synchroni zed void start();

Concurrent Programming
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16.

rransitions between Thread States

(Thread A
yield()
start() run() exits
{ Runnable ) >@
sleep() time elapsed
walit() notify() or notifyAll()
block on 1/O I/O completed
(Not Runnable)
4 J

Universitat Bern
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Java.lang.Runnable

Since multiple inheritance is not supported, it is not possible to inherit from both Thr ead
and from another class providing useful behaviour (like Appl et ).

In these cases it is sufficient to define a class that implements the Runnable interface,
and to call the Thread constructor with an instance of that class as a parameter:

public interface java.l ang. Runnabl e

{
}

public abstract void run();

Universitat Bern Concurrent Programming
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Creating Threads

A Cl ock object updates the time as an Appl et with its own Thr ead.:

| nport java.awt. G aphi cs;
| nport java.util. Date;
public class Cl ock ext ends java. appl et . Appl et
| npl enments Runnabl e
{
Thread cl ockThread = null;
public void start() {
| f (clockThread == null) {
cl ockThread = new Thread(this, "C ock");
// NB: creates its own thread
cl ockThread. start();

}
}

Universitat Bern Concurrent Programming
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Creating Threads ...

public void run() {

/] term nates when clockThread is set to null in stop()
while (Thread. current Thread() == clockThread) {
repaint();

try { clockThread. sl eep(1000); }
catch (I nterruptedException e){ }
}
}
public void paint(Gaphics g) {
Dat e now = new Date();
g.drawsStri ng(now. get Hours() + ":" + now. get M nut es()
+ ":" + now. get Seconds(), 5, 10);
}

public void stop() { clockThread = null; }
}

Universitat Bern Concurrent Programming
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Synchronization

Without synchronization, an arbitrary number of threads may run at any time within the
methods of an object.

[1 Methods cannot assume that the class invariant holds
(since another method may be running)

[0 There is no way to guarantee that a method will ensure its post-
condition

A simple solution is to consider a method to be a critical section which locks access to
the object while it is running.

This works as long as methods cooperate in locking and unlocking access!

Universitat Bern Concurrent Programming
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Synchronization ...

One can either declare an entire method to be synchronized with other synchronized
methods of an object:

public class PrintStream extends FilterQutputStream {

public synchronized void println(String s);
public synchroni zed void println(char c);

or an individual block within a method may be synchronized with respect to some object:

synchroni zed (resource) { // Lock resource before using it

}

Universitat Bern Concurrent Programming
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wait and notify

Sometimes threads must be delayed until a resource is in a suitable state:

class Slot { [/ a one-slot buffer
private (bject slotVal _; [l initially null
publ i c synchroni zed voi d put (Coject val) { /1 put contents,
while (slotVal _ '=null) { /[l if there is room
try { wait(); } /]l otherw se wait
catch (InterruptedException e) { }
}
slotVal = val;
noti fyAll (); /'l wake up waiting consuner
return;
}
publ i ¢ synchroni zed Cbject get() { /'l return contents,
(oj ect rval;
while (slotVal _ == null) { /1 1f available
try { wait(); } /] otherw se wait
catch (InterruptedException e) { }
}
rval = slotVal _;
slotVal _ = null;
noti fyAl l (); /1 wake up waiting producer
return rval;
}

Universitat Bern Concurrent Programming
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java.lang.Object

Unlike synchroni zed,wai t () andnoti fy() are methods rather than keywords:

public class java.l ang. Obj ect

{
public final void wait() throws | nterruptedException;
public final void wait(long timeout)
throws I nterruptedException;
public final void wait(long tinmeout, 1 nt nanos)
t hrows | nterruptedException;
public final void notify();
public final void notifyAll();
}

Universitat Bern Concurrent Programming



Concurrent Programming 24.

Ssummary

You Should Know The Answers To These Questions:

[0 What is the distinction between “concurrency” and “parallelism”?
What are classical applications of concurrent programming?
Why are concurrent programs more complex than sequential ones?
What are “safety” and “liveness”? Give examples.
How do you create a new thread in Java?
What states can a Java thread be in? How does it change state?
When should you declare a method to be synchr oni zed?

NN I I I

Can You Answer The Following Questions?
[0 What is an example of a “race condition”?

[0 When will a concurrent program run faster than an equivalent sequential one?
When will it be slower?

[0 What is the difference between deadlock and starvation?
[0 What happens if you callwai t ornot i f y outside a synchronized method or block?
[0 When is it better to use synchronized blocks rather than methods?

Universitat Bern Concurrent Programming
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2. Safety

Overview
O Immutability:
[0 avoid safety problems by avoiding state changes

0  Full Synchronization:
[0 dynamically ensure exclusive access

[0 Partial Synchronization:
[0 restrict synchronization to “critical sections”

[0 Containment:
[0 structurally ensure exclusive access

Universitat Bern Safety
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Safety problems

Objects must only be accessed when they are in a consistent state
[0 methods must maintain class (state and representation) invariants

Normally each method may
> ml abstract states assume the class invariant
holds when it starts, (i.e., that
the object is in a consistent
ol state) and it must ensure it
P when it is done.

Incoming requests m?2

> m3

If methods interleave

m4 arbitrarily, an inconsistent
state may be accessed, and
the object may be left in a
md “dirty” state.

O

methods

Universitat Bern Safety
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Immutable classes

Intent

Bypass safety issues by not changing an object’s state after creation.

Applicability

[]

When objects represent values of simple ADTs

[0 colours (java.awt.Color), numbers (java.lang.Integer) and strings
(java.lang.String)

When classes can be separated into mutable and immutable versions
[0 java.lang.String vs. java.lang.StringBuffer

When updating by copying is cheap

O “hello” +*” + “world” - “hello world”

When multiple instances can represent the same value

[ i.e., two distinct copies of the integer 712 represent the same value

27.

Universitat Bern
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Immutability variants

Variants
[1 Stateless methods

[0 methods that do not access an object’s state do not need to be
synchronized (such methods can be declared st ati c¢)

[0 any temporary state should be purely local to the method

[J Stateless objects
[0 an object whose “state” is dynamically computed needs no synchronization

0 “Hardening”
[0 object becomes immutable after a mutable phase
[0 be sure that object is exposed to concurrent threads only after hardening

Universitat Bern Safety
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Immutable classes — design steps

[0 Declare a class with instance variables that are never changed after
construction.

class Rel ay { /'l a helper for sone Server class
private final Server server_;

Rel ay(Server s) { [l blank finals nust be initialized
server_ = s; // in all constructors
}

void dolt() {
server _.dolt();

}
}

Universitat Bern Safety
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Design steps ...

[0 Especially if the class represents an immutable data abstraction (such as
St ri ng), consider overriding Obj ect . equal s and Cbj ect . hashCode.

[0 Consider writing methods that generate new objects of this class.
(e.g., St ri ng concatenation)

[0 Consider declaring the class asfi nal .

0 If only some variables are immutable, use synchronization or other techniques
for the methods that are not stateless.

Universitat Bern Safety
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Fully Synchronized Objects

Intent

Maintain consistency by fully synchronizing all methods.At most one method will run at
any point in time.

Applicability

[0 Youwantto eliminate all possible read/write and write/write conflicts, regardless
of the context in which it the object is used.

[0 All methods can run to completion without waits, retries, or infinite loops.

[0 You do not need to use instances in a layered design in which other objects
control synchronization of this class.

[1  You can avoid or deal with liveness failures, for example, by:
[0 Exploiting partial immutability

Removing synchronization for accessors.

Removing synchronization in invocations.

Arranging per-method concurrency.

O O O

Universitat Bern Safety
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Full Synchronization — design steps

[0 Declare all methods as synchr oni zed

[0 Do not allow any direct access to state (i.e, no publ i ¢ instance variables;
no methods that return references to instance variables).

[0 Constructors cannot be marked as synchr oni zed in Java. Use a
synchronized block in case a constructor passest hi s to multiple threads.

[1 Methods that access st at i ¢ variables must either do soviast ati c
synchr oni zed methods or within blocks of the form
synchroni zed(getClass()) { ... }.

Universitat Bern Safety
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Design steps ...

[0 Ensure that every publ i ¢ method exits leaving the object in a consistent state,
even if it exits via an exception.

[0 Keep methods short so they can atomically run to completion. State-dependent
actions must rely on balking:

[0 Return failure (i.e., exception) to client if preconditions fall

[0 If the precondition does not depend on state (e.g., just on the arguments),
then no need to run check in synchronized code!

[0 Provide public accessor methods so that clients can check conditions
before making request!

Universitat Bern Safety
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Example: a BalkingBoundedCounter

A Bounded Counter holds a value between MIN and MAX.
If the preconditions fori nc() ordec() fail, an exception is raised.:

public cl ass Bal ki ngBoundedCount er {
protected | ong count = BoundedCounter.M N;
public synchronized | ong value() { return count ; }
public synchroni zed void inc()
t hrows Cannot | ncrenent Exception {
I f (count _ >= BoundedCount er. MAX)
t hrow new Cannot | ncrenment Excepti on();
el se
++count _;

}

public synchroni zed void dec() ... { ... }

}

[0 What safety problems would arise if this class were not fully synchronized?

Universitat Bern Safety
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Example: an ExpandableArray

This Expandable Array is a simplified variant of java.util.Vector:

| mport java.util.NoSuchEl enent Excepti on;
publ i c class Expandabl eArray {
private (Object[] data_; /] the el enents
private int size_ ; [l the nunmber of slots used
publ i ¢ Expandabl eArray(int cap) {
data_ = new Qbj ect[cap]; /] reserve sone space
size = 0;
}

public synchronized int size() { return size ; }
public synchronized Qbject at(int i) // array indexing
t hrows NoSuchEl enent Exception {

if (i <0 || i >=size )
t hrow new NoSuchEl ement Excepti on();
el se

return data [i];

Universitat Bern Safety
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36.

Example ...

public synchroni zed void append(Object x) { // add at end
| f (size_>= data_.length) {

(bj ect[] olddata =

/'l need a bigger

array
= data_; /]l so increase ~50%
data_ = new Object[3 * (size_+ 1) |/ 2];
for (int i =0; I < size_; ++i)
data [i] = olddata[i];
}

data [size ++] = X;

}

public synchroni zed void renpvelast ()

t hrows NoSuchEl enent Exception {
I f (size_ == 0)

el se

data [--size ] = null;

t hrow new NoSuchEl ement Excepti on();

}
}

[0  What could happen if any of these methods were not synchronized?

Universitat Bern
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Bundling Atomicity

[0 Consider adding synchronized methods that perform frequently desired
sequences of actions as single atomic action, so that clients do not need to
Impose extra synchronization or control.

public interface Procedure { // apply an operation to an obj ect
public void apply(QObject X);
}

public class Expandabl eArrayV2 extends Expandabl eArray {
publ i ¢ Expandabl eArrayV2(int cap) { super(cap); }
public synchroni zed void appl yToAll (Procedure p) {
for (int i =0; 1 < size ; ++i) {
p.apply(data_[i]);
} // oops -- SIZE _ and data_ should have been protected!
}

}

[0 What possible liveness problems does this technique introduce?

Universitat Bern Safety
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Using inner classes

Anonymous inner classes (in Java 1.1) are the OO equivalent of lambda expressions:

cl ass Expandabl eArrayUser {
public static void main(String[] args) {
Expandabl eArrayV2 a = new Expandabl eArrayV2(100);
for (int i = 0; i < 100; ++i) [ fill 1t up
a. append(new I nteger(i));
a. appl yToAl | (new Procedure () { // print all elenents
public void apply(Object x) {
System out. println(x);

Any variables shared with the host object must be declared f i nal (immutable).

Universitat Bern Safety
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Partial Synchronization

Intent
Reduce overhead by synchronizing only within “critical sections”.

Applicability
[0  When objects have both mutable and immutable instance variables.

[0  When methods can be split into a “critical section” that deals with mutable state
and a part that does not.

Design steps
[0 Fully synchronize all methods
[ Remove synchronization for accessors to atomic or immutable values

[ Remove synchronization for methods that access mutable state through a
single other, already synchronized method

[1 Replace method synchronization by block synchronization for methods where
access to mutable state is restricted to a single, critical section

Universitat Bern Safety
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Example: LinkedCells

public class LinkedCell {
protected double value ; // NB: doubles are not atom c!
protected final LinkedCell next ; [/ fixed

public LinkedCell (double val, LinkedCell next) {

val ue_ = val; next_ = next;
}
public synchroni zed double value() { return value_ ; }
public synchroni zed void setVal ue(double v) { value = v; }
public LinkedCell next() { /] not synched!

return next _; [/ next is iInmutable

}

Universitat Bern Safety
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Example ...

publ i c double sun() { /] add up all elenment val ues

doubl e v = val ue(); /'l get via synchroni zed accessor
I f (next() !'= null)
V += next().sum);
return v;
}
publ i c bool ean includes(double x) { // search for x
synchroni zed(this) { /'l synch to access val ue
| f (value_ == x) return true;
}
I f (next() == null) return fal se;
el se return next().includes(x);

Universitat Bern Safety
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Containment

Intent

Achieve safety by avoiding shared variables. Unsynchronized objects are “contained”
inside other objects that have at most one thread active at a time.

Applicability

[0 There is no need for shared access to the embedded objects.
The embedded objects can be conceptualized as exclusively held resources
You can tolerate the additional context dependence for embedded objects.

Embedded objects must be structured as islands — communication-closed sets
of objects ultimately reachable from a single unique reference. They cannot
contain methods that reveal their identities to other objects.

You are willing to hand-check designs for compliance.

You can deal with or avoid indefinite postponements or deadlocks in cases
where host objects must transiently acquire multiple resources.

(N I O

1 O
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Contained Objects — design steps

[0 Define the interface for the outer host object.

[0 The host could be, e.g., an Adaptor, a Composite, or a Proxy, that provides
synchronized access to an existing, unsynchronized class

[0 Ensure that the host is either fully synchronized, or is in turn a contained object.

[0 Define instances variables that are unique references to the contained objects.
[0 Make sure that these references cannot leak outside the host!

[1 Establish policies and implementations that ensure that acquired
references are really unique!

[0 Consider methods to duplicate or clone contained object, to ensure that
copies are unique
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Managed Ownership

[0 Model contained objects as physical resources:
[0 If you have one, then you can do something that you couldn't do otherwise.
[0 If you have one, then no one else has it.
[1 If you give one to someone else, then you no longer have it.
[ If you destroy one, then no one will ever have it.

[J If contained objects can be passed among hosts, define a transfer protocol.
[0 Hosts should be able to acquire, give, take, exchange and forget resources
[0 Consider using a dedicated class to manage transfer
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A minimal transfer protocol class

This class is essentially a one-slot buffer for transferring resources between hosts in
separate threads.

public class ResourceVari abl e {
protected Object ref_;
publ i c ResourceVariable(Cbject res) { ref = res; }
public synchronized Object resource() { return ref_; }
public synchroni zed Obj ect exchange(Object r) {
(bject old = ref_;
ref =r;
return ol d;

}

}

NB: exchange() is enough to implement most transfer operations, e.g., t ake() is
implemented by exchange( nul |)
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Ssummary

You Should Know The Answers To These Questions:
[0  Why are immutable classes inherently safe?
Why doesn’t a “relay” need to be synchronized?
What is “balking”? When should a method balk?
When is partial synchronization better than full synchronization?
How does containment avoid the need for synchronization?

N I

Can You Answer The Following Questions?

When is it all right to declare only some methods as synchr oni zed?

When is an inner class better than an explicitly named class?

What liveness problems can full synchronization introduce?

Why is it a bad idea to have two separate critical sections in a single method?
Does it matter if a contained object is synchronized or not?

NN I By
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3. Liveness and State

Overview
[0 Liveness and Fairness
[0  The Dining Philosophers problem

[0 Guarded Methods

Checking guard conditions
Handling interrupts
Structuring notification
Tracking state

Delegating notifications

NN I By
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Liveness Problems

Liveness properties guarantee that your (concurrent) programs will make progress.
A program may be “safe”, yet suffer from various kinds of liveness problems:
1 Contention:

0 AKA “starvation” or “indefinite postponement” — the system as a whole
makes progress, but some individual processes don’t

[1 Dormancy:
[0 A waiting process fails to be woken up

[1 Deadlock:

[0 Two or more processes are blocked, waiting for resources held by the
others (i.e., in a cycle)

0 Premature termination:
[0 A process is killed before it should be
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Achieving Liveness

There are various strategies and techniques to ensure liveness:

[]

[]

Start with safe design and selectively remove synchronization
Start with live design and selectively add safety
Adopt design patterns that limit the need for synchronization

Adopt standard architectures that avoid cyclic dependencies

49,

Universitat Bern

Liveness and State



Concurrent Programming 50.

The Dining Philosophers Problem

Philosophers alternate between
thinking and eating.

A philosopher needs two forks to eat.

No two philosophers may hold the
same fork simultaneously.

There should be no deadlock and no
starvation.

Want efficient behaviour under
absence of contention.
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Dining Philosophers, Safety and Liveness

Dining Philosophers illustrates many classical safety and liveness issues:

Mutual Exclusion Each fork can be used by one philosopher a atime
Condition synchronization A philosopher needs two forks to eat

Shared variable communication | Philosophers share forks....

Message-based communication | ... or they can pass forks to each other

Busy-waiting A philosopher can poll for forks...

Blocked waiting ... or can sleep till woken by a neighbour

Livel ock All philosophers can grab the left fork and busy-wait for
theright ...

Deadlock ... or grab the left one and wait (sleep) for the right

Sarvation A philosopher may starve if the left and right neighbours

are always faster at grabbing the forks
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Dining Philosopher Solutions

There are countless solutions to the Dining Philosophers problem that use various
concurrent programming styles and patterns, and offer varying degrees of liveness
guarantees:

[0 Number the forks;
philosophers grab the lowest numbered fork first.

[0 Have philosophers leave the table while they think;
allow at most four to sit at a time;
philosophers queue to sit down.

[0 Is deadlock possible in either case?
[0  What about starvation?
[1 Are these solutions “fair’?
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Fairness

There are subtle differences between definitions of fairness:

Weak fairness:

[ If a process continuously makes a request, eventually it will be granted.
Strong fairness:

[0 If a process makes a request infinitely often, eventually it will be granted.
Linear waiting:

[0 If a process makes arequest, it will be granted before any other process is

granted the request more than once.

FIFO (first-in first out):

[0 If a process makes a request, it will be granted before that of any process
making a later request.
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Guarded Methods

Intent

Temporarily suspend an incoming thread when an object is not in the right state to fulfil
a request, and wait for the state to change rather than balking (raising an exception).

Client 1 BoundedCounter Client 2

H dec() é i

walit()

notifyAll() | <

N |

inc()
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Guarded Methods — applicability

[0 Clients can tolerate indefinite postponement. (Otherwise, use a balking design.)

[0 You can guarantee that the required states are eventually reached (via other
requests), or if not, that it is acceptable to block forever.

[0 You can arrange that notifications occur after all relevant state changes.
(Otherwise consider a design based on a busy-wait spin loop.)

[0 You can avoid or cope with liveness problems due to waiting threads retaining
all synchronization locks (except for that of the host).

[J You can construct computable predicates describing the state in which actions
will succeed. (Otherwise consider an optimistic design.)

[1 Conditions and actions are managed within a single object. (Otherwise consider
a transactional form.)
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Guarded Methods — design steps

The basic recipe is to use wai t in a conditional loop to block until it is safe to proceed,
and use noti f yAl | to wake up blocked threads.

public synchroni zed Object service() {
while (wong State) {
try { wait(); }
catch (I nterruptedException e) { }

}
/[l fill request and change state ...
notifyAll (); /1 NB: use notify() only if it does not

/] matter which waiting thread you wake up
return result;
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Separate interface from policy

[0 Define interfaces for the methods, so that classes can implement guarded
methods according to different policies.

public interface BoundedCounter {
public static final long MN = 0; // mninmm allowed val ue
public static final |long MAX = 10; // maxi num al | owed val ue

public | ong value(); /[l invariant: MN <= val ue() <= MAX

/[l initial condition: value() == M N
public void inc(); [l increment only when val ue() < MAX
public void dec(); /| decrenment only when value() > MN

}
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Check guard conditions

[]

Define a predicate that precisely describes the conditions under which actions
may proceed. (This can be encapsulated as a helper method.)

Precede the conditional actions with a guarded wait loop of the form:
while (!condition)
try { wait(); }
catch (I nterruptedException ex) { ... }
Optionally, encapsulate this code as a helper method.

If there is only one possible condition to check in this class (and all plausible
subclasses), and notifications are issued only when the condition is true, then
there is no need to re-check the condition after returning from wai t ()

Ensure that the object is in a consistent state (i.e., the class invariant holds)
before entering any wai t (since wait releases the synchronization lock).

The easiest way to do this is to perform the guards before taking any
actions.
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Handle interrupts

[1 Establish a policy for dealing with | nt er r upt edExcept i ons (which will also
force a return from wai t ). Possible policies are:

[J Ignore interrupts (i.e., have an empty cat ch clause), which preserves
safety at the possible expense of liveness.

[0 Terminate the current thread (via st op). This also preserves safety,
though brutally! (Not recommended.)

[0 Exitthe method, possibly raising an exception. This preserves liveness but
may require the caller to take special action to preserve safety.

[0 Take some pre-planned action; such as cleanup and restart.
[0 Ask for user intervention before taking further action.

Interrupts can be useful to signal that the guard can never become true
because, for example, the collaborating threads have terminated.
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Signal state changes

[J Add notification code to each method of the class that changes state in any way
that can affect the value of a guard condition. Some options are:

0 notifyAl | wakes up all threads that are blocked in waits for the host
object. Callsto noti fyAl | (as well as noti f y) must be enclosed within
a synchronized method or block.

0 noti fy wakes up only one thread (if any exist). This is best treated as an
optimization where:

[1 all blocked threads are necessarily waiting for conditions signalled by
the same notifications,

[1 only one of them can be enabled by any given notification, and
[ it does not matter which one of them becomes enabled.

[0 You build your own special-purpose notification methods using not i fy
andnoti fyAl | . (For example, to selectively notify threads, or to provide
certain fairness guarantees.)
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Structure notifications

[ Ensure that each wait is balanced by at least one notification. Options include:

Place a notification at the end of every method that can cause any state
change (i.e., assigns any instance variable).
Simple and reliable, but can cause performance problems ...

Blanket
Notifications

Encapsul ate assignment to each variable mentioned in any guard
condition in a helper method that performs the notification after
updating the variable.

Encapsulating
Assignment

Only issue notifications for the particular state changes that could
Tracking Sate | actually unblock waiting threads. May improve performance, at the
cost of flexibility (i.e., subclassing becomes harder.)

Maintain an instance variable that represents control state.
Tracking State | Whenever the object changes state, invoke a helper method that re-

Variables | evaluatesthe control state and will issue notifications if guard
conditions are affected.

Delegating | Use helper objects to maintain aspects of state and have these helpers
Notifications | issue the notifications.

Universitat Bern Liveness and State



Concurrent Programming 62.

Encapsulating assignment

public class BoundedCount er VO i npl enents BoundedCounter {
protected |Iong count . = MN;

public synchroni zed | ong value() { return count ; }

public synchronized void inc() {
awai t I ncrenent abl e() ;
set Count (count _ + 1);

}

public synchroni zed void dec() {
awai t Decr enent abl e() ;
set Count (count _ - 1);

}
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Encapsulating assignment ...

protected synchroni zed voi d set Count (| ong newal ue) {
count _ = newval ue;
notifyAll (); // wake up any thread dependi ng on new val ue

}

protected synchronized void awaitl ncrenentable() {
whil e (count _ >= MAX)
try { wait(); }
catch(I nterruptedException ex) {};

}

protected synchroni zed void awai t Decrenent abl e() {
while (count _ <= MN)

try { wait(); }
catch(I nterruptedException ex) { };
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Tracking State

The only transitions that could possibly affect waiting threads in BoundedCounter are
those that step away from logical states bottom and top:

public class BoundedCount er VST i npl enents BoundedCount er {
protected | ong count _ = MN;
public synchroni zed | ong value() {
return count _;

}
public synchroni zed void inc() {
while (count == MAX)
try { wait(); } catch(lnterruptedException ex) {};
I f (count_++ == MN)
notifyAll(); // signal if previously in bottom state
}
public synchronized void dec() { ... } // ditto
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lracking State Variables

public class BoundedCount er VSWi nmpl enent s BoundedCounter {
static final int BOTTOW O; /'l 1ogical states
static final int MDDLE= 1;
static final int TOP= 2;

protected int state = BOTTOM /] the state variable
protected |l ong count _ = MN;

protected synchroni zed void checkState() {
int oldState = state_;

I f (count _ == MN) state_ = BOITTOM
else if (count_ == MAX) state = TOP;
el se state_ = M DDLE;
| f (state_!= oldState /] notify on transition
& (ol dState == TOP || oldState == BOTTOM )
noti fyAll ();
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Tracking State Variables ...

public synchroni zed | ong value() { return count ; }

public synchronized void inc() {

while (state_ == TOP) /'l only consult logical state
try { wait(); }

catch( 1l nterruptedException ex) {};

++count _; /'l nodify actual state
checkSt ate(); /] re-evaluate |ogical state

}

public synchroni zed void dec() { ... }

}
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Delegating notifications

NotifyLong() encapsulates both atomic state changes and notifications:
public class NotifyingLong {
private | ong val ue_;
private Object observer
public NotifyinglLong(Object o, long v) {
observer = o;
val ue_ = v,

}

public synchronized | ong value() { return value_; }
public void setValue(long v) {

synchroni zed(this) { /] NB: partial synchronization
val ue_ = v;

}

synchroni zed(observer ) {
observer .notifyAll(); // NB: nust be synchroni zed!

}

}
}
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Delegating notifications ...

Notification is delegated to the helper object:

public class BoundedCount er VNL i npl enents BoundedCounter {
private NotifyingLong c_ = new NotifyingLong(this, MN);
public synchroni zed | ong val ue() {
return c_.val ue();
}
public synchroni zed void inc() {
while (c_.value() >= MAX)
try { wait(); }
catch(l nterrupt edException ex) {};
c_.setValue(c_.value()+1); [/ wll issue notification

}

public synchroni zed void dec() {... }
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Ssummary

You Should Know The Answers To These Questions:
[0  What kinds of liveness problems can occur in concurrent programs?
What is the difference between livelock and deadlock?
When should methods recheck guard conditions after waking fromawai t () ?
Why should you usually prefer noti fyAl |l () tonotify()?
When and where should you issue notification?

N I O

Can You Answer The Following Questions?
[0 How can you detect deadlock? How can you avoid it?

[0 What is the easiest way to guarantee fairness?

[0 When are guarded methods better than balking?

[0 What is the best way to structure guarded methods for a class if you would like it to
be easy for others to define correctly functioning subclasses?

[ Is the complexity of delegating notifications worth it?
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4. Lab session
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Concurrent Programming

5. Liveness and Asynchrony

Overview
[0 Asynchronous invocations
0 Simple Relays
[J Direct Invocations
[0 Thread-based messages; Gateways
[0 Command-based messages

[0 Tail calls
[0 Early replies
[0l Futures
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Asynchronous Invocations

Intent
Avoid waiting for a request to be serviced by decoupling sending from receiving.

Applicability
[0  When a host object can distribute services amongst multiple helper objects.

[0  When an object does not need the result of an invocation to continue doing
useful work.

[0  When invocations that are logically asynchronous, regardless of whether they
are coded using threads.

[0 During refactoring, when classes and methods are split in order to increase
concurrency and reduce liveness problems.
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Asynchronous Invocations — form

Generally, asynchronous invocation designs take the following form:

cl ass Host {
public service() {

pre(); /] code to run before invocation
| nvokeHel per(); // the invocation

during(); /] code to run in parallel

post () ; /] code to run after conpletion
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Asynchronous Invocations — design steps

Consider the following issues:

Does the Host need to get resultsback | Not if, e.g., the Helper returns results

from the Helper? directly to the Host’s caller!

Can the Host process new requests Might depend on the kind of request ...
while the Helper is running?

Does the Host need to do something I.e.,, iIntheduri ng() code

while the Helper isrunning?

Does the Host need to do synchronized |i.e., if servi ce() isguarded or if
pre-invocation processing? pr e() updatesthe Host’s state

Does the Host need to do synchronized |i.e, if post () updatesthe Host's state
post-invocation processing?

Does post-invocation processing only | ... or does the host have to wait for other
depend on the Helper’s result? conditions?
|s the same Helper always used? |s anew one generated to help with each

new service request?
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Simple Relays

A relay method is obtains all its functionality by delegating to the helper, without any
pre(),during(),orpost() actions.

Three common forms:
[1 Direct invocations

0 Invoke the Helper directly, but without synchronization

[0 Thread-based messages
[0 Create a new thread to invoke the Helper

[0 Command-based messages
[0 Pass the request as a Command object to another object that will run it

Relays are commonly seen in Adaptors.
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Direct invocations

Asynchrony is achieved through the absence of synchronization.
The Host is free to accept other requests, while the Host’s caller must wait for the reply.

cl ass Host {

}

prot ected Hel per hel per _ = new Hel per();
public void service() { /'] unsynchroni zed

| nvokeHel per () ; /] statel ess nethod!
}

protected void invokeHelper() { // unsynchronized
hel per . hel p();

}

If hel per _ is mutable, it can be protected with an accessor:

protected synchroni zed Hel per helper() { return hel per_; }
public void service() { /] unsynchroni zed
hel per (). hel p(); /] partially synchronized

}

Universitat Bern Liveness and Asynchrony



Concurrent Programming 7.

Thread-based messages

The invocation can be performed within a new thread:

protected void invokeHel per() {

new Thread() { [/ An inner class
final Hel per h_ = hel per_; /] Must be final!
public void run() { h_.help() ; }

}.start();

}

The cost of evaluating Helper.help() should outweigh the overhead of creating a thread!
[0 If the Helper is a daemon (loops endlessly)
1 If the Helper does I/O
[0 Possibly, if multiple helper methods are invoked
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Thread-per-message Gateways

Variant: the host may construct a new Helper to service each request.

public class Filel O {
public void witeBytes(String fileNane, byte[] data) {
new Thread (new FileWiter(fileNanme, data)).start();

}
public void readBytes(...) { ... }

}

class FileWiter inplenents Runnabl e {
private String nm; /] hold argunents
private byte[] d_;
public FileWiter(String nane, byte[] data) { ... }
publicvoidrun() { ... }// wite bytesind tofilenm ...
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Command-based messages

The Host can also put a message in a queue for another object that will invoke the Helper:

protected Event Queue q_;
protected invokeHel per() {
g_. put (new Hel per Message( hel per ));

}

Command-based forms especially useful for:
[0 scheduling of helpers
[J undo and replay capabilities
[0 transporting messages over networks
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rail calls

Applies when the helper method is the last statement of a method (i.e., there is no
post () processing). Only pr e() code is synchronized.

The host is immediately available to accept other messages invoking the helper.

cl ass Subject {

}

protected Observer obs_ = new ...;

prot ected doubl e state_;

public void updateState(double d) { // not synched
doUpdat e(d) ; /'l synched
sendNotification(); /] not synched

}

protected synchroni zed doUpdat e(double d) { state = d; }

protected void sendNotification() {
obs . changeNotification(this);

}
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rail calls with new threads

Alternatively, the tail call may be performed in a separate thread:

public synchroni zed voi d updateState(double d) {

state_ = d;
new Thread() {
final Observer o_ = obs_;

public void run() {
o_.changeNotification(Subject.this);

}
}.start();

}
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Early Reply

Early reply allows a host to perform useful activities after returning a result to the client:

Client Host
' |
H service() :
: reply Host retains
- _1 synchronization!

T |
|
| |

Early reply is a built-in feature in some programming languages.
It can be easily simulated when it is not a built-in feature.
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Simulating Early Reply

A one-slot buffer can be used to pick up the reply from a helper thread:

Client Host

: I
m servi Ce() | new S|O'[ Helper

,
)

=1
<

A one-slot buffer is a simple abstraction that can be used to implement many higher-level
concurrency abstractions ...
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One-Slot Buffer

class Slot { /[l a one-slot buffer
private (bject slotVal _; [l initially null
publ i c synchroni zed voi d put (Coject val) { /1 put contents,
while (slotVal _ '=null) { /[l if there is room
try { wait(); } /]l otherw se wait
catch (InterruptedException e) { }
}
slotVal = val;
noti fyAll (); /'l wake up waiting consuner
return;
}
publ i ¢ synchroni zed Cbject get() { /'l return contents,
(oj ect rval;
while (slotVal _ == null) { /1 1f available
try { wait(); } /] otherw se wait
catch (InterruptedException e) { }
}
rval = slotVal _;
slotVal _ = null;
noti fyAl l (); /1 wake up waiting producer
return rval;
}
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Early Reply in Java

Early reply can be easily implemented using an anonymous inner class:

public Stuff service() { /'l unsynchroni zed
final Slot reply = new Slot();
new Thread() {
public void run() {
Stuff result;

synchroni zed (this) { /] retain | ock!
/] conpute result
reply. put(result); /] send early reply
/] do cleanup activity
}
}
}.start();
return (Stuff) reply.get(); /] early reply

}
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Futures
Futures allow a client to continue in parallel with a host until the future value is needed:
Client Host
H |
i I
service() | Future
| new
I Ll
L g I
returns
future

val ue()

-
|
|
| , .
| |
|
| [ [
| |
H< returns | |
value | |
| | |
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A Future Class

Futures can be implemented as a layer of abstraction around a shared Slot:

class Future {
private Object val _; [l initially null
private Slot slot_; /] shared with sonme worker
public Future(Slot slot) {
slot_ = slot;
}
public Object value() {
1 f (val __ == null)
val = slot_.get(); /] be sure to only get() once!
return val _;
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Using Futures in Java

WIth futures, the client, rather than the host, proceeds in parallel with a helper thread.

public Future service () { [// unsynchronized
final Slot slot = new Slot();
new Thread() {
public void run() {
sl ot. put (conputeResult());

}
}.start();
return new Future(slot); // imediately return Future
}
protected synchroni zed Qbject conputeResult() { ... }

Without special language support, futures are less transparent than early replies, since
the client must explicitly request a val ue() from the future object.
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Ssummary

You Should Know The Answers To These Questions:
[0 What general form does an asynchronous invocation take?
When should you consider using asynchronous invocations?
In what sense can a direct invocation be “asynchronous”?
Why (and how) would you use “inner classes” to implement asynchrony?
What is “early reply”, and when would you use it?
What are “futures”, and when would you use them?
How can implement futures and early replies in Java?

NN I I I

Can You Answer The Following Questions?
[0 Why are servers commonly structured as thread-per-message gateways?

0  Which of the concurrency abstractions we have discussed till now can be
Implemented using one-slot-buffers as the only synchronized objects?

[0 When are futures better than early replies? Vice versa?
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6. Fine-grained Synchronization

Overview
[0 Condition Objects
[0 The “Nested Monitor Problem”
[0 Permits and Semaphores

[0 Concurrently available methods
0 Priority
[ Interception
[0 Readers and Writers

[0  Optimistic methods
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Condition Objects

Intent
Condition objects encapsulate the waits and notifications used in guarded methods.

Applicability
[0 To simplify class design by off-loading waiting and notification mechanics.

[0 Because of the limitations surrounding the use of condition objects in Java,

iIn some cases the use of condition objects will increase rather than
decrease design complexity!

[1 As an efficiency manoeuvre.
[1 By isolating conditions, you can often avoid notifying waiting threads that
could not possibly proceed given a particular state change.

[0 As a means of encapsulating special scheduling policies surrounding
notifications, for example to impose fairness or prioritization policies.

[0 Inthe particular cases where conditions take the form of “permits” or “latches.”
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A Simple Condition Object

Condition objects implement this interface:

public interface Condition {
public void await(); // wait for sone condition
public void signal(); // signal that some condition holds

}

Suppose we tried to encapsulate guard conditions with this class:
public class SinpleConditionObject inplenments Condition {
public synchroni zed void await () {

try { wait(); }
catch (I nterruptedException ex) {}

}

public synchronized void signal () {
noti fyAll ();

}

}

Careless use of this class can lead to the “Nested Monitor Problem”
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The Nested Monitor problem

publ i c class BoundedCount er VBAD i npl enent s BoundedCount er {
protected | ong count _ = MN;
protected Condition notMn_ = new Si npl eConditionQObject();
protected Condition notMax_ = new Si npl eConditi onObj ect();
public synchronized | ong value() { return count ; }
public synchroni zed void dec() {
while (count _ == MN)
notMn_.await(); [/ wait till count not MN
I f (count -- == MAX)
not Max_. signal ();

}

public synchroni zed void inc() { /] can’t get in!
while (count == MAX)
not Max_.await () ;
I f (count_++ == MN)
not M n_.signal (); /'l we never get here!
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The Nested Monitor problem ...

Clientl

Client2

BoundedCounterVBAD SimpleConditionObject

dec()

i nc()

Counter is
still locked!

7

awai t ()

wai t ()

never signaled

I
So condition isj

Nested monitor lockouts occur whenever a blocked thread holds the lock for an object
containing the method that would otherwise provide a notification to unblock the wait.
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Solving the Nested Monitors problem

You must ensure that:
[0  Waits do not occur while synchronization is held on the host object.

[0 This leads to a guard loop that reverses the synchronization seen in the
faulty version.

[J Notifications are never missed.

[0 The entire guard wait loop should be enclosed within synchronized blocks
on the condition object.

[1 Notifications do not deadlock.

0 All notifications should be performed only upon release of all
synchronization except of that for the notified condition object.

[0 Helper and host state must be consistent.

[0 If the helper object maintains any state, it must always be consistent with
that of the host, and if it shares any state with the host, that access is
properly synchronized.
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Example solution
public class BoundedCount er VCV i npl enents BoundedCounter {

public void inc() { /] NOT synched!
bool ean wasM n = false; // record notification condition
synchroni zed( not Max_) { /1 synch on condition object
for (;;) { /] the recast guard | oop
synchroni zed(this) {
I f (count_ < MAX) { /'l check and act

wasM n = (count _++ == M N);
br eak:
}
}
not Max_.awai t (); /| rel ease host synch before wait

}
}
I f (wasM n) notMn_.signal (); // first rel ease sync!
}
}
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Permits and Semaphores

Intent
Bundle synchronization in a condition object when synchronization is mainly concerned
with tracking the value of a counter.

Applicability
[0 When any given awai t may proceed only if there have been more signals than
awaits.

[0 More generally, if there are enough “permits”, where every signal
increments and every await decrements the number of permits.

[0 You need to guarantee the absence of missed signals.

[0 Unlike simple condition objects, semaphores work even if one thread
enters its await after another thread has signalled that it may proceed.

[0 The host classes using them can arrange to invoke Condi t i on methods
outside of synchronized methods or code blocks.
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Permits and Semaphores — design steps

[1 Define a class implementing Condi t i on that maintains a permit count,and
immediately releases await if there are already enough permits.

[0 e.g., BoundedCount er

[0 As with all kinds of condition objects, the classes using them must avoid
invoking await inside of synchronized methods and code blocks.

[0 One way to help ensure this is to use a before/after design of the form:
cl ass Host {
Condi tion aCondition_;
Condi ti on anot herCondition_;
public nethod mi() {
aCondition_.await(); // not synched

doML(); /'l synched
for each Condition ¢ enabled by nl()
c.signal (); /'l not synched
}
protected synchroni zed doMi() { ... }
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variants

0 Permit Counters (Counting Semaphores)
[0 Just keep track of the number of “permits”
[0 Canusenotifyinstead of noti fyAll ifclassisfi nal

[0 Fair Semaphores
[0 Maintain FIFO queue of threads waiting on a Si npl eCondi ti on

[0 Locks and Latches
[0 Locks can be acquired and released in separate methods
[0 Keep track of thread holding the lock so locks can be reentrant!
[0 Alatchis setto true by si gnal , and always stays true

See the On-line supplement for details.
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Concurrently Available Methods

Intent

Non-interfering methods comprising a service an be made concurrently available by
splitting them into different objects or aspects of the same object, while tracking state and
execution conditions to enable and disable the methods according to a given
concurrency control policy.

Applicability
[1 Host objects are typically accessed across many different threads.

[ Host services are not completely interdependent, so need not be performed
under mutual exclusion.

[0 You need better throughput for one or more of the services provided by the
object, and need to eliminate nonessential blocking on synchronization locks.

[0 You want to prevent various accidental or malicious denial of service attacks in
which synchronized methods on a host block because some client forever holds
its lock.

[ Use of full synchronization would needlessly make host objects prone to
deadlock or other liveness problems.
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Concurrent Methods — design steps

Layer concurrency control policy over mechanism by:

[1  Policy Definition:
[0  When may methods run concurrently?
[0  What happens when a disabled method is invoked?
[0 What priority is assigned to waiting tasks?

[0 Instrumentation:
[0 Define state variables that can detect and enforce policy.

[0 Interception:

[ Have the host object intercept public messages and then relay them under
the appropriate conditions to the methods that actually perform the actions.
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Priority

[1  Priority may depend on any of:

Intrinsic attributes of the tasks (class and instance variable values).
Representations of task priority, cost, price, or urgency.

The number of tasks waiting for some condition.

The time at which each task is added to a queue.

Fairness — guarantees that each waiting task will eventually run.
The expected duration or time to completion of each task.

The desired completion time of each task.

Termination dependencies among tasks.

The number of tasks that have completed.

The current time.

[ T Ay

Universitat Bern Fine-grained Synchronization



Concurrent Programming 103.

Interception

Interception strategies include:

[ Pass-Throughs

[0 The host maintains a set of immutable references to helper objects and
simply relays all messages to them within unsynchronized methods.

[0  Lock-Splitting

[0 Instead of splitting the class, split the synchronization locks associated with
subsets of functionality

[1 Before/After methods

[0 Public methods contain before/after processing surrounding calls to non-
public methods in the host that perform the services.

Universitat Bern Fine-grained Synchronization



Concurrent Programming 104.

Concurrent Reader and Writers

“Readers and Writers” are a family of concurrency control designs that provide various
policies governing concurrent invocation of non-mutating accessors (“Readers”) and
mutative, state-changing operations (“Writers”).

Readerl Reader2 Host Writerl Writer2

d ] I
mrea 0 - write()

<

| :_, T "7

The basic idea is to let any number of readers to concurrently execute as long as there
are no writers, but writers have exclusive access.
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Readers and Writers Policies

Individual policies must address:
[0 Can new Readers join already active Readers even if a Writer is waiting?
[0 If yes, Writers may starve; if not, the throughput of Readers decreases.

[0 If both Readers and Writers are waiting for a Writer to finish, which should you
let in first?

[1 Readers? A Writer? Earliest first? Random? Alternate?
[1  Similar choices are available after termination of Readers.
[0 Can Readers upgrade to Writers without having to give up access?

A typical set of choices:
[0 Block incoming Readers if there are waiting Writers.
0 “Randomly” choose among incoming threads (i.e., let the scheduler choose).
[0 No upgrade mechanisms.

Before/after methods are the simplest way to implement Readers and Writers policies.
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Readers and Writers example

public abstract class RWT {
protected int activeReaders
protected int activeWiters_

0; /] zero or nore
0 /] al ways zero or one

protected int waitingReaders_ = O;
protected int waitingWiters_ = O;
protected abstract void read (); /] defined by subcl ass
protected abstract void wite ();
public void read() { /'l unsynchroni zed
bef or eRead() ; // obtain access
read ();
after Read() ; /'l rel ease access
}

public void wite() {
beforeWite();
wite ();
afterWite();

}
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Readers and Writers ...

protected synchroni zed void beforeRead() {

++wali t i ngReader s_; /] avail able to subcl asses
while (!all owReader())
try { wait(); }
catch (I nterruptedException ex) {}
--wai ti ngReaders_;
++acti veReaders_;

}

prot ect ed bool ean all owReader () { /] default policy
return waitingWiters == 0 && activeWiters_ == 0;

}

protected synchroni zed void afterRead() {
--acti veReaders_;
noti fyAll ();

}
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Readers and Writers ...

protected synchroni zed void beforeWite() {
++wai ti ngWiters_ ;
while (tallowNiter())
try { wait(); }
catch (I nterruptedException ex) {}
--waitingWiters_;
++activeWiters_;

}

protected boolean allowWNiter() { /] default policy
return activeReaders == 0 &% activeWiters == 0;

}

protected synchroni zed void afterWite() {
--activeWiters_;
noti fyAll ();

}
}
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Optimistic Methods

Intent

Optimistic methods attempt actions, but rollback state if the actions could have been
interfered with by the actions of other threads. After rollback, they either throw failure
exceptions or retry the actions.

Applicability
[1 Clients can tolerate either failure or retries.
[0 If not, consider using guarded methods .

[0 You can avoid or cope with livelock.

[0 You have a way to deal with actions occurring before failure detection

[0 Provisional action: “pretend” to act, delaying commitment of effects until the
possibility of failure has been ruled out.

[0 Rollback/Recovery: undo the effects of each performed action. If messages
are sent to other objects, they must be undone with “anti-messages”
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Optimistic Methods — design steps

[J Collect and encapsulate all mutable state so that it can be tracked as a unit.
[0 Define an immutable helper class holding values of all instance variables.

[1 Define a representation class, but make it mutable (allow instance
variables to change), and additionally include a version number (or
transaction identifier) field or even a sufficiently precise time stamp.

[0 Embed all instance variables, plus a version number, in the host class, but
define conm t to take as arguments all assumed values and all new
values of these variables.

[ Maintain a serialized copy of object state.

[1 Various mixtures of the above ...
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Detect failure ...

[1 Provide an operation that simultaneously detects version conflicts and performs
updates via a method of the form:

class Optimstic { /] generic code sketch
private State currentState_; /] State is any type

synchroni zed boolean commt(State assuned, State next) {

bool ean success = (currentState_ == assuned);
| f (success)

current State_ = next;
return success;
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Detect failure ...

[J  Structure the main actions of each public method as follows:

State assuned = currentState();
State next = ...
I f (!commt (assuned, next))
rol | back();
el se

ot her Acti onsDependi ngOnNewSt at eBut Not Changi nglt () ;
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Handle conflicts ...

[ Choose and implement a policy for dealing with commitment failure:

[0 Throw an exception upon commit failure that tells a client that it may retry.
(Of course, this kicks the decision back to the caller, which may or may not
be in a better position to decide whether to retry.)

Internally retry the action until it succeeds.

Retry some bounded number of times, or until a timeout occurs, finally
throwing an exception.

[0  Synchronize the method, precluding commit failure. This can be done even
when other methods in the class use exceptions or retries.

1 O

[1 Take precautions to ensure that retries are based upon accurate, current values
of instance variables.

[0 If state is maintained in an immutable helper object accessed via a single
reference in the class, then this reference should be declared vol ati | e.
All accessor methods can be left as unsynchronized.

vol ati | e specifies that a variable changes asynchronously and the compiler should
not attempt optimizations with it (such as using a copy stored in a register).
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Ensure progress ...

[ Take precautions to ensure progress in case of internal retries within
state-dependent methods.

[0  Optimistic state-dependent methods require use of a busy-wait spin loop in
which it is counterproductive to immediately retry the method.

[0 Yielding may not be effective unless all threads have reasonable priorities
and the Java scheduler at least approximates fair choice among waiting
tasks (which it is not guaranteed to do)!

1  Limit retries.

[0 Unless there is some independent assurance that the method will
eventually succeed, retries can result in livelock.
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An Optimistic Bounded Counter

publ i ¢ cl ass BoundedCount er VOPT i npl enent s BoundedCount er {

protected volatile Long count _ = new Long(MN);

prot ected synchroni zed bool ean commt (Long ol dc, Long newc) {
bool ean success = (count _ == ol dc);
I f (success) count_ = newc;

return success;

}

public long value() { return count_.IlongValue(); }
public void inc() {

for (;;) { /1 thinly disguised busy-wait!
Long ¢ = count_; long v = c.longVal ue();
If (v < MAX & commt(c, new Long(v+1l))) break;
Thread. current Thread().yi el d(); /1l is there another thread?!
}
}
public void dec() {
for (;;) {
Long ¢ = count_; long v = c.longVal ue();
iIf (v >MN &% coomt(c, new Long(v-1))) break;
Thread. current Thread().yi el d();
}
}
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Ssummary

You Should Know The Answers To These Questions:

[0 What are “condition objects™? How can they make your life easier? Harder?
What is the “nested monitor problem™? How can you avoid it?
What are “permits” and “semaphores”™? When is it natural to use them?
Why (when) can semaphores use noti fy() instead of noti fyAl | ()?
When should you consider allowing methods to be concurrently available?
What kinds of policies can apply to concurrent Readers and Writers?
How do optimistic methods differ from guarded methods?

NN I I I

Can You Answer The Following Questions?

What is the easiest way to avoid the nested monitor problem?

What assumptions do nested monitors violate?

How can the obvious implementation of semaphores (in Java) violate fairness?
How does “partial synchronization” differ from “concurrently available methods”?
When should you prefer optimistic methods to guarded methods?

N O O By
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8. Architectural Styles for Concurrency

Overview
0 What is Software Architecture?
[0 Three-layered application architecture
[0 Flow architectures
[0 Blackboard architectures
Sources

0 M. Shaw and D. Garlan, Software Architecture: Perspectives on an Emerging
Discipline, Prentice-Hall, 1996.

[0 F. Buschmann, et al., Pattern-Oriented Software Architecture — A System of
Patterns, John Wiley, 1996.

[0 D. Lea, Concurrent Programming in Java — Design principles and Patterns,
The Java Series, Addison-Wesley, 1996.

[0 N. Carriero and D. Gelernter, How to Write Parallel Programs: a First Course,
MIT Press, Cambridge, 1990.
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Software Architecture

A Software Architecture defines a system in terms of computational
components and interactions amongst those components.

An Architectural Style defines a family of systems in terms of a pattern of
structural organization.

— cf. Shaw & Garlan, Software Architecture, pp. 3, 19
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Architectural style

Architectural styles typically entail four kinds of properties:

[]

A vocabulary of design elements
0 e.qg., “pipes”, “filters”, “sources”, and “sinks”

A set of configuration rules that constrain compositions
[1 e.g., pipes and filters must alternate in a linear sequence

A semantic interpretation

[1 e.g., each filter reads bytes from its input stream and writes bytes to its
output stream

A set of analyses that can be performed

0 e.qg., iffilters are “well-behaved”, no deadlock can occur, and all filters can
progress in tandem
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Communication Styles

Shared Variables:

Message-Passing:

b \

(=
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Simulated Message-Passing

Most concurrency and communication styles can be simulated by one another:

Unsynchronized objects

A i

Synchronized objects

Message-passing can be modelled by associating message queues to each process.
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Three-layered Application Architectures

Interaction with external world
Generating threads

/\

Concurrency control
Locking, waiting, failing

O O
N
D

This kind of architecture avoids nested monitor problems by restricting concurrency
control to a single layer.

Basic mechanisms
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Problems with Layered Designs

Hard to extend beyond three layers because:
[0 Control is restricted to before/after — not within
[0 Control may depend on unavailable information
[ Because it is not safely accessible
[ Because it is not represented (e.g., message history)
[0 Actions in control code may encounter conflicting policies
[0 E.g., nested monitor lockouts
[0 Ground actions may need to know current policy
[0 E.g., blocking vs. failing

Partial solutions:
[0 Explicit policy compatibility constraints
[1  Explicit nesting constraints
[0 Delegated control
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Flow Architectures

Many synchronization problems can be avoided by arranging things so that information
only flows in one direction from sources to filters to sinks:

0 Unix “pipes and filters™:
[ Processes are connected in a linear sequence

[0 Control systems:
[0 events are picked up by sensors, processed, and generate new events

[0  Workflow systems
[1 Electronic documents flow through workflow procedures
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Flow Stages

Every flow stage is a producer or consumer or both:

[0 Splitters (Multiplexers) have multiple successors
[0  Multicasters clone results to multiple consumers
[0 Routers distribute results amongst consumers

[0 Mergers (Demultiplexers) have multiple predecessors
[J Collectors interleave inputs to a single consumer

[0 Combiners process multiple input to produce a single result

[0 Conduits have both multiple predecessors and consumers
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Flow Policies

Flow can be pull-based, push-based, or a mixture:

[1 Pull-based flow: Consumers take results from Producers
[0 Push-based flow: Producers put results to Consumers
1 Buffers:

[0 Put-only buffers (relays) connect push-based stages
[0 Take-only buffers (pre-fetch buffers) connect pull-based stages
[0 Put-Take buffers connect push-based stages to pull-based stages

put
Producer ’ t ake
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Limiting Flow

[]

Unbounded buffers:

[ If producers are faster than consumers, buffers may exhaust available
memory

Unbounded threads:

[0 Having too many threads can exhaust system resources more quickly than
unbounded buffers

Bounded buffers:

[0 Tend to be either always full or always empty, depending on relative speed
of producers and consumers

Bounded thread pools:
[0 Harder to manage than bounded buffers
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Example: a Pull-based Prime Sieve

In this design, each prime

TestForPrime  ActivePrime(2) number is an active agent
get () that tests integers, and either
- ' creates a new agent if a
3 - new ActivePrime(3)  Prime is detected, or passes
the number to test on to the
= 4 | = get () | next agent in the chain
- |
- I
5,, 5 | new ActivePrime(5)
! >
6 o | |
I I
- | | : :
7 | | ActivePrime(7)
Rt 7 ] new | .
» » | < get() |
8 | gl I I I
L] L | | |
I I I
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Using Put-Take Buffers

Each ActivePrime will use a one-slot buffer to feed values to the next ActivePrime.

public class PrinmeSieve {
public static void main(String args[]) { genPrines(1000); }
public static void genPrines(int n) {
try {
ActivePrinme firstPrine =
new ActivePrime(2, new TestForPrinme(n));
} catch (Exception e) { }

}
}

The first ActivePrime holds the seed value 2, gets values from a TestForPrime, and
creates new ActivePrime instances whenever it detects a prime value.
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Pull-based integer sources

Active primes get numbers to test from an | nt Sour ce interface:

i nterface | ntSource {
i nt getint();
}

class TestForPrinme inplenents | ntSource {
private int nextVal ue;

private int maxVal ue;

public TestForPrine(int max) {
t hi s. next Val ue = 3;
t hi s. maxVal ue = nax;

}

public int getlnt() { /'l No synchronization needed

| f (nextValue < maxVal ue) { return nextVal ue++; }
else { return O; }

}
}
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One-Slot Buffer

class Slot { /[l a one-slot buffer
private (bject slotVal _; [l initially null
publ i c synchroni zed voi d put (Coject val) { /1 put contents,
while (slotVal _ '=null) { /[l if there is room
try { wait(); } /]l otherw se wait
catch (InterruptedException e) { }
}
slotVal = val;
noti fyAll (); /'l wake up waiting consuner
return;
}
publ i ¢ synchroni zed Cbject get() { /'l return contents,
(oj ect rval;
while (slotVal _ == null) { /1 1f available
try { wait(); } /] otherw se wait
catch (InterruptedException e) { }
}
rval = slotVal _;
slotVal _ = null;
noti fyAl l (); /1 wake up waiting producer
return rval;
}
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The ActivePrime Class

class ActivePrinme extends Thread i nplenents | ntSource {
private static IntSource lastPrime; // end of the chain

private int val ue; /] value of this prine
private int square; /'l square of this prine
private | ntSource intSrc; /'l source of ints to test
private Slot slot; /] to pass val ues on

public ActivePrinme(int value, |IntSource intSrc)
t hrows ActivePrineFail ure

{
this.value = val ue;
this.square = val ue*val ue;

this.intSrc = intSrc;

slot = new Slot(); /] NB: private

| astPrime = this; /'l unsynchroni zed (!)
Systemout. print(value + " ");

System out. flush();

this.start(); /]| becone active
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The ActivePrime Class ...

public int value() {
return this.val ue;

}
private void putlint(int val) {

sl ot. put (new I nteger(val)); /'l may bl ock
}

public int getlnt() {
return ((Integer) slot.get()).intValue(); // may bl ock
}
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The ActivePrime Class ...

public void run() {

int testValue = intSrc.getlnt(); /1l may bl ock
while (testValue !'= 0) { /] stop condition
I f (this.square > testValue) { /[l must be prime
try {

new ActivePrime(testValue, lastPrine),;
} catch (Exception e) {

br eak; /] exit | oop
} ilse | f ((testValue %this.value) > 0) {
this.putlnt(testVal ue); /'l may bl ock
iestvalue = intSrc.getlnt(); /'l may bl ock
i)utlnt(O); /] stop next prinme

}
}
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‘ Blackboard Architectures

Blackboard architectures put all synchronization in a “coordination medium” where
agents can exchange messages.

O Q

R

\@

Agents do not exchange messages directly, but post messages to the blackboard, and
retrieve messages either by reading from a specific location (i.e., a channel), or by posing
a query (i.e., a pattern to match).

Linda is a “coordination language” that provides primitives for implementing blackboard
architectures ...
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Result Parallelism

Result parallelism is a blackboard architectural style in which workers are spawned to
produce each part of a more complex problem.

7

X

Workers may be arranged hierarchically ...
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Agenda Parallelism

138.

Agenda parallelism is a blackboard style in which workers retrieve tasks to perform from
a blackboard, and may generate new tasks to perform.

RIS

Workers repeatedly retrieve tasks until everything is done.

L

.

Ik

Workers are typically able to perform arbitrary tasks.
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Specialist Parallelism

Specialist parallelism is a style in which each workers is specialized to perform a
particular task.

Specialist designs are equivalent to message-passing, and are generally organized as
flow architectures, with each specialist producing results for the next specialist to
consume.
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Ssummary

You Should Know The Answers To These Questions:
[0 What is a Software Architecture?
What are advantages and disadvantages of Layered Architectures?
What is a Flow Architecture? What are the options of tradeoffs?
What are Blackboard Architectures? What are the options and tradeoffs?

(N I

Can You Answer The Following Questions?
0 How would you model message-passing agents in Java?

[0 How would you classify Client/Server architectures?
Are there other useful styles we haven't yet discussed?

[ How can we prove that the Active Prime Sieve is correct? Are you sure that new
Active Primes will join the chain in the correct order?

[0 Which Blackboard styles are better when we have multiple processors?
Which are better when we just have threads on a monoprocessor?

Universitat Bern Architectural Styles for Concurrency



Concurrent Programming 141.

9. Concurrent Programming Approaches

Overview
[0 Process creation
[0 Co-routines; Fork & Join; Cobegin blocks
[0 Communication and Synchronization
[0 Synchronizing access to shared variables
[0 Message Passing Approaches

Texts:

[0 G. R. Andrews and F. B. Schneider, “Concepts and Notations for Concurrent
programming,”ACM Computing Surveys, vol. 15, no. 1, Mar. 1983, pp. 3-43.

[0 M. Ben-Ari, Principles of Concurrent and Distributed Programming, Prentice
Hall, 1990.

O L.Wilson & R. Clark, Comparative Programming Languages, Addison-Wesley,
1988.
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Expressing Concurrency

Recall:

Notations for expressing concurrent computation must address:
1. Process Creation: how is concurrent execution specified?
2. Communication: how do processes communicate?

3. Synchronization: how is consistency maintained?
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Co-routines

Co-routines are only pseudo-concurrent and require explicit transfers of control:

Program P Coroutine A Coroutine B
ﬂ call A | |
: call B :
| | resume A
-«
: resume B
| return

T i i

Co-routines can be used to implement most higher-level concurrent mechanisms.
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Fork and Join

Fork can be used to create an arbitrary number of concurrent processes:

Program P1 Program P2 Program P3

fork P2 |

I
fork P3 :

join P2

I |

Join (“wait” in Unix) is used to wait for another process to terminate.

Since fork and join are unstructured, they must be used with care and discipline.
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Cobegin/coend

Cobegin/coend blocks are better structured:
cobegin S1 || S2 || ... || Sn coend

but they can only be used to create a fixed number of processes.

Main Coblock 1 Coblock 2 Coblock 3 Coblock 4
] | | | |
v v /FU
|

|

[ I
I I
I I
I I
I I
The calling routine continues when all of the coblocks have terminated.
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‘ Communication and Synchronization

In approaches based on
Shared Variables, processes
communicate indirectly.

¥ ~ ) Explicit synchronization
mechanisms are needed.

In Message Passing approaches, X
communication and synchronization

are combined.

Communication may be either
synchronous or asynchronous.
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Synchronization Techniques

Different approaches are roughly equivalent in expressive power and can generally be
implemented in terms of each other.

Busy- Waiting
Procedure Oriented Message Oriented

’/_ Semaphores \‘

’/ Monitors Message Passing

Path Expressions

Remote Procedure Call

Operation Oriented

Each approach emphasizes a different style of programming.
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Busy-Waiting

A simple approach to synchronization is for processes to atomically set and test shared
variables.

Condition synchronization is easy to implement:
[ to signal a condition, a process sets a shared variable
[J to wait for a condition, a process repeatedly tests the variable

Mutual exclusion is more difficult to realize correctly and efficiently.
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Busy-Wait Mutual Exclusion Protocol

Pl setsenterl : = true when it wants to enter its CS,
butsetsturn : = *“P2” to yield priority to P2:
process Pl process P2
| oop | oop
enterl := true enter2 .= true
turn = “p2” turn := “P1”
whil e enter2 and whil e enter1l and
turn = “pP2” turn = “P1”
do skip do skip
Critical Section Critical Section
enterl : = fal se enter2 := fal se
Non-critical Section Non-critical Section
end end
end end

[0 Can you prove this protocol is correct? Is it fair? Deadlock-free?
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Semaphores

Semaphores were introduced by Dijkstra (1968) as a higher-level primitive for process
synchronization.

A semaphore is a non-negative integer-valued variable s with two operations:
O P(s): delays until s>0; when s>0, atomically executes s ;= s-1

O V(s): atomically executes s:= s+1

Many problems can be solved using binary semaphores, which take on values O or 1.

process Pl process P2
| oop | oop
P(mutex) { wants to enter } P( mut ex)
Citical Section Citical Section
V(mutex) { exits } V( mut ex)
Non-critical Section Non-critical Section
end end
end end

Universitat Bern Concurrent Programming Approaches



Concurrent Programming 151.

Monitors

A monitor encapsulates resources and operations that manipulate them:
[1 operations are invoked with usual procedure call semantics
[1 procedure invocations are guaranteed to be mutually exclusive
[J condition synchronization is realized using signal and wait primitives
[1 there exist many variations of wait and signal ...

type buffer(T) = nonitor procedure fetch(var it : T);
var begi n
slots : array [0..N1] of T; if size = 0 then(notenpty. wait)
head, tail : 0..N1; it := slots[|head];
size : 0..N size := size - 1;
(notfull, notenpty : condition;) head : = (head+l) mod N
procedure deposit(p : T); (notfull.signal)
begi n end
if size = Nthen(notfull.wait ) begi n
slots[tail] := p; size := 0;
size := size + 1; head : = O;
tail := (tail+1) nod N tail := 0;
(ﬁnotenpty.signal) end
end
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Problems with Monitors

Although monitors provide a more structured approach to process synchronization than
semaphores, they suffer from various shortcomings.

A signalling process is temporarily suspended to allow waiting processes to enter!
[J Monitor state may change between signal and resumption of signaller

Simultaneous signal and return is not supported

Unlike with semaphores, multiple signals are not saved

Boolean expressions are not explicitly associated to condition variables

Nested monitor calls must be specially handled to prevent deadlock

N I O
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Message Passing

Message Passing combines both communication and synchronization:

[ A message is sent by specifying the message and a destination
[0 The destination may be a process, a port, a set of processes, ...

[ A message is received by specifying message variables and a source
[0 The source may or may not be explicitly identified

[  Source and destination may be statically fixed or dynamically computed

[ Message transfer may be synchronous or asynchronous
[0 With asynchronous message passing, send operations never block

0 With buffered message passing, sent messages pass through a bounded
buffer ; the sender may block if the buffer is full

[0 With synchronous message passing, both the sender and receiver must be
ready for a message to be exchanged
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Unix Pipes

Unix pipes are bounded buffers that connect producer and consumer processes
(sources, sinks and filters):

cat file # send file contents to output stream
| tr -c "a-zA-Z ’'\012° # put each word on one |ine

| sort # sort the words

| uniqg -c # count occurrences of each word

| sort -rn # sort in reverse nunerical order

| nore # and display the result

Processes should read from standard input and write to standard output streams.
[0 Misbehaving processes give rise to broken pipes!

Process creation and scheduling are handled by the O/S.
Synchronization is handled implicitly by the 1/O system (through buffering).
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Send and Receive

In CSP and Occam, source and destination are explicitly named:

PRCC buffer (CHAN OF I NT give, take, signal)
VAL I NT size IS 10:
I NT inindex, outindex, numtens:
[ size] I NT thebuffer:

SEQ
numtens := 0
inindex := 0
outindex := 0
VWH LE TRUE
ALT
numtens < size &(give ? thebuffer[inindex] )
SEQ
numtens := numtens + 1
inindex := (inindex + 1) REM si ze
numtens > 0 &(signal ? any )
SEQ
(take ! thebuffer[outindex] )
numtens := numtens - 1
outindex := (outindex + 1) REM si ze
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Remote Procedure Calls and Rendezvous

In Ada, the caller identity need not be known in advance:
task body buffer is

size : constant integer := 10;
the_buffer : array (1 .. size) of item
no of itens : integer range 0 .. size := 0;
In_index, out_index : integer range 1 .. size := 1,
begi n
| oop
sel ect

when no_of itens < size =>
(accept give(x : initen))do

the buffer(in_index) := x;
end give;
no of itens := no of itens + 1;
in_index :=in_index nod size + 1;

or when no_of itens > 0 =>
(accept take(x : out iten))do

X = the_buffer(out _index);
end t ake;
no of itens := no of itens - 1,
out _index := out _index nod size + 1;
end sel ect;
end | oop;
end buffer;
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Linda

Linda is a coordination medium, with associated primitives for coordinating concurrent
processes, that can be added to an existing programming language.

The coordination medium is a tuple-space, which can contain:

[]
[]

data tuples — tuples of primitives vales (numbers, strings ...)
active tuples — expressions which are evaluated and turn into data tuples

The coordination primitives are:

[]

[]

(I I I

out(T) — put a tuple T into the medium (non-blocking)

0 e.g.,out(“enpl oyee”, “pingu”, 35000)

in(S) — destructively input a tuple matching the pattern S (blocking)

0 e.g.,in(“emloyee”, “pingu”, 7?salary)

rd(S) — non-destructively input a tuple (blocking)

inp(S), rdp(S) — try to input a tuple; report success or failure (non-blocking)
eval(E) — evaluate E in a new process; leave the result in the tuple space
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Example: Fibonhacci

A (convoluted) way of computing fibonacci numbers with Linda:

I nt fibonacci(int n) {

i f (n<2) {
out (“fibonacci”, n-1, 1); /'l non-bl ocki ng
return 1;
}
I f (rdp(“fibonacci”,n-1,7?fibn_1)==0) { /'l non- Dbl ocki ng
eval (“fi bonacci”,n-1,fibonacci(n-1)); [/ async
}
rd(“fibonacci”,n-1,?fibn_1); /'l bl ocking, non-destructive
i n(“fibonacci”,n-2,?fibn_2); /'] bl ocking, destructive

fn =fibn 2+fibn_1;
return(fn);
} /] Post-condition: rdp(fib(n-1)) == True
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Evaluating Fibonacci

—» (“fibonacci”, 3,

I
d | d
fib(5 )|l (*1i bonacci *, 4, - (fin(s r ()j(“fibonacci”,4,
I
I
I

—» (“fibonacci”, 2,

q I
fib(5 ) ()—/>(“fibonacci”,4, | a0 C‘ D )
rd()c | (“fibonacci”, 1,

I

I

—» (“fibonacci”, 3,

_________________________ rd()
fib(5 —» (“fi bonacci”, 4,
| ) | | (Fib(5 )= (
fib(5 — (“fibonacci”, 4,

—» (“fibonacci”, 3,

—» (“fibonacci”, 3,

—» (“fibonacci”, 2,

—» (“fi bonacci”, 2,

—» (“fibonacci”, 1, 1)

(“fibonacci”, 0, 1)
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Evaluating Fibonacci ...

_ rd() : rd()
fib(5 —»| (“fibonacci”, 4, W “fib i, 4,
D o/ Ciponee

vy

(“fibonacci”, 2, (“fibonacci”, 2, 2)

|
|
|
— — | rd()
(“fibonacci”, 3, | C\» (“fibonacci”, 3, 3)
|
|
|
|

(“fibonacci”, 1, 1) L

|
vy | rd
A (“fibonacci”, 0, 1) | fib(5 ()_>(“fibonacci”,4, 5)
|

(“fibonacci”, 3, 3)

: rd() : :
fib(5 —» (“fi bonacci”, 4,
— | F—— - = = = — - — - — - - — - — — - — — — — _ _

—» (“fibonacci”, 3,

(“fibonacci”, 4, 5)

—» (“fibonacci”, 2, 2)

return(8)

(“fibonacci”, 1, 1)

[0  What would happen if you ran fibonacci(5) twice?
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Other Concurrency Issues

Atomic Transactions:
[0 RPC with possible failures
[0 failure atomicity
[0 synchronization atomicity

Real-Time Programming:
0 embedded systems
0 responding to interrupts within strict time limits
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Ssummary

You Should Know The Answers To These Questions:

[0 How can you ensure mutual exclusion by busy-waiting?
Are semaphores fair? In what way? Under what assumptions?
How do monitors differ from semaphores?
In what way are monitors equivalent to message-passing?
What are “active tuples” in Linda?

N I

Can You Answer The Following Questions?

How could you implement a semaphore using monitors?

How would you implement monitors using semaphores?

Which concurrency mechanisms shown here are easily implemented in Java?
Which of the known problems with monitors are also present in Java?

How would you implement a message buffer in Linda?

NN I By
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10. Petri Nets

Overview
[0 Definition:
0 places, transitions, inputs, outputs
[0 firing enabled transitions
[0 Modelling:
[0 concurrency and synchronization
[0 Properties of nets:
[0 liveness, boundedness
0 Implementing Petri net models:
[0 centralized and decentralized schemes
Sources

0 J. L. Peterson, Petri Nets Theory and the Modelling of Systems, Prentice Hall,
1983.

[0 D. Lea, Concurrent Programming in Java — Design principles and Patterns,
The Java Series, Addison-Wesley, 1996.
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Petri nets: a definition

A Petri net C = [P,T,lI,0Olconsists of:
A finite set P of places
A finite set T of transitions

An input function I: T - NP (maps to bags of places)
An output function O: T - NP

W NP

A marking of C is a mapping 4: P - N

Example:

P={xy} X

T={a, b}

I(a) ={x}, I(b) ={x, x}

O@={xy} O)={y} y
H={x x}
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Firing transitions

To fire a transition t:
1. There must be enough input tokens: p = I(t)
2. Consume inputs and generate output: 1’ = - I(t) + O(t)

a a
X ‘_/ a_>x ‘_/ a_>
b y b y
e I
X a X a
\—/ \—/
b y b y b y
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Modelling with Petri hets

Petri nets are good for modelling:
[1 concurrency
[0 synchronization

Tokens can represent:
[0 resource availability
[J jobs to perform
[0 flow of control
[0 synchronization conditions ...

Universitat Bern
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Concurrency

Independent inputs permit “concurrent” firing of transitions

WSS
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Conflict

Overlapping inputs put transitions in conflict

O, O

Only one of a or b may fire
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‘ Mutual Exclusion

The two subnets are forced to synchronize

¥o

'/_\

\ g
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Fork and Join

@

(&~
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‘ Producers and Consumers

producer

g

\ T

consumer

N

_Ej
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‘ Bounded Buffers

9 =

/

free slots

—O- //4@

s
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Properties

Reachability:

[0 The reachability set R(C,u) of a net C is the set of all markings ' reachable from
initial marking L.

Boundedness:
[0 A net C with initial marking u is safe if places always hold at most 1 token.
[0 A marked net is (k-)bounded if places never hold more than k tokens.
[0 A marked net is conservative if the number of tokens is constant.

Liveness:
[1 A transition is deadlocked if it can never fire.
[J A transition is live if it can never deadlock.

[1 Are the examples we have seen bounded? Are they live?
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Liveness and Boundedness

This net is both safe and conservative.
Transition a is deadlocked.
Transitions b and c are both live.

The reachability set is {{y}, {z}}.
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Related Models

Finite State Automata
[0 Equivalent to regular expressions
[0 Can be modelled by one-token conservative nets
[0 Cannot model unbounded Petri nets

a >

The FSA for: a(b|c)*d
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Computational Power

Petri nets are not computationally complete
[0 Cannot model “zero testing”
[0 Cannot model priorities

b
A zero-testing net: r
An equal number of a

a and b transitions may fire
as a sequence during any
seguence of matching

c and d transitions.

(#a = #Db, #c = #d)

Sl
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Applications of Petri nets

Modelling information systems:
0 Workflow
[0 Hypertext (possible transitions)
[0 Dynamic aspects of OODB design
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Implementing Petri hets

We can implement Petri net structures in either centralized or decentralized fashion:

[1 Centralized:

[0 A single “net manager” monitors the current state of the net, and fires
enabled transitions.

[1 Decentralized:

[0 Transitions are processes, places are shared resources, and transitions
compete to obtain tokens.
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Centralized schemes

179.

In one possible centralized scheme, the Manager selects and fires enabled transitions.

( Net Manager
@

\

\

Identify enabled ) deadlocked
{ transitions ) >@)

found some¢ T got new marking

Select and fire
transitions

Concurrently enabled transitions can be fired in parallel.

[0  What liveness problems can this scheme lead to?
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Decentralized schemes

In decentralized schemes transitions are processes and tokens are resources held by
places:

OO

Transitions can be implemented as thread-per-message gateways so the same transition
can be fired more than once if enough tokens are available.

Tokens must be grabbed in a consistent order, or the net can deadlock even though
transitions are enabled!
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Transactions

Transitions attempting to fire must grab their input tokens as an atomic transaction, or the
net may deadlock even though there are enabled transitions:

b

a

If a and b are implemented by independent processes, and x and y by shared resources,
this net can deadlock even though b is enabled if a (incorrectly) grabs x and waits for y.
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Coordinated interaction

A simple solution is to treat the state of the entire net as a single, shared resource:

get ()

If a transition is not enabled, it waits and releases the net till it changes state again. When
a transition fires and updates the net, it notifies all waiting transitions.

[0 How could you refine this scheme to work in a distributed setting?
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Ssummary

You Should Know The Answers To These Questions:
[0 How are Petri nets formally specified?
How can nets model concurrency and synchronization?
What is the “reachability set” of a net? How can you compute this set?
What kinds of Petri nets can be modelled by finite state automata?

How can a (bad) implementation of a Petri net deadlock even though there are
enabled transitions?

If you implement a Petri net model, why is it a good idea to realize transitions as
“gateways”?

N I

]

Can You Answer The Following Questions?
[0  What are some simple conditions for guaranteeing that a net is bounded?

[0  How would you model the Dining Philosophers problem as a Petri net?
Is such a net bounded? Is it conservative? Is it live?

[0 What could you add to Petri nets to make them Turing-complete?
[0 What constraints could you put on a Petri net to make it fair?
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11. Scripting Agents

Overview
[  What is Piccola
Building and Using Coordination Abstractions
Example I: Reader Writer
Example II: Dining Philosophers

O O O

— core Components
— renaming Interfaces
— wiring
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An Overview of Piccola

Piccola is a small language for composition:
[1 only 4 keywords: def return root dynam c
[0 very few operators: ( ) , = #\
[0 predefined services: newChannel (), run(),
[0 Access to Java objects
Concepts:
[0 Behaviour is represented by agents. An agent autonomously:

— Iinvokes services

— composes forms

[1 State is represented by channels. Channels are the (only) location of
communication for agents

[0  Structure is represented by forms. A form is a finite mapping of labels to values
(other forms).

[0 services are represented by a channel and an associated agent.
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Formal Concept

[0 the mi-calculus provides the semantics

[J communication is the only notion for program progress
al! F| a? X>P == P[X F

[0 aservice:

Invocation

PIP]... service body (infinitely many copies)
b%ice location
==>
Pl...

active invocation

S

The invocation form contains the context for the service: Arguments,
result channel, exception channel etc.
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Forms

Forms are finite mappings from label (=identifiers) to values.

[0 Projection: F.I

[0 Extension: (F, | = G)

[0  Polymorphic extension: (F, G)

[0 Restriction: (F\)
baseForm =

Text = "foo"

Nanme = Text
Size = (x =10, y = 20) baseForm Si ze. x ==> 10

col oredForm =
baseFor m
Col or = "green"
nodForm =
baseFor m
Size =

baseForm Si ze
X = 15 nodForm Si ze.y ==> 20

col oredForm Nane ==> “f 00"

187.

Scripting Agents
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Forms (cont.)

Forms are ubiquitous in Piccola:
[0 Interfaces to Components
Namespaces
Keyword based arguments
Modules and Packages
Objects (immutable)
[0 Dictionaries (immutable)
as such, Piccola can manipulate forms as first class values
[1 explicit manipulation of interfaces
[1 explicit manipulation of argument lists
[ explicit manipulation of environments

N I I
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Intention

Scripting Components within one or more styles

[ Components are external (foreign language, i.e. Java) or in Piccola.
[1  Scripting: high level, declarative operators to compose components
0 Style:
— Defines kinds of valid compositions
— may ensure system properties
How are these requirements supported by Piccola?
[0  Uniform, general interface to components by Forms.

[0 User defined infix and prefix operators.
[0 Any (public) Java object can be scripted.
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Communicating Agents

ch = newChannel () # create a new Channel
run
do:
ch.send(“Hell 0”) # sender agent
run
do:
v = ch.receive() # receiver agent
println(v)

[0 The whole script evaluates to a form with label ch
[0 runisaservice that evaluates its do: block in a new agent and returns ()

0 newChannel () returns a form with services send() and a blocking
recei ve()
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Communicating Agents (cont.)

or we can use a style for Channels:

Components C Channels
A Agents
Connectors 1,2, ?7* output, input, replicated input
Rules C! Form==>A send form along channel C
C ?Abstraction ==>A | receive form and run abstraction
C ?* Abstraction ==>A | multiple receive

root = (root, load(“pil”))
ch = newChannel () # redefined in pil-style
ch ! “Hello”
ch 2 \'(v) = println(v)
[0 No run() invocations anymore
[I Infix operators for sending and receiving
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Coordination Abstractions

Channels are the only primitive means to coordinate agents.

For example: run two agents in parallel and return whatever result the first one delivers.
Assuming the other gets blocked.
O Joi n( X):

receptor = newBl ackboar d()

run (do: receptor.wite(X left()))

run (do: receptor.wite(Xright()))

return receptor.renove()

stop() =
newChannel (). recei ve() # wi Il never renove anyt hing

A semaphore is a channel:

newSenaphor e() :
ch = newChannel ()
ch. send() # initially not |ocked
return
| ock = ch.receive
unl ock = ch. send
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Reader Writer

a Component with a set of intended Reader and Writer methods.
Need a generic wrapper:

‘ unsync
Comp.
= Witer

Need core RWPolicies: Safe, Fair, Witer Priority ... wth
newRWPol i cy() :
return
pr eReader :
post Reader :
preWiter:
post Witer:

Universitat Bern Scripting Agents
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Wiring

Generic Wrapper:

# X reader = form of reader nethods
# X witer = formof witer nethods
# X.policy = reader witer policy

# return wap(X reader), wap(X witer)

w reRWPolicy(X) =
w apAl | Lanbda
form= X reader
map(service) (Args) =
X. policy. preReader ()
servi ce( Args)
X. pol i cy. post Reader ()
w apAl | Lanbda
form= X witer
map(service) (Args) =
X.policy.preWiter()
servi ce( Args)
X. policy.postWiter()

Universitat Bern

Usage: givena Formf withr 1,

and wl writer method. Then:
wr appedF = wi reRWPol i cy

pol i cy = newRWPol i cy()
reader =

ri =f.rl

rz =f.r2

witer = (wl = f.wl)

Then: wr appedF has methodsr 1,

194.

r 2 Readers

r 2, and wil

and guarantees the RW Policy for f .
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Safe RW Policy

newRWPol i cy():
witers = newSenmaphore()

readers = newBl ackboar d() < writing witers | ocked
B d t
readers. wite(0) readers ety
return prew T l postW
pr eReader : writers unl ocked
r = readers. renove() <empty readers | 0
If (r == 0) (then: witers.lock())
readers.wite(r + 1) preR l postR
post Reader : witers | ocked

r = readers. renove() <1reader > readers ! 1
if (r == 1) (then: witers.unlock())
readers.wite(r - 1)

preR postR

preWiter = witers.|ock
postWiter = witers. unl ock <2reader >
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Safe + Queue = Fair

The above version is safe, but writers may starve...
[0 servepreWiter and preReader using a FIFO policy
[0 New policy blocks pr eReader , when a Writer is waiting and vice versa
[0 Use a passive queue (with put (), and get () ) and a single worker:

preWiter -~
post Reader
post Witer \/'

[ Need a generic abstraction to queue services:

r eReader f % _—> [ RWPolicy
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Queue

gqueuedServi ce(Forn =
g = newQueue()
def worker() =
q. get (). do()
wor ker ()
run(do: worker())

H H H

return w apAl | Lanbda
form= Form
map(service) (Args) =
result = newBl ackboar d()
g. put (do: result.wite(service(Args))) #
return(result.renove()) #

Adapting the policy:

nyPol icy = rwPol i cy. newRWPol i cy()
nyFifoPolicy =
nyPol i cy
gueuedSer vi ce
preWiter = nyPolicy.preWiter
preReader = nyPol i cy. preReader

Universitat Bern
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execute this Job
wait for next Job in the queue
start worker agent

send Job to worker
return (bl ocking) result
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Dining Philosophers

The well known example:

Components:

[]

NN I N I I

5 Forks as Semaphores

Group of forks to freezel/initialize

Policy

5 Philosophers

Group of philosophers to initialize/start
View

main script to initialize and connect these
components.

Universitat Bern

198.

Scripting Agents



Concurrent Programming 199.

A Philosopher

newPhi | osopher (X) =
running = ... # Flag is true while philo. active
def agent():
runni ng. r ai seWienFal se()
sl eep( X thi nkTi me())
X. pol i cy. pi ckFor ks( X)
sl eep(X eat Time())
X. pol i cy. dropFor ks( X)

agent ()
start() =
runni ng. set True()
run( do:
try
do: agent ()

catch(E): printIn("Phil got: " + E))

stop() = running. set Fal se()

[ this is a minimal Philosopher: no Identifier ...
[0 Picking Forks is delegated to policy
[J Active philosopher is represented by agent that runs an endless loop

Universitat Bern Scripting Agents



Concurrent Programming

The Philosopher’s lifetime

aPhilosopher

[1 use pre- and post-hook of the Forks to notify display
[0 use Argument Forms to pass information: Phi | | d, Forkl d,

Universitat Bern

aPolicy right left
pickForks(X)
-
hungry pICk(X’) >
hasRightFork Je_ply ________
pick(X")
-
eating *r(ip_ly _______________
reply!
« — .

200.

has, fork
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Concurrent Programming

Group of Philosophers

phi |l osG oup = newAssenbl i ng

start: ()
stop: ()
def init(N =
if (N<D5)
t hen:
phi | os = newPhi | osopher

t hi nkTi me:
eat Ti me: .
Philld = N
left = ... the | eft Fork
right = .... the right Fork
policy = ... t he policy

phi | o0sG oup. ext end( phi | 0s)
# add this phil osopher to group
init(N+ 1)
init(0)

phi | o0sG oup. group().start ()

Universitat Bern

201.

# multiplex start, stop.

Wrap torks such that pi ck() and
dr op() include default context
information (Phi | 1 d, Forkl d). E.g.:

f = tabl e. get For k(I ef t For kl d)

left =

pi ck(X): f.pick
Philld = Philld
Forkld = | eft Forkld
X

drop(X): f.drop
Philld = Philld
Forkld = |l eftForkld
X

Scripting Agents



Concurrent Programming 202.

Policies

all Right handed:
policy =
pi ckForks(X) =
X.right.pick(has = 0, fork = "R GHT")
X left.pick(has = 1, fork = "LEFT")
dropForks(X) =
X left.drop(has = 2, fork = "LEFT")
X.right.drop(has =1, fork = "R GHT")

Deadlock free:

policy =
pi ckForks(X) =
If (X Philld == 0) # avoi d cycl es
t hen:
X.right.pick(has = 0, fork = "R GHT")
X left.pick(has = 1, fork = "LEFT")
el se:
X left.pick(has = 0, fork = "LEFT")
X right.pick(has = 1, fork = "R GHT")
dropForks(X) = ...

Universitat Bern Scripting Agents



Concurrent Programming 203.

First Class Arguments

Observe how contextual information is available a fork gets picked and dropped:
[0 This information is needed neither by the forks nor by the philosophers
[1 Itis needed to hook in notifications for the GUI, log File etc.

philo pi ckForks(...)

policy pi ck(has = 0, form= "R GHT")

wrapped Fork pick(Philld = 1, Forkld =2, ...)

N

/ hooked Fork _\p‘ick() = | ock()

Semaphore

Phi | osoper 1 has no forks and picks the
ri ght one.

Universitat Bern Scripting Agents



Concurrent Programming 204.

Wiring Philosophers, Forks, and the display

Provide a factory service to create Forks and add hooks to pre- and post methods:

newFor k() =
s = newSenaphor e()
return w apServices
form= (pick = s.lock, drop = s.unl ock)
wap =
pi ck =
pre(X):
Cout Vi ew. pr ePi ckFor k( X) # to |l og consol e
vi ew. vi ew. pr ePi ckFor k( X) # notify QU
post ( X) :
Cout Vi ew. post Pi ckFor k( X)
vi ew. vi ew. post Pi ckFor k( X)
i f (X has == 0)
t hen: sl eep(2500)

drop =
pre(X):
Cout Vi ew. pr eDr opFor k( X)
vi ew. vi ew. pr eDr opFor k( X)
post ( X) :
Cout Vi ew. post Dr opFor k( X)
Vi ew. vi ew. post Dr opFor k( X)
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Concurrent Programming 205.

A Style for GUI Events

Components | C GUI-Component
E Event type
R Response
L Listener

Connectors | (), ?

Rules E(R) ==>L | compose an event type with a response
C ?L ==> () | connect a component to a listener

restart() =
freeze()
vi ew. reset ()
phi | o0sG oup. group().start ()

restartButton = awt Conponent ("j ava. awt . Button").set(Label = "restart")

restartButton ? Action(do: restart())

Universitat Bern Scripting Agents



Concurrent Programming

Graphical Layout

f = newFrane
newBor der Panel
center = view.ing
sout h = newBor der Panel
center = slider

west = freezeButton
east = restartButton
vi ew. draw()

f. show()

Universitat Bern

206.

= AWTapp =]

® ®
®>0®

hungry !
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Concurrent Programming 207.

Piccola Projects

[0  Visualization (Debugging)

Reasoning

Distribution (using Corba, RMI, DCOM...)
Composition Workbench (including Repositories)
Implementation and optimization of forms.

N I
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Theprogrammirg model

« Communication is a fundamental and integral part of computing,
whether between different computers on a network, or between
components within a single computer.

e Robin Milner’'s view: Programs are built from communicating
parts, rather than adding communication as an extra level of
activity.

,

Programs proceed by means of communication.




Evolving Automata

Link moved




Automata

Starting point: The components of a system are interacting automata.

An automaton is a quintupke= (%, Q, q,, o, F ) with:
» a se of actions(sometimes called an alphabet),

e asetQ={0qyq,...} of states
» a subseF of Q called theaccepting states

e a subset of Q x Ax Q called theransitions
 a designated start staig

A transition €, a, 9') € o is usually writteng—2-q'.
The automator is said to be finite I is finite.



Behaviour of Automata

An automaton is deterministic if for each pajg@) € Q x X
there is exactly one transiti@p2.q'.

deterministic automata: non-deterministic automata:

@




Vending machine

A tea/coffee vending machine
IS Implemented as black box
with a three-symbol alphabet
{1Fr, teg coffeel.




Internal transition digrams

Deterministic system S1. Non-deterministic system S2:

Are both systems equivalent?



S1 =527

S1: S2:
qO=1Fr-dql+¢ gO=1Fr-ql+1Fr-g2+¢
gl=tea-qO+1Fr-g2 gl=teaq0
q2=coffeeq0 02=1Fr-g3

g3=coffeeq0

gl=tea qO+1Fr -coffeeq0

q0=1Fr -(tea q0+1Fr -coffeeq0) + ¢ q2=1Fr -coffeeq0
qO=1Fr -(tea+1Fr -coffed-q0+¢ g0=1Fr -tea-g0+1Fr -1Fr -coffeeq0+¢
0= (1Fr - (tea+1Fr -coffed)* qO=1Fr -(tea qO+1Fr-coffeeq0)+¢

g0=1Fr -(tea+1Fr -coffe@-q0+¢
gO0=(1Fr -(tea+1Fr -coffed)*

The systems S1 and S2 are language-equivalent,
but theobservable behavious not the same.



Automata - Summar

Language-equivalence is not suitable for all purposes. If
we are interested in interactive behaviour, then a non-
deterministic automaton cannot correctly be equated
behaviourally with a deterministic one.

A different theory is required!



Labelled transitionystems

A labelled transition system over actiohstis a pair Q, T)
consisting of:

e aselQ={dqyq,...} of states
e a ternary relatiom < (Q x Actx Q), known as dransition
relation.

If (0, o, 0) € T we write g-2.q" , and we cajlthe source
andq’ the target of the transition.

10



States and Actions

Important conceptual changes:

* What matters about a strisg a sequence of actions - is not
whether it drives the automaton into an accepting state (since
we cannot detect this by interaction) but whether the
automaton is able to perform the sequenceinferactively.

A labelled transition system can be thought of as an
automaton without a start or accepting states.

* Any state can be considered as the start.

Actions consist of a sét of labelsand a sdt afo-labels with
L={alacL}. We use, 3, ... to range over actiomsct

11



Strorg Simulation - Idea

e In 1981 D. Park proposed a new approach to define the
equivalence of automatons - bisimulation.

 Given a labelled transition system there exists a standard
definition of bisimulation equivalence that can be applied to
this labelled transition system.

e The definition of bisimulation is given in @inductivestyle
that is, two systems are bisimular if we cannot show that they
are not.

 Informally, to say a ‘system S1 simulates system S2’ means
that S1’s observable behaviour is at least as rich as that of S2.

12



Strorg Simulation - Definition

Let (Q, T) be an labelled transition system, anddéte a binary
relation overQ. Then S is called a strong simulation ov@y 1)
If, whenever [1q,

if P-°>p' then there exists € Q such thag-%-0d amiSq.

We say thaf) strongly simulatep if there exists a strong
simulationS such thap&q.

13



Strorg Simulation - Exarple

ere

The states qO0 and pO are different.
Therefore, the systems S1 and S2 are
not considered to be equivalent.

coffee

14



Strorg Simulation - Exarple |

Define S by

S={(p0, q0), (p1, ql), (p3, ql1), (P2, g4), (P4, d2), (p3, q3)}

thenSis a strong simulation; hence g0 strongly simulates p0.
To verify this, for every pairg, g) € S we have to consider
each transition of p, and show that it is properly matched by
some transition of q.

However, there exists no strong simulatiRrthat contains

the pair (g1, pl), because one of ql's transition could never

be matched by pl. Therefore, the states qO and pO are
different, and the systems S1 and S2 are not considered to be
equivalent.

15



Strorg Bisimulation

The convers&k! of any binary relatiofR is the set of pairs (y, X)
such that (X, Y R.

Let (Q, T) be an labelled transition system, and3die a binary
relation overQ. ThenS s called a strong bisimulation ove),(T)
If both S and its conversg&1!are strong simulations. We say tpat
andq are strongly bisimular or strongly equivalent, writfer g,

If there exists a strong bisimulation S such &t

16



Checkirg Bisimulation

31 S1~S2?

To construct start with (p0O, gq0) and check whether S2 can
match all transitions of S1.:

S={(p0, q0) (p1, q1) (p3, 1) (p2, g2) (p4, q3)}

System S2 can simulate system S1. Now check, whé&her
IS a simulation or not:

S-lz{ ] ] ] ] }

Start with e S,

1: g0 has one transition ‘a’ that can be matched by two
transitions of S1 (target pl and p3, respectively) and
we have e S-1and e S,

2: g1 has two transitions ‘b’ and ‘c’, which, however,
cannot appropriately be matched by the related states pl
and p3 of system S1 (p1 has only a ‘b’ transition whilst
p3 has only a ‘c’ transition).
We have, therefore, §1 ~ S2. 17




Some Facts on Bisimulations

~ IS an equivalence relation.

If S,1=1, 2,... Is a family of strong bisimulations, then the following
relations are also strong bisimulations:

. Idp
¢S,-S,={(P,Q) e PxP if RexistswithP,R € S,, (R Q) € S,}
oS'l

18



Some Facts on Bisimulations |1

S:5={P,Q ePxP ifRexistswithP,R) € S, (R Q) € S, }
Proof:

Let (P, Q) € S;-S,. Then there existsRwith (P, R) € S;
and(R, Q) € S..
(—) If P_%, P, then sinc®(R) € S, there exist®R and
R % R andX,R’) e S,. Furthermore, since
R Q) € S, there exists & withQ %, Q" and
R’, Q) € S,. Due to the definition 0%, - S, it holds
thatP’,Q’) € S;- S, as required.
(«) similar to ).

19



Bisimulation - Summar

Bisimulation is an equivalence relation defined over a labelled
transition system which respects non-determinism. The
bisimulation technique can therefore be used to compare the
observable behaviour of interacting systems.

Note: Strong bisimulation does not cover unobservable behaviour

which is present in systems that have operators to define reaction
(.e., internal actions).

20



Ther-Calculus

 The n-calculus i1s a model of concurrent computation based
upon the notion ohiaming

« The m-calculus is a calculus in which the topology of
communication can evolve dynamically during evaluation.

* In the m-calculus communication links are identified by
names and computation is represented purely as the
communication of names across links.

 The r-calculus i1s an extension of the process algebra CCS,
following the work by Engberg and Nielsen who added
mobility to CCS while preserving its algebraic properties.

e The most popular versions of thecalculus are the monadic
n-calculus, the polyadig-calculus, and the simplified polyadic
n-calculus.

21



Ther-Calculus - Basic ldeas

« The most primitive in ther-calculus is aname Names,
Infinitely many, are X, vy,..e N; they have no structure.

* In the n-calculus we only have one other kind of entity: a
processWe use P, Q, ... to range over processes.

Polyadic prefixes:

o input prefix:x(y)
“Input some namey,,...,y, along the link namexg’

e output prefixx{y)
“‘output the namey,,...,y, along the link namexg’

22



Then-Calculus - $ntax

Note: We only consider the simplified polyadic version.

P,Q = P|P Parallelcomposition
(LX) P Restrictian
x(yl,...,yn).P Input
X(yl,...,yn> Output
P Replication (input-only)
0 Null

23



Reduction Semantics

Milner proposed first a reduction semantics technique. Using the
reduction semantics technigue allows us to separate the laws
which govern the neighbourhood relation among processes from

the rules that specify their interaction.

IP=P|'P

P=P|0

P[Q=QJ|P
(PIQIR=P|(QIR)
LX)P[Q=(vx)(P|Q), xen(Q)

Q R P=P P _.Q Q=Q P.Q
QP —R|P P—Q (LX)P —(ox)Q

x(yl,...,yn).P|7<<zl,...,;,> SN P{yl,...,yn\zl,...,;]}

24



Evolution

XYY | X(U)IKV) | X(z) can evolveto YWV)|X(z) or XYy)|ZV)

(L X)(XY) | X(W)IKV)) | X(z) can evolveto YWV)|X(2)

X Y) [Ix(u)IKV) | X(2) can evolveto

YW IIX(U)IKV) [ X(2) or Xy) [IX(U) V) [ ZV)

and
YW IIX(U) V) [ ZV)

25



Church’s Encodig of Booleans

True(b) = Db, f)I
Falseb) = bt f).f
Not(b,c) = b, f)g(f,t)

(v ©)(Not(b,c) [ True(c)) = False(b) ’7
0Ot F)e(f.|ct, ) =bt, )T 4

26



Actions:

a(b)
ab)

(v X)a(b)

Input actionxx is the name at which it occurs,
bis the tuple of names which are received

Output actionx is the name at which it occurs,
b is the tuple of names which are emitted

Output actionx is the name at which it occurs,
b is the tuple of names which are emittedx)
denotes private names which are carried out
from their current scopeg¢ope extrusion

Silent action: this action denotes unobservable
Internal communication.

27



L abelled Transition Semantics

fn(a(b)) ={a}

IN:a(X).P_20) , p(x\b} OUT:ab) &P, g fn(a()) ={ab}
fn((v X)a(b)) ={a,b} -{x}
open P2 Xab) ,p' yra yeb-X () =2

(v y)P _LYyXab) | pr

bn(a(h)) ={b}
bn@&b)) =2

comP=ELP 0 0),q bn(© X)a(b)) ={X}

P|Q— P'|Q’ bn(r) =
cLosE P (vX)ab)  pr T Q Ei(b) 'Q" X ¢ fn(Q) RES P_%,P X ¢ N(a)
P|Q— (b X)(P'|Q’) (v X)P -2 (v X)P'
paR: PP bn@)nfn(@Q =2 ~EpL: a().P_2b), a(b) P{)?\B}

PIQ_%,P'|Q 1a(x).P_20) , P{x\b} | 1a(x).P

28



Some Facts

* The side conditions in the transition rules ensure that names do
not become accidentally be bound or captured.
In the rule RES the side condition prevents transitions like

(v ¥a(b).P 2, (b X)P{b\%
which would violate the static binding assumed for restriction.

* In the given system bound names of an input are instantiated as
soon as possible, namely in the rule for input - it is therefore an
early transition system. Late instantiation is done in the rule for
communication.

e The given system implements an asynchronous variant af the
calculus. Therefore, output action are not directly observable.

e There Is no rule fosi-conversion. It Is assumed thatconversion
IS always possible.

29



Experiments

(v ©)(Not(b,) | True(c)) = False(b) ’7
OB DS (et D) =bt, )T 4

Experiment 1. Experiment 2:

B (vo)(b(t, f)c(f,t)|c(t, f)i) B b(t, f).f
DOy, ety e, 1)) by, y

- (L e)(y) Y0, 0

y()

A, 0

Using strong bisimulation, the systems are not equivalent.
Furthermore, an asynchronous observer can only indirectly

see that an output message has been consumed.
30



Bisimulation - A Board Game

The central idea of bisimulation is that an external observer
performs experiments with both proces®eand Q observing

the results in turn in order to match each others process
behaviour step-by-step.

Checking the equivalence of processes this way one can think
of this as a game played between two personsyribeliever

who thinks thatP and Q are not equivalent, and theeliever

who thinks thaP andQ are equivalent. The underlying strategy
of this game is that the unbeliever is trying to perform a process
transition which cannot be matched by the believer.

31



Synchronous Interactions

There exists two kinds of experiments to check process equivalence:
Input-experimentsand output-experimentsBoth experiments are
triggered by their corresponding opposite action.

In the synchronous case, input actions for a proé€esse only
generated if there exists a matching receiver that is enabled Rithin
The existence of an input transition such fhaolves tdP’ reflects

precisely the fact that a message offered by the observer has actually
been consumed.

32



Asynchronous Interactions

In an synchronous system the sender of an output message does not
know when the message is actually consumed. In other words, at the
time of consumption of the message, its sender is not participating in
the event anymore. Therefore, an asynchronous observer, in contrast
to a synchronous one, cannot directly detect the input actions of the
observed process. We need therefore a different notion of input-
experiment.

Solution: Asynchronous input-experiments are incorporated into the
definition of bisimulation such that inputs of processes have to be
simulated only indirectly by observing the output behaviour of the
process in context of arbitrary messages (Bja(b) ).

33



The Silent Action

Strong bisimulation does not respect silent actiosigafisitions).

Silent transitions denote unobservable internal communication.
From the observer’'s point of view we can only notice that the
system takes more time to respond.

Silent actions do not denote any interacting behaviour. Therefore,
we may consider two systerRsandQ to be equivalent if they
only differ in the number of internal communications.

We writeP = P iP (L)%, (¢ P . In other words, a given
observable action can have an arbitrary number of preceding or
following internal communications.

34



Asynchronous Bisimulation

A binary relation S over processed and Q is a weak
(observable) bisimulation if it is symmetric aRdb Q implies

« wheneveP_2,P' , wheteis eithert or output with
bn@)fn(P|Q)=T , thé exists such tha® = Q" and
P'SQ.

. (P|ab)) S(Q|ab)) for all messagds)

Two processeR andQ are weakly bisimular, writte®~=Q  , If
there is a weak bisimulatidggwith P S Q.

35



Some Facts

 ~ IS an equivalence relation.
e ~ IS @ congruence relation.
| eadingr-transitions are significant, i.e., they cannot be omitted.

e Asynchronous bisimulation is the framework that enables us to
stateP = Q iff P~ Q and vice versa.

36



An Sinmple Ohect Model

Reference€@ll=(vv,s,q)
(V0)
ISURIA @ INAOIIEN
1'g(r).v() (V) | <) )

37



A List

A list is eitherNil or Consof value and a list.

Vv

C e

The constanil, the constructio®ong V, L), and a list oh values
are defined as follows:

Nil h(n,c).n
CongV,L) = (vv,1l)(h(n,c).c(v,l)|V{v)|LI))
[Vl,...Vn] = Cons(\/l,Cons(...,Cons(Vn, Nil)..))

38



A Concurrent Laguage

D :
E::

I-1...]10]1]...

C:C
If E thenC elseC
whileE doC
letD in C end
C parC
iInputy
output
skip

=varV

=V
F(E,...,E)

Variable

Function symbols
Assignment
Sequential Composition
Conditional Statement
While Statement
Declaration
Parallel Composition
Input
Output

Variable Declaration
Variable Expression
Function Call

39



Ambiguous Meanig

X =0;
X=X+1par X=X+2

What is the value of X at the end of the second statement?

40



Basic Elements

 We assume that each element of the source language is assigned
a process expression.

Variables: X(init) = (v v,setXgetX)
( V(init)
I'setX(n,r).M_)(V{n)|T{))
|fgetX(r).v(i)(vi) [ <)) )
SKip: don€)

Ci;C= (v c)(Cf{donac} |c().C)

_ (l,r,)(trug |C{donal} |[C{dondar}

C,parC, = _
(10).t(b).(if bthenr().Skipelsd () |t( false)|
(r().t(b).(if bthenl().Skipelser{) |t( false))é)11



EXxpressions

X = (v ack)(getX(ack) | ack(v) FegVv))
F(E,....E) = arg,(x).....arg,(%, JF (X, ... X,.res)

MIF(Es.....E)] =

0 argy,....arg)(M[E|{ resarg,} | ...
MIE.{ resarg,} | M[F])

42



Operation Squence

X =0;
X=X+1parX=X+2

What is the value of X at the end of the second statement?
According to the former definitions the value of X is either
1, 2, or 3. The three values are possible since every atomic

action can occur in an arbitrary and meshed order.

To guarantee a specific result (e.g., 1 or 2), we need to
employ semaphors.
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What have we learned?

e Classical automata theory does not cope correctly with
Interacting behaviour

 Bisimulation is an equivalence relation defined over a labelled
transition system which respects non-determinism andcan
therefore be used to compare the observable behaviour of
Interacting systems.

e The n-calculus is a name-passing system in which program
progress is expressed by communication.

« Which the rn-calculus we can model higher-level
programming abstractions like objects and lists.

« A concurrent programming language can be assigned a
semantics based on thecalculus.
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ACiaae

University of Berng

Research:
 Piccola - a small composition language
 The nl-calculus - a formal foundation for software

composition.
« COORDINA - coordination models and languages

Resources: http://www.lam.unibe.ch/~sc ¢
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Evolving Automata

Static system

Node deleted

7 S

/ S
’
4

Node divided

Link moved
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