
Reflective Programming
and Open Implementations

Dr. Stéphane Ducasse
ducasse@iam.unibe.ch

http://www.iam.unibe.ch/~ducasse/

University of Bern
2000/2001

i.

1. R
G
O
W
H
W
W
T
R
D
C
M
T
In
R
O
T
M
M
In
A
P
R
M
M
C
D
M
M

2. Th
G
O
R

34
35

perties 36
37
38
39
40

l Approach 41
42

rsion? 43
) 44
ses and Instances 45
ostulate 46

ce Variables 47
ds 48
bject 49
ture 50
ive class 52

53
54
55
56

ple 57
thod new 58

59
60

taclass Role 61
62

ph 63
vior shared by all the objects? 64

65
66

nce 67
eflective
oal of th
utline of
hat we
istory,Co
hy Do W
hy Do W

raditiona
ole ot Re
efinitions
onseque
eta Prog

hree App
finite Tow
eflective
pen Imp

he Basic
eta Obj
eta Prog
finite Tow
 Simple A
rogramm
eusing M
etaProg
etaProg
osts of R
esigning
eta-Prob
eta and

e Study
oals of t
utline
ecall: Me
Table of Contents
 Programming and Open Implementations 1
is Lecture 2
 the Lecture 3
could have made... 4
ncepts,Definitions and Examples 5
e Need Reflective Programming? 6
e Need Reflective Programming? 7
l vs Reflective Answers 8
flective Prog in Software Engineering 9
 (I) 10
nces 11
ramming in Programming Language Context 12
roaches 13
er of (Meta)Interpreters 14

 Languages 15
lementation and MOPs 16
Claim of Open Implementation 17
ect Protocols 18
ramming in CLOS 19
er vs Open Implementation 20
pplication as Example 21
ing in Explicit Metaclass Context 22
eta Programs 23
ramming in OO Context 24
ramming by Example 25
eflective Programming 26
 Reflective Systems 27
lems 28

 Open are not Limited to Programming Languages 29

of a Minimal Object-Oriented Reflective Kernel 30
his Lecture 31

32
ta Programming in Programming Language Context 33

Class as Objects
Some Class Properties
Some Method based Pro
Metaclass Responsibilities
Outline
Why ObjVlisp?
The Loops Approach
The Smalltalk Pragmatica
ObjVlisp in 5 Postulates (i)
How to Stop Infinite Recu
ObjVlisp in 5 Postulates (ii
Unification between Clas
About the 6th ObjVlisp’s P
Instance Structure: Instan
Instance Behavior: Metho
Minimal Structure of an O
Class as an Object: Struc
The class Class: a Reflect
A Complete Example
Outline
Message Passing (i)
Message Passing (ii)
Object Creation by Exam
Object Creation: the Me
Object Allocation
Object Initialization
Object Creation: the Me
Class Creation
A Simple Instantiation Gra
What is the minimal beha
Outline
Two Forms of Inheritance
Dynamic Method Inherita

Tab ii.

A
M
M
S
L
A
C
R
R
O
B
A
A
A

3. A
O
R
R
S
T
S
Z
Z
O
P
In
R
U
U
D
D
O
O
C
S

M 103
s 104
n in SOM 105

106
taclasses in 7 points 107
 points (iii) 109
 points (iv) 110

111
n in Smalltalk 112

lity Model 113
114

 Boolean Hierarchy 115
re 116

on 117
erty Composition 118
ernel with the Compatibility Model 119
rs 120

121
w More 122

e CLOS MOP Example 123
124
125
126
127
128

ute Accesses 129
130

flict Resolution 131
132
133

on Application 134
135
136

OS 137
138
le of Contents

 Simple Inheritance Graph 68
ethod Lookup Example (i) 69
ethod Lookup Example (ii) 70

emantics of super 71
et us be Absurb! 72
 Simple Uniform Kernel 73
lass initialization: a Two Steps Process 74
ecap: Class class 75
ecap: Object class 76
utline 77

ootstrapping the Kernel 78
bstract Classes 79
bstract 80
bstract Class and Method Lookup 81

bout Metaclass Composition 82
n the Road 83
ecap: A Simple Uniform Kernel 84
ecap: Method Lookup 85
ets 86
he Metaclass Set 87
haring Metaclasses 88
ooming in: Creation of Memo-Point (i) 89
ooming in: Creation of Memo-Point (ii) 90
n the Road 91

roblems with Explicit Metaclass Programming 92
terlevel Calls -> Interlevel Coupling 93
elevance of The Problem 94
pward Compatibility 95
pward Compatibility Definition 96
ownward Compatibility 97
ownward Compatibility Definition 98
n the Road 99
bjVlisp 100
LOS 101

OM 102

Derived Metaclasses in SO
Limit of Derived Metaclas
Class Property Propagatio
Smalltalk Approach
Deep into it: Smalltalk Me
Smalltalk Metaclasses in 7
Smalltalk Metaclasses in 7
Responsibilities
Class Property Propagatio
NeoClasstalk: Compatibi
Compatibility? Yes!
Refactoring the Smalltalk
The Complete Architectu
Class Property Compositi
An Example of Class Prop
Extending the Smalltalk K
NeoClasstalk Programme
Summary
If You Really Want to Kno

4. Open Implementation: th
Goals of this Lecture
CLOS
CLOS in a nutshell
Class Definition
Instance Creation
Encapsulation and Attrib
Inheritance
Multiple Inheritance Con
Generic Function
Method Definition (i)
(Method) Generic Functi
Method Selection
Why CLOS MOP?
Meta Programming in CL
CLOS was too big!

Tab iii.

5
S
S
S
E
D
C
In
M
D
M
A
S
F
O

5. O
G
L
O
Q
S
S
F
S
T
S
F
D
L

6. C
S
S

7. Im
O
W

176

177

178

179

180

talk 181

ndrome 183

 Tools 184

185

186

t 187

188

189

ample 190

191

192

ation 193

194

195

196

orithm 197

198

Classes 199

200

201

ation (i) 202

ation (ii) 203

ation (iii) 204

205

206

is Needed? 207

208

209

213
le of Contents

 MetaObjects 139
tatic Elements 140
tructure Protocols (i) 141
tructure Protocols (ii) 142
xtension Example 143
ynamic Elements 144
lass Definition: Defclass 145
stance creation 146
ethod Creation: Defmethod (i) 147
efmethod (ii) 148
ethod lookup and apply protocol 149
pply Protocol Example 150
lot Access Protocol 152
inalize Inheritance 153
pen Implementation and Reflective Languages 154

pen Implementation Design Issues 155
oals of this Lecture 156

ocality in MOP Design 157
pen Implementation Design Guidelines 158
uality in interface designs 159

et Module: Design A 160
et Module: Design B 161
irst Guideline 162
econd Guideline 163
hird Guideline 164
ubject Matter 165
ourth Guideline 166
esign D 167

ast Guideline: Layered Interfaces 168

omparing Reflection in CLOS, Smalltalk and Java 169
orry but this is your work! 170
ome Criterias 171

plementing Message Passing Control in Smalltalk: an Analysis 173
utline 174
hy Controling Message? 175

Controling What Exactly!

A Limited Survey

CLOS Example (i)

CLOS Example (ii)

CLOS Example (iii)

A Coverage Tool in Small

Smalltalk: Do It Yourself Sy

Smalltalk Basic Reflective

6 Techniques

Unknown Messages

Creating a MinimalObjec

Wrapping anObject

Evaluation

Method Wrappers: an Ex

Method Wrappers

Control

MethodWrapper Optimiz

MW method body

Installation

MW Evaluation

Exploiting VM Lookup Alg

Let’s view it

Interceptor: Anonymous

Let us think a bit

Essential Methods

Naive Control Implement

Naive Control Implement

Naive Control Implement

Possible Optimization

Evaluation

Why A Mop for Smalltalk

Pratice!

Selected Bibliography

Web pages

Reflective Programming 1.

© ogramming and Open Implementations

 Open
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

1. Reflective Programming and
Implementations

Dr. Stéphane Ducasse
Software Composition Group
University of Bern
Switzerland

Winter Semester 2000-2001

Email: ducasse@iam.unibe.ch
Url: http://www.iam.unibe.ch/~ducasse/

Reflective Programming 2.

© ogramming and Open Implementations

talk, CLOS)
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Goal of this Lecture
You will learn about

❑ Open Implementations
❑ Reflection: Intercession and Introspection
❑ Reflective Architectures and Kernels (SOM, Small
❑ Meta Object Protocol: Powering End-Users
❑ Metaclasses
❑ Message Passing Control

Side Effects
❑ Program with a reflective system
❑ Let you implement your own micro kernel
❑ Deeply understanding OO
❑ Experiment with different OO models

Reflective Programming 3.

© ogramming and Open Implementations

Meta Object Protocol, Open

rnel (ObjVLisp)

lltalk, Java Comparison)
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Outline of the Lecture
❑ (C) Introduction, Concepts, Definitions, Examples,

Implementations
❑ (C) The Study of an Object-Oriented Reflective Ke
❑ (Lab) ObjVLisp Implementation (1)
❑ (Lab) ObjVLisp Implementation (2)
❑ (C) Metaclass Composition Issues
❑ (Lab) Metaclass Programming with ObjVlisp
❑

❑ (C) Analysing CLOS and its MOP
❑ You : (C) Reflection in OO Languages (Clos, Sma
❑ (Lab) Interface Browser
❑ (C) Message Passing Control in Smalltalk
❑ (Lab) Implementing Actalk
❑ You : (C) Presentation of papers
❑ (Lab) Scaffolding Patterns

Reflective Programming 4.

© ogramming and Open Implementations
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

What we could have made...
❑ MetaCircularity and Infinite Tower: Lisp in Lisp
❑ Different reflective paradigm (relational, actors...)

☞ We will focus on OO reflective programming

Reflective Programming 5.

© ogramming and Open Implementations

d Examples
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

History,Concepts,Definitions an

Reflective Programming 6.

© ogramming and Open Implementations

gramming?

text of execution?

rial MOP & OI OOPSLA’93]

sis...)
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Why Do We Need Reflective Pro
>Does anyone know why CLOS does not provide a copy protocol?

>Has anybody implemented an inheritance method “a la Eiffel”?

>We need a method dispatch that take into account an external con

[Tuto

Some problems:
❑ data structure allocation, optimization
❑ control of language entities (feedback, trace, analy
❑ UI and API definition
❑ language semantics

In summary
❑ Optimization
❑ Language extensions (control, debugging)
❑ Semantics change

Reflective Programming 7.

© ogramming and Open Implementations

gramming?
r and higher level, its

ne involves more and
tor, about what cases
ases.... the ability to
e language’s scope
2a]
representation?

ce variables used

sed

ute accesses?
tead of scanning, parsing

the language itself and not
dicaced compiler ?
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Why Do We Need Reflective Pro
“As a programming language becomes highe
implementation in terms of underlying machi
more tradeoffs, on the part of the implemen
to optimize at the expense of waht other c
cleanly integrate something outside of th
becomes more and more limited” [Kiczales’9

❑ Why instances do have to have the same internal

– for Point => maximum speed needed, all instan

☞ array like representation

– for Person => minimize space, few instances u

☞ hash-table like representation
❑ Why can’t I control internal representation or attrib
❑ Why can’t I query the language representation ins

code?
❑ Why can’t we tune a language to fit our needs from

by inventing yet a new language or rebuilding a de

Reflective Programming 8.

© ogramming and Open Implementations

rs

s

iczales92,92b,92c]?
hange tomorow!

)
ion issues)

r)

language to fit your
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Traditional vs Reflective Answe
Traditional Answers at Language Level:

❑ Illusionary complete language
❑ Library of extensions: Eiffel
❑ Macroes: C, Lisp

But do not cover language extensions or semantics change

Traditional Answers in Software development:
What happens if the language does not support our need [K

☞ buy a new one that fits your today need and c
☞ buy an illusionary complete language
☞ code between the lines (danger for portability
☞ create your own layer (probleme with integrat

Reflective Answers
❑ Propose an extensible language or system
❑ Give the power to the end-user (meta-programme

☞ customize your reflective or open
need

Reflective Programming 9.

© ogramming and Open Implementations

are

 years of Lisp development
e -> Indigo Silicon Graphics)

s or introducing his own

s or adapts language
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Role ot Reflective Prog in Softw
Engineering

❑ Allow migration of software:
Ex: Nichimen Corp (http://www.nichimen.com/) 15

(Flavors -> CLOS, From Symbolic Machin
❑ Adaptation to new technologies
❑ Adaptation to new needs

Team organization
❑ Not everybody is changing the language semantic

constructs
❑ One meta-programmer implements new semantic

semantics to the needs of the other developers

Reflective Programming 10.

© ogramming and Open Implementations

on, otherwise deal with itself
ith its primary subject matter.

d MetaLevel Architectures)

something representing the
o aspects of such

refore reason about its own

ecution state or alter its own

tate as data: providing such
ite in Paepke‘92]

m

ter

a part of
the world

represents Domain

reason about
tive system
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Definitions (I)

Reflection: a process's integral ability to represent, operate
in the same way that it represents, operates on and deals w

B.C Smith (OOPSLA’ 90 Workshop on Reflection an

“Reflection is the ability of a program to manipulate as data
state of the program during its own execution. There are tw
manipulation: introspection and intercession.
Introspection is the ability for a program to observe and the
state.
Intercessory is the ability for a program to modify its own ex
interpretation or meaning.
Both aspects require a mechanism for encoding execution s
an encoding is called reification.” [Bobrow, Gabriel and Wh

Data

Program

Executer

a part of
the world

represents Domain

reason about
A non reflective system

Data

Progra

Execu

A reflec

Reflective Programming 11.

© ogramming and Open Implementations

sally connected with this
]

tion of itself.
 the ensurance that its
 to date).
f self-representation and
nization
ction protocol and an
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Consequences
A system having itself as application domain and that is cau
domain can be qualified as a reflective system [Pattie Maes

☞ A reflective system has an internal representa
☞ A reflective system is able to act on itself with

representation will be causally connected (up
☞ A reflective system has some static capacity o

dynamic self-modification in constant synchro
☞ A system is said reflective if it has an introspe

intercessory protocol

Reflective Programming 12.

© ogramming and Open Implementations

ming

eme and an OO language

Language

Applications

ta Language

Meta Applications
Customization of
the language
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Meta Programming in Program
Language Context

The meta-language and the language can be different: Sch
The meta-language and the language can be same: CLOS

=> metacircular architecture

Me

Language

Applications

Reflective Programming 13.

© ogramming and Open Implementations

ext level

g

ts allowing the future
eta entities)
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Three Approaches

1. Tower of Metacircular Interpreters
☞ every level is interpreting and controlling the n
ex: 3-Lisp, SRI

2. Meta entities control language entities
ex: Smalltalk, CLOS, FOL, Meta-Prolog, ...

ABCL/R, ACT/R (Concurrent languages)
meta-rules controlling unification in prolo

3. Open Implementation
☞ The implementation specifies some entry poin

modification of the system. (often based on m
ex: CLOS MOP (Meta Object Protocol)

Reflective Programming 14.

© ogramming and Open Implementations

ters
 itself

 semantics

nts
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Infinite Tower of (Meta)Interpre
❑ 3-Lisp: a metacircular interpreter that can evaluate
❑ Scheme like based on continuations
❑ Theory, Basis for reflection
❑ Experimentation with language extension, various

Passing from one level to another one is done using reifier
special functions with three non evaluated argume

– current expression

– environment

– continuation

Interpreter 0 reifies and interpretes interpreter 1
Interpreter 1 reifies and interpretes interpreter 2....

Reflective Programming 15.

© ogramming and Open Implementations

thod, InstanceVariables...)

the semantics

t Protocol

ge implementor

language and the meta level
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Reflective Languages
CLOS, Smalltalk, Self

❑ Language written in itself
❑ MetaEntities controlling the languages (Class, Me
❑ Really powerfull, full control

In Smalltalk
❑ everything is an object
❑ causally connected: a change in an object impact

☞ Class, Method
☞ Scanner, Parser, Compiler, Decompiler, ...
☞ Scheduler, Process, Semaphore

But
❑ Did not make the effort of specifying a Meta Objec

– Too much to do for the base programmer

– Not enough freedom to optimize for the langua

☞ A solution: declarative model of the base level

Reflective Programming 16.

© ogramming and Open Implementations

Ps
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Open Implementation and MO

Reflective Programming 17.

© ogramming and Open Implementations

mentation

a module interface because
trategy issues that inevitably
e call these issues strategy
o implement a higher-level
as can be broken down into

s to decide how much of a
ping dilemmas, where the
r are implementing onto the

ule should present a simple
deal more to a module than

e opened up to allow clients
open implementations. From
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

The Basic Claim of Open Imple

It is impossible to hide all implementation issues behing
not all of them are details . Instead, some involve crucial s
bias the performance of the resulting implementation. W
dilemmas, because they involve a choice about how t
functionality in terms of a lower level one. Strategy dilemm
resource allocation dilemmas where the implementor ha
shared resource to allocate to each client, and map
implementor has to decide how to map the functionality the
lower-level functionality.
Despite black-box abstraction’s appealing goal that a mod
interface that exposes only functionality, there is a great
acknowleged by that interface.
Our claim is that module implementations must somehow b
control over these issues as well. We call this the need for
http://www.xerox.../oi/ (@@)

Reflective Programming 18.

© ogramming and Open Implementations

anguage that give the
language’s behavior

the ability to write the

 specialization allows the

f specializing their behavior
l

ls =Implementation

= Open System
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Meta Object Protocols
“Meta Object Protocols are interfaces to the l
users the ability to incrementally modify the
(semantics) and implementation, as well as
programs with the language” [Paepcke’92]

❑ MOPs are composed by set of entry points whose
introduction of new behavior.

❑ MOPs are based on meta-objects offering ways o
and representing specific aspects of the base leve

Public MetaLevel Architecture + Public protoco
(structure and static) (dynamic)

Inspect + Modify

Reflective Programming 19.

© ogramming and Open Implementations

Dynamics

Modifiable System
Methods

Interface

Find Named
MetaObjects
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Meta Programming in CLOS

 Create named
MetaObjects

CLOS Programmer

CLOS Meta Programmer

Statics

MetaObjects
Class
Hierarchy

Protocols

metaobject instances

described by actived by

User Friendly Macro based

Create named Use hidden MetaObjects
MetaObjects (Classes, methods...)

Reflective Programming 20.

© ogramming and Open Implementations

ntation

ctice

of optimization

tensions
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Infinite Tower vs Open Impleme

Infinite Tower vs Mop <=> Theory vs Pra

Open Implementations:
- are more efficient
- are specified declaratevly letting space
- define a region of possible changes
- dependencies between entry points
- allow more control over the possible ex

Infinite Tower:
- are more powerful
- slower
- less secure

Reflective Programming 21.

© ogramming and Open Implementations

le

 servers.
em differently.

nalysis purpose
asses.
 all its instances.

100

ac2
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

A Simple Application as Examp
A LAN Simulator:

- A LAN contains nodes, workstations, printers, file
- Packets are sent in a LAN and the nodes treat th

Problem: We want to know all the nodes of the system for a
❑ We do not want to change the code of the node cl
❑ We would like to ask to the class Node to gave us

mac1 node1 lw

m
pc

Reflective Programming 22.

© ogramming and Open Implementations

lass Context
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Programming in Explicit Metac
CLOS-like

(defclass Node ()

((name :initarg :name :default-value #lulu :reader name)

 (nextNode :default-value ‘() :accessor nextNode))

(:metaclass Set))

(defmethod accept ((n Node) (p Packet))

....)

(defmethod send ((n Node) (p Packet))

...)

(setq n1 (make-instance Node :name “n1”))

(setq n2 (make-instance Node :name “n2” nextNode: n1))

(setq n3 (make-instance Node :name “n3” nextNode: n3))

((setf nextNode) n1 n3)

(allInstances Node)

-> (n1 n2 n3)

Reflective Programming 23.

© ogramming and Open Implementations

ackets
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Reusing Meta Programs
Now imagine that we want to have a log of all the created p

(defclass Packet ()

((addressee :initarg :addressee :accessor addressee)

 (contents :initarg :constents :accessor contents)

 (originator :initarg: originator :accessor originator)

(:metaclass Set))

(defmethod isAddressedTo ((p Packet) (n Node))

....)

(defmethod isOriginatedFrom((p Packet) (n Node))

...)

(map Packet (lambda(x)

(write outputstream

“packet addressed from: %s to %s”

(originator x) (addressee x))

Reflective Programming 24.

© ogramming and Open Implementations

ext
++ or Java defining static

taobjects describe these

d without meta programming
amicIVs,

les

the net, stored in database)

e, proxies...)
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

MetaProgramming in OO Cont
This simple functionality could have been implemented in C
member and functions [Singleton Pattern]
But

❑ A Meta program is not mixed into objects
❑ Ordinary objects are used to model real world. Me

ordinary objects.
❑ MetaPrograms can be reused
❑ Some other properties cannot easily be implemente

traceMessage, finalClass, PrePostConditions, Dyn
MessageCounting....

We may want to
- change the representation of the instance variab
(indexed for points, hashed for person,)
- change the way attributes are accessed (lazily via
- change the inheritance semantics
- change the invocation of method semantics (trac

Reflective Programming 25.

© ogramming and Open Implementations
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

MetaProgramming by Example

(defclass Set (class)

((instances :default-value ‘() :reader allInstances)))

(defmethod clear ((c Set))

(setf-slot-value c ‘instances ‘()))

(defmethod map ((c Set) fct)

(map fct (allInstances c)))

(defmethod new ((c Set) initarg)

(let ((newInstance (call-next-method))

(cons newInstance (slot-value c ‘instances))

newInstance))

Reflective Programming 26.

© ogramming and Open Implementations

g

 impose an excessive
tercession. What is not used
 case should retain the
n Paepke’92]

ument gives same result)

ic entry point)
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Costs of Reflective Programmin
Design Cost

Reflective languages need more care and iteration
Use Cost

Concepts are more complex
Run-time Cost
“A key aspect of intercession is that reflective capability not
performance burden simply to provide for the possibility of in
should not affect the cost of what is used; and the common
possibility of being optimised” [Bobrow, Gabriel and White i

Clever implementations
❑ we only pay what we need, but we NEED it!
❑ Default behavior is optimized
❑ Do no rely on full runtime interpretation

☞ Having entry point purely functional (same arg
☞ Optimization at compile-time
☞ Memoization (decomposing static from dynam

Reflective Programming 27.

© ogramming and Open Implementations

nvironment

flexion
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Designing Reflective Systems
❑ Which model

– which kind of language?

– which degre of reflection?

– reflective language or open implementation?

❑ Which entry points?

– Data, Entities, Control Structures, Interpreter, E

❑ Data Structure

– simples, efficient, easliy modifiable

❑ Changing Level

– Managing causal connection, reification and re

❑ Uniformity between meta-level

– Syntax, data structure, extensions

Reflective Programming 28.

© ogramming and Open Implementations

ystem
ing

 between levels
n the original designer
s of change
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Meta-Problems

❑ Stability: Potentially an end-user can change the s
☞ But not everybody should be meta-programm

❑ Several levels of complexity
☞ Entity, meta entity, coherence and connection

❑ Uniformity: same design conception problems tha
☞ Open implementations narrow the possibilitie

Reflective Programming 29.

© ogramming and Open Implementations

 to

es representing (aspects of)

g upon itself.
s (OOPSLA’ 87)
 Dr. Ducasse Stéphane -Universität Bern Reflective Pr

Meta and Open are not Limited
Programming Languages

A reflective system is a system which incorporates structur
itself.
Reflection is the processus of reasoning about and/or actin

P.Mae

❑ Network
❑ Workflow system
❑ Operating Systems (Apertos, Synthesis)
❑ Parallel Systems
❑ Library of

About Metaclass Evolution 30.

© imal Object-Oriented Reflective Kernel

t-Oriented
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

2. The Study of a Minimal Objec
Reflective Kernel

Dr. Stéphane Ducasse
Software Composition Group
University of Bern
Switzerland

Email: ducasse@iam.unibe.ch
Url: http://www.iam.unibe.ch/~ducasse/

About Metaclass Evolution 31.

© imal Object-Oriented Reflective Kernel

talk, CLOS)
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Goals of this Lecture

❑ Metaclass concept
❑ Reflective Architectures and Kernels (SOM, Small
❑ What are Object and Class classes?
❑ Semantics of inheritance, semantics of super
❑ Metaclass power

About Metaclass Evolution 32.

© imal Object-Oriented Reflective Kernel
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Outline
☞ Metaclasses?

❑ Examples of usefull metaclasses
❑ Towards a unified approach: Loops, Smalltalk
❑ ObjVlisp in 5 postulates
❑ Instance Structure and Behavior
❑ Class Structure
❑ Message Passing
❑ Object allocation & Initialization
❑ Class creation
❑ Inheritance Semantics
❑ Bootstrapping
❑ Examples: Playing with ObjVlisp

About Metaclass Evolution 33.

© imal Object-Oriented Reflective Kernel

rogramming

Language

Applications

eta Language

Meta Applications
Customization of
the language
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Recall: Meta Programming in P
Language Context

M

Language

Applications

About Metaclass Evolution 34.

© imal Object-Oriented Reflective Kernel

has been repeatedly
se concepts belong to
tains classes; at run-
pproach. One of the
, influenced by

lasses as object
run-time. ”
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Class as Objects
“The difference between classes and objects
emphasized. In the view presented here, the
different worlds: the program text only con
time, only objects exist. This is not the only a
subcultures of object-oriented programming
Lisp and exemplified by Smalltalk, views c
themselves, which still have an existence at

Bertrand Meyer in Object-Oriented Software Construction

About Metaclass Evolution 35.

© imal Object-Oriented Reflective Kernel

re

atically its accessors

subclassed

ain number of instances

ariables

me interfaces

uperclasses

encies

base
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Some Class Properties
– Abstract: a class cannot have any instance

– Set: a class that knows all its instances

– DynamicIVs: Lazy allocation of instance structu

– LazyAccess: only fetch the value if needed

– AutomaticAccessor: a class that defines autom

– Released/Final: Class cannot be changed and

– Limited/Singleton: a class can only have a cert

– IndexedIVs: Instances have indexed instance v

– InterfaceImplementor: class must implement so

– MultipleInheritance: a class can have multiple s

– Trace: Logs attribute accesses, allocation frequ

– ExternalIVs: Instance variables stored into data

About Metaclass Evolution 36.

© imal Object-Oriented Reflective Kernel

itions

 a method is called

zed
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Some Method based Properties
– Trace: Logs method calls

– PrePostConditions: methods with pre/post cond

– MessageCounting: Counts the number of times

– BreakPoint: some methods are not run

– FinalMethods: Methods that cannot be speciali

About Metaclass Evolution 37.

© imal Object-Oriented Reflective Kernel

ecture” [Cointe’87]

, instance variables, method

urs, hash-table,...)
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Metaclass Responsibilities
“Metaclasses provide metatools to build open-ended archit

Metaclasses are one of the possible meta-entities (method
combination,...)
Metaclasses allow the structural extension of the language
They may control

❑ Inheritance
❑ Internal representation of the objects (listes, vecte
❑ Method access ("caches" possibility)
❑ Instance variable access

Separation of Concerns
❑ Ordinary objects are used to model real world
❑ Metaobjects describe these ordinary objects
❑ Meta/Base level functionality is not mixed

About Metaclass Evolution 38.

© imal Object-Oriented Reflective Kernel
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Outline
❑ Metaclasses?
❑ Examples of usefull metaclasses

☞ Towards a unified approach: Loops, Smalltalk
❑ ObjVlisp in 5 postulates
❑ Instance Structure and Behavior
❑ Class Structure
❑ Message Passing
❑ Object allocation & Initialization
❑ Class creation
❑ Inheritance Semantics
❑ Bootstrapping
❑ Examples: Playing with ObjVlisp

About Metaclass Evolution 39.

© imal Object-Oriented Reflective Kernel

bject and Class
t and a metaclass is a class

s of Scheme or 30 Smalltalk

and reflective programming
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Why ObjVlisp?
❑ Minimal (only two classes)
❑ Reflective: ObjVlisp self-described: definition of O
❑ Unified: Only one kind of object: a class is an objec

that creates classes
❑ Open
❑ Simple: can be implemented with less than 300 line

methods.
❑ Equivalent of Closette (Art of MOP example)
❑ Really good for understanding dynamic languages

(D-SOM, CLOS, Smalltalk kernel)

About Metaclass Evolution 40.

© imal Object-Oriented Reflective Kernel

control over the creation of
a types to represent classes
heir metaclass, usually the

st be instance of MetaClass

ok

taSet

b A is instance of B
BA

A B
A inherits from B
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

The Loops Approach
“For some special cases, the user may want ot have more
instances. For example, Loops itself uses different Lisp dat
and instances. The new message for classes is fielded by t
object MetaClass.” [Bobrow83]

❑ Explict metaclass as a subclass of another but mu

MetaClass

Class

Point Object Bo

Me

About Metaclass Evolution 41.

© imal Object-Oriented Reflective Kernel

roach
 is to provide protocol for
es of the metaclasse’sole

 class

 the class inheritance
er (instance of Class) and
 of metaclasses)

s

Point

Object

Class
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

The Smalltalk Pragmatical App
“The primary role of a metaclass in the Smalltalk-80 system
initializing class variables and for creating initialized instanc
instance“ [Goldberg84]

❑ A class is the sole instance of a metaclass
❑ Every metaclass is an instance of the Metaclass

☞ metaclasses are not true classes
☞ number of metalevels is fixed

❑ Metaclass hierarchy inheritance is fixed: parallel to
☞ dichotomy between classes defined by the us

metaclasses defined by the system (instance

Metaclass class Metaclass

Point class

Object clas

Class class

About Metaclass Evolution 42.

© imal Object-Oriented Reflective Kernel

(slots or instance variables)
 their class.

nce of another class

ion

Class
name...
new
allocate

the class Class

A is instance of B
BA
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

ObjVlisp in 5 Postulates (i)
P1: object = <data, behavior>
P3: Every object belongs to a class that specifies its data
 and its behavior. Objects are created dynamically from

P4: Following P3, a class is also an object therefore insta
 its metaclass (that describes the behavior of a class).

#mac1 a workstation instance of the class Workstat

P1&P3

the class P4

Workstation
Workstation

send: aPacket
accept: a Packet

«instance-of»

«instance-of»

|mac1|
mac := Workstation new name: #mac1

About Metaclass Evolution 43.

© imal Object-Oriented Reflective Kernel

etaclass that is an object too
of another a

A is instance of B
BA
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

How to Stop Infinite Recursion?
Aclass is an object therefore instance of another class its m
instance of a metametaclass that is an object too instance
metametametaclass......

To stop this potential infinite recursion
❑ Class is the initial class and metaclass
❑ Class is instance of itself and
❑ all other metaclasses are instances of Class .

Class
name...
new
allocate

the class Class

About Metaclass Evolution 44.

© imal Object-Oriented Reflective Kernel

ct

other classes.
ring of instance
sents the behavior shared

mac1

[mac1 accept: pck2]

A B
A inherits from B
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

ObjVlisp in 5 Postulates (ii)
P2: Message passing is the only means to activate an obje

[object selector args]

P5: A class can be defined as a subclass of one or many
 This mechanism is called inheritance. It allows the sha
 instance variable and methods. The class Object repre
 by all the objects.

Workstation
send: aPacket
accept: a Packet

Node
name
nextNode
send: aPacket
accept: a Packet«inherits from»

About Metaclass Evolution 45.

© imal Object-Oriented Reflective Kernel

d Instances
ass allowing a greater clarity

n classes and final instances.
tion message: new. Only a

.

 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Unification between Classes an
“We claim that a class must be an object defined by a real cl
and expressive power” [Cointe’87]

❑ Every object is instance of a class
❑ A class is an object instance of a metaclass (P4)

☞ But all the objects are not classes

❑ Only one kind of objects without distinction betwee
❑ Sole difference is the ability to respond to the crea

class knows how to deal with it.
❑ A metaclass is only a class that generates classes

About Metaclass Evolution 46.

© imal Object-Oriented Reflective Kernel

te
s describe these ordinary

Object’s class
s.

bles of object’class!
ass information not instance

 objects

ables.
ble that stores structure that
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

About the 6th ObjVlisp’s Postula
“Ordinary objects are used to model real world. Metaobject
objects” [Rivard 96]

The ObjVlisp 6th postulate is:
class variable of anObject =instance variable of an

So class variables are shared by all the instances of a clas

We disagree with it.
❑ Semantically class variables are not instance varia
❑ Instance variable of metaclass should represent cl

information.
Metaclass information should represent classes not domain

CLOS offers the :class instance variable qualifier class vari
We could imagine that a class possesses an instance varia
represents shared-variable and their values.

About Metaclass Evolution 47.

© imal Object-Oriented Reflective Kernel

riables

 by a class

lass (inherited from Object)

A is instance of B
BA

c3
xtnode
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Instance Structure: Instance Va
Instance variables:

❑ an ordered sequence of instance variables defined
❑ shared by all its instances
❑ values specific to each instance

In particular, every object possesses an instance variable c
that points to its class.

Node
name
nextNode

#mac1
mac2

#mac2
mac3

#ma
none

About Metaclass Evolution 48.

© imal Object-Oriented Reflective Kernel

ss
e method selector) and the

class is the value of
s Class .
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Instance Behavior: Methods

A method
❑ belongs to a class
❑ defines the behavior of all the instances of the cla
❑ is stored into a dictionary that associates a key (th

method body

To unify instances and classes, the method dictionary of a
the instance variable methodDict defined on the metaclas

About Metaclass Evolution 49.

© imal Object-Oriented Reflective Kernel

 inherited from Object that
es it).

stance
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Minimal Structure of an Object

❑ every object possesses an instance variable class
refers to its class (here to the metaclass that creat

– class an identifier of the class of the in

About Metaclass Evolution 50.

© imal Object-Oriented Reflective Kernel

esses 4 instance variables

 inheritance)

ass

bject
ance variables
ds

ance variable class inherited
etaclass that creates it).

stance
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Class as an Object: Structure
❑ As an instance factory the metaclass Class poss

that describe a class:
 - name the class name
 - super its superclass (we limit to single
 - i-v the list of its instance variables
 - methodDict a method dictionary

Example: class Node
class: Class instance of Cl
name: Node named Node
super: Object inherits from O
i-v: (name nextNode) defines 2 inst
methods: defines metho

❑ Considered as an object, a class possesses an inst
from Object that refers to its class (here to the m

– class an identifier of the class of the in

About Metaclass Evolution 52.

© imal Object-Oriented Reflective Kernel

ss

nce of Class
ed Class
rits from Object
ribes any class
vior of a class
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

The class Class: a Reflective cla

❑ Initial metaclass
❑ Defines the behavior of all the metaclasses
❑ Instance of itself to avoid an infinite regression

class: Class insta
name: Class nam
super: Object inhe
i-v: (name supers i-v methodDict) desc
methods: (new allocate initialize..... beha

About Metaclass Evolution 53.

© imal Object-Oriented Reflective Kernel

dDict)

Class is instance
of itself

t
)
 (x: y: display)

the class Point

A is instance of B
BA
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

A Complete Example

class: Class
the class Class

name: Class
super: Object
iv: (class name super iv metho
methodDict: (new initialize ...)

class: Class
name: Workstation
super: Object
iv: (class name nextNode)
methodDict: (accept: send:)

class: Class
name: Point
super: Objec
iv: (class x y
methodDict:

the class Workstation

#mac1
mac2

#mac2
pc1

10
15

About Metaclass Evolution 54.

© imal Object-Oriented Reflective Kernel
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Outline
❑ Metaclasses?
❑ Examples of usefull metaclasses
❑ Towards a unified approach: Loops, Smalltalk
❑ ObjVlisp in 5 postulates
❑ Instance Structure and Behavior
❑ Class Structure

☞ Message Passing
❑ Object allocation & Initialization
❑ Class creation
❑ Inheritance Semantics
❑ Bootstrapping
❑ Examples: Playing with ObjVlisp

About Metaclass Evolution 55.

© imal Object-Oriented Reflective Kernel

ct
nd its behavior.

Node
ame: aString
extNode: aNode
end: aPacket
ccept: a Packet

A is instance of B
BA

#mac1
pc1
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Message Passing (i)
P2: Message passing is the only means to activate an obje
P3: Every object belongs to a class that specifies its data a

Node
name: aString
nextNode: aNode
send: aPacket
accept: a Packet

Node
name: aString
nextNode: aNode
send: aPacket
accept: a Packet

n
n
s
a

[mac1 nextNode: pc1]

#mac1
nonode

#mac1
nonode

About Metaclass Evolution 56.

© imal Object-Oriented Reflective Kernel

p

message in the class of the

f the receiver)

) receiver)
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Message Passing (ii)

send message = apply O looku

We lookup the method associated with the selector of the
receiver then we apply it to the receiver .

[receiver selector args]
<=>

apply (found method starting from the class o
 on the receiver and the args

<=>
in functional style

(apply (lookup selector (class-of receiver
receiver args)

About Metaclass Evolution 57.

© imal Object-Oriented Reflective Kernel
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Object Creation by Example

Creation of instances of the class Point
[Point new :x 24 :y 6]

[Point new]

[Point new :y 10 :y 15]

Creation of the class Point instance of Class

[Class new

 :name Point

 :super Object

 :i-v (x y)

 :methods (x ...

display ...)

]

About Metaclass Evolution 58.

© imal Object-Oriented Reflective Kernel

ew

cation

ions:

tion aClass) args)

e args]
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Object Creation: the Method n

Object Creation = initialisation O allo

❑ Creating an instance is the composition of two act
☞ memory allocation: allocate method
☞ object intialisation: initialize method

(new aClass args) = (initialization (alloca
<=>

[aClass new args] = [[aClass allocate] initializ

❑ new creates an object: class or final instances
❑ new is a class method

About Metaclass Evolution 59.

© imal Object-Oriented Reflective Kernel

taclass Class
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Object Allocation
❑ Object allocation should return:

☞ Object with empty instance variables
☞ Object with an identifier to its class

❑ Done by the method allocate defined on the me
❑ allocate method is a class method

example:
[Point allocate] => #(Point nil nil)

for x and y

[Workstation allocate] => #(Workstation nil nil)

for name and nextNode

[Class allocate] => #(Class nil nil nil....)

About Metaclass Evolution 60.

© imal Object-Oriented Reflective Kernel

stance variables by means of
riables.

y -> 6, x -> 24)
 the created object.
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Object Initialization
❑ Initialization allows one to specify the value of the in

keywords (:x ,:y) associated with the instances va
Example:

[Point new :y 6 :x 24]

=> [#(Point nil nil) initialize (:y 6 :x 24)]

==> #(Point 24 6)

❑ initialize : two steps
☞ get the values specified during the creation. (
☞ assign the values to the instance variables of

About Metaclass Evolution 61.

© imal Object-Oriented Reflective Kernel

 Role
message in the class of the

aString
de: aNode
Packet
 a Packet

A is instance of B
BA

#mac1
nonode
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Object Creation: the Metaclass
We lookup the method associated with the selector of the
receiver then we apply it to the receiver .

Node
name: aString
nextNode: aNode
send: aPacket
accept: a Packet

[Node withName: #mac1]

Class
name

new
initialize ...

super
iv
methodDict

Class
name

new
initialize ...

super
iv
methodDict

1

2

Node
name:
nextNo
send: a
accept:

About Metaclass Evolution 62.

© imal Object-Oriented Reflective Kernel

Node
name: aString
nextNode: aNode
send: aPacket
accept: a Packet

 ...

ict
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Class Creation

Class
name

new
initialize ...

super
iv
methodDict

 [Class new
:name Node
:supers Object
:iv (name nextNode)
:methods
(send:))]

1

2

Class
name

new
initialize

super
iv
methodD

A is instance of B
BA

About Metaclass Evolution 63.

© imal Object-Oriented Reflective Kernel

avior of an object

A is instance of B
BA

Object
class
error
class?
iv-set...
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

A Simple Instantiation Graph

❑ Class is the root of instantiaton graph
❑ Object is a class that represents the minimal beh
❑ Object is a class so it is instance of Class

#mac1
nonode

#mac2
pc1

15
10

Class
name

new
initialize ...

super
iv
methodDict

Node
name
nextNode

send: aPacket
accept: a Packet

name Point
x
y

x
y

display

About Metaclass Evolution 64.

© imal Object-Oriented Reflective Kernel

ared by all

 by all the objects:

ss (uses a primitive for

ation)
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

What is the minimal behavior sh
the objects?

The class Object represents the common behavior shared
☞ classes
☞ final instances.

❑ every object knows its class: instance variable cla
accessing else that loops!)

❑ methods:
 - initialize (instance variable initializ
 - error

 - class

 - metaclass ?
 - class ?

Meta operations:
 - iv-set

 - iv-ref

About Metaclass Evolution 65.

© imal Object-Oriented Reflective Kernel
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Outline
❑ Metaclasses?
❑ Examples of usefull metaclasses
❑ Towards a unified approach: Loops, Smalltalk
❑ ObjVlisp in 5 postulates
❑ Instance Structure and Behavior
❑ Class Structure
❑ Message Passing
❑ Object allocation & Initialization
❑ Class creation

☞ Inheritance Semantics
❑ Bootstrapping
❑ Examples: Playing with ObjVlisp

About Metaclass Evolution 66.

© imal Object-Oriented Reflective Kernel

 the union of the instance
les defined in C.

e-variables(C))
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Two Forms of Inheritance
❑ Static for the instances variables

☞ Done once at the class creation
☞ When C is created, its instances variables are
variables of its superclass with the instance variab

final-instance-variables (C) =
union (union (iv (super C)), local-instanc

About Metaclass Evolution 67.

© imal Object-Oriented Reflective Kernel

ses using the super

ctor is found

]
s of the class

le the error.
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Dynamic Method Inheritance

❑ Walks through the inheritance graph between clas
instance variable

lookup (selector class receiver):
if the method associated with the the sele
then return it
else

if receiver class == Object

then [receiver error selector

else we lookup in the superclas

☞ the error method can be specialized to hand

About Metaclass Evolution 68.

© imal Object-Oriented Reflective Kernel

nd the minimal behavior), so

bject class
from Object class.

ColoredPoint
class
x
y
color

A B
A inherits from B
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

A Simple Inheritance Graph

❑ Object class is the root of the hierarchy.
❑ a Workstation is an object (should at least understa

Workstation class inherits from Object class
❑ a class is an object so Class class inherits from O
❑ In particular, class instance variable is inherited

ClassObject

Node
Point
class
x
y

class

class
name
nextNode

error
class?
iv-set...

class
supers

methodDict
iv

About Metaclass Evolution 69.

© imal Object-Oriented Reflective Kernel

ion
cket
acket

t]

2

mac2 name]

a

b

#mac2
pc1
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Method Lookup Example (i)

Workstat
send: aPa
accept: a P

Node
name
nextNode

send: aPacket
accept: a Packet

Object
class
error
class?
iv-set...

[mac2 send: aPacke

1

name

[

c

A is instance of B
BA

A B
A inherits from B

About Metaclass Evolution 70.

© imal Object-Oriented Reflective Kernel

tation
acket

a Packet

cou]

1

2

coucou

error

5

6

7

A is instance of B
BA

A B
A inherits from B

#mac2
pc1
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Method Lookup Example (ii)

Works
send: aP
accept:

Node
name
nextNode

send: aPacket
accept: a Packet

Object
class
error
class?
iv-set...

[mac2 cou

name

coucou
3

coucou
4

[mac2 error coucou]

error

error
8

About Metaclass Evolution 71.

© imal Object-Oriented Reflective Kernel

the receiver of the message.

e class of the receiver .

he superclass of the class of
OT in the superclass of the

egin searching in the
uper
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Semantics of super
❑ As self , super is a pseudo-variable that refers to

Used to invoke overriden methods.
❑ Using self the lookup of the method begins in th
❑ self is dynamic

❑ Using super the lookup of the method begins in t
the method containing the super expression and N
receiver class.

❑ super is static
❑ Other said: super causes the method lookup to b

superclass of the class of the method containing s

About Metaclass Evolution 72.

© imal Object-Oriented Reflective Kernel

uperclass

iver class.

m1
A

m1
B

C

aC

super m1
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Let us be Absurb!
Let us suppose the WRONG hypothesis:
"IF super semantics = starting the lookup of method in the s
of the receiver class"

What will happen for the following message: aC m1
m1 is not defined in C
m1 is found in B

By Hypothesis: super = lookup in the superclass of the rece
And we know that the superclass of the receiver class = B

=> That's loop
So Hypothesis is WRONG !!

About Metaclass Evolution 73.

© imal Object-Oriented Reflective Kernel

10

A is instance of B
BA

A B
A inherits from B
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

A Simple Uniform Kernel

#mac1-> nil

Class

Object

Workstation

15 ; #mac2->mac2

Point

About Metaclass Evolution 74.

© imal Object-Oriented Reflective Kernel

Process
t :
nd assigned to the allocated

t nil nil) : Point

..)]
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Class initialization: a Two Steps
initialize is defined on both classes Class and Objec

❑ on Object : values are extracted from initarg list a
instance

[#(Point nil nil) initialize (:y 6 :x 24)]

=> #(Point 6 24)

Initialize is lookup in class of #(Poin
Then in its superclass: Object

❑ on Class :
[Class new :name Point :super Object :i-v (x y)...]

[#(Class nil nil nil...) initialize (:name Point :super Object :i-v (x y)...]

☞ a class is an object
[#(Class Point Object (x y) nil #(x: (mkmethod...) y: (mkmethod .

☞ a class is at minimum a class
inheritance of instance variables,
keyword definition,
method compilation

[#(Class Point Object (class x y) (:x :y) #(x: (...) y: (...)]

About Metaclass Evolution 75.

© imal Object-Oriented Reflective Kernel

stance variables of any

words, method compilation)
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Recap: Class class

❑ Initial metaclass
❑ Reflective: its instance variable values describe in

classes in the system (itself too)
❑ Defines the behavior of all the classes
❑ Inherits from Object class
❑ Root of the instantiation graph
❑ Instance variables: name, super, iv, methodDict

❑ Methods
- new

- allocate

- initialize (instance variable inheritance, key
- class ?
- subclass-of ?

About Metaclass Evolution 76.

© imal Object-Oriented Reflective Kernel

he system

 directly or indirectly from

s d'instance)
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Recap: Object class
❑ Defines the behavior shared by all the objects of t
❑ Instance of Class

❑ Root of the inheritance tree: all the classes inherit
Object

❑ Its instance variable: class

❑ Its methods:
 - initialize (initialisation les variable
 - error

 - class

 - metaclass ?
 - class ?
 - iv-set

 - iv-ref

About Metaclass Evolution 77.

© imal Object-Oriented Reflective Kernel
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Outline
❑ Metaclasses?
❑ Examples of usefull metaclasses
❑ Towards a unified approach: Loops, Smalltalk
❑ ObjVlisp in 5 postulates
❑ Instance Structure and Behavior
❑ Class Structure
❑ Message Passing
❑ Object allocation & Initialization
❑ Class creation
❑ Inheritance Semantics

☞ Bootstrapping
❑ Examples: Playing with ObjVlisp

About Metaclass Evolution 78.

© imal Object-Oriented Reflective Kernel

 define itself
s already exists as instance
bject and Class as normal

 class Class avec with
 from Object class)
f the classes (new and

ct....]

.]
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Bootstrapping the Kernel
❑ Mandatory to have Class instance of itself
❑ Be lazy: Use as much as possible of the system to
❑ Idea: Cheat the system so that it believes that Clas

of itself and inheriting from Object , then create O
classes

Three Steps:
1. manual creation of the instance that represents the

☞ inheritance simulation (class instance variable
☞ only the necessary methods for the creation o

initialize)
2. creation of the class Object [Class new :name Obje

☞ definition of all the method of Object

3. redefinition of Class

[Class new :name Class :super Object....

☞ definition of all the methods of Class

About Metaclass Evolution 79.

© imal Object-Oriented Reflective Kernel

a previous one” [Cointe’87]

s %s“ self name))]
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Abstract Classes
“The rule to define a new metaclass is to make it inherit from

Prb. Abstract classes should not create instances
Sol. Redefine the new method

Metaclass Definition:
[Class new

:name Abstract

:super Class

:methods (new (lambda (self initargs)

(self error "Cannot create instance of clas

Metaclass Use:
[Abstract new :name Node :super Object]

[Node new]

-> Cannot create instance of class Node

[Abstract new :name Abstract-Stack :super Object]

About Metaclass Evolution 80.

© imal Object-Oriented Reflective Kernel

lass

c2

Abstract
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Abstract
❑ Abstract is a class -> It is instance of Class

❑ Abstract define class behavior -> It inherits from C

#mac1-> nil

Class

Object

Workstation

#mac2->ma

Node

A is instance of B
BA

A B
A inherits from B

About Metaclass Evolution 81.

© imal Object-Oriented Reflective Kernel

kup

Abstract
new: No instance

A is instance of B
BA

A B
A inherits from B
 Dr. Ducasse Stéphane -Universität Bern The Study of a Min

Abstract Class and Method Loo

Class

Object

Workstation

Node

new:
 initialize (allocate)

[Node new]

[Workstation new]

a

b

1

2

About Metaclass Evolution 82.

© About Metaclass Composition

n

 Dr. Ducasse Stéphane -Universität Bern

3. About Metaclass Compositio

Dr. Stéphane Ducasse
Software Composition Group
University of Bern
Switzerland

Email: ducasse@iam.unibe.ch
Url: http://www.iam.unibe.ch/~ducasse/

About Metaclass Evolution 83.

© About Metaclass Composition
 Dr. Ducasse Stéphane -Universität Bern

On the Road
☞ Recaps

❑ Problems with composition
❑ Problems with property propagation
❑ Clos’s solution
❑ SOM’s solution
❑ Smalltalk’s solution
❑ NeoClasstalk’s solution
❑ Conclusion

About Metaclass Evolution 84.

© About Metaclass Composition

l

10

A is instance of B
BA

A B
A inherits from B
 Dr. Ducasse Stéphane -Universität Bern

Recap: A Simple Uniform Kerne

#mac1-> nil

Class

Object

Workstation

15 ; #mac2->mac2

Point

About Metaclass Evolution 85.

© About Metaclass Composition

ion
cket
acket

#mac2->mac2

2

b

Class
iv name..
new
initialize
allocate
 Dr. Ducasse Stéphane -Universität Bern

Recap: Method Lookup

Workstat
send: aPa
accept: a P

Node
name
nextNode

send: aPacket
accept: a Packet

Object
class
error
class?
iv-set...

[mac2 send: aPacket]

1

name

[Workstation new]
a

A is instance of B
BA

A B
A inherits from B

About Metaclass Evolution 86.

© About Metaclass Composition

Set

emo-Workstation

#mac3-> nil

nstances:

instances

(mac3)
 Dr. Ducasse Stéphane -Universität Bern

Sets
Metaclasses knowing their instances

#mac1-> nil

Class

Object

Workstation

#mac2->mac2

Node

M

Abstract

i

A is instance of B
BA

A B
A inherits from B

About Metaclass Evolution 87.

© About Metaclass Composition

edCollection new.

s.
 Dr. Ducasse Stéphane -Universität Bern

The Metaclass Set
Prb. How to access to all the instances of a certain class
Sol. Store the instances when there are created.

[Class new

:name “Set”

:supers Class

:iv #(instances)

:methods...

instances [:aself| aself iv: #instances]

initialize: [:aself :initargs|

super initialize: initargs.

aself sendUnary: #instances: with: Order

aself]

new: [:aself :initargs|

|newIns|

newIns := aself superSend: #new with: initarg

(aself instances) add: newIns.

newIns]

About Metaclass Evolution 88.

© About Metaclass Composition

kstation

ac3-> nil

s

mac3) Memo-Point

A is instance of B
BA

A B
A inherits from B
 Dr. Ducasse Stéphane -Universität Bern

Sharing Metaclasses

#mac1-> nil

Class

Object

Workstation

#mac2->mac2

Set

Node

Memo-Wor

Abstract

#m

instances:

instance

(

Point

About Metaclass Evolution 89.

© About Metaclass Composition

Point (i)
ceveur)

-Point :super Point))
:super Point))

oint)]

t) Set)
 Dr. Ducasse Stéphane -Universität Bern

Zooming in: Creation of Memo-
Remember: (apply (lookup selecteur (class-of receveur) re

 receveur args)

[Set new :name Memory-Point :super Point]
(apply (lookup #new (class-of Set) Set) Set #(:name Memo
(apply (lookup #new Class Set) Set #(:name Memo-Point

New : [[Set allocate] initialize #(:name Memo-Point :super P

[Set allocate]
(apply (lookup #allocate (class-of Set) Se
(apply (lookup #allocate Class Set) Set)
Allocate -> #(Set nil nil nil nil nil nil)

About Metaclass Evolution 90.

© About Metaclass Composition

Point (ii)

il)
ry-Point :super Point))

 in supers Set : Class

as of Class (Class in whihc

ory-Point :super Point))
 Dr. Ducasse Stéphane -Universität Bern

Zooming in: Creation of Memo-
[#(Set ()...()) initialize #(:name Memo-Point :supers Point)]
(apply (lookup #initialize (class-of #(Set nil...nil) #(Set nil...n
 #(Set nil...nil) #(:name Memo

.... (lookup #initialize Set #(Set nil...nil)
initialize method is not found in the class Set => we search

.... (lookup #initialize Class #(Set nil...nil)

Initialize:
[super initialize ...] 2

Memory-Point class is an object. super looks in the supercl
we found it) and not in Set
 (inherit-iv ...) 3
Memory-Point is a class
 2 (apply (lookup #initialize Object #(Set nil...nil))
 #(Set nil...nil) #(:name Mem
 -> #(Set Memory-Point #(Point) nil nil nil)

3 #(Set Memory-Point #(Point) (class x y) nil nil)

About Metaclass Evolution 91.

© About Metaclass Composition
 Dr. Ducasse Stéphane -Universität Bern

On the Road
☞ Recap
☞ Problems with composition

❑ Problems with property propagation
❑ Clos’s solution
❑ SOM’s solution
❑ Smalltalk’s solution
❑ NeoClasstalk’s solution
❑ Conclusion
❑ Bibliography

About Metaclass Evolution 92.

© About Metaclass Composition

s

 Dr. Ducasse Stéphane -Universität Bern

Problems with Explicit Metaclas
Programming

Explicit Metaclass Programming
❑ Powerfull (language extension...)
❑ Reuse of meta program

But we should consider
❑ Interlevel coupling
❑ Compatibility Issues
❑ Class property propagation

About Metaclass Evolution 93.

© About Metaclass Composition

upling

l

mmunication will not induce
downward compatibilities

l

vel

A

anA
 Dr. Ducasse Stéphane -Universität Bern

Interlevel Calls -> Interlevel Co
❑ Interlevel communication: any

message sending between classes
and instances

❑ In Smalltalk, CLOS, ObjVlisp: new,
basicNew, class are interlevel
messages

❑ Examples in Smalltalk
Message sent from the instance to the class
Object>>printOn: aStream

...

self class name

Message sent from the class to the instance
Browser class>>openOn: anOrganizer

self openOn: (self new on: anOrganizer) withTextState: ni

❑ Ensuring compatibility is ensuring that interlevel co
any failure in subclasses. Two cases: upward and

Class Leve

Instance Le

About Metaclass Evolution 94.

© About Metaclass Composition

 to the class

n instance
 Dr. Ducasse Stéphane -Universität Bern

Relevance of The Problem

In VisualWorks
❑ 25% of classes define instance methods that refer

Date>>daysInYear

...

^self class daysInYear: self year

❑ 24% of metaclasses define methods that refer to a
ArrayedCollection class>>with: anObject

|newCollection|

newCollection := self new: 1.

newCollection at: 1 put: anObject .

^ newCollection

About Metaclass Evolution 95.

© About Metaclass Composition

ssage i-foo ?

B

aB i-foo
 Dr. Ducasse Stéphane -Universität Bern

Upward Compatibility

What happens when an instance of class B receives the me
MetaB should understand the message c-bar

MetaB should implement c-bar or inherits from MetaA

MetaA

A
i-foo

c-bar
MetaB?

i-foo
^ self class c-bar

«instance-of»

«inherits-from»

A is instance of B
BA

A B
A inherits from B

About Metaclass Evolution 96.

© About Metaclass Composition

very possible message that
 to an error for any instance
 Dr. Ducasse Stéphane -Universität Bern

Upward Compatibility Definition

Let
- B be a subclass of the class A,
- MetaB the metaclass of B and,
- MetaA the metaclass of A

Upward compatibility is ensured for MetaA and MetaB iff: e
does not lead to an error for any instance of A, will not lead
of B.

About Metaclass Evolution 97.

© About Metaclass Composition

B

 Dr. Ducasse Stéphane -Universität Bern

Downward Compatibility

What happens when MetaB receives the message c-foo ?
B should understand i-bar .
B shoudl implement i-bar or inherits from A

MetaA

A
i-bar

c-foo
Meta

B

c-foo
^ self new i-bar

«instance-of»

«inherits-from»

?
A is instance of B

BA

A B
A inherits from B

About Metaclass Evolution 98.

© About Metaclass Composition

tion

e of MetaB and A instance of
error for A, will not lead to an
 Dr. Ducasse Stéphane -Universität Bern

Downward Compatibility Defini

Let
- MetaB be a subclass of the metaclass MetaA

Downward compatibility is ensured for two classes: B instanc
MetaA iff: every possible message that does not lead to an
error for B.

About Metaclass Evolution 99.

© About Metaclass Composition
 Dr. Ducasse Stéphane -Universität Bern

On the Road
☞ Recap
☞ Problems with composition
☞ Problems with property propagation
☞ Clos’s solution

❑ SOM’s solution
❑ Smalltalk’s solution
❑ NeoClasstalk’s solution
❑ Conclusion
❑ Bibliography

About Metaclass Evolution 100.

© About Metaclass Composition
 Dr. Ducasse Stéphane -Universität Bern

ObjVlisp

❑ Explicit metaclasses
❑ Does not ensure anything!

About Metaclass Evolution 101.

© About Metaclass Composition

ange it if he takes its

the relationships between

s
aclass as the class it inherits
le-standard-class)
ed
s

lt CLOS’s
on

A is instance of B
BA

A B
A inherits from B
 Dr. Ducasse Stéphane -Universität Bern

CLOS
Constrained system per default but the programmer may ch
responsibility

❑ CLOS avoids compatibility issues by constraining
classes.

❑ The test is done by the function validate-superclas
❑ Per default a new class should have the same met

from. (or instance of standard-class and funcallab
❑ But the function validate-superclass can be redefin
❑ The programmer has to ensure compatibility issue

B

MetaA

A

Defau
soluti

About Metaclass Evolution 102.

© About Metaclass Composition

ure [Danforth’94]

patibility
 Dr. Ducasse Stéphane -Universität Bern

SOM

IBM Corba compliant based on explicit metaclass architect
❑ ObjVlisp Kernel => Explicit metaclasses
❑ But derived metaclasses that provide upward com
❑ Does not support downward compatibility

About Metaclass Evolution 103.

© About Metaclass Composition

s from the other

created that multiple inherits
 before MetaA).
nd in MetaA

B

erits-from»

o

MetaB

Derived
 Dr. Ducasse Stéphane -Universität Bern

Derived Metaclasses in SOM
❑ Automatic creation of a new metaclass that inherit

MetaB does not inherit from MetaA so a new metaclass is
from MetaA and MetaB taking care of precedence (MetaB

An instance of B can excute i-foo since c-bar will be fou

A
i-foo

MetaB

i-foo
^ self class c-bar

«instance-of»

«inh

B inherits from: A
instance of MetaB

MetaA
c-bar

A
i-fo

«instance-of»

MetaA
c-bar

About Metaclass Evolution 104.

© About Metaclass Composition

inherits from MetaA ,
ads to an error because B

B

erits-from»

MetaB

new i-bar
 Dr. Ducasse Stéphane -Universität Bern

Limit of Derived Metaclass
❑ SOM does not support downward compatibility

When B receives c-foo , c-foo is found because MetaB
an instance of B is created then it receives i-bar which le
does not inherit from A

«inh

A
i-bar

«instance-of»

MetaA
c-foo

SOMClass

SOMObject

c-foo
^ self

A is instance of B
BA

A B
A inherits from B

About Metaclass Evolution 105.

© About Metaclass Composition

OM
bclasses
ded) is propagated from the

B

Derived
 Dr. Ducasse Stéphane -Universität Bern

Class Property Propagation in S
❑ Property of the metaclass are propagated to its su
❑ The class property released (no method can be ad

class A to the class B

A

Released

SoleInstance
B inherits from A
instance of SoleInstance

A is instance of B
BA

A B
A inherits from B

About Metaclass Evolution 106.

© About Metaclass Composition

patibility by using a parallel

created as a subclass of the
 Dr. Ducasse Stéphane -Universität Bern

Smalltalk Approach
❑ Smalltalk ensures both upward and downward com

hierarchy and implicit metaclasses
❑ When a class is created its anonymous metaclass is

superclass’s metaclass
❑ But meta code cannot be shared

BA
i-bar

B classA class
c-foo

c-foo
^ self new i-bar

c-bar

i-foo

A is instance of B
BA

A B
A inherits from B

About Metaclass Evolution 107.

© About Metaclass Composition

ses in 7 points
asses.

bject itself)

ss (a metaclass).
an accessed them using
 Dr. Ducasse Stéphane -Universität Bern

Deep into it: Smalltalk Metaclas
- no explicit metaclasses, only implicit non sharable metacl

(1): Every class is ultimately a subclass of Object (except O
Behavior

ClassDescription

Class

Metaclass

(2) Every object is instance of a class.
Each class is instance of a class its metaclass.

(3) Every class is instance of A metaclass.
Every user defined class is the sole instance of another cla
Metaclass are system generated so they are unamed you c
#class

About Metaclass Evolution 108.

© About Metaclass Composition

 (ii)

.

es of a Metaclass

Object

Object
class
 Dr. Ducasse Stéphane -Universität Bern

Smalltalk Metaclasses in 7 points

If X is a subclass of Y then X class is a subclass of Y class
But what is the superclass of the metaclass of Object ?
The superclass of Object class is Class

(4) All metaclasses are (ultimately) subclasses of Class .

But metaclasses are also objects so they should be instanc

SmallInteger

SmallInteger
class

Integer

Integer
class

Number

Number
class

Object

Object
class

SmallInteger

SmallInteger
class

Integer

Integer
class

Number

Number
class

Class

Class
class

About Metaclass Evolution 109.

© About Metaclass Composition

ts (iii)

 is instance of itself

e instance)
behavior common to those

Object

Object
class
 Dr. Ducasse Stéphane -Universität Bern

Smalltalk Metaclasses in 7 poin

(5) Every metaclass is instance of Metaclass. Metaclass

Object : common object behavior
Class : common class behavior (name, multiple instances)
Metaclass : common metaclass behavior (no name, uniqu
(6) The methods of Class and its superclasses support the
objects that are classes.

SmallInteger

SmallInteger
class

Integer

Integer
class

Number

Number
class

Class

Class
class

Metaclass

Metaclass
class

About Metaclass Evolution 110.

© About Metaclass Composition

ts (iv)
ior specific to particular

 class” = class methods (for

ion , is available as a

Object

Object
class

A is instance of B
BA

A B
A inherits from B
 Dr. Ducasse Stéphane -Universität Bern

Smalltalk Metaclasses in 7 poin
(7) The methods of instances of Metaclass add the behav
classes.
=> Methods of instance of Metaclass = methods of “Packet
example #withName:)

An instance method defined in Behavior or ClassDescript
class method. Example: #new, #new:

ClassDescription

ClassDescription
class

Behavior

Behavior

Class

Class
class

Metaclass

Metaclass
class

class

About Metaclass Evolution 111.

© About Metaclass Composition

stances.

scription of instances
instance creation, class into
ss hierarchy, testing

ior
for methods, the notion of a

), the maintenance of the

instances of the metaclass’s
ol
iable names and shared pool
 Dr. Ducasse Stéphane -Universität Bern

Responsibilities
Behavior

- Minimum state necessary for objects that have in
- Basic interface to the compiler.
- State: class hierarchy link, method dictionary, de

Methods: creating a method dictionary, compiling method,
hierarchy, accessing instances and variables, accessing cla

ClassDescription adds a number of facilities to basic behav
- named instance variables, category organization

name of this class (implemented as subclass responsibility
Changes set, and logging changes on a file

Metaclass
- initialization of class variables, creating initialized

sole instance, instance creation, metaclass instance protoc
Class adds naming for class, the representation for classVar
variables

About Metaclass Evolution 112.

© About Metaclass Composition

malltalk

bclasses

B

B class
 Dr. Ducasse Stéphane -Universität Bern

Class Property Propagation in S

❑ The abstractness of A class is propagated to its su

A

A class
new

new
 ^self error: ‘I’’m abstract’

A is instance of B
BA

A B
A inherits from B

About Metaclass Evolution 113.

© About Metaclass Composition

del

lass hierarchy ensures the

operty

B

B class
 Dr. Ducasse Stéphane -Universität Bern

NeoClasstalk: Compatibility Mo
❑ New Smalltalk kernel with explicit metaclasses
❑ Support compatibility and property propagation

Compatibility Model
❑ A metaclass inheritance hierarchy parallel to the c

compatibility
❑ An extra metaclass layer locally add metaclass pr

A

A class

new
 ^self error: ‘I’’m abstract’

Abstract + A class
new

About Metaclass Evolution 114.

© About Metaclass Composition

 B can execute i-bar.

 the class B can execute c-

B

B class

s BProperty + Bclass
 Dr. Ducasse Stéphane -Universität Bern

Compatibility? Yes!

B can execute the message c-foo because an instance of
An instance of B can execute the message i-foo because
bar

A

A class
c-foo
c-bar

i-foo
i-bar

compatibility layer

property layer

i-foo
^ self class c-bar

c-foo
^ self new i-bar

AProperty + A clas

A is instance of B
BA

A B
A inherits from B

About Metaclass Evolution 115.

© About Metaclass Composition

an Hierarchy

False
True

False class

True class

True

ton + True class
 Dr. Ducasse Stéphane -Universität Bern

Refactoring the Smalltalk Boole

Boolean

Boolean class
In the current kernel

Boolean

Boolean class

False

False class

True class

Abstract + Boolean class

Singleton + False class

Single

About Metaclass Evolution 116.

© About Metaclass Composition

True

ton + True class

classes

metaclasses

metametaclasses
 Dr. Ducasse Stéphane -Universität Bern

The Complete Architecture

Boolean

Boolean class

False

False class

True class

Abstract + Boolean class

Singleton + False class

Single

PropertyMetaclass

Abstract

Singleton

About Metaclass Evolution 117.

© About Metaclass Composition

mixin and is defined to be

classes

metaclasses

metametaclasses

kPoint
 class
 Dr. Ducasse Stéphane -Universität Bern

Class Property Composition
❑ Following the mixin idea, each property acts as a

composed

False

False class BreakPoint Trace

PropertyMetaclass

BreakPoint

Trace

 + False class + Brea
+ False

A is instance of B
BA

A B
A inherits from B

About Metaclass Evolution 118.

© About Metaclass Composition

omposition
sage
lse class)

uments: args

: args
 Dr. Ducasse Stéphane -Universität Bern

An Example of Class Property C
When false receives a message False receives the mes
executeMethod:receiver:arguments: (defined in Fa
When false receive a message:

(1) Trace+BreakPoint+False class>>executeMethod m receiver: rec arg

self transcript show: m selector; cr.

^ super executeMethod m receiver: r arguments: args

(2)BreakPoint+False class>>executeMethod m receiver: rec arguments

m selector ==stopSelector

ifTrue:[self halt: BreakPoint for ‘ , stopSelector].

^ super executeMethod m receiver: r arguments: args

(3)False class>>executeMethod m receiver: rec arguments: args

...

About Metaclass Evolution 119.

© About Metaclass Composition

with the

False

 + False class

classes

metaclasses

metametaclasses

Singleton
 Dr. Ducasse Stéphane -Universität Bern

Extending the Smalltalk Kernel
Compatibility Model

Boolean

Boolean class False class

Abstract + Boolean class Singleton

PropertyMetaclass

Abstract
Metaclass

CompatibilityMetaclass

About Metaclass Evolution 120.

© About Metaclass Composition

 properties that we want to

 by the system
 Dr. Ducasse Stéphane -Universität Bern

NeoClasstalk Programmers

❑ Base Level
☞ NeoClasstalk offers simple toosl to select the

apply on a given class

❑ MetaLevel
☞ Property metaclass are automatically created

Singleton new composeWithPropertiesOf: True

About Metaclass Evolution 121.

© About Metaclass Composition

Property Propagation

not managed

classes not managed

ierarchy managed

managed
 Dr. Ducasse Stéphane -Universität Bern

Summary

Metaclasses Compatibility

Clos
explicit
sharing

constrained per default
programmer responsible

SOM
explicit
sharing

upward based on derived meta

Smalltalk
implicit

no sharing
compatibility based on parallel h

NeoClasstalk
explicit
sharing

compatibility +
propagation of

About Metaclass Evolution 122.

© About Metaclass Composition

e

 implementation)

rks, Squeak, Dolphin)
 Dr. Ducasse Stéphane -Universität Bern

If You Really Want to Know Mor
❑ Read:

☞ The Art of the MetaObject Protocol
❑ Try CLOS (www.franz.com provides a really good
❑ Try Smalltalk

☞ (There are free excellent Smalltalk: VisualWo

About Metaclass Evolution 123.

© lementation: the CLOS MOP Example

LOS MOP
 Dr. Ducasse Stéphane -Universität Bern Open Imp

4. Open Implementation: the C
Example

Dr. Stéphane Ducasse
Software Composition Group
University of Bern
Switzerland

Email: ducasse@iam.unibe.ch
Url: http://www.iam.unibe.ch/~ducasse/

About Metaclass Evolution 124.

© lementation: the CLOS MOP Example

pen language
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Goals of this Lecture

❑ CLOS in a Nutshell
❑ CLOS MOP overview and example
❑ Difference between a reflective language and an o
❑ Lessons learnt in the MOP Design
❑ Open Implementation Design Guidelines

About Metaclass Evolution 125.

© lementation: the CLOS MOP Example

e
not receiver and message

lavors, Loops)

are externalised
 Dr. Ducasse Stéphane -Universität Bern Open Imp

CLOS
❑ Integration of object-orientation and functional styl

☞ Generic function, multiple discrimination and
based, types and classes

❑ Take into account other Lisp OO like languages (F
☞ migration path

❑ Small (they failed a bit) but extensible
☞ CLOS MOP: essential language entry points

About Metaclass Evolution 126.

© lementation: the CLOS MOP Example

tion

e “name”

)
 of classes for method

e redefinable via inheritance)

f the methods selected for a

 variables
 Dr. Ducasse Stéphane -Universität Bern Open Imp

CLOS in a nutshell
Essential

❑ Class based
❑ Multiple Inheritance (with graph linerization)
❑ Multiple argument discrimination for method selec
❑ Methods associated with multiple classes
❑ Methods combined to be executed
❑ Generic function: group of method having the sam

Too much details:
❑ specializers (eql instance based method selection
❑ argument-precedence-order (changing the weight

selection)
❑ default-initargs (default values for instance variabl
❑ auxillary methods (around, before, after methods)
❑ method combination (how to compose the results o

given set of arguments)
❑ automatic accessors and initialization per instance

About Metaclass Evolution 127.

© lementation: the CLOS MOP Example
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Class Definition

❑ In its simplest form:
(defclass rectangle ()

((height :initarg :start-height

:initform 5

:accessor height)

 (width :initform 8

:writer width)))

❑ Other possibilities
:allocation (per instance, shared among all instances)

specification of class defautl values inherited

About Metaclass Evolution 128.

© lementation: the CLOS MOP Example
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Instance Creation
(setq r1 (make-instance ‘rectangle

:start-height 25))

(height r1)

-> 25

(width r1)

-> 8

About Metaclass Evolution 129.

© lementation: the CLOS MOP Example

cesses

e

 Dr. Ducasse Stéphane -Universität Bern Open Imp

Encapsulation and Attribute Ac

❑ Accessors can be created automatically
☞ :accessor

(height r1)

(setf (height r1 75)

❑ Attributes can always be accessed using slot-valu
(slot-value r1 ‘height)

(setf (slot-value r1 ‘height) 75)

❑ Accessors are defined in terms of slot-value
❑ Accessors are preferred style

About Metaclass Evolution 130.

© lementation: the CLOS MOP Example
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Inheritance
❑ Simple

(defclass color-rectangle (rectangle)

((color :initform ‘red

:initarg :color

:accessor color)

 (clearp :initform nil

:initarg :clearp

:reader clearp)

 (height :initform 100)))

❑ Multiple
(defclass color-mixin ()

((color :initform ‘red :initarg :color :accessor color)))

(defclass color-rectangle (color-mixin rectangle)

(clearp :initform nil

:initarg :clearp

:accessor clearp)

 (height :initform 100)))

About Metaclass Evolution 131.

© lementation: the CLOS MOP Example

solution
oked using call-next-method

ce graph are accessed? (if
indow still only has one)

y-object colored-
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Multiple Inheritance Conflict Re
❑ Which methods of the superclasses should be inv

(super equivelant)
❑ How multiple instance variables over the inheritan

window has an instance variable, colored-noisy-w
☞ graph linearization

(class-precedence-list (find-class ‘colored-noisy-window))

-> (colored-noisy-window colored-window noisy-window window nois
object standard-object t)

colored-object

colored-window

colored-noisy-window

noisy-window

window noisy-object

About Metaclass Evolution 132.

© lementation: the CLOS MOP Example

taking two arguments

umber of argument but
ed, before, after around,

e discrimination
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Generic Function

A generic function describing all the methods named paint

(defgeneric paint (shape medium))

❑ Holding bag of methods having the same name, n
different types and different qualifier (instance bas
normal method)

❑ Not strongly defined in classes because of multipl

About Metaclass Evolution 133.

© lementation: the CLOS MOP Example

Java, Smalltalk like
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Method Definition (i)
1 (defmethod paint ((shape rectangle) medium)

(vertical-stroke (height shape) (width shape) medium))

2 (defmethod paint ((shape circle) medium)

(draw-circle (radius shape) medium))

(paint r1 *standard-display*) -> 1

☞ Discriminating only on one single argument ->
3 (defmethod paint ((shape color-rectangle) medium)

(if (not (clearp shape))

(call-next-method))

☞ invoking an overriden method

About Metaclass Evolution 134.

© lementation: the CLOS MOP Example

plication

))

 arguments
 Dr. Ducasse Stéphane -Universität Bern Open Imp

(Method) Generic Function Ap
4 (defmethod paint ((shape rectangle) (medium vector-display))

...)

5 (defmethod paint ((shape rectangle) (medium bitmap-display))

...)

6 (defmethod paint ((shape rectangle) (medium optimized-bitmap-stream

...)

7 (defmethod paint ((shape circle) (medium ps-stream))

...)

8 (defmethod paint :after ((shape rectangle) medium)

(log paint rectangle))

☞ 1,2,3,4,5,6,7 are primary methods
☞ 8 is an auxiliary method

Applying a generic function:
From all the methods, an effective method is created:

❑ Selecting the applicable methods to a given set of
❑ Ordering them
❑ Applying them

About Metaclass Evolution 135.

© lementation: the CLOS MOP Example

eir first argument, then they

order
), other if call-next-method is

er
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Method Selection
❑ The methods are sorted according to the type of th

ordered according to the second argument....
(paint r1 *bitmap*)

-> selction of 5 1

(paint r1 *optimized-bitmap*)

-> selection 6 5 1

Effective method application leads to execute:
❑ All the before methods are invoked in decreasing
❑ Most specific primary method (6 in the second call

used
❑ All the after methods are invoked in increasing ord

About Metaclass Evolution 136.

© lementation: the CLOS MOP Example

ed to be viewed as
ve no control over the
tions. The CLOS Mop
abstraction, and its
rogrammer can, for

tion strategy such as
language semantics
design of the CLOS

pose the programmer
nor does it tie the
essential structureof

a]
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Why CLOS MOP?
“Traditionally, languages have been design
black box abstractions; end programmers ha
semantics or implementationof these abstrac
on the other hand, “opens up” the CLOS
implementation to the programmer. The p
example, adjust aspects of the implementa
instance representation, or aspects of the
such as multiple inheritance behavior. The
MOP is such that this opening up does not ex
to arbitrary details of the implementation,
implementor’s hand unnecessarily-- only the
the implementation is exposed” [Kiczales’92

About Metaclass Evolution 137.

© lementation: the CLOS MOP Example

Dynamics

Modifiable System
Methods

ved by

Interface

Find Named
MetaObjects
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Meta Programming in CLOS

 Create named
MetaObjects

CLOS Programmer

CLOS Meta Programmer

Statics

MetaObjects
Class
Hierarchy

Protocols

metaobject instances
described by acti

User Friendly Macro based

Create named Use hidden MetaObjects
MetaObjects (Classes, methods...)

About Metaclass Evolution 138.

© lementation: the CLOS MOP Example

 using the CLOS MOP
 Dr. Ducasse Stéphane -Universität Bern Open Imp

CLOS was too big!

Lot of could have been dropped and reintroduced if wanted
❑ Instance based methods (eql) , auxiliary
❑ Method combination,
❑ argument-precedence-order option,

.

.
❑ slot-filing initargs, default initargs

.

.

.

.
❑ multiple inheritance, multi methods

About Metaclass Evolution 139.

© lementation: the CLOS MOP Example

alue-using-class, (setf
 Dr. Ducasse Stéphane -Universität Bern Open Imp

5 MetaObjects
❑ Classes

– instance creation: make-instance

– instance allocation: allocate-instance

– class initialization: initialize-instance

– instance variables storage and accesses: slot-v
slot-value-using-class)

– finalize-inheritance

❑ Methods

– apply method

– extra-method-bindings

❑ Generic Functions

– apply-generic-function

❑ Slots

– slot-boundp

❑ Method combinations

About Metaclass Evolution 140.

© lementation: the CLOS MOP Example

 calls regarding inheritance)

d

dard-method

dard-accessor-method

od standard-writer-method

method-combination
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Static Elements
5 Metaobjects:

❑ Class, Method Combination (Semantics of method
❑ Method and Generic Function
❑ Slot (attribute)

t

standard-object

generic-function metho

stan

stan

standard-reader-meth

class

built-in-class

standard-class

forward-referenced-class

slot-definition

standard-slot-definition

standard-direct-slot-definition
standard-effective-slot-definition

standard-generic-function

About Metaclass Evolution 141.

© lementation: the CLOS MOP Example
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Structure Protocols (i)
❑ global queries not attached to any meta-entities

find-class, find-generic-function, find-method

ensure-generic-function, ensure-class, ensure-method,

❑ User interfaces
defclass, defgeneric, defmethod

Structural queries associated with meta-entities
❑ Object

class-of, print-object, reinitialize-instance, slot-makeunbound

❑ Class
class-name, class-slots,

class-direct-subclasses, class-direct-superclasses

class-direct-slots, class-direct-methods,

compute-class-precedence-list, compute-slots,

compute-effective-slot-definition

class-finalized-p,

About Metaclass Evolution 142.

© lementation: the CLOS MOP Example

-function-name,

ore-specific-p,

orm,
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Structure Protocols (ii)
❑ Generic Function

add-method, add-reader-method, generic-function-methods, generic

❑ Method
method-body,method-environment,method-generic-function,method-m
method-qualifiers, method-specializers,

❑ Slot
slot-definition-initfunction, slot-definition-initargs, slot-definition-initf

slot-definition-name, slot-definition-readers, slot-definition-writers

slot-boundp, slot-boundp-using-class,

slot-exists-p,

About Metaclass Evolution 143.

© lementation: the CLOS MOP Example

anceslot-

) instance
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Extension Example
(defclass hash-table-representation-class (standard-class)

()) ; no extra instance variables

(defmethod allocate-instance ((c hash-table-representation-class))

...allocate a small hash-table to store the slot)

(defmethodslot-value-using-class((chash-table-representation-class)inst
name))

...)

(defmethodsetfslot-value-using-class((chash-table-representation-class
slot-name newvalue))

...)

(defclass person ()

(name age address...)

(:metaclass hash-table-representation-class))

About Metaclass Evolution 144.

© lementation: the CLOS MOP Example

ols
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Dynamic Elements
❑ instance initialization and creation,
❑ class-change, instance updating
❑ finalization (inheritance)
❑ method selection, method invocation,
❑ slot access

☞ are controlled by metaobjects and their protoc

About Metaclass Evolution 145.

© lementation: the CLOS MOP Example

ss

)
rror checking
idate-superclass)
ss metaobject
ect class

etaobjects
e)

-subclass)

riate)

aobjects
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Class Definition: Defclass
1 Syntax error checking
2 Canonicalize information
3 Obtain class metaobjects

(ensure-class, ensure-class-using-class)
3.1 Find or make instance of proper class metaobject cla
(make-instance, the :metaclass option)

3.2 (Re)initialize the class metaobject ((re)initialize
3.2.1 Default unsupilied keyword arguments/e
3.2.2 Check compatibility with superclass (val
3.2.3 Associate superclasses with this new cla
3.2.4 Determine proper slot-definition metaobj

(direct-slot-definition-class)
3.2.5 Create and initialize the slot-definition m

(make-instance , initialize-instanc
3.2.6 Maintain subclass lists of superclasses

(add-direct-subclass, remove-direct
3.2.7 Check default-initargs
3.2.8 Initiate inheritance finalization (if approp

(finalize-inheritance)
3.2.9 Create reader/writer methods
3.2.10 Associate them with the new class met

About Metaclass Evolution 146.

© lementation: the CLOS MOP Example

e (for class creation)
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Instance creation
❑ Class responsibility:

make-instance, allocate-instance, initialize-instanc
(make-instance class)

=> (initialize (allocate-instance class))

❑ Object responsibility
(initialize-instance anObject)

❑ Changing class and updating instance
change-class

update-instance-for-different-class

About Metaclass Evolution 147.

© lementation: the CLOS MOP Example

i)

ic-function,

n-using-class)
ion metaobject

)

ents/error checking
 existing methods
 spec against lambda list

iscriminating function
n)
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Method Creation: Defmethod (
1. Syntax error checking
2. Obtain target generic function metaobject (ensure-gener

ensure-generic-functio

2.1. Find or make instance of proper generic-funct
(make-instance,:generic-function-class

2.2 (Re)initialize the generic function metaobject
((re)initialize-instance)
2.2.1 Default unsupplied keyword argum
2.2.2 Check lambda list congruence with
2.2.3 Check argument precedence order
2.2.4 (Re)define any old ‘initial methods’
2.2.5 Recompute the generic function’s d

(compute-discriminating-functio

3 Build method function (make-method-lambda)

About Metaclass Evolution 148.

© lementation: the CLOS MOP Example

lass
-class)

ent/error checking

set
ng function

)

 to methods
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Defmethod (ii)
4 Obtain method metaobject

4.1 Make instance of proper method metaobject c
(make-instance, generic-function-method

4.2 Initialize the method metaobject
(initialize-instance)
4.2.1 Default unsupplied keyword argum

5 Add the method to the generic function
(add-method)
5.1. Add method to the generic function’s method
5.2. Recompute the generic function’s discriminati

(compute-discriminating-function

5.3. Update discriminating function
5.4. Maintain mapping from specializers (classes)

(add-direct-method)

About Metaclass Evolution 149.

© lementation: the CLOS MOP Example

ocol

given arguments

,

)

 Dr. Ducasse Stéphane -Universität Bern Open Imp

Method lookup and apply prot

generic function call
(apply-generic-function)

1 invoke the generic function’s discriminating function
1.1 Find out which methods are applicable for the

(compute-applicable-using-classes,

compute-applicable-methods,

methods-more-specific-p)
1.2 Combine the methods into one piece of code

(compute-effective-method)
1.3 Execute the combined method

(method-function-applier, apply-methods

apply-method, extra-function-bindings

About Metaclass Evolution 150.

© lementation: the CLOS MOP Example

apply-method

g on the implementation)
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Apply Protocol Example
❑ Counting the calls of a method

☞ Define a new class of method and specialise
(defclass counting-method (standard-method)

((numberOfCalls :initform 0 :accessor numberOfCalls)))

(defmethod apply-method :before ((method counting-method) args next-methods)

(incf (numberOfCalls method)))

❑ Define new method of the right class or (dependin
change the class of certain methods

(defgeneric ack (x)

(:method-class counting-method)))

(defmethod ack (x)

t)

(defmethod ack ((i integer))

1)

(ack 1) -> 1

(ack anObject) -> t

(numberOfCalls (find-generic-function #’ack)) -> 2

(numberOfCalls (find-method (find-generic-function #’ack) ((integer)) ()) -> 1

About Metaclass Evolution 151.

© lementation: the CLOS MOP Example

 methods specification
thod level

on was not allowed (at leats
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Apply Protocol Remark
❑ The generic function has the responsibility of class
❑ We cannot specify the class of a method at the me
❑ Dynamically changing the class of a generic functi

in the MOP description)

:generic-function-class

:method-class

are only associated with defgeneric

About Metaclass Evolution 152.

© lementation: the CLOS MOP Example
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Slot Access Protocol
The class has the control over its attributes

❑ How to store and access them
(slot-value object slotname)

calls or has semantics defined by
(slot-value-using-class class instance slotname)

((setf slot-value) value object slotname)

calls or has semantics defined by
((setf slot-value-using-class) value class instance slotname)

1. Check for existence of slot
slot-exists-p, slot-missing

2. Check for slot being unbound
slot-unboundp, slot-boundp-using-class

3. Making a slot unbound
slot-makunbound, slot-makeunbound-using-class

About Metaclass Evolution 153.

© lementation: the CLOS MOP Example

me
bject class

)

)

)

 Dr. Ducasse Stéphane -Universität Bern Open Imp

Finalize Inheritance
1 Compute the class precedence list

(compute-class-precedence-list)
2 Resolve conflicts among inherited slots with the same na

2.1Determine proper effective slot definition metao
(effective-slot-definition-class

2.2Create the effective slot definition metaobjects
(make-instance)

2.3 Initialize the effective slot definitions
(initialize-instance ,
compute-effective-slot-definition

2.4 Associate them with the class metaobject
3Enable/Disable slot access optimizations

(slot-definition-elide-access-method-p

About Metaclass Evolution 154.

© lementation: the CLOS MOP Example

ective

ed
ethod dictionary is not

formation.

ly.
 environments
 hello world took 10 k
 Dr. Ducasse Stéphane -Universität Bern Open Imp

Open Implementation and Refl
Languages

Smalltalk is reflective but
❑ does not have a MOP

☞ Programming and meta-programming are mix
☞ e.g., knowing that methods are stored into a m

necessary for programming. This is a meta-in
☞ Stripping image is difficult.
☞ Implementor of VM cannot optimize complete
☞ Implementors could provide several optimized
☞ Firewall 93 was a declarative Smalltalk where

About Metaclass Evolution 155.

© Open Implementation Design Issues

n Issues
 Dr. Ducasse Stéphane -Universität Bern

5. Open Implementation Desig

Dr. Stéphane Ducasse
Software Composition Group
University of Bern
Switzerland

Email: ducasse@iam.unibe.ch
Url: http://www.iam.unibe.ch/~ducasse/

About Metaclass Evolution 156.

© Open Implementation Design Issues
 Dr. Ducasse Stéphane -Universität Bern

Goals of this Lecture

❑ Lessons learnt in the MOP Design
❑ Open Implementation Design Guidelines

About Metaclass Evolution 157.

© Open Implementation Design Issues

es of the base language

ing convenient reference
ld like to be different

plementation on a per-

dual parts of the

ode proprotional to the
plementation must be
describe their extension
 Dr. Ducasse Stéphane -Universität Bern

Locality in MOP Design
❑ Feature Locality

– MOP should provide access to individual featur

❑ Textual Locality

– The programmer should be able to indicate, us
to their base program, what behavior they wou

❑ Object Locality

– The programmer should be able to affect the im
object basis.

❑ Strategy Locality

– The programmer should be able to affect indivi
implementation strategy.

❑ Implementation Locality

– Extension of an implementation ought ot take c
size of the change. A resonably good default im
provided and the programmer should be able to
as an incremental deviation from that default.

About Metaclass Evolution 158.

© Open Implementation Design Issues

uidelines

but hide its implementation

entation, open
ction of their implementation
ntation. [Kiczales 97]
 Dr. Ducasse Stéphane -Universität Bern

Open Implementation Design G
Stepping back from CLOS and its MOP and generalization

Black-box abstraction:
A module should expose its functionality

Pros
❑ Localization of changes
❑ Level of abstraction
❑ Modularization easier
❑ Reuse easier

Cons
❑ Performance problems
❑ Needs to code around

Whereas black-box modules hide all aspects of their implem
implmentation modules allow clients some control over sele
strategy while still hiding many true details of their impleme

About Metaclass Evolution 159.

© Open Implementation Design Issues

t the same place)
 way)

)
ule has been implemented)
 Dr. Ducasse Stéphane -Universität Bern

Quality in interface designs
from [Hoffman 90]

❑ consistent (e.g., same parameter passed always a
❑ essential (e.g., each service is offered in only one
❑ general
❑ minimal (e.g, each function provides one operation
❑ opaque (e.g., the interface hides the way the mod

About Metaclass Evolution 160.

© Open Implementation Design Issues

paque
 Dr. Ducasse Stéphane -Universität Bern

Set Module: Design A
makeSet()

insert(item, set)

delete(item, set)

isIn(item, set)

map(function, state, set)

❑ Simple, Consistent, Essential, General, Minimal, O
But is the implementation performing well for?

– few/many elements

– frequent/unfrequent removal

– frequent/unfrequent addition

About Metaclass Evolution 161.

© Open Implementation Design Issues

lementation

all affected)
s one: distinction between
 Dr. Ducasse Stéphane -Universität Bern

Set Module: Design B
makeSet(usage)

makeSet()

insert(item, set)

delete(item, set)

isIn(item, set)

map(function, state, set)

Use
makeSet (“n=10000,insert=lo,delete=lo,isIn=hi”)

makeSet (“n=5,insert=hi,delete=hi”)

❑ Same property than design A and still hidding imp
❑ Only a small change in the interface
❑ New functionality optional
❑ Well-bounded effect (only the set created by the c
❑ Use of the new functionality orthogonal to previou

client use and implementation strategy

About Metaclass Evolution 162.

© Open Implementation Design Issues

tegy Control

uld support a clear
uses the module’s
controls the module’s
 Dr. Ducasse Stéphane -Universität Bern

First Guideline

Separation of Use from Implementation Stra

Open Implementation module interfaces sho
separation between client code that
functionality (use code) and client code that
implementation strategy (ISC code)

About Metaclass Evolution 163.

© Open Implementation Design Issues

uld be designed to
ode easy to disable,
ece of use code.

ocessing)

e piece of code but easy to
 Dr. Ducasse Stéphane -Universität Bern

Second Guideline

Open implementation module interfaces sho
make the ISC code optional, make the ISC c
and support alternative ISC codes for one pi

Example: High Performance Fortran (for efficient parallel pr

Real A(1000,1000) B (998,998)

!HPF$ ALIGN B(I,J) WITH A(I+1,J+1)

ISC coded into comments

☞ use/ISC code has clear separation
☞ ISC code is optional
☞ ISC code easy to disable
☞ HPF doesnot support multiple ISC for the sam

implement

About Metaclass Evolution 164.

© Open Implementation Design Issues

ould be designed to
e controlled in a way
ed
 Dr. Ducasse Stéphane -Universität Bern

Third Guideline
Scope control

Open implementation module interfaces sh
allow the scope of influence of ISC code to b
that is both natural and sufficiently fine-grain

s1 = makeSte(“n=1000“)

for i = 1 to 700 do

insert(s1 , i +1)

s2 = makeSet(“n=5“)

insert(s2, 5)

insert(s2,6)

About Metaclass Evolution 165.

© Open Implementation Design Issues

lution worse than the default
tation strategy

lementation strategy

dule implementation strategy
 Dr. Ducasse Stéphane -Universität Bern

Subject Matter
Design B has some weaknesses

❑ client programmer can mis-describes and get a so
❑ no garantee that they will get an optimal implemen

Design C
makeSet(strategy)

Use
makeSet(“LinkedList”), makeSet(“BTree”)

ICS can be about different subject matter

– the client program’s behavior (design B),

– module implementation strategy (design C), or

– performance requirements

No automatic solution
☞ Analysis steps in the process of selecting imp
client use code ---> client usage profile --->

client performance requirements ---> mo

About Metaclass Evolution 166.

© Open Implementation Design Issues

uld be designed to
information
 Dr. Ducasse Stéphane -Universität Bern

Fourth Guideline

Implementation Details must be hidden

Open Implementation module interfaces sho
pass only essential implementation strategy

About Metaclass Evolution 167.

© Open Implementation Design Issues

s provided by the module
 Dr. Ducasse Stéphane -Universität Bern

Design D
❑ Design C is limited to the implementation strategie
❑ Might be not flexible enough

class mySet (Set) {

method insert...

method delete...

method isIn...}

Use
makeSet(“mySet”)

❑ Programmatic interfaces tend to be less robust
☞ locality is extremlly important
☞ Layered interface

About Metaclass Evolution 168.

© Open Implementation Design Issues

es

scribe strategies that
t it is impractical to
terface, then the

s

!!
 Dr. Ducasse Stéphane -Universität Bern

Last Guideline: Layered Interfac
Client

❑ No ISC code -> get default one
❑ Select from built-in ones
❑ Provide a new strategy

When there is a simple interface that can de
will satisfy a significant fraction of clients, bu
accomodate all important strategies in that in
interfaces should be layered

90%/10% Rule
90% of the clients use the default strategy
10% write new ISC code

90% of 10% select in the built-in strategie
1% should provide a new strategy

But this is a really needed one!!

Reflective Programming 169.

© eflection in CLOS, Smalltalk and Java

S, Smalltalk
 Dr. Ducasse Stéphane -Universität Bern Comparing R

6. Comparing Reflection in CLO
and Java

Dr. Stéphane Ducasse
Software Composition Group
University of Bern
Switzerland

Winter Semester 2000-2001

Email: ducasse@iam.unibe.ch
Url: http://www.iam.unibe.ch/~ducasse/

Reflective Programming 170.

© eflection in CLOS, Smalltalk and Java

talk 80 the Language,

cke Paper,
 Dr. Ducasse Stéphane -Universität Bern Comparing R

Sorry but this is your work!

Material you can use
❑ Java: Reflection API, OpenJava
❑ Smalltalk: Smalltalk a Reflective Language, Small

VisualWorks
❑ CLOS: The Art of the MetaObject Protocols, Paep

☞ www.franz.com download a trial version.
❑ Other documents available for you in my office

Reflective Programming 171.

© eflection in CLOS, Smalltalk and Java

f data or can we affect them?

n an instance of the class
alled
 Dr. Ducasse Stéphane -Universität Bern Comparing R

Some Criterias

❑ Which entities?
❑ Introspection and/or Intercessory?
❑ Which aspects?
❑ Is the causal link respected? Only representation o
❑ Level of power,

– for example try to invoke method m of class A o
B subclass of A in Java => m defined on B is c

– Use valueWithReceiver... in VW

About Metaclass Evolution 173.

© e Passing Control in Smalltalk: an Anal-

ing Control in
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

7. Implementing Message Pass
Smalltalk: an Analysis

Dr. Stéphane Ducasse
Software Composition Group
University of Bern
Switzerland

Email: ducasse@iam.unibe.ch
Url: http://www.iam.unibe.ch/~ducasse/

About Metaclass Evolution 174.

© e Passing Control in Smalltalk: an Anal-
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Outline
❑ Method Wrappers in Use
❑ Opening the Box
❑ DoesNotUnderstand
❑ Method Wrapper
❑ Instance based Behavior

About Metaclass Evolution 175.

© e Passing Control in Smalltalk: an Anal-

ine in C++!!!)
nts for distribution
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Why Controling Message?

❑ Application Analysis and introspection
☞ Do not require program instrumentation (imag
☞ Dynamic traces, analysis of collaborations, hi

❑ Language Extension
☞ Distribution
☞ Security
☞ Atomic Data Types
☞ Multiple inheritance
☞ Instance based programming
☞ Object connections

❑ New objects models
☞ Active object model
☞ Concurrent Smalltalk
☞ Composition Filters
☞ New Meta Models (codA)

About Metaclass Evolution 176.

© e Passing Control in Smalltalk: an Anal-

age!
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Controling What Exactly!
Which objects are controlled?

❑ Instance based: One instance
❑ Group based: A group of objects
❑ Class-based All instances of a class

What methods are controlled?
❑ All methods
❑ Unknown methods
❑ Selected methods

Technical quality of the control?
❑ Existing Smalltalk systems and tools
❑ Not another interpreter with an explicit send mess
❑ Not only pre and post methods
❑ Changing arguments (marshalling...)

Who does the control?
❑ The receiver
❑ Another object

About Metaclass Evolution 177.

© e Passing Control in Smalltalk: an Anal-

brant/)

recompiler based)
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

A Limited Survey

❑ CLOS Mop: clean, integrated into the MOP
❑ Smalltalk: everythign is there but not polished

☞ do it yourself syndrome!
☞ MethodWrappers (http://st-www.cs.uiuc.edu/~
☞ Some well-known techniques

❑ Open C++ (first version, runtime, second version p
❑ Javassist (class loader annotations)

About Metaclass Evolution 178.

© e Passing Control in Smalltalk: an Anal-

ecialise apply-generic-

apply-method

methods)
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

CLOS Example (i)
❑ Counting the calls of a generic function

☞ Define a new class of generic function and sp
function

(defclass counting-gf (standard-generic-function)

((numberOfCalls :initform 0 :accessor numberOfCalls)))

(defmethod apply-generic-function :before ((gf counting-gf) args)

(incf (numberOfCalls gf)))

❑ Counting the calls of a method
☞ Define a new class of method and specialise

(defclass counting-method (standard-method)

((numberOfCalls :initform 0 :accessor numberOfCalls)))

(defmethod apply-method :before ((method counting-method) args next-

(incf (numberOfCalls method)))

About Metaclass Evolution 179.

© e Passing Control in Smalltalk: an Anal-

g on the implementation)
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

CLOS Example (ii)
❑ Define new method of the right class or (dependin

change the class of certain methods
(defgeneric ack (x)

(:generic-function-class counting-gf)

(:method-class counting-method)))

(defmethod ack (x)

t)

(defmethod ack ((i integer))

1)

(ack 1)

-> 1

(ack anObject)

-> t

(numberOfCalls #’ack)

-> 2

About Metaclass Evolution 180.

© e Passing Control in Smalltalk: an Anal-

mmer job

hange from part that don’t
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

CLOS Example (iii)
❑ Separation between programmer and meta progra
❑ MOP entry points

apply-generic-function

compute-applicable-methods-using-classes

method-more-specific-p

apply-methods

apply-method

extra-function-bindings

❑ Optimized the following way: separate parts that c
(apply-methods gf args methods)

<=>

(funcall (compute-effective-method-function gf methods) args)

(apply-method method args next-methods)

<=>

(funcall (compute-method-function methods) args next-methods)

About Metaclass Evolution 181.

© e Passing Control in Smalltalk: an Anal-
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

A Coverage Tool in Smalltalk

About Metaclass Evolution 183.

© e Passing Control in Smalltalk: an Anal-

me

programmer

 with bits
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Smalltalk: Do It Yourself Syndro

❑ Reflective sure !!
❑ But not a well defined MOP
❑ Full implementation details on the shoulder of the

Extra Criteria
❑ Reproductible easily
❑ Cost of implementation

☞ at the normal level of programming or fighting
❑ Cost of activation

☞ (recompile or not)
❑ Run-time cost
❑ Integration into the programming environment

☞ is control visible for the programmer?

About Metaclass Evolution 184.

© e Passing Control in Smalltalk: an Anal-

ble...)

comeOneWay:)

er:arguments:)
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Smalltalk Basic Reflective Tools
Reflective but the VM has the control

❑ the way the objects are represented in memory
❑ how messages are handled.

Programmer possibilities
❑ Instance variable access (instVarAt:)
❑ Compiling class on the fly (subclass:instanceVaria
❑ Compiling method on the fly (compile:notifying:)
❑ Changing inheritance chain (superclass:)
❑ Changing reference between objects (become:, be
❑ Changing class (changeClassToThatOf:)
❑ Message reification (only for error handling)
❑ Stack Reification (sender, receiver...)
❑ Methods are objects (mclass, sourceCode, bytes)
❑ Object methods can be invoked (valueWithReceiv
❑ Lookup can be called (perform:with:)

About Metaclass Evolution 185.

© e Passing Control in Smalltalk: an Anal-

ntallation

e of the method)
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

6 Techniques
❑ Source code modification

setX: t1 setY: t2

...

Original Code

...

☞ reparsed, recompiled for installation and desi
☞ not applicable to stripped image

❑ Byte code extension
(add a new byte code in the VM)

☞ dialect specific
❑ Byte code modification

(insert a new byte code directly in the cod
☞ dialect specific

Deeply evaluated
❑ Error handling specialisation
❑ Anonymous classes
❑ Method Wrappers

About Metaclass Evolution 186.

© e Passing Control in Smalltalk: an Anal-

sends doesNotUnderstand:

tand: for every message

NotUnderstand: method

controlled
 object

aMessage
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Unknown Messages
Context: When an object does not understand a message, it
with a reification of the message
Solution:

❑ define a minimal object that raises doesNotUnders
❑ wrap an object in a minimal object
❑ specify control semantics by specializing the does

myObject myObject
myObject m

myObject
doesNotUnderstand:

About Metaclass Evolution 187.

© e Passing Control in Smalltalk: an Anal-

s: MinimalObject

g, print....

ss inspect ba-
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Creating a MinimalObject
❑ Object that does not inherit from Object nil subclas

☞ does really not work because we cannot debu
The trick: (1) creating a normal class

Object subclass: MinimalObject

instanceVariableNames: ‘controlledObject’

(2) setting the inheritance to nil ,
(3) copying some minimal behavior from Object.

MinimalObject class>>initialize

superclass := nil.

#(doesNotUnderstand: error: ~~ isNil = == printString printOn: cla
sicInspect basicSize instVarAt: instVarAt:put:)

do: [:sel | self recompile: selector from: Object]

❑ Example of possible control
MinimalObject>>doesNotUnderstand: aMessage

...

controlledObject perform: aMessage selector

withArguments: aMessage arguments

...

About Metaclass Evolution 188.

© e Passing Control in Smalltalk: an Anal-
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Wrapping anObject
Wrapping

MinimalObject class>>newOn: anObject

| x e |

x := anObject.

e := self new.

x become: e.

x object: e.

^x

Unwrapping
MinimalObject>>uninstall

| x |

x := controlledObject.

controlledObject := nil.

x become: self

About Metaclass Evolution 189.

© e Passing Control in Smalltalk: an Anal-

en not known a priori)

ain VM

ontrollable

y an object
inimalObject and not the
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Evaluation

❑ Instance based control controlling all methods (ev
❑ Simple
❑ Slowest solution

☞ Message reified + Exception Handling
☞ even if doesNotUnderstand: is cached in cert

❑ Installation: no recompilation

Known Problems

❑ Messages sent to self by the object itself are not c
❑ Messages sent to the object via reference to self
❑ Class control is impossible, cannot swap a class b
❑ Interpretation of minimal set of messages by the m

controlled object.
anObject inspect => anObject controlledObject inspect

About Metaclass Evolution 190.

© e Passing Control in Smalltalk: an Anal-

rayOfObjects

bjects
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Method Wrappers: an Example

MethodWrapper variableSubclass: #CountMethodWrapper

instanceVariableNames: 'count '

CountMethodWrapper>>class: aClass selector: aSymbol

count := 0.

^super class: aClass selector: aSymbol

CountMethodWrapper>>valueWithReceiver: anObject arguments: anAr

count := count + 1.

^clientMethod valueWithReceiver: anObject arguments: anArrayOfO

CountMethodWrapper>>count

^ count

About Metaclass Evolution 191.

© e Passing Control in Smalltalk: an Anal-

nce to the original method
al method

mclass
clientMethod
sourceCode

t1setY: t2
x := t1.
y := t2

aMethodWrapper

1

 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Method Wrappers
The idea:

❑ substitute a method by a wrapper that has a refere
❑ wrapper has as source code the code of the origin

☞ transparent for the programmer

Point
methodDict setX:setY:

printOn:

aCompiledMethod

24@6 15@10

setX:
mclass

sourceCode
bytes

About Metaclass Evolution 192.

© e Passing Control in Smalltalk: an Anal-

t if you want just a

ing code is automatically

receiver of the message #()
 the method wrapper being
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Control
MethodWrapper>>valueWithReceiver: object arguments: args

"This is the general case where you want both a before and after method, bu

before method, you might want to override this method for optimization."

self beforeMethod.

^[clientMethod valueWithReceiver: object arguments: args]

valueNowOrOnUnwindDo: [self afterMethod]

To control the method originalSelector: on aClass the follow
generated
aClass>>originalSelector: t1

|t2|

(t2:=Array new: 1) at: 1 put: t1.

^#() valueWithReceiver: self arguments: t2.

To have a way to refer to the method object itself and not the
reserves some place byte code that is then latter filled with
installed.

About Metaclass Evolution 193.

© e Passing Control in Smalltalk: an Anal-

ters and then copy them

s]) copy.
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

MethodWrapper Optimization
Create method skeletons depending on number of parame

☞ no compilation needed
MethodWrapper class>>on: selector inClass: class

| wrapper |

(self canWrap: selector inClass: class) ifFalse: [^nil].

wrapper := (self methods at: selector numArgs

ifAbsentPut: [self createMethodFor: selector numArg

wrapper class: class selector: selector.

^wrapper

MethodWrapperclass>>createMethodFor: numArgs

^((MethodWrapperCompiler new) methodClass: self;

compile: (self codeStringFor: numArgs)

in: self

notifying: nil

ifFail: []) generate

About Metaclass Evolution 194.

© e Passing Control in Smalltalk: an Anal-

lf arguments: t'

e: [';']) , ' at: '
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

MW method body
'valuevalue: t1 value: t2

| t |

(t := #Array new: 2) at: 1 put: t1; at: 2 put: t2.

^#''The method wrapper should be inserted in this position'' valueWithReceiver: se

MethodWrapper class>>codeStringFor: numArgs

"self codeStringFor: 2"

| nameString tempsString |

nameString := 'value'.

tempsString := numArgs == 0

ifTrue: ['t := #()']

ifFalse: ['(t := #Array new: ' , numArgs printString , ') '].

1 to: numArgs do: [:i |

nameString := nameString , 'value: t' , i printString , ' '.

tempsString := tempsString , (i == 1 ifTrue: [''] ifFals

, i printString , ' put: t' , i printString].

^nameString , '

| t |

' , tempsString , '.

^'

, self methodWrapperSymbol printString

, ' valueWithReceiver: self arguments: t'

About Metaclass Evolution 195.

© e Passing Control in Smalltalk: an Anal-
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Installation
(MethodWrapper on: #blop inClass: Test) install

MethodWrapper>>class: aClass selector: sel

| position |

self at: self methodPosition put: self.

position := self arrayPosition.

position == 0 ifFalse: [self at: position put: Array].

mclass := aClass.

selector := sel

MethodWrapper>>install

| definingClass method |

definingClass := mclass whichClassIncludesSelector: selector.

definingClass isNil ifTrue: [^self].

method := definingClass compiledMethodAt: selector.

method == self ifTrue: [^self].

clientMethod := method.

sourceCode := clientMethod sourcePointer.

mclass addSelector: selector withMethod: self

About Metaclass Evolution 196.

© e Passing Control in Smalltalk: an Anal-

)

rary
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

MW Evaluation
❑ Transparent fro the programmer
❑ Class-based (all instance of a class are controlled
❑ Selective (only certain methods are controlled)
❑ Run-Time Cost: less than doesNotUnderstand:
❑ Coding cost: Tricky so this is better to reuse the lib

About Metaclass Evolution 197.

© e Passing Control in Smalltalk: an Anal-

s that specializes certain

trolled instance
thod control
asses

classes the programmer is

ss
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Exploiting VM Lookup Algorithm
The idea:

❑ Interposing between the object and its class a clas
methods to introduce the control.

Solution 1
❑ Explicit subclassing + change the class of the con

☞ Instance, group or class based, Selective me
☞ Without optimization: compile methods and cl
☞ Polution of the class namespace for controling

aware of the control
Solution 2

❑ Implicit subclassing: creation of an anonymous cla

About Metaclass Evolution 198.

© e Passing Control in Smalltalk: an Anal-

etY:
:

:setY:
ol:

aCompiled

aControlling

aControllingMethod
aCompiled

Method

Method

«inherits from»

Method

tance of»
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Let’s view it
Point
methodDict setX:s

printOn

‘’
methodDict

setX
contr

‘’
methodDict

setX:setY:
control:

Interceptor

Point class

«inherits from»

«ins
15@1024@6

8@8

19@68

About Metaclass Evolution 199.

© e Passing Control in Smalltalk: an Anal-

s
ior
nterceptor

eding control
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Interceptor: Anonymous Classe
❑ Create an interceptor (a class): instance of Behav
❑ Copy class description of the original class in the i
❑ interceptor inherits from original class
❑ Compile in interceptor class class the methods ne

InterceptorClass class>>takeControlOf: anObject

| interceptor |

(anObject isControlled)

ifFalse: [interceptor := self new.

interceptor conformsToThatClass: anObject class.

interceptor installEssentialMethods.

anObject changeClassToThatOf: interceptor new.].

^anObject

InterceptorClass>>conformsToThatClass: aClass

"Return an instance of an anonymous class that is conforms to the class <aClass>"

self setInstanceFormat: (aClass format) ;

superclass: aClass ;

methodDictionary: (MethodDictionary new).

About Metaclass Evolution 200.

© e Passing Control in Smalltalk: an Anal-
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Let us think a bit
From the implementor point of view

❑ How to access the original class?
anObject class superclass

❑ How to access the anonymous class?
anObject class

But how can we access them in a conceptual manner?
❑ original class?

anObject class

anInterceptor>>class

^super class superclass

❑ interceptor?
anObject interceptor

anInterceptor interceptor

^ super class

About Metaclass Evolution 201.

© e Passing Control in Smalltalk: an Anal-

tor,
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Essential Methods
InterceptorClass>>installEssentialMethods

"all the necessary methods to ensure right behavior of an interceptor class.

It should be always invoked: Can be specialize but not overriden"

self basicCompile: 'class ^super class superclass'.

self basicCompile: 'isControlled ^ true'.

self basicCompile: 'interceptor ^ super class'.

self basicCompile: 'addSpecificMethod: aString

self interceptor compile: aString notifying: nil'.

self basicCompile: 'removeSpecificMethodWith: aSymbol

self removeSelector: aSymbol'

InterceptorClass>>compile: code notifying: requestor ifFail: failBlock

"we redefine this method to ensure that essential methods such as #class, #intercep

#isControlled will be never recompile on an interceptor class instance"

|selector|

selector := Parser new parseSelector: code.

(self isEssentialMethod: selector)

ifFalse: [self basicCompile: code]

InterceptorClass>>basicCompile: code

super compile: code notifying: requestor ifFail: failBlock

About Metaclass Evolution 202.

© e Passing Control in Smalltalk: an Anal-

(i)

or a given method
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Naive Control Implementation
Naive because we compile all the times (see optimization).
We want to generate the following code on the interceptor f

'setX: t1 setY: t2

^self interceptor control: self

receiving: #setX:setY:

withArgs: (Array with: t1 with: t2)

originalCall: [super setX: t1 setY: t2]'

Interceptor>>installControlledMethod: aSymbol

"control the method with selector <aSymbol>"

self compile: (self generateSourceOfControlledMethod: aSymbol) contents

notifying: nil ifFail: []

Interceptor>>generateSourceOfControlledMethod: aSymbol

"generate the source of a controlled method"

|methodCode signature|

methodCode := WriteStream on: (String new: 32).

signature := self generateSignature: aSymbol on: methodCode.

methodCode cr ; tab.

self generateBody: aSymbol withSignature: signature on: methodCode.

^methodCode

About Metaclass Evolution 203.

© e Passing Control in Smalltalk: an Anal-

(ii)

meters"

ce.
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Naive Control Implementation
Interceptor>>generateSignature: aSelector on: methodCode

"Return anArray containing at:1 signature and at:2 a string representing formal para

"self new generateSignature: #setX:setY: on: (WriteStream on: (String new: 32))

-> #('setX: t1 setY: t2 ' ' with: t1 with: t2 ')"

| numArgs keywords parameters|

parameters := WriteStream on: (String new: 10).

keywords := aSelector keywords.

methodCode nextPutAll: (keywords at: 1).

(numArgs := aSelector numArgs) >= 1

ifTrue:[parameters nextPutAll: ' with: t1'.

methodCode nextPutAll: ' t1 '.

2 to: numArgs do:

[:i | parameters nextPutAll: ' with: t'; nextPutAll: (i printString) ; spa

methodCode nextPutAll: (keywords at: i) ;

nextPutAll: ' t'; nextPutAll: (i printString) ; space]].

^ Array with: (methodCode contents) with: (parameters contents).

About Metaclass Evolution 204.

© e Passing Control in Smalltalk: an Anal-

(iii)
: t2'

tY: t2]

nextPut: $) ;

 1) ;

y happen that another object
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Naive Control Implementation
Interceptor new generateBody: #setX:setY: withSignature: #'with: t1 with

->
^self interceptor control: self receiving: #setX:setY:

withArgs: (Array with: t1 with: t2) originalCall: [super setX: t1 se

Interceptor>>generateBody: aSelector withSignature: aSignature on: methodCode

methodCode cr; tab;

nextPutAll: '^self interceptor control: self receiving: ';

nextPut: $# ; nextPutAll: (aSelector asString) ; cr ;

tab; tab; nextPutAll:'withArgs: (Array '; nextPutAll: (aSignature at: 2) ;

tab; tab ; nextPutAll: 'originalCall: [super ' ; nextPutAll: (aSignature at:

nextPutAll: '] '; cr .

^ methodCode contents

❑ The original call could be called via super but it ma
than the interceptor defines the control.

❑ [super setX...] is costly

About Metaclass Evolution 205.

© e Passing Control in Smalltalk: an Anal-

ethods containing a call to
and adjusted (change

 them
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Possible Optimization

Like Method Wrapper implementation
❑ To avoid compilation when installing the control

☞ for each number of parameters skeletons of m
the control can be created once, then copied
selector) in the instantiated interceptor class.

☞ copy essential method instead of recompiling

About Metaclass Evolution 206.

© e Passing Control in Smalltalk: an Anal-

methods
 the system

e
ss)
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Evaluation
❑ Instance, group and class based control selective
❑ Simple but bugs during implementation may crash
❑ Efficient solution
❑ Installation: compilation but optimization is possibl
❑ Good integration in the system (class is still the cla

About Metaclass Evolution 207.

© e Passing Control in Smalltalk: an Anal-

ded?

code
o MOP
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Why A Mop for Smalltalk is Nee

❑ Free the developer from doing everything himself
❑ Free the VM or meta-programmer to optimize the
❑ ANSI Normalization -> declarative Smalltalk but n
❑ MOP

☞ instance variable representation
☞ instance variable access
☞ method control

About Metaclass Evolution 208.

© e Passing Control in Smalltalk: an Anal-
 Dr. Ducasse Stéphane -Universität Bern Implementing Messag

Pratice!
❑ Lab session: Implement Actalk [Briot89]
❑ Play with the MethodWrappers

☞ Look at the coverage tools
❑ Play with anonymous class

☞ Implement an instance based language

Reflective Programming 209.

©

 Manual, Xerox Parc, 1983.
talk-80: The Language”,

: the ObjVlisp Model”,

OOPSLA'89, 1989.
ith Explicit Metaclasses

n on Metaclass

taclasses as a Tool for
'96, LNCS 1049,1996
wing Both Explicit and
shop Extending the

x and F. Rivard: “Safe
 Dr. Ducasse Stéphane -Universität Bern

Selected Bibliography

Metaclasses
❑ [Bobrow’83] D.Bobrow and M. Stefik: “The LOOPS
❑ [Goldberg’83] A. Goldberg and D. Robson: “Small

Addison-Welsey, 1983.
❑ [Cointe’87] P. Cointe: “Metaclasses are First Class

OOPSLA’87.
❑ [Graube’89] N. Graube: “Metaclass compatibility”,
❑ [Briot’89]J.-P. Briot and P. Cointe, “Programming w

inSmalltalk-80”, OOPSLA'89.
❑ [Danforth’94] S. Danforth and I. Forman: “Reflectio

Programming in SOM”, OOPSLA’94.
❑ [Ledoux’96] T. Ledoux and P. Cointe, “Explicit Me

Improving the Design of Class Libraries”, ISOTAS
❑ [Rivard’96] F. Rivard, “A New Smalltalk Kernel Allo

Implicit Metclass Programming” OOPSLA’96 Work
Smalltalk Language, 1996

❑ [Bouraqadi’98] M.N. Bouraqadi-Saadani, T. Ledou
Metaclass Programming”, OOPSLA’98

Reflective Programming 210.

©

why we want them and what
: the CLOS Perspective, MIT

l of Abstraction in the
hop on Reflection and Meta-

pes, A. Mendhekar and G.

terfaces, IEEE Transactions
 16(5), 537--542

obrow : “The Art of the

OS Perspective, MIT Press,

signing an Extensible
re, Proceedings ECOOP’93,
 Dr. Ducasse Stéphane -Universität Bern

Open Implementations
❑ [Kiczales’92a] G. Kiczales: “Metaobject protocols -

else they can do”, in Object oriented Programming
Press, 1992

❑ [Kiczales’92b] G. Kiczales: “Towards a New Mode
Engineering of Software”, Proc. of IMSA'92 Works
Level Architecture,1992

❑ [Kiczale’97] G. Kiczales, J. Lamping, C. Videira Lo
Murphy, Open Implementation Design Guidelines

❑ [Hoffman 90] D. Hoffman, On Criteria for Module In
on Software Engineering and Methodology, 1990,

❑

Open Languages
❑ [Kiczales’91] G. Kiczales, J. des Rivieres and D. B

Metaobject Protocol”, MIT Press, 1991
❑ [Paepke’92] Object-Oriented Programming: The CL

1992
❑ [Chiba93] Shigeru Chiba and Takashi Masuda, De

Distributed Language with a Meta-Level Architectu
LNCS 707,

Reflective Programming 211.

©

r C++, Proceedings of

s in Computational

ds a Methodology for Explicit
5, 1995

trol Techniques in

uage,

 Roberts,Wrappers to the

lassifying and
vironment,
e University Press, 1989.
 Dr. Ducasse Stéphane -Universität Bern

❑ [Chiba95] Shigeru Chiba, A Metaobject Protocol fo
OOPSLA ’95, 1995.

Other Related
❑ [Maes87] Pattie Maes, "Concepts and Experiment

Reflection," Proceedings OOPSLA ’87, 1987.
❑ [Mulet’94] P. Mulet, J. Malenfant P. Cointe, “Towar

Composition of MetaObjects”, Proc. of OOPSLA'9

Intercessory
❑ [Ducasse’99] S. Ducasse, “Message Passing Con

Smalltalk”, JOOP, 1999.
❑ [Rivard’96] F. Rivard, Smalltalk : a Reflective Lang

REFLECTION'96,1996.
❑ [Bran’98], J. Brant, B. Foote, R, Johnson and Don

Rescue, Proceedings ECOOP’98,1998.

Use of Message-Passing Control
❑ [Briot89] Jean-Pierre Briot, Actalk: A Testbed for C

Designing Actor Languages in the Smalltalk-80 En
Proceedings ECOOP’89, S. Cook (Ed.), Cambridg

Reflective Programming 212.

©

sification and Specialization
on Object Tecchnologies for

g with

u. A Metaobject Architecture
DS Approach. IEEE
endability of Computing
 Dr. Ducasse Stéphane -Universität Bern

❑ [Briot96] Jean-Pierre Briot, An Experiment in Clas
of Synchronization Schemes, 2nd Int. Symposium
Advanced Software, LNCS, volume 1049.

❑ [McAffer95] .Jeff McAffer, Meta-level Programmin
CodA,Proceedings ECOOP’95, LNCS 952,1995.

❑ [Fabr98] Jean-Charles Fabre and Tanguy Pérenno
for Fault Tolerant Distributed Systems: The FRIEN
Transactions on Computers, Special Issue on Dep
Systems, vol. 47, no. 1, pp. 78-95, Jan. 1998.

Reflective Programming 213.

©

/
/

squeak.org/
/openc++.html
a/openc++.html
 Dr. Ducasse Stéphane -Universität Bern

Web pages
CLOS:

http://www.franz.com/

Open Implementation:
http://www.parc.xerox.com/spl/projects/oi/

Languages:
- NeoClasstalk: http://www.emn.fr/cs/neoclasstalk
- VisualWorks: http://www.objectshare.com/VWNC
- Smalltalk Archive: http://www-st.cs.uiuc.edu/
- Squeak: The Smalltalk Open Source http://www.
- OpenC++ http://www.hlla.is.tsukuba.ac.jp/~chiba
- JavaAssist http://www.hlla.is.tsukuba.ac.jp/~chib

A Pragmatic Approach to Understand Reflective
Programming: Building ObjVlisp a Minimal,

Uniform and Reflective Object-Oriented
Language

Part of the 2000 SummerSemester Lectures S7071: Reflective Programming
Dr. Stéphane Ducasse

Software Composition Group, Institut für Informatik (IAM)

Universität Bern, Neubrückstrasse 10, CH-3012 Berne, Switzerland

fducasseg@iam.unibe.ch

http://www.iam.unibe.ch/�scg/

December 5, 2000

1 Objectives

During the lecture you saw the main points of the ObjVLisp model, now you will
implement it. This implementation aims at providing you a concrete understanding of
the concepts presented in the lecture. Here follow some of the points you can get from
doing such an implementation.

� What is a possible example of the structure of an object?

� What is the allocation and the initialization of an object?

� What the semantics of the method lookup?

� What is a reflective kernel?

� What are the roles of the classes Class and Object?

� What is the role of a metaclass?

� What is the notion of meta-programming?

2 Before Starting

In this section we discuss the files that you will use, the implementation choices and
the conventions that we will follow during all this tutorial.

1

2.1 Files Provided

To help you in your implementation some files are provided:

preObjVlisp.st is a file that should be loaded first. It set up some functionalities that
are VisualWorks specific.

VWTstfrm.st is the testing framework that we used to define the tests that you should
run. These tests will help you to evaluate if you implemented correctly the func-
tionality.

skeleton.st is a skeleton file that you will fill during the tutorial. It contains already
all the classes, the method categories and the method signature that you need to
implement. Moreover extra functionality is provided like a dedicaced inspector
and some necessary but not interesting functionality.

It also contains all the tests of the functionality you have to implement. For each
functionality you will have to run some tests. For example to run a particular
test named testPrimitive you have to evaluate the following expression (ObjTest
selector: #testPrimitiveStructure) run.

2.2 Conventions.

We use the following conventions: we name as primitives all the Smalltalk methods
that participate in the building of ObjVLisp. These primitives are mainly implemented
as methods of the class Obj. Note that in a Lisp implementation such primitives are
just lambda expressions, in a C implementation such primitives will be represented by
functions.

In the same way to help you to distinguish between classes in the implementation
language (Smalltalk) and the ObjVLisp model, we prefix the class name by Obj. Fi-
nally, some of the crucial and confusing primitives (mainly the class structure ones) are
all prefixed by obj. For example the primitive that given an objInstance returns its class
is named objClassId.

We also talk about objInstances, objObjects and objClasses to refer to specific in-
stances, objects or classes defined in ObjVLisp. For example, #(#ObjPoint 10 15) is an
objInstance. ObjPoint is the name of an objClass. #(#ObjClass #ObjPoint #ObjObject
#(class x y) #(:x :y) nil)) is an objClass.

2.3 Implementation Choices

2.3.1 Implementation Inheritance.

We do not want to implement a scanner, a parser and a compiler for ObjVLisp but
concentrate on the essence of the language. That’s why we chose to use as much as
possible the implementation language, here Smalltalk. As Smalltalk does not contains
an easy way like in Lisp1 to define macroes, we will use as much as possible the existing
classes to avoid extra syntaxic problems.

1This is not true, some methods like ifTrue: are expanded at compile-time.

2

Let’s look at the problem. We could have implemented ObjVLisp functionality at
the class level of a self-contained class named Obj (inheriting only from Object). How-
ever, using the ObjVlisp primitive (a Smalltalk method) objInstanceVariableValue:for:
that given object, an instance variable name returns the value of the instance variable
would have led to code like the following:

Obj objInstanceVariableValue: ‘x’ for: aPoint.
As we chose to represent any ObjVLisp object by an array, we chose to define the

ObjVLisp functionality in a subclass of Array named Obj. With this choice, inheritance
is considered as an implementation relationship and not as a subtype relationship be-
tween the two classes because the type of an ObjVLisp object is not Array. The same
functionality as above is more natural and readable:

aPoint objInstanceVariableValue: ‘x’.

2.3.2 Facilitating ObjVLisp class access.

We need a way to declare, store and access ObjVLisp classes. As a solution, on the
class level of the class Obj we defined a dictionary holding the defined classes. We
defined the following methods to store and access defined classes.

� declareClass: anObjClass stores an ObjClass in the defined class repository
(here a dictionary whose keys are the names of the classes and values the Ob-
jVLisp classes themselves).

� giveClassNamed: aSymbol returns if it exists the ObjVLisp class whose name is
aSymbol. The class should have been declared previously.

With such methods we can write code like the following one that looks for the class
of the class ObjPoint.

(Obj giveClassNamed: #ObjPoint) objClass
This kind of code makes the writing of code heavy. To ease the writing of the code

we use a trick that will be explained later in detail during the lecture. we trap messages
not understood sent to Obj and look into the defined class dictionary. This same code
is then written

Obj ObjPoint objClass

3 Structure and Primitives

The first issue is how to represent the objects. We have to agree on an initial represen-
tation. In this implementation we chose to represent the objects using arrays, in fact
instances of Obj a subclass of Array. Note that we could extend the model so that the
metaclasses support possible instance structure changes but in the current implementa-
tion we will simply hardcod the class structure.

3

Your job: Check that the class Obj exists and inherits from Array. Note that as Array
is a class with indexed variables, we used the message variableSubclass:.. instead of
subclass:.. for its creation.

3.1 Structure of a class

As one of the first objects that we will create is the class ObjClass we focus now on
the minimal structure of the classes of the system. Given an array (in the following
we used the terms array for talking about of instances of the class Obj) a class as the
following structure: an identifier to its class, a name, an identifier to its superclass (we
limit the model to single inheritance), a list of instance variables, a list of initialization
keywords, and a method dictionary.

For example the class ObjPoint has then the following structure: #(#ObjClass
#ObjPoint #ObjObject #(class x y) #(:x :y) nil)) meaning that ObjPoint is named ObjPoint,
is an instance of ObjClass, inherits from ObjObject, has three instance variables, two
initialization keywords and a uninitialized method dictionary. To access this structure
we define some primitives.

To help you to implement ObjVLisp we provide you an adapted inspector dedi-
caced to inspecting ObjVLisp objects. You can invoke this inpector in the following
ways:

| pointClass |
pointClass := Obj giveClassNamed: #ObjPoint.
pointClass debug.

| pointClass |
pointClass := Obj ObjPoint.
pointClass debug.

|pointClass|
pointClass := Obj ObjPoint.
ObjClassInspector openOn: pointClass

|aPt|
aPt := Obj new: 3.
aPt at: 1 put: #ObjPoint3.
aPt debug

Your job: The method primitiveStructure of the class ObjTest gives some examples
of structure accesses. Implement the primitives that are missing to run the test (ObjTest
selector: #testPrimitiveStructure) run. Note that array starts at 1 in Smalltalk. Below is
the list of the primitives you should implement.
Implement in category ‘object structure primitives’ the primitives that manage:

� the class of the instance represented as a symbol. objClassId, objClassId: aSym-
bol. The receiver is an objObject.

4

Implement in category ‘class structure primitives’ the primitives that manage:

� the class name. objName, objName: aSymbol. The receiver is an objClass

� the superclass objSuperclassId, objSuperclassId: aSymbol. The receiver is an
objClass.

� the instance variables objIVs, objIVs: anOrderedCollection. The receiver is an
objClass.

� the keyword list objKeywords, objKeywords: anOrderedCollection. The receiver
is an objClass.

� the method dictionary objMethodDict, objMethodDict: anIdentityDictionary. The
receiver is an objClass.

3.2 Finding the class of an object

Every object keeps an information identifying its class (not directly its class for re-
cursive problem). In this simple implementation when an instance is created its first
instance variable contains a symbol that is the name of its class.

For example an instance of ObjPoint has then the following structure: #(#ObjPoint
10 15) where #ObjPoint is a symbol identifying the class ObjPoint.

Your job: Implement the following primitives:

� Using the primitive giveClassNamed: aSymbol defined at the class level of Obj,
defines the primitive objClass in the category ‘objectstructure primitive’ that sent
to an objInstance returns the objInstance that represents its class (Classes are
objects too in ObjVLisp).

Evaluate: (ObjTest selector: #testClassAccess) run.

� In the category ’iv management’ define a method called offsetFromClassOfIn-
stanceVariable: aSymbol that sent to an objClass with aSymbol returns the offset
of the instance variable represented by the symbol. It returns 0 if the variable is
not defined. Look at the tests #testIVOffset. (Hints: Use the Smalltalk method
indexOf:).

Evaluate: (ObjTest selector: #testIVOffset) run.

� Using the preceeding method define in the category ‘iv management’ (a) the
method offsetFromObjectOfInstanceVariable: aSymbol that sent to an instance
with a symbol returns the offset of the instance variable and (b) the method val-
ueOfInstanceVariable: aSymbol that sent to an instance with a symbol returns the
value of this instance variable in the given object. Look at the tests #testIVOffse-
tAndValue. Note that for the method offsetFromObjectOfInstanceVariable: you
can check that the instance variable exists in the class of the object and else raise
an error.

Evaluate: (ObjTest selector: #testIVOffsetAndvalue) run.

5

4 Allocation and Initialisation

The creation of an object is the composition of two elementary operations: its alloca-
tion and its initialization. We now will define all the primitives that allow us to allocate
and initialize an object. Remind that (a) the allocation is a class method that returns
a nearly empty structure, nearly empty because the instance represented by the struc-
ture should at least knows its class and (b) the initialization of an instance is a instance
method that given a newly allocated instance and a list of initialization arguments fill
the objects.

4.1 Allocation

Your job: In category ‘instance allocation’ implement the primitive called allocateAnIn-
stance that sent to a objClass returns a new instance whose instance variable values are
nil. As shown in the class ObjTest, if the class ObjPoint has two instance variables:
ObjPoint allocateAnInstance returns #(#ObjPoint nil nil).
Evaluate: (ObjTest selector: #testAllocate) run.

4.2 Keywords Primitives

The original implementation of ObjVLisp uses the facility offered by the lisp keywords
to ease the specification of the instance variable values during instance creation then
providing an uniform and unique way to create object. We now have to implement
some functionality to support keywords. However as this is not really interesting that
you lose time we provide you all the necessary primitives.

Your job: All the functionality for managing the keywords are defined into the cate-
gory ‘keyword management’. So look at the code and the associated test called testKey-
words in the class ObjTest.
Evaluate: (ObjTest selector: #testKeywords) run.

4.3 Initialization

Once an object is allocated, it may be initialized by the programmer by specifying a
list of initialization values, called initargs-list. We can represent an initargs-list by an
array containing alternatively a keyword and a value like #(#toto 33 #x 23) where 33 is
associated with #toto and 23 with #x.

Your job: Implement in the category ‘instance initialization’ the primitive initial-
izeUsing: anArray that sent an object with an initargs-list returns an initialized object.
The code of this method is given below. Evaluate: (ObjTest selector: #testInitialize)
run.

Obj >>initializeUsing: anAlternatedArray
”Returns the receiver an ObjObject initialized according

6

to the directives given by anAlternateArray”

| ivValues |
ivValues := self returnValuesFrom: anAlternatedArray

followingSchema: self objClass objKeywords.
ˆivValues startingAt: 1

replaceElementsIn: self
from: 2
to: ivValues size + 1

5 Static Inheritance of Instance Variables

Instance variables are statically inherited at the class creation time. The simplest form
of instance variable inheritance is to define the complete set of instance variable as the
union between the inherited instance variables and the locally defined instance vari-
ables. For simplicity reason and as most of the languages, we chose to forbid duplicated
instance variables in the inheritance chain.

Your job: In the category ‘iv inheritance’ implement the primitive computeNewIVFrom:
superIVOrdCol with: localIVOrdCol that given two ordered collections of symbols re-
turns an ordered collection containing the union of the two ordered collections but with
the extra constraint that the order of elements of the first ordered collection is kept.
Look at the test method testInstanceVariableInheritance for examples.
Evaluate: (ObjTest selector: #testInstanceVariableInheritance) run.
Technical Note:You could think that keeping the same order of the instance variables
between a superclass and its subclass is not an issue. This is partly true in this simple
implementation because the instance variable accessors compute each time the corre-
sponding offset to access an instance variable using the primitive offsetFromClassOfIn-
stanceVariable:. However, the structure (instance variable order) of a class is hardcoded
by the primitives you wrote in section 3. That’s why your implementation of the prim-
itive computeNewIVFrom:with: should take care of that aspect.

6 Method Management

A class stores the behavior shared by all its instances into a method dictionary. We
implement methods by associating a symbol with a Smalltalk block. The following
code presents a possible x method defined on the objClass ObjPoint and sent to an
objInstance of this class [:objself j objself binarySend: #getIV with: #x].

In this implementation we do not provide the ability to access directly instance
variables of the class in which the method is defined. The programmer has to use
accessors or the setIV and getIV objMethods defined on ObjObject. We provide you all
the primitives that deals with method definition.

7

Your job: In the category ‘method management’ look at the methods addMethod:
aSelector withBody: aBlock, removeMethod: aSelector, bodyOfMethod: aSelector and
doesUnderstand: aSelector
Evaluate: (ObjTest selector: #testMethodManagement) run.

7 Message Passing and Dynamic Lookup

Sending a message is the result of the composition of the method lookup and the
method application. Thus the following unarySend: aSelector primitive just imple-
ments it. First it looks up the method into the class or superclass of the receiver then
binds the method (returned block) parameters to the only argument of the message,
here the receiver object (self).

Obj >>unarySend: aSelector
ˆ (self objClass lookup: aSelector for: self)

value: self

7.1 Method Lookup

While implementing the method lookup, you should pay attention of the fact that the
semantics of super implies that the method lookup starts in the superclass of the class
in which the method containing the super send was found (and not in the superclass of
the class of the receiver!). To store the class in which the current method was found we
use a class variable named, MethodFoundIn (shared by all the instances so common to
our complete world).

Your job: Implement the primitive lookup: selector for: anObjObject that sent to
an objClass with a method selector, a symbol and the initial receiver of the message,
returns the method-body of the method associated with the selector in the objClass or
its superclasses. Moreover if the method is not found, the message #error that is sent to
an objInstance with aString representing the error. Note here that error should be sent
to the receiver.

Implement also the primitive classToLookForSuperSend that returns the objClass
where the lookup should start in case of super send.
Evaluate: (ObjTest selector: #testMethodLookup) run.

7.2 Complementary Self and Super Sends

As we want to keep this implementation as simple as possible and that Smalltalk does
not support the concept of argument representing a list of values like the dot notation in
C or Lisp, we propose you to implement three different primitives for message passing:
one for unary messages unarySuper:, one for binary messages binarySuper: and one
for n-ary messages super:withArguments:.

8

Your job: Look at three primitives below and implement in the category ‘message
passing’ the primitives unarySuper: selector, binarySuper: selector with: argument and
super: selector withArguments: anArray.

Obj >>unarySend: selector
ˆ (self objClass lookup: selector for: self)

value: self

Obj >>binarySend: selector with: argument
ˆ (self objClass lookup: selector for: self)

value: self value: argument

Obj >>send: selector withArguments: arguments
ˆ (self objClass lookup: selector for: self)

valueWithArguments: (Array with: self) , arguments

Evaluate: (ObjTest selector: #testMethodSelfSend) run.

8 Bootstrapping the system

Now you have implemented all the functionality and you are ready to bootstrap the
system: this means creating the kernel consisting of ObjObject and ObjClass classes
from themselves. The idea of a bootstrap is to be as lazy as possible and to use the
system to create itself. Three steps compose the bootstrap, (1) we create by hand
the minimal part of the objClass ObjClass and then (2) we use it to create normally
ObjObject objClass and then (3) we recreate normally and completely ObjClass. These
three steps are described by the following bootstrap method of Obj.

Obj class>>bootstrap
”self bootstrap”

self initialize.
self manuallyCreateObjClass.
self createObjObject.
self createObjClass.

To help you to implement the functionality of the objClasses ObjClass and ObjOb-
ject, we define another set of tests in the class ObjTestBootstrap.

8.1 Manually creating ObjClass

By manually we mean create an array (because we chose an array to represent instances
and classes in particular) that represents the objClass ObjClass, then define its methods.
You will implement this in the primitive manuallyCreateObjClass as shown below:

9

Obj class>>manuallyCreateObjClass
”self manuallyCreateObjClass”

| class |
class := self manualObjClassStructure.
Obj declareClass: class.
self defineManualInitializeMethodIn: class.
self defineNewMethodIn: class.
self defineAllocateMethodIn: class.
ˆclass

For this purpose, you have to implement all the primitives that compose it.

Your job: At the class level in the category ‘bootstrap objClass manual’ implement

� the primitive manualObjClassStructure that returns an objObject that represents
the class ObjClass.

Evaluate: (ObjTestBootstrap selector: #testManuallyCreateObjClassStructure)
run.

� As the initialize of this first phase of the bootstrap is not easy we provide you its
code. Note that the definition of the objMethod initialize is done in the primitive
method defineManualInitializeMethodIn:.

Obj class>>defineManualInitializeMethodIn: class
class addMethod: #initialize

withBody:
[:aclass :initArray |
| objsuperclass |
aclass initializeUsing: initArray.

”Initialize a class as an object. In the bootstrapped sys-
tem will be done via super”

objsuperclass := Obj giveClassNamed: aclass objSuperclas-
sId ifAbsent: [nil].

objsuperclass isNil
ifFalse: [aclass objIVs: (aclass computeNewIVFrom: objsu-

perclass objIVs
with: aclass objIVs)]

ifTrue: [aclass objIVs: (aclass computeNewIVFrom: #(#class)
with: aclass objIVs)].

aclass objKeywords: (aclass generateKeywords: (aclass ob-
jIVs copyWithout: #class)).

aclass objMethodDict: (IdentityDictionary new: 3).
Obj declareClass: aclass.
aclass]

10

� the primitive defineNewMethodIn: anObjClass that defines in anObjClass (the
class passed as argument) the objMethod new. new takes two arguments: a class
and an initargs-list.

� the primitive defineAllocateMethodIn: anObjClass that defines in anObjClass
(the class passed as argument) the objMethod allocate. allocate takes only one
argument: the class for which a new instance is created.

� the primitive manuallyCreateObjClass as shown below:

Obj class>>manuallyCreateObjClass
”self manuallyCreateObjClass”

| class |
class := self manualObjClassStructure.
Obj declareClass: class.
self defineManualInitializeMethodIn: class.
self defineNewMethodIn: class.
self defineAllocateMethodIn: class.
ˆclass

Evaluate: (ObjTestBootstrap selector: #testManuallyCreateObjClassAllocate) run.

Your job: Read carefully the following remarks below and the code.

� In the objMethod manualObjClassStructure instance variable inheritance is sim-
ulated. Indeed the instance variable list contains #class that should normally be
inherited from ObjObject as we will see in the third phase of the bootstrap.

� Note that the class is automatically declared into the class repository.

� Note the method #initialize is a class method. The initialize objMethod defines on
ObjClass has two aspects: the first one dealing with the initialization of the class
like any other instance (first line). This behavior is normally done using a super
call to invoke the initialize method defined in ObjObject. The second one dealing
with the initialization of classes: performing the instance variable inheritance,
then computing the keywords of the newly created class. Note in this final step
that the keyword list does not contain the #class: keyword because we do not
want to let the user modify the class of an object.

8.2 Creation of ObjObject

Now you are in the situation where you can create the first real and normal class of the
system: ObjObject. To do that you send the message #new to class ObjClass specifying
that the class you are creating is named #ObjObject and only have one instance variable
called class. Then you will add the methods defining the behavior shared by all the
objects.

11

Your job: Implement

� the primitive objObjectStructure that creates the ObjObject by invoking the new
message to the class ObjClass as shown hereafter:

Obj class>>objObjectStructure

ˆ ObjClass
send: #new
withArguments: #(#(#name: #ObjObject #iv: #(#class)))

The class ObjObject is named ObjObject, has only one instance variable class
and does not have a superclass because it is the inheritance graph root.

Evaluate: (ObjTestBootstrap selector: #testCreateObjObjectStructure) run.

Now implement the primitive createObjObject that calls objObjectStructure to ob-
tain the objObject representing objObject class and define methods in it. To help you
we give here the beginning of such a primitive

Obj class>>createObjObject
| objObject |
objObject := self objObjectStructure.
objObject addMethod: #class withBody: [:object — object objClass].
objObject addMethod: #isClass withBody: [:object — false].
...
...
...
ˆobjObject

Implement the following method in ObjObject

� the objMethod class that given an objInstance returns its class (the objInstance
that represents the class).

� the objMethod isClass that returns false.

� the objMethod isMetaClass that returns false.

� the objMethod error that takes two arguments the receiver and the selector of the
original invocation and raises an error.

� the objMethod getIV that takes the receiver and an attribute name, aSymbol, and
returns its value for the receiver.

� the objMethod setIV that takes the receiver, an attribute name and a value and
sets the value of the given attribute to the given value.

12

� the objMethod initialize that takes the receiver and an initargs-list and initializes
the receiver according to the specification given by the initargs-list. Note that
here the initialize method only fill the instance according to the specification given
by the initargs-list. Compare with the initialize method defined on ObjClass.

In particular notice that this class does not implement the class method #new be-
cause it is not a metaclass but does implement the instance method #initialize because
any object should be initialized.
Evaluate: (ObjTestBootstrap selector: #testCreateObjObjectMessage) run.
Evaluate: (ObjTestBootstrap selector: #testCreateObjObjectInstanceMessage) run.

8.3 Creation of ObjClass

Following the same approach, you can now recreate completely the class ObjClass.
The primitive stccreateObjClass is responsible to create the final class ObjClass.

So you will implement it and define all the primitive it needs.

Obj class>>createObjClass
”self bootstrap”

| objClass |
objClass := self objClassStructure.
self defineAllocateMethodIn: objClass.
self defineNewMethodIn: objClass.
self defineInitializeMethodIn: objClass.
objClass addMethod: #isMetaclass

withBody: [:class | class objIVs includes: #superclass].
”an object is a class if is class is a metaclass. cool”

objClass addMethod: #isClass
withBody: [:class | class objClass unarySend: #isMetaclass].

ˆobjClass

Implement

� the primitive objClassStructure that creates the ObjClass class by invoking the
new message to the class ObjClass. Note that during this method the ObjClass
symbol refers to two different entities because the new class that is created using
the old one is declared in the class dictionary with the same name.

Obj class>> objClassStructure

ˆObjClass send: #new
withArguments:

#(#(#name: #ObjClass #iv: #(#name #superclass #iv #key-
words #methodDict) #superclass: #ObjObject))

Evaluate: (ObjTestBootstrap selector: #testCreateObjClassStructure) run.

13

Now implement the primitive createObjClass that starts as follow:

Obj class>>createObjClass

| objClass |
objClass := self objClassStructure.
self defineAllocateMethodIn: objClass.
self defineNewMethodIn: objClass.
self defineInitializeMethodIn: objClass.
...
...
ˆobjClass

Implement

� the objMethod isClass that returns true.

� the objMethod isMetaClass that returns true.

� the primitive defineInitializeMethodIn: anObjClass that adds the objMethod ini-
tialize to the objClass passed as argument. The objMethod initialize takes the
receiver and an initargs-list and initializes the receiver according to the specifi-
cation given by the initargs-list.

Obj class>>defineInitializeMethodIn: anObjClass
anObjClass addMethod: #initialize

withBody: [:aclass :initArray |
aclass binarySuper: #initialize with: initArray.

aclass objIVs: (aclass computeNewIVFrom: (Obj give-
ClassNamed: aclass objSuperclassId) objIVs

with: aclass objIVs).
aclass computeAndSetKeywords.
aclass objMethodDict: IdentityDictionary new.
Obj declareClass: aclass.
aclass].

� the code of the primitive createObjClass is then the following one.

Obj class>>createObjClass
”self bootstrap”

| objClass |
objClass := self objClassStructure.
self defineAllocateMethodIn: objClass.

14

self defineNewMethodIn: objClass.
self defineInitializeMethodIn: objClass.
objClass addMethod: #isMetaclass

withBody: [:class | class objIVs includes: #superclass].
”an object is a class if is class is a metaclass. cool”

objClass addMethod: #isClass
withBody: [:class | class objClass unarySend: #isMetaclass].

ˆobjClass

Evaluate: (ObjTest selector: #testCreateObjClassMessage) run.
Note the following points

� The locally specified instance variables now are just the instance variables that
describe a class. The instance variable class is inherited from ObjObject.

� The initialize method now does a super send to invoke the initialization performed
by ObjObject.

9 First User Classes: ObjPoint and ColoredObjPoint

Now ObjVLisp is created and we can start to program some classes. Implement the
class ObjPoint and ObjColoredPoint as follow.

9.1 ObjPoint

You can choose to implement it at the class level of the class Obj.

� First just create the class ObjPoint.

� Create an instance of the class ObjPoint.

� Send some messages defined in ObjObject to this instance.

| pointClass aPoint |
pointClass := ObjClass send: #new

withArguments: #((#name: #ObjPoint
#iv: #(#x #y)
#superclass: #ObjObject)).

aPoint := pointClass send: #new withArguments: #((#x: 24 #y: 6)).
aPoint binarySend: #getIV with: #x.
aPoint send: #setIV withArguments: #(#x 25).
aPoint binarySend: #getIV with: #x.

Then add some functionality to the class ObjPoint like x, x:, display.

15

ObjPoint addMethod: #x
withBody: [:objself | objself binarySend: #getIV with: #x].

ObjPoint addMethod: #x:
withBody: [:objself :val | objself send: #setIV withArguments: (Ar-

ray with: #x with: val)].

ObjPoint addMethod: #display
withBody: [:objself |

Transcript cr; show: ’aPoint with x = ’.
Transcript show: (objself unarySend: #x) printString; cr].

Then test these new functionality.

aPoint unarySend: #x.
aPoint binarySend: #x: with: #(33).
aPoint unarySend: #display

9.2 ObjColoredPoint

Define the class ObjColored.

| coloredPointClass aColoredPoint |
ObjClass send: #new

withArguments: #((#name: #ObjColoredPoint
#iv: #(#color)
#superclass: #ObjPoint)).

Create an instance and send it some basic messages.

aColoredPoint := coloredPointClass
send: #new
withArguments: #((#x: 24 #y: 6 #color: #blue)).

aColoredPoint binarySend: #getIV with: #x.
aColoredPoint send: #setIV withArguments: #(#x 25).
aColoredPoint binarySend: #getIV with: #x.
aColoredPoint binarySend: #getIV with: #color.

Define some functionality and invoke them.

coloredPointClass
addMethod: #color
withBody: [:objself | objself binarySend: #getIV with: #color].

16

coloredPointClass
addMethod: #color:
withBody: [:objself :val | objself send: #setIV

withArguments: (Array with: #color with: val)].

coloredPointClass
addMethod: #display
withBody: [:objself |

objself unarySuper: #display.
Transcript cr; show: ’ with Color = ’.
Transcript show: (objself unarySend: #color) printString; cr].

aColoredPoint unarySend: #x.
aColoredPoint unarySend: #color.
aColoredPoint unarySend: #display

10 First User Metaclasses: ObjAbstract and ObjSet

Now implement the metaclass ObjAbstract that defines instances (classes) that are ab-
stract i.e. that cannot create instances.

| abstractClass |
abstractClass := #ObjClass

send: #new
withArguments: #(#(#name: #ObjAbstractClass

#iv: #()
#superclass: #ObjClass)).

abstractClass addMethod: #new
withBody: [:class :initArray |

class error: ’ the class ’,class objName asString,’ is abstract’].

Then the following show you how to use it.

ObjAbstractClass send: #new
withArguments: #(#(#name: #ObjAbstractPoint

#iv: #()
#superclass: #ObjPoint)).
ObjAbstractPoint send: #new

withArguments: #(#(#x: 24 #y: 6)) ”should raise an error”

Note that the ObjAbstractClass is an instance of ObjClass because this is a class
and inherits from ot because this is a metaclass.

Your job: Implement the metaclass ObjSet the metaclass that defines as class behav-
ior the fact that a class knows its instances.

17

11 New features that you could implement

You can:

� define a metaclass that automatically defines accessors for the specified instances
variables.

� avoid that we can change the selector and the arguments when calling a super
send.

� Note that contrary to the proposition made in the 6th postulate of the original
ObjVLisp model, class instance variables are not equivalent of shared variables.

According to the 6th postulate, a shared variable will be stored into the instance
representing the class and not in an instance variable of the class representing the
shared variables.

For example if a workstation has a shared variable named domain. But domain
should not be an extra instance variable of the class of Workstation. Indeed do-
main has nothing to do with class description.

The correct solution is that domain is a value hold into the list of the shared vari-
able of the class Workstation. This means that a class has an extra information
to describe it: an instance variable sharedVariable holding pair. So we should be
able to write

Obj Workstation getIV: #sharedVariable
or
Obj Workstation sharedVariableValue: #domain

and get
#((domain ’iam.unibe.ch’))

introduce shared variables: add a new instance variable in the class ObjClass to
hold a dictionary of shared variable bindings (a symbol and a value) that can be
queried using specific methods: sharedVariableValue:, sharedVariableValue:put:.

18

Complete Source Code of ObjVlisp

Dr. Ducasse
ducasse@iam.unibe.ch

December 5, 2000

Obj 1

Obj

class name Obj
superclass Array
instance variable namesnone
class variable names MethodFoundIn
pool dictionaries none
category ObjVLispApp

Protocol for debugging

debug
“(self giveClassNamed: #ObjClass) debug”
“(self giveClassNamed: #ObjSet) debug”
“ObjExtension new debug”
“ jaPtj aPt := ObjExtension new: 3. aPt at: 1 put: #ObjPoint. aPt debug”
“ jaPtj aPt := ObjExtension new: 3. aPt at: 1 put: #ObjPoint3. aPt debug”
ObjClassInspector openOn: self

Protocol for instance allocation

allocateAnInstance
“Returns a newly created instance of self, an ObjClass. In this implementation the identifier of the object class is

the name of the class. ”

j a j
a := Obj new: self numberOfIVs.
a objClassId: self objName.
"a

Protocol for printing

printOn: aStream

aStream nextPutAll: ’an Obj object: ’.
super printOn: aStream

Protocol for class structure offset

offsetForIVs
"4

offsetForKeywords

"5

offsetForMethodDict

"6

offsetForName

Obj 2

"2

offsetForSuperclass

"3

Protocol for message passing

binarySend: selector with: argument
“send the message whose selector is<selector> to the receiver. The arguments of the messages
are an<argument>. The method is lookep up in the class of the receiver.
self is an objObject or a objClass.”

"(self objClass lookup: selector for: self) value: self value: argument

binarySuper: selector with: argument
“send the message whose selector is<selector> to the receiver. The arguments of the messages
are an<argument>. The method is lookep up in the class of the receiver.
self is an objObject or a objClass.”

"(self classToLookForSuperSend lookup: selector for: self) value: self
value: argument

send: selector withArguments: arguments
“send the message whose selector is<selector> to the receiver. The arguments of the messages
are an array<arguments>. The method is lookep up in the class of the receiver.
self is an objObject or a objClass.”

"(self objClass lookup: selector for: self)
valueWithArguments: (Array with: self) , arguments

super: selector withArguments: arguments
“Invoke an oveeriden method named<selector> with an array of arguments<arguments>.
self is an objClass.”

"(self classToLookForSuperSend lookup: selector for: self)
valueWithArguments: (Array with: self) ,arguments

unarySend: selector
"(self objClass lookup: selector for: self) value: self

unarySuper: selector
"(self classToLookForSuperSend lookup: selector for: self) value: self

Protocol for object structure offset

offsetForClass

"1

Obj 3

Protocol for object structure primitive

objClass
“Returns the ObjClass object of the object and not its internal identification. Differs from classId which is a

primitive
to access the structure representing a class”

"Obj giveClassNamed: self objClassId

objClassId
“Returns the identifier that identifies the class of the object. In this implementation we chose to use the class name

as identifier”

"self at: self offsetForClass

objClassId: anObjClassId
“Set the identifier that identifies the class of the object.”

self at: self offsetForClass put: anObjClassId

Protocol for method management

addMethod: aSelector withBody: aBlock
“Define a method with selector<aSelector> and a body<aBlock> in the receiver.
If a method with the same selector already existed, the new definition will erase it.
self is an objClass”

self objMethodDict at: aSelector put: aBlock.
"self

bodyOfMethod: aSelector
“Return the method associated with the selector<aSelector> in the receiver.
Return nil if the selector is not defined. self is an objClass”

"self objMethodDict at: aSelector ifAbsent: [nil]

doesUnderstand: aSelector
“Tell if the receiver has a method having<aSelector> as selector. self is anObjClass”

"self objMethodDict keys includes: aSelector

removeMethod: aSelector
“Remove the method with aSelector<aSymbol> in the receiver.
self is an objClass”

self objMethodDict removeKey: aSelector ifAbsent: [].
"self

Protocol for keyword management

generateKeywords: anArray

Obj 4

“Returns an array containing the keywords made from the collection of Symbol passed as argument”
“self new generateKeywords: #(titi toto lulu) ”

"anArray collect: [:ej (e , ’:’) asSymbol]

keywordValue: aSymbol getFrom: anArray ifAbsent: aDefaultValue
“precondition: ((length anArray) mod 2)= 0
returns the value associated with the keyword represented by aSymbol
in the initarg list represented by anArray.”

“self new keywordValue: #titi getFrom: #(toto 12 titi 23) ifAbsent: 2”
“self new keywordValue: #titi getFrom: #(toto 23) ifAbsent: 2”

j i j
i := anArray indexOf: aSymbol ifAbsent: nil.
"i isNil

ifTrue: [aDefaultValue]
ifFalse: [anArray at: i+ 1]

returnValuesFrom: anInitargArray followingSchema: anArrayOfKeywords
“Return the values associated with the keys. The extracted values are taken from<anInitargArray>
and the return values are extracted according to the schema defined by the collection of keys

<anArrayOfKeywords>”

“self new returnValuesFrom: #(lulu 22 titi 35) followingSchema: #(titi toto lulu titi) #(35 nil 22 35)”

"anArrayOfKeywords collect:
[:e j
self keywordValue: e

getFrom: anInitargArray
ifAbsent: nil]

Protocol for basic class operations

computeAndSetKeywords
“Compute the keywords of a given class. As the class of an object should not be changed.
the keywords should note contain the keyword class. self is anObjClass”

self objKeywords: (self generateKeywords: (self objIVs copyWithout: #class))

Protocol for iv management

numberOfIVs
“Returns the number of instance variables of the class an ObjClass”

"self objIVs size

offsetFromClassOfInstanceVariable: aSymbol
“Returns the index of the instance variable named aSymbol for an class anObjClass.
Returns 0 if the aSymbol is not present in the instance variable lists of anObjClass”

Obj 5

" self objIVs indexOf: aSymbol

offsetFromObjectOfInstanceVariable: aSymbol
“Returns the offset of the instance variable named aSymbol in the object anObjObject.
If aSymbol is not an instance variable is not an instance variable of the object raise an error”

j aClassj
aClass := self objClass.
(aClass objIVs includes: aSymbol)

ifFalse: [self error: ’The class ’ , aClass objName asString
, ’ does not define the instance variable ’ , aSymbol asString].

" aClass offsetFromClassOfInstanceVariable: aSymbol

valueOfInstanceVariable: aSymbol

"self at: (self offsetFromObjectOfInstanceVariable: aSymbol)

Protocol for class structure primitive

objIVs
"self at: self offsetForIVs

objIVs: anOrderedCollection
“Set the list of instance variable names of anObjClass”

self at: self offsetForIVs put: anOrderedCollection

objKeywords
“Returns the keyword list of an ObjClass”

"self at: self offsetForKeywords

objKeywords: anOrderedCollection
“Sets the list of keywords of an ObjClass. Note that this method is just an accessor and does not compute the

actual list of keywords”

self at: self offsetForKeywords put: anOrderedCollection

objMethodDict
“Returns the method dictionary of an ObjClass”

"self at: self offsetForMethodDict

objMethodDict: aDictionary
“Sets the method dictionary of an ObjClass”

self at: self offsetForMethodDict put: aDictionary

objName
“Returns the name of an ObjClass”

"self at: self offsetForName

Obj 6

objName: aName
“Set the name of an ObjClass”

self at: self offsetForName put: aName

objSuperclassId
“Returns the superclass id of anObjClass”

"self at: self offsetForSuperclass

objSuperclassId: anObjClassId
“Set the superclass id of anObjClass”

self at: self offsetForSuperclass put: anObjClassId

Protocol for instance initialization

initializeUsing: anAlternatedArray
“Returns the receiver an ObjObject initialized according to the directives given by anAlternateArray”

j ivValuesj
ivValues := self returnValuesFrom: anAlternatedArray

followingSchema: self objClass objKeywords.
"ivValues startingAt: 1

replaceElementsIn: self
from: 2
to: ivValues size+ 1

Protocol for iv inheritance

computeNewIVFrom: superIVOrdCol with: localIVOrdCol
“Returns an ordered collection that is the union without duplicate of ivOfSuper and ivOrderedCollection.
Important the order of the instance variable is conserved”

j ivs j
"superIVOrdCol isNil

ifTrue: [localIVOrdCol]
ifFalse:

[ivs := superIVOrdCol asOrderedCollection copy.
localIVOrdCol do: [:ej (ivs includes: e) ifFalse: [ivs add: e]].
ivs]

computeNewIVFromClass: anObjClass with: ivOrderedCollection
“Obj pComputeNewIVFromClass: #(#C #C #O #(a b c d))

with:#(a z b t) asOrderedCollection”

“Obj pComputeNewIVFromClass: nil
with:#(a z b t) asOrderedCollection”

j ivs j
"anObjClass isNil

Obj 7

ifTrue: [ivOrderedCollection]
ifFalse:

[ivs := anObjClass objIVs asOrderedCollection copy.
ivOrderedCollection do: [:ej (ivs includes: e) ifFalse: [ivs add: e]].
ivs]

Protocol for method lookup

classToLookForSuperSend

"self class giveClassNamed: MethodFoundIn objSuperclassId

lookup: selector for: anObjObject
“look for the method named<selector> starting in the receiver.
The lookup is done for a message sent to<anObjObject>. self is an objClass”

"(self doesUnderstand: selector)
ifTrue:

[MethodFoundIn := self. “we mark the class for the super”
self bodyOfMethod: selector]

ifFalse:
[self objName= #ObjObject

ifFalse:
[(Obj giveClassNamed: self objSuperclassId) lookup: selector for: anObjObject]

ifTrue: [anObjObject binarySend: #error with: selector]]

Protocol for for tests

methodFoundIn

"MethodFoundIn

Obj class 8

Obj class

class name Obj class
superclass Array class
instance variable namesdefinedObjClasses
class variable names MethodFoundIn
pool dictionaries none
category ObjVLispApp

Protocol for global class repository management

declareClass: anObjClass
“To declare an ObjClass in the class repository”

j nameCj
nameC := anObjClass objName.
nameC isNil

ifFalse: [definedObjClasses at: nameC put: anObjClass]
ifTrue: [self error: ’The class does not have a name’]

giveClassNamed: aSymbol
“Return the class defined in the class repository with the name aSymbol”

" self giveClassNamed: aSymbol ifAbsent: [self error: (’The class ’ , aSymbol printString , ’ is not defined’)]

giveClassNamed: aSymbol ifAbsent: aBlock

" definedObjClasses at: aSymbol ifAbsent: aBlock

Protocol for bootstrap objObject

createObjObject
j objObjectj
objObject := self objObjectStructure.
objObject addMethod: #class withBody: [:objectj object objClass].
objObject addMethod: #isClass withBody: [:objectj false].
objObject addMethod: #isMetaclass withBody: [:objectj false].
objObject addMethod: #error

withBody:
[:object :selectorj
Transcript show: ’Error: selector ’ , selector asString , ’not understood’].

objObject addMethod: #getIV
withBody: [:object :ivj object valueOfInstanceVariable: iv].

objObject addMethod: #setIV
withBody:

[:object :iv :valj
object at: (object offsetFromObjectOfInstanceVariable: iv) put: val].

objObject addMethod: #initialize
withBody: [:object :initargsj object initializeUsing: initargs].

"objObject

Obj class 9

objObjectStructure
"(Obj giveClassNamed: #ObjClass) send: #new

withArguments: #(#(#name: #ObjObject #iv: #(#class)))

Protocol for bootstrap objClass

createObjClass
“self bootstrap”

j objClassj
objClass := self objClassStructure.
self defineAllocateMethodIn: objClass.
self defineNewMethodIn: objClass.
self defineInitializeMethodIn: objClass.
objClass addMethod: #isMetaclass

withBody: [:classj class objIVs includes: #superclass]. “an object is a class if is class is a metaclass.
cool”

objClass addMethod: #isClass
withBody: [:classj class objClass unarySend: #isMetaclass].

"objClass

defineInitializeMethodIn: objClass
objClass addMethod: #initialize

withBody:
[:aclass :initArrayj
aclass binarySuper: #initialize with: initArray.
aclass objIVs: (aclass

computeNewIVFrom: (Obj giveClassNamed: aclass objSuperclassId) objIVs
with: aclass objIVs).

aclass computeAndSetKeywords.
aclass objMethodDict: IdentityDictionary new.
Obj declareClass: aclass.
aclass]

objClassStructure
"(Obj giveClassNamed: #ObjClass) send: #new

withArguments: #(#(#name: #ObjClass #iv: #(#name #superclass #iv #keywords #methodDict) #superclass:
#ObjObject))

Protocol for bootstrap objClass manually

bootstrap
“self bootstrap”

self initialize.
self manuallyCreateObjClass.
self createObjObject.
self createObjClass.

defineAllocateMethodIn: class
class addMethod: #allocate withBody: [:aclassj aclass allocateAnInstance]

Obj class 10

defineManualInitializeMethodIn: class
class addMethod: #initialize

withBody:
[:aclass :initArrayj
j objsuperclassj
aclass initializeUsing: initArray. “Initialize a class as an object. In the bootstrapped system will be

done via super”
objsuperclass := Obj giveClassNamed: aclass objSuperclassId ifAbsent: [nil].
objsuperclass isNil

ifFalse:
[aclass

objIVs: (aclass computeNewIVFrom: objsuperclass objIVs with: aclass objIVs)]
ifTrue:

[aclass objIVs: (aclass computeNewIVFrom: #(#class) with: aclass objIVs)].
aclass

objKeywords: (aclass generateKeywords: (aclass objIVs copyWithout: #class)).
aclass objMethodDict: (IdentityDictionary new: 3).
Obj declareClass: aclass.
aclass]

defineNewMethodIn: class
class addMethod: #new

withBody: [:aclass :initArrayj (aclass unarySend: #allocate) binarySend: #initialize with: initArray]

manuallyCreateObjClass
“self manuallyCreateObjClass”

j classj
class := self manualObjClassStructure.
Obj declareClass: class.
self defineManualInitializeMethodIn: class.
self defineNewMethodIn: class.
self defineAllocateMethodIn: class.
"class

manualObjClassStructure
j classj
class := Obj new: 6.
class objClassId: #ObjClass.
class objName: #ObjClass.
class objIVs: #(#class #name #superclass #iv #keywords #methodDict).
class objKeywords: #(#name: #superclass: #iv: #keywords: #methodDict:).
class objSuperclassId: #ObjObject.
class objMethodDict: (IdentityDictionary new: 3).
"class

Protocol for initialize

initialize
“self initialize”

Obj class 11

definedObjClasses := IdentityDictionary new.
definedObjClasses at: #ObjClass put: nil.
definedObjClasses at: #ObjObject put: nil.
MethodFoundIn := nil.

Protocol for tricks

doesNotUnderstand: aMessage

“debugging>>>” InputState default shiftDown ifTrue:[self halt].

" definedObjClasses at: aMessage selector

ObjTest 12

ObjTest

class name ObjTest
superclass TestCase
instance variable namesobjectClass aPoint coloredPointClass pointClass classClass
class variable names none
pool dictionaries none
category ObjVLispApp

Protocol for setup

assembleClassClass
classClass := Obj new: 6.
classClass at: classClass offsetForName put: #ObjClass.
classClass at: classClass offsetForClass put: #ObjClass.
classClass at: classClass offsetForIVs

put: #(#class #name #superclass #iv #keywords #methodDict).
classClass at: classClass offsetForKeywords

put: #(#name: #superclass: #iv: #keywords: #methodDict:).
classClass at: classClass offsetForSuperclass put: #ObjObject.
classClass at: classClass offsetForMethodDict

put: (IdentityDictionary new: 3).
Obj declareClass: classClass

assembleColoredPointClass
coloredPointClass := Obj new: 6.
coloredPointClass at: pointClass offsetForName put: #ObjColoredPoint.
coloredPointClass at: pointClass offsetForClass put: #ObjClass.
coloredPointClass at: pointClass offsetForIVs put: #(#color).
coloredPointClass at: pointClass offsetForSuperclass put: #ObjPoint.
coloredPointClass at: pointClass offsetForMethodDict

put: (IdentityDictionary new: 3).
Obj declareClass: coloredPointClass.
(coloredPointClass at: coloredPointClass offsetForMethodDict) at: #print

put:
[:objself j
Transcript show: ’I”am a colored point’;

cr]

assembleObjectClass
objectClass := Obj new: 6.
objectClass at: objectClass offsetForName put: #ObjObject.
objectClass at: objectClass offsetForClass put: #ObjClass.
objectClass at: objectClass offsetForIVs put: #(#class).
objectClass at: objectClass offsetForKeywords put: #().
objectClass at: objectClass offsetForSuperclass put: #ObjObject.
objectClass at: objectClass offsetForMethodDict

put: (IdentityDictionary new: 3).
Obj declareClass: objectClass.
(objectClass at: objectClass offsetForMethodDict) at: #print

ObjTest 13

put:
[:objself j
Transcript show: ’I”am an Object’;

cr].
(objectClass at: objectClass offsetForMethodDict) at: #error

put:
[:object :selectorj
Transcript show: ’Error: selector ’ , selector asString , ’not understood’;

cr].
objectClass addMethod: #getIV

withBody: [:object :ivj object valueOfInstanceVariable: iv].
objectClass addMethod: #setIV

withBody:
[:object :iv :valj
object at: (object offsetFromObjectOfInstanceVariable: iv) put: val]

assemblePointClass
pointClass := Obj new: 6.
pointClass at: pointClass offsetForName put: #ObjPoint.
pointClass at: pointClass offsetForClass put: #ObjClass.
pointClass at: pointClass offsetForIVs put: #(#class #x #y).
pointClass at: pointClass offsetForKeywords put: #(#x: #y:).
pointClass at: pointClass offsetForSuperclass put: #ObjObject.
pointClass at: pointClass offsetForMethodDict

put: (IdentityDictionary new: 3).
Obj declareClass: pointClass.
(pointClass at: pointClass offsetForMethodDict) at: #x

put: [:objselfj objself valueOfInstanceVariable: #x].
(pointClass at: pointClass offsetForMethodDict) at: #print

put:
[:objself j
Transcript show: ’I”am a Point’;

cr]

assemblePointInstance
aPoint := Obj new: 3.
aPoint at: 1 put: #ObjPoint.
aPoint at: 2 put: 10.
aPoint at: 3 put: 15

setUp
“self new setUp”

Obj initialize.
self assembleClassClass.
self assemblePointClass.
self assembleObjectClass.
self assembleColoredPointClass.
self assemblePointInstance

ObjTest 14

Protocol for tests

testAllocate
“(self selector: #testAllocate) run”

j newInstance testInstancej
testInstance := Obj new: 3.
testInstance at: 1 put: #ObjPoint.
newInstance := pointClass allocateAnInstance.
self should: [newInstance= testInstance].
self should: [newInstance objClass= pointClass]

testClassAccess
“(self selector: #testClassAccess) run”

self should: [aPoint objClass= pointClass]

testInitialize
“(self selector: #testInitialize) run”

j newInstance testInstancej
newInstance := pointClass allocateAnInstance.
testInstance := Obj new: 3.
testInstance at: 1 put: #ObjPoint.
testInstance at: 2 put: 1.
testInstance at: 3 put: 2.
newInstance initializeUsing: #(#y: 2 #z: 3 #t: 55 #x: 1).
self should: [newInstance= testInstance]

testInstanceVariableInheritance
“(self selector: #testInstanceVariableInheritance) run”

self should:
[(Obj new computeNewIVFrom: #(#a #b #c #d) asOrderedCollection

with: #(#a #z #b #t) asOrderedCollection)
= #(#a #b #c #d #z #t) asOrderedCollection].

self should:
[(Obj new computeNewIVFrom: #() asOrderedCollection

with: #(#a #z #b #t) asOrderedCollection)
= #(#a #z #b #t) asOrderedCollection]

testIVOffset
“(self selector: #testIVOffset) run”

self should: [(pointClass offsetFromClassOfInstanceVariable: #x)= 2].
self should: [(pointClass offsetFromClassOfInstanceVariable: #lulu)= 0]

testIVOffsetAndValue
“(self selector: #testIVOffsetAndValue) run”

self should: [(aPoint offsetFromObjectOfInstanceVariable: #x)= 2].

ObjTest 15

self should: [(aPoint valueOfInstanceVariable: #x)= 10]

testKeywords
“(self selector: #testKeywords) run”

j dummyObjectj
dummyObject := Obj new.
self should:

[(dummyObject generateKeywords: #(#titi #toto #lulu))
= #(#titi: #toto: #lulu:)].

self should:
[(dummyObject keywordValue: #x

getFrom: #(#toto 33 #x 23)
ifAbsent: 2)= 23].

self should:
[(dummyObject keywordValue: #x

getFrom: #(#toto 23)
ifAbsent: 2)= 2].

self should:
[(dummyObject returnValuesFrom: #(#x 22 #y 35) followingSchema: #(#y #yy #x #y))

= #(35 nil 22 35)]

testMethodLookup
“(self selector: #testMethodLookup) run”

self should: [pointClass lookup: #x for: aPoint.
pointClass methodFoundIn= pointClass].

self should: [coloredPointClass lookup: #print for: aPoint.
coloredPointClass classToLookForSuperSend= pointClass].

self should:
[coloredPointClass lookup: #x for: aPoint.
coloredPointClass methodFoundIn= pointClass]

“we cannot test the error for the moment because ObjObject does exist
at that time”

testMethodManagment
“(self selector: #testMethodManagment) run”

self should: [pointClass doesUnderstand: #x].
self shouldnt: [pointClass doesUnderstand: #xx].
pointClass addMethod: #xx

withBody: [:objselfj objself valueOfInstanceVariable: #x].

self should: [((pointClass bodyOfMethod: #xx) value: aPoint)= 10].
self should: [pointClass doesUnderstand: #xx].
pointClass removeMethod: #xx.
self shouldnt: [pointClass doesUnderstand: #xx].
self should: [((pointClass bodyOfMethod: #x) value: aPoint)= 10]

ObjTest 16

testMethodSelfSend
“(self selector: #testMethodSelfSend) run”

self should: [(aPoint unarySend: #x)= 10].
self should: [(aPoint binarySend: #getIV with: #x)= 10].
self should: [(aPoint send: #setIV withArguments: #(y 22)).

(aPoint binarySend: #getIV with: #y)= 22]

testPrimitiveStructure
“(self selector: #testPrimitiveStructure) run”

self should: [pointClass objClassId= #ObjClass].
self should: [(pointClass objName)= #ObjPoint].
self should: [(pointClass objSuperclassId)= #ObjObject].
self should: [(pointClass objIVs)= #(#class #x #y)].
self should: [(pointClass objKeywords)= #(#x: #y:)].
self shouldnt: [(pointClass objMethodDict)= nil].

ObjTest class 17

ObjTest class

class name ObjTest class
superclass TestCase class
instance variable namesnone
class variable names none
pool dictionaries none
category ObjVLispApp

Protocol for run

allTestCases
“self allTestCases”
j resultj
result := OrderedCollection new.
result add: (self selector: #testAllocate).
result add: (self selector: #testClassAccess).
result add: (self selector: #testIVOffset).
result add: (self selector: #testIVOffsetAndValue).
result add: (self selector: #testKeywords).
result add: (self selector: #testPrimitiveStructure).
“result add: (self selector: #testMethodLookup).”
result add: (self selector: #testMethodManagment).
result add: (self selector: #testMethodSelfSend).
"result

runAll
“self runAll”

j testj
test := TestSuite named: ’Complete ObL Test Suite’.
test addTestCases: self allTestCases.
"test run

ObjTestBootstrap 18

ObjTestBootstrap

class name ObjTestBootstrap
superclass TestCase
instance variable namesnone
class variable names none
pool dictionaries none
category ObjVLispApp

Protocol for test creation ObjObject

testCreateObjObjectInstanceMessage
“(self selector: #testCreateObjObjectInstanceMessage) run”

j pointClass objClass pointInstancej
Obj initialize.
Obj manuallyCreateObjClass.
Obj createObjObject.
objClass := Obj giveClassNamed: #ObjClass.
pointClass := objClass send: #new

withArguments: #(#(#name: #ObjPoint
#superclass: #ObjObject #iv: #(#x #y))).

pointInstance := pointClass send: #new withArguments: #(#()).
self should: [pointInstance objClassId= #ObjPoint].
self should: [(pointInstance binarySend: #getIV with: #x)= nil].
self should:

[pointInstance send: #setIV withArguments: #(#x 25).
(pointInstance binarySend: #getIV with: #x)= 25]

testCreateObjObjectMessage
“(self selector: #testCreateObjObjectMessage) run”

j objObjectj
Obj initialize.
Obj manuallyCreateObjClass.
Obj createObjObject.
objObject := Obj giveClassNamed: #ObjObject.
self

should: [(objObject unarySend: #class)= (Obj giveClassNamed: #ObjClass)].
self should: [(objObject unarySend: #isClass) not].
self should: [(objObject binarySend: #getIV with: #class)= #ObjClass]

testCreateObjObjectStructure
“(self selector: #testCreateObjObjectStructure) run”

j objObjectj
Obj initialize.
Obj manuallyCreateObjClass.
Obj createObjObject.
objObject := Obj giveClassNamed: #ObjObject.

ObjTestBootstrap 19

self should: [objObject objName= #ObjObject].
self should: [objObject objClassId= #ObjClass].
self should: [objObject objSuperclassId isNil].
self should: [objObject objIVs asArray= #(#class)].
self should: [objObject objKeywords asArray= #()]

Protocol for test ObjClass manual creation

testManuallyCreateObjClassAllocate
“(self selector: #testManuallyCreateObjClassAllocate) run”

j objClass emptyClassj
Obj initialize.
Obj manuallyCreateObjClass.
objClass := Obj giveClassNamed: #ObjClass.
emptyClass := objClass unarySend: #allocate.
self should: [emptyClass objClassId= #ObjClass].
self should: [emptyClass objSuperclassId isNil].
self should: [emptyClass objIVs isNil].
self should: [emptyClass objKeywords isNil].
self should: [emptyClass objMethodDict isNil].
self should: [emptyClass objName isNil]

testManuallyCreateObjClassStructure
“(self selector: #testManuallyCreateObjClassStructure) run”

j objClassj
Obj initialize.
Obj manuallyCreateObjClass.
objClass := Obj giveClassNamed: #ObjClass.
self should: [objClass objName= #ObjClass].
self should: [objClass objClassId= #ObjClass].
self should: [objClass objClass== objClass].
self should: [objClass objSuperclassId= #ObjObject].
“the fact that the created first class inherits form ObjObject is not necessary
because there is no super calls”
self should:

[objClass objIVs= #(#class #name #superclass #iv #keywords #methodDict)].
self should:

[objClass objKeywords= #(#name: #superclass: #iv: #keywords: #methodDict:)]

Protocol for test ObjClass creation

testCreateObjClassMessage
“(self selector: #testCreateObjClassMessage) run”

j objClassj
Obj bootstrap.
objClass := Obj giveClassNamed: #ObjClass.
self

ObjTestBootstrap 20

should: [(objClass unarySend: #class)= (Obj giveClassNamed: #ObjClass)].
self should: [objClass unarySend: #isClass].
self should: [objClass unarySend: #isMetaclass]

testCreateObjClassStructure
“(self selector: #testCreateObjClassStructure) run”

j objClassj
Obj bootstrap.
objClass := Obj giveClassNamed: #ObjClass.
self should: [objClass objName= #ObjClass].
self should: [objClass objClassId= #ObjClass].
self should: [objClass objSuperclassId= #ObjObject].
self should:

[objClass objIVs asArray
= #(#class #name #superclass #iv #keywords #methodDict)].

self should:
[objClass objKeywords asArray

= #(#name: #superclass: #iv: #keywords: #methodDict:)]

ObjClassInspector 21

ObjClassInspector

class name ObjClassInspector
superclass Inspector
instance variable namesnone
class variable names none
pool dictionaries none
category ObjVLispApp

ObjClassInspector is special inspector to help inspecting ObjClass

Protocol for private

listOfClassFields
“object objClass objIVs”

j classj
"object size isZero

ifTrue: [#()]
ifFalse:

[(object at: 1) isNil
ifTrue: [#()]
ifFalse:

[class := Obj giveClassNamed: (object at: 1) ifAbsent: [nil].
class isNil

ifTrue: [#()]
ifFalse:

[j iv j
iv := class at: 4.
iv isNil

ifTrue: [#(#class #name #superclass #iv #keywords #methods)]
ifFalse: [class at: 4]]]]

Protocol for field list

fieldIndex
“Answer the offset corresponding to the currently selected field.”

" self listOfClassFields indexOf: field

fieldList
“Answer an Array consisting of ’self ’ and the instance variable
names of the inspected object. Up to 40 indices are given for
variable length objects.”

" ((OrderedCollection with: ’self’) addAll: self listOfClassFields ;yourself) asArray

fieldValue

(field= ’self’ or: [field == nil]) ifTrue: ["object].
" object basicAt: self fieldIndex

ObjExamples 22

ObjExamples

class name ObjExamples
superclass Object
instance variable namesnone
class variable names none
pool dictionaries none
category ObjVLispApp

ObjExamples class 23

ObjExamples class

class name ObjExamples class
superclass Object class
instance variable namesnone
class variable names none
pool dictionaries none
category ObjVLispApp

Protocol for first user-defined metaclasses

abstractMetaclassDefinition
“self abstractMetaclassDefinition”

j abstractClassj
abstractClass := Obj ObjClass

send: #new
withArguments: #(#(#name: #ObjAbstractClass #iv: #() #superclass: #ObjClass)).

abstractClass addMethod: #new
withBody:

[:class :initArrayj
class error: ’ the class ’ , class objName asString , ’ is abstract’]

abstractMetaclassExample
“self abstractMetaclassExample”

j abstractPointClassj
self abstractMetaclassDefinition.
self newpointDefinition.
abstractPointClass := Obj ObjAbstractClass

send: #new
withArguments: #(#(#name: #ObjAbstractPoint #iv: #() #superclass: #ObjPoint)).

abstractPointClass send: #new withArguments: #(#(#x: 24 #y: 6))“should raise an error”

setMetaclassDefinition
“self setMetaclassDefinition”

j setClassj
setClass := Obj ObjClass

send: #new
withArguments: #(#(#name: #ObjSet #iv: #(#myInstances) #superclass: #ObjClass)).“initial-

ize on a metaclass”
setClass addMethod: #initialize

withBody:
[:class :initArrayj
class binarySuper: #initialize with: initArray.
class send: #setIV

withArguments: (Array with: #myInstances with: OrderedCollection new).
class].

setClass addMethod: #instances

ObjExamples class 24

withBody: [:classj class binarySend: #getIV with: #myInstances].
setClass addMethod: #new

withBody:
[:class :initArrayj
j newInst othersj
newInst := class super: #new withArguments: (Array with: initArray).
others := class unarySend: #instances.
others := others add: newInst;

yourself.
class send: #setIV withArguments: (Array with: #myInstances with: others).
newInst]

setMetaclassExample
“self setMetaclassExample”

j memoPointClassj
self setMetaclassDefinition.
memoPointClass := Obj ObjSet

send: #new
withArguments: #(#(#name: #ObjMemoPoint

#iv: #() #superclass: #ObjPoint)).
memoPointClass send: #new withArguments: #(#(#x: 24 #y: 6)).
memoPointClass send: #new withArguments: #(#(#x: 15 #y: 10)).
memoPointClass debug.
"memoPointClass unarySend: #instances

Protocol for first user-defined classes

newcoloredPointDefinition
“self newcoloredPointDefinition”

j coloredPointClass aColoredPointj
self newpointDefinition.
coloredPointClass := (Obj giveClassNamed: #ObjClass)

send: #new
withArguments: #((#name: #ObjColoredPoint

#iv: #(#color)
#superclass: #ObjPoint)).

aColoredPoint := coloredPointClass send: #new withArguments: #((#x: 24 #y: 6 #color: #blue)).
“first messages sent”

aColoredPoint binarySend: #getIV with: #x.
aColoredPoint send: #setIV withArguments: #(#x 25).
aColoredPoint binarySend: #getIV with: #x.

aColoredPoint binarySend: #getIV with: #color. “adding some methods”

coloredPointClass addMethod: #giveColor
withBody: [:objselfj objself binarySend: #getIV with: #color].

ObjExamples class 25

coloredPointClass addMethod: #setColor
withBody: [:objself :valj objself send: #setIV

withArguments: (Array with: #color with: val)].

coloredPointClass addMethod: #display
withBody:

[:objself j
objself unarySuper: #display.
Transcript cr;

show: ’ with Color= ’.
Transcript show: (objself unarySend: #giveColor) printString;

cr].
aColoredPoint unarySend: #givex.
aColoredPoint unarySend: #giveColor.
aColoredPoint unarySend: #display

newpointDefinition
“self new newpointDefinition”

j pointClass aPointj
Obj bootstrap.
pointClass := (Obj giveClassNamed: #ObjClass)

send: #new
withArguments: #(#(#name: #ObjPoint #iv: #(#x #y) #superclass: #ObjObject)).

aPoint := pointClass send: #new withArguments: #(#(#x: 24 #y: 6)).
aPoint binarySend: #getIV with: #x.
aPoint send: #setIV withArguments: #(#x 25).
aPoint binarySend: #getIV with: #x.
pointClass addMethod: #givex

withBody: [:objselfj objself binarySend: #getIV with: #x].
pointClass addMethod: #setx

withBody: [:objself :valj objself send: #setIV
withArguments: (Array with: #x with: val)].

pointClass addMethod: #display
withBody:

[:objself j
Transcript cr;

show: ’aPoint with x= ’.
Transcript show: (objself unarySend: #givex) printString;

cr].
aPoint unarySend: #givex.
aPoint binarySend: #setx with: #(33).
aPoint unarySend: #display.
"aPoint

Practicing Introspection in Smalltalk

Part of the 2000 SummerSemester Lectures S7071:
Reflective Programming
Dr. Stéphane Ducasse

Software Composition Group, Institut für Informatik (IAM)

Universität Bern, Neubrückstrasse 10, CH-3012 Berne, Switzerland

fducasseg@iam.unibe.ch

http://www.iam.unibe.ch/�scg/

December 9, 2000

1 Building an Interface Browser

Interfaces do not exist in Smalltalk but there are really interesting to support code un-
derstanding to the point that some work have already introduced interfaces in Smalltalk.
We propose you to build a small functionality that given a collection of method names
returns all the classes defining such methods.

Your job: Define the Introspection. In this class, define the following methods:

� isLocalClass: aClass matchingInterface: aSymbolCollection returns true is aClass
implements locally the all the methods defined in aSymbolCollection. Exam-
ple: Introspection new isLocalClass: Collection matchingInterface: #(at: at:put:)
returns false. Introspection new isLocalClass: Array matchingInterface: #(at:
at:put:) returns false. Introspection new isLocalClass: Object matchingInterface:
#(at: at:put:) returns true.

� findAllClassesLocallySatisfyingInterface: aSymbolCollection returns all the classes
implementing the given selector collection.

� isGlobalClass: aClass matchingInterface: aSymbolCollection returns true is aClass
implements locally or via inheritance all the methods defined in aSymbolCollec-
tion.

� findAllClassesGloballySatisfyingInterface: aSymbolCollection returns all the classes
implementing locally or via inheritance the given selector collection.

1

1.1 Some help.

Iterating. Depending on the Smalltalk, you may have to define the following method
on the class Collection.

Collection>>conform: aBlock
”Evaluate aBlock with each of the receiver’s elements as the argument.
Answer whether the block evaluates to true for all the elements.”

self do: [:each |
(aBlock value: each) ifFalse: [ˆfalse]].

ˆtrue

All classes. To know all the classes available in the system, you can use the following
expression: Smalltalk classNames collect: [:each | Smalltalk at: each]

2 Building a Textual based Code Finder

Contrary to most of the programming environments, the Smalltalk programming envi-
ronments are not file-based but image based. An image is the byte code of all the ob-
jects living in the image. The programming environment uses the underlying Smalltalk
meta-model and its introspection facilities to build browsers and querying tools. The
code does not need to be parsed, only the meta entities are queried. To that respect
the approach was simply revolutionary when the first Smalltalk IDE appeared because
at that time command line, character based screens and vi were the common way of
developing.

Even if the Smalltalk environment offers a good support for browsing the senders
and implementors of a given method, a system like VisualWorks, contrary to Squeak,
does not offer the possibility to identify methods whose body contains a given textual
information.

Your job: We ask you to implement such a functionality. We propose a really simple
implementation. Define the class TextualFinder, a better integration with the system
could be implemented avoiding the definition of this class but we keep it simple for the
moment. Look in the classes, Behavior, ClassDescription, Class and CompiledMethod.
As shown in Figure 1, we implemented the wished functionality from scratch with an
interface in less than 20 minutes with a small interface, so good luck....

Define the following methods:

� findMethodsContainingCode: aString inClass: class that returns a collection of
pair (created using -> whose key is the class and value is the method. This way
we exactly identify a method. Such a method can be invoked this way: Textual
new findMethodsContainingCode: ’method’ inClass: TextualFinder

2

Figure 1: The result of the textual finder on a query looking for ’method’ in the Textu-
alFinder itself.

� findMethodsContainingCode: aString inClasses: classes that returns a collection
of pair (created using -> whose key is the class and value is the method. This
way we exactly identify a method. Such a method can be invoked this way:
Textual new findMethodsContainingCode: ’method’ inClass: TextualFinder.

The results of an inspect on the result of such a call is shown by the Figure 2.

Interfacing it. We would like you to define use the system to be able to provide
an interface for the query you made as shown in the Figure 1. If you look at the
methods defined on the class side of the Browser class, you will see that we can easily
open predefined widgets for showing lists of methods. Then by looking carefully you
will notice that the browsers are waiting for MethodDefinition objects and not pure
CompiledMethod ones. MethodDefinition are objects having more information used by
the browsers.

So define the followingmethods that return collection of MethodDefinition instances
instead of CompiledMethod instances.

� findMethodDefinitionsContainingCode: aString inClass: class

� findMethodDefinitionsContainingCode: aString inClasses: classes

3

Figure 2: The result of the textual finder on a query looking for ’method’ in the Textu-
alFinder itself.

� openMethodsContainingCode: aString inClass: class whose code is given here-
after.

openMethodsContainingCode: aString inClass: class
”self new openMethodsContainingCode: ’method’ inClass: TextualFinder”

|res|
res := self findMethodDefinitionsContainingCode: aString inClass: class.
res isEmpty

ifTrue: [ˆ self]
ifFalse: [Browser

listBrowserClass
openListBrowserOn: res
label: (’Containing <1p>’ expandMacrosWith: aString)
initialSelection: aString]

4

Metaclasses are First Class : the ObjVlisp Model

Pierre Cointe
Rank Xerox k LITP

RXF: DRBI, 12 Place de 1’Iris - Cedex 38,92071 La defense
LITP: Universitk Paris-%, 4 place Jussieu, Tour 55-65, 75223 Paris

Emaik . . . !seismo!inria!litp!pc cointe@inria.inria.fr.uucp

Abstract

This paper shows how an attempt at a uniform and re-
flective definition resulted in an open-ended system sup-
porting ObjVlisp, which we use to simulate object-oriented
language extensions.

We propose to unify Smalltalk classes and their terminal
instances. This unification allows us to treat a class as a
“first class citizen”, to give a circular definition of the first
metaclass, to access to the metaclass level and finally to
control the instantiation link. Because each object is an
instance of another one and because a metaclass is a real
class inheriting from another one, the metaclass links can
be created indefinitely.

This uniformity allows us to define the class variables at
the metalevel thus suppressing the Smalltalk- ambiguity
between class variables and instance variables: in our model
the instance variables of a class are the class variables of its
instances.

1 The Instantiation Mechanism

1.1 Classes & Metaclasses

We focus on the instantiation mechanism of object-oriented
languages which organizes objects in taxonomies along the
class abstraction. Let us recall that the class concept in-
vented by Simula and reimplemented by Smalltalk- is
used to express the behavior of a set of objects which share
the same semantics operating on the same attributes. This
approach considers a class as a mould, manufacturing pieces
called its instances. Alternatives to the class model - allow-
ing other organizations of knowledge - are well known, for
instance Hewitt’s actor model. An actor describes its own
structure and exists without a class. Defining generator ac-

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct cornmerical advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise. or to republish, requires a fee and/
or specilic permission.

cc, 1987 ACM 0-89791-247-O/87/0010-0156 $1.50

tors, using a copy mechanism [9] or designing a delegation
mechanism [15] are other themes developed by 0.0 pro-
gramming.

‘One rvay of stating the Smalltalk philosophy is to choose a small

number of general ptinciplcs and apply them uniformly’ [14].

In most common class-oriented languages, despite Kras-
ner’s uniformity principle, a class is not a REAL object.

Some of them however, like Loops [l], Smailtalk-80 [111,
CommonLoops f2] and CLOS [3] introduced the ,metaclazs
concept to provide greater abstraction by allowing the de-
scription of a class by another class.

1.2 Smalltalk-

PThe primary role of a mttaelass in the Smalltalk- system is

to provide protocol for initializing class variables and for creating

initialized instances of the mctaclass’solc instance8 (P. 287(11]).

Smalltalk- uses the metaclass level facility to define
the behavior of a class as the behavior of a regular object
reacting to message passing (1). The role of a metaclass is
to (re)define the instantiation method (3,4), to control the
class variables initialization (2) or to explicitly explain the
semantics of a class by predefined examples (5):

(1) Point class
(2) DeductibleHistory initialize
(3) agointlt Point new
(4) aqointp-- point x: 20 y: 40
(5) Pen example

However, a Smalltalk metaclass is not a ordinary class
but an anonymous one (accessible by the unary selector
“class”), and which cannot be defined explicitly by users.
This metaclass which supports the definition of the class in-
stance variables and the class methods cannot exist without
the class that is its only instance. Conversely, Smalltalk-
associates a private metaclass to each class being created.
Two classes cannot share the same metaclass. The next fig-
ure summarizes the Smalltalk- instantiation hierarchy :

1% OOPSLA ‘87 Proceedings October 4-8, 1987

Metaclass class

th
Metaclass

M: Point class Object class Class class

c: Point Object Class

f42
i: . .

Because every metaclass is automatically an instance of
the Metaclass class, metaclasses are not true classes, the
number of metalevels is fixed and the metalink cannot be
created indefinitely [171.

From an inheritance point of view, the metaclass inher-
itance is also implicitly fixed by the system. The hierarchy
of the metaclasses is parallel to the hierarchy of the classes.
Because Object has no super class, the rule keeping a par-
allel hierarchy between classes and metaclasses, does not
apply, and Object class is a subclass of the abstract class
Class. Then, all Smalltalk metaclasses are subclasses of
Object class, itself a subclass of Class :

Object ()
Point (x y)
Behavior (superclass methodDict format subclasses)

ClassDescription (instancevariables organization)
Metaclass (thisClass).
Class (name classPool sharedPools)

<all metaclasses>
Object class ()

Point class ()
Behavior class ()
. . .

Consequently, a me&lass cannot be defined ex nihilo
as the subclass of a chosen class. This inheritance tree es-
tablishes the dichotomy between classes prototyped by the
class Class and the metaclasses prototyped by the class
Metaclass (even if they are both subclasses of ClassDe-
scription and Behavior). These limitations, and the fact

that a metaclass cannot exist without its class, introduce a
first boundary between the implementor - who controls the
metaclass level - and the user - who only has access to the
class level. A second boundary is made apparent by the
introduction of the instance method and class method
terminologies (cf. the -1 SwitchView of the
browser).

1.3 Loops

“For some special cases, the user may want to have more con-
trol over the creation of instances. For ezample, Loops itself uses
diferent Lkp data types to represent classes and instances. The
New message for classes is fielded by their metaclass, usually the

object MetaClass. This section shows how to create a met&ass.

Any metaclass should have Class has one of its super classes and
MetaClass as its metaclass. The easiest way to create a new

metaclass is to send a New message to MetaClass as follows :
(+ ($ Metaclass) New metaCLassName ‘(Class))B (P. 36 [I]).

The Loops scheme for metalevels is close to the Smalltalk
scheme. The basic idea is to introduce three levels corre-
sponding to three kinds of object: instances, classes and
metaclasses. This scheme is built on the “Golden Braid”
Object, Class and MetaClass (cf. P. 113 [l]);

MetaClass is the class which holds the default behav-
ior for metaclasses as objects, it is the metaclass of all
other metaclasses and its own metaclass. MetaClass

holds the New method which creates class data-types.

Class is the class which holds the default behavior
for classes as objects. Class is the default metaclass
for all classes. It holds the New method which creates
instance data-types. Consequently, if Class is not
the metaclass for a class, it must be on the supers list
of that metaclsss (which inherits its new method).
According to this rule Class is a super of Metaclass.

Object is the class which holds the default behavior
for all instances. Consequently, Object is the root of
the inheritance tree.

These three classes are used to create new metaclasses (I),
new classes (2 3) and new instances (4 5) :

(1) (+ (S Metaclass) New ‘ListMetaClass ‘(Class))
(2) (+- ($ Class) New ‘Point ‘(Object))
(3) (- ($ ListMetaClass) New ‘Book)
(4) (- ($ Point) New ‘aqointr)
(5) (- ($ Book) New ‘bl)

The next figure summarizes the instantiation and sub-
class links provided by Loops (the black arrow means in-
stanceof, the shaded arrow means subclassOf) :

Meta:

Class:

inst:

r MetaClass

)yf \

Class 4. - - - - - - - - - ListMetaClass

f ‘**iI\ 4

Point--* Object 4.------- Book

4
bl

f Instantiation

* * I Inheritance

October 4-8,1987 OOPSIA ‘87 Proceedings

Unlike Smalltalk-80, a metaclsss can be created explicitly
as the subclass of another one but must be an instance of
MetaClass. This last condition fixes the depth of the in-
stantiation tree and leads the Loops implementors to use a
non uniform representation for classes and terminal objects.
On the other hand, the Loops manual does not express any
circular definition of Metaclass as it would be suggested
by its self-instantiation.

1.4 Unification

To suppress the gap between class and object, we propose a
unification of the metaclass, class and object concepts. We
claim that a class must be an object defined by a real class
allowing greater clarity and expressive power.

The reverse question is “Is every object a class? -. The
answer is no : some objects are only instances of a class and
do not define a model. An instance of a Point class, e.g. an
object agointl, or an instance of the Number class, e.g.
3, are such non-instantiable objects. We call them terminal
instances.

Thus we consider only one’kind of object, without dis-
tinctions of structure or type between classes and terminal
instances (non-class). In fact, they only differ by their ca-
pacity to react. to the instantiation message. “If the class
oj an object owns the primitive instantiation method (new
selector, owned by the primitive class Class) or inherits
it, this object is a class. Otherwise it is a terminal in-
stance. A metaclaee is simply a class which instantiates

other classes. 1,

Every class declared ss a subclass of the metaclass Class
inherits its new method and becomes a metaclass. There-
fore the introduction of the metaclass concept is unnec-
essary and the discrimination between metaclasses, classes
and terminal instances’ is only a consequence of inheritance
and not a type distinction. We can distinguish between
class and non-class objects, however the ObjVlisp model
takes into account only one type of object.

This unification simplifies the instantiation and inheri-
tance concepts, using them simultaneously : for example,
a metaclass must be created as the subclass of another one
(as an “ultimate” subclass of Class).

2 The ObjVlisp Model

Historically, the ObjVlisp model comes from our work on
Smalltalk- [8]. 0 ur wish is to present a synthesis, using
operational semantics expressed in Lisp. We present here
the reflective version which integrates the previous unifi-
cation and gives a good solution to the problem of the
<class , instance> dichotomy.

‘To easily distinguish them, we use upper-case initial letters for
classes and metaclasaes plus bold letters for metaclasses, and lower-
cade letters for terminal instances.

2.1 ObjVlisp in six Postulates

Following the classical presentation of Smalltalk- [13], six
postulates fully describe the ObjVlisp model :

Pl: An object represents a piece of knowledge and a set of
capabilities :

object = c data , procedures >

P2: the only protocol to activate an object is message pass-
ing : a message specifies which procedure to apply
(denoted by its name, the selector), and its argu-
ments :

1 (send object selector Argsz . . . Args,) 1

P3: every object belongs to a class that specifies its data
(attributes called fields) and its behavior (procedures
called methods). Objects will be dynamically gener-
ated from this model, they are called instances of the
class. Following Plato, all instances of a class have
same structure and shape, but differ through the val-
ues of their common instance variables.

P4: a class is also an object, instantiated by another class,
called its metaclass. Consequently (P3), to each class
is associated a metaclass which describes its behavior
as an object. The initial primitive metaclass is the

class Class, built as its own instance.

P5:

P6:

2.2

a class can be defined as a subclass of one (or many)
other clsss(es). This subclassing mechanism allows
sharing of instance variables and methods, and is called
inheritance. The class Object represents the most

common behavior shared by all objects.

If the instance variables owned by an object define a
local environment, there are also class variables defin-
ing a global environment shared by all the instances of
a same class. These class variables are defined at the
metaclass level according to the following equation :

class variable [an-object] =
instance variable [an-object’s class]

Classes and objects

Structure of an object

The postulates Pl & P3 & P6 define an object as a “chunk”
of knowledge and actions whose structure is defined by its
class. More precisely:

Fields : are the set of variables defining the environment
of the object;

a) instance variables : this first environment is organized
as a “dictionary” split into two isomorphic parts :

1. the set of instance variables specified by the ob-
ject’s class,

2. the set of associated values.

158 OOPSLA ‘87 Proceedings October 4-8,1987

The set of instance variables belongs to the class, and
is shared by all its instances. The set of values is
owned by each instance; consequently an object can-
not, exist without its class. These two sets ’ are or-
dered - at creation time - by the inheritance rules
defined on the superclasses components. In particu-
lar, to store the name of its class, each object holds
as first instance variable one named isit. Each ob-
ject holds also the self “pseudo instance variable”
dynamically (at runtime) bound to the object itself
when it receives a message. These two pseudo vari-
ables are respectively analogs to iait and self in
Smalltalk- [lo].

b) class variables : Smalltalk- class variables are ac-
cessible to both the class (via instance methods) and
its metaclass (via class methods). Similarly, ObjVlisp
instance variables of a class (defined as an object) are
accessible to both its own methods and its metaclass
methods. Consequently, the instance variables of a
class are also the class variables of its instances, defin-
ing global environment at the metaclass level.

Methods : The met hods define the procedures shared by
all the instances of a class and owned by the class. To realize
the unification between class and instance, we represent the
method environment as a particular instance variable of its
metaclass; the methods dictionary of a class is the value
associated with a specific instance variable called methods.
As a common object, a class is defined by its class and the
values of the associated instance variables.

Structure of a class

As an object, a class owns also the isit instance variable
inherited from Object (cf. 3.2). This variable is bound
to the name of the metaclass when the class is created.
Because a class is also a generator of objects , we have to
introduce the minimal set. of instance variables describing a
class. Four explicit instance variables are owned by Class
as the primitive metaclass:

1. name : the name of the class, which means that each
class is a non-anonymous object,

2. supers : the list of the direct superclasses of the
class,

3. i-v : the list of instance variables that the class
specifies,

4. methods : the method-dictionary e.g. the list of
methods. held by the class expressed as a “P-list”,
with pairs <selector , X-expression>.

‘Each object is implemented as a pointer to an abstract structure
(for example a Iist, a vector, a hash-table or a Lisp structure) which
must be isomorphic to the list of instance variables held by its &se :

object = #(class-name i-vz* . . . i-vn*)
i-v [class-name] (instantiate/ #(class-name i-vz* . . . i-v, *)

Instantiation of a class

Unlike the Smalltalk- and Loops systems, ObjVlisp uses
only one method to create an object which can be a terminal
instance or a class.

Basicnew : this method is owned by the metaclass Class
and uses the makeInstance primitive of the virtual machine
s as expressed by the circular definition of Class (cf 3.1).
This method implements only the allocation of the struc-
ture with the nil default-value for each instance variable :

(send Aclass ‘basicnew) =+ #(Aclass nil . . . nil)

New : to allocate a new object and to initialize its in-
stance variables, ObjVlisp uses the new method, owned by
Class, This new method has two effects: to allocate a new
object and to give an initial value to each instance variable.
To distinguish these two functions, new composes the ba-
sicnew method with one of the two initialize methods
defined respectively in Class and Object.

Consequently, the instantiation semantic and syntax are
totally uniform: the new message sent, to a class always
receives as arguments the values related to the instance
variable specified by the receiver class and creates a new
instance built on the class model. To allow more expressive
power each argument of the new message must be prefixed
by a keyword (for example :name for an instance variable
called name) denoting the instance variable receiving the
associated value:

(send Aclass ‘new :iyz i-v2 . . . :i-v, i-v,,) *
#(Aclass i-v,* . . . i-v,*)

Examples : we define the class Point by instantiating
the metaclass Class; the receiver (here Class) specifies the
name of the model (the value of the implicit isit instance
variable) and the values associated to the four instance vari-
ables of Class must be expressed :

send Class ‘new
:name ‘Point
:supers
:i-v

yy4

:methods s(“I 0 0 4
3: (A (nv) (setq x nv) self)
init (A () (setq x 40 y 12) self)
display (A ()

(format ()
(catenate ‘-* x ‘D”)
“*‘I 1 1 1

Then we create instances of Point, using the same new
message’ :

(setq apoint (send Point ‘new :x 20 :y 30))
(setq apoint (send ,Point ‘new :y 30 :x 20))
(s&q apoints (send Point ‘new])
(setq apoint, (send Point ‘new :x nil :y nil))
(setq apoints (send Point ‘basicnew))

‘The makeInstance function creates a new object when receiving
WJ argument the name of itr class :

(defun makeInstance (aclass)
(tCon8 Adams (makelist (l- (length (send aclass ‘i-v))) nil)))

October 4-8,1987 OOPSLA ‘87 Proceedings 159

The auto-quoted keywords suppress the order of in-
stance variables values e.g. the two objects agointr and
aqointr are equal. Keywords may be also omitted, in this
case the associated instance variable is bound to the nil
default value (e.g. a-points, a-point4 and agoint5 are
equal).

Obviously, the user can modify the behaviour of the new
message by defining the initialize method at a subclass
level. For instance, to create all the instances of Point with
the 0 value for x and y, we will redefine in Point the ini-
tialize method : (X (i-v*> (setq x 0 y 0) self)

3 From Uniformity to Reflection

Since giving complete control to the users means a complete
transparency in the objects definitions, we adapt the reflec-
tive interpreter technique [16] to the construction of this
model. ObjVlisp is supported by two graphs: the instanti-
ation graph and the inheritance graph. The instantiation
graph represents the instanceof relationship (P3 & P4),
and the inheritance graph the subclassOf link (P5). Class
and Object are the respective roots of these two (acyclic)
graphs: they are defined in ObjVlisp as follows.

3.1 Class: Instantiation

Class is the first object of the system. As the root of
the instantiation graph, it defines the behavior for classes.
Because the new primitive is fielded by Class it will re-
cursively create all other objects. To prevent the infinite
regress provided by the instantation link (a metaclass is a
class which instantiates a class, a metametaclass is a class
which instantiates a metaclass, a metametametaclass . . .),
Class must be its own instance which severely constrains
its structure.

Reflective pattern matching of Class

To verify the previous statement, we have to guarantee that
the instance variables specified by Class match the corre-
sponding values also held by Class, as its own instance,
which is easily obtained by :

isit nune supera i-v metho&
Chl Clam (Object) (hit name aupen i-v methods) (new (A..)..)

Notice that the value associated with the instance vari-
able i-v is exactly the ordered set of instance variables
(isit. name, . . . , methods) itself, this reflective pat-
tern matching illustrates the definition of Class as an ob-
ject.

‘This table shows the dictionary of values owned by each object :
? (send agoi+ ‘i-values)
= #(Point 20 30)
? (send Point ‘i-values)
= #(Class Point (Object) (isit x y) (x Xr x: As init A3 display X4))
? (send Class ‘i-values)
= #(Class Class (Object) (isit name supers i-v methods) (new.. .))

To prepare the bootstrap: the Lisp skeleton

“A natural and fundamental question to ask, on learning of these

incredibly interlocking pieces of software and hardware is: #‘How

did they ever get started in the first place?‘. It is truly a bafiing

thing” [12].

Defining Class from itself necessitates specifying the
bootstrap mechanism. We create manualy the skeleton of
Class. If we represent objects as lists, we will use the
skeleton :

(setq Class ‘(
Class
Class
(Object)
(isit name supers i-v methods)

i
new

initialize

(A (self . i-values)
(send (makeInstance name)

‘iuitialiie i-values)
(A (self i-values)

(initIv self... . ..)
(setq i-v (he&-i-v supers i-v))
(setq methods (scan-methods . .
(set name self))))

-1)

In fact, we only defme the new and initialize methods
supporting the self-instantiation of Class.

This bootstrapping process then creates the real Class
object, by sending to the Class skeleton the appropriate
new message. Note that the skeleton is destroyed by the
circular (re)definition of Class.

The bootstrap: the Self Instantiation of Class

The Class definition establishes that Class is its own in-
stance, is a subclass of Object, and uses the instance vari-
ables previously mentioned. These definitions and exam-
ples are given for Le-Lisp [7] :

(send Class ‘new
:XItie ‘ClaEE
:supers ‘(Object)
:i-v ‘(name supersi-v methods)
:methods ‘(

new (A i-values
(send (send self ‘basicnew)

‘initialhe i_values))
basicnew (A () (makeInstance name))
initialize (A (i-values)

(run-super)
(setq i-v (he&-i-v supers i-v))
(setq methods . . .))
(set name self))

.

name 0 0 name1
super* 0 0 supers)
i-0 (A 0 i-4
metbodsDic (A () methods)

. . . I..
understand (A (selector method)

(defmethod self selector method))
selectors (A () (selectors methods))))

160 OOPSLA ‘87 Proceedings October 4-8, 1987

The definitions of the methods shows that all instance
variables are automatically bound to their values in a method
body. Consequently, the X-expressions associated with the
name, supers, i-v and methods selectors are quite easy
to express. Similarly, in the new method, self denotes
the generator (here Class). The initialize method uses
the run-super form to call the general allocator (makeIn-
stance) defined at the Object level.

3.2 Object: Inheritance

Postulate (P5) introduces the inheritance mechanism (which
concerns only classes). The ObjVlisp inheritance allows to
connect together instance variables and methods of several
classes but in two different ways:

l The inheritance of instance variables is static and
done once at creation time.

When defining a class, its instance variables are calcu-
lated as the union of a copy of the instance variables
owned by the superclasses with the instance variables
specified at creation (the value associated to the “:i-v”
keyword used by the new message).

l On the other hand, method inheritance is dynamic
and uses the virtual copy mechanism implemented by
the linkage of classes in the inheritance graph which
is supported by the supers instance variable. When
the method lookup fails in the receiver class then the
search continues in a depth-first/breadth-first way.

This lookup call may be locally modified by the run-
super form - same as in CommonLoops [2] and similar
to the super construct of Smalltalk- - which over-
rides the current method. The lookup starts (stati-
cally) at the superclass of the class containing the
method.

Classes vs Terminal Instances: the initialize method

The inheritance mechanism of instance variables is applied
only when creating classes. Thus we need to distinguish
creation of classes and creation of terminal instances. As
we pointed out already, a metaclass is a class which inherits
from Class the new method and the (name supers i-v
methods) instance variables”.

The reflective definition of ObjVlisp allows to use only
one allocator - the basicnew - and nevertheless to explicit
the difference between class and terminal instance creations:

the initialize method owned by Object treats the termi-
nal instance, and the initialize method owned by Class
implements the inheritance mechanism associated to in-
stance variables at a class creation time.

Object the most common class

The second primitive class is Object, instance of Class.
Object represents the most common class - the intersec-
tion of all classes - describing the most common behavior
(for classes and terminal instances). It is created during
the bootstrap mechanism, immediately before Class. The
isit instance variable is statically inherited by all classes.
Then isit provides the instantiation link (the umbilical
cord) between a class and its instances.

send Class ‘new
:name
:supers
: i-v
:methods

‘Object

‘0

?sit’
ClllSS (A () isit)
initialize (A (i-values)

(initIv self) self)
f (A (i-v-) (ref i-var self))
Ft (A (i-var i-val)

(setf (ref iyar self) i-val))
i-values 0 0 self)
mctocfassl (A () (memq ‘supers i-v))
class? (1 0

(send (i-v* kit) ‘metaclass?))
.

err*r (A msg ‘(A bs ‘,msg))))

From this definition Object has no superclasses and each
ObjVlisp object answers to the <selector> by <action>:

class
initialize
1
?i-
i-values
metaclass?
class 7
error

giving the name of its class
initializing the instance variables
returning the value of the field i-var
writing i-var with the new value
returning the list of values of the i-v
testing if the object is a metaclass
testing if the object is a class
implementing the standard treatment
of error

Notice that the ? and ?t methods which access the
value of any instance variable (read&write) respect their
lexical scoping (and violate the encapsulation principle).

3.3 Architecture of the ObjVlisp model

We summarize the general structure of the ObjVlisp model
by connecting together the instantiation graph and the
inheritance graph. At the creation of the system there
are only the Class and Object classes. The %aive” use of
the system will keep the depth of the instantiation tree to
three. See below for a similar example to Smalltalk- [Is];
all classes are instances of Class :

P
Class

Grit name ruperr I-V methods)

.*“f \

Object N.............. Point
(istt)

/7 Orit xy)

a-point)
4
. . .

K
a-points

‘The mttaclass? predicate defined in Object uses the supers in-
stance variable to recognize metackses.

October 4-8, 1987 OOPSIA ‘87 Proceedings 161

The rest of this paper establishes that creation of meta-
classes brings substantial benefits. There is no longer any
depth limitation of the instantiation tree, and the user can
extend it as much as he wants to specify different metalevels
of shared instance variables and methods.

4 From Reflection to Extensibility

4.1 Building new metaclasses

By combining the inheritance mechanism with the instanti-
ation one we can create multiple metaclasses. Ametaclass
is defined as a subclass of Class i.e. dynamically inherits
the new primitive (to create objects) and it receives a copy
of the basic instance variables defining a class (name, i-v,
supers and methods), copy extended by the CV; variables :

send Class ‘new
:n-e ‘Ametaclass
: i-v ‘(WI . . . CV”)
xupers ‘(Class)
:methods ‘(.-.I 1

Following this definition, the creation of Aclass needs
the instantiation of every basic instance variables plus the
instantiation of each new cvi :

(send Ametaclasa ‘new
:nme ‘Aclass
:i_v ‘(iv1 . ..ivn)
:supers
:methods l’*‘l . . .
:C”l WI*

.
:C”, c”,*)

Class variables by Example

Let us return to the Point class, previously defined. Now
we would like the constant character * to be a class variable
shared by all the points of a same class. We redefine the
Point class as before, but metaclass of which (let us call it
MetaPoint) specifies this common character :

send Class ‘new
:name ‘MetaPoint
:supers ‘(Clam)
: i-v ‘(char)
:methods ‘0 1

(send MetaPoint ‘new
:name ‘DefaultPoint
:supers
: i-v

ye4
X

:methoda '(init (A () (setq x 40 y 12) self)
z 0 0 4
2: (A (nx) (setqx nx) self)
display 0 0

(format ()
(catenate =-’ x ‘D*’
char)))

:char **r)

MetaPoint is declared as a subclass of Class (thus it is
a metaclass). It inherits the name, supers, i-v and meth-
ods instance variables from Class and adds to them the in-
stance variable char. Consequently, DefaultPoint specifies
the associated value of char, i.e. * by using the associated
keyword. Now we could create such a point :

? (s&q aqoint (send DefaultPoint ‘new :x 20))
= a DefaultPoint
? (send agoint ‘display)
= *

Class methods by Example

As for class variables, class methods are specified in the
metaclass as ordinary methods. Suppose we want to define
a new class method for DefaultPoint to create and initialize
a new point. We simply define the newinit method of
MetaPoint (assuming we define also an init method in
the Point class, or at least in the Object class) :

send Class ‘new
:name ‘MetaPoint
supers
:i-v :gy

:methods '(newinit (A 0
(send (send self ‘new) ‘init)))

Ch (A 0 char)
char: (A (newchar)

fseta char newChar) j 1

l newinit creates a new instance, (send self ‘new)
then receives the init message.

. char gives access to the char variable. We have in-
troduced this method to show that char is both ac-
cessible by the DefaultPoint display method and by
the MetaPoint char method,

. char : allows the modification of the char class vari-
able. For instance, the (send DefaultPoint char:
‘ ‘ @ ’ ’ 1 message provides the new B display for all the
instances of DefaultPoint.

4.2 Parametrization of a class

The DefaultPoint class is now parametrized by its display
character and the MetaPoint metaclass represents this ab-
straction. Let us define two new classes, called Point# and
Point62 with two different display characters. Obviously,
they are defined as a subclass of DefaultPoint :

Class
Grit name wperr I-V methods)

k
‘. .\

Object MetaPoint
(kit name supers i-v methods char)

Point# . ..+ DefaultPoint M*.. . . . Point@
(kit x y) (kit x y) (isit x y)

162 OOPSLA ‘87 Proceedings October 4-8, 1987

Notice that a same metaclass (here MetaPoint) can be
used to instantiate several classes (Point#, Point@ . . .) :
there is no one specific metaclass associated to each class.

? (send MetaPoint ‘new
:name ‘Point# :supers ‘(DefaultPoint) :char a#.)

= Point#
? (send ‘MetaPoint ‘new

:name ‘PointQ :supers ‘(DefaultPoint) :char Wn)
= Point@
? (send (send Point# ‘new :x 1) ‘display)
=#
? (send (send Pointa ‘new :x 9) ‘display)
= 0

Comparison with SmaIItalk-80

We have pointed in [5] that the Smalltalk- terminology
is not homogeneous. Smalltalk class variables are not the
instance variables of the class defined as an object but a
dictionary of variables shared between all the instances of
a same class hierarchy. For example, if the new method is
redefined to add the newly created instance of a class inside
a Collection’s class variable, the instances of its subclasses
will also be memorized.

Nevertheless, if we use the instance variables of a meta-
class, we can simulate the “MetaPoint” construction in
Smalltalk-80. Obviously we need to give an explicit access
to the char variable and we have to use a new different
metaclass for each class of Point :

Object subclass: #DefaultPoint
instanceVariableNames: ‘x y’
clasaVariableNames: ’
poolDictionaries: g
category: ‘Graphic-Primitives’.

DefaultPoint class instanceVariableNames: ‘char’.
DefaultPoint class methodsFor: ‘m&a-iv access’

initialise Ichart =*#.

DefaultPoint subclass: #Point@
instanceVariableNames: ’
classVsriableNames: ’
poolDictionaries: D
category: ‘Graphic-Primitives’.

Point0 class instanceVariableNames: ‘.
Point0 class methodsFor: ‘met&v access’

initialire tcharc ‘0”.

The DefaultPoint example illustrates a general knowl-
edge scheme (as does the Polygon example below). To gen-
eralize the solution, we have decided to extend the scope

of the instance variables of a class to each of its instances.
Unlike Smalltalk-80, our class variables are inherited but
not shared by the subclasses.

Each polygon is defined by its location (the first ver-
tex) and the length of any of its sides. To parametrize the
number of sides - 4 for a square, 6 for a hexagon, undef for
a polygon - we use the nSidea class variable. To simplify
the next figure, the inherited variables are not drawn :

’ Class

Object PolygonClass

Hexagon . . + Polygon d......Square
0 (locatmn lenght) 0

ft2 ft2 ft2
...

4.3 Filiation link (Set) :

To use classes which remember all their instances, we define
a new metaclass (Set

I
, as a subclass of Class with the new

sons instance variab e pointing the list of instances. We
just have to redefine the new method in Set to add the
newly created instance at the end of the sons list :

send Class ‘new
:name ‘Set
:supers ‘(Class)
5-v ‘(rona)
:methods ‘(sons 0 0 w -4)

new (A i-values
(nconc l onm

(cons (run-super) 0)))
mapSO%S

(x~::P~s)
(A (ret) (send ret unaryS))
(send self ‘sons))

UnaryS) 1)

(send Set ‘new
:name ‘Point
:i-v ‘b Y)
:supers ‘(Object)
:methods ‘(init (A () (setq x 40 y 12) self)

display (A () (print (format () . . .)) self))
:SOIlS ‘(hook))

The sons method gives access to the sons class vari-
able and the mapsons method distributes an unary message
(without arguments) to all the instances of a particular set.
The next session shows the behavior of Point defined as an
instance of Set

? (progl ‘ok (send Point ‘new :x 10) (send Point ‘new :x 20))
= ok
? (send Point ‘sons)
= (#(Point 10 nil) #(Point 20 nil))
? (send Point ‘mapsons ‘display)

*
*

= display

This solution provides a uniform extension of the meta-

class system and seems better than the Loops “class prop-
erty hook” used by the ListMetaClass definition in [l]
(P. 36).

October 4-8,1987 OOPSfA ‘87 Proceedings 163

4.4 MetaPoint as an instance of Set :

Now we can add a new metaclass level by defining Meta-
Point as a subclass of Set, allowing DefaultPoint, Point#
and Point@ to memorize their instances. Since a metaclass
is a ordinary class, such an extension is easy to repeat and
the metalinks can be created indefinitely.

5 Metaclasses are useful

“With respect to Simula, Smalltalk also abandons static scoping,

to gain jlezibility in interactive use, and strong typing, allowing

it to implement system introspection and to introduce the notion

of meta-classes [6].”

5.1 Metaclasses provide metatools to build
open-ended architecture

“The metaclass determines the form of inheritance used by its
classes and the representation of the instance of its classes. The

metaclass mechanism can be used to provide particular forma of

optimization or to tailor the Common Lisp Object System for

particular uses (such as the implementation of other languages
like Flavors, Smalltalk- and Loops))” /3].

From an implementor’s point of view, metaclasses are
very powerful because they provide hooks to extend or mod-
ify an existing kernel. For example, ObjVlisp uses the
metaclass facilities to simulate other object-oriented sys-
tems. Metaclasses may control :

1. the inheritance strategy (simple, multiple, method
wrapping [HI). T o implement variations on inheri-
tance schemes [lQ], we define at the metaclass level

a method (or an instance variable) parametrizing the
lookup method used by the send primitive,

2. the internal representation of objects by using differ-
ent makeInstance primitives creating lists, vectors,
hashtables or structures; each metaclass fielding a pri-
vate new method,

3. the access to methods by implementing a caching
technique. We associate with each class a private
memory (the cache instance variable) memorizing the
addresses of methods already called,

4. the access to instance variable values by distinguish-
ing between private and public variables or by imple-
menting active-values or demons.

5.2 Metaclasses remove the boundary be-
tween users and implementors

In our empirical studies, metaclasseo were regarded as the most
significant barrier to learnability by both students and teachers.
We propose that they be eIiminated. We have explored various

alternatives to metaclasses, such as the use of prototypes. How-

ever, for DeltaTalk we simply propose that the language revert to
the situation in Smalltalk-76. Every class would be instance of
class Class” [d].

Obviously we disagree with the Borning’s conclusion.
We consider that metaclasses provide an explicit definition
of the class system. They express the behavior of classes in
a transparent way. Because they have ability to manipulate
their own structures, they can implement system introspec-
tion. Consequently, metaclasses support a circular defini-
tion of the system reducing the boundary between users.
and implementors. But, to fully exploit this metalevel, the
metaclass concept must be simple enough to be understood
by the user. We believe this is not true in Smalltalk- but
that the ObjVlisp uniform and reflective architecture has
reached this goal.

6 Conclusions

6.1 Results

The ObjVlisp model’s primary advantage is uniformity.
There is now only.one kind of object: a class is an object
and a metaclass is a true class whose instances are classes.
This allows a simplification and economy of concepts, which
are thus more powerful and general. The second property is
reflection which provides a language completely and uni-
formly accessible by the user. The system is self-described
by the explicit definition of the root of the instantiation tree

(Class) and the root of the inheritance tree (Object). The
main results are that there is no limitation in the depth
of the instantiation tree, the metalinks can be created in-
definitely and class variables are defined at the metaclass
level. Finally, extensibility permits various applications
and modeling alternative semantics, for instance Thinglab
composite objects and partwhole hierarchy or Smalltalk-
dependencies [111.

6.2 New Improvements

A first version of this paper was presented at the work-
shop on Meta-Level Architectures and Reflection organized
in Alghero [16]. In this new version, the difference between
instance creation and class creation is explicitly defined at
the ObjVlisp level through two distincts initialize meth-
ods, respectively owned by Object and Class. Thus we do
pot need to add an extra metalevel (the metaclass level of
Loops or Smalltalk-80) [5] and the ObjVlisp instantiation
kernel is really minimal.

6.3 Future work

We have used the ObjVlisp model to study the instantiation
mechanism. We plan now to investigate three axes:

l experimentation in object-oriented methodologies by
writing relevant examples in ObjVlisp other than those
provided by the Smalltalk- image,

l development of an object kernel for EuLisp and IsoLisp.
This work is very close to the CLOS approach [3] but
we expect to use the ObjVlisp experience to propose
a cleaner metaclass level,

. implementing the ObjVlisp metaclasses architecture
in Smalltalk- by redefinition of the “kernel classes”.

164 OOPSLA ‘87 Proceedings October 4-8, 1907

Acknowledgements

We thank Jean-Pierre Briot for its major contribution to the Ob-
jVlisp model, Alain Deustch for its implementation of the tree.
walker, Jean-Francois Perrot, Henry Lieberman, Kris Van Mar-
eke, Glenn Kramer and Nicolas Graube for their helpful com-
ments on this text.

The ObjVlisp project ia part of the “O.O.P. Methodology”
group of the GRECO de Programmation

References

Bobrow, D.G., Stefik, M., The LOOPS Manual, Xerox
PARC, Palo Alto CA, USA, December 1983.

Bobrow, D.G., Kahn, K., Kiczales, G., Masinter, L.,
Stefik, M., Zdybel, F., CommonLoops: Merging Lisp
and Object-Oriented Programming, OOPSLA ‘86, Spe-
cial Issue of SIGPLAN Notices, Vol. 21, No 11, pp. 17-
29, Portland OR, USA, November 1986.

Bobrow, D.G., DeMichiel L.G., Gabriel R.P., Keene S.,
Kiczales G., Moon D.A, Common Lisp Object System
Specification, X3J13 (ANSI COMMON LISP), March
1987.

Borning A., O’Shea, ‘I’., DeltaTalk: An Empirically and
Aesthetical Motivated Simplification of the Smalltalk-
80 Language, ECOOP’87, to appear in Springer Verlag,
Beeivin J. B Cointe P. ed., Paris, France, 15-17 June

1987.

Briot, J-P., Cointe, P., A Uniform Model for Object-
Oriented Languages Using the Class Abstraction, IJ-
CAI’87, Milan, I, August 1987.

Cardelli, L., A Semantics of Multiple Inheritance, Bell
Laboratories, Murray Hill NJ, USA, 1984.

Chailloux, J., Devin, M., DuPont, F., Hullot, J.M., Ser-
pette, B., Vuillemin, J., LE LISP de I’INRIA, Version
15.2 (The manual), INRIA, Domaine de Voluceau, Roc-
quencourt 78153 le Chesnay, Mai 1986.

Cointe, P., A VLISP Implementation of SMALLTALK-
76, pp 89.102, Integrated Interactive Computing Sys-
tems, North-Holland, Degano, P. & Sandewall, E. edi-
tors, 1983.

Cointe, P., Briot J.P., Serpette B., The FORMES
language: a Musical Application of Object Oriented
Concurrent Programming, pp 221-258 in Object Ori-
ented Concurrent Programming, MIT Press, Cam-
bridge, Mass A Yonezawa & M. Tokoro editors, May
1987.

[ll] Goldberg, A., Robson, D., Smalltalk- - The Lan-
guage and its Implementation, Addison-Wesley, Read-
ing MA, USA, 1983.

[121 Hofstadter D.R., GOEDEL, ESCHER, BACH: an
Eternal Golden Braid, The Harvester Press, John Spiers
editor, Stanford Terrace, Hassocks, Sussex Publisher,
1979.

[13] Ingalls, D.H., The Smalltalk- Programming System
Design and Implementation, 5th ACM Symposium on
POPL, pp. 9-15, Tucson AZ, USA, January 1978.

[14] Kramer, G., Smalltalk- - Bits of History - Words of
Advice, Addison-Wesley, Reading MA, USA, 1983.

1151 Lieberman, H., Delegation and Inheritance, Two Mod-
ular mechanisms, Conf. Record of the 3rd Workshop on
OOP, Centre Georges Pompidou, Paris, Bigre+Globule
No 48, Bezivin J. and Cointe P. editors, January 1986.

[16] Maes, P., and al, Workshop on Meta-Level Architec-
tures and Reflection, to appear in North Holland, P.
Maes d D. Nardi cd., Alghero, Italy, 27-30 October
1986.

[17] Maes, P., Computational Reflection, PhD thesis, Vrije
Universiteit Brussel, AI-LAB Pleinlaan 2, B-1050 Brus-
sels, Belgium, Mars 1987.

[18] Moon, D., Object-Oriented Programming with Fla-
vors, OOPSLA’86, Special Issue of SIGPLAN Notices,
Vol. 21, No 11, pp. 1-16, Portland OR, USA, November
1986.

[19] Stefik, M., B o b row, D.G., Object-Oriented Program-
ing: Themes and Variations, The AI magazine, pp 40.
62, Winter 1985.

Smalltalk- and Loops are trademarks of Xerox Corpora-
tion.

Appendix

We give two alternatives implementations written in Le
Lisp representing objects as lists. The first one dynami-
cally binds the instance variables at the run-time (cf. the
send form), when the second one pre-compiles the methods
by using a tree-walker. The smacrolet form replaces each
instance variable name by its access function (cf. the ref
form). For instance, below are the definition of x, x: and
display methods of Point, after their textual expansion:

(A () (ref ‘x self))
P 0

(format () . . . char))
0 (nxl

(format () . . . (ref ‘char (class-of self))))
(A (4

(aetq x nx) self) (setf (ref ‘x self) nx) self)

[lo] Goldberg, A., Kay, A., Smalltalk- Instruction Man-
ual, Research Report SSL 76.6, Xerox PARC, Palo Alto
CA, USA, March 1976.

October 4-&I,1987 OOPSIA ‘87 Proceedings 165

(d
ef

ta
n

lo
ok

up

(~
1

i.i
t

ob
j)

;
D

yn
am

ic
 L

C
C

...

to

in
.tm

c.

v.
rl.

bl
.r

(ty
pe

en

t/
:

(ty
pe

en

S/
a)

)
(d

ef
rh

ar
p

I:
I

0
(w

ith

(
(ty

pe
en

X

/:
‘c

pi
&

(ty

p.
cn

t/m

‘c

pn
u.

)
1

(li
rt

(r.
.d

))
1)

(d

ef
ru

cl

...

‘n
ob

oo
t)

(d
.fr

.r
ob

jrc
t

0)

(d
.fr

u
..l

f
(1

)

(d
ie

d
ty

pe
-o

f
(m

u)

‘(C
U

.n

U
d)

(d

m
d

cl
&

..-
of

(o

bj
)

‘(I
-T

+
(tn

.-O
f

.o
bj

)))

(d
m

d
r.t

.c
l..

.-o
f

(o
bj

)
‘(I

-r*

h.
t.t

yp
.-o

f
.o

bj
)))

(d

m
d

ut
at

yp
a-

of

(o
bj

)
‘(t

yp
o-

of

(c
la

m
.-o

f
.o

bj
)))

(d

ad
 n

om
.

(n
u.

)
‘(c

dr

.n
m

U
))

(d

m
d

*u
po

n
(n

.m
.1

‘(e

.d
d?

.n

.W
))

)
(d

m
d

I-r

(n
.m

.)
‘(a

dd
&

.n

.m
.))

(d

m
d

1-
W

(x

)
‘(r

ya
.v

al

ax
))

(d
m

d
k.

yw
or

d.

(n
am

.)
‘(c

.d
dd

r
(e

dr

.n
.m

.))
))

(d

lp
d

m
.th

O
dD

Ic

(n
am

.)
‘(c

ad
dd

r
(c

dd
r

am
*)

)))

(d
m

d
m

et
ho

d.

(n
u.

)
‘(C

at

(P
lim

t-t
o-

di
.O

.=

.))
)

(d
m

d
..1

*c
t0

r.
(Il

.4

‘(c
u

(p
lir

t-t
.-d

I.0

*m
u.

))
)

(d
m

d
at

ta
ch

(.

1)

‘(r
pl

m
c

.1

.I
(C

on
.

(C
U

.I)

(C

’k

.I)
))

)

(d
m

d
m

ot
ho

df
or

(c

lu
..

..l
)

‘(g
.tl

(m

.th
O

dD
ic

.c

lm
..*

)
,..

I))

(d
ie

d
rw

rit
.

(in
.t

Iri
t)

‘(c
va

l-d
lc

o
(I-

V

(I-
T*

.i.

It)
)

.Im
m

t))

(d
ef

un

*e
nd

(o

bj

-..
l.c

tO
r-

-U
g.

-)
(if

(a

q
ob

j
*e

lf)

(a
pp

ly

(lo
ok

up

-..
l.c

to
r-

(I-
r*

Iri

t)
ob

j)
ob

j
-U

p-
)

(l.
tv

(I-

v
(m

.t.
cl

ur
-o

f
ob

j))

(e
lm

..-
of

ob

f)

(h
tr

(I-
V

(e

lm
..-

of

ob
j))

ob

j

(p
ro

t.c
t

(ti
pp

ly

(lo
ok

up

-..
l.c

to
r-

(I-
r*

Im

it)

O
bj

)
ob

j
-u

g*
-)

(r.
w

it.

ob
j

hi
t))

)))
)

(d
ud

ru

n-
.u

p.
r

()
‘(.

pp
ly

.(l

oo
ku

p
-..

1*
ct

0r
-

(i-
r*

(c

ar

hp
rra

(I-

.+

im
it)

)))

.*l
f)

..l
f

(d
ef

un

m
ak

.In
rta

ne
.

(a
od

.1
)

(tc
on

s
m

od
.1

 (
m

ak
.1

i.t

(l-

(le
ng

th

(i-
r

(i-
V

*
m

O
d.

1)
))

)
ni

l))
)

(d
of

un

In
itI

v
(.t

ru
ct

ur
.

llO
t#

Sl

ob
*)

(w

hi
l.

*lo
t.

(..
t

(n
.rt

l
*lo

t.)

(n
.x

tl
*lo

ts
*)

))
rtr

uc
tu

r.)

(d
ef

un

g.
tl

(1
 l

 .1
)

(c
on

d ((n
ot

(e

on
rp

1)

)
0)

((.

q
(c

u
1)

1.

1)

(c
m

dr
 1

))
(t

(g
.tl

(c

dd
r

1)

..l
))

))
(d

.iu
n

pl
lrt

-to
-d

ic
o

(m
.x

P
)

(w
he

n
(ry

m
bo

lp

r.r
p)

(..

tq

..x
p

(p
1i

.t
..x

p)
))

(1
.t

((.
.l

(a
eo

n.

ni
l))

(m

.th

(n
eo

!u

ni
l))

)
(le

tn

..l
f

((
91

.1

..l
)

(q
m

et
h

8r
th

)
(1

rrx

p)
)

(if
n

1
(c

on
a

(e
dr

..l

)
(e

dr

m
.th

))

(u
lf

(p
lm

cd
l

qr
rl

(n
.x

tl
1)

)
(p

lm
ed

l
qm

.th

(n
ox

tl
1)

)
1)

)))
)

(d
rfu

n
cv

m
l-d

ic
e

(d
ie

-~
.r

di
e-

v.
1)

(r

h.
n

di
e-

v.
1

(rp
l.c

a
di

e-
r.1

(i-

r*

(e
u

di
e-

vu
)))

(c

ra
l-d

ie
0

(c
ar

di

e-
Ta

r)
(c

dr

di
e-

V&
l))

)))
)

(ta
g

b.
&

ra
cL

(t.

g
ag

ai
n

(d
ep

th

1.
1

iri
t))

(re

nd

ob
j

‘.r
ro

r
‘lo

ok
up

)))

(d
of

uu

dr
pt

h
(Ir

ay

no
d.

)
(1

.t
((n

.th
od

(m

.th
od

fo
r

no
d.

k.

y)
))

(e
on

d (n
rth

od

(e
xi

t
ba

ck
tra

ck

m
et

ho
d)

)
((.

q
no

d.

ob
j.&

)
(e

xit

ag
ai

n
‘b

ae
kt

r.c
k)

)

(t
(b

r..
dt

h
ke

y
(a

up
er

.
no

d.
)))

)))

(d

ef
un

br

.m
dt

h
(k

ey

l-n
od

..)

(w
hi

l.
l-n

od
..

(ta
g

tig
al

n
(d

ep
th

ke

y
(I-

v*

(n
ex

t1

l-n
od

..)
)))

))

(d
of

un

#c
m

-u
tc

h
(p

at

d.
t-p

1I
.t)

(u

pc
u

(lu
bd

m

(m
m

g)
 (g

et
1

d.
t-p

lir
t

na
g)

)
pm

t))

(d
.fu

n
m

.k
.-k

ey
w

or
d.

(iv

)
(8

.p
e.

r
(l.

m
bd

.
(k

)
(..

tq

k
(c

on
c.

t
* :

 k
))

(..
t

k
k)

)
IT

))
(d

ef
t

m
ea

n-
..l

.c
to

rr
(d

ie
-m

.th
od

.1

(m
.P

c
(lu

bd
.

(m
rl)

(m

ak
r-d

w
rip

to
r

l .
1

d.
.c

rIp
to

r))

(r.
l.c

to
rm

di

em
et

ho
ds

)))

(d
hm

m

m
-Iv

*
(f

v)

(1
*t

((1

r
v)

(p

0)

)
(rh

il.

f
(if

v

(n
.x

tl
T)

(n

ov
l

p
0)

)
(n

.x
tl

f))

be
on

e
1~

 p
)))

)
(d

ef
un

*c

ur
-m

.th
od

(ll

m
bd

m
-fo

rm

cl
...

.)
(r

em
-p

uu
.t.

rm

lu
bd

m
-f

ar
m

 (
c.

dr

lm
bd

m
-f

or
a)

)
)

(d
.fu

n
l c

m
n-

pm
ru

.t.
r.

(1

1p
m

r)

(c
on

d
((n

ul
l

1p
m

r)

(r
pl

.e
m

(e

dr

1)

‘(s
el

f))
)

((
st

om
p

1p
u)

(rp

l.C
rn

(c

dr

1)

(c
on

.
‘r.

lf
1p

.r)
))

(t
(a

tt.
eh

‘..

lf
lp

rr)
)))

(d

m
fu

n
l e

m
n-

m
.th

od
m

 (
pl

el

ns
.)

(lf
n

(c
dd

r
pl

)
(r

h.
n

(c
c&

pl

)
(m

an
-m

rth
od

(c

.d
r

pl
)

sl
~r

r.)
)

(*
cm

-ro
th

od

(c
.d

r
pl

)
cl

...
.)

(r
cu

r-
m

rth
od

.
(c

dd
r

pl
)

cl
..r

.))

P
l)

(&
fu

n
d.

fm
.th

od

(c
l..

m

..l

m
&

ho
d)

(ra

n-
m

rth
od

m

.th
od

el

m
..)

(1

.t
((a

.th
od

D
Ic

(m

.th
od

D
Ic

cl

a.
.))

)
(*

M
ac

h
m

rth
od

m

.th
od

D
ic

)
(a

ttm
ch

m

.1
 m

.th
od

D
Ic

))
)

(d
.fu

n
rr

m
or

r-
du

p1
Ic

.t.
.

(1
.t)

(d

o
((1

lm

t
(c

dr

l))
(r.

.
()

))
((

m
to

m

1)

(n
r.v

er
..

re
m

))
(u

nl
...

(m

.m
b.

r
(c

u
1)

r..

)
(n

w
l

I..

(c
u

1)
)))

)
(d

.fu
n

h.
rIt

-I-
v

(.u
pe

lu
m

I-r

)
(r

.m
ov

.-d
up

1I
cm

t.s

(a
pp

m
d

(.p
pl

r
‘m

pp
.n

d
(m

.p
cu

(lu

bd
.

(C
l)

(I-
r

(1
-w

C

i))
)

.u
pc

1.
..)

)
i-v

)))

(w
k.

-k
.rr

or
d.

‘(a

u.

ru
p.

r.
i-r

k.

yr
or

d.

m
et

ho
d.

))

(rr
tq

C

1.
w

‘#

(C
l~

rr
C

l.r
r

(O
bj

.c
t)

(Im
it

11
11

1.
 l u

p.
r.

i-r

k.
y#

or
dr

l .

th
od

.)
(m

u
:.u

p.
r.

:1
-r

:k
.y

w
or

da

:m
.th

od
.)

(II
W

(lu

bd
a

(rr
lf

I-v
*)

(re

nd

(m
.k

.In
rtc

ln
e.

nm

m
.)

‘In
iti

al
IZ

.
i-V

*)
)

In
itI

m
lIz

.
(1

.&
d&

(..

lf
iv

*)

(in
itI

v
..l

f
(c

dr

(i-
r

(i-
r*

Iri

t))
)

(*
cm

-m
at

ch

(k
.y

vo
rd

.
(I-

r*

Iri
t))

IV

*)
)

(s
&q

i-v

(h

ar
lt-

i-v

w
ps

rs

i-v
))

(rr
tq

m

at
ho

d#

(#
ca

n-
m

et
ho

d.

m
et

ho
ds

#e

lf)
)

(s
at

q
ke

yw
or

ds

(m
ak

e-
ke

yw
or

ds

(c
dr

i-v

)))

(re
vr

ita

ae
lf

is
it)

be

t
na

m
e

se
lf)

1)

1)

(s
en

d
C

la
m

n
'IM

Y
:n

am
.

'O
bj

ec
t

:1
-v

* (

iri
t)

:m
et

ho
ds

' (

cl
as

s
(la

m
bd

a
0

ilit
)

cl
as

s?

(la
m

bd
a

()
(a

en
d

(i-
v*

is

it)

'm
et

ac
la

ss
?)

)
m

et
ac

la
m

*?

(la
m

bd
a

()
(m

em
q

'm
up

er
l

i-v
))

?
(la

m
bd

a
(iv

)
(i-

v*

iv
))

?<
-

(la
m

bd
a

(iv

VI

(s
et

iv

VI
)

er
ro

r
(la

m
b-

d.

-m
*g

-
(p

rin
t

*m
e1

ec
te

ur

in
co

nn
u

"
se

1
"

de

la

cl
as

se

"
is

it)

in
iti

al
iz

e
(la

m
bd

a
(iv

*)

(in
it1

v
W

lf
(c

dr

(i-
v

(i-
v*

ia

it)
))

(s
ca

n-
m

at
ch

(k

ey
w

or
ds

(i-

v*

is
it)

)
iv

*)
))

1)

(s
en

d
C

la
ss

'n

ew

:n
am

a
'C

la
ar

:s

up
er

s
-(O

bj
ec

t)
:i-

v
'(n

am
e

su
pe

r8

i-v

ke
yw

dr
da

m

et
ho

ds
)

:m
et

ho
da

'(

ba
ai

cn
sv

(la

m
bd

a
()

(m
&e

In
st

an
cs

na

m
e)

)
m

w

(la
m

bd
a

i-v
*

(B
en

d
(s

en
d

se
lf

'b
as

ic
ne

w
)

'in
iti

al
iz

e
i-v

*)
)

in
lti

a1
iz

e
(la

m
bd

a
(iv

*)

(ru
n-

m
up

er
)

(rs
tq

i-v

(h

or
it-

i-v

‘u
pe

rs

i-v
))

(m
et

q
m

et
ho

ds

(w
an

-m
et

ho
ds

m

et
ho

dm

se
lf)

)
(s

st
q

kq
w

or
dm

(m

ak
e-

ke
yv

or
dr

(c

dr

i-v
)))

(s

ot

m
.m

e
ee

li)
)

1-
v

(lm
bd

t
0

i-v
)

m
ub

cl
as

m
of

(la

m
bd

a
0

m
up

er

m
et

ho
ds

D
ie

(la

m
bd

a
()

m
et

ho
d@

)
na

m
e

(la
m

bd
a

(1

na
m

e)

se
le

ct
or

l
(la

m
bd

a
()

(s
al

ac
to

rs

m
et

ho
ds

))
m

st
ho

dr

(la
m

bd
a

0
(m

et
ho

dm

m
et

ho
ds

))
1)

;
St

at
ic

LC

C
.B

I
to

Im

ta
nc

.
va

ria
bl

es

(d
ef

un

ne
m

di
c

(v
u

l-v
u

1-
va

l)
(w

he
n

1-
va

r
(if

(rq

(c

ar

1-
va

r)
va

r)
1-

va
l

(m
em

di
c

va
r

(c
dr

l-v

ar
)

(c
dr

l-v

al
)))

))
(d

of
un

fn

ra
f

(a
lo

t
ob

j)
(c

ar

(m
am

di
c

#l
ot

(i-

v
(c

la
m

m
-o

f
ob

j))

ob
j))

)
(d

rfu
n

m
at

ra
f

(m
lo

t
va

l
ob

j)
(rp

la
ca

(m

om
di

c
sl

ot

(i-
v

(c
la

sr
-o

f
ob

j))

ob
j)

vm
l)

Va
l)

(d
m

d
rrf

(a

lo
t

ob
j)

'(c
ar

(m

em
dl

c
.e

lo
t

(l-
v

(c
la

sm
-o

f
.o

bj
))

.o
bj

)))

(d
rfu

n
sc

an
-m

et
ho

d
(1

cl

an
m

e)

(#
cm

-p
ua

m
et

sr
m

1

(c
ad

r
1)

)
(v

he
n

(c
dd

r
1)

(#

ca
n-

bo
dy

1

(i-
v

cl
as

ae
)

cl
an

em
)))

(d
ef

uu

m
ea

n-
bo

dy

(1

i-v

cl
ae

se
)

(1
m

t
((p

ar
am

at
ar

m

(c
ad

r
1)

)
(s

up
er

-i-
v

(1
-v

(c

la
ss

-o
f

cl
as

lle
)))

)

(m
at

i
(c

dd
r

1)

* (
(rm

ac
ro

lrt

, (
ap

pe
nd

(m

ap
cu

#'

(la
m

bd
a

(s
lo

t)
(li

nt

al
ot

sl

ot
))

pa
ra

m
et

er
s)

(m

ap
ca

r
#'

(la
m

bd
a

(s
lo

t)'
(.r

lo
t

(la
m

bd
a(

va
r)

‘h
i

‘.v
ar

se

lf)
)))

i-v

)
(m

ap
ca

r
X'

(la
m

bd
a(

sl
ot

)
‘(,

nl
ot

(la

m
bd

a
(v

u)
‘fr

ef

‘.v
ar

(e

la
aa

-o
f

se
lf)

)))
)

ru
pe

r-1
-v

))
,O

(c
dd

r
I))

))
1)

)

(d
ef

un

re
nd

(o

bj

-a
el

*C
tO

r-
-a

rg
a-

)
(a

pp
l7

(lo

ok
up

-n

el
m

ct
or

-
(c

la
m

a-
of

ob

j)
ob

j)
ob

j
-a

rg
m

-1
)

Safe Metaclass Programming

Noury M. N. Bouraqadi-Saâdani
Noury.Bouraqadi@emn.fr
�Ecole des Mines de Nantes

BP 20722
44307 Nantes - France

Thomas Ledoux?

Thomas.Ledoux@emn.fr
�Ecole des Mines de Nantes

BP 20722
44307 Nantes - France

Fred Rivard�

Fred Rivard@oti.com
�Ecole des Mines & OTI Inc. Nantes

BP 20722
44307 Nantes - France

Abstract

In a system where classes are treated as �rst class
objects, classes are de�ned as instances of other
classes called metaclasses. An important bene�t of
using metaclasses is the ability to assign properties
to classes (e.g. being abstract, being �nal, trac-
ing particular messages, supporting multiple in-
heritance), independently from the base-level code.
However, when both inheritance and instantiation
are explicitly and simultaneously involved, commu-
nication between classes and their instances raises
the metaclass compatibility issue. Some languages
(such as Smalltalk) address this issue but do not
easily allow the assignment of speci�c properties
to classes. In contrast, other languages (such as
Clos) allow the assignment of speci�c properties
to classes but do not tackle the compatibility issue
well.

In this paper, we describe a new model of meta-
level organization, called the compatibility model,
which overcomes this di�culty. It allows safe
metaclass programming since it makes it possible to
assign speci�c properties to classes while ensuring
metaclass compatibility. Therefore, we can take
advantage of the expressive power of metaclasses
to build reliable software. We extend this com-
patibility model in order to enable safe reuse and
composition of class speci�c properties. This ex-
tension is implemented in NeoClasstalk, a fully
re
ective Smalltalk.

Keywords: Metaclasses, compatibility, class
speci�c properties, class property propagation.

1 Introduction

It has been shown that programming with
metaclasses is of great bene�t [KAJ+93][Zim96]
[BGL98]. An interesting use of metaclasses is the
assignment of speci�c properties to classes. For ex-
ample, a class can be abstract, have a unique in-
stance, trace messages received by its instances,
de�ne pre-post conditions on its methods, forbid
rede�nition of some particular methods. . .These
properties can be implemented using metaclasses,
allowing thereby the customization of the classes
behavior [LC96].

From an architectural point of view, using meta-
classes organizes applications into abstraction lev-
els. Each level describes and controls the level
immediately below to which it is causally con-
nected [Mae87]. Rei�ed classes communicate with
other objects including their own instances. Thus,
classes can send messages to their instances and
instances can send messages to their classes. Such
message sending is named inter-level communica-

tion [MMC95].
However, careless inheritance at one level may

break inter-level communication resulting in an is-
sue called the compatibility issue [BSLR96]. We
have identi�ed two symmetrical kinds of compati-
bility issues. The �rst one is the upward compatibil-
ity issue, which was named metaclass compatibility

by Nicolas Graube [Gra89], and the second one is
the downward compatibility issue. Both kinds of
compatibility issues are important impediments to
metaclass programming that one should always be
aware of.

?Funded by IBM Global Services - France.
�Since the 1st July 1998: Object Technology International Inc.

2670 Queensview Drive, Ottawa, Ontario, Canada K2B 8K1.

Currently, none of the existing languages deal-
ing with metaclasses allow the assignment of spe-
ci�c properties to classes while ensuring compat-
ibility. Clos [KdRB91] allows one to assign any
property to classes, but it does not ensure compati-
bility. On the other hand, both SOM [SOM93] and
Smalltalk [GR83] address the compatibility is-
sue but they introduce a class property propagation
problem. Indeed, a property assigned to a class is
automatically propagated to its subclasses. There-
fore, in SOM and Smalltalk, a class cannot have
a speci�c property. For example, when assigning
the abstractness property to a given Smalltalk

class, subclasses become abstract too [BC89]. It
follows that users face a dilemma: using a language
that allows the assignment of speci�c class proper-
ties without ensuring compatibility, or using a lan-
guage that ensures compatibility but su�ers from
the class property propagation problem.

In this paper, we present a model | the com-

patibility model| which allows safe metaclass pro-
gramming, i.e. it makes it possible to assign spe-
ci�c properties to classes without compromising
compatibility. In addition to ensuring compatibil-
ity, the compatibility model avoids class property
propagation: a class can be assigned speci�c prop-
erties without any side-e�ect on its subclasses.

We implemented the compatibility model in
NeoClasstalk, a Smalltalk extension which
introduces many features including explicit meta-
classes [Riv96]. Our experiments [Led98][Riv97]
showed that the compatibility model allows pro-
grammers to fully take advantage of the expressive
power of metaclasses. This e�ort has resulted (i) in
a tool that permits a programmer unfamiliar with
metaclasses to transparently deal with class spe-
ci�c properties, and (ii) in an approach allowing
reuse and composition of class properties.

This paper is organized as follows. Section 2
presents the compatibility issue. We give some ex-
amples to show its signi�cance. Section 3 shows
how existing programming languages address the
compatibility issue, and how they deal with the
property propagation problem. Section 4 describes
our solution and illustrates it with an example. In
section 5, we deal with reuse and composition of
class speci�c properties within the compatibility
model. Then, we sketch out the use of the com-

patibility model for both base-level and meta-level
programmers. The last section contains a conclud-
ing summary.

2 Inter-level communication and compati-

bility

We de�ne inter-level communication as any mes-
sage sending between classes and their instances
(see Figure 1). Indeed, class objects can interact
with other objects by sending and receiving mes-
sages. In particular, an instance can send a mes-
sage to its class and a class can send a message to
some of its instances. We use Smalltalk as an
example to illustrate this issue1.

Message Sending

aA

A
Class level

Instance level

Figure 1: Inter-level communication

Two methods allow inter-level communication
in Smalltalk: new and class. When one of them
is used, the involved objects belong to di�erent lev-
els of abstraction2:

� An object receiving the class message returns
its class. Then, the class method makes it pos-
sible to go one level up. The following two
instance methods | excerpted from Visual
Works Smalltalk | include message send-
ing to the receiver's class.

? message name is sent to the class:
Object�printOn: aStream
j title j
title := self class name.
. . .

? message daysInYear: is sent to the class:

Date�daysInYear
"Answer the number of days in the year
represented by the receiver."
" self class daysInYear: self year

1We use the Smalltalk syntax and terminology throughout this
paper.

2Static measures we made over a Visual Works Smalltalk image
show that inter-level communication is very frequent. 25% of classes
include instance methods referencing the class and 24% of metaclasses
de�ne methods referencing an instance.

� A class receiving the new message returns a
new instance. Therefore, the new method
makes it possible to go one level down. The
following two class methods include message
sending to the newly created instances.

? message at:put: is sent to a new instance:

ArrayedCollection class�with: anObject
j newCollection j
newCollection := self new: 1.
newCollection at: 1 put: anObject.
"newCollection

? message on: is sent to a new instance:
Browser class�openOn: anOrganizer
self openOn: (self new on: anOrganizer) with-

TextState: nil

Thus, inter-level communication in Smalltalk
is materialized by sending the messages new and
class. Other languages where classes are rei�ed
(such as Clos and SOM) also allow similar mes-
sage sending.

Since these inter-level communication messages
are embedded in methods, they are inherited when-
ever methods are inherited. Ensuring compatibility

means making sure that these methods will not in-
duce any failure in subclasses, i.e. all sent messages
will always be understood. We have identi�ed two
kinds of compatibility: upward compatibility3 and
downward compatibility.

<i-foo>

MetaA
<c-bar>

MetaB

A Binheritance instantiation

 self class c-bar
A>>i-foo ?

Figure 2: Compatibility need to be ensured at a higher level

2.1 Upward compatibility

Suppose A implements a method i-foo that sends
the c-bar message to the class of the receiver (see
Figure 2). B is a subclass of A. When i-foo is sent
to an instance of B, the B class receives the c-bar

message. In order to avoid any failure, B should
understand the c-bar message (i.e. MetaB should
implement or inherit a method c-bar).

3Nicolas Graube named this issue metaclass compatibility [Gra89].

De�nition of upward compatibility:

Let B be a subclass of the class A, MetaB the

metaclass of B, and MetaA the metaclass of A.
Upward compatibility is ensured for MetaB and

MetaA i�: every possible message that does not

lead to an error for any instance of A, will not
lead to an error for any instance of B.

2.2 Downward compatibility

Suppose MetaA implements a method c-foo that
sends the i-bar message to a newly created instance
(see Figure 3). MetaB is created as a subclass of
MetaA. When c-foo is sent to B (an instance of
MetaB), B will create an instance which will receive
the i-bar message. In order to avoid any failure,
instances of B should understand the i-bar mes-
sage (i.e. B should implement or inherit the i-bar

method).

<i-bar>

MetaA
<c-foo>

MetaB

? BAinheritance instantiation

MetaA>>c-foo
 self new i-bar

Figure 3: Compatibility need to be ensured at a lower level

De�nition of downward compatibility:

Let MetaB be a subclass of the metaclass MetaA.

Downward compatibility is ensured for two
classes B instance of MetaB and A instance of

MetaA i�: every possible message that does not
lead to an error for A, will not lead to an error
for B.

3 Existing models

We will now show why none of the known mod-
els allow the assignment of speci�c properties to
classes while ensuring compatibility.

3.1 CLOS

When (re)de�ning a class in Clos, the validate-

superclass generic function is called, before the di-
rect superclasses are stored [KdRB91]. As a de-
fault, validate-superclass returns true if the meta-

class of the new class is the same as the metaclass
of the superclass4, i.e. classes and their subclasses
must have the same metaclass. Therefore, incom-
patibilities are avoided but metaclass programming
is very constrained.

inheritance
instantiation BA

MetaA

Figure 4: By default in Clos, subclasses must share the
same metaclass as their superclass

Figure 4 shows a hierarchy of two classes that
illustrates the Clos default compatibility manage-
ment policy. Since class B inherits from A, B and
A must have the same metaclass.

In order to allow the de�nition of classes with
di�erent behaviors, programmers usually rede�ne
the validate-superclass method to make it always
return true. Thus, Clos programmers can have
total freedom to use a speci�c metaclass for each
class. So, they can assign speci�c properties to
classes, but the trade-o� is that they need to be
always aware of the compatibility issue.

3.2 SOM

SOM is an IBM CORBA compliant prod-
uct which is based on a metaclass architecture
[DF94b]. The SOM kernel follows the ObjVlisp
model [Coi87]. SOM metaclasses are explicit and
can have many instances. Therefore, users have
complete freedom to organize their metaclass hier-
archies.

3.2.1 Compatibility issue in SOM

SOM encourages the de�nition and the use of ex-
plicit metaclasses by introducing a unique con-
cept named derived metaclasses which deals with
the upward compatibility issue [DF94a]. At
compile-time, SOM automatically determines an

4In fact, it also returns true if the superclass is the class named t,
or if the metaclass of one argument is standard-class and the metaclass
of the other is funcallable-standard-class.

appropriate metaclass that ensures upward com-
patibility. If needed, SOM automatically creates a
new metaclass named a derived metaclass to ensure
upward compatibility.

instantiationinheritance

 self class c-bar

A>>i-foo

class: B;
parent: A;
metaclass: MetaB;

MetaA

BA

Derived
MetaB

<c-bar>

<i-foo>

Figure 5: SOM ensures upward compatibility using derived
metaclasses

Suppose that we want to create a class B, in-
stance of MetaB and subclass of A. SOM will de-
tect an upward compatibility problem, sinceMetaB

does not inherit from the metaclass of A (MetaA).
Therefore, SOM automatically creates a derived
metaclass (Derived), using multiple inheritance in
order to support all necessary class methods and
variables5. Figure 5 shows the resulting construc-
tion. When an instance of B receives i-foo, it goes
one level higher and sends c-bar to the B class. B

understands the c-bar message since its metaclass
(i.e. Derived) is a derived metaclass which inherits
from both MetaB and MetaA.

inheritance
instantiation

 self new i-bar

MetaA>>c-foo

SOMObject

MetaA MetaB

BA
<i-bar>

<c-foo>
SOMClass

Figure 6: SOM downward compatibility failure example

SOM does not provide any policy or mechanism
to handle downward compatibility. Suppose that
MetaB is created as a subclass of MetaA (see Fig-
ure 6). The c-foo method which is inherited by
MetaB sends the i-bar message to a new instance.
When the B class receives the c-foomessage, a run-
time error will occur because its instances do not
understand the i-bar message.

5The semantics of derived metaclasses guarantees that the declared
metaclass takes precedence in the resolution of multiple inheritance
ambiguities (i.e. MetaB beforeMetaA). Besides, it ensures the instance
variables of the class are correctly initialized by the use of a complex
mechanism.

3.2.2 Class property propagation in SOM

SOM does not allow the assignment of a property
to a given class, without making its subclasses be
assigned the same property. We name this defect
the class property propagation problem. In the fol-
lowing example, we illustrate how derived meta-
classes implicitly cause undesirable propagation of
class properties.

inheritance
instantiation

class: B;

parent: A;

metaclass: SoleInstance;

Derived
SoleInstance

Released

BA

Figure 7: Class property propagation in SOM

Suppose that the A class of Figure 7 is a released
class, i.e. it should not be modi�ed any more.
This property is useful in multi-programmer de-
velopment environments for versionning purposes.
In order to avoid any change, A is an instance of
the Released metaclass. Let B a class that has a
unique instance: B is an instance of the SoleIn-

stance metaclass. But as B is a subclass of A, SOM
creates B as instance of an automatically created
derived metaclass which inherits from both SoleIn-

stance and Released. Thus, as soon as B is created,
it is automatically \locked" and acts like a released
class. So, we cannot de�ne any new method on it!

3.3 Smalltalk-80

In Smalltalk, metaclasses are partially hidden
and automatically created by the system. Each
metaclass is non-sharable and strongly coupled
with its sole instance. So, the metaclass hierarchy
is parallel to the class hierarchy and is implicitly
generated when classes are created.

3.3.1 Compatibility issue in Smalltalk-80

Using parallel inheritance hierarchies, the Small-
talk model ensures both upward and downward
compatibility. Indeed, any code dealing with new

or classmethods, is inherited and works properly.

instantiationinheritance
A B

B class
<c-bar>
<c-foo>

<i-foo>

A class>>c-foo

 self new i-bar

 self class c-bar

A>>i-foo

A class

<i-bar>

Figure 8: Smalltalk ensures both upward and downward
compatibilities

When one creates the B class, a subclass of A
(see Figure 8), Smalltalk automatically gener-
ates the metaclass of B (\B class"6), as a subclass
of \A class", the metaclass of A. Suppose A imple-
ments a method i-foo that sends c-bar to the class
of the receiver. If i-foo is sent to an instance of
B, the B class receives the c-bar message. Thanks
to the parallel hierarchies, the B class understands
the c-bar message, and upward compatibility is en-
sured. In a similar manner, downward compatibil-
ity is ensured thanks to the parallel hierarchy.

3.3.2 Class property propagation in Small-

talk-80

Since metaclasses are automatically and implicitly
managed by the system, Smalltalk drastically
reduces the opportunity to change class behaviors,
making metaclass programming \anecdotal". As
with SOM, Smalltalk does not allow the assign-
ment of a property to a class without propagating
it to its subclasses.

inheritance

A class

A

<new>
B class

B

A class>>new

 self error: ’I am Abstract’

instantiation

Figure 9: Class property propagation in Smalltalk

In Figure 9, the A class is abstract since its sub-
classes must implement some methods to complete
the instance behavior. B is a concrete class as it im-
plements the whole set of these methods. Suppose

6The name of a Smalltalk metaclass is the name of its unique
instance post�xed by the word `class'.

that we want to enforce the property of abstract-
ness of A. In order to forbid instantiating A, we de-
�ne the class method A class�new which raises an
error. Unfortunately, \B class" inherits the method
new from \A class". As a result, attempting to cre-
ate an instance of B raises an error7!

4 The compatibility model

Among the previous models, only the Smalltalk
one with its parallel hierarchies ensures full com-
patibility. However, it does not allow the assign-
ment of speci�c properties to classes. On the
other hand, only the Clos model allows the as-
signment of speci�c properties to classes. Unfor-
tunately, it does not ensure compatibility. We be-
lieve that these two goals can both be achieved by a
new model which makes a clear separation between
compatibility and class speci�c properties.

inheritance
instantiation

Abstract + A class>>new

 self error: ’I am Abstract’

B class

BA

A class

Abstract + A class
<new>

Figure 10: Avoiding the propagation of abstractness

We illustrate this idea of separation of concerns
by refactoring the example of Figure 9. We create
a new metaclass named \Abstract + A class" as a
subclass of \A class" (see Figure 10). The A class is
rede�ned as an instance of this new metaclass. As
\Abstract + A class" rede�nes the new method to
raise an error, A cannot have any instance. How-
ever, since \B class" is not a subclass of \Abstract
+ A class", the B class remains concrete. The gen-
eralization of this scheme is our solution, named
the compatibility model.

In the remainder of this paper, names of meta-
classes de�ning some class property are denoted
with the concatenation of the property name, the
+ symbol and the superclass name. For exam-
ple, \Abstract + A class" is a subclass of \A class"

7This example is deliberately simple, and one could avoid this
problem by rede�ning new in \B class". But, this solution is a kind of
inheritance anomaly [MY93] that increases maintenance costs.

that de�nes the property of abstractness named
Abstract.

4.1 Description of the compatibility model

The compatibility model extends the Smalltalk
model by separating two concerns: compatibility
and speci�c class properties. A metaclass hierar-
chy parallel to the class hierarchy ensures both up-
ward and downward compatibility like in Small-

talk. An extra metaclass \layer" is introduced
in order to locally assign any property to classes.
Classes are instances of metaclasses belonging to
this layer. So, the compatibility model is based on
two \layers" of metaclasses, each one addressing a
unique concern:

Compatibility concern: This issue is addressed
by the metaclasses organized in a hierarchy
parallel to the class hierarchy. We name such
metaclasses: compatibility metaclasses. They
de�ne all the behavior that must be propa-
gated to all (sub)classes. All class methods
which send messages to instances should be
de�ned in these metaclasses. Besides, all mes-
sages sent to classes by their instances should
be de�ned in these metaclasses too.

Speci�c class properties concern: This issue
is addressed by metaclasses that de�ne the
class speci�c properties. We name such meta-
classes: property metaclasses. A class with
a speci�c property is instance of a prop-
erty metaclass which inherits from the corre-
sponding compatibility metaclass. The prop-
erty metaclass is not joined to other property
metaclasses, since it de�nes a property speci�c
to the class.

Figure 11 shows8 the compatibility model ap-
plied to a hierarchy consisting of two classes: A and
B. They are respectively instances of the \AProp-

erty + AClass" and \BProperty + BClass" meta-
classes. \AProperty + AClass" de�nes properties
speci�c to class A, while \BProperty + BClass" de-
�nes properties speci�c to class B. As \AProperty +
AClass" and \BProperty + BClass" are not joined

8Compatibility metaclasses are surrounded with a dashed line and
property metaclasses are drawn inside a grey shape.

AClass BClass

metaclasses
Compatibility

B

metaclasses
Property

<i-foo>
A

<i-bar>

A>>i-foo

 self new i-bar

AClass>>c-foo

 self class c-bar
inheritance

instantiation

<c-foo>

BProperty
<c-bar>

AProperty
AClass

+ +
BClass

Figure 11: The compatibility model

by any link, class property propagation does not
occur. Thus, A and B can have distinct properties.

Since \AProperty + AClass" and \BProperty +

BClass" are subclasses of the AClass and BClass

metaclasses, both upward and downward compat-
ibility are guaranteed. Suppose that A de�nes two
instance methods i-foo and i-bar. The i-foo method
sends the c-bar message to the class of the receiver.
The i-barmethod is sent to a new instance by the c-
foo method. Because the AClass and BClass meta-
class hierarchy is parallel to the A and B class hier-
archy, inter-level communication failure is avoided.

4.2 Example: Refactoring the Smalltalk-

80 Boolean hierarchy

The Boolean hierarchy of Smalltalk9 is de-
picted in Figure 12. Boolean is an abstract class
which de�nes a protocol shared by True and
False. True and False are concrete classes that
cannot have more than one instance. These prop-
erties (i.e. abstractness and having a sole instance)
are implicit in Smalltalk. Using the compati-
bility model, we refactor the Boolean hierarchy to
emphasize them.

We �rst create \Boolean class", which is a com-
patibility metaclass. The second step consists
of creating the property metaclass \Abstract +

Boolean class", which enforces the Boolean class to
be abstract. Finally, we build the Boolean class by
instantiating the \Abstract + Boolean class" meta-
class.

To refactor the False class, we �rst create the
\False class" metaclass, as a subclass of \Boolean

9We prefer this academic example to emphasize our ideas rather
than a more complex example which should require a more detailed
presentation.

instantiation
inheritance

Boolean class
False class

Boolean

True class

True

False

Figure 12: The Boolean hierarchy of Smalltalk

class" to ensure the compatibility. The second step
consists of creating the property metaclass \SoleIn-
stance + False class", which enforces the False class
to have at most one instance. At last, we create
the False class by instantiating the \SoleInstance +
False class" metaclass. The True class is refactored
in the same way. The result of rebuilding the whole
hierarchy of Boolean is shown in Figure 13.

Abstract + Boolean class SoleInstance + False class

instantiation

inheritance

False class

Boolean

Boolean class

False

True class

SoleInstance + True class

True

Figure 13: The Boolean hierarchy after refactoring

5 Reuse and composition within the com-

patibility model

We have experimented the compatibility model
in NeoClasstalk10 [Riv97], a fully re
ective
Smalltalk. We quickly faced the need of class
property reuse and composition. Indeed, unrelated
classes belonging to di�erent hierarchies can have
the same properties, and a given class can have
many properties.

In the previous section, both the True class and
the False class have the same property: having a
unique instance. Besides, we assigned only one
property to each class of the Boolean hierarchy.

10
NeoClasstalk and all related papers can be downloaded from

http://www.emn.fr/cs/object/tools/neoclasstalk/neoclasstalk.html

But, a class need to be assigned many properties.
For example, the False class must not only have
a unique instance, but it also should not be sub-
classed (such a class is �nal in Java terminology).
So, we have to reuse and compose these class prop-
erties with respect to our compatibility model.

In this section, we propose an extension of our
compatibility model that deals with reuse and com-
position of class properties. Any language where
classes are treated as regular objects may integrate
our extended compatibility model. NeoClass-

talk has been used as a �rst experimentation plat-
form.

5.1 Reuse of class properties

In Smalltalk, since metaclasses behave in a dif-
ferent way than classes, they are de�ned as in-
stances of a particular class, a meta-metaclass,
called Metaclass. Metaclass de�nes the behavior of
all metaclasses in Smalltalk. For example, the
name of a metaclass is the name of its sole instance
post�xed by the word `class'.

Metaclass�name
"thisClass name, ' class'

We take advantage of this concept of meta-
metaclasses to reuse class properties. Since meta-
classes implementing di�erent properties have dif-
ferent behaviors, we need one meta-metaclass for
each class property. Property metaclasses de�ning
the same class property are instances of the same
meta-metaclass.

When a property metaclass is created, the meta-
metaclass initializes it with the de�nition of the
corresponding class property. Thus, the code
(instance variables, methods, . . .) correspond-
ing to the de�nition of the class property, is
automatically generated. Reuse is achieved by cre-
ating property metaclasses de�ning the same class
property as instances of the same meta-metaclass,
i.e. they are initialized with the same class prop-
erty de�nition (an example of such an initialization
is given in section 5.4.2).

The root of the meta-metaclass hierarchy named
PropertyMetaclass describes the default structure
and behavior of property metaclasses. For exam-
ple, the name of a property metaclass is built from
the property name and the superclass name:

PropertyMetaclass�name
"self class name, '+', self superclass name

In the refactored Boolean hierarchy of section
4.2, both \SoleInstance + False class" and \SoleIn-

stance + True class" de�ne the property of having
a unique instance. Reuse is achieved by de�ning
both \SoleInstance + False class" and \SoleInstance

+ True class" as instances of SoleInstance, a sub-
class of PropertyMetaclass (see Figure 14).

SoleInstance + False classAbstract + Boolean class

m
etaclass level

class level
m

eta-m
etaclass level

False class

Booleaninstantiation

inheritance

Boolean class

False

True class

SoleInstance + True class

Abstract

SoleInstance

True

PropertyMetaclass

Figure 14: Reuse properties in the Boolean hierarchy

5.2 Composition of class properties

Since a given class can have many properties, the
model must support the composition of class prop-
erties. We chose to use many property metaclasses
organized in a single inheritance hierarchy, where
each metaclass implements one speci�c class prop-
erty.

SoleInstance
False class

+
Boolean class

Abstract
+

Boolean class False class

+
SoleInstance

+
False class

Final

FalseBoolean

instantiationinheritance

Figure 15: Assigning two properties to False

To illustrate this idea, we modify the in-
stantiation link for the False class (see Fig-
ure 15). We de�ne two property metaclasses,
one for each property. The �rst property meta-
class is \SoleInstance + False class", which inher-
its from the compatibility metaclass \False class".
The second one is \Final + SoleInstance + False

class", which is the class of False. It is de�ned as
a subclass of \SoleInstance + False class". The re-
sulting scheme respects the compatibility model: it
allows the assignment of two speci�c properties to
the False class and still ensures compatibility.

5.2.1 Con
ict management

The solution of the property metaclasses compo-
sition issue is not trivial. Indeed, it is necessary
to deal with con
icts that arise when composing
di�erent property metaclasses. When using inher-
itance to compose property metaclasses, two kinds
of con
icts can arise: name con
icts and value con-

icts [DHH+95].

Name con
icts happen when orthogonal prop-
erty metaclasses de�ne instance variables or meth-
ods which have the same name. Two property
metaclasses are orthogonal when they de�ne un-
related class properties. Name con
icts for both
instance variables and methods are avoided by
adapting the de�nition of a new property meta-
class according to its superclasses. For exam-
ple, although the two property metaclasses \Sole-
Instance + False class" and \SoleInstance + True

class" de�ne the same property for their respective
instances (classes False and True), they may use dif-
ferent instance variable names or method names.

Value con
icts happen when non-orthogonal
property metaclasses de�ne methods which have
the same name. Most of these con
icts are avoided
by making the property metaclass hierarchy act as
a cooperation chain, i.e. a property metaclass ex-
plicitly refer to the overridden methods de�ned in
its superclasses11. Therefore, each property meta-
class acts like a mixin [BC90].

11In NeoClasstalk, as in Smalltalk, this is achieved using the
pseudo-variable super.

5.2.2 Example of cooperation between

property metaclasses

Suppose that we want to assign two speci�c prop-
erties to the False class of Figure 16: (i) tracing

all messages (Trace) and (ii) having breakpoints
on particular methods (BreakPoint). These two
properties deal with the message handling which
is based in NeoClasstalk on the technique of
the \method wrappers" described in [Duc98] and
[BFJR98]. The executeMethod:receiver:arguments:

method is the entry point to handle mes-
sages in NeoClasstalk, i.e. customizing exe-

cuteMethod:receiver:arguments: allows a specializa-
tion of the message sending12. Thus, when the ob-
ject false receives a message, the class False receives
the message executeMethod:receiver:arguments:.

False class

instantiation

inheritance

False

Trace

BreakPoint

BreakPoint
+

False class

Trace
+

BreakPoint

False class
+

PropertyMetaclass

m
etaclass level

class level
m

eta-m
etaclass level

Figure 16: Composition of non-orthogonal properties

According to the inheritance hierarchy, (1) the
trace is �rst done, then (2), by the use of super, the
breakpoint is performed, and (3) a regular method
application is �nally executed (again called using
super).

� (3) StandardClass�executeMethod: method receiver:
rec arguments: args

. . .

� (2) BreakPoint+False class�executeMethod: method
receiver: rec arguments: args

method selector == stopSelector
ifTrue: [self halt: 'Breakpoint for ', stopSelector].

"super executeMethod: method receiver: rec argu-
ments: args

12A default executeMethod:receiver:arguments: method is provided by
StandardClass (the root of all metaclasses in NeoClasstalk) which just
applies the method on the receiver with the arguments.

metaclasses
Property

��
��
��
��

�
�
�
�

�
�
�
�

������
+
+

+
BClass

Property(j)
��
��
��
��

instantiation

�
�
�
�

����������
+
+
+

AClass

Property(i)

Property(k)

metaclasses

inheritance

��

�
�
�
�

Compatibility

BClassAClass

A B

+
+

BClass

BClass

+
Property(n)

Property(j)

Property(j)

Property(k) Property(n)

Property(j)

Property(i)

+

+
AClass

Property(i)

Property(i)
+

AClass

Property(x)
PropertyMetaclass

Figure 17: The Extended Compatibility Model

� (1) Trace+BreakPoint+False class�executeMethod:
method receiver: rec arguments: args

self transcript show: method selector; cr.
"super executeMethod: method receiver: rec argu-

ments: args

5.3 The extended compatibility model

Generalizing previous examples allows us to de�ne
the extended compatibility model (see Figure 17)
which enables reusing and composing class prop-
erties. Each property metaclass de�nes the in-
stance variables and methods involved in a unique
property. Property metaclasses speci�c to a given
class are organized in a single hierarchy. The root
of this hierarchy is a subclass of a compatibility
metaclass13. Each property metaclass is an in-
stance of a meta-metaclass which describes a spe-
ci�c class property, allowing its reuse.

Metaclass creation, composition and deletion
are managed automatically with respect to the ex-
tended compatibility model. Each time a new class
is created, a new compatibility metaclass is auto-
matically created. This can be done in the same
way that Smalltalk builds its parallel metaclass
hierarchy. The assignment of a property to this
class results in the insertion of a new metaclass
into its property metaclass hierarchy. This inser-

13This single hierarchy may be compared to an explicit lineariza-

tion of property metaclasses composed using multiple inheritance
[DHHM94].

tion is made in two steps14:

1. �rst, the new property metaclass becomes a
subclass of the last metaclass of the property
metaclass hierarchy;

2. then, the class becomes instance of this new
property metaclass.

NeoClasstalk provides protocols for dynami-
cally changing the class of an object (changeClass:)
and the superclass of a class (superclass:) [Riv97].
Thus, the implementation of these two steps is im-
mediate in NeoClasstalk, and is provided by the
composeWithPropertiesOf: method.

PropertyMetaclass�composeWithPropertiesOf: aClass
self superclass: aClass class.
aClass changeClass: self.

5.4 Programming within the extended

compatibility model

We distinguish two kinds of programmers:
(i) \base level programmers" who implement appli-
cations using the language and development tools,
and (ii) \meta level programmers" for whom the
language itself is the application.

14The removal of a property metaclass is done in a symmetrical
way.

5.4.1 Base Level Programming

To make our model easy to use for a \base-level
programmer", the NeoClasstalk programming
environment includes a tool that allows one to as-
sign di�erent properties to a given class using a
Smalltalk-like browser (see Figure 18). These
properties can be added and removed at run-time.
The metaclass level is automatically built accord-
ing to the selection of the \base-level programmer".

Figure 18: Speci�c properties assigned to a class using a
browser

5.4.2 Meta Level Programming

In order to introduce new class properties, \meta-
level programmers" must create a subclass of the
PropertyMetaclassmeta-metaclass. This new meta-
metaclass stores the instance variables and the
methods that should be de�ned by its instances
(property metaclasses). When this new meta-
metaclass is instantiated, the previous instance
variables are added to the resulting property meta-
class and the methods are compiled15 at initializa-
tion time16.

For example, the evaluation of the following ex-
pression creates a property metaclass | instance of

15A faster solution consists of doing the compilation only once,
resulting in proto-methods [Riv97]. Thus, when the property meta-
class gets initialized, proto-methods are \copied" into the method
dictionary of the property metaclass, allowing a fast instantiation of
meta-metaclasses.

16This assumes that initialization is part of the creation pro-
cess, which is true in almost every language. This is traditionnally
achieved in Smalltalk by the rede�nition of new into super new initialize
[SKT96].

the meta-metaclass Trace | that assigns the trace
property to the True class.

Trace new composeWithPropertiesOf: True

In order to achieve the trace, messages must
be captured and then logged in a text col-
lector. Therefore, property metaclasses in-
stances of Trace must de�ne an instance vari-
able (named transcript) corresponding to a text
collector and a method that handles messages.
Message handling is achieved using the ex-

ecuteMethod:receiver:arguments: method which
source code was already presented in 5.2.2. These
de�nitions are generated when the property meta-
classes are initialized, i.e. using the initialize

method of the Trace meta-metaclass:

Trace�initialize
super initialize.
self instanceVariableNames:' transcript '.
self generateExecuteMethodReceiverArguments.

6 Conclusion

Considering classes as �rst class objects organizes
applications in di�erent abstraction levels, which
inevitably raises upward and downward compat-
ibility issues. Existing solutions addressing the
compatibility issues (such as Smalltalk) do not
allow the assignment of speci�c properties to a
given class without propagating them to its sub-
classes.

The compatibility model proposed in this paper
addresses the compatibility issue and allows the as-
signment of speci�c properties to classes without
propagating them to subclasses. This is achieved
thanks to the separation of the two involved con-
cerns: compatibility and class properties. Upward
and downward compatibilities are ensured using
the compatibility metaclass hierarchy that is par-
allel to the class hierarchy. The property meta-

classes, allowing the assignment of speci�c proper-
ties to classes, are subclasses of these compatibil-
ity metaclasses. Therefore, we can take advantage
of the expressive power of metaclasses to de�ne,
reuse and compose class properties in a environ-
ment which supports safe metaclass programming.

Class properties improve readability, reusabil-
ity and quality of code by increasing separation of
concerns [HL95] [Lie96] [KLM+97]. Indeed, they

allow a better organization of class libraries and
frameworks for designing reliable software. We are
strongly convinced that our compatibility model
enables separation of concerns based on the meta-
class paradigm. Therefore, it promotes building
reliable software which is easy to reuse and main-
tain.

Acknowledgments

The authors are grateful to Mathias Braux, Pierre
Cointe, St�ephane Ducasse, Nick Edgar, Philippe
Mulet, Jacques Noy�e, Nicolas Revault, and Mario
S�udholt for their valuable comments and sugges-
tions. Special thanks to the anonymous referees
who provided detailed and thought-provoking com-
ments.

References

[BC89] Jean-Pierre Briot and Pierre Cointe.
Programming with Explicit Meta-
classes in Smalltalk. In Proceedings of
OOPSLA'89, pages 419{431, New Or-
leans, Louisiana, USA, October 1989.
ACM.

[BC90] Gilad Bracha and William Cook.
Mixin-based Inheritance. In Proceed-
ings of ECCOP/OOPSLA'90, Ottawa,

Canada, pages 303{311, October 1990.

[BFJR98] John Brant, Brian Foote, Ralph E.
Johnson, and Donald Roberts. Wrap-
pers to the Rescue. In Proceedings of

ECOOP'98, July 1998.

[BGL98] Jean-Pierre Briot, Rachid Guerraoui,
and Klaus-Peter L�ohr. Concurrency
and Distribution in Object Oriented
Programming. ACM Computer Sur-

veys, 1998. to appear.

[BSLR96] Noury Bouraqadi-Saâdani, Thomas
Ledoux, and Fred Rivard. Metaclass
Composability. In ECOOP'96 work-

shop : \Composability Issues in Object
Orientation", Linz, Austria, July 1996.

[Coi87] Pierre Cointe. Metaclasses are First
Class: the ObjVlisp Model. In Pro-

ceedings of OOPSLA'87, pages 156{
167, Orlando, Florida, USA, October
1987. ACM.

[DF94a] Scott Danforth and Ira R. Forman. De-
rived Metaclasses in SOM. In Proceed-

ings of TOOLS EUROPE'94, pages
63{73, Versailles, France, 1994.

[DF94b] Scott Danforth and Ira R. Forman. Re-

ections on Metaclass Programming in
SOM. In Proceedings of OOPSLA'94,
pages 440{452, October 1994.

[DHH+95] Roland Ducournau, Michel Habib,
Marianne Huchard, Marie-Laure Mug-
nier, and Amedeo Napoli. Le point
sur l'h�eritage multiple. Techniques et
Sciences Informatique, 14(3):309{345,
1995. (In french).

[DHHM94] Roland Ducournau, Michel Habib,
Marianne Huchard, and Marie-Laure
Mugnier. Proposal for a Mono-
tonic Multiple Inheritance Lineariza-
tion. In Proceedings of OOPSLA'94,
pages 164{175, Portland, Oregon, Oc-
tober 1994.

[Duc98] St�ephane Ducasse. Evaluating Mes-
sage Passing Control Techniques in
Smalltalk. Journal of Object-Oriented
Programming, 1998. to appear.

[GR83] A. Goldberg and D. Robson. Smalltalk-
80, The language and its implementa-

tion. Addison Wesley, Readings, Mas-
sachusetts, 1983.

[Gra89] Nicolas Graube. Metaclass Compati-
bility. In Proceedings of OOPSLA'89,
pages 305{315, New Orleans, Lou-
siana, October 1989.

[HL95] Walter L. H�ursch and Cristina Videira
Lopes. Separation of Concerns. Tech-
nical Report NU-CCS-95-03, College of
Computer Science, Northeastern Uni-
versity, Boston, MA, February 1995.

[KAJ+93] Gregor Kiczales, J. Michael Ash-
ley, Luis H. Rodriguez Jr., Amin
Vahdat, and Daniel G. Bobrow.
\Object-Oriented Programming: The
CLOS Perspective" edited by Andreas

P�pcke, chapter Metaobject Proto-
cols: Why We Want Them and What
Else They Can Do, pages 101{118.
The MIT Press, Cambridge, Mas-
sachusetts, 1993.

[KdRB91] Gregor Kiczales, Jim des Rivi�eres, and
Daniel G. Bobrow. The Art of the

Metaobject Protocol. MIT Press, 1991.

[KLM+97] Gregor Kiczales, John
Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Lopes, Jean-Marc Lo-
ingtier, and John Irwin. Aspect-
Oriented Programming. In Mehmet
Ak�sit and Satoshi Matsuoka, editors,
ECOOP'97, number 1241 in LNCS,
pages 220{242. Springer-Verlag, June
1997.

[LC96] Thomas Ledoux and Pierre Cointe.
Explicit Metaclasses As a Tool for Im-
proving the Design of Class Libraries.
In Proceedings of ISOTAS'96, LNCS

1049, pages 38{55, Kanazawa, Japan,
March 1996. Springer-Verlag.

[Led98] Thomas Ledoux. Re
ection and Dis-
tributed Systems : an Experiment with
CORBA and Smalltalk. PhD the-
sis, Universit�e de Nantes, March 1998.
(In french. R�e
exion dans les syst�emes
r�epartis : application �a CORBA et
Smalltalk).

[Lie96] Karl J. Lieberherr. Adaptive Object-

Oriented Software: The Demeter
Method with Propagation Patterns.
PWS Publishing Company, Boston,
1996. ISBN 0-534-94602-X.

[Mae87] Pattie Maes. Concepts and Ex-
periments in Computational Re
ec-
tion. In Proceedings of OOPSLA'87,
pages 147{155, Orlando, Florida, 1987.
ACM.

[MMC95] Philippe Mulet, Jacques Malenfant,
and Pierre Cointe. Towards a Method-
ology for Explicit Composition of
MetaObjects. In Proceedings of OOP-
SLA'95, pages 316{330, Austin, Texas,
October 1995.

[MY93] Satoshi Matsuoka and Aki-
nori Yonezawa. Research Directions in
Concurrent Object-Oriented Program-

ming, chapter Analysis of inheritance
anomaly in object-oriented concurrent
programming languages. MIT Press,
1993.

[Riv96] Fred Rivard. A New Smalltalk Ker-
nel Allowing Both Explicit and Im-
plicit Metalclass Programming. OOP-
SLA'96, Workshop : Extending the
Smalltalk Language, October 1996.

[Riv97] Fred Rivard. Object Behavioral Evo-
lution Within Class Based Re
ective
Languages. PhD thesis, Universit�e de
Nantes, June 1997. (In french. �Evo-
lution du Comportement des Objets
dans les Langages �a Classes R�e
exifs).

[SKT96] Suzanne Skublicks, Edward J. Klimas,
and David A. Thomas. Smalltalk with
Style. Prentice Hall, 1996.

[SOM93] IBM. SOMobjects Developer Toolkit

Users Guide release 2.0, second edi-
tion, June 1993.

[Zim96] Chris Zimmermann, editor. Advances
in Object-Oriented Metalevel Architec-

tures and Re
ection. CRC Press, 1996.

Towards a New Model of Abstraction in Software Engineering

Gregor Kiczales

Published in proceedings of the IMSA'92 Workshop on Reflection and Meta-level Architectures, 1992.

© Copyright 1992 Xerox Corporation. All rights reserved.

Appears in IMSA’92 Proceedings (Workshop on Reflection and Meta-level Architectures).

Towards a New Model of Abstraction in the Engineering of Software

Gregor Kiczales
Xerox Palo Alto Research Center�

We now come to the decisive step of mathematical abstraction: we forget about what the symbols stand for...

[The mathematician] need not be idle; there are many operations he can carry out with these symbols, without

ever having to look at the things they stand for.

Hermann Weyl, “The Mathematical Way of Thinking”

(This appears at the beginning of the Building Abstractions With Data chapter of “Structure and Interpretation

of Computer Programs” by Harold Abelson and Gerald Jay Sussman.)

This is an abridged version of a longer paper in preparation. The
eventual goal is to present, to those outside of the reflection and
meta-level architecturescommunity, the intuitions surroundingopen
implementations and the use of meta-level architectures, particu-
larly metaobject protocols, to achieve them.
The view of abstraction on which software engineering is baseddoes
not support the reality of practice: it suggests that abstractions hide
their implementation, whereas the evidence is that this is not gener-
ally possible. This discrepancy between our basic conceptual foun-
dations and practice appears to be at the heart of a number of porta-
bility and complexity problems.
Work on metaobject protocols suggests a new view, in which ab-
stractions do expose their implementations, but do so in a way that
makes a principled division between the functionality they provide
and the underlying implementation. By resolving the discrepancy
with practice, this new view appears to lead to simpler programs.
It also has the potential to resolve important outstanding problems
surround reuse, software building blocks, and high-level program-
ming languages.

Abstraction In Action

I want to start by talking about the current view of abstraction in
software engineering: how we use it, what the principles are, what
the terminology is and what it does for us. Rather than attempting
any sort of formal definition, I will just use an example. I will talk
about the implementation of a familiar system, using familiar terms
of abstraction, with the goal of getting the terminology I am going
to use out on the table.

Consider the display portion of a spreadsheet application. In
practice, the implementation would be based on “layers of abstrac-
tion” as shown in Figure 1. The spreadsheetwould be implemented
on top of a window system, which would in turn be implemented
on top of an operating system and so on down (not very far) to the
machine.

The horizontal lines in the figure are commonly called “abstrac-
tion barriers,” “abstractions” or “interfaces.” Each provides useful

�3333 Coyote Hill Rd., Palo Alto, CA 94304; (415)812-4888;
Gregor@parc.xerox.com.

c
1992 Xerox Corporation. All Rights Reserved.

Spreadsheet
 Application

Window System

Operating System

.

.

.

Figure 1: The layers of abstraction in the display portion of a
spreadsheet application.

functionality while hiding “implementation details” from the client
above.1 To the degree that an abstraction provides powerful, com-
posable functionality, and is free of implementation issues, we call
it “clean” or “elegant.” In the particular case of the window system,
the abstraction would provide the ability to make windows, arrange
them on the screen,display in them, track the mouse etc. Issues such
as how the windows are represented in memory and how the mouse
is tracked would be hidden as implementation details.

There seem to be (at least) three basic principles underlying our
view of abstraction:

� The first, and most important, has to do with management of
complexity. In this sense, abstraction is a primary concept in
all engineering disciplines and is, in fact, a basic property of
how people approach the world. We simply can’t cope with
the full complexity of what goes on around us, so we have
to find models or approximations that capture the salient fea-
tures we need to address at a given time, and gloss over issues
not of immediate concern.

� Second, is a convention that a primary place to draw an ab-
straction boundary is between those aspects of a system’s be-
havior that are particular to a particular implementation vs.

1In this paper, the terms client and application are used to refer to a piece of soft-
ware that makes use of some lower-level software; i.e. the spreadsheet is a client of the
window system.

for i = 1 to 100
 for j = 1 to 100
 mkwindow(100, 100, i*100, j*100)
 end
end

..
.

Figure 2: A spreadsheet looks like a rectangular array of cells. The simplest way to implement it is to use one window for each cell.

those aspects of its behavior that common across all imple-
mentations.

� Third, is a sense that not only is the kind of abstraction bound-
ary that arises from the secondprinciple useful, it is in fact the
only one it appropriate to give to clients. That is, we believe
that issues of an interface’s implementation are not of concern
to, and should be completely hidden from, clients.

(Note that the first of these is so basic that it rarely, at least in
our field, gets explicit attention. But arguably, what our informal
notions of elegance, cleanliness, and orthogonality are about is the
degree to which an abstraction includes those issues which are im-
portant without including any that are not.)

Layered on top of these three principles are our goals of porta-
bility, reusability and in fact the whole concept of system software.
The idea has been that by taking commonly useful, “basement-level,”
functionality — memory allocators, file systems, window systems,
databases,programming languagesetc. — giving it a general-purpose
interface, and isolating the client from the implementation, we could
make it possible for a wide range of clients to use the abstraction
without caring about the implementation. Portability stems in par-
ticular from isolating the client from implementation details; this
makes it possible to have other implementations of the abstraction
which the client code can be ported to. Reuse stems in particular
from making the abstraction general-purpose; the more general it
is, the wider a variety of clients that can use it.

In line with this story, it should be an easy matter to implement
a spreadsheet on top of a clean, powerful window system. What is
needed is just a rectangular array of cells; we need to be able to dis-
play and type in each cell independently; and we need to know when
the mouse is clicked over a cell. Since this is exactly the functional-
ity a window system provides, the simplest way to code the spread-
sheet is to use one window for each cell. This takes advantage of
the high-level window system abstraction to cleanly express what
is desired, and makes maximal reuse of the existing window system
code. A program written in this fashion is shown in Figure 2.

This is abstraction at its best. The code is simple, clear, and we
can read it without having to know anything about the inner work-
ings of the underlying implementation. Abstraction here is doing
just what our small minds need: making it possible for us to think
about important properties of our program — its behavior — with-
out having to think about the entirety of the machinations the under-
lying hardware is having to perform to get it to run.

As wonderful as this may sound, few experienced programmers
would be surprised if this code didn’t quite work. That is, it might
work, but its performance might be so bad as to render it, in any
practical sense, worthless. This can happen if the window system

implementation is not tuned for this kind of use. As part of writ-
ing the window system, the implementor is faced with a number of
tradeoffs, in the face of which they must make decisions. No matter
what they do, the window system will end up tuned for some appli-
cations and against others. In this case, the implementor might have
assumed that 25 to 50 windows was a more typical number for an
application to use than 10; 000. They might also have assumed that
the typical configuration of windows would have an irregular, rather
than highly-regularized, geometry. Implementation decisionsbased
on these assumptions, once made, become locked away behind the
abstraction barrier as implementation details.

We are all familiar with this sort of situation, and probably have
a good sense of how we would respond. But, stepping back and
looking through it carefully is fruitful. There are several points to
notice: (i) While the simple program in Figure 2 may not perform
adequately, its intended behavior is perfectly clear. In other words,
the window system abstraction itself is adequate for expressing the
behavior the client programmer is after. (ii) The fact that the im-
plementation will fail to provide adequate performance is nowhere
evident in the client code. That is, the window system abstraction
is not, in and of itself, betraying these properties of the implemen-
tation. (It’s also likely to be the case that this performance property
can’t be gleaned from reading the window system documentation.)
(iii) So, predicting and/or understanding the performance properties
of this program can only be done with knowledge of internal aspects
of the window system implementation — the so-called “hidden im-
plementation details.” (iii) Finally, it is relatively easy to imagine
an implementation of the window system in which this code would
perform adequately. Moreover, such an implementation might not
be all that different from the existing one.2

What is clear then is that there is a basic discrepancy between
our existing view of abstraction and the reality of day-to-day pro-
gramming. We say that we design clean, powerful abstractions that
hide their implementation, and then use those abstractions, without
thinking about their implementation, to build higher-level function-
ality. But, the reality is that the implementation cannot always be
hidden, its performance characteristics can show through in impor-
tant ways. In fact, the client programmer is well aware of them, and
is limited by them just as they are by the abstraction itself.

Looking ahead, the idea underlying the new abstraction frame-

2The issue is whether a window is a large structure, which locally caches derived
properties, or whether it is a small structure, which continually recomputes derived
properties from its parent (i.e. does a window know its position, or does it have to ask
its parent). In the latter approach, a great deal of memory could be saved on the cell
windows. Each could be as small as a word, or even take up no storage at all in more
radical architectures. In addition to saving memory, certain operations could be sup-
ported more efficiently. For example, to tell which cell the mouse was over, the main
window could, because of the regular geometryof the cells, do simple arithmetic rather
than using the more general mechanism of polling all the cell windows.

work will be to try and preserve what is good and essential about
our existing abstraction framework — essentially the first two bul-
leted principles — while seeking to address the conflict between the
third basic principle and the reality of practice. In doing this, the
strategy will be to try and take advantage of the fact that very of-
ten, as in this example, our abstractions themselves are sufficiently
expressive and our implementations may only be deficient in small
ways. What we will end up doing is “opening up the implemen-
tation,” but doing so in a principled way, so that the client doesn’t
have to be confronted with implementation issues all the time, and,
moreover, can address some implementation issues without having
to address them all.

Outline of the Paper

The rest of this paper expands this basic argument for open imple-
mentations. First, the consequences of the deficiency in our cur-
rent abstraction framework are discussed, using both the window
system example and an example from high-level programming lan-
guages. The application of metaobject protocol technology to these
problems is discussed, and the new model of abstraction, drawn out
from the intuitions underlying the metaobject protocol work, is pre-
sented. Given the new model, it is possible to identify a wide range
of other work in the software engineeringcommunity which not only
seems to confirm the intuition that the old model of abstraction is in-
valid but which in fact seems to be headed in the same direction as
the framework presented in this paper. Finally there is a discussion
of what future work might be required as part of continuing to de-
velop this new abstraction framework.

The Origins of Complexity and Portability Problems

Cases like the spreadsheet application, where an abstraction itself is
adequate for the client’s needsbut the implementation shows through
and is in some way deficient are common. The machinations the
client programmer is forced into by these situations make their code
more complex and less portable. These machinations fall into two
general categories: (i) Reimplementation of the required function-
ality, in the application itself, with more appropriate performance
tradeoffs; and (ii) coding “between the lines.”

Reimplementation of functionality is what would mostly likely
happen in this case. The spreadsheet programmer would end up
writing their own “little window system,” that could draw boxes
on the screen, display in them, and handle mouse events. Reimple-
menting this way would allow the the programmer to ensure that the
performance properties met their particular needs. As suggested by
Figure 3, reimplementing part of the underlying functionality this
way increases the size of the application, and, therefore, the total
amount of code the programmer must be responsible for.

In addition to making the application strictly larger, reimplemen-
tation of underlying functionality can also cause the rest of the ap-
plication — the code that simply uses the reimplemented function-
lity — to become more complex. This happens if for some reason
the newly implemented functionality cannot be used as elegantly as
the original underlying functionality. This in turn can happen if, for
any reason, the programmer cannout manage to slide the new im-
plementation in under the old interface.

Once the programmer is forced away from being able to use the
old interface, and into the problem of designing one of their own, its
quite likely they won’t do as good a job. Simply put, the application
programmer doesn’t have the time (even if they do have the interest)
to design the new interface as cleanly as might be nice.

(As an aside, its worth point out that even if the interface ends
up being just as (or more) elegant, one of the primary purposes of

application has
its own miniature
window system

Spreadsheet
 Application

Window System

Operating System

.

.

.

Figure 3: The spreadsheet application after being revised around
the performance problems of the window system. The reimple-
mentation of functionality which could not be reused from the win-
dow system appears as a ‘hematoma’ in the application. Each such
hematoma increases the size of the application. In addition, the rest
of the application can get more complex when it is rewritten to use
the new functionality.

high-level standardization — to be able to easily read each other’s
code — has been defeated.)

Coding between the lines is happens when the application pro-
grammer writes their code in a particularly contorted way in order
to get better performance. A classic example is in the use of virtual
memory. In a program that allocates a number of objects, there is
often a order to allocating those objects that is “natural” to the pro-
gram. But, if there get to be a lot of objects, and paging behavior be-
comes critical, people will often rewrite the application to “allocate
the objects close to each other” and thereby get better performance.
This is coding between the lines because although the documented
virtual memory abstraction makes no mention about the physical
locality of objects, the programmer manages to contort their code
enough to “speak to” the inside of the implementation and get the
performance they want.

When programmers are forced into these situations, their appli-
cations become unduly complex and, more importantly, even less
portable. It is easiest to see how this happens by starting with a hy-
pothetical prototype implementation, coded on a machine that was
fast enough that the programmer was not forced into these sins, and
then looking at what happens as the application is moved to a deliv-
ery platform. (In reality, code is usually “optimized” when it is first
written, but this simpler case makes what happens more clear.)

The original implementation is simple, clearand makes the great-
est re-use of the underlying abstractions (i.e. the simple spreadsheet
implementation). But, when it comes time to move it to the delivery
platform, a number of performance problems come up that must be
solved. A wizard is brought in, and through tricks like those men-
tioned above, manages to improve the performance of the applica-
tion. Effectively, the wizard convolves the original simple code with
their knowledge of inner workings of the delivery platform.3 (The
term convolves is chosen to suggest that, as a result of the convolu-
tion, properties of the code which had been well localized become
duplicated and spread out.) In the process, the code becomes more
complex and implicitly conformant to the delivery platform. When
it comes time to move it to another platform, the code is more dif-

3Note that putting it this way explains why the informal term “wizard” refers to
someone who not only is good at working with a given abstraction (i.e. a window sys-
tem), but who is also intimately familiar with the inner workings of the implementa-
tion. Simply put, the wizard is someone who specializes at doing what our traditional
abstraction story says should never happen.

original
 simple
 code

 larger, more
 complex code
implicitly conforms
 to platform A

wizard

development
 platform

 delivery
platform A

 delivery
platform B

?

Figure 4: When an application is originally written on a fast machine, the code can start out being simple. To port the code to a delivery
platform a wizard — someone who understands the inner workings of the delivery platform — is brought in to tune the code. The application
gets larger and more complex, and above all it becomes implicitly adapted to the delivery platform. It is then even more difficult to move it
to another platform.

ficult to work with, and because of the implicit conformance, it is
difficult to tell just why things are the way they are. This is shown
in Figure 4.

High-Level Languages

I found a large number of programs perform poorly
because of the language’s tendency to hide “what is

going on” with the misguided intention of “not
bothering the programmer with details.”

N. Wirth, “On the Design of Programming
Languages,” [Wir74]

I want to look next at the domain of high-level programming
languages, where the reflection and meta-level architectures com-
munity has done a lot of work to address these kinds of problems.
First, I will show, using the Common Lisp Object System (CLOS)
[Kee89, Ste90], how the same sorts of problems can come up. I will
then show how those problems are addressed by the CLOS Metaob-
ject Protocol (CLOS MOP) [BKK+86, Kic92, KdRB91]. From there,
it will be possible to generalize and present the new model of ab-
straction.

Consider the following CLOS class definitions:

(defclass position ()
(x y))

(defclass person ()
(name age address ...))

The class position might be part of a graphics application,
where the instances are used to represent the position of the mouse
as it moves. The class defines two slots, x and y.4 The behavior of
the application is such that there will be a very large number of in-
stances, both slots will be used in every instance and access to those
slots should be as fast as possible.

The second definition,person, might come from a knowledge
representation system, where the instances are being used as frames.
In this case, the class defines a thousand slots, corresponding to the
many properties of people which might be known. As with the class
position, the behavior of the application means that a couple of
things are known: there will be a very large number of instances;
but in any given instance only a few slots will actually be used.

4Slot is the CLOS term for the fields of an instance.

Clearly, the ideal instance implementation strategy is different
for the two classes. For position, an array-like strategy would
be ideal; it provides compact storage of instances, and rapid access
to the x and y slots. For person, a hash-table like strategy would
be more appropriate, since it isn’t worth allocating space for a slot
until it is known that it will be used. This makes access slower, but
it is a worthwhile tradeoff given a large number of instances.

What is most likely to be the case, in a run-of-the-mill CLOS im-
plementation sans MOP,5 is that the implementor will have chosen
the array-like strategy. The prospective author of theperson class
will find themselves in a situation very much like that of the spread-
sheet implementor above: While the CLOS language abstraction it-
self is perfectly adequate to express the behavior they desire, sup-
posedly hiddenproperties of the implementation — the instancerep-
resentation strategy — are critically getting in the way.

Metaobject Protocols

In this abridged version of the paper, this section is elided, since it
would be redundant for IMSA’92 Workshop attendees.

For the eventual audience of this paper, the goal of this section
will be to sketch the mechanics of metaobjectprotocols, and to show
how, by careful design, a metaobject protocol can be used to allow
the user to control critical aspects of the language implementation
strategy, without overwhelming them with what truely are imple-
mentation details.

This section will also discuss,morebriefly, how metaobjects pro-
tocols can be used to provide the user control over the semantics, or
behavior of a language.

In addition to the CLOS Metaobject Protocol, other MOPs and
reflective languageswhich might be discussedin this section include
TELOS [Pad92], ABCL/R2 [MWY91], 3-KRS[Mae87], Anibus [Rod91,
Rod92], Sartor [Ash92] and Ploy [Vah92].

A New Model of Abstraction

In the metaobject protocol approach, the client ends up writing two
programs: a base-languageprogram and an (optional) meta-language
program. The base-languageprogram expresses, the desired behav-
ior of the client program, in terms of the functionality provided by
the underlying system. The meta-language program can customize

5At this point all CLOS vendors I know of have plans to provide a metaobject pro-
tocol. So, a CLOS implementation sans MOP is more of a rhetorical tool than a reality.

Traditional
 Interface

Adjustment
Interface

Open
Implementation

Figure 5: The dual-interface framework supports the notion of an
open implementation. The client first writes a base-program, and
then, if necessary, writes a meta-program to customize the underly-
ing implementation to meet the base-program’s needs. The curved
arrow under the meta-level interface is intended to remind us that it
provides access to what have traditionally been internal properties
of the implementation.

particular aspects of the underlying system’s implementation so that
it better meets the needs of the base-language program.

What begins to emerge is a “dual-interface” picture something
like that shown in Figure 5. A high-level system (i.e. CLOS) presents
two coupled interfaces: base- and meta-level. The base-level in-
terface looks like the traditional interface any such system would
present. It provides accessto the system’s functionality in a way that
the application programmer can make productive use of and which
does not betray implementation issues. The client programmer can
work with it without having to think about the underlying imple-
mentation details.

But, for those cases where the underlying implementation is not
adequate, the client has a more reasonable recourse. The meta-level
interface provides them with the control they need to step in and
customize the implementation to better suit their needs. That is, by
owning up to the fact that users needs access to implementation is-
sues (i.e. instance implementation strategy), and providing an ex-
plicit interface for doing so, the metaobject protocol approach man-
ages to retain what is good about the first two principles of abstrac-
tion.

It is much too early to attempt to provide a complete account of
dual interface abstractions, how to design them, how to use them
or what technologies can be used to support them. But, based on
experiencewith metaobjectprotocols and other recent reflective and
meta-level architectures, some basic comments can be made.

First off, it appears that the design of base-level interfaces can
be done using existing skills. As mentioned above, we have become
quite good at designing interfaces that do not themselves betray the
implementation. We should be able to make base-level interfaces
even more clean because we will now have a principled place to
put implementation issues that the client must have access to — the
meta-level interface.

Mastering the design of meta-level interfaces, and, importantly,
the coupling between base-and meta-level interfaces is going to take
a great deal more work. But we can enumerate four preliminary,
and closely interrelated, design principles: scope control, concep-
tual separation, incrementality and robustness.

� Scopecontrolmeans that when the programmer uses the meta-
level interface to customize the implementation, they should
be given appropriate control over the scope of the specializa-
tion. One can imagine various kinds of scope control. In the
CLOS example above, the programmer wants to be able to
say both that they only want to affect the instance representa-
tion strategy, and that only want certain classes (i.e. person)
to be affected. Other classes, particularly classes that are part

of other applications, should not be affected. The window
system case is analogous; some windows should use the im-
plementation tuned for spreadsheets whereas others should
use the default implementation.

� Conceptual separationmeans that it should be possible to use
the meta-level interface to customize particular aspects of the
implementation without having to understand the entire meta-
level interface. So, for example, the client programmer who
wants to customize the instance implementation strategy shouldn’t
also have to be concerned with the method dispatch mecha-
nism. This of course is difficult, since implementation issues
can sometimes havesurprisingly far-reaching effects. The chal-
lenge, as discussed in [LKRR92], is to come up with a suffi-
ciently fine-grained model of the implementation.

� Incrementality means that the client who decides to customize
some aspect of the implementation tradeoffs wants to do just
that: customize those properties. They don’t want to have to
take total responsibility for the implementation and they don’t
want to end up having to write a whole new implementation
from scratch. It must be possible for them to say just what it
is they want to have be different, and then automatically reuse
the rest of the implementation. This is the salient difference
between the more recent reflective systems (CommonLoops,
3-KRS and beyond) and the original 3-Lisp work: by using
object-oriented techniques, it has been possible to support the
incremental definition of new implementations (interpreters,
runtimes etc.) using subclass specialization. (More is said
about object-oriented techniques later in the paper.)

� Robustness6 simply means that bugs in a client’s meta-program
should have appropriately limited effect on the rest of the sys-
tem. To date, much of the work in the reflection and metaob-
ject protocols community has provided only limited robust-
ness, either by checking the results of functional protocols, or
absorbing it from the underlying runtime in imperative7 pro-
tocols. But these approaches significantly restrict the power
of the protocol. In more recent work, we are beginning to ex-
plore the use of more declarative protocols, combined with
partial evaluation techniques to recover the performance loss
[Ash92]. This remains a major open problem.

These four principles are not entirely orthogonal. Take for ex-
ample, support for defining a new instance implementation strat-
egy in the CLOS MOP. While it is easy to say that it does well on
each of the first three, it is difficult to point to particular parts of the
CLOS Metaobject Protocol design and say “Scope control comes
from here and incrementality comes from here.” Instead, they all
seem to be intertwined; they all have to do with various kinds of
“locality.”

In fact, much of the recent work on reflective systems can be
seen as experiments with locality. Group-wide reflection, one metaob-
ject per object languages, metaobjects on a per-class basis, reify-
ing the generic function rather than letting the class handle method
dispatch — all of these provide different kinds of locality control
[Coi87, IMWY91, IO91, Mae87, MWY91, WY90, WY91] (as well
as many of the other papers appearing in this workshop). What is
clear is that there is no one right or most elegant metaobject struc-
ture, each has relative costs and advantages,and we need to keep ex-
perimenting to learn about how to handle locality this way. (There
is more to say about the subject of locality as the paper progresses.)

6This term is somewhat problematic, as it has particular technical meaning in some
communities. Later in the paper, it will become clear that what is needed is a term that
in some sense spans (at least) all of safety, reliability and security.

7In [KdRB91] we used the term procedural instead of imperative.

It is also possible to make a basic comment about the way the
designer of a dual-interface abstraction — or any open implementa-
tion — works: iteratively. They start with a traditional abstraction
(i.e. a window system or CLOS), and gradually add a meta-level
interface as it becomes clear what kinds of ways a close implemen-
tation can cause problems for the users. Moreover, it isn’t a good
idea to try and make the first version of a new kind of system open
in this sense. Opening the implementation critically depends on un-
derstanding not just one implementation the clients might want, but
also the various kinds of variability around that point they might
want. In this mode of working, user bug-reports and complaints
about previous versions of the system take on an important value.
We can look for places where users complained that they wanted
to do X, but the implementation didn’t support it; the idea is to add
enough control in the meta-level interface to make it possible to cus-
tomize the implementation enough to make X viable. (In fact, in
work on the CLOS Metaobject Protocol, we spenta lot of time think-
ing about these kinds of bug reports.)

Another way of thinking about the design of meta-level inter-
faces can be found in a 1980 paper by Mary Shaw and Wm. Wulf
[SW80], in which they present an interesting (and prescient) intu-
ition about the situation: “Traditionally, the designers and imple-
mentors of programming languages have made a number of deci-
sions about the nature and representation of language features that...
are unnecessarily preemptive.” By preemptive, they mean a deci-
sion, on the part of the implementor (or the language designer), that
preempts the programmer from being able to use a language feature
in a way that otherwise appears natural. (A specific example they
give has to do with the choice of representation of arrays.) Their
paper is focused primarily on programming language implementa-
tions, but the notion of preemption is a powerful one to work with
when thinking about any kind of meta-level interface. It suggests
that anytime we find ourselves saying “well, I’ll implement this fea-
ture a particular way because I think most users will do X,” we should
immediately think about the other users, the ones whose options we
are about to preempt, and how, using a meta-level interface, we might
allow them to customize things so they can do other than X.

A Recap

At this point, it is possible to give a capsule summary of the argu-
ment so far:

In practice, high-level abstractions often cannot hide
their implementations — the performance characteris-
tics show through, the user is aware of them, and would
be well-served by being able to control them. This hap-
pens becausemaking any concrete implementation of a
high-level system requires coming to terms with a num-
ber of tradeoffs. It simply isn’t possible to provide a
single, fixed, closed implementation of such a system
that is “good enough” that all prospective users will be
happy with it. In other words, the third principle of ab-
straction presented above appears to be invalid, at least
in actual practice.

Work on metaobject protocols and other meta-level ar-
chitectures suggests a new abstraction framework that
better addressesthe need for open implementations. Un-
der this framework the abstraction presented by a sys-
tem is divided into two parts: one that provides func-
tionality in a traditional way and another that provides
control over the internal implementation strategies sup-
porting that functionality. This approachretains the first

two principles of the old abstraction framework, drop-
ping only the third.

Looking At Other Work

With this summarization in mind, it becomes possible to look for
other areas where open implementations and dual interface abstrac-
tions could be particularly advantageous. In doing so, what we are
trying to assess is how much of the argument presented above ap-
plies in domains other than high-levelprogramming languages. Clearly
we would expect the basic argument for open implementations to
move across — after all, we started with a window-system not a
programming language. On the other hand, we may or may not ex-
pect the concept of metaobject protocols (or at least our current no-
tion of them) to move to memory systems or schedulers. And in
between those two levels are the crucial intermediary notions of lo-
cality, reflection, meta, and object-oriented programming. By look-
ing at other examples, we hope to get a better sense of the overall
picture and where each of these important concepts fits in it.

We are looking for systems of more than modest functionality,
yet where performance is an issue. The whole category of system
software — operating systems, window systems, database systems,
RPC mechanisms etc. — is a natural place to look. The abstrac-
tions have been well-honed over the years, there is tremendous un-
derstanding of the different kinds of implementation strategies that
can be useful and, because these systems underlie everything else
we build, the potential payoff of increased understanding of their
nature is large.

It turns out that not only does work in these areas appear to sup-
port the basic argument for open implementations, but in fact there
appears to be a lot of work already going on that is driving in similar
directions.

Programming Languages

A number of programming language projects have discovered that
attempting to give their users a black-box abstraction with a single
fixed implementation does not work. In some sense, compiler prag-
mas were the first example of this — they can be thought of as open
implementations with a “declarative” meta-level interface.

In Hermes [Hermes book], several of the built-in data structures
come with a small collection of different implementations. This,
like pragmas, is a step in the direction of open implementations —
several implementations is after all more than one, and letting the
user choose is a step in the direction of openness. But, it does not
completely solve the problem because there is no reason to believe
that some prospective users will not want an implementation that
is different from any of the ones provided. The designers of Her-
mes are aware of this limitation, it is just that their concern for ro-
bustness (safety in particular) has so far prevented them from adopt-
ing the more powerful reflective or metaobject protocol techniques
[Yemeni, private conversation]. One possibility might be to add an
internal metaobject protocol, which the designerscould use to quickly
provide clients with newly requested implementations, but which
would not be documented to normal users.

As discussed by Rodriguez [Rod92], the same sort of situation
can be seen in languages for parallel programming. A key prob-
lem in this domain is that a compiler that attempts to automatically
choose program’s parallelization is often unable to do so optimally.
Having recognized this problem, this community has developed ar-
chitectures that allow the programmer to step in, in various ways,
and direct the parallelization [Ber90, CiCL88, Hoa85, LR91, Luc87,
YiC90]. These systems bear varying degrees of resemblance to ex-
plicit meta-level architectures, with one key difference being that

they have not (yet) adopted the use of object-oriented techniques to
organize the meta-level.

At least one language has gone farther, to have what is clearly
a metaobject protocol, the only difference being that they don’t use
the terminology we do. Joshua is a rule-based inference system de-
veloped at Symbolics [RSC87]. BecauseJoshua is such a high-level
language, its default implementation can perform quite poorly on
some examples. By allowing the client to step in and customize
the inference mechanism to better suit the particular example, they
sometimes get substantial performance improvements [Shrobe, pri-
vate conversation].

Operating Systems

The operating system community long ago began to push up against
the boundaries of the traditional black-box abstraction framework.
Very early on, virtual memory systems provided limited meta-level
interfaces that allowed clients to influence what page-replacement
strategy was used (i.e. the Unix madvise facility). More recently,
there has been a move, starting with systems like the Mach external
pager, from the declarative approach to an approach more like that
of metaobject protocols. Specifically, they are using object-oriented
and imperative techniques to organize the meta-level.

Using this more powerful imperative approach, there has been
similar work opening up thread packagesand load-balancing mech-
anisms [ALL89]. In fact, people associated with this work have,
more recently, been explicitly questioning the validity of the tra-
ditional closed-implementation notion of system software in many
of the same ways discussed in this paper.[Anderson, talk at PARC]
(Within the reflection community, there is of course the Muse work
at Sony, which has been explicitly addressing these issues for some
time [YTT89].)

In the operating system community, where there is a great deal
of emphasis on reliability, the architectures have been interestingly
different than in the metaobject protocol community. They have
done a much better job of achieving robustness. The various ef-
forts at reducing the size of the kernel are largely driven by a desire
to make as much of the traditional operating system functionality
user-replaceable. On the other hand, even though there is no appar-
ent tradeoff between robustness and incrementality, they have done
much less well at providing incrementality.

Other Systems

Looking at other kinds of systems software turns up similar kinds
of work, although perhaps not as aggressively open as in the op-
erating system community. There are interesting things to be said
about databases, RPC mechanisms and document processing sys-
tems. In fact, the spreadsheet example presented in this paper was
drawn from work at PARC which explicitly addressed the applica-
bility of metaobject protocol ideas to the window system domain
[Rao90, Rao91].

Future Work

Changing something as fundamental as our underlying conception
of abstraction is not going to be a small task. All of our current de-
sign principles, conventions, tools, techniques,documentation prin-
ciples, programming languages and more rest on the more funda-
mental notion of abstraction. This section provides a short sampling
of what might need to be done, ranging from the relatively straight-
forward — assuring ourselves that the need for open implementa-
tions and a corresponding revision of our abstraction framework is
in fact genuine — to the more far reaching — working out the ram-
ifications of this revision, and what it will take to get it to work.

Much of what needs to be done involves looking at basic con-
cepts in software engineering practice, to see how they depend on
the old model of abstraction and how they might need to be revised.
This includes issues like portability, software building blocks and
top-down programming.

Complexity and Portability Revisited

A primary issue to be addressedhas to do with what the consequences
of the open implementation argument is for portability and com-
plexity. One of the comments I often hear, when I talk about the
metaobject protocol work, is that opening up implementations in
this way will cause client code to be more complex and create porta-
bility problems. The goal is of course very much the opposite: to
make code simpler and improve portability. But, these ideas makes
people nervous; it is important that the meta-level architectures com-
munity be able to address their concerns carefully.

The criticism from skeptics is: (i) You are allowing the client to
muck with implementation issues that used to be hidden. (ii) This
will result in code that is more complex, and wedded to features spe-
cific to the implementation. (iii) This will make the code more dif-
ficult to work with and less portable.

The counterargument is: (i) Clients already are aware of the im-
plementation issues, it is just that we havebeen trying to pretend that
wasn’t the case. That is the whole thrust of the first part of the pa-
per. (ii) We believe that client code will be simpler, because it will
be able to reuse more of the underlying functionality. There won’t
be hematomas and other complexities that currently result from per-
formance problems in the library functionality. It is also important
to understand that the meta-level interface is not implementation-
specific. It applies to all implementations of the system. What is
implementation-specific is the default implementation. So, the meta-
program, since it is a customization of the default implementation,
may end up dependingon properties of the implementation for which
it is written but: (a) programs already are implementation-specific;
(b) in the new framework this dependencewill be more explicit since
it will be isolated to the meta-program; and (c) if there is less code
to work with it will be easier to work with no matter what.

Higher-Level Building Blocks

The concept of open implementations has significant ramifications
on our concepts of what kinds of building blocks it might be possi-
ble to work with in the future. Learning how to make clean, pow-
erful open implementations should result in being able to build and
work with higher-level building blocks, which should in turn result
in simpler application programs. This expectation is based on the
belief that what has kept us from being able to successfully develop
very high level libraries has been our inability to provide (closed)
implementations that pleased enough users.

The programming language domain is perhaps the place where
it is most clear that a large part of what has kept us at a low-level is
the closed implementation framework. High-level languages have
enjoyed limited success in large part due to performance problems.
We haven’t been able to getgood enough performance out of higher-
level languages because we haven’t been able to write compilers
that are “smart enough” to satisfy all the users. But, the open im-
plementation idea fundamentally acknowledges that if a language
is more than modestly high-level, it simply isn’t possible to build
a closed compiler that is smart enough. We must instead open the
compiler up so that the programmer, who knows a great deal about
how they want their program to be compiled, can step in and help.

This restraining force on high-level languages is particularly ev-
ident in the earlier quote from Wirth. Essentially, his argument is

that since it isn’t possible to properly implement high-level func-
tionality (using a closed implementation), the language should be
restricted to providing only low-level functionality. The question
now is whetheropen implementations and the dual interface abstrac-
tion framework make it possible to make truly high-level languages
with good performance. Experiments need to be done with a variety
of such languages.

Top Down Programming vs. Reuse

In the previously mentioned paper by Shaw & Wulf they make the
claim that top-down programming is fundamentally at odds with
reusable code libraries and eventhe notion of system software. Their
argument, as I understand it, is that a reusable library essentially
blocks, at the abstraction boundary, the downward flow of design
decisions, preventing those decisions from leaking into the library’s
implementation as we would like.

Their argument is essentially compatible with the one presented
in this paper. From the dual interface abstraction point of view, the
conflict is not between top-down programming and reusable code;
it is between top down programming and closed implementations
of reusable code. This leads to another way of thinking about open
implementations, complementary to the dual interface model. The
idea is that reusable code should be like a sponge: It provides basic
functionality (the base-level interface), basic structure (the default
implementation) but also allows the user to “pour in” important cus-
tomizations from above to “firm it up.”

Work needs to be done to go back and look at top-down pro-
gramming and the conflict Shaw & Wulf mention to see how it in-
forms the open implementation and dual interface abstraction frame-
works.

Multiple Open Layers

This view of top-down programming makes it clear that opening an
implementation only to the client immediately above is not enough.
We need to do better than that; all layers need to be open to all layers
above them. So, for example, when an application is written on top
of a high-level language, which itself sits on top of a virtual mem-
ory system, the application code needs to be able to control not just
how the language uses the memory it is allocated, but also how that
virtual memory system allocates that memory.

Work needs to be done to develop this ability to pushdown, through
multiple levels of abstraction this way.

Open Behavior

The discussion in this paper begins to provide an explanation of part
of the problem metaobject protocols are solving — specifically, the
need for open implementations. But a clear lesson from the metaob-
ject protocol work is that users can also take productive advantage
of being able to customize the semantics (or behavior) of systems
they are building on top of.

Work needs to be done to integrate the need for open behavior,
and the way that meta-level architectures provide it, into the argu-
ment presented in this paper and into any new abstraction frame-
work that is developed.

Mastering Locality

The dual interface framework is similar to the way in which one
might expectthe conversationbetween the human provider and client
of a system to talk. Much of the time they would just talk about the
functionality that would be provided. At other times they would “go

meta” and talk about how the functionality was going to be used and
crucial performance issues.

And it is by making this analogy with the discussion between
humans that we can get some insight into the problems that we will
face in really trying to get this to work: very often, the concepts that
are most natural to use at the meta-level cross-cut those provided at
the base-level. What it seems we want to be able to do is to allow
the user to use natural base-level concepts and natural meta-level
concepts — as if they were the x and y axes of a plane — to get at
just what it is in the implementation they want to affect. The prob-
lem is that the “points” in the plane spanned by these two axes are
not necessarily easy to localize in an implementation.

Take, as an example, the user of a Lisp-like language who wants
to control the tagging strategy for certain objects within a certain
part of their program. It’s quite natural for them to say something
like: “Use immediate tagging for fixnums and positions, tag rect-
angles and lines in the pointer, and tag everything else in the actual
object representations.” But, it would be surprising to find an ex-
isting compiler in which making this change was easy, much less
one that could be persuaded to have just part of a program work this
way. (Getting such a compiler architecture is the thrust of the work
reported in [LKRR92].)

We are, in essence, trying to find a way to provide two effective8

views of a system through cross-cutting “localities.” Getting this to
work, in the general case, appears to be quite difficult; aside from
crystallizing it as a problem, there isn’t much to say about it at this
time.

One strategy — the one that has been prevalent in existing meta-
level architectures — is to make the problem easier by delaying the
implementation of strategy selection until run-time or thereabouts.
So, for example, the existing metaobjectprotocols addressonly those
issues which do not need to be handled in a compile-time fashion.
The various systems that addressdistribution, concurrencyand real-
time [other papers in this proceedings]are also addressingproblems
which are amenable to architectures with runtime dispatch.

An important point is that this problem, of having to handle two
cross-cutting localities, isn’t due to the dual-interface framework. It
is a fundamental problem, it has always been there and it will always
be there. The structure of complex systems is such that it is natural
for people to make this jump from one locality to another, and we
have to find a way to support that. All the dual-interface framework
does is: (i) make it more clear that this problem needs to be solved,
and (ii), give one particular organization to the relation between the
two different localities. Of course, looking at the problem this way
makes it clear that we may well want more than two, cross-cutting,
effective interfaces to a system — the dual interface framework may
quickly become the multi-interface framework.

Summary

It runs deep in our field that we consider ourselves to be based on
mathematics. This leads us to try and take many of our basic notions
from mathematics. The fact that Abelson and Sussman would quote
Weyl the way they do is evidence of this.

But, while this appeal to mathematics for conceptual founda-
tions may be attractive, it is, at least in the case of abstraction, risky.
There is a deep difference between what we do and what mathemati-
cians do. The “abstractions” we manipulate are not, in point of fact,
abstract. They are backed by real pieces of code, running on real
machines, consuming real energy and taking up real space. To at-
tempt to completely ignore the underlying implementation is like

8Effective means essentially the same thing that “causally connected”did in Smith’s
earlier work.

trying to completely ignore the laws of physics; it may be tempting
but it won’t get us very far.

Instead, what is possible is to temporarily set aside concern for
some (or even all) of the laws of physics. This is what the dual in-
terface model does: In the base-level interface we set physics aside,
and focus on what behavior we want to build; in the meta-level in-
terface we respect physics by making sure that the underlying im-
plementation efficiently supports what we are doing. Because the
two are separate, we can work with one without the other, in accor-
dance with the primary purpose of abstraction, which is to give us a
handle on complexity. But, because the two are coupled, we have an
effective handle on the underlying implementation when we need it.
I like to call this kind of abstraction, in which we sometimes elide,
but never ignore the underlying implementation “physically correct
computing.”

This is also like what the mechanical engineers call modeling,
where they take multiple independent models of a system, each of
which highlights certain properties and sets others aside. Of course
a mechanical engineer’s models aren’t effective, and we would like
ours to be — that is a fundamental difference in what we do and
is why we can’t borrow directly from them. But, it is the case that
we are engineers not mathematicians. We would do better to look
to other engineering disciplines, and not solely to mathematics, for
our principles of abstraction.

This is, I think, the real contribution of the argument in this pa-
per: Because we are engineers, not mathematicians, we must re-
spect the laws of physics — we cannot hope to completely ignore
the underlying implementation. The particular details of the dual
interface model, the notion that two interfaces are enough, the role
of object-oriented programming, the notion of meta; all of these are
inherently approximate. What will remain, in the long term, is the
intuition of physically correct computing and the requirement that
we build open implementations.

Acknowledgments

I would like to thank Hal Abelson, J. Michael Ashley, Alan Bawden,
Danny Bobrow, John Seely Brown, Jim des Rivières, Mike Dixon,
John Lamping, Ramana Rao, Jonathan Rees, Luis Rodriguez, Erik
Ruf, Brian Cantwell Smith, Marvin Theimer and Brent Welch for
countless hours of discussion working out the ideas in this paper.

For their comments and feedback on earlier drafts of this paper
itself, I would like to thank J. Michael Ashley, Danny Bobrow, Jim
des Rivières, Mike Dixon, John Lamping and Luis Rodriguez.

References

[ALL89] T. Anderson, E. Lazowska, and H. Levy. The perfor-
mance implications of thread managementalternatives
for shared memory multiprocessors. In IEEE Transac-
tions on Computers, 38(12), pages 1631–1644. IEEE,
1989.

[Ash92] J. Michael Ashley. Open compilers. To appear in forth-
coming PARC Technical Report., August 1992.

[Ber90] Andrew Berlin. Partial evaluation applied to numeri-
cal computation. In Lisp and Functional Programming
Conference, pages 139–150, 1990.

[BKK+86] D.G. Bobrow, K. Kahn, G. Kiczales, L. Masinter,
M. Stefik, and F. Zdybel. Commonloops: Merging
Lisp and object-oriented programming. In OOPSLA
’86 Conference Proceedings, Sigplan Notices 21(11).
ACM, Nov 1986.

[CiCL88] Marina Chen, Young il Choo, and Jingke Li. Com-
piling parallel programs by optimizing performance.
The Journal of Supercomputing, 2(2):171–207, Octo-
ber 1988.

[Coi87] Pierre Cointe. Metaclasses are first class: The Ob-
jVlisp model. In Proceedings of the ACM Confer-
ence on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA), Orlando, FL,
pages 156–167, 1987.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall, 1985.

[IMWY91] Yuuji Ichisugi, Satoshi Matsuoka, Takuo Watanabe,
and Akinori Yonezawa. An object-oriented concurrent
reflective architecture for distributed computing envi-
ronment. In 8th Conference Proceedings, Japan So-
ciety for Software Science and Technology, September
1991. (in Japanese).

[IO91] Yutaka Ishikawa and Hideaki Okamura. A new re-
flective architecture: AL–1 approach. In Proceedings
of the OOPSLA Workshop on Reflection and Metalevel
Architectures in Object-Oriented Programming, 1991.

[KdRB91] Gregor Kiczales, Jim des Rivières, and Daniel G. Bo-
brow. The Art of the Metaobject Protocol. MIT Press,
1991.

[Kee89] Sonya E. Keene. Object-Oriented Programming
in Common Lisp: A Programmer’s Guide to CLOS.
Addison-Wesley, 1989.

[Kic92] Gregor Kiczales. Metaobject protocols — why we
want them and what else they can do. In Andreas
Paepcke, editor, Object-Oriented Programming: The
CLOS Perspective. MIT Press, 1992.

[LKRR92] John Lamping, Gregor Kiczales, Luis H. Rodriguez Jr.,
and Erik Ruf. An architecture for an open compiler.
In Proceedingsof the IMSA’92 Workshopon Reflection
and Meta-level Architectures, 1992. Also to appear in
forthcoming PARC Technical Report.

[LR91] Monica S. Lam and Martin C. Rinard. Coarse-grain
parallel programming in Jade. In Third ACM SIGPLAN
Symposiumon Principles and Practice of Parallel Pro-
gramming, pages 94–105, 1991.

[Luc87] John M. Lucassen. Types and effects: Towards
the integration of functional and imperative program-
ming. Technical Report MIT/LCS/TR-408, MIT, Au-
gust 1987.

[Mae87] Pattie Maes. Concepts and experiments in computa-
tional reflection. In Proceedings of the ACM Confer-
ence on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA), pages 147–155,
1987.

[MWY91] Satoshi Matsuoka, Takuo Watanabe, and Aki-
nori Yonezawa. Hybrid group reflective architecture
for object-oriented concurrent reflective programming.
In European Conferenceon Object Oriented Program-
ming, pages 231–250, 1991.

[Pad92] The EuLisp Definition, April 1992. Draft.

[Rao90] Ramana Rao. Implementational reflection in Sil-
ica. In Informal Proceedings of ECOOP/OOPSLA ’90
Workshopon Reflection and Metalevel Architecturesin
Object-Oriented Programming, October 1990.

[Rao91] Ramana Rao. Implementational reflection in Silica. In
Pierre America, editor, Proceedings of European Con-
ference on Object-Oriented Programming (ECOOP),
volume 512 of Lecture Notes in Computer Science,
pages 251–267. Springer-Verlag, 1991.

[Rod91] Luis H. Rodriguez Jr. Coarse-grainedparallelism using
metaobject protocols. Master’s thesis, Massachusetts
Institute of Technology, 1991.

[Rod92] Luis H. Rodriguez Jr. Towards a better understanding
of compile-time mops for parallelizing compilers. In
Proceedings of the IMSA’92 Workshop on Reflection
and Meta-level Architectures, 1992. Also to appear in
forthcoming PARC Technical Report.

[RSC87] Steve Rowley, Howard Shrobe, and Robert Cassels.
Joshua: Uniform access to heterogeneous knowledge
structures or Why Joshua is better than conniving or
planning. In Proceedings of the Sixth National Con-
ference on Artificial Intelligence, pages 48–58, 1987.

[Ste90] Guy L. Steele. Common Lisp: The Language (second
edition). Digital Press, 1990.

[SW80] Mary Shaw and Wm. A. Wulf. Towards relaxing as-
sumptions in languages and their implementations. In
SIGPLAN Notices 15, 3, pages 45–51, 1980.

[Vah92] Amin Vahdat. The design of a metaobject protocol
controlling the behaviorof a scheme interpreter. To ap-
pear in forthcoming PARC Technical Report., August
1992.

[Wir74] Niklaus Wirth. On the design of programming lan-
guages. In Information Processing 74, 1974.

[WY90] Takuo Watanabe and Akinori Yonezawa. An actor-
based metalevel architecture for group-wide reflec-
tion. In Informal Proceedingsof ECOOP/OOPSLA ’90
Workshopon Reflection and Metalevel Architecturesin
Object-Oriented Programming, October 1990. (Ex-
tended Abstract of [WY91]).

[WY91] Takuo
Watanabe and Akinori Yonezawa. An actor-based met-
alevel architecture for group-wide reflection. In J. W.
de Bakker, W. P. de Roever, and G. Rozenberg, editors,
Proceedingsof REX School/Workshop on Foundations
of Object-Oriented Languages (REX/FOOL), Noord-
wijkerhout, the Netherlands, May, 1990, number 489
in Lecture Notes in Computer Science,pages 405–425.
Springer Verlag, 1991.

[YiC90] J. Allen Yang and Young il Choo. Meta-crystal – a met-
alanguage for parallel-program optimization. Tech-
nical Report YALEU/DCS/TR-786, Yale University,
April 1990.

[YTT89] Yasuhiko Yokote, Fumio Teraoka, and Mario Tokoro.
A reflective architecture for an object-oriented dis-
tributed operating system. In Proceedings of Eu-
ropean Conference on Object-Oriented Programming

(ECOOP), July 1989. (also available as a technical re-
port SCSL-TR-89-001, Sony Computer Science Labo-
ratory Inc.).

Metaobject protocols: Why we want them and what else they can do

Gregor Kiczales, J.Michael Ashley, Luis Rodriguez, Amin Vahdat, and Daniel G. Bobrow

Published in A. Paepcke, editor, Object-Oriented Programming: The CLOS Perspective, pages 101  118.
The MIT Press, Cambridge, MA, 1993.

© Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic
or mechanical means (including photocopying, recording, or information storage and
retrieval) without permission in writing from the publisher.

Metaobject Protocols

Why We Want Them

and

What Else They Can Do

Appears in
Object Oriented Programming: The CLOS Perspective

c
Copyright 1993 MIT Press

Gregor Kiczales, J. Michael Ashley, Luis Rodriguez,

Amin Vahdat and Daniel G. Bobrow

Originally conceived as a neat idea that could help solve problems in the design and implementation
of CLOS, the metaobject protocol framework now appears to have applicability to a wide range
of problems that come up in high-level languages. This chapter sketches this wider potential, by
drawing an analogy to ordinary language design, by presenting some early design principles, and
by presenting an overview of three new metaobject protcols we have designed that, respectively,
control the semantics of Scheme, the compilation of Scheme, and the static parallelization of Scheme
programs.

Introduction

The CLOS Metaobject Protocol (MOP) was motivated by the tension between, what at the time,
seemed like two con
icting desires. The �rst was to have a relatively small but powerful language
for doing object-oriented programming in Lisp. The second was to satisfy what seemed to be a large
number of user demands, including: compatibility with previous languages, performance compara-
ble to (or better than) previous implementations and extensibility to allow further experimentation
with object-oriented concepts (see Chapter 2 for examples of directions in which object-oriented
techniques might be pushed). The goal in developing the MOP was to allow a simple language to
be extensible enough that all these demands could be met.1

Traditionally, languages have been designed to be viewed as black box abstractions; end pro-
grammers have no control over the semantics or implementatation of these abstractions. The CLOS

1Some might argue that the base CLOS language is not so simple. What is more interesting is to consider how
much of what is in that language could be dropped given the current or an improved metaobject protocol, now that
we have a better handle on that technology. Among those features that would be prime candidates for elision would
be: method combination, the :argument-precedence-order option, methods on individuals (eql specializers) and
class variables. More aggressive proposals might drop aspects of the initialization protocol like slot-�lling initargs
and default initargs. Even more aggressive proposals might drop multiple inheritance and multi-methods.

1

MOP on the other hand, \opens up" the CLOS abstraction, and its implementation to the pro-
grammer. The programmer can, for example, adjust aspects of the implementation strategy such as
instance representation, or aspects of the language semantics such as multiple inheritance behavior.
The design of the CLOS MOP is such that this opening up does not expose the programmer to
arbitrary details of the implementation, nor does it tie the implementor's hand unecessarily | only
the essential structure of the implementation is exposed.

In more recent work, we have pushed the metaobject protocol idea in new directions, and we now
believe that idea is not limited to its speci�c incarnation in CLOS, or to object-oriented languages,
or to languages with a \large runtime" or even to Lisp-like languages. Instead, we believe that
providing an open implementation can be advantageous in a wide range of high-level languages and
that metaobject protocol technology is a powerful tool for providing that power to the programmer.

The purpose of this chapter is to summarize what has been learned to date about MOP tech-
nology, and suggest directions it might be pursued in the near future. In the �rst two sections, we
start with the CLOS MOP, �rst summarizing the motivation for it, and then giving a brief overview
of how one might think about its development. We then present a general framework for thinking
about MOP design, together with some early principles for design cleanliness in a MOP. Finally,
we present an overview of three new MOPS we have designed for Scheme, showing that a MOP
can be used to handle a range of issues other than those in the CLOS case.

Motivating Examples

In this section, we present two simple problems that arise in languages like CLOS without a
MOP, as a way of summarizing the motivation for the CLOS MOP. We also generalize from these
examples, as a way of suggesting what other kinds of problems an open language implementation
might be used to solve. The �rst example has to do with performance. In it, the programmer has
written a program which CLOS expresses quite well, but �nds (perhaps to their surprise) that the
underlying language implementation doesn't perform adequately. In the next section we return
to this example to show how the CLOS MOP addresses this problem by opening up part of the
implementation strategy to the programmer. The second example, is a case where the programmer
can be well-served by being able to adjust some part of the language semantics to better suit their
needs.

A Performance Problem

Consider the two CLOS class de�nitions shown in Figure 1. The class position might be part of
a graphics application, where the instances are used to represent the position of the mouse as it
moves. The class de�nes two slots x and y. In this case, the behavior of the program is such that
there will be a very large number of instances, both slots will be used in every instance and access
to those slots should be as fast as possible.

The second de�nition, person, might come from a knowledge representation system, where the
instances are being used as frames to represent di�erent individuals. The thousand slots de�ned in
the class correspond to a thousand properties of a person that might be known. In this application,
the behavior is such that although there will be a very large number of instances, in any given
instance only a few slots will actually be used. Furthermore, access to these properties will rarely
be in the inner loop of a computation.

2

(defclass position ()
 (x y))

many instances,
both slots always used

array-like representation

(defclass person ()
 (name age address ...))

many instances,
only a few slots used in any one instance

hash-table like representation

Figure 1: Two sample CLOS class de�nitions. Ideally, each class would like a di�erent underlying
instance implementation strategy. In a traditional (sans MOP) CLOS implementation, one or the
other of these classes (probably person) will have bad performance.

Clearly, the ideal instance implementation strategy is di�erent for the two classes. For position,
an array-like strategy would be ideal; it provides compact storage of instances, and rapid access to
the x and y slots. For person, a hash-table like strategy would be more appropriate, since it isn't
worth allocating space for a slot until it is known that it will be used. This makes access slower,
but it is a worthwhile tradeo� given a large number of instances.

The likely default implementation in most object-oriented languages is the array-like strategy.
This serves the author of the position class quite well, but author of the person will not be so
happy. Even though the CLOS language abstraction serves to express their program quite clearly,
(supposedly) hidden properties of the implementation will impair performance.

This particular problem is not an isolated incident, it is an instance of a common, and much
more general problem. As a programming language becomes higher and higher level, its imple-
mentation in terms of the underlying machine involves more and more tradeo�s, on the part of the
implementor, about what cases to optimize at the expense of what other cases. That is, the fact
that a typical object-oriented language implementation will do well for position and poorly for
person is no accident | the designer of the implementation made (what we hope was a concious)
decision to tune their implementation this way. What a properly designed open language imple-
mentation does is allow the end-programmer to go back, and \re-make" one of those tradeo�s to
better suit their needs. A more complete discussion of this kind of performance problem, and the
ways in which open language implementations based on MOPs can help address it is given in [1].

The Desire to Customize Behavior

As an example of how a programmer can derive bene�t from being able to adjust the language's
semantics, consider the case of a programmer who is porting a large body of Flavors [2] or Loops [3]
code to CLOS. In most respects, Flavors, Loops and CLOS are su�ciently similar that the task of
porting the code is (relatively) straightforward. Each has classes, instances with slots (or instance
variables), methods, generic functions (or messages), and all the other basics of object-oriented
behavior. It appears that a largely syntactic transformation can be used.

But there is one critical di�erence between the languages: while they both support multiple

3

inheritance, they use di�erent rules to order the priority of superclasses. This means that a simple
mapping of Flavors programs into CLOS can fail because of asymmetries in the inheritance of
methods and slots. Given a traditional CLOS implementation, the programmer would have to
either rewrite the code appropriately, or (perish the thought) implement Flavors for themselves
from scratch.

This too is an instance of a more general and more common problem. Again, as language become
higher and higher level, and their expressive power becomes more and more focused, the ability to
cleanly integrate something outside of the language's scope becomes more and more limited. An
open language implementation that provides control over the language permits the programmer to
shift the language focus somewhat, so that it becomes a better vehicle for expressing what they
have in mind.

This example also re
ects the ability of MOP-based open language implementations to help
keep languges smaller and simpler. That is, by having a metaobject protocol, the base language
need not provide direct support for functionality which only some users will want|that can be left
to the user to provide for themselves using the metaobject protocol.

Simple Metaobject Protocols

The �rst example above was brought to our attention by users who complained about the per-
formance of their KR programs. To �x this, we needed to �nd a way to give them control over
the part of the implementation that decides the instance representation strategy. To make that
strategy replaceable, we need to put all the parts of the runtime that are based on it under the
control of generic functions: the code that allocates instances|which needs to know how much
space to allocate; and the code that accesses slots|which needs to know where to go to get or put
a slot value.

Three generic functions in the protocol su�ce: allocate-instance, get-value and set-value.2

We require that the runtime, whenever it needs to create an instance or access a slot, do so by
calling these generic functions. The simple metaobject protocol now looks like:

Run Time Action Implemented By Call To

instance allocation (allocate-instance class)
slot read or write (get-value class instance slot-name)

(set-value class instance slot-name new-value)

Note that these generic functions all receive the metaobject|the class in question|as their �rst
argument. This is the case even for get-value and set-value, which could conceivably determine
it from the object. They must receive it as an argument to make it possible to de�ne methods
specialized to the class metaobject class.

Given this protocol, the user can write meta-code|an extension to the CLOS implementation
that provides a new kind of class|to support instances with a hash-table representation. As shown

2In this paper, where we are trying to brie
y summarize the MOP approach, we have allowed ourselves some leeway
from the details of the real CLOS MOP. To avoid confusion, we have used di�erent names for protocol presented here
which di�ers from the real MOP.

4

 make a
 virtual copy
 of the
implementation

 and

 replace one
 (or more)
 components

inheritance rules

instance structure

inheritance rules

accessors accessors

standard-class hash-table-class

Figure 2: The standard implementation of classes has an internal structure, de�ned by the metaob-
ject protocol, consisting of a number of components, including the instance representation strategy.
De�ning a new kind of class (i.e. hash-table-class) is a two-step operation: (i) De�ning the
subclass is like making a virtual copy of the standard implementation. (ii) De�ning specialized
methods (i.e. on allocate-instance, get-value, and set-value) is like replacing an internal
component in that copy.

in Figure 2, the use of object-oriented techniques in the MOP makes this convenient. The code
looks something like:

(defclass hash-table-class (standard-class) ())

(defmethod allocate-instance ((c hash-table-class))

...allocate a small hash table to store the slots...)

(defmethod get-value ((c hash-table-class) instance slot-name)

...get the slot value out of the hash table...)

(defmethod set-value ((c hash-table-class) instance slot-name new-value)

...store the slot value in the hash table...)

Then, in their base program, programmers can request that the metaobject for speci�c classes
they de�ne be instances of hash-table-class rather than standard-class. This is done by
marking the de�nition of those classes using the :metaclass option.

(defclass person ()

(name age address...)

(:metaclass hash-table-class))

5

Recovering Performance

While the approach outlined above does provide the programmer a great deal of power, the fact
that it introduces meta-level generic function calls into basic operations of the language runtime
means it incurs a signi�cant performance penalty. In the CLOS case, it is clear that we can't require
the implementation of slot access, which should inherently be a two memory read operation, to
require a generic function call at the meta-level.3 Our current approach to this problem is to
incrementally redesign the protocol so that we \pull the meta-level generic function dispatches out
of the critical runtime paths," although we hope to explore the use of automatic techniques, such
as partial evaluation, to help with this kind of problem.

Again turning to the CLOS MOP, the protocol for generic function invocation and method
dispatch provides an excellent example of how this can be done. According to the semantics of
CLOS, when a generic function is called, the following actions are performed: (i) The class of each of
the required arguments is determined. (ii) Using those classes, the sorted set of applicable methods
is determined. (iii) The applicable methods are combined into an e�ective method. (iv) That
e�ective method is run, receiving as arguments all the original arguments to the generic function.

Under a simple protocol in the previous style, we might introduce generic functions for the
second and third of these steps. The nature of this protocol can be seen in the following piece
of code, which would be the runtime code required to implement generic invocation under this
protocol. Note that, for simplicity, we are ignoring optional, keyword and rest arguments, and also
ignoring all error checking. (Uppercase is used to mark calls to generic functions in the metaobject
protocol.)

(defun apply-generic-function (gf args)

(let* ((classes (mapcar #
class-of args))

(methods (COMPUTE-METHODS gf classes))

(effective (COMPUTE-EFFECTIVE-METHOD gf methods))

(compiled (compile-effective-method effective)))

(call-effective-method compiled args)))

Again, as with slot access, this protocol is powerful, but the requirement that meta-level generic
functions be called as part of the invocation of each base level generic function means that perfor-
mance will be unacceptable.

The optimization to the protocol is based on two observations: First, by far and awaymost of the
work is in the generic functions compute-methods and compute-effective-method. Second, that
by placing only modest restrictions on these generic functions, we can allow the implementation
to cache their results. The restriction is simply that any method on these generic functions be
functional in nature; that is, that given the same arguments it must return the same results. (The
real MOP uses a somewhat more elaborate set of rules, but the basic principle is the same.)

The essence of the resulting protocol, together with its implementation, can be seen in the
following pseudo-code for the part of the runtime that applies a generic function to arguments.
This code shows that in the common path through the runtime|the cache hit|there are no meta-
level generic function calls. This means that in steady state, no performance penalty is incurred for

3Because of the particular rules for slot inheritance in CLOS, a typical implementation, which supports incremental
development, cannot get down to just a single memory read. See Chapters 13 and 14 for a discussion of these
implementation issues.

6

having the MOP [4]. Nevertheless, the protocol does allow the programmer to customize method
lookup and combination rules, and thereby achieve a wide variety of alternate language behavior.

(defun apply-generic-function (gf args)

(let* ((classes (mapcar #
class-of args))

(cached (cache-lookup gf (class-of first))))

(if cached

(call-effective-method cached args)

(let* ((methods (COMPUTE-METHODS gf classes))

(effective (COMPUTE-EFFECTIVE-METHOD gf methods))

(compiled (compile-effective-method effective)))

(fill-cache gf classes compiled)

(call-effective-method compiled args)))))

Optimization of procedural protocols, such as get-value and set-value is more complex but
is based on the same general approach. As with method dispatch, some of the protocol is \pulled
back" to earlier times in the run-time image, like cache-�lling time. Other aspects of the protocol
are actually run as part of compiling method bodies. This is covered in greater detail in [5]. Pulling
the protocol back as far as compile-time also shows up in the Scheme compiler MOPs discussed
later.

Methodology

One way of thinking about MOP design is by analogy to programming language design. As shown
in the left half of Figure 3, a good language designer works by �rst having in mind | or, better yet,
\down on paper" | examples of the kinds of programs they want their users to be able to write.
The language then follows from those examples as the designer works to be able to express them
cleanly. Of course the process is far more iterative and ad-hoc, but the basic point is that language
designers are, in e�ect, working with two di�erent levels of design process at the same time: the
level of designing particular programs in terms of a given language, and the level of designing the
language to support the lower-level design processes.

MOP design is similar, with the addition of yet one more level of design process. Again, the
fundamental driving force is a sense of the kinds of programs users should be able to write. But, in
this case the designer is not thinking about a single language that might be used to express those
programs, but rather a whole range of languages. So, in addition to the two previous levels | the
programmer designing a program in terms of a single language and the language designer designing
a single language to support that lower level | there is a third level, designing a MOP to support
a range of language designers. This is depicted in the right half of Figure 3.

In this kind of design process, one important observation is that user complaints about previ-
ous languages and implementations take on tremendous value. Read carefully, they can provide
important clues as to what
exibility programmers might want from the MOP. It is also important
to note that, like language design, MOP design is inherently iterative; it is di�cult to guess just
what the users will want the �rst time out. This is certainly true of the CLOS MOP. The use
of object-oriented techniques to organize a meta-level architecture �rst appeared in [6] and [7].
The former was a suggestive implementation for a MOP for Common Lisp. It took a prototype

7

...P1

 L1

P2

...

MOP

L2

...P1 P2

 Language

Figure 3: Language design and MOP design. On the left, the language designer envisages a range
of programs the language should support elegantly, and designs a language accordingly. On the
right, the MOP designer thinks about an even wider range of programs, and a range of languages,
and designs the MOP accordingly.

implementation [4], and the feedback from a large community over �ve years to re�ne it. Moreover,
the documentation of this kind of protocol brings up a number of subtle and unsolved issues in
object-oriented speci�cation [8].

In this sort of design process, the designer makes recourse to inuitive, aesthetic principles like
\elegance" and \concision." That is, when desiging a programming language, one wants to make the
resulting programs \simple" and \elegant." When designing a MOP, one wants to make not only
the base programs simple and elegant, but also the meta-programs that de�ne language extensions
simple and elegant.4

0.1 Locality in MOP Design

This notion of elegance is inherently informal, and there is a great deal of work to be done before
it can be reduced to standard practice, but there are some early design principles we have found
it productive to think in terms of. There are based on a common aesthetic principle in computer
science, the notion of localization of concerns and e�ect. Following are �ve coarse notions of locality
in metaobject protocols. These are neither sharp nor orthogonal, but they do serve to talk about
intuitive notions that come up in MOP design.

� Feature Locality { The metaobject protocol should provide access to individual features of
the base language. So, in CLOS for example, a programmer should be able to customize slot
inheritance without having to take over all aspects of inheritance. In a MOP for Scheme,
the programmer should be able to get at binding discipline without dealing with order of
evaluation.

4It is arguably more important for the base programs to be elegant than the meta programs, since there are far
more of them, and we anticipate they will be written by less sophisticated programmers.

8

� Textual Locality { The programmer should be able to indicate, using convenient reference
to their base program, what behavior they would like to be di�erent. So for example, if
the programmer is changing slot inheritance, they should be able to conveniently mark what
classes in their program use the new inheritance.

� Object Locality { The programmer should be able to a�ect the implementation on a per-
object basis. So, for example, in a MOP for Scheme, the programmer should be able to refer
to individual closures, or all the closures resulting from a particular lambda.

� Strategy Locality { The programmer should be able to a�ect individual parts of the imple-
mentation strategy. So, for example, it should be possible to a�ect instance representation
strategy without a�ecting method dispatch strategy.

� Implementation Locality { Extension of an implemenation ought to take code proportional
to the size of the change being contemplated. A simple customization ought to be an incre-
mental change. Programmers don't want to have to take total responsibility for the entire
implementation; they don't want to write a whole new implementation from scratch. A rea-
sonably good default implementation must be provided, and the programmer should be able
to describe their extension as an incremental deviation from that default.

Applicability to Other Languages

While the metaobject protocol mechanism depends on having an object-oriented meta-language,
there is no requirement that the base language be object-oriented. In this section we discuss the
application of the approach to Scheme [9], using three metaobject protocols we have developed at
PARC. There are two important structural di�erences between these MOPs and the CLOS MOP:
First, the base language (Scheme) is not object-oriented, so the MOP is controlling issues of Lisp
implementation and semantics, such as function calling convention and variable binding semantics,
that are outside the purview of the CLOS MOP. Second, the meta-language used to implement the
MOP is CLOS, not Scheme or an object-oriented extension to Scheme. That is, these systems are
not meta-circular and they do not have towers.

Ploy

The �rst of these protocols, called Ploy, is a simple interpreter for Scheme. As an interpreter,
Ploy's main use is as a testbed for working with programmer extensions of base language semantics.
We are, in essence, using it to drive the iterative process of discovering what aspects of Scheme
semantics to put under control of the protocol, before we attempt to develop a fully-featured,
high-performance protocol.

In the Ploy MOP there are three distinct categories of metaobject: (i) Those that represent
the program being interpreted | nodes in the program graph. (ii) Those that represent internal
runtime data structures of the interpreter | environments and bindings. (iii) Those that represent
Scheme values that are visible in the base level program | pairs, numbers, procedures and the like.
The default metaobject class graph provided by Ploy is shown in Figure 4.

The interpreter works in the natural way: a documented set of generic functions evaluates the
program, building environment structure as it goes. The most general of these generic functions

9

interpreter-state

binding

scheme-value

pair procedure

primop closure

runtime-data

metaobject

expression

let procedure-call

....

....

environment

Figure 4: An overview of the default classes in Ploy, showing the three basic categories of metaob-
ject: program-element, interpreter-state, and scheme-value.

is eval. In addition, to make user extension simpler, the protocol is also layered. That is, there
are subsidiary generic functions that have more speci�c purposes and are thereby easier to de�ne
methods for. For example, there are special generic functions that manipulate binding metaobjects:
creating them, and reading and writing their values. Figure 5 illustrates the layers in the Ploy
protocol.

The current protocol is small, with only 9 generic functions. But, using it, we have been
able to implement a number of traditional extensions to Scheme semantics, including: normal
order evaluation, partial closures [10], control over order of evaluation, values that trace their path
through the program, monitored variables and fully dynamic variables. The implementation of
each of these extensions is simple and small, ranging from 8 to no more than 30 lines of code. The
protocol localizes e�ect well enough that all these extensions can be loaded at the same time, and
they can all be used in the same program.

In this paper, we demonstrate the use of the Ploy MOP using a toy example, monitored vari-
ables. More elaborate examples, including the implementation of partial closures and normal order
evaluation, can be found in [11].

A monitored variable binding is one that prints out a message whenever its value is read or set.
The Ploy MOP supports this kind of extension by requiring that access to the value of a binding go
through the documented generic functions read-value and write-value. This protocol makes the
implementation of monitored bindings quite straightforward. The core of the code is the de�nition
of a new class of binding metaobject and appropriate methods on the reading and writing generic
functions. (Note that because the meta-level code is in CLOS, not Scheme, it is easier to distinguish
it from base-level code. This is one of the reasons we have chosen this approach.)

(defclass monitored-binding (binding) ())

10

eval

apply

eval-args

return-value

Most Specific

make-
binding

read-
value

write-
value

force

eval-arg

Figure 5: The calling structure of the Ploy protocol, indicating its layering.

(defmethod read-value :before ((b monitored-binding))

(format t "Reading the value of ~S." b))

(defmethod write-value :before ((b monitored-binding) new)

(format t "Setting the value of ~S to ~S." b new))

Now we must arrange for all the binding metaobjects corresponding to a particular variable to
be of this new class. The Ploy MOP allows the user to control, using special syntax in the base-
level program, the class of program element metaobjects; we must therefore arrange for a special
class of variable program element metaobject to produce the special class of binding metaobject.
To support this \chaining" from program element metaobject to interpreter state metaobject, the
protocol provides the binding-class generic function. (This kind of chaining is common in our
MOPs for Scheme, and more will be said about it in the next section.) The rest of the code for the
extension looks like:

(defclass monitored-variable (variable) ())

(defmethod binding-class ((f monitored-variable))

(find-class
monitored-binding))

Then, using a special syntax with curly braces, the programmer requests that the program
element metaobject for x be of class monitored-variable rather than the default variable.

(let ((fmonitored-variablegx 1)

(y 2))

within the body of the let, access
to x prints out a message, but
access to y, or any variables free
in the let, are una�ected

11

Program Graph
Compiler

Run-time

Values
Actions
(abstract machine
instructions)

Figure 6: The Sartor architecture. The compiler protocol translates the source program graph into
actions, or abstract machine instructions. The runtime protocol executes those actions, producing
and operating on runtime data objects.

)

Sartor

Sartor is a compiler that compiles Scheme programs to abstract object code for a virtual machine.
The architecture is illustrated in Figure 6. As indicated in the �gure, an internal representation of
the source program, a program graph, is compiled to a program in a high-level target language of
actions. When this program is run, it creates and manipulates a variety of run-time data including
both Scheme values such as pairs and closures, and internal values such as activation records.

Sartor is intended to be a testbed for experimenting with the use of MOP techniques to allow a
user to control compilation strategies. As with Ploy, our initial goal has been to study what aspects
of a compiler's behavior it makes sense to expose, rather than to handle actual code generation. In
this sense, Sartor resembles the initial slot access protocol presented above. It introduces meta-level
control at the cost of \runtime" method dispacth overhead. Once we have a better sense of what
to protocolize, we will focus on restructuring the architecture to generate high-performance code.

Sartor in fact has two metaobject protocols: The compiler MOP operates on program graph
metaobjects, producing action metaobjects. The compiler MOP makes decisions about order of
evaluation and how the environment structure will be organized. This allows programmer extensions
to control such issues as whether a free variable should be stored in a closure, or passed in by all
callers to the closure.

The runtime MOP operates on actions, internal runtime data structures, and Scheme values. It
controls the representation of runtime structures data, including such issues as how an activation
record should be implemented, or how a closure's environment \tuple" should be represented in
memory.

As an example of the protocol and how it might be customized, consider the implementa-
tion of activation records. The sequence of actions for performing a procedure call invokes the
construct-activation-record generic function on the closure being called. By default, the record

12

constructed allocates storage for itself in the heap. But, the programmer can de�ne a new class
of activation record, that allocates itself on the stack. Or perhaps one that stores some of the
arguments in registers.

The \metaobject chaining" issue mentioned in the previous section can be seen here quite
clearly. In this case, the programmer is going to want a special kind of activation record to be
created at runtime, but in order to do this, they are going to want to mark a particular lambda

node (or perhaps a call site) in the source program. From that lambda node, there is a chain to the
action that creates the closure at runtime, to the closure itself, and �nally to the activation record.
This kind of chaining structure is so common in our Scheme MOPs that we are now developing a
new kind of object-oriented language speci�cally to support it.

A more detailed discussion of Sartor, together with examples of specializing both its compiler
and runtime MOPs are presented in [12].

Anibus

We have also developed a MOP-based parallelizing Scheme compiler, called Anibus. Anibus is our
�rst metaobject protocol to operate entirely at compile-time; there is no runtime object-oriented
dispatch.

In Anibus, the programmer's model of the base language is Scheme, together with a set of
parallelization directives, or marks, that provide high-level direction about what parallelization
strategy the compiler should use. This general architecture is common in such compilers, as it
provides the programmer with a clean separation between the algorithm their program implements
and its parallelization.[13, 14, 15, 16]

But, a compiler with just this base model su�ers from the same kind of performance problems
discussed with CLOS above. Some programs, because of particular properties of their behavior,
will require a parallelization strategy other than one of those provided by default. To address this,
Anibus provides a metaobject protocol that allows the programer to de�ne new kinds of marks.

The Anibus architecture is similar to Ploy and Sartor in that it operates on program graph
metaobjects. The protocol consists of a small number of generic functions, each concerned with
a separate aspect of parallelization, such as distribution of data, distribution of computation and
synchronization. As the compilation proceeds, these generic functions gradually rewrite the pro-
gram into a language with more primitive distribution and synchronization constructs.5 As in Ploy
and Sartor, a mark on the source program causes the corresponding program element metaobject
to be of that class, and thereby a�ects what methods will be applicable to that metaobject.

De�ning a new parallelization strategy is done simply by de�ning a new mark class, together
with appropriate methods on the protocol generic functions. Very often, this can be done by
subclassing one of the existing marks, and only one or two method de�nitions are required.

A complete description of Anibus, including examples of using it to de�ne several alternative
parallelization marks can be found in [17]. A discussion of how the functionality provided by Anibus
di�ers from more traditional parallelizing compilers can be found in [18].

5The lower level language is also a variant of Scheme. It is then compiled by a compiler for the target architecture.

13

Conclusion

This chapter has shown that the idea underlying the CLOS Metaobject Protocol | to provide
an open language implementation using object-oriented and re
ective techniques to organize a
meta-level architecture | is far more general than its incarnation in CLOS, or object-oriented
programming, or even Lisp-like languages.

The original intuition behind this idea is that the very thing that makes high-level languages
great | that they hide implementation details from the programmer | is also their greatest
liability, since it is the inability of the programmer to be able to control those details that can
result in poor performance.

One traditional approach to resolving this dilemma has been to hide in the programming lan-
guage only those implementation details which can be automatically optimized | that is, to keep
the language lower level than might otherwise be desirable. This philosophy, which is most clearly
evident in languages designed for systems programming [19], is re
ected in the following quote [20]:

I found a large number of programs perform poorly because of the language's tendency to
hide \what is going on" with the misguided intention of \not bothering the programmer
with details." N. Wirth, \On the Design of Programming Languages," Information
Processing 74, pp. 386-393.

Another approach has been to explicitly provide the user with declarative extra-lingual mech-
anisms to advise the implementation (i.e. compiler pragmas) about how some part of the program
should be implemented.6 As discussed in the section on Anibus, this approach can su�er from
the problem that speci�c users may want to instruct the compiler in ways not supported by the
supplied pragmas.

Metaobject protocols provide an alternative framework that opens the language implementation
up to user \intervention." The major di�erence is that they are imperative in nature, and as a
result are much more powerful. The metaobject protocol approach also distinguishes itself from
previous approaches in that it allows the programmer to alter the semantics of the language. While
this latter may seem controversial, we have found, in our work with the CLOS MOP, that properly
used, programmers can derive tremendous bene�t and program clarity from being able to customize
the language semantics.

Acknowledgements

Work on the CLOS Metaobject Protocol was done jointly with Jim des Rivi�eres. The development
of more general ideas about the need for open language implementations and metaobject protocols
has bene�ted tremendously from discussions with Hal Abelson, Mike Dixon, John Lamping and
Brian Smith.

This work has also bene�ted from the contributions and feedback of the entire CLOS Metaobject
Protocol user community. Their willingness to experiment with our rapidly changing prototype
implementation (PCL) allowed us to develop the CLOS MOP and these ideas much more quickly
than would otherwise have been possible.

6We call these extra-lingual because they do not in general a�ect the program semantics.

14

References

[1] Gregor Kiczales. Towards open implementations { a new model of abstraction in software engi-
neering. In Proceedings of the IMSA'92 Workshop on Re
ection and Meta-level Architectures,
1992. Also to appear in forthcoming PARC Technical Report.

[2] D. Moon. Object-oriented programming with Flavors. InOOPSLA '86 Conference Proceedings,
Sigplan Notices 21(11). ACM, Nov 1986.

[3] Daniel G. Bobrow and Mark Ste�k. The Loops manual. Technical report, Xerox PARC, 1983.

[4] Gregor J. Kiczales and Luis H. Rodriguez Jr. E�cient method dispatch in PCL. In Proceedings
of the 1990 ACM Conference on Lisp and Functional Programming, pages 99{105, 1990.

[5] Gregor Kiczales, Jim des Rivi�eres, and Daniel G. Bobrow. The Art of the Metaobject Protocol.
MIT Press, 1991.

[6] D.G. Bobrow, K. Kahn, G. Kiczales, L. Masinter, M. Ste�k, and F. Zdybel. Commonloops:
Merging Lisp and object-oriented programming. In OOPSLA '86 Conference Proceedings,
Sigplan Notices 21(11). ACM, Nov 1986.

[7] Pattie Maes. Concepts and experiments in computational re
ection. In Proceedings of the ACM
Conference on Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA), pages 147{155, 1987.

[8] Gregor Kiczales and John Lamping. Issues in the design and documentation of class libraries.
In Proceedings of the Conference on Object-Oriented Programming: Systems, Languages, and
Applications, 1992. To Appear.

[9] IEEE Std 1178-1990. Ieee Standard for the Scheme Programming Language. Institute of
Electrical and Electronic Engineers, Inc., New York, NY, 1991.

[10] Shinn-Der Lee and Daniel P. Friedman. Quasi-static scoping: Sharing variable bindings across
multiple lexical scopes. Technical report, Indiana University Computer Science Department,
Aug 1992. Forthcoming Technical Report.

[11] Amin Vahdat. The design of a metaobject protocol controlling the behavior of a scheme
interpreter. To appear in forthcoming PARC Technical Report., August 1992.

[12] J. Michael Ashley. Open compilers. To appear in forthcoming PARC Technical Report.,
August 1992.

[13] Rajive Bagrodia and Sharad Mathur. E�cient implementation of high-level parallel programs.
In Fourth International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 142{151, 1991.

[14] William Weihl, Eric Brewer, Adrian Colbrook, Chrysanthos Dellarocas, Wilson Hsieh, Anthony
Joseph, Carl Waldspurger, and Paul Wang. Prelude: A system for portable parallel software.
Technical Report MIT/LCS/TR-519, MIT, October 1991.

15

[15] J. Allen Yang and Young il Choo. Meta-crystal { a metalanguage for parallel-program opti-
mization. Technical Report YALEU/DCS/TR-786, Yale University, April 1990.

[16] Monica S. Lam and Martin C. Rinard. Coarse-grain parallel programming in Jade. In Third
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages 94{
105, 1991.

[17] Luis H. Rodriguez Jr. Coarse-grained parallelism using metaobject protocols. Master's thesis,
Massachusetts Institute of Technology, 1991.

[18] Luis H. Rodriguez Jr. Towards a better understanding of compile-time mops for parallelizing
compilers. In Proceedings of the IMSA'92 Workshop on Re
ection and Meta-level Architectures,
1992. Also to appear in forthcoming PARC Technical Report.

[19] Greg Nelson, editor. Systems Programming with Modula-3. Prentice Hall, Englewoods Cli�,
New Jersey, 1991.

[20] Niklaus Wirth. On the design of programming languages. In Information Processing 74, 1974.

16

User-Level Language Crafting
Introducing the CLOS Metaobject Protocol

Andreas Paepcke

3.1 Introduction

The idea of open and modular systems is becoming more and more popular in the areas
of networking and operating systems. In the former, services like packet transfer may be
implemented in di�erent ways without a�ecting the rest of the system [1]. In operating
systems, attempts are made to open functions such as memory paging up to change [2].
CLOS carries this idea into the realm of language design which has traditionally been
almost as closed as database implementations.

There are many reasons why language implementations should be open. One important
reason is the ever increasing complexity of software development. Its management requires
correspondingly more sophisticated tools which must obtain detailed language-internal
information, such as class structure or information about methods. Traditionally designed
languages often require implementation-speci�c modi�cations to compilers or run-time
environments which are non-portable because that information is otherwise not obtainable.
As the cost of software development rises, such ine�ciencies in the creation of integrated
environments become less and less tolerable.

The basic idea of the CLOS design is to specify a model for the language implemen-
tation and to standardize it. The inner workings of the implementation thereby become
manipulable in a controlled manner. This internal model is called the CLOS Metaobject
Protocol (MOP)1.

The goal of this chapter is to explain the basic idea, the important principles and some
design issues behind this part of the CLOS language. We make the reader understand why
the approach is important and how it works. The material should be su�cient to provide
intuition for deciding when the use of the Metaobject Protocol would be appropriate for
some given application and how to go about its design.

This chapter shows selected highlights and is not a replacement for an eventual study
of the speci�cation in part two of [3], although it should make its consumption easier.
We have tried to avoid the complexity caused by a formal speci�cation without sacri�cing
important information on the material we cover. Part one of [3] is a detailed explanation
of the principles of protocol-based design, while this is an introduction to the CLOS MOP.

Section 3.2 explains what the Metaobject Protocol is about, what it is trying to do
and why it is interesting. Most of this material is kept at an abstract level and does not
require deep knowledge of CLOS particulars.

Sections 3.4 and 3.5 are muchmore concrete. They present selected details of the MOP
using an example that is introduced in section 3.3. These sections do assume knowledge
of CLOS as explained in [4, 5].

The main body of the chapter closes with pointers to related work and the conclusion.
Appendices provide some material about the MOP which is useful for the deeply interested
reader but which are too detailed to include in the text.

1

3.2 The Metaobject Protocol

Beyond trying to be a powerful language in general, CLOS has two additional, unusual
goals:

� Allowing users and external programs to inspect the internals of CLOS environments.

� Allowing external programs to extend the CLOS language itself without modifying
existing implementation code and without a�ecting other, existing programs.

The �rst of these goals is particularly relevant for the construction of browsers that aid
in software development, such as class hierarchy layout displays, and for the implementa-
tion of other system analysis tools, such as debuggers. Inspecting the internals includes,
for example, the ability to programmatically determine the class structure of a program
| without scanning and parsing source code, or to �nd out which methods are specialized
on some class.

The ability to extend or modify the language is necessary to enable experimentation
and adjustments to CLOS behavior which may be required to satisfy new applications
or system environments. This might include control over how slots are accessed or how
instances are made. Enabling non-instrusive modi�cations can signi�cantly increase return
on the investment of designing and building a language because it can be made applicable
to a wider range of consumers.

Let us take a �rst-level look at how these objectives are addressed in CLOS. The
approach is at this level quite applicable to designs of other systems that share these goals.

3.2.1 Design Premise and Challenges

When we study the basics of CLOS internals with focus on their openness and
exibility,
it is convenient to separate static from dynamic aspects. This partitioning roughly re
ects
the two goals of the CLOS internal design we listed above and provides a way of organizing
the material in our mind.

The static part of the CLOS design may be called its metalevel architecture. It describes
the components of the system, its structural and procedural building blocks and how they
are put together. Examples of major building blocks are the manifestations of classes, slots
or methods in the language's implementation.

The dynamic part is described in terms of protocols which prescribe the manipulations
of the building blocks that must be performed to e�ect the behavior of the language at
run-time. For each `behavior pattern' of the language, one or more protocols specify how
the building blocks must change and interact. Example: everything that is supposed to
happen in a CLOS system when a new class is de�ned is governed by the class initialization
and �nalization protocols. They specify the language-internal building blocks and run-time
activities that together e�ect the de�nition process.

Thus we distinguish between the language itself and a `metalevel' where its concepts are
described abstractly and then implemented. This metalevel world has collectively become
known as the CLOS Metaobject Protocol and is the focus of this chapter.

Every reasonably designed system has the characteristics we described so far: an exter-
nal speci�cation of behavior and an internal, hopefully modular model and its implementa-
tion. The step CLOS is attempting to take beyond this is to export the internal model, to
standardize it and to make it part of the �nal product itself. This �nal step is what gives
this language the desired
exibility and which makes it go beyond many other systems.

2

Inspect + Modify = Open System

Public
Metalevel Arch

+ Public
Protocols = Implementation

Figure 3.1: The Top-Level CLOS Design Premise

The means to modify CLOS have become part of the language and are therefore made
as portable as the language itself.

Figure 3.1 tries to illustrate how the metalevel architecture representing statics, and
the protocols representing dynamics together make up the CLOS design. The �gure also
suggests that the existence of these two explicit, standardized components enables us to
inspect internals and to modify behavior, which in turn implies that CLOS is an open
system | an unusual trait for a language.

All this sounds rather obvious and straight-forward. But designing such a system is
di�cult. The challenge begins when the proper break-down into building blocks must be
decided. This break-down determines how cleanly the eventual implementations will be
able to re
ect the internal model. It can also determine how far modi�cations to one
building block need to propagate through the system to other building blocks. These are,
of course, crucial issues because the organized manipulation of the internal model are the
way of modifying the implementation. Clean relationships between them are therefore
important.

An even more di�cult challenge than �nding the proper break-down for the internal
model is to �nd the level of detail to which protocols must be speci�ed. An incorrect level
not merely causes inconvenience, but it can lead to system failure. If too much detail is
speci�ed, implementations do not have enough room to introduce necessary optimizations.
If too little is speci�ed, it becomes unclear where and how modi�cations must be properly
introduced to e�ect some desired change in behavior. This can lead to a loss in portability
of the modi�cations.

When trying to �nd the proper balance for standardization questions like these, de-
signers face the dilemma that sample applications are needed to �nd where the system's
degrees of freedom should be placed. Obtaining a signi�cant number of such applications,
however, almost requires the a priori existence of the standard. Building an open sys-
tem like this is therefore generally much more time consuming and frustrating than the
construction of a more traditional design2. But the payo� is considerable.

3.2.2 Implementation of the Design Premise

We have so far spoken of `building blocks' and `behavior' in the abstract. What are
these in the concrete case of CLOS? It is a very convenient characteristic of the `CLOS-
producing metalevel world' that it is itself written in CLOS. This unity of language is called
meta-circularity. The language is itself a CLOS program which is manipulated through
techniques of object-oriented programming. This is accomplished through appropriate
bootstrapping facilities which do not need to concern us here. The ability to modify the
language's implementation without leaving the realm of the language is called re
ection.

3

Unity of language makes the life of the metalevel manipulator much easier. Instead of need-
ing to learn a new con�guration or implementation language, we can freely move between
`regular programming' and metalevel programming without having to switch languages
and our way of thinking.

In particular, the metalevel architecture is de�ned and implemented as a CLOS class
hierarchy. Instances of these classes implement elements of the CLOS object model at
run-time. CLOS classes or methods, for instance, are themselves instances of classes at
the metalevel. We will introduce these classes in section 3.4. Extensions to this static part
of the CLOS implementation are made by subclassing the classes at the metalevel.

The dynamics of CLOS are captured in a set of generic functions and methods special-
ized on these classes. The protocols describe the main activities of these generic functions
and explain which of them must be invoked to implement the behavior patterns of the lan-
guage. Extensions and modi�cations of the dynamic part of CLOS are therefore usually
implemented by de�ning new methods on existing system generic functions.

This uniformity of the metalevel and CLOS-level worlds does have the potential of
causing confusion in that we must keep track of whether we are, for instance, talking
about classes a regular programmer would de�ne, or classes at the metalevel, which are
pieces of the CLOS implementation.

The term metaobject class is used to denote a class at the metalevel. Instances of these
classes are called metaobjects. A metalevel instance that implements a CLOS generic
function or a CLOS programmer-level class is therefore a metaobject.

3.2.3 A More Detailed View

Let us pull together what we know so far about the CLOS design and its metalevel world
and add some new pieces.

Figure 3.2 shows how we could view the system. A regular user of CLOS would be at
the bottom of the �gure `looking up'. Regular programmers do not modify the language
itself. They create metaobjects through de�nitional macros, such as the familiar defclass,
defmethod or defgeneric. They unwittingly use these metaobjects by such activities as
creating instances of classes and invoking generic functions.

Metalevel programmers perform the same activities, but they also handle metaobjects
more consciously. In particular, they use mechanisms such as find-class, find-method or
symbol-function which take a name and return an associated metaobject. Find-class,
for example, takes the name of a programmer-level class and returns the metaobject that
implements it.

Metalevel programmers also work with the static and dynamic parts of the language
implementation by subclassing and by adding methods to system generic functions.

At the center of �gure 3.2's upper portion we see the snapshot of a run-time collection of
metaobjects which implement some running CLOS program. They are surrounded by the
major design components which control them: the metaobject class hierarchy de�ning the
static setup of the metalevel world. The exported, standardized system generic functions
and methods which provide the implementation of the dynamic aspects and the protocol
component which controls what the dynamic component does.

The next section explains some restrictions that are imposed on manipulations of the
internal model.

4

Protocols

Statics

Metaobject
Class

Hierarchy

Dynamics

Modifiable
System

Functions &
Methods

CLOS Programmer

Metalevel Programmer

Metaobjects

Create named
MOs

Use
MOs

Find named
MOs

Figure 3.2: The Overall CLOS Design

3.2.4 Curbing Chaos

We have seen that the main tools of the metalevel programmer are subclassing and the
de�nition of methods on exported system generic functions. Indiscriminate use of these
tools can prevent a system from functioning properly. The problem lies in the fact that
programmers build modules under the assumption that the language they work with is
immutable. If the loading of one module changes the language, other modules can fail
unless special care is taken.

The MOP does not include enforced safeguards against con
icts arising from metalevel
manipulations. Instead, there are rules regarding these activities which are intended to
ensure that extensions made at the metalevel are portable and do not destroy the sys-
tem for other programs running in the same environment. One reason for such extreme
openness is that radical modi�cations do have their place. One example has been the
reduction of CLOS to a very small, fast, low-functionality delivery kernel after the comple-
tion of program development [6]. In general, however, programs will need to be portable,
which means that they will need the ability to coexist with other, independently produced
programs. This includes metalevel programs.

The rules regarding metalevel work all have the same purpose: To ensure that new
behavior does not change existing system behavior that is relied upon by others. Appendix
A contains a list of these rules.

Before we begin to introduce details of the Metaobject Protocol, we describe the skele-
ton of an application which we will use throughout the subsequent sections to illustrate
how all the facilities can be put to use.

5

3.3 An Example Problem

As an example for the use of the Metaobject Protocol let us imagine that we want to add
persistence to the objects in CLOS programs [7, 8].

We assume that objects may be either transient or persistent. The state of each persis-
tent object is stored in a database and retrieved from there as needed. We make objects
persistent by sending them the message make-persistent. This will cause the database
to be prepared to receive the object's state and will then transfer the state there.

Objects may be cached, which means that their state is withdrawn from the database
and stored in memory until it is explicitly returned to the database. Whether a persistent
object is cached or not, it is always possible to send messages to it as if it were transient.
There is to be no semantic di�erence between these object states, other than the persistence
of values. If a slot of an uncached, persistent object is read, the slot value is retrieved from
the database and returned as if it had been stored in memory. Slot updates are propagated
to the database.

For reasons of e�ciency and for some other technical reasons, it is desirable to allow
individual slots to be transient. The value of a transient slot is not placed in the database
but is always memory-resident, even if the object as a whole is made persistent. The
programmer may declare individual slots to be transient when the class is being de�ned.
In cases where some slot is provided by more than one superclass, we assert that transience
is legal for the slot only if all superclasses have declared it to be transient. Otherwise it
must be made persistent.

One tricky problem is caused by class rede�nition, which CLOS makes easy to accom-
plish: we must create some appropriate schema in the underlying database which corre-
sponds to the class hierarchy of the program that will generate the persistent instances.
If this hierarchy changes, the schema will have to evolve as well. We will not cover how
this can be accomplished in the database | that is a research issue in itself. We will
merely point out how we can use the MOP to cause schema evolution to be initiated when
necessary.

Given this problem description, how must we change the behavior of standard CLOS
to accommodate a solution:

� We must be able to programmatically examine classes so that we can build appro-
priate schemas in the underlying database.

� The de�nition and rede�nition of classes must be trapped to allow schema creation
and evolution to be triggered.

� We need to manipulate the class inheritance.

� A new slot option must be introduced into the language to allow slots to be declared
transient.

� Information about which slots are transient must be stored somewhere in the run-
time system.

� Without the programmer being aware, internal information must be kept with each
instance that is created. An important such piece of information is whether that
particular instance is currently persistent or not.

� Additional information must be kept with each class. This might include information
about how the database must be accessed or special caching policies for instances of
that class.

6

� Slot access must be intercepted to implement faulting to the database.

Even a cursory glance at this list of requirements shows that these are signi�cant
modi�cations to any language and cannot be accomplished by working outside the language
implementation. Our strategy will be to de�ne a class metaobject class called persistent-
metalevel-class. When a programmer de�nes a class whose instances are to have the
potential of being persistent, she speci�es that persistent-metalevel-class is to provide
for that class' implementation.

We will de�ne a programmer-level class persistence-root-class which provides
some methods for persistent objects, such as cache and make-persistent. We will have
persistent-metalevel-class take care of mixing that class into persistent user classes
transparently.

Clearly, a full-scale persistent object system will need to do more than what we describe
in this skeleton, but it turns out that this subset covers the language incisions that are
necessary for such systems. It is therefore well suited to illustrate what we have to say
about the details of the Metaobject Protocol.

In the following section we go into the details of the MOP's structural parts.

3.4 Metalevel Statics

We explained above that the structural part of the Metaobject Protocol re
ects a break-
down of CLOS into basic concepts which is itself re
ected in the metalevel class hierarchy.
It is, of course, important to understand this hierarchy, as it is the key to making structural
modi�cations and to accomplishing inspection of program internals.

The main building blocks are:

1. Classes

2. Slots

3. Methods

4. Generic Functions

5. Method combination

Each of these is represented by a class subtree at the metalevel whose terminals are the
sources of the corresponding metaobjects.

class slot-definition generic-function method method-combination

standard-object

T

Figure 3.3: The Top-Level MOP Class Hierarchy

7

Figure 3.3 summarizes this.
In this section we will take several of these building blocks in turn and will explain

their structural properties. Please note that we will not show the complete subtrees of
a typical CLOS implementation. We try to extract the subclasses most likely to be of
general interest to avoid confusion. It should not be necessary to understand more of the
hierarchy.

Remember that the interface to the metalevel world provides us with powerful ways of
�nding out about the structural properties covered here. We can use find-class <class-
name-symbol> to obtain instances of any of the class metaobjects we talk about. Using
describe on those will reveal much useful information. Browsing the implementation in
this way is indeed a very good way of getting acquainted with the system.

3.4.1 The Class Metaobject Class

The most frequently inspected and modi�ed building block is the CLOS class since many
important methods are de�ned on it and it contains a large amount of information useful
for debugging and program maintenance. As a rule of thumb, if desired information is
usually speci�ed in a defclass, the resulting class metaobject is the place to �nd that
information later on3. Standard CLOS comes with several class metaobject classes built
in.

class

standard-classbuilt-in-class forward-referenced-class

Figure 3.4: The Class Metaobject Class Subtree

Figure 3.4 shows some of these. The most important is standard-class since its
instances are the metaobjects which by default implement the classes a programmer de�nes
with the defclass macro. Most new metaclasses a user might want to write will be
subclasses of standard-class and we concentrate on it here. But since most metalevel
work tends to cause programmers to come across some of the others in passing, we mention
their role brie
y:

Instances of built-in-class implement classes that are not speci�ed using defclass
but are pre-constructed by CLOS implementations. Examples are classes that are made
to correspond to standard CommonLisp types. Built-in-class metaobjects have various
special properties, like the fact that they may not be rede�ned.

The forward-referenced-class is used when a programmer de�nes a class whose
superclasses are not yet de�ned. In that case a metaobject of class forward-referenced-
class is created to act as a `place holder' until the superclass is de�ned later on.

The following information is kept in a standard-class metaobject. It is easy to see
the correspondence between what a defclass speci�cation contains and the information
listed here. Indeed, the class metaobject is where most of the defclass entries end up.
This information is available and we list the published reader function names for each of
the items in parentheses.

8

As an example for the use of this information, assume the existence of a programmer-
level class train. We could �nd its direct superclasses through:

(class-direct-superclasses (find-class 'train))

� The slots of the class are kept as a list of slot metaobjects. Reader class-slots
returns all slots, including the inherited ones, class-direct-slots returns just the
ones de�ned for this class explicitly.

� The super- and subclasses are stored as a list of class metaobjects (class-direct-
superclasses and class-direct-subclasses).

� The class precedence list is recorded as a list of classmetaobjects (class-precedence-
list).

� The default initialization arguments for the class are kept. Reader class-default-
initargs returns all initargs, including the ones inherited from superclasses while
reader class-direct-default-initargs returns only the ones speci�ed for the re-
spective class directly.

� Information on whether the class has already been �nalized is also available (This
will be false if, for example, there were unde�ned superclasses at the time the class
metaobject was created.) (class-finalized-p).

We can now introduce the �rst of the modi�cations our persistent object example
requires: the storage of additional information in class metaobjects. We de�ne a new
metaclass:

(defclass persistent-metalevel-class (standard-class)
((checked-schema-congruence-p :initform NIL

:reader class-checked-schema-congruence-p)
))

It adds a new slot to class metaobjects which allows us to record whether we have
checked that the structure of the class conforms with any schema we might have built
earlier in the database to hold persistent objects of this class.

Now we can de�ne our �rst persistent programmer-level class:

(defclass hypertext-node ()
((contents :initform "" :accessor contents)
(in-links :initform NIL)
(out-links :initform NIL))
(:metaclass persistent-metalevel-class)
)

This is a good time to make sure that easy-to-arise confusion between the metalevel
and the regular CLOS level is avoided: at this point we have a programmer-level CLOS
class called hypertext-node which contains the three slots contents, in-links and out-
links. This class is all a regular CLOS programmer ever works with. If we now move
into the metalevel world, we �nd out that this class is in reality a metaobject which is an
instance of the class metaobject class called persistent-metalevel-class. Since that
inherits from standard-class, it presumably has some slots we have no access to (the

9

reader functions listed earlier provide all the information we are supposed to have). But
we have added the additional slot for the schema congruence check whose value is available
to us. This slot is therefore part of the metaobject, not part of any future programmer-level
instances of hypertext-node.

With this clari�ed, let us get a hold of the class metaobject and �nd out some details
about it (system responses are indented):

(setf hypertext-class-metaobject (find-class 'hypertext-node))

(class-direct-slots hypertext-class-metaobject)
(#<Standard-Slot-Definition CONTENTS>
#<Standard-Slot-Definition IN-LINKS>
#<Standard-Slot-Definition OUT-LINKS>)

(class-precedence-list hypertext-class-metaobject)
(#<Persistent-Metalevel-Class HYPERTEXT-NODE>
#<Standard-Class STANDARD-OBJECT>
#<Standard-Class T>)

(class-checked-schema-congruence-p hypertext-class-metaobject)
NIL

We can also begin to add some behavior to our new metaclass which allows us to
build a database relation based on the slots of the class and to record in the database some
information about the class itself. We assume that we have a database object *database*.
This object may be used for calls to generic functions that manipulate a database consisting
of tables. We assume further that the database contains a special table called \master-
class-table" which we initialized earlier and in which class-related information is stored.
Tables can be searched by key and we can add and delete rows:

(defmethod create-schema ((class persistent-metalevel-class))
(create-table *database* (class-name class) (class-slots class)))

(defmethod store-class-structure ((class persistent-metalevel-class))
(unless (find-entry *database* 'master-class-table (class-name class))

(add-row *database*
'master-class-table
(class-name class)
(class-slots class)
(class-precedence-list class))))

3.4.2 The Slot-de�nition Metaobject Class

Slots in CLOS and other object-oriented languages are more than a physical place to
store a value. Issues of typing, initialization and accessability must be remembered and
managed. This is why the second major building block of the Metaobject Protocol is
the slot-definition metaobject. We use the class-slots generic function on the class
metaobject to get a hold of slot-definition metaobjects. Recall that this returns a list
of the class' slots.

10

slot-definition

standard-direct-slot-definition standard-effective-slot-definition

standard-slot-definition

Figure 3.5: The Slot-de�nition Metaobject Class Subtree

Figure 3.5 shows part of the relevant metaobject class subtree. We see that there
are two main branches: standard-direct-slot-definition and standard-effective-
slot-definition. Instances of the �rst hold the `raw', `untreated' slot-related informa-
tion from the class de�nition form, while instances of the second hold information that
re
ects the actual, run-time properties of the slots after the CLOS inheritance rules have
been applied. If, for instance, a slot is de�ned with the :initarg slot option4set to
a value di�erent from the same option in a slot it shadows, the standard-direct-slot-
definition will show the child's initialization argument, while the standard-effective-
slot-definition will show a list of the initialization arguments containing both the child's
and the parent's speci�cation.

Recall that we can extract a list of direct slot de�nitions and e�ective slot de�nitions
from a class metaobject class by using the two accessors class-direct-slots and class-
slots respectively. Once we have a slot de�nition metaobject in hand, we can extract the
following information:

� The slot name, type and allocation may be obtained through slot-definition-
name, slot-definition-type and slot-definition-allocation, respectively.

� The initialization form that was supplied in the defclass may be retrieved from
a slot-definition by means of slot-definition-initform. If such an initform
has been supplied, the initialization process of the class will also have provided a
function with no arguments which returns the initform value. Thus, if a slot was de-
�ned with the :initform option (+ 1 2), the method slot-definition-initform
will return (+ 1 2), while slot-definition-initfunction returns something like:
#<Interpreted-Function (LAMBDA NIL (+ 1 2)) 1238467>. The form (funcall
(slot-definition-initfunction <slot-definition-metaobject>)) returns 3.

� The methods slot-definition-initargs, slot-definition-readers and slot-
definition-writers return lists of the slot initialization argument(s) and reader/writer
function speci�er(s), respectively.

Note that the slot value is not stored in the slot de�nition metaobjects. Remember that
there is only one such slot de�nition metaobject per slot per class. Since every instance
has its own value for the slot, such an implementation would be incorrect.

Our persistent object system will augment the internal representation of slots by adding
information on whether a slot is transient:

11

(defclass persistent-standard-direct-slot-definition
(standard-direct-slot-definition)

((transientp :initform NIL :reader slot-definition-transient-p)))
(defclass persistent-standard-effective-slot-definition

(standard-effective-slot-definition)
((transientp :initform NIL :reader slot-definition-transient-p)))

In section 3.5 we will see how the MOP may be in
uenced to use these classes instead
of their parents when constructing one of our persistent classes.

3.4.3 The Method Metaobject Class

Methods are the next building block of the Metaobject Protocol. The metaobjects that
implement them hold all the information associated with methods. This includes the
information speci�ed in the de�ning defmethod. We can get a hold of method metaobjects
by using find-method as follows:

(find-method <generic-function-meta-object>
<list-of-qualifier-keywords>
<list-of-class-metaobjects>)

method

standard-method

standard-accessor-method

standard-reader-method standard-writer-method

Figure 3.6: The Method Metaobject Class Subtree

Figure 3.6 shows part of the relevant metaobject class subtree. In order to illustrate
the kind of information we can extract from method objects, let us de�ne two hypothetical
methods for the persistent hypertext class de�ned earlier on:

(defmethod linking ((source-node hypertext-node)
(destination-node hypertext-node))

(push destination-node (slot-value source-node 'out-links))
(push source-node (slot-value destination-node 'in-links)))

The following :before method allows us to observe the linking together of nodes at run-
time:

12

(defmethod linking :before ((source-node hypertext-node)
(destination-node hypertext-node))

(format t "Creating link from ~S to ~S.~%"
source-node destination-node))

Here is how we can obtain the method metaobjects that implement these two methods:

(let ((linking-gen-func (symbol-function 'linking)))
(setq *primary-method* (find-method linking-gen-func

nil
(list (find-class 'hypertext-node)

(find-class 'hypertext-node))))
(setq *before-method* (find-method linking-gen-func

'(:before)
(list (find-class 'hypertext-node)

(find-class 'hypertext-node)))))

Let us see some of what we can �nd out about these two methods:

� The generic function a method is currently associated with is returned by method-
generic-function as a generic function metaobject.

� We can �nd the lambda list and the list of specializers of a method by using method-
lambda-list and method-specializers. Both return lists. The �rst is a list of the
argument names without any of the classes they are specialized to. The second is a
list of class metaobjects. For both of our methods these would be:

(SOURCE-NODE DESTINATION-NODE)
(#<Persistent-Metalevel-Class HYPERTEXT-NODE>
#<Persistent-Metalevel-Class HYPERTEXT-NODE>)

� The quali�ers of a method, �nally, are obtained through method-qualifiers. This
returns a list of quali�er speci�cations as they are used in the defmethod macro. Our
primary method would return NIL, the :before method would return (:before).

This concludes our look at the static part of the Metaobject Protocol. The information
presented should be su�cient to extract a large amount of interesting information from the
run-time environment of a CLOS program. In the next section we turn to the dynamics
of the Protocol.

3.5 Metalevel Dynamics

When we want to go beyond inspection to modifying the behavior of the language, we will
often modify the static part of the MOP by subclassing. Most of the time we will then
need to modify parts of the dynamics as well. Many times this will involve initializing new
information we keep in our metalevel subclasses. Sometimes there will be other run-time
work to be taken care of as well. The goal of this section is to explain the sequences
of events that take place to e�ect some of the major behavior patterns of CLOS. This
information should be su�cient to locate where to `hook in' to change these patterns.

As explained in section 3.2, the dynamics of the MOP are captured in a set of protocols.
Here is a list of some major ones:

13

� The class initialization and class �nalization protocols control what happens when a
new class is de�ned.

� The instance initialization protocol describes what goes on when a new instance is
created and readied for use.

� The dependent maintenance protocol helps in maintaining relationships amongmetaob-
jects. Examples are classes and their subclasses, or generic functions and their meth-
ods.

� The method lookup protocol determines how the correct method is found when a
generic function is invoked.

� The instance structure protocol attempts to formalize just enough of the implemen-
tation of instance access to allow for organized modi�cation, while leaving su�cient
freedom for implementors.

We will begin with a tour through the process of de�ning a new class. The creation
and initialization of slot metaobjects is part of this process. This will be followed by a
description of how slot access works5.

A theme common to most of metalevel CLOS initialization is that a user's de�ni-
tional macros, such as defclass are checked for errors. Then the information supplied is
brought into a canonical form that makes further processing easier. Once this has been
accomplished, metalevel functions are invoked to create metaobjects and to initialize them.

After the error checking and canonicalization, these processes are the same whether
they were initiated by the execution of a de�ning macro, or whether they were begun by
programs. There is, for instance, a speci�c point in the processing of a class de�nition where
programs wishing to de�ne a new class would begin. We will point out those programmatic
entry points into the metalevel machinery as we encounter them.

3.5.1 Class De�nition

When CLOS classes are �rst de�ned, their superclasses need not necessarily have been
de�ned yet. Class metaobjects must therefore be created and initialized as far as possible,
without necessarily knowing all necessary details. Later, once all information is available,
the inheritance of the class is �nalized. The following two subsections explain how this
happens.

3.5.1.1 Initialization

Figure 3.7 gives a simpli�ed overview of what happens during class initialization. A full
overview is available in appendix B. This �gure, and similar ones later on in the text, list
the various activities that must take place during the course of the protocol. A series of
indented subactivities below an entry shows the steps necessary to accomplish that entry.
For example, (re)initialization of the class metaobject involves the superclass compatibility
check and the other subactivities at the same level of indentation. Successive levels of
indentation thus represent increasing levels of detail.

Generic functions listed below an entry in parentheses are responsible for accomplishing
that entry's task, often with help from the functions listed further down the list. When
appropriate, we point out in the �gures the functions through which programsmay initiate
protocols that are normally initiated through macros, such as defclass. The �gures serve

14

two purposes: to give a quick overview of a protocol and to show the `hooks' available to
e�ect changes.

DEFCLASS
1 Syntax error checking
2 Canonicalize information
3 Obtain class metaobject
(ensure-class, � Programmatic entry
ensure-class-using-class) � Programmatic entry

3.1 Find or make instance of proper class metaobject class
(make-instance, the :metaclass option) � Programmatic entry

3.2 (Re)initialize the class metaobject
((re)initialize-instance)
3.2.1 Check compatibility with superclasses

(validate-superclass)
3.2.2 Determine proper slot-de�nition metaobject class

(direct-slot-definition-class)
3.2.3 Create and initialize the slot-de�nition metaobjects

(make-instance, initialize-instance)
3.2.4 Maintain the `subclasses' lists of superclasses

(add-direct-subclass,remove-direct-subclass)
3.2.5 Initiate inheritance �nalization, if appropriate

(finalize-inheritance)

Figure 3.7: Summary of the Class Initialization Protocol

Let us touch on the main pieces of the class initialization process a step at a time.

DEFCLASS Expansion. The goal of the defclass macro expansion is to produce a call to
the function ensure-class which will create the actual class metaobject. It is also used
for rede�ning existing classes.

ensure-class <name> &key :environment
&allow-other-keys

Note that this is a regular function, not a generic one because when it is called we have no
instance whose class we would specialize to. To illustrate the processing from defclass
to ensure-class, consider the following subclass of our hypertext node:

(defclass monitored-hypertext-node (hypertext-node)
((access-count :initform 0 :accessor access-count)
(security-level :reader security-level))
(:metaclass persistent-metalevel-class))

Here is roughly what we will end up with when this macro is expanded:

15

(ensure-class 'monitored-hypertext-node
':direct-superclasses '(hypertext-node)
':direct-slots (list (list ':name 'access-count

':initform '0
':initfunction #'(lambda () 0)
':readers '(access-count)
':writers '((setf access-count)))

(list ':name 'security-level
':readers '(security-level)))

':metaclass 'persistent-metalevel-class)

We see that all but the name information from the defclass form is passed to ensure-
class through keyword arguments. The speci�cation of slots deserves special attention.
It is the result of step 2 in �gure 3.7 and takes the form of a list of canonicalized slot
speci�cations. Each of these is itself a list of keyword-value pairs which will be used as
keyword arguments when making slot-de�nition metaobjects later on.

This technique of preparing information into a form that can be used directly as an
initialization argument later on is a common canonicalization method in the MOP and we
will see other examples of it.

The :initform entry relays the form that was speci�ed in the class de�nition. The
:initfunction entry is a function that, when called, will return the proper initial value.

The next step in the initialization process happens in the generic function ensure-
class-using-class which is the workhorse of ensure-class and is specialized to a par-
ticular class metaobject class or to null.

ensure-class-using-class <class> <name> &key :metaclass
:direct-superclasses
:environment

&allow-other-keys

It is called either with a class metaobject bound to <class>, indicating that we wish
to rede�ne a class, or with NIL, indicating that we are to create a new one.

Make-instance is used to create new class metaobjects and the regular CLOS instance
initialization procedures are used to get the class ready for use: initialize-instance
takes care of �xing up a new class, reinitialize-instance handles existing classes that
are to be rede�ned. Here is what the class initialization protocol calls for when de�ning a
new class metaobject.

Superclass Compatibility Check. The �rst job is to convert the superclass names
from the defclass form into class metaobjects and to make sure there is no clash. This
can happen, for instance, when the class being de�ned and one of its superclasses are of
di�erent metalevel classes. The compatibility check is done by the generic function:

validate-superclass <class-metaobject> <superclass-metaobject>

When constructing a new class metaobject class, the designer must decide whether a
programmer-level class implemented by his new metalevel class and inheriting from a
super that is implemented by a di�erent metalevel class would lead to inconsistencies.

Unless we de�ne a method on validate-superclass, the following will lead to an
error because the proper :metaclass option was not speci�ed and the system therefore
defaulted to using standard-class:

16

(defclass simple-hypertext-node (hypertext-node)
((slot1)))

If we were sure that our new metaclass followed a protocol compatible with standard-
class, we would provide:

(defmethod validate-superclass
((class persistent-metalevel-class)
(superclass standard-class))

t)

This would make the above class de�nition work. Note that incompatibilities can be
a pervasive problem because they prevent the user from inheriting existing superclasses
which are not under his control. If, for instance, someone else had provided an interesting
`text display' class facility that we want to reuse by mixing it in with hypertext-nodes,
we must either certify compatibility in a validate-superclass method, or that provider
must be asked to change his class to use the :metaclass persistent-metalevel-class
option in his class de�nition.

Slot De�nitions. Next in the process of class de�nition is the creation of an appropriate
slot-de�nition metaobject for each slot which contains the `untreated' information speci�ed
in the defclass de�nition. Recall that `untreated' means that slot con
icts with inherited
attributes have not been resolved yet. Once these metaobjects exist, dealing with the
slots in the later stages of class initialization and �nalization will be more convenient.
The generic function direct-slot-definition-class is called with the class metaobject
and the canonicalized slot de�nitions to �nd out which slot-de�nition metaobject class
should be instantiated to implement each slot. This allows the slot implementation to
be controlled either by the class metaobject class or by new slot options an implementor
might introduce.

The choice of slot implementation is something we need to take care of in our persistence
example. Recall that we de�ned a new persistent-standard-direct-slot-definition
metaobject class and we must make sure that it is used, instead of standard-direct-
slot-definition:

(defmethod direct-slot-definition-class
((class persistent-metalevel-class) initargs)

(declare (ignore initargs))
(find-class 'persistent-standard-direct-slot-definition))

This will ensure that all slots in persistent classes will be implemented with our slot
metaobjects. The initargs contain the information about the slot that was provided in
the defclass form, such as :initform, :allocation or :type. This information may be
needed by some methods on this generic function to make their decision, though we do
not require it for our purposes here.

Creating Slot De�nitions. When make-instance is used to create a direct slot de�ni-
tion, all the slot options from the defclass form are passed in as initialization arguments.
The standard-direct-slot-definition metaobject classes therefore have initialization
arguments corresponding to each legal slot option. These arguments are then processed
and installed in the direct slot de�nition metaobject as we have seen in section 3.4.

We will need to make some changes to introduce our new :transient slot option into
the system. As things stand, a class de�nition, such as:

17

(defclass foo ()
((slot1 :transient t)))

would produce an error, such as:

>>Error: Invalid initialization argument :TRANSIENT for class
STANDARD-DIRECT-SLOT-DEFINITION

In order to allow this new option, we modify our de�nition for slot metaobjects introduced
in section 3.4.2 to include an :initarg option:

(defclass persistent-standard-direct-slot-definition
(standard-direct-slot-definition)
((transientp :initform NIL

:initarg :transient
:reader slot-definition-transient-p)))

(defclass persistent-standard-effective-slot-definition
(standard-effective-slot-definition)
((transientp :initform NIL

:initarg :transient
:reader slot-definition-transient-p)))

After the appropriate direct slot de�nition metaobject has been created and initialized
for each slot speci�ed in the defclass, the list is kept with the metaobject so that class-
direct-slots can retrieve and return it.

Maintaining Class Hierarchy Pointers. Recall that we are to be able to ask for all
direct super- and subclasses of any class. Since we validated and recorded the superclasses
of our new class as part of this initialization process earlier, we know how the information
for the former is obtained. But something must still be done to maintain the information
for the latter. This is done through the generic functions:

add-direct-subclass <superclass-metaobject> <class-metaobject>
remove-direct-subclass <superclass-metaobject> <class-metaobject>

When a class is �rst de�ned, a call is made to add-direct-subclass for each of the new
class' supers. In case of reinitialization, a combination of both functions is used to ensure
that all class `downpointers' are correct.

With this the initialization process of the new class metaobject is complete. At some
point between now and the time the �rst instance is made, the �nal, inheritance-related
issues must be resolved.

3.5.1.2 Inheritance Finalization

The class �nalization protocol is responsible for controlling everything that has to do with
a class' inheritance.

Figure 3.8 shows what needs to happen during the �nalization of a class. A full overview
is included in appendix B.

Let us go through the protocol a step at a time.

18

FINALIZE-INHERITANCE � Programmatic entry
1 Compute the class precedence list
(compute-class-precedence-list)

2 Resolve con
icts among inherited slots with the same name
2.1 Determine proper e�ective slot de�nition metaobject class

(effective-slot-definition-class)
2.2 Create the e�ective slot de�nition metaobjects

(make-instance)
2.3 Initialize the e�ective slot de�nitions

(initialize-instance, compute-effective-slot-definition)

Figure 3.8: Summary of the Class Finalization Protocol

The Class Precedence List. The generic function:

compute-class-precedence-list <class-metaobject>

computes the linearized list of class metaobjects that are in the hierarchy above the class
being �nalized. The default methods do this according to the rules of o�cial CLOS. We will
make a small change here that causes all persistent classes to inherit a class which provides
some persistence-related methods, such as cached?, persistent?, make-persistent and
so on. We �rst de�ne that class:

(defclass persistence-root-class ()
((persistent? :initform T)
(cached? :initform NIL))
(:metaclass persistent-metalevel-class))

We see that this service class also introduces some slots that are used for house keeping.
This is our way of adding system information to each instance of our persistent world.
Now let us `sneak' this class into the class precedence list of every persistent class. We do
this right when a class is de�ned.

The member-if statement in the following method looks at each superclass in turn and
�nds out whether any of them is a persistent class. If yes, that super already provides
the service class through inheritance and we do nothing special. Otherwise we add our
service class to the list of direct superclasses. The apply is necessary to make the keyword
manipulation work:

(defmethod initialize-instance :around
((class persistent-metalevel-class)
&rest all-keys
&key direct-superclasses)
(let ((root-class (find-class 'persistence-root-class))

(pobjs-mc (find-class 'persistent-metalevel-class)))
(if (member-if

#'(lambda (super)
(eq (class-of super) pobjs-mc)) direct-superclasses)

19

(call-next-method)
(apply #'call-next-method

class
:direct-superclasses (append direct-superclasses

(list root-class))
all-keys))))

The next major step in the class �nalization is the coalescence of slots: The system
needs to �nd the slots that are de�ned in multiple classes and must resolve any con
icts
that arise in the details of their speci�cations, such as required value type or initialization.

Resolving Slot Inheritance Con
icts. The �rst entry point to the slot coalescence
activity is:

compute-slots <class-metaobject>

Its �nal outcome is a list of effective-slot-definition metaobjects, each of which
contains all information about one coalesced slot. Compute-slots �rst collects groups of
all like-named direct slot de�nitions from the superclasses and then repeatedly calls the
generic function:

compute-effective-slot-definition <class-metaobject>
<slot-name>
<direct-slot-definitions>

There is one call to this function for each group of con
icting slots. Each time, a single
effective-slot-definition metaobject is created and returned. As explained earlier,
the complete list of these is available through class-slots when the process is �nished.

As an example, consider a class and its superclass which both provide a slot named
`contents'. The class initialization procedures of the two classes would each have pro-
duced one direct-slot-definition metaobject which would be kept with the respec-
tive class metaobject. During �nalization of the subclass, compute-slots would con-
struct a list of these two direct-slot-definition metaobjects and would call compute-
effective-slot-definition with that list. The result would be a single effective-
slot-definition metaobject that records the `net' properties of the slot for instances of
the subclass.

Analogous to the mechanism that allowed ensure-class-using-class to create proper
direct slot de�nition metaobjects, the generic function effective-slot-definition-
class is used to determine which metaobject class should be used for e�ective slot def-
inition metaobjects. Recall that we de�ned persistent-standard-effective-slot-
definition earlier on and we need to ensure that the system uses this class instead of the
default:

(defmethod effective-slot-definition-class
((class persistent-metalevel-class) initargs)

(declare (ignore initargs))
(find-class 'persistent-standard-effective-slot-definition))

Now we need to ensure that our inheritance rules regarding slot transience will be enforced:
A slot will be treated as transient only if all classes in the inheritance chain that de�ne a
slot with that name agree that it should be transient. Otherwise the slot will be persistent.

20

(defmethod compute-effective-slot-definition :around
((class persistent-metalevel-class)
slot-name
direct-slot-definitions)

;; Let default system do its work first:
(let ((slotd (call-next-method)))

(setf (slot-value slotd 'transientp)
(every #'slot-definition-transient-p direct-slot-definitions))

slotd))

This example also illustrates how class metaobject class incompatibilities discussed in sec-
tion 3.5.1.1 may introduce subtle problems: our persistence example was written to use
persistent-standard-direct-slot-definitions for the slots of persistent-metalevel-
class. All its slot metaobjects therefore have a method slot-definition-transient-p
de�ned for them. If all classes involved in the inheritance used our metaobject class, the
code above would therefore work. If, on the other hand, some of the supers were not using
:metaclass persistent-metalevel-class, some direct-slot-definitions would not
have slot-definition-transient-p de�ned on them and the code would fail. To ensure
compatibility, we would have to de�ne a default method on slot-definition-transient-
p that returned nil.

We have one more problem to solve in the context of our persistent object system:
Whenever a class is de�ned or rede�ned to change the number of slots, we must create
or modify a corresponding piece of database schema. This can happen through changes
to the class itself or through modi�cations of one of its superclasses. We can handle this
conveniently by using the `chokepoint' introduced in this section:

(defmethod finalize-inheritance :after
((class persistent-metalevel-class))
(maintain-schema class))

(defmethod maintain-schema ((class persistent-metalevel-class))
(if (schema-exists-p class)

(rework-database-schema class)
(progn
(create-schema class)
(store-class-structure class))))

This concludes our look at the creation and rede�nition of classes. A full treatment
of method de�nition and invocation would overload this introductory text, but we include
the protocol outlines in appendix B.

3.5.2 Slot Access

The last piece of CLOS dynamics we will consider here is the setting and retrieving of slots.
When making modi�cations in this area, the implementor should keep a small checklist of
issues in mind:

� The di�erent built-in CLOS slot allocations must be considered (e.g. :instance vs.
:class allocation).

� There is a group of slot access related built-in generic functions that must be kept
synchronized: Changes to one could require changes in the other. We will point to
examples below.

21

All the `o�cial', programmer-level slot tra�c goes through the slot-value function.
This will not generally be true for code generated automatically for reader or writer meth-
ods. The entry point for such code is the generic function slot-value-using-class and
its setf dual which are the main point for slot access modi�cations:

slot-value-using-class <class-metaobject>
<instance>
<effective-slot-definition-metaobject>

(setf slot-value-using-class) <new-value>
<class-metaobject>
<instance>
<effective-slot-definition-metaobject>

Figure 3.9 shows the protocol for accessing slots.

SLOT-VALUE-USING-CLASS � Programmatic entry
1 Check for existence of slot
(slot-exists-p, slot-missing)

2 Check for slot being bound
(slot-boundp-using-class, slot-unbound)

3 Retrieve the value

Figure 3.9: Summary of the Slot Reading Protocol

Apart from the generic functions listed in the �gure, slot-makunbound-using-class
should be considered if changes are made to the slot access process.

It is an error to attempt access to a non-existent slot. The Metaobject Protocol allows
metalevel programmers to control what happens when this condition is encountered. That
enables the programmer to react in a way that makes sense in his modi�ed CLOS context.
This control is exercised by de�ning methods on:

slot-missing <class-metaobject> <instance> <slot-name> <operation>
&optional new-value

The operation parameter is one of the symbols slot-value, setf, slot-bound or slot-
makunbound. These can be used to provide a helpful error message.

We need to intercept slot access for our persistent objects to work correctly. The main
problem is that we must fault to the database if the object is persistent and not currently
cached. In all other cases, we will defer to the built-in way of accessing slots6.

This brings up a subtle problem that exempli�es the potential dangers of metalevel
programming: recall that we record with each instance whether it is persistent and whether
it is cached. We did this by causing persistent classes to inherit from persistence-root-
class, which adds the slots persistent? and cached?. In order to �nd out whether an
instance is cached or persistent, we therefore need to perform a slot access. Since we must
do this to accomplish slot access in the �rst place, there will be in�nite recursion whenever
a slot is read, unless we take special precautions. We take care of this in the following code
for reading a slot for persistent classes7:

22

(defmethod slot-value-using-class :around
((class persistent-metalevel-class)
object
(slotd persistent-standard-effective-slot-definition))
(let (

(slot-name (slot-definition-name slotd))
(persistent?-slotd
(find-if #'(lambda (slotd)

(eq (slot-definition-name slotd) 'persistent?))
(class-slots class)))

(cached?-slotd
(find-if #'(lambda (slotd)

(eq (slot-definition-name slotd) 'cached?))
(class-slots class))))

(if (and (not (eq slot-name 'persistent?))
(not (eq slot-name 'cached?))
(slot-value-using-class class object persistent?-slotd)
(not (slot-value-using-class class object cached?-slotd))
(not (slot-definition-transient-p slotd)))

(slot-value-from-database class slotd)
(call-next-method))))

This concludes our summary of the Metaobject Protocol dynamics. We have seen
that each protocol attempts to specify just enough detail about some piece of the CLOS
operation to allow controlled modi�cations to be made. We have covered the process
around creating and initializing new classes and the access to slots. Let us now move on
to putting the approach into perspective with earlier work.

3.6 Related Work

The concept of making languages extensible concentrated initially on syntactic extension
and the creation of new types [9]. Opening languages up for deep semantic changes is a
more recent development. This requires the kind of architectural considerations introduced
in this chapter.

The idea of making seemingly fundamental components of systems in reality be elements
of a meta-level `world' has been explored in various earlier systems.

Like CLOS, Smalltalk [10] includes the notion of metaclasses. But the concept, though
equal in name, is quite di�erent in the two languages: Each Smalltalk class is an instance
of exactly one metaclass which in turn may only have that one class as its instance.
A class thereby acts like `regular', program-level objects in the sense that it responds
to messages whose e�ects are determined by its metaclass. In particular, the metaclass
controls the initialization of class variables and also manufactures the class' instances. But
in contrast to CLOS, the programmer cannot modify metaclasses and use object-oriented
programming at the metalevel to produce special e�ects.

ObjVlisp [11], which is very similar to CLOS [12], has worked on introducing a full
metalevel class mechanism into Smalltalk-80 [13]. This has led to a kind of `metaclass
workbench' called Classtalk which helps with the construction of metaclass libraries and
provides a metaclass browser.

An interesting angle to metalevel architectures is added by [14] which shows how the
principle can be used in the construction of operating systems.

23

There is a rapidly accumulating body of literature about CLOS and its uses. The
�rst, second and third \CLOS Users and Implementors Workshops" of 1988-1990 are good
sources for information on a wide spectrum of CLOS aspects. Another report on the use
of the Metaobject Protocol can be found in chapter �ve of this volume.

3.7 Conclusion

This chapter has attempted to introduce the CLOS programmer to the world that lies
beyond the con�nes of the language proper. This world is de�ned and controlled by the
Metaobject Protocol which makes the mechanisms for changing CLOS part of the language
de�nition and thereby renders it portable.

We have introduced the basic notions of this `metalevel world', giving the reader enough
understanding to appreciate the concepts and to read the somewhat more formal speci�-
cation for more in-depth information.

We believe that the tendency of making systems open should extend beyond areas like
networking to the realm of language implementation, operating systems and databases.
The CLOS Metaobject Protocol approach is an important step in this direction. Expe-
rience during its development has shown that it is di�cult to �nd the correct balance
between standardized degrees of freedom and the needs for optimization, between open-
ness and safety, between
exibility and portability. Writing modular systems is more
di�cult initially than building monoliths. Making systems be open and portable is an ad-
ditional dimension which requires additional care and sophistication. The payo�, however,
is worth the investment because the system covers much more ground than it could with
more conventional approaches.

A word of caution is in order at this point. Metalevel programming is still systems
programming. Increased power bears with it additional dangers. Research is needed
to understand which design rules and conventions can be added to the object-oriented
programming style to introduce the necessary measure of safety. We have introduced
the rules that were developed for controlling the use of the Metaobject Protocol. More
experience is needed to �nd out whether these rules are necessary and su�cient. More
probing still is needed to understand whether they have any universal applicability.

Designing protocols is another area that needs further investigation. The current spec-
i�cation of the Metaobject Protocol is only slightly more formal than our presentation
in this chapter. Are there good formal ways of specifying behavior at the right level of
detail? Are there indeed formal or informal ways of �nding the correct level of detail in
the �rst place? What de�nitely has to be speci�ed to ensure portability of modi�cations
and what must be left open to allow for optimizations? Understanding the nature of pro-
tocol design would go a long way towards making the idea of the CLOS design approach
applicable to systems other than languages, a goal that seems intriguing after seeing the
CLOS Metaobject Protocol as a datapoint.

3.8 Acknowledgements

This work bene�ted greatly from detailed and insightful suggestions by Daniel G. Bobrow
and Gregor Kiczales. Robin Je�ries contributed through comments on earlier drafts of this
chapter.

24

3.9 Appendix A: Rules for Metalevel Extensions

Di�erent rules apply for implementors of the system and programmers wishing to create
portable code which manipulates the metalevel. We do not address restrictions for imple-
mentors here but concentrate on the ones applying to portable programs. The following
rules all have the same underlying reason: To ensure that new behavior does not modify
existing system behavior that is relied upon by others:

� For a metalevel program to be portable it must not rede�ne existing metaobject
classes, generic functions, methods or method combinations which are explicitly spec-
i�ed by the MOP.

In syntactic terms this implies that every new metalevel method must have at least
one specializer in its parameters which is not one of the built-in metaobject classes.
This means that writing a :before, :after or :around method which specializes only on
existing metaobject classes can render a program non-portable. Violating this rule
could inadvertently destroy a method provided by the system, or it could cause unex-
pected side e�ects for programs using the default implementation. The programmer
must produce his own metaobject class and specialize on it.

Allowing the destructive modi�cation of the existing stock of behavior could also
lead to a kind of race condition in which two programs make a modi�cation to the
same piece of behavior. The order in which the programs are loaded would then
determine the �nal behavior, which is unacceptable.

� Unless explicitly forbidden by the underlying generic function, it is always legal to
extend the behavior of an existing method by writing a new one which specializes to
relevant subclasses as explained above. But the arrangement must ensure that the
original, less speci�c method will be called. For standard CLOS this means that the
new method must be a :before or :after method, or that it is a primary or :around
method which calls call-next-method. This ensures that any new behavior is added
to the default behavior, as opposed to replacing it.

� Only if a generic function explicitly allows it, may methods be overridden, that is
replaced completely by primary or :around methods that do not use call-next-
method in their body.

Note that MOP generic functions often come in `groups' which must be kept consis-
tent. When overriding one, consistency with the others must be ensured. One ex-
ample is the group add-dependent, remove-dependent and map-dependent. These
groupings are not always explicitly de�ned in the MOP.

25

3.10 Appendix B: Protocol Overviews

In order to make the MOP speci�cation easier to follow we include here the full summaries
of various protocols that were shortened in the text or are not covered there at all. We
explained in section 3.5.1.1 how these �gures are to be read.

Class De�nition Protocol:
DEFCLASS
1 Syntax error checking
2 Canonicalize information
3 Obtain class metaobject
(ensure-class, � Programmatic entry
ensure-class-using-class) � Programmatic entry

3.1 Find or make instance of proper class metaobject class
(make-instance, the :metaclass option) � Programmatic entry

3.2 (Re)initialize the class metaobject
((re)initialize-instance)
3.2.1 Default unsupplied keyword arguments/error checking
3.2.2 Check compatibility with superclasses

(validate-superclass)
3.2.3 Associate superclasses with this new class metaobject
3.2.4 Determine proper slot-de�nition metaobject class

(direct-slot-definition-class)
3.2.5 Create and initialize the slot-de�nition metaobjects

(make-instance, initialize-instance)
3.2.6 Associate them with this new class metaobject
3.2.7 Check default-initargs

3.2.8 Maintain the `subclasses' lists of superclasses
(add-direct-subclass,remove-direct-subclass)

3.2.9 Initiate inheritance �nalization, if appropriate
(finalize-inheritance)

3.2.10 Create reader/writer methods
3.2.11 Associate them with this new class metaobject

Slot Reading Protocol:
SLOT-VALUE-USING-CLASS � Programmatic entry
1 Check for existence of slot
(slot-exists-p, slot-missing)

2 Check for slot being bound
(slot-boundp-using-class, slot-unbound)

3 Retrieve the value

26

Class Finalization Protocol:
FINALIZE-INHERITANCE � Programmatic entry
1 Compute the class precedence list
(compute-class-precedence-list)

2 Resolve con
icts among inherited slots with the same name
2.1 Determine proper e�ective slot de�nition metaobject class

(effective-slot-definition-class)
2.2 Create the e�ective slot de�nition metaobjects

(make-instance)
2.3 Initialize the e�ective slot de�nitions

(initialize-instance, compute-effective-slot-definition)
2.4 Associate them with the class metaobject

3 Enable/Disable slot access optimizations
(slot-definition-elide-access-method-p)

Method Lookup Protocol:
Generic Function Call
1 Invoke the generic function's discriminating function
1.1 Find out which methods are applicable for the given arguments

(compute-applicable-methods-using-classes, compute-applicable-methods)
1.2 Combine the methods into one piece of code

(compute-effective-method)
1.2 Run the combined methods

(method-function-applier)

27

Method De�nition Protocol:
DEFMETHOD
1 Syntax error checking
2 Obtain target generic function metaobject
(ensure-generic-function, � Programmatic entry
ensure-generic-function-using-class) � Programmatic entry

2.1 Find or make instance of proper generic function metaobject class
(make-instance, :generic-function-class from defgeneric form)

2.2 (Re)initialize the generic function metaobject
((re)initialize-instance)
2.2.1 Default unsupplied keyword arguments/error checking
2.2.2 Check lambda list congruence with existing methods
2.2.3 Check argument precedence order spec against lambda list
2.2.4 (Re)de�ne any old `initial methods'
2.2.5 Recompute the generic function's discriminating function

(compute-discriminating-function)
3 Build method function
(make-method-lambda)

4 Obtain method metaobject
4.1 Make instance of proper method metaobject class

(make-instance, generic-function-method-class)
4.2 Initialize the method metaobject

(initialize-instance)
4.2.1 Default unsupplied keyword arguments/error checking

5 Add the method to the generic function
(add-method)
5.1 Add method to the generic function's method set
5.2 Recompute the generic function's discriminating function

(compute-discriminating-function)
5.3 Update discriminating function
5.4 Maintain mapping from specializers to methods

(add-direct-method)

28

Bibliography

[1] International Organization for Standardization. Basic reference model for open sys-
tems interconnection, 1984.

[2] Richard Rashid, Avadis Tevanian, Michael Young, David Golub, Robert Baron, David
Black, William Bolosky, and Jonathan Chew. Machine-independent virtual memory
management for paged uniprocessor and multiprocessor architectures. In Proc. 2nd
International Conference on Architectural Support for Programming Languages and
Operating Systems. Computer Society Press, 1987.

[3] Gregor Kiczales, Jim des Rivi�eres, and Daniel G. Bobrow. The Art of the Metaobject
Protocol. MIT Press, 1991.

[4] Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonya Keene, Gregor
Kiczales, and David A. Moon. Common Lisp Object System Speci�cation. Technical
Report 88-002R, X3J13 Standards Committee, 1988. (Also published in SIGPLAN
Notices, Vol. 23, special issue, Sept. 1988, and in Guy Steele: Common Lisp, The
Language, 2nd ed., Digital Press, 1990.).

[5] Sonya E. Keene. Object-Oriented Programming in Common Lisp. Addison-Wesley
Publishing Company, 1989.

[6] James Bennett, John Dawes, and Reed Hastings. Cleaning CLOS applications with
the MOP. In Gregor Kiczales, editor, Proceedings of the Second CLOS Users and
Implementors Workshop, 1989.

[7] Andreas Paepcke. PCLOS: A Flexible Implementation of CLOS Persistence. In
S. Gjessing and K. Nygaard, editors, Proceedings of the European Conference on
Object-Oriented Programming. Lecture Notes in Computer Science, Springer Verlag,
1988.

[8] Andreas Paepcke. PCLOS: A Critical Review. In Proceedings of the Conference on
Object-Oriented Programming Systems, Languages and Applications, 1989.

[9] ECL programmer's manual. Center for Research in Computing Technology, Harvard
University, TR-23-74, December 1974.

[10] Adele Goldberg and David Robinson. Smalltalk-80: The Language and its Implemen-
tation. Addison Wesley, 1983.

[11] Pierre Cointe. Metaclasses are �rst class: The ObjVlisp model. In NormanMeyrowitz,
editor, Proceedings of the Conference on Object-Oriented Programming Systems, Lan-
guages and Applications. Association of Computing Machinery, 1987.

29

[12] P. Cointe and N. Graube. Programming with metaclasses in CLOS. In Proceedings
of the First CLOS Users and Implementors Workshop, 1988.

[13] Jean-Pierre Briot and Pierre Cointe. Programming with explicit metaclasses in
Smalltalk-80. In Proceedings of the Conference on Object-Oriented Programming Sys-
tems, Languages and Applications, 1989.

[14] Yasuhiko Yokote, Fumio Teraoka, and Mario Tokoro. A re
ective architecture for an
object-oriented distributed operating system. In Proceedings of the European Confer-
ence on Object-Oriented Programming, 1989.

30

Notes:

1The MOP is not part of the o�cial CLOS standard at this time. Its current state is documented in part
two of [3].

2CLOS was developed using a reference implementation (PCL) which was distributed, critiqued and
improved many times before commercial implementations began to emerge.

3Notable exception: details about slots are kept in another kind of metaobject which is covered in
section 3.4.2 but which is also accessed indirectly through class metaobjects.

4Recall that an initarg is a name that may be associated with a slot and that may later be used in calls
to make-instance to specify an initial value for that slot.

5Interesting protocols we do not cover here include the de�nition process for generic functions and methods
and the addition of methods to generic functions.

6This assumes that we make cached objects look like regular CLOS objects. This is actually a very useful
way of dealing with caching.

7For e�ciency, the persistent? and cached? slot de�nition metaobjects should not be searched for
during every slot access as is done by the find-if calls in the example. They would be cached in a real
system.

31

Biography:

Andreas Paepcke has been with Hewlett-Packard Laboratories since 1982, working on a
wide range of projects, including an infrared network for terminals and workstations, the
integration of telephone service into workstation environments, transparent persistence of

CLOS objects on a variety of databases and access to information services through
object-oriented views. Mr. Paepcke received his BS and MS degrees from Harvard
University and his Ph.D. in Computer Science from the University of Karlsruhe,

Germany.

32

Open Implementation Design Guidelines

Gregor Kiczales, John Lamping, Cristina Videira Lopes, Chris Maeda, Anurag Mendhekar,
Gail Murphy

Published in proceedings of the 19th International Conference on Software Engineering. ACM Press, 1997.

© Copyright 1997 by the Association for Computing Machinery, Inc.

Open Implementation Design Guidelines

Gregor Kiczales, John Lamping,
 Cristina Videira Lopes,

Chris Maeda, Anurag Mendhekar
Xerox Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, CA 94304 U.S.A

gregor@parc.xerox.com

Gail Murphy
Department of Computer Science

University of British Columbia
201-2366 Main Mall

Vancouver B.C. Canada V6T 1Z4
murphy@cs.ubc.ca

ABSTRACT
Designing reusable software modules can be extremely
difficult. The design must be balanced between being gen-
eral enough to address the needs of a wide range of clients
and being focused enough to truly satisfy the requirements
of each specific client. One area where it can be particu-
larly difficult to strike this balance is in the
implementation strategy of the module. The problem is
that general-purpose implementation strategies, tuned for a
wide range of clients, aren’t necessarily optimal for each
specific client—this is especially an issue for modules that
are intended to be reusable and yet provide high-
performance.

An examination of existing software systems shows that an
increasingly important technique for handling this prob-
lem is to design the module’s interface in such a way that
the client can assist or participate in the selection of the
module’s implementation strategy. We call this approach
open implementation.

When designing the interface to a module that allows its
clients some control over its implementation strategy, it is
important to retain, as much as possible, the advantages of
traditional closed implementation modules. This paper
explores issues in the design of interfaces to open imple-
mentation modules. We identify key design choices, and
present guidelines for deciding which choices are likely to

work best in particular situations.

Keywords
open implementation, software design, software reuse

INTRODUCTION
Software has traditionally been constructed according to
the principle that a module should expose its functionality
but hide its implementation. This principle, informally
known as black-box abstraction, is a basic tenet of software
design, underlying our approaches to portability, reuse,
and many other important issues in computing.

Black-box abstraction has many attractive qualities—am-
ortized development costs, localization of change, etc.
Exposing only the functionality of a module in its inter-
face, however, can sometimes lead to performance
difficulties when the module gets reused. It has been ob-
served that in such cases, clients “code around” the
problem either by re-implementing an appropriate version
of the module or by using existing modules in contorted
ways [5, 6]. In either case, many of the goals that moti-
vated creating the module in the first place are not actually
realized.

Many recent systems address this problem by having mod-
ules that allow client control of their implementation
strategy [7, 8, 9, 10, 11, 12,]. We say that these modules
have open implementations.

The open implementation approach works by somewhat
shifting the black-box guidelines for module design.
Whereas black-box modules hide all aspects of their im-
plementation, open implementation modules allow clients
some control over selection of their implementation strat-
egy, while still hiding many true details of their
implementation. In doing this, open implementation
module designs strive for an appropriate balance between

Copyright © 1997 by the Association for Computing Machinery, Inc. Permis-
sion to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this no-
tice and the full citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, to republish, to post on servers, or to redis-
tribute to lists, requires prior specific permission and/or a fee. Request
permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or
permissions@acm.org.

preserving the kind of opacity black-box modules have,
and providing the kind of performance tailorability some
clients require.

A number of existing systems have open implementation
style interfaces, but thus far, there has been no systematic
study of open implementation design, and as a result, de-
signers of these systems have had little or no general
guidance to assist them. This paper addresses this need by
examining a series of specific modules with open imple-
mentations, including designs taken from published
systems and toy designs that illustrate specific issues. The
designs serve to illustrate important concepts, guidelines,
and tradeoffs. They also provide concrete instances to
study and use as idioms in future designs.

This paper is specifically focused on the design of inter-
faces to modules with an open implementation. While the
implementation techniques that support these interfaces
are crucial, they are beyond the scope of this paper.1 Nei-
ther does this paper focus on the general motivation for
open implementation—that can be found in [13, 14, 6, 15,
16]—instead we operate from the premise that some mod-
ules can benefit from the open implementation approach,
and focus on issues in the design of their interfaces.

A BASE CASE
Before we begin an exploration of open implementation
interface designs, it is necessary to provide a basis for the
terms module and interface. We use these terms in a
similar fashion to [17] where a module represents a work
assignment, and an interface is the set of assumptions a
client programmer using the module may make about its
behavior.2 The modules subject to an open implementation
are conceived in the same manner as any other module,
namely by the application of the information hiding prin-
ciple [18]. According to this principle, modules are
selected to localize and hide design decisions.

The following interface design for a simple set module will
be used as an illustrative example throughout the paper.
This black-box interface presents only the functionality of
the set module and hides all implementation issues behind
the interface. It will serve as a comparison point for subse-

1 Many of the implementation techniques are straightfor-
ward, and will be apparent simply from looking at the
interface design. Others are more subtle, and involve re-
cently developed techniques in language and system
implementation [1, 2, 4]. There is, as yet, no unified pres-
entation of these techniques; a separate paper describing
this is in preparation.
2 In this paper, we are concerned with guidelines on the
selection and form of the interface to an open implemen-
tation module. Issues related to the specification of an
interface are outside the scope of this work.

quent open implementation designs for interfaces to set
modules. We are using the set module throughout to help
make the differences between the designs more clear. But
not all of the designs we present will be appropriate for a
module as simple as this. These will noted explicitly.

Set Module Interface Design A

This is the simple “black-box” design. It has the usual proce-
dures for creating sets, adding and removing elements from sets,
and mapping over the elements of a set. The calling interface to
the module might look something like:

makeSet()

insert(item, set)

delete(item, set)

isIn(item, set)

map(function, state, set)3

Interface design A is attractive in its simplicity. In addi-
tion, it adheres to the five characteristics of quality
interface designs outlined in [19]. That is, the interface is
consistent (e.g., the set parameter is consistently passed as
the last argument), essential (e.g., each service is offered
in only one way), general (e.g., a set may be used for only
insertions, or both insertions and deletions), minimal (e.g.,
each function provides one operation), and opaque (e.g.,
the interface hides the “secret” around which the module
has been defined).

It is, however, inherently difficult to develop an imple-
mentation of this interface that will please a large range of
prospective clients. This difficulty arises because deter-
mining the best implementation strategy for a set depends
on knowing what is going to be done with it. How many
elements will it have? How often will new elements be
inserted? Will existing elements be deleted? How often?
How often will the other set operations be called? All of
these factors are important in determining how to imple-
ment a set. This is why there are so many different
implementation strategies for sets. The libg++ library
[20], for example, has eleven variants of set, including
linked lists, B-trees and hash tables, to name a few. But
with design A, the set module implementor has little basis
for selecting which implementation strategy to use—the
interface makes it difficult for the set module to know what
a specific client’s usage pattern will be. This is, in short,
an appropriate case for an open implementation design.

3 The map procedure calls the function on every element of
the set, passing it both the element and the state block.
This design makes it possible to “simulate a closure.”

SEPARATION OF USE FROM IMPLEMENTATION
STRATEGY CONTROL
The following design addresses the difficulty of developing
a reusable implementation of design A by providing clients
limited control over the selection of the module’s imple-
mentation strategy.

Set Module Interface Design B

In this design, the interface is the same as in design A, except
that now makeSet can optionally be called with an argument
that describes the client’s pattern of use. The intent is that the
set module implementation can examine this description and
select an appropriate specialized implementation strategy tuned
for that pattern of use. The optional usage parameter is a string
in a simple declarative language that supports the encoding of
information such as the size of the set and the relative frequency
with which the various operations are called.

makeSet(usage)

makeSet()

insert(item, set)

delete(item, set)

isIn(item, set)

map(function, state, set)

The following example calls to makeSet show how the usage
parameter works:

makeSet(“n=10000,
 insert=lo,
 delete=lo,
 isIn=hi”)

makeSet(“n=5,
 insert=hi,
 delete=hi”)

In this design, the opacity criteria have been relaxed
somewhat from design A. Whereas design A kept the im-
plementation entirely “secret,” design B admits to clients
that selecting the implementation strategy is an important
issue, and that understanding how the set will be used can
help in that selection. But note that most of the secrets
remain hidden. The client does not know what the actual
implementation strategies are, and they certainly do not
know any of the details about how those strategies are im-
plemented.

We begin with a few simple observations about this new
interface design:

• It is only a small change from interface design A. The
makeSet procedure now accepts an optional argu-
ment; all the other procedures are unchanged.

• The client’s use of the new functionality is optional.
It is still possible to call makeSet with no argu-
ments, which will leave the set module free to choose

a default general-purpose implementation strategy,
much as it would have in design A.

• The client’s use of the new functionality has an inher-
ently well-bounded effect. The implementation
strategy control associated with a given call to make-
Set affects only the sets created by that call. This
makes it possible for some sets to use the new func-
tionality and others not, and for different sets that use
the new functionality to do so in different ways to get
different implementation strategies.

• The new part of the interface can be seen as being
relatively orthogonal to the original interface. The
new part supports client control of implementation
strategy, whereas the old part supports actually using
sets.

The last observation means that set module interface de-
sign B effectively splits client code into two kinds: most of
the client code simply uses the set module’s functionality,
while the parameter to makeSet is involved in control-
ling the set module’s implementation strategy.

This important property is in fact the subject of the first
design guidelineopen implementation module inter-
faces should support a clear separation between client
code that uses the module’s functionality (use code) and
client code that controls the module’s implementation
strategy (ISC code) .

A clear separation between client use code and ISC code is
important because it helps to preserve the advantages of
black-box modules. It helps the client programmer selec-
tively focus their attention on either the way their code
uses the module’s functionality, or the way their code con-
trols the module’s implementation strategy. When
focusing on the use code, the client programmer is effec-
tively working with a black-box interface to the module.

Design B does a good job in this respect; the client pro-
grammer simply has to selectively ignore the paramater
passed to makeSet in order to focus on use code. It
would even be easy to build an automatic tool that could
hide the ISC code when the programmer wanted to ignore
it.

In working with this guideline, what is most important is
the effective separation the client programmer has to work
with, as manifested in their code. This goal can be sup-
ported by use/ISC separation in the interface, but it is
separation in the client code that is the real benefit.

In addition to having a clear separation between client use
and ISC code, open implementation module interfaces
should be designed to make the ISC code optional, make
the ISC code easy to disable, and support alternative ISC
codes for one piece of use code. These additional guide-
lines provide further support for the development of clients

of open implementation modules. They enable clients to
first be developed with a focus on getting the functionality
right, by leaving out ISC code. They assist performance
debugging, by selectively turning parts of the ISC code on
and off. They facilitate porting, by allowing different ISC
code for different environments. They support division of
expertise, since use code can be written by a person (or
group) with one expertise and ISC code can later be writ-
ten by a person (or group) with another expertise.

One example of a system with clear use/ISC code separa-
tion is High-Performance Fortran (HPF) [21], a Fortran
extension intended to support efficient data parallel pro-
gramming. One of HPF’s principal components is a set of
declarations that allows programmers to assist the com-
piler (and the runtime system) in determining strategies
for distributing arrays across multiple processors. In our
terminology, these declarations are ISC code. Clear
use/ISC separation is achieved by embedding the declara-
tions into what would be comments in a Fortran-90
program. An example of the use of this mechanism is:

REAL A(1000,1000), B(998,998)
!HPF$ ALIGN B(I,J) WITH A(I+1,J+1)

where the first line is use code that declares two large ar-
rays and the second line is ISC code saying how to lay out
the elements of the arrays with respect to each other.

Scoring the HPF interface design against the use/ISC sepa-
ration guidelines:

• The use/ISC code separation is clear—the ISC code
can easily be ignored by the client programmer or
hidden by a tool.

• The ISC code is optional—either HPF or Fortran-90
compilers will compile an HPF program without the
ISC code.

• The ISC code is easy to disable—a very simple tool
can strip it out of a program before passing that pro-
gram on to the compiler.

• HPF doesn’t directly support multiple ISC codes for
one use code, but it is easy to build a tool that does do
so, for example by further extending the syntax to
mark each line of ISC code with the platform for
which it is intended, and then using a pre-processor to
strip out inappropriate lines before passing the code
off to the HPF compiler.

These properties translate into direct benefits to HPF pro-
grammers. Programs can be developed focusing on just
the use code. The ISC code can be added later during
tuning, possibly by different programmers. Even after the
ISC code has been added, the use code is internally com-
plete and executable on its own, so that evolution can be
accomplished by first adjusting and testing the use code,

and then making any needed adjustments to the ISC code.

An example that doesn’t do quite as good a job on use/ISC
separation is the libg++ library [20], a large library of
C++ classes and other building blocks, that includes a set
module with an open implementation. But in this design,
ISC code is mandatory at set construction, requiring client
programmers to always think about the set module’s im-
plementation strategy, even in the many cases where a
general-purpose strategy would be sufficient. The result is
that too many of the benefits of the black-box interface are
lost. This also means there is no way to tell from reading
the client code whether a particular piece of ISC code was
well thought out, or was merely intended to be a default.
This makes the code harder to reason about and maintain.
The work described in [10] improves on the libg++ design
in several ways, one of which is to provide a more clear
use/ISC separation.

SCOPE CONTROL
An important observation about design B is that any given
piece of ISC code affects the implementation of only some
setsjust those sets created by the makeSet the ISC code
appears in. This important point is the focus of the next
design guidelineopen implementation module inter-
faces should be designed to allow the scope of influence
of ISC code to be controlled in a way that is both natural
and sufficiently fine-grained.

Like use/ISC separation, the motivation for this guideline
is to help the client programmer understand their program,
in this case by making it easier for them to reason about
the effect of the ISC code they write. The programmer’s
reasoning is directly facilitated when the scope of influ-
ence of ISC code is natural and fine-grained.

Design B does a good job of meeting this guideline. The
ISC code on a specific call to makeSet affects only those
sets returned from that call (and all the set operations on
them). It is natural for the client programmer to think in

 s1=makeSet(“n=1000”)
 for i = 1 to 700 do
 insert(s1, i+i)
 count(s1)

 s2=makeSet(“n=5”)
 insert(s2, 5)
 insert(s2, 6)
 count(s2)

 function count(s) {
 map(.., .., s)
 }

Figure 1: Scope control in Design B

terms of sets created by a given call to makeSet. This
granularity is sufficiently fine grained for the programmer
to reason easily about the effect of any piece of ISC code.

Figure 1 shows the effect of design B’s scope control from
the client programmer’s perspective. It shows a number of
lines of use code, and two pieces of ISC code, the strings
“n=1000” and “n=5”. The dashed lines indicate what
parts of the use code are in the scope of influence of each
piece of ISC code. Note that the count function, and the
call to map inside it are in both scopes, since it can be
passed sets with either kind of implementation.

Choosing the Scope Control
While the importance of natural and fine-grained ISC code
scope control is easy to state, designing an appropriate
scope control for an interface can be a subtle problem.
Coming up with the design involves considering how and
why the client is going to want to control the implementa-
tion strategy, and making sure that the design gives clients
a fine-enough granularity to work with, without being
overly difficult to implement or use. This section presents
some alternative scope controls, to illustrate some of the
considerations that come into play.

As an alternative scope control for design B, consider a
design where the client could only control the implemen-
tation strategy on a per-application basis. This might be
done with a declaration associated with the makefile for
the application, that affected all the sets used by that appli-
cation. This scope control would not be fine-enough
grained, because it is reasonable to expect that an applica-
tion will want to use sets more than once, and do so in
different ways, and thus want different implementations
strategies. This alternative design would thus be not much
more useful than a closed implementation of sets.

As another example consider file systems that allow the
client to control their pre-fetching and caching strategy
[22]. These systems tend to provide this control on a per
stream basis.4 A per-file basis would be too coarse a
granularity, because it would cause problems if two differ-
ent clients opened the same file but wanted different
implementation strategies. Similarly, ISC scope control on
a per-process basis would be too coarse, since it is reason-
able to expect that a system running in one process might
want to open different streams with different implementa-
tion strategies.

While it is important to have sufficiently fine-grained
scope control, there is a tension in that the more fine-
grained it gets, the harder it can be both to use and to im-
plement. For example, if a file system allowed the client

4 By stream we mean the result of opening the file, that is
a handle to the file that can be used to read/or write bytes.

to control the pre-fetching strategy on a per-byte basis—
every call to readByte could control the pre-fetching
that happened with that call—it would undoubtedly be
more powerful than on a per-stream basis, but it could be
more cumbersome to use and difficult to implement.
(Implementation technology capable of supporting such a
design does exist however [3].)

There are, however, cases where very coarse ISC scope
control has proven useful. Consider for example the
BLAS libraries [23] for matrix routines. There are differ-
ent library implementations customized for different
hardware architectures. The library is linked in when exe-
cution starts, and affects all the matrix arithmetic in the
application, but in this case that is an appropriate granu-
larity.

In summary, natural and fine-grained scope control com-
plements clear use/ISC separation. A clear use/ISC
separation divides the client code into use code and ISC
code. Natural and fine-grained ISC code scope control
partitions the client code into parts depending on what ISC
code affects them.

SUBJECT MATTER
While design B does address the original need for client
control of implementation strategy, the way in which it
does so has a few potential weaknesses:

• If a client programmer mis-describes the behavior of
their program they may wind up with an implementa-
tion strategy that is worse than the default.

• Even if the client programmer properly describes the
behavior of their program, they have no guarantee that
they will get an implementation strategy that is opti-
mal for their purposes. An implementation of design
B might not include an implementation strategy that
is optimal for every usage profile a client might de-
scribe in a call to makeSet.

In essence, design B allows the client to say more about its
behavior, but leaves the client unsure about the effect this
will have on the module’s implementation strategy. Ad-
dressing this uncertainty is the motivation for the next
design.

Set Module Interface Design C

This design for the set module interface is identical to design B
except for the optional argument to makeSet. In this design the
client programmer has the option to explicitly specify one of a
fixed list of implementation strategies for the new set. The
fixed list is: BTree, LinkedList, HashTable..

makeSet(strategy)

makeSet()

insert(item, set)

delete(item, set)

isIn(item, set)

map(function, state, set)

 Two example calls to makeSet are:

makeSet(“LinkedList”)

makeSet(“HashTable”)

First we note some of the ways that design C is similar to
design B:

• It has similar use/ISC separation, i.e. a parameter of a
procedure in the use interface.

• It has similar scope control, i.e. a given piece of ISC
code affects only operations on sets returned by that
call to makeSet.

But designs B and C differ in an important respect, having
to do with the nature of the ISC code in clients of each. To
capture this difference, we introduce a concept called the
ISC code subject matter of an open implementation mod-
ule’s interface design. We use this term to refer to the
explicit subject of the ISC code.

In design B, the ISC code subject matter is the client pro-
gram’s behavior. In design C it is the module’s
implementation strategy. This distinction may appear
somewhat subtle, since, after all, both designs allow the
client to affect the module’s implementation strategy. And
pieces of ISC code from designs B and C can have the
same intent, even though they have different subject mat-
ter, i.e. "n=1000, insert=lo, delete=lo,
isIn=hi" and “HashTable”. The difference is in
what the ISC code is explicitly about: the client program’s
behavior in design B vs. is the module’s implementation
strategy in design C.

There is a third important possibility for ISC code subject
matter—performance requirements the module must meet
at its interface. While this subject matter may not be ap-

propriate for the interface to a set module, it is useful in
other cases.5 One example of open implementation mod-
ules with this ISC code subject matter is network protocol
interfaces that allow clients to request a particular quality
of service [24]. Such guarantees are critical for applica-
tions, such as audio- and video-conferencing, that send
real-time data streams over a network.

The three possibilities for ISC code subject matter are
summarized in Table 1.

Tradeoffs
Choosing the ISC code subject matter is a key decision in
the design of the interface to an open implementation
module. The ISC code subject matter has a significant ef-
fect on how easy the module will be to design, specify and
implement, as well as how well it will work for its clients.

Making the ISC code subject matter be the client’s behav-
ior feels like it should be easier for the client programmer,
since all they have to do is figure out the behavior of their
program and let the module do the rest. But this isn’t al-
ways the case. It can often be easier for a client
programmer to simply name a well-known implementation
strategy that they know will be appropriate. Further, this
can give the client programmer more certainty that their
ISC code will have the effect they desire. This is why the
libg++ set library has module implementation strategy as
its subject matter, not client program behavior. (It is more
like design C than design B.)

On the other hand, having the ISC code subject matter be
the module’s implementation strategy opens the door to

5 The libg++ set library uses the module’s implementation
strategy as its ISC code subject matter. (It is like design C
in that sense.) But, the documentation of the different
strategies (XPSets, OXPSets, SLSets etc.) itself in-
cludes a description of each strategy’s order of complexity
(i.e. [a O(n)], [f O(n)], [d O(n)]… for XPSets), so it de-
scribes itself in terms of performance properties at the
module’s interface.

Subject Matter Client ISC Code Example

client program’s behavior n=10000,insert=hi,delete=lo,isIn=hi Design B

performance requirements
the module must meet at
its interface

bandwith=10000 Network Quality of
Service [24]

module implementation
strategy

HashTable Design C

Table 1: Subject matter and Style of ISC Code

potential problems if the client programmer chooses an
inappropriate strategy. We are all familiar with the fact
that good C compilers ignore register declarations because
programmers almost always use them incorrectly. So the
interface designer should only make this choice for ISC
code subject matter when there is a reasonable chance that
the client programmer will be able to choose correctly.

And, while having the subject matter be the performance
requirements at the interface seems like a happy compro-
mise, it is not always the best choice either. There are
many cases where it is easier for the client programmer to
speak in terms of one of the other subject matters.

One rule of thumb for selecting ISC code subject matter is
based on seeing the process of selecting implementation
strategy as a series of analysis steps: Given the client use
code, how does it use the interface? Given a client with
that usage pattern, what performance properties does it
require? Given those performance requirements, what
implementation strategy will best satisfy them? This proc-
ess is illustrated in Figure 2.

Seeing the process that way, the guideline is: Pick the first
subject matter along the process of Figure 2 for which
all of the following criteria hold:

• It is possible to build an automatic mechanism that
completes the chain of reasoning from that point
onwards to get an optimal implementation strategy.

• It is easy to design an interface to express the subject
matter at that point.

• It would be easy for the client programmer to use
that interface to express that subject matter. This
includes both figuring out what to say and how to
say it.

Note that this guideline also provides a way of knowing
when not to use an open implementation. An open im-
plementation is not needed when all of the steps of the
above inference process can be handled automatically to
arrive at an optimal implementation strategy.

One example of an appropriate choice of ISC code subject
matter is the inline declaration found in many pro-

6 If there is one implementation strategy that is appropriate
for all clients, there is no need for an open implementa-
tion.

gramming languages, including C and Common Lisp.
This declaration allows the programmer to name an im-
plementation strategy for procedure calling. It comes at
the end of the inference process above, and so the pro-
grammer has a clear sense of what its effect will be.

A corresponding example of inappropriate choice of ISC
code subject matter is the speed/space/safety declarations
found in Common Lisp [25]. These declarations don’t
have a clear subject matter; it isn’t clear where they fall in
the inference process above, and programmers don’t have
a clear sense of what their effect will be.

Implementation Details Must be Hidden
Design C further relaxes the original secrets around which
Design A was defined. Now, the existence of a fixed set of
implementation strategies is no longer secret. But notice
that the true details of each strategies implementation is
still hidden. There is still plenty of information hiding
across the interface between the client and the implemen-
tation. This can be stated in a design guideline: Open
omplementation module interfaces should be designed to
pass only essential implementation strategy information.
The three subject matters are different ways of encoding
the essential information.

STYLE OF THE ISC CODE
While design C addresses the lack of guarantees in design
B, both designs are limited to whatever set of implementa-
tion strategies is provided by the module. This makes
them both vulnerable to the implementation not being
flexible enough for a wider range of clients. This moti-
vates yet another design.

Set Module Interface Design D

In this design, the use interface is exactly the same as in design
C. But this design not only allows client programmers to choose
from a fixed set of default implementation strategy, but also
allows them to provide entirely new implementation strategies
for the set module. The client provides these strategies in the
form of an entirely new implementation of the set functionality,
packaged up as a subclass of the class Set. (In this paper we
use the mechanism of object-oriented programming to capture
this kind of design, but other mechanisms like callbacks or dis-
patching procedures could be used just as well.)

client
use

code

client
usage
profile

client
performance
requirements

module
implementation

strategy

analysis analysisanalysis

Figure 2: Analysis steps in the process of selecting implementation strategy

The following example illustrates the use of interface design D:

In use file

 makeSet(“mySet”)

 In ISC file

class mySet (Set) {
 method insert…
 method delete…
 method isIn…
 method map…}

Design D is similar to design C in many ways:

• It has the same scope control.

• It has similar use/ISC code separation. The key dif-
ference in design D is that client ISC code includes
not only the code inside the arguments to makeSet,
but also the code that defines any new implementation
strategies for sets.

• The ISC code subject matter in this design is the im-
plementation strategy of the module. But in this
design, the ISC code takes two different forms. The
part inside the arguments to makeSet is just like in
design C, but the part that defines new subclasses of
Set is different.

To capture this difference between the declarative ISC
code in designs B and C and the programmatic ISC code
that in design D, we introduce a new concept, the style of
the ISC code.

Declarative style ISC code is simple, but its power is lim-
ited to the forms of declarations supported by the interface.
This limitation can be problematic when a client has needs
that fall out of the purview of these declarations. An in-
terface that supports programmatic ISC code addresses
this limitation by allowing the client to write ISC code in
the form of a small program.

In design D, the set primitives insert, delete, isIn
etc. will invoke the client’s programmatic ISC code when
one of the client-defined implementations is requested.
Errors in this ISC code will cause errors seen by the use
code. So, unlike the situation in the earlier designs, ISC
code has the potential of breaking the use functionality of
the interface.

The programmatic style of interface thus can lead to less
robust designs. For this reason, it should only be used in
cases, such as this one, where otherwise the client would
be forced to “code around” the performance deficiency of
the module. The use of programmatic ISC code puts a
premium on having the right scope control, so as to restrict
the consequences of bad programmatic ISC code to those

places where it is requested. So, for example, if a buggy
backing store is given to the Mach external pager, the
whole operating system does not come crashing down.
Only the process requesting that backing store is affected.

THE DESIGN SPACE
Figure 4, on the next page, summarizes these four design
approaches. It illustrates the progressively deeper in-
volvement of the client in the implementation in the
successive styles. The right style to use for a particular
module is the one that lets client get as involved in imple-
mentation strategy as they need to, without having to get
more involved.

Layering
Not only can different clients of a module need different
implementation strategies, different clients of a module
may also be better served by different interface design
styles. Fortunately, this can be accommodated.

Notice that interface design D subsumes both design C and
design A. That is, a client of design D has three choices
regarding control of the set module’s implementation
strategy:

1. They can specify no ISC code and get the default im-
plementation strategy.

2. They can choose from the list of the built-in strategies.

3. They can provide a new strategy.

We say that design D is a layered interface design.7 In
this design the client can get into the implementation
strategy selection process at three different levels. In fact,
the first two levels of the above layering have been implic-
itly present since design B, stemming from the guideline
that ISC code should be optional.

Many existing open implementation modules have layer-
ing in this sense. The file system mentioned above is one

7 Layered interface designs refer to the structure of the
interface, not to the underlying software structure. A lay-
ered interface design might or might not be implemented
by a layered software architecture.

client code from the
client appears
to end up inside
the module

module

Figure 3: Effects of ISC code in design D.

example, that closely parallels design D. The client can do
nothing, in which case they get a default pre-fetching pol-
icy, or they can choose from a small set of built-in policies,
or they can write programmatic ISC code to define a new
policy.

A layered interface design aims at exploiting a version of
the 90/10 rule. The idea is that 90% of the clients can use
the default strategy, the remaining 10% will need to write
some ISC code. 90% of that 10% can select from among
the built-in strategies, and only the final 1% (but probably
a very important 1%) have to provide an entirely new
strategy.

Layering is not an end in itself, but a technique to address
what might otherwise seem like an irresolvable trade-off.
In particular, layering is a way to design an interface that
has the robustness and ease of use of declarative ISC code,
while at the same time having the power of programmatic
ISC code. The guideline is: When there is a simple inter-
face that can describe strategies that will satisfy a
significant fraction of clients, but it is impractical to
accommodate all important strategies in that interface,
then the interfaces should be layered.

OTHER DESIGNS
The range of design approaches presented here are suitable
for a large class of open implementations. But there is no
room here to cover all the approaches. Two notable omis-
sions are: an approach, particularly used in some open
operating systems, that allows incremental definition of
new strategies; approaches for allocating shared resources.

These other approaches will be explored in future work.

CONCLUSION
Open implementation is appropriate for reusable modules
that have clients with a wide range of different perform-
ance requirements. Open implementation is based on
reworking the opacity guidelines for traditional black-box
modules. In open implementation, modules allow their
clients to participate in their implementation strategy, but
still hide many aspects of their implementation details.
Open implementation requires new design guidelines to
augment the existing ones for black-box modules. This
paper provides an initial set of such guidelines and issues
having to do with:

• Clear use/ISC client code separation

• Natural and fine-grained ISC code scope control

Interface Style

and example

How Strategy is
Selected

Tradeoffs When it is Appro-
priate

Style A – No implementation
strategy control interface

Module selects imple-
mentation strategies by
observing client’s use of
the Black-Box Interface.

Same as Black-Box Abstrac-
tion.

One implementation
strategy will satisfy all
clients. Or the module
can determine a good
strategy by itself.

Style B – Client provides de-
clarative information about its
usage pattern.

“sequential file scan.”

Module selects strategy
by matching usage pat-
tern information from
client to the best avail-
able strategy.

Client provided information
about its usage pattern doesn’t
constrain the implementation.
Difficult for client to know how
it is influencing module strat-
egy.

It is easy to choose an
effective implementation
strategy if the client be-
havior is known.

Style C – Client specifies the
implementation strategy the
module should use.

 “LRU cache management”

Module adopts the strat-
egy specified by client.

Easy to specify exact strategy.
However, client might be un-
informed or wrong about best
strategy to use.

There are a few candi-
date implementation
strategies, but it is diffi-
cult to choose among
them automatically.

Style D – Client provides the
implementation strategy to
use.

an object that implements a
custom strategy on top of the
cache management protocol

Module adopts the strat-
egy provided by client.

Easy to specify exact strategy.
However, designing module to
support replaceable strategies
might be difficult. For client,
building a new strategy imple-
mentation might be expensive.

It is not feasible for the
module to implement all
implementation strate-
gies that clients might
need.

Figure 4: open implementation interface styles.

• Selection of appropriate ISC code subject matter

• Selection of appropriate ISC code style

• Incrementality in the ISC interface

• Use of layering to balance ease of use and power

ACKNOWLEDGMENTS
We would like to thank the people who have contributed
directly to this paper: Art Lee, Rob DeLine, John Irwin,
Jean-Marc Loingtier, and Marvin Theimer.

BIBLIOGRAPHY
1. Kiczales, G., J.d. Riveres, and D.G. Bobrow, The Art of

the Metaobject Protocol. 1991: MIT Press.

2. Chambers, C. and D. Ungar. Making Pure Object-
Oriented Languages Practical. in OOPSLA '91 Pro-
ceedings; SIGPLAN Notices. 1991. Phoenix, AZ.

3. Pu, C. and H. Massalin, An Overview of The Synthesis
Operating System. 1989: Columbia University.

4. Chiba, S. A Metaobject Protocol for C++. in OOPSLA
'95 Conference Proceedings Object-Oriented Pro-
gramming Systems, Languages, and Applications.
1995. Austin: ACM Press.

5. Stonebraker, M., Operating System Support for Data-
base Management. Communications of the ACM,
1981. 24(7): p. 412-418.

6. Kiczales, G. Towards a New Model of Abstraction in
Software Engineering. in Proceedings of the Interna-
tional Workshop on New Models for Software
Architecture '92; Reflection and Meta-Level Architec-
ture. 1992. Tokyo, Japan.

7. Young, M.W., Exporting a User Interface to Memory
Management from a Communication-Oriented Oper-
ating System. Vol. Technical report CMU-CS-89-202.
1989: Carnegie Mellon University, Computer Science
Department.

8. Hamilton, G. and P. Kougiouris, The Spring Nucleus:
A Microkernel for Objects. 1993: Sun Microsystems
Laboratories, Inc.

9. Yokote, Y. The Apertos Reflective Operating System:
The Concept and its Implementation. in Proceedings of
the Conference on Object-Oriented Programming:
Systems, Languages, and Applications. 1992.

10.Lortz, V.B. and K.G. Shin. Combining Contracts and
Exemplar-Based Programming for Class Hiding and
Customization. in Object-Oriented Programming
Systems, Languages, and Applications. 1994. Portland,
Oregon: ACM Press.

11.Maeda, C. and B.N. Bershad. Service without Servers.
in Fourth Workshop on Workstation Operating Sys-

tems. 1993: IEEE Computer Society Technical
Committee on Operating Systems and Application
Environments, IEEE Computer Society Press.

12.Anderson, T.E. and others, Scheduler Activations: Ef-
fective Kernel Support for the User-Level
Management of Parallelism. ACM Transactions on
Computer Systems, 1992. 10(1): p. 53-79.

13.Shaw, M. and W.A. Wulf, Towards Relaxing Assump-
tions in Languages and Their Implementations.
SIGPLAN Notices, 1980. 15(3): p. 45-61.

14.Heninger Britton, K., R.A. Parker, and D.L. Parnas. A
Procedure for Designing Abstract Interfaces for De-
vice Interface Modules. in 5th International
Conference on Software Engineering. 1981: IEEE
Computer Society Press.

15.Kiczales, G., Beyond the Black Box: Open Implemen-
tation. IEEE Software, 1996. 13(1): p. 8--11.

16. Open Implementation Home Page, Xerox Palo Al-
toResearch Center,

 http://www.parc.xerox.com/oi.

17.Parnas, D.L. and P.C. Clements, A Rational Design
Process: How and Why to Fake It. IEEE Transactions
on Software Engineering and Methodology, 1986. SE-
12(2): p. 251--257.

18.Parnas, D.L., On the Criteria to be Used in Decom-
posing Systems into Modules. Communications of the
ACM, 1972. 15(12): p. 1053-1058.

19.Hoffman, D., On Criteria For Module Interfaces. IEEE
Transactions on Software Engineering and Methodol-
ogy, 1990. 16(5): p. 537--542.

20. Gnu, Lib G++ Documentation,
 http://www.delorie.com/gnu/docs.

21.Steele Jr., G.L., High Performance Fortran: Status
Report. ACM SIGPlan Notices, 1993. 28(1).

22.Patterson, R.H. and et al., A Status Report on Research
in Transparent Informed Prefetching, in ACM Operat-
ing Systems Review. 1993. p. 21-34.

23.Dongarra, J.J., et al., An Extended Set of Fortran Basic
Linear Algebra Subprograms. ACM Transactions on
Mathematical Software, 1988. 14: p. 1--17.

24.Zhang, L., et al., RSVP: A New Resource ReSerVation
Protocol. IEEE Network, 1993(September).

25.Steele Jr., G.L., Common Lisp the Language. Second
ed. 1990: Digital Press. 1029.

Smalltalk: a Re
ective Language

Fred Rivard

Laboratoire Jules Verne

Ecole des Mines de Nantes & Object Technology International Inc.

France

rivard@info.emn.fr

Abstract

As in the Lisp tradition, Smalltalk is almost entirely
written in itself. It o�ers important advantages such as
large portability, dynamicity, a fully uni�ed world, graph-
ical user interface builders, connection to databases, pow-
erful development tools, etc. In this paper we discuss
the trait that underlies all these features: Reflection.
We quote one of its de�nitions and in the �rst part of
this paper go through the di�erent re
ective aspects of
Smalltalk. We expand �ve major aspects in detail:
meta-operations, the classes/metaclasses model, the rei-
�ed compiler, message sending and the behavioral rep-
resentation through the rei�cation of the executive stack
frame of each process. We illustrate their use with sig-
ni�cant applications, based both on our industrial and
research experiences. In the second part of the paper,
we introduce and fully develop pre/post conditions in
Smalltalk, dealing with extensions of the model, the
compiler, and the development environment.

1 Introduction

Smalltalk derives its success largely from being not
only a language but also an operating system and a de-

velopment environment as well as producing applications
which are extremely portable on multiple platforms. The
most important aspect about the language is that, in the
Lisp tradition, it is almost entirely written in itself. This
property makes it an open system that is easily extend-
able. The implementation of Smalltalk [Par94b]1 itself
is structured as an object-oriented program, expressed in
Smalltalk and organized around meta-level objects rep-
resenting the classes, methods, lexical closures, processes,

compilers, and even the stack frames. Smalltalk be-

1In this paper, Smalltalk designates the version Visual-

Works 2.0 of ParcPlace.

longs to the �eld of languages that deals with re
ection.

\Re
ection is the ability of a program to manipu-

late as data something representing the state of the pro-

gram during its own execution. There are two aspects of

such manipulation : introspection and intercession.

Introspection is the ability of a program to observe and

therefore reason about its own state. Intercession is the

ability of a program to modify its own execution state

or alter its own interpretation or meaning. Both as-

pects require a mechanism for encoding execution state

as data; providing such an encoding is called rei�cation"
[DBW93].

Even if the precise point at which a language
with re
ective facilities becomes a re
ective language is
not well de�ned (and is an interesting issue that mer-
its examination by the re
ective community as a whole),
Smalltalk has one of the most complete sets of re
ective
facilities of any language in widespread use. Although
Smalltalk is not fully re
ective due to the pragmatic

reason of e�ciency [GR83], its re
ective facilities can pro-
vide much of the power of full re
ection [FJ89]. This
characteristic is responsible for most of its advantages
over other industrial object-oriented languages, such as
C++ and Ada95.

1.1 Following the Lisp tradition

What probably accounts for a large part of the suc-
cess of the early Lisp interpreters and their di�erent
derived dialects, is the great ease with which one can
describe and build programs in terms of simple objects
such as lists. Taking the trivial example of the addi-
tion of two numbers, the program can be described as

(cons '+ '(1 2))

Thus, one can consider programs as regular data and may
use them as such. Futhermore, the program can reason
about itself. The idea follows that a program could see

itself as data, and thus modify itself.

Although Smalltalk seems to be a little bit more
complicated than Lisp at �rst glance, it has kept Lisp's
approach towards code, regarding and manipulating it as
regular data. Taking the creation of simple objects such
as points as an illustration, the external representation of
a point matches exactly the program that creates it.

1@2 represents a point where the x value is 1 and
the y value is 2. Moreover, the execution of this repre-
sentation, viewed as an expression, returns exactly the
point object 1@2. The internal representation can also
be accessed. An object may have a textual representa-
tion of its internal state using the message storeString,
which returns a sequence of characters that is an ex-
pression whose evaluation creates an object similar to it-
self. Thus (1@2) storeString returns the string 'Point
x: 1 y: 2'. Explicitly calling the regular evaluator us-
ing Compiler evaluate: '...aString...', the evalua-
tion of this next string returns true:

(1@2) = (Compiler evaluate:

((1@2) storeString))

)true

Classes, which are complex objects, also have a textual
representation.

ArithmeticValue subclass: #Point

instanceVariableNames: 'x y '

classVariableNames: ''

poolDictionaries: ''

category: 'Graphics-Geometry'

The above text matches the de�nition of the Point
class, which can be obtained by sending the definition
method to the rei�ed object that represents the Point

class. Thus the evaluation of a class de�nition returns an
object (a class) that returns exactly the same string when
asked for its definition.

The Smalltalk code is stored in what is called a
method, which corresponds (approximately) to a named
Lisp lambda-expression. As for classes, a textual repre-
sentation may be obtained just by sending introspective
messages. [:x j x+1] is equivalent to the (lambda (x)

(+ x 1)) Lisp expression. It is represented by an object
fromwhich one can ask for its external textual representa-
tion. In order to get their external textual representation,
methods and lexical closures, denoted under the voca-
ble block, use their internal representation, which mainly
comprises bytecodes, as well as a decompiler (which is

rei�ed, too). A special tool (CompiledCodeInspector)
makes the access to this source representation very user
friendly, using the mouse and a click on a �eld.

Therefore, following the lisp tradition, a
Smalltalk program may reason about itself regarding
and manipulating the di�erent objects that represent it
(textually or internally).

1.2 Meta-Objects

\First, the basic elements of the programming language -

classes, methods and generic functions - are made accessi-

ble as objects. Because these objects represent fragments

of a program, they are given the special name ofmetaob-

jects. Second, individual decisions about the behavior of

the language are encoded in a protocol operating on these

metaobjects - a metaobject protocol. Third, for each

kind of metaobject, a default class is created, which lays

down the behavior of the default language in the form of

methods in the protocol." [KdRB91]

Ordinary objects are used to model the real world.
Meta-objects describe these ordinary objects. As a con-
sequence, meta-objects mostly describe Smalltalk en-
tities. We quote non-exhaustively major meta-object
classes (classi�ed by subject):

1. Structure:
Behavior, ClassDescription, Class,

Metaclass, ClassBuilder

2. Semantics:
Parser, Compiler, Decompiler, ProgamNode,

ProgramNodeBuilder, CodeStream

3. Behavior:
CompiledMethod, CompiledBlock, Message,

Signal, Exception

4. Control State:
Context, BlockContext, Process,

BlockClosure, ProcessorScheduler

5. Resources:
ObjectMemory, MemoryPolicy, WeakArray

6. Naming:
SystemDictionary, NameScope, PoolDictionary

7. Libraries:
MethodDictionary, ClassOrganizer,

SystemOrganizer

8. Environment:
Browser, Inspector, Debugger

The methods associated with these classes formalize what
can be considered as the Smalltalk MOP.

1.3 Paper Organization

This paper is divided in two parts: the �rst part is a sur-
vey of the re
ective capabilities of the language, and the
second is an illustrative example of those capabilities. Af-
ter having presented meta-operations and their use, we fo-
cus on the most important re
ective subjects: structure,
behavior, semantic and control state. We describe the
involved meta-objects and their classes. We quote signif-
icant applications using such objects. As an illustration
of re
ective manipulations, we introduce pre/post con-

ditions in Smalltalk, dealing with (small) extensions
of the model, the compiler and the development envi-
ronment. We conclude with the current propensity of
Smalltalk to include more and more re
ection in re-
cent releases, which we consider as a sign of adaptability
to new software engineering challenges.

2 Re
ective aspects survey

Rather then going through a complete enumeration of all
the re
ective facilities of Smalltalk, we concentrate on
the most important ones:

1. Meta-Operation: regular objects as metaobjects,

2. Structure: classes as regular objects,

3. Semantics: compilers as regular objects,

4. Message Sending: messages as regular objects
(when errors occur),

5. Control State: processes as regular objects.

2.1 Meta-Operations

Meta-operations are operations that provide information

about an object as opposed to information directly con-

tained by the object. [: : :] They permit things to be done

that are not normally possible (page 195 of [LP90]).

2.1.1 Model

Major meta-operations are de�ned in the root of the in-
heritance tree, the class Object as methods for:

� addressing the internal object structure

{ Object>>instVarAt:(put:)2

reads (writes) an instance variable using an in-
dex instead of the name of the instance variable,

� addressing the object meta representation

{ Object>>class

returns the class of the receiver,
{ Object>>changeClassToThatOf:

changes the class of an object, and thus its be-
havior. But a heavy restriction of this method
is that both classes must de�ne the same for-
mat, i.e., describe the same physical structure
for their instances,

� addressing the object identity

{ Object>>#allOwners

returns an array of all objects referencing the
receiver,

{ Object>>#identityHash

returns an integer ranged in 0..16383. It is used

to implement dictionary classes3 which provide
e�cient access to the objects of a collection us-
ing keys,

{ Object>>#become:

swaps references between two objects (the re-
ceiver and the argument).

These meta operations consider an object as a meta-
object, but an object understands ordinary methods too,
such as printString or inspect. While some classes
de�ne only meta-objects (Class, Compiler, : : :), other
classes de�ne instances that can be quali�ed as meta-
objects depending on the context in which they are used
(Object, Array(cf 2.3), : : :). Therefore, stamping labels
on classes based on their meta(or not) instances cannot
always be reduced to a dichotomy of choices.

2.1.2 Usage

Introspection is the essence of re
ection, and so the
�rst applications using structural re
ective facilities are
tools used to introspect the Smalltalk system: the
Inspector class and its subclasses.

An inspector enables the user to look at the
structure of an object, and to modify its instance vari-
able values, using Object>>#instVarAt:(put:) meth-
ods. The inspector uses the inspected object class
(Object>>#class) to get its instance variable names

2NameOfClass>>selector: this syntax expresses that the

#selectormethod is implemented by the NameOfClass class.
3Dictionary, IdentityDictionay classes.

(Behavior>>#allInstVarNames) and the index of the
instance variables. Notice that these methods allow the
programmer to break the encapsulation of an object, and
this must only be used in pertinent contexts.

(3@4) x) 3

(3@4) instVarAt: 1) 3

(3@4) instVarAt: 1 put: 5) 5@4

(3@4) class instSize) 2

(3@4) class allInstVarNames) ('x' 'y')

A hierarchy of inspectors is available, allowing special-
ized inspection on particular objects, such as collections,
dictionaries, etc.

Inspector

ChangeSetInspector

CompiledCodeInspector

ContextInspector

DictionaryInspector

SequenceableCollectionInspector

OrderedCollectionInspector

2.2 Structure

Structural re
ection implies the ability of the language
to provide a complete rei�cation both of the program
currently being executed as well as of its abstract data
type[DM95]. Smalltalk as a uni�ed language only ma-
nipulates objects. Each object is an instance of a class
that describes both the behavior and the structure of its
instances. A class named Object de�nes the basic be-
havior of every object of the system, such as accessing
the class of an object.

2.2.1 Model

Classes as regular objects are described by other (regu-
lar) classes called metaclasses4. A metaclass has a sin-
gle instance (except metaclasses involved in the kernel
of Smalltalk). It establishes a couple class/metaclass
schema. Inheritance on metaclasses follows the one at
the class level (cf Figure 1), de�ning the Smalltalk

metaclass composition rule. This schema is known as
the Smalltalk-80 schema, and states how metaclasses
are composed. It may induce class hierarchy con
icts
[Gra89], but for everyday development, the pragmatic
Smalltalk choice suits most needs. Metaclass display

4
Metaclass de�nition: classes whose instances are classes

themselves.

is the concatenation of the global name of its sole in-
stance (a class), and the class string. As an example,
the metaclass of the class Object is the Object class

metaclass.

The behavior of classes and metaclasses are de-
scribed by two (meta)classes respectively named Class

and Metaclass. In order for classes to behave as
classes, Object class inherits from Class. In partic-
ular the new method, enabling object creation, is acces-
sible. This property is often given as the de�nition of a
class. All metaclasses are instances of Metaclass, and
in particular the Metaclass class is also an instance
of Metaclass, stopping de facto an instantiation of in�-
nite regression. Two abstract classes named Behavior

and ClassDescription regroup the common behavior
between metaclasses and classes (for example new is de-
�ned on Behavior).

Finally the class/metaclass kernel of Smalltalk
is self-described with only �ve classes:

� Object

provides default behavior common to all objects,

� Behavior

de�nes the minimal behavior for classes, especially
their physical representation, which is known by the
Smalltalk virtual machine,

� ClassDescription

implements common behavior for Class and
Metaclass such as category organization for meth-
ods, named instance variables, and a save (fileOut)
mechanism,

� Class

describes regular class behavior,

� Metaclass

describes regular metaclass behavior.

xxx

Class

Metaclass

ClassDescription

Behavior

Object Object class

Behavior class

ClassDescription class

Metaclass class

Class class

: instantiation
: inheritance

Figure 1: Smalltalk class/metaclass kernel.

The Smalltalk-80 kernel has pragmatic origins,
resulting from several years of intensive development us-
ing simpler models that chronologically were Smalltalk-
72 [KG76] and Smalltalk-76 [Ing78]. In order to keep

an \easy to use" model, a tool named ClassBuilder

hides the apparent complexity of the kernel from the end-
user. A class creation (and its associated metaclass cre-
ation) is fully managed by the tool, which is called by
the class creation protocol5. It also automatically man-
ages class rede�nition, guaranteeing system consistency
in terms of object structures and preventing name con-

icts, especially instance variable name con
icts. When a
class de�nition changes, existing instances must be struc-
turally modi�ed in order to match the de�nition of their
new class. Instead of modifying an existing object, the
ClassBuilder creates a new one with the correct struc-
ture (i.e., from the new class that replaces the old one).
It then �lls this new object with the values of the old one.
The ClassBuilder uses the become: primitive (cf 2.1.1)
to proceed with the strutural modi�cations, by replacing6

the old objects with the new ones throughout the entire
system.

Methods are held by classes in an instance vari-
able methodDict, whose value is an instance of the
MethodDictionary class. It enables access to the
Smalltalk

code. It also allows methods to be dynamically added at
runtime (ClassDescription>>compile:classified:).
The ClassOrganizer class provides an organization of
methods according to their purpose in protocols and
every class holds such an organization in the instance
variable organization. Classes themselves are grouped
into categories according to their purpose. Smalltalk

organization represents the organization of classes. It
is an instance of the SystemOrganizer class which is a
subclass of the ClassOrganizer class.

2.2.2 Usage

An ordinary use of the self-expressed kernel is to ex-
tend it in order to match new application domains.
Our next pre/post conditions example (cf 3) is such
an extension. As another typical example, Classtalk
[Coi90] proposes an experimental platform (an exten-
sion of Smalltalk) to study explicit metaclass pro-
gramming. But even in the language, rei�cation is of
great bene�t allowing introspection using dedicated tools:
Browser. It manipulates classes and metaclasses as reg-
ular objects. Thus, it can investigate their de�nitions
ClassDefinition>>#definition and their inheritance
links, following the rei�ed superclass/subclasses in-
stance variables.

5subclass:instanceVariableNames:classVariableNames:
poolDictionnaries:category:

6
These are actually pointer manipulations

The Browser organizes the user external interface
according to the information held by the di�erent rei�ed
organizations (cf Figure 2):

� A list pane showing the categories, using Smalltalk

organization,

� A list pane showing class names,

� A list pane showing the protocols of a selected class,

� A list pane showing the selectors of a selected proto-
col,

� A text pane for method edition, class de�nition edi-
tion, class comment, : : : .

Categories Classes
Protocols Methods

Text
Figure 2 :Smalltalk browser with the di�erent panes.

The rei�cation of classes allows the language to
provide essential e�cient utilities such as implementors

(look into all classes for methods matching a given name),
senders (look into all methods for the ones performing a
given sending message) and messages (look for implemen-
tors of a message present in a given method).

Point selectors

) IdentitySet(#x #y #transpose : : :)

Point compiledMethodAt: #+

) Point>>+

Point findSelector: #class

) #(Object Object>>class)

Point superclass

) ArithmeticValue

Point compilerClass

) Compiler

2.3 Semantics

One of the salient features of Smalltalk is the fully
rei�ed compilation process. Since any compiler implic-
itly gives the semantics of the language it compiles, and

because Smalltalk has in itself, as regular objects, its
own compiler, the Smalltalk semantics is fully control-
lable. Therefore one may extend the current language
semantics providing new compile-time features by extend-
ing/modifying current compilers.

This approach must be compared to the one
of compile-time MOP [LKRR92], which breaks the
compilation process into small independent fully redes-
ignable pieces. Smalltalk compilation uses the ex-
isting Smalltalk code for its own needs, and is de-
signed as a regular OO program which is causally con-
nected to the language. Thus, using current OO tech-
nology, one can extend the current compilation process.
Next we describe what can be considered as the �rst
compile-time MOP. But the heavy interaction between
what is part of the compiler and what is not sometimes
makes the use of this compile-time MOP di�cult. There-
fore the authors of [HJ95] proposes a more parametrized
compiler. This big interconnection between the compi-
lation phase and the Smalltalk language as a whole
is demonstrated by the next small example, which dis-
cusses the order of argument evaluation of a message send.
The compilation process uses the regular do: method
from the SequenceableCollection class, allowing the
treatment of each element of a collection in a left to
right order. Therefore, it de�nes a left to right seman-
tics for the argument evaluation order. In that, the
SequenceableCollection class can be seen as a part of
the compilation process because it de�nes the semantics
of the argument evaluation order. Notice that the ar-
ray that is used to hold the arguments of a message at
compile time is therefore a meta-object(cf 1.2) but other
arrays would not necessarily be meta-objects.

2.3.1 Model

The two separated parts of the compilation process, pars-
ing and code generation, are described by class hierar-
chies. We �rst describe them, and then proceed with
their order of execution for compiling method source.

� Parser: it produces a parse tree whose nodes are
ProgramNode. The Smalltalk syntax is concise,
as it only requires method de�nition. A method is
described by a keyword associated with argument
names7 followed by an optional temporaries list and
an optional expressions list. Expressions are assign-
ment, message sending and instance variable access.
The parser/compiler also de�nes pseudo-variables
(self, super, thisContext) and syntactical ob-
jects (true, false, nil, #(...anArray...), [...a
block closure...]),

7
The pattern may be omitted for evaluation.

� ProgramNodeBuilder: programNode generators.
They are used by parsers to construct the nodes of
the syntax tree. Builders allow the complete discon-
nection of the (recursive descent) parsing mechanism
from its result (the nodes),

� ProgramNode: syntactic nodes built by
programNodeBuilders. They hold the code gener-
ation methods emitEffect: and emitValue. The
next hierarchy presents the classes that formalize the
Smalltalk syntactical rules.

ProgramNode

MethodNode

ParameterNode

StatementNode

ReturnNode
ValueNode

ArithmeticLoopNode

AssignmentNode
CascadeNode

ConditionalNode

LeafNode
BlockNode

LiteralNode

VariableNode
LoopNode

SequenceNode

SimpleMessageNode
MessageNode

The MessageNode class represents message sending.
It implements a tiny macro expansion mechanism at
code generation time. The MacroSelectors dictio-
nary holds selectors that need expansion8 and their
associated transformation symbols. In order to pro-
ceed to its code generation, a messageNode �rst tries
to expand itself. It then proceeds to the regular
code generation of its expansion, or to the genera-
tion of itself if no expansion has occurred. As an
example, an and: message send is transformed using
transformAnd into a conditional.

� CodeStream: byteCode accumulators during code

generating. They hold the compilation context in the
form of a chain of environments. A codeStream is the
argument that is passed to both emitEffect: and
emitValue: methods while the (recusive descent)
code generation occurs. The result of the code gen-
eration is a CompiledMethod,

� CompiledMethod: it holds (in the instance variable
bytes) the array that represents the byteCodes: op-

codes de�ned by the DefineOpcodePool class, which

8timesRepeat:, ifTrue:, ifFalse:, and:, or:, whileFalse:,

whileTrue:, repeat, : : :

de�nes a set of opcodes of a usual stack-based ma-
chine, with a special instruction for message sending.
These opcodes are understood by the Virtual Ma-
chine (VM). As a matter of fact, when a method
is executed for the �rst time, the VM translates
the Smalltalk bytecodes into codes of the underly-
ing machine. These new native codes are then exe-
cuted each time the method is used. Changing plat-
forms makes methods return to their initial creation
state (i.e., native code generation occurs again at
�rst call). The CompiledMethod class is a variable
class9, i.e., instances have a part (called the vari-
able part) that behaves as an array. The literals of a
method such as literal arrays and string, are bu�ered
into this variable part. According to VM code
limitations, the literal collection size of a method
may not be greater than 256 (ByteCodeStream
class>>literalLimitSignal)10.
A CompiledMethod may return its source, using
the #getSourceForUserIfNone: method, which
asks the SourceFileManager default for the cor-
responding source. If no source is available, a
Decompiler decompiles the method byteCodes and
pretty prints the result,

� NameScope: they are linked together in order to build
the chain representing the compilation context, also
called the symbol table in other language compilers.
The code generation occurs in a compilation context,
which is currently associated with a given class, and
its superclasses. When Object is reached, the dictio-
nary Smalltalk is taken as the repository of system
globals. Compilation makes the assumption that the
receiver is from the class (or subclasses) to which
the method currently being compiled will be added.
This is not always true, as when using the become:

method, for example (cf 2.1.1),

� Compiler: they are in charge of the schedul-
ing of the parsing and code generation phases.
Parsers are associated with compilers through the
preferredParserClass method which returns the
parser class needed to parse the text to be compiled.

� CompilerErrorHandler: they manage error noti�-
cations during code generation. Error management
is disconnected from the compilation process, allow-
ing a change of policies. Thus subclasses are pro-
vided such as InteractiveCompilerErrorHandler,
NonInteractiveCompilerErrorHandler,

9variableSubclass:instanceVariableNames:.....
10
This limitation must be taken into account while dealing with

large automatically generated methods.

SilentCompilerErrorHandler. The default behav-
ior is to use an interactiveCompilerErrorHandler

when compiling from a browser and a
nonInteractiveCompilerErrorHandler

when reading source froman external �le (fileIn ac-
tion). An InteractiveCompilerErrorHandler pro-
vides a speller when a new symbol is encountered
(newSelector), warns the user when a temporary
is used be-
fore it is initialized (readBeforeWritten), watches
out for undeclared objects such as temporaries and
class variables (undeclared), and proposes appropri-
ate corrections to the user (declareGlobal:from:,
declareTemp:from:, declareUndeclared:from:),

� Decompiler: they are translators
of CompiledMethods into parse trees (ProgramNode).
Decompilers use a ProgramNodeBuilder to produce
the parse tree from byteCodes. It allows the com-
plete disconnection of the byteCodes interpretation

from the result (usually ProgramNodes when using
standard ProgramNodeBuilder).

All of these classes are part of the compilation
process. In order to introduce new semantics into
Smalltalk, one can extend these classes and the associ-
ated process that compiles code. We next describe what
steps this compilation process follows:

1. While compiling a new method on a class, the class
is asked what compiler should be used in order to
perform the compilation. This is done through the
Behavior>>compilerClass method. It returns a
compiler class appropriate for the source methods of
this class (the default is Compiler),

2. The compiler is then asked for its default parser
(preferedParserClass) in order to proceed with the
source analysis,

3. The parser scans the source-stream, picking out
Smalltalk syntactic tokens. According to
the token produced by the scanToken method,
it recursively descends into the rules of gram-
mar (constant, expression, primaryExpression,
temporaries, statementsArgs:temps:, argument,
pattern, method:context:, : : :methods). Each
time a syntactic element is completely de�ned, the
builder is asked to create it. In regular Smalltalk,
ProgramNodeBuilder returns ProgramNode. The re-
sult of the parsing is the root node (a MethodNode)
of the tree that expresses all the syntactic entities of
the method,

4. The compiler builds a codeStream, which is ini-
tialized according to the class of the method that
is being currently compiled. It builds the di�erent
NameScopes, linking them together,

5. The syntactic tree is asked for code generation. The
root methodNode receives the emitEffect: method.
It recursively asks each node of the tree to generate
its respective byteCodes into the codeStream,

6. The codeStream builds a CompiledMethod, accord-
ing to the bytecodes it has bu�ered. If there are
inner blocks (BlockClosure) in the method, which
need this method �lled in as the outer method, the
codeStream proceeds to do it.

These steps are summarized in the translate:noPat-
tern:ifFail:needSourceMap:handler: method11:

SmalltalkCompiler>>translate:aStream noPattern::: :

"< 1 >: : :parsing: : :"

methodNode := class parserClass new

parse: aStream

builder: ProgramNodeBuilder new : : :

"< 2 >: : :code generation: : :"

codeStream := self newCodeStream.

methodNode emitEffect: codeStream.

method :=

codeStream makeMethod: methodNode.

"method

2.3.2 Usage

Extending the proposed semantics by intervening in the
two phases of compilation allows new semantics to be

implemented that suit the domain of the application to
be modeled as well as possible. The open ended com-
piler allows modi�cation of itself in order to get improve-
ments needed to face new user requirements, such as a
new breakpoint mechanism [HJ95]. The introduction of
new methods into the language can be easily performed by
subclassing MessageNode, in order to propose new mes-
sage sending semantics. The code generation of this new
node will be di�erent, inserting its own semantics. In
our experience there are �ve major methods that are fre-
quently used to add new semantics:

(i) extension of the parser
(ii) extension of the node construction

(iii) modi�cation of the obtained parse tree
(iv) extension of the code generation phase

11
We simpli�ed the code for clearer understanding

(v) extension of the compilation environment

Our next pre/post conditions introduction (cf 3) uses a
modi�cation of the parse tree (iii). As another example,
we provide an e�cient implementation of asynchronous
message sending for Actalk [Bri89] (cf 2.4.2), dealing
with node construction extension (ii) [Riv95].

WithinActalk, the user has two message send se-
mantics at his disposal: the regular Smalltalk one, and
an asynchronous one. An asynchronous message send is
syntactically declared using the 'a.' pre�x12.

anActor a.message

The distinction between the two semantics can be made
by a syntactic analysis. Thus, the idea is to inter-
cept the messageNode creation made by aNodeBuilder

(mewMessageReceiver:selector:arguments:). We in-
troduce a new class, ActalkProgramNodeBuilder, sub-
classing the regular ProgramNodeBuilder. When the new
nodeBuilder creates a messageNode, it analyzes the selec-
tor of the message. If it starts with the 'a.' pre�x, then
the ActalkProgramNodeBuilder returns aMessageNode

of which the selector is the one that queues (at runtime)
the asynchronous message into the received messages
queue of the actor (addMessage:arguments:). Thus, for
the 'anActor a.message' expression, the builder returns
the next messageNode13:

aMessageNode

selector : #addMessage:arguments:

receiver : anActor

arguments: #(message, #())

Notice that this transformation can be assimilated to a
macro-expansion of all 'a.' pre�xed message sends.

More generally, used in association with the kernel
extension, compilation re
ection allows one to build new
languages [RC94]. It allows Smalltalk to execute source
code whose semantics is di�erent from the default one. A

large industrial example is given by Object5 [Sie94] 14.
It is a strongly typed hybrid language based both on the
actor and class paradigms, dedicated to Programmable-
Logical-Controllers. Although it has 3 di�erent message
sending semantics (2 are asynchronous), it is entirely ex-
ecuted in Smalltalk, without an Object5 interpreter
being written. This eliminates an always penalizing soft-
ware stratum. Types have been introduced extending the

12
The Actor class provides the behavior for such an actor-object.

13
See A.1 for the full source of the newMessageReceiver:selec

tor:arguments: method of the ActalkProgramNodeBuilder class.
14
a PLC OO framework for Siemens; 20 year/man; currently used

in batch or continuous processes.

class/metaclass kernel (TypedClass subclass of Class) in
order to provide typed information (method signature, in-
stance variable types, : : :). New syntactical nodes have
been introduced, and new compilers, too. Finally the
Smalltalk VM executes this new language as it used to
execute regular Smalltalk. Contrary to the (latent) re-
proach of the lack of e�ciency of re
ective systems, here
re
ection brought an outstanding gain of e�ciency.

2.4 Message Sending

2.4.1 Model

The unique control structure of Smalltalk is message
sending. It is composed of two phases:

1. lookup: a search for the method to apply according
to the receiver of the message sending,

2. apply: an application of the found method.

The lookup happens at execution time and uses class in-
formation. Although it is not described in the language
for reasons of e�ciency, the necessary information is ac-
cessible and modi�able from the language. All the infor-
mation lies in classes:

� the dictionary of methods (methodDict instance
variable: pair (aSymbol, aCompiledMethod))

� the inheritance link (superclass instance variable),

� caches, allowing optimization of the hardwired algo-
rithm. Caches are not rei�ed, but can be reinitialized
using primitives (Behavior>>#flushVMMethod
-Cache).

Messages are not currently rei�ed using instances of the
Message class except when the lookup fails. In that last
particular case, the #doesNotUnderstand: method is
sent by the VM to the original receiver with a rei�ed
message given as the argument.

2 zork results in
2 doesNotUnderstand: aMessage with
aMessage selector) #zork and
aMessage arguments) #()

An explicit message send may be called using the
perform: primitive15. A lookup result is a
CompiledMethod(cf 2.3.1), a regular object. The
valueWithReceiver:arguments: primitive allows the
application of aCompiledMethod with an array of argu-
ments.

15
The general form is perform:withArguments:.

-regular message send:
5 factorial) 120

-explicit message send using a symbol:
5 perform: #factorial) 120

-application of a CompiledMethod:
(Integer>>#factorial)

valueWithReceiver: 5

arguments: #()) 120

Accesses to overwritten behavior are quali�ed by sending
a message to the pseudo variable super. The lookup se-
mantics of such a message is slightly di�erent from the
default lookup, since it starts from the from the super-
class of the class which implements the method that ex-
ecutes the super. As a matter of fact, the class from
whose superclass the lookup starts is accessible within
the compiledMethod variable part16 (cf 2.3.1). This
class is pushed into the variable part at compile time
(CodeStream>>sendSuper:numArgs:).

To sum up lookup, Smalltalk provides two dif-
ferent entry points:

� one that starts the lookup from the class of the re-
ceiver,

� one that starts the lookup from the superclass of a
class stored in the compiledMethod variable part.

Notice that as message sending is the only control struc-

ture, an extension of the method semantics provides an
extension of the message sending semantics.

2.4.2 Usage

Everything is expressed in terms of sending messages.
There is no need for special keywords or special forms,
as in Basic, Ada'95 or C++, etc. As an ex-
ample, a class declaration is made by sending the
subclass:instanceVariableNames:classVariableNames:-

poolDictionary:category: message with correct argu-
ments. Browsers use this facility (cf 2.2.2).

An evaluation is expressed in terms of a de-
fault method. Then it is mostly evaluated (using
#valueWithReceiver:arguments:) with nil as the de-
fault receiver. The result is either discarded (doIt action),
inspected through the sending of the inspect message
(inspectIt action), or pretty-printed through the sending
of the message printString (printIt action).

The management of the lookup failure allows
the building of a catch-up mechanism by specializa-

16
using Object>>at: and Object>>at:put: methods.

tion of the doesNotUnderstand: method, as in the
encapsulator paradigm [Pas86], and in the implemen-
tation of asynchronous messages for Actalk [Bri89].
In particular, #valueWithReceiver:arguments: and
#perform: methods can be used. More generally,
#valueWithReceiver:arguments: enables one to dis-
pense with the use of the default lookup and to imple-
ment (in cooperation with the Compiler) new lookup
algorithms, such as multiple inheritance. This last
approach is an e�cient alternative to the use of the
doesNotUnderstand:method (cf 2.3.2).

As an example of the use of the doesNotUnder
stand method, we describe the implementation of lazy
evaluation in Smalltalk17 .

aLazyObject := [: : :aBlock : : :] lazyValue.
A lazy object represents an execution that may not be
required. It does not start execution until at least one
message has been received. aLazyObject is used as the
regular object that would have resulted from the evalu-
ation of the code inside the block ([: : :aBlock : : :]).
Thus it receives messages, such as color if it represents
a Car.

nil subclass: #Lazy

instanceVariableNames: 'result done args '

classVariableNames: ''

poolDictionaries: ''

category: 'Kernel-Processes'

As the Lazy class is a subclass of nil, ev-
ery message send causes the invocation of the
doesNotUnderstand method.

Lazy

doesNotUnderstand: aMessage

done

ifFalse:[result:=

result valueWithArguments: args.

done := true].

"result perform: aMessage selector

withArguments: aMessage arguments

When it receives its �rst message, the lazy object
forces the evaluation of the block. Therefore it computes
the real object, which was previously in a lazy state (i.e.,
uncomputed). It is bu�ered for other message sends. An
explicit message send, using perform:withArguments:,
allows the regular execution scheme to continue.

A classical use of super is the initialization of
newly-created objects. When adding a subclass, both new
and inherited initializations must be carried out. Thus,
the initializemethod of the subclass usually looks like:

17
Thanks to Mario Wolczko.

Subclass>>initialize

super initialize.

self localInitialization

2.5 Control State

The Smalltalk system is based on rei�ed pro-
cesses, and more generally on the objects needed
to build a multiprocess system. Processes man-
age time scheduling (timingPriority), event in-
puts such as keyboard/mouse (lowIOPriority), and
regular user evaluations (userBackgroundPriority,
userSchedulingPriority, userInterruptPriority).

2.5.1 Model

Processor, the sole instance of the ProcessorScheduler
class, coordinates the use of the physical processor by
all processes requiring service. It de�nes a preemptive
semantics between processes having di�erent priorities.
Processor yield gives processes that have the same
priority of the one currently running a chance to run.
Semaphore class provides synchronized communication
between processes (using wait signal methods). Real
time scheduling is provided by the Delay class. It repre-
sents a real-time delay in the execution of aProcess. The
process that executes a delay is suspended for an amount
of (real) time represented by the resumption time of the
delay.

The BlockClosure class represents lexical clo-
sures. It freezes a piece of code (along with its envi-
ronment) so that it may be evaluated later on. Blocks
can have temporaries and arguments. The general syn-
tactic form is [:arg1 : : ::argNj tmp1 : : :tmpM j expr1
: : :exprP]. Block evaluation is provided by primitives
named value, value:, valueWithArguments: depend-
ing of the number of arguments. Smalltalk uses lots
of blocks, as in the SequenceableCollection>>do:
method for example:

do: aBlock

"Evaluate aBlock with each of the receiver's

elements as the argument."

1 to: self size do: [:i j aBlock value: (self at: i)]

Process creation is based on blocks; the body
of a process is the body of the block. The
BlockClosure>>fork method creates a process. As
blocks may share an environment, independent processes
uses this facility to share common objects. A pro-
cess may be suspended, resumed or killed (using respec-
tively suspend, resume or terminate methods). The

interruptWith: method forces the process that re-
ceives it to interrupt whatever it is doing and to eval-
uate the received block, passed as the argument. The
ProcessorScheduler>>yieldmethod is a tiny but good
illustrative example18:

yield

\Give other Processes at the current priority

a chance to run."

j semaphore j

semaphore := Semaphore new.

[semaphore signal] fork.

semaphore wait

The currently running process (the one that exe-
cutes this code) creates a new semaphore. It proceeds to
the creation of a new process ([: : :] fork) that is pushed
into the list of the processes that may run (at the same
priority). The current running process then suspends it-
self while it executes the wait primitive. The VM then
takes the next available process and makes it run. The
small created process, which shares the semaphore with
the previously running process, will run in its turn. Its
only action before dying is to unblock the previously run-
ning process using the signal primitive on the common
semaphore.

The most remarkable re
ective facility of Small-
talk is the rei�cation of any process runtime stack,
through a chain of linked stack frames, called con-

texts [Par94a]. The pseudo-variable thisContext re-
turns the present context of the currently running pro-
cess. It is an instance of the MethodContext class, or the
BlockContext class.

A context mainly knows (Figure 3):

� the context (sender) which has \created" it via the
application of a method (cf valueWithReceiver:
arguments:), or the evaluation of a BlockClosure

using #valueWithArguments: (or #value #value:

: : :),

� the method (aCompiledMethod held by a class) cur-
rently being executed,

� an instruction pointer, remembering the operand
that is actually being executed in the method,

� the receiver of the message, and the arguments. Note
that the receiver is an instance of the BlockClosure
class for BlockContext.

18
We have simpli�ed the code for clearer understanding.

x = 2

y = 4

aPoint

method

method

sender

pc

pc

sender

stack

stack

1<10> push local 0

2<44> push self

3<80> send sumFromPoint:

4 <65> return

aCompiledMethod

receiver

aMethodContex

receiver

aCompiledMethod

receiver of the method

arguments, temporaries and working stack

instruction pointer in the code of the method

Figure 3 :Two elements of the executive stack. The top-

most MethodContext represents thisContext.

2.5.2 Usage

Smalltalk's extreme power of expression allows pro-
grams to fully control its own execution, using regular
objects such as Context: this is intercession.

Therefore, a �rst application of this execution con-
trol is the implementation of the exception handler mech-
anism into Smalltalk, which modi�es the \regular" exe-
cution scheme. The Exception class rei�es objects which
manipulate the executive stack in order to handle er-
rors (return, reject, restart). Exceptions are raised
through the stack, and are caught by handlers de�ned by
the handle:do: message, in order to take appropriate
actions on errors. This implementation may itself be ex-
tended or replaced in order to propose an alternative to
the error handling system of Smalltalk [Don90].

A second very important application of the rei�ca-
tion of the runtime stack is the Debugger tool (see Figure
3), which can:

� consult any context of the entire executive stack,

� look at what part of the selected context is being
executed,

� inspect the receiver of the message of the selected
context,

� inspect arguments and temporaries of the selected
context,

� proceed to a \step by step" execution (send, step),

� modify any context by recompilation of its method,
and continue the execution with this new code.

3 Re
ective Extension: Addition

of Pre/Post Conditions

Having described the most important re
ective facilities,
we illustrate their use with a small but complete realiza-
tion. Dealing with extensions of the model, the compiler,
and the development environment, we introduce pre/post
conditions on regular Smalltalk methods. This is a typ-
ical way of using the general re
ection of the language:
add new constructions and extend current facilities in or-
der to provide a language that suits the actual application
domain as well as possible. Pre/post conditions fall under
the category of software engineering tools.

Applications are not stable during both develop-
ment and coding phases. Therefore it is essential to pro-
vide mechanisms in order to check both the properties of
and the assumptions made on methods. Pre/post condi-
tions are devoted to this role. A number of languages,
following Flavors [Moo86], implement before/after meth-

ods (SOM [DFM94], CLOS,: : :). One of their uses can be
the implementation of pre/post conditions on methods.
But because before/after methods rely on a complex com-
position mechanism and because they are assigned to a
selector (name of methods) instead of the methods them-
selves (regular objects in Smalltalk (cf 2.3.1)), we use
another implementation. It better suits their roles as de-
scribed by: \The pre-condition expresses the properties

that must be checked when the method is called. The

post-condition certi�es those properties that the method

guarantees when it returns." [Mey90]. When the de-
velopment is over and the software is about to be re-
leased, correct method use makes pre/post conditions no
longer useful. They should be removed in order to pro-
vide software clean from any development topics. This
is how we use pre/post conditions. Our goal is to pro-
vide pre/post conditions in Smalltalk that respect the
dynamic and convivial tradition of the language. Speci�-
cations are summarized as follows:

� dynamic behavior : Smalltalk users are used to
dealing with dynamicity, like adding an instance vari-
able anywhere in a hierarchy of classes. Dynamicity
for pre/post conditions means being able to swap
from a state where they are active to another one
where they do not interfere at all with the code,

� hierarchy independence: the Smalltalk model
deeply connects a class to its metaclass (cf 2.2.1),
of which it is the sole instance. In respect to this
model we propose the activation (or deactivation) of
pre/post conditions on the class/metaclass couple,
but only locally. The activity of conditions on an A

class does not propagate to A's subclasses,

� syntactic convention: instead of extending the
syntax with a new special character such as the tem-
poraries delimiter (j), we use a convention. It is
an often-used scheme in Smalltalk, as for example
with the private protocol, which states that meth-
ods from this protocol are supposed to be for private
purposes [GR83]. Notice that an extension of the
method semantics (using the rei�ed compiler chain
(cf 2.3.1)) can provide such privacy,

� return semantics compatibility: the return se-
mantics (the " symbol) may require the popping
of many contexts. We assume that an active post-
condition will be evaluated even when returns occur
in the body of methods (or in a block evaluation
which closes a return),

�
exibility: the code of both pre- and post-
conditions may access the method context, especially
parameters and temporaries,

� convivial interface (cf Figure 4): The interface
modi�cations must be as small as possible. The user
can:

{ look at the source of the pre/post conditions
associated with a method while browsing the
method source (without other manipulations),

{ know through his favorite development tool
(browser), whether or not conditions are active
just by looking at the class name display (class
pane of the browser),

{ change the activity of the conditions of a class
using a popup menu, as in Smalltalk's usage.

Figure 4 : The currently selected class (NodeItem) has its

conditions activeness set (cf (c)). The associated condi-

tions codes is executed at runtime. The �gure also shows

the menu (conditions) that permits the change from ac-

tive to non-active conditions (and vice versa).

Next we present the convention used to write con-
ditions (one or both conditions may be omitted):

selector

"comment"

j temporaries j

[..blockPreCondition..] preCondition.

[..blockPostCondition..] postCondition.

expr1 exprN

This syntactic representation o�ers several advantages:

� no \parasitic" methods are introduced, whose se-

mantics would have been derived from their selectors,
such as the creation of quali�ed methods as it is done
with method combinations described in [Coi90]. As a
matter of fact, this last solution su�ers major draw-
backs: these quali�ed methods pollute the interface
of the class, and there is no way to prohibit their use
as regular methods in another context,

� Using a block to represent a condition allows full ac-
cess to the method context. It would have been quite
di�cult to manipulate such a method context with
conditions outside the method itself (both tempo-
raries and arguments access would have been hard
to realize, for example).

3.1 Model Extension

When not active, pre/post conditions should absolutely
not interfere at execution time. This is the most im-
portant speci�cation of our method pre/post conditions.
This point is crucial. It means that at execution time, we
do not allow ourselves to test to see if the conditions are
active. Therefore, the test must be done at compile time:

� if conditions are active, then the code needed for their
execution is generated at compile time,

� if conditions are not active, then the conditions are
ignored and only the regular method body is gener-
ated.

Thus, we need two di�erent compilation phases. Chang-
ing from active to non-active conditions (and vice versa)
is expressed in terms of having a quick recompilation of
the class interface19.

We next describe our solution based on the intro-
duction of a subclass of Metaclass20.

19
This recompilation does not interfere with the source manage-

ment.

20
Conceptually, our extension can be assimilated to the introduc-

tion of a new metaclass in a system allowing explicit metaclasses

programming, such as ObjVLisp [Coi87].

Considering that the behavior related to conditions
activity is both on the class and its metaclass, and that
it should not interfere with the inheritance, we put the
activity notion on Metaclass, and on a newly created
subclass named MetaclassWithControl. This new meta-
class manages behavior according to development top-
ics such as pre/post conditions. The compilerClass

method (cf 2.3.1) returns the class whose instances (a
compiler) are used to compile the methods of a given
class. Thus the default compilerClass method is con-
ceptually raised one meta level from that of Behavior
to that of Metaclass and MetaclassWithControl (cf
Smalltalk kernel 2.2.1).

� Behavior>>compilerClass returns the compiler-
Class of the metaclass (i.e., calls one of the next two
compilerClass methods) (cf A.1),

� Metaclass>>compilerClass returns the default
compiler that does not take conditions into account

(and just forgets their associated codes),

� MetaclassWithControl>>compilerClass returns
the compiler that deals with conditions codes.

Thus (cf Figure 5),

� the metaclass of a class whose conditions are active
is an instance of MetaclassWithControl,

� the metaclass of a class whose conditions are not ac-
tive is an instance of Metaclass.

Changing from active conditions to non-active ones is
done by dynamically changing the class [Riv96] of the
metaclass from MetaclassWithControl to Metaclass

(and vice versa) using the changeClassToThatOf:

method (cf 1.2).

: is instance of
: inherits from

: dynamic metaclass change

Metaclass

MetaclassWithControl

AnyClass AnyClass class

Figure 5 :The metaclass class changes its class dy-

namically.

This solution has many advantages:

� as expected, it allows a class to behave in a certain
way, without interfering with inheritance. Indeed, a
dynamically added compilerClassmethod (cf 2.3.1)
on an A class metaclass would have been inherited
by all A class subclasses. Thus A and all its sub-
classes would have a connected behavior, which is
not within our speci�cation. This is due to the par-
allel inheritance trees provided by both the class and
metaclass levels (cf 2.2.1: Smalltalk model).

� no development topics lie hidden in classes (neither
in their de�nition nor in their interface). This must
be contrasted with a solution that would have added
an instance variable to the Class class de�nition,
in order to remember the activity at runtime. The
default compilerClass would have to test this in-
stance variable in order to answer the correct com-
piler. Compared to ours, this last solution is very
expensive both in terms of class de�nition impact
and space. Moreover it implies another problem:
when an application is released, all its classes have
a \development" instance variable always positioned
to the same boolean value. It is not reasonable to
produce such a class structure. A recompilation of
the Class class before release is not possible either,
because it would no longer be possible to have both
released applications and applications in the devel-
opment stage. In any case, it does not agree with the
speci�cation that when not active, conditions should
not interfere in any way with regular Smalltalk.

Finally, notice that this model extension illustrates the
great extensiveness of the Smalltalk kernel. In-
deed, if active conditions are put on Metaclass, its
class (Metaclass class (cf 2.2.1)) is an instance of
MetaclassWithControl, instead of Metaclass, which
was the kernel \trick" to stop the in�nite instantiation
regression. Moreover a new loop in the instantiation link
appears when MetaclassWithControl has its conditions
activity set to true. This demonstrates that even the very
deepest part of the Smalltalk kernel (cf 2.2.1) can easily
be extended, without causing the whole system to fail.

3.2 Environment Extension

Our choice of syntactic convention allows the method con-
text to be accessible from condition codes. From an in-
terface point of view, the user looks at its method and
associated condition sources at the same time. Practical

experience shows the advantage of this convivial repre-
sentation. It is combined with an immediate view of the
activity of the class conditions: when a class has active
conditions, the name of the class is su�xed by the (c)

string (cf Figure 4).

As we have extended the model in order to
add a new metaclass description to deal with devel-
opment topics, browsers should also take into account
this new description. Standard Smalltalk browsers,
as global introspection class tools, assume that class se-
mantics are �xed. Thus, in order to take new class
semantics into account, we modi�y the class interface
by adding a cooperation between classes and browsers
[RM93]: a browser does not simply ask for the name
of the class, but for its browsingName. With this
message, a class fully controls what a browser shows.
MetaclassWithControl>>browsingName adds the '(c)'
string su�x to the name (classOnControlString
method).

3.3 Compiler Extension

Having designed the structural part of the model and
shown its implication in terms of interface extension, we
now need to extend the compilation in order to manage
the needed codes for active pre/post conditions.

Our solution is based on manipulation of the parse
tree, which is generated by the Smalltalk parser. We
need:

� to position the pre-condition (if one exists) as the
�rst statement of the method. We also add the test
that raises an exception if the pre-condition evalua-
tion does not return true at execution time,

� to position the post-condition (if one exists) as the
last statement of the method. As with the pre-
condition, we add the test that raises an excep-

tion if the post-condition evaluation does not return
true. As returns may occur (in the method itself
or wrap within a blockClosure received as an ar-
gument), it could cause the post-condition to not
be evaluated. We wrap the entire method using
valueNowOrOnUnwindDo: which allows execution of
the post-condition regardless of what happens.

Next we give an equivalent syntactic form of what could
be the code if we were to decompile the parse tree after
its reshaping:

selector

``comment''

j temporaries j

[[..blockPreCondition..] value ifFalse:

[ParserWithControl preConditionSignal

raiseRequest].

expr1 exprN] valueNowOrOnUnwindDo:[

[..blockPostCondition..] value ifTrue:

[ParserWithControl postConditionSignal

raiseRequest]]

As we need a new compiler when pre/post condi-
tions are active, the CompilerWithControl class is intro-
duced as a subclass of the standard Compiler class. We
subclass the Parser class with ParserWithControl class,
which is associated with the new CompilerWithControl

class through a rede�nition of its preferredParserClass
method (cf 2.3.1). We next describe the steps that pro-
duce a method and its conditions:

1. the method is parsed as a regular Smalltalk

method. A parse tree is obtained as a result (cf 2.3.1)
of the �rst step of the compilation process,

2. the parser, aParserWithControl, reshapes the
resultant parse tree to get the previously de-
scribed transformation. During the transforma-
tion, new ProgramNodes are created, using the
parser builder, aProgramNodeBuilder (cf code A.1
ParserWithControl>>compilePreCondition).

3. the parse tree generates regular Smalltalk code.

The regular parser (an instance of theParser class) re-
moves pre/post condition codes, if any.

3.4 Benchmarks

The major goal of this extension is to provide code free

from any tests when pre/post conditions are not active.
Thus, if not active, conditions do not a�ect the runtime

performance at all. When active their code is executed
according to the code wrapped around the conditions,
which of course takes time.

We make two signi�cant benchmarks on the com-
pilation process:

1. we compare the time taken to compile a method
which is free from any conditions both (i) without
our extension, and (ii) using our extension with con-
ditions activity set to true. The compilation time

increases on average by less than 2% from (i) to (ii),
which allows a comfortable use of the extension,

2. we compare the compilation time of (i) a method that
has active conditions using our extension and (ii) the
equivalent code hand written by the user. (i) is on
average 9% quicker than (ii). This results mainly
from the fact that the source to parse is smaller when
writing conditions using our conditions extension.

4 Conclusion

We have described the current re
ective facilities of
Smalltalk. We have presented the most important cur-
rent aspects: meta-operations, the class/metaclass model,
semantics control through the rei�ed compiler, message
sending and behavioral representation through the rei�-
cation of the runtime stack processes. We have fully de-

scribed an example of re
ective use with the introduction
of pre/post conditions into Smalltalk.

As it evolves, Smalltalk tends to become more
and more re
ective. In particular we can quote the rei�-
cation of the dependent link (DependencyTransformer
class), and the de�nition of a parser generator
(ParserCompiler class), written in itself. Reflection

is the heart of Smalltalk. It gives the language its
great expressive power. Because the language possesses
the ability to naturally adapt itself to new application do-
mains, it may be considered as a truly perennial language.

Acknowledgments

I wish to thank all the reviewers for their comments.
Thanks to Pierre Cointe who helped me in the organi-
zation of the paper. Special thanks to Jacques Malenfant
who spent time on the elaboration of the �nal version of
the paper.

References

[Bri89] Jean Pierre Briot. Actalk : A testbed for
Classifying and Designing Actor Languages in
Smalltalk-80. In Proceedings of ECOOP'89,

Nottingham, July 1989.

[Coi87] Pierre Cointe. Meta-classes are First Class:
the ObjVlisp Model. In Proceedings of OOP-

SLA'87, pages 156{167, Orlando, Florida, De-
cember 1987. ACM Sigplan Notices.

[Coi90] Pierre Cointe. The ClassTalk System: a
Laboratory to Study Re
ection in Smalltalk.
In Informal Proceedings of the First Work-

shop on Re
ection and Meta-Level Architec-

tures in Object-Oriented Programming, OOP-

SLA/ECOOP'90, October 1990.

[DBW93] R.G. Gabriel and D.G. Bobrow and J.L.
White. CLOS in Context - The Shape of the

Design Space. In Object Oriented Program-

ming - The CLOS perspective. MIT Press,
1993.

[DFM94] Scott Danforth, Ira R. Forman, and Hari
Madduri. Composition of Before/After Meta-
classes in SOM. In Proceedings of OOP-

SLA'94, Portland, Oregon, October 1994.

[DM95] Francois-Nicola Demers and Jacques Malen-
fant. Re
ection in logic, functional and object-
oriented programming : a Short Comparative
Study. In Workshop of IJCAI'95 : On Re-

ection and Meta-Level Architecture and their

Application in AI, pages 29{38, August 1995.

[Don90] Christophe Dony. Exception Handling
and Object-Oriented Programming: towards
a synthesis. In Proceedings of OOP-

SLA/ECOOP'90, pages 322{330, 1990.

[FJ89] Brian Foote and Ralph E. Johnson. Re
ec-
tive Facilities in Smalltalk-80. In Proceedings

of OOPSLA'89, ACM Sigplan Notices, vol-
ume 24, pages 327{335, October 1989.

[GR83] A. Goldberg and D. Robson. Smalltalk-80,

The language and its implementation. Addi-
son Wesley, Readings, Massachusetts, 1983.

[Gra89] Nicolas Graube. Metaclass Compatibility.
In Proceedings of OOPSLA'89, ACM Sigplan

Notices, volume 24, pages 305{315, October
1989.

[HJ95] Bob Hunkle and Ralph E. Johnson. Deep in
the Heart of Smalltalk. In The Smalltalk Re-

port , july 1995.

[Ing78] D.H.H. Ingalls. The Smalltalk-76 Program-
ming System Design and Implementation. In
5th POPL, pages 9{17. Tuscon, Arizona, 1978.

[KdRB91] Gregor Kiczales, Jim des Rivi�eres, and
Daniel G. Bobrow. The Art of the Metaob-

ject Protocol. Cambridge, MIT Press, 1991.

[KG76] A. Kay and A. Goldberg. Smalltalk-72 In-
struction Manual / SSL-76-6. Technical re-
port, Xerox Parc, Palo Alto, California, 1976.

[LKRR92] J. Lamping, G. Kiczales, L. Rodriguez, and
E. Ruf. An Architecture for an Open Com-
piler. In A. Yonezawa and B. C. Smith, ed-
itors, Proc. of the Int'l Workshop on Re
ec-

tion and Meta-Level Architecture, pages 95{
106, 1992.

[LP90] Wilf R. Lalonde and John R Pugh. Inside

Smaltalk (volume 1). Prentice-Hall Interna-
tional Editions, Englewood Cli�s, New Jersey,
1990.

[Mey90] Bertrand Meyer. Conception et Programma-

tion par Objets - version fran�c aise. iia - In-
terEditions tirage 1991, France, 1990.

[Moo86] David A. Moon. Object-Oriented Pro-
gramming with Flavors. In Proceedings of

OOPSLA'86, pages 1{8, Portland, Oregon,
September 1986. ACM Sigplan Notices.

[Par94a] ParcPlace. spaceDescriptionmethod of the
ObjectMemory class metaclass. Description
of the StackSpace in VisualWorks2.0. Tech-
nical report, ParcPlace System, Inc, August
1994.

[Par94b] ParcPlace Systems, Inc, Sunnyvale. Visual-

Works Release 2.0 of 4 August 1994, 1994.

[Pas86] G.A. Pascoe. Encapsulators: A New Soft-
ware Paradigm in Smalltalk-80. In Proceed-

ings of OOPSLA'86, ACM Sigplan Notices,
pages 341{346, November 1986.

[RC94] Fred Rivard and Pierre Cointe. From Envy-
Classtalk to Ada9x - Final Progress Report.
Technical report, OTI-EMN, December 1994.

[Riv95] Fred Rivard. Extension du compilateur
Smalltalk, Application �a la param�etrisa-
tion de l'envoi de message. In Actes des

Journ�ees Francophones des Langages Appli-

catifs, JFLA'95. INRIA - collection didac-
tique, January 1995.

[Riv96] Fred Rivard. Dynamic Instance-Class Link. In
Submission to OOPSLA'96, February 1996.

[RM93] F. Rousseau and J. Malenfant. Browsing in
Explicit Metaclass Languages : an Essay in
Re
ective Programming Environments. In
Informal Proceedings of the Third Workshop

on Re
ection and Metalevel Architectures in

Object-Oriented Programming, OOPSLA'93,
October 1993.

[Sie94] Siemens. Simatic Object 5 O�ine. Technical
report, Siemens, 1994.

A.1 Code

We give here some major methods for the addition of pre/post conditions into Smalltalk semantics. The full
development can be loaded using ftp at ftp.emn.fr under /pub/rivard/Smalltalk/visualworks2.0/prepost.st. (We
provide a version for visualworks1.0 in /pub/rivard/Smalltalk/visualworks1.0/prepost.st.)

Browser Metaclass MetaclassWithControl

swapControls swapControls swapControls
\Changing the class of the metaclass to get \I get some compilation \I don't want compilation and

some compilation controls or vice versa" and execution controls " execution controls any more"

j metaClass j self toMetaclassWithControl self toMetaclass

className isNil ifTrue:["1234].

self changeRequest ifFalse:["1234].
metaClass := self nonMetaClass class.

Cursor wait showWhile:[metaclass swapControl].

className := metaClass browsingName.
self changed: #className

Behavior Metaclass MetaclassWithControl

compilerClass compilerClass compilerClass
\Answer a compiler class to \Answer a compiler class to \Answer a compiler class to

source methods of this class" source methods of this class" source methods of this class"

" self class compilerClass " Compiler " CompilerWithControl

ClassDescription Metaclass MetaclassWithControl

browsingName browsingName browsingName

\Answer an appropriate \Answer an appropriate \Answer an appropriate

browsing name." browsing name." browsing name."

" self class browsingName " self soleInstance name " (super browsingName ,

self class classOnControlString

) asSymbol

Parser ParserWithControl

compilePrePostCondition compilePrePostCondition

\Just forget about the pre- and post-conditions" \ compile the pre and post condition if they are valid"

preCondition isNil

ifFalse:[self compilePreCondition].

postCondition isNil
ifFalse:[self compilePostCondition].

ParserWithControl

compilePreCondition
"Adding the preCondition to the beginning of the current statements.

The tree to produce is something like

[...the preCondition...] value

ifFalse:[CompilerWithControl preConditionSignal raiseRequest]"

j block statement j
preCondition := builder newMessageReceiver: preCondition receiver

selector: #value

arguments: #() .
"|||-error block construction|||||-"

block := builder newMessageReceiver:

(builder newMessageReceiver: (builder newVariableName: 'CompilerWithControl')
selector: #preConditionSignal

arguments: #())

selector: #raiseRequest
arguments:#().

"|||-preConditionBlock construction|||{"

statement := builder newMessageReceiver: preCondition
selector: #ifFalse:

arguments: (Array with: (builder newBlockArguments: #()

body: (builder newSequenceTemporaries: #()
statements: (Array with: block)))).

parseNode body statements addFirst: statement.

ActalkProgramNodeBuilder

newMessageReceiver: rcvr selector: sel arguments: args

"a.selector are asynchronous messages"
j ws j

sel isCompound

ifFalse: ["super newMessageReceiver: rcvr selector: sel arguments: args].
"optimizing for less than 5 arguments. 99.1 purcent of the symbols "

sel numArgs <= 5

ifTrue:[j tab j

(tab := OrderedCollection with: (self newLiteralValue: sel selectorPart)) addAll: args.

ws := (String new: 100) writeStream.
ws nextPutAll: 'addMessage:'.

sel numArgs timesRepeat:[ws nextPutAll: 'with:'].

"self newMessageReceiver: rcvr

selector: ws contents asSymbol

arguments: tab asArray].

ws := (String new: 100) writeStream.
args size timesRepeat:[ws nextPutAll: 'with:'].

"self newMessageReceiver: rcvr

selector: #addMessage:arguments:
arguments: (Array with: (self newLiteralValue: sel selectorPart)

with: (self newMessageReceiver: (self

newVariableName:'Array')
selector: ws contents asSymbol

arguments: args))

Evaluating Message Passing Control Techniques in Smalltalk
�

Stéphane Ducasse
Software Composition Group, Universit¨at Bern

ducasse@iam.unibe.ch

http://www.iam.unibe.ch/ �ducasse/

Appeared in JOOP (Journal of Object-Oriented Programming) June 1999

Abstract

In a language like Smalltalk in which objects com-
municate only via message passing, message pass-
ing control is a fundamental tool for the analysis
of object behavior (trace, spying) or for the def-
inition of new semantics (asynchronous messages,
proxy,...). Different techniques exist, from the well
known approach based on the specialization of the
doesNotUnderstand: method to the exploitation
the method lookup algorithm done by the virtual
machine. Until now no comparison between these
techniques has been made. In this article we com-
pare the different techniques taking into account the
reflective aspects used, the scope, the limit and the
cost of the control.
Keywords: message passing control, instance spe-
cialization, doesNotUnderstand:, error handling,
method compilation, anonymous class, minimal ob-
ject

1 Message Passing Control: A
need

Message passing control is the corner stone of a
broad range of applications from application anal-
ysis (trace[BH90, PWG93], interaction diagrams,
class affinity graphs) to the introduction of new lan-
guage features (multiple inheritance[BI82], inter-
faces [Sch96], distributed systems[GGM95, Ben87,
McC87], active objects [Bri89]...). CLOS is one of
the rare languages that made the effort toexplic-
itly provide message passing control at the meta-
level via its MOP [KdRB91, Bec95]. In Smalltalk,

�This research is supported by the Swiss National Science
Foundation, grant 2000-46947.96. This article is an extension
of the article [Duc97]

message passing control is not explicitly provided.
However, its reflective capabilities allows one to
define message passing control using various tech-
niques: The best-known is based on the definition of
so calledminimal objectsand the specialization of
the doesNotUnderstand: method [Pas86, Lal90,
PWG93]. Some other techniques exist like the def-
inition of method wrappers [Bra96] or anonymous
classes[McA95].

Up to now, no comparison between these tech-
niques has been made that evaluates their applica-
bility, benefits and drawbacks. This is a problem be-
cause each solution possesses good and bad points
and often people apply a technique without check-
ing all the consequences of their choice.

In this article we compare these techniques tak-
ing into account the reflective aspects used, the con-
trolled objects, the integration of the control into the
programming environment, the limit and the cost
of the control. We start by giving an overview of
the different applications of message passing con-
trol in section 1.1. We define the criteria to com-
pare the different techniques. For the sake of un-
derstanding, we summarize the reflective facilities
of Smalltalk on which such techniques are based.
We then present each main technique in detail: er-
ror handling specialization in section 2, exploiting
the VM method lookup in section 3, and modifica-
tion of the compiled method in section 4. Finally
we conclude with a discussion of message passing
control in other languages.

1

1.1 Message Passing Control Applica-
tions in Smalltalk

Applications1 which use message passing con-
trol can be roughly sorted into three main cate-
gories. The first isapplication analysis and in-
trospection that is based on the development of
tools that display interaction diagrams, class affin-
ity graphs, graphic traces [BH90, PWG93, Bra96,
Mic96]. The second category isSmalltalk language
extension. In such a case message passing con-
trol allows one to define new features from within
the language itself: Garf [GGM95], Distributed
Smalltalk [Ben87] or [McC87] introduce object dis-
tribution in a transparent manner. Language fea-
tures like multiple inheritance [BI82], backtrack-
ing facilities [LG88], instance-based programming
[Bec93b, Bec93a, Hop94], Java interfaces [Sch96]
or inter-objects connections [DBFP95] have been
introduced. Futures [Pas86, Lal90] or atomic mes-
sages [FJ89, McA95] are also based on message
passing control capabilities. The third category
is the definition of new object models, introducing
concurrent aspects such as active objects (Actalk
[Bri89]) and synchronization between asynchronous
messages (Concurrent Smalltalk [YT87]). Other
work proposes new object models like the compo-
sition filter model [ABV92] or CodA that is a meta-
object protocol that controls all the activities of dis-
tributed objects [McA95].

1.2 Selected Reflective Features of
Smalltalk

Even if Smalltalk is a reflective language [GR89,
FJ89, Riv96], it is not possible to change all its as-
pects. Indeed, the virtual machine (VM) defines the
way the objects are represented in memory, and how
messages are handled. As message passing control
implementations have to use the reflective facilities
offered by the VM, we now summarize them.

The Smalltalk dialects referenced are: Visual-
Works (previously named ObjectWorks from Par-
cPlace newly ObjectShare), IBM Smalltalk (inte-
grated into the VisualAge environment of IBM) and
VisualSmalltalk (previously Smalltalk/V then Parts
of Digitalk). Note that the examples will be pre-
sented using VisualWorks and that we will discuss
the other solutions when there are significant differ-
ences.

1Due to the space limitation we limited this short overview to
the use of message passing control in Smalltalk.

Reification and Dynamic Creation. In
Smalltalk, classes and methods are objects and
are described by classes. It is not only possible,
as in Java [Fla97], to access to the information
that represents such entities but also to modify and
dynamically create instances of these classes.

In VisualWorks, classes are dynamically created
by invoking the methodsubclass:instanceVaria-
bleNames:classVariableNames:poolDictiona-
ries:category: of the classClass. It is possible to
access and modify the inheritance link, the method
dictionary and the methods defined in method
dictionary of a class (methodssuperclass, super-
class:, methodDictionary:, compiledMethodAt:
of the classBehavior in VisualWorks).

bytes
mclass
sourceCode
1
2

aCompiledMethod

aMethodDictionaryOrderedCollection
methodDict
...

[

#[21 68 68...]

collect: aBlock
 |newCollection|
 newCollection := self copyEmpty: self size
 ...

#copyEmpty
16666918

...

#add: CompiledMethod
#collect

aClass

Figure 1: Relationship between class, method dic-
tionary and compiled method in VisualWorks. The
collect: method of theOrderedCollection class.
The instance variablesourceCode holds an index
that is used by the source manager to retrieve the
source code for the method.

In VisualWorks, methods are instances of the
CompiledMethod class. They can be created
by invoking the methodcompile:notifying: of
classBehavior. As shown in figure 1, they are
stored in the class method dictionary. A compiled
method defines information to access its source code
(sourceCode), its compiled byte codes (bytes), the
class that compiled it (mclass) and a variable part
called theliteral frameof the method that contains
Smalltalk literal objects, such as the symbols, ar-
rays, numbers, byte-arrays and blocks defined in the
method.

Note that the source code of a method is stored
separately from its byte codes and that a method
only needs its byte codes to be executed. The
method source can be changed without changing
the executable byte codes of the method. More-
over, a compiled method is similar to a Lisp lambda-
expression because it does not know its selector. To

2

know the name of a method (its selector) the class
for which it was compiled is asked. A compiled
method can be executed without being defined in a
method dictionary.

Finally, it is possible to invoke a given method
without first doing dynamic dispatch (methods
valueWithReceiver:arguments: of class Com-
piledMethod in VisualWorks andexecuteWithRe-
ceiver:andArguments in IBM Smalltalk). Note
that this last functionality did not exist in the first
implementations of Smalltalk. This recent addition
explains why only a few implementations are based
on this possibility.

Moreover, the methodperform:with: defined on
the classObject allows one to explicitly send a mes-
sage to any object in the system.anObject per-
form: #zork with:12 sends toanObject the mes-
sage whose selector iszork and argument12.

Changing Reference. Thebecome: primitive al-
lows one to change object references. After invok-
ing a become: b all the pointers that pointed on
a point to b and conversely. Note that the seman-
tics of this primitive depends on the Smalltalk im-
plementations: it is symmetric in VisualWorks and
asymmetric in IBM Smalltalk.

Changing of Class. An object can dynamically
change its class, from asourceclass to atargetclass.
This change can be perceived as pointer swap when
the two classes possess the same instance struc-
ture. In VisualWorks the methodchangeClassTo-
ThatOf: takes as argument an object whereas in
IBM Smalltalk the methodfixClassTo: takes a
class. The implementors of VisualWorks are then
sure that the target class is an instantiable class with-
out having to test this at the VM level. The change
of class is only possible if the format of the source
and target classes are compatible. The format of one
class describes the memory layout of its instances
(methodsformat, setFormat: defined on theBe-
havior class in VisualWorks, andinstanceShape,
instanceShape: defined on the classClass in IBM
Smalltalk).

Message Reification and Error Handling Spe-
cialization. When an object receives an unknown
message, the Smalltalk virtual machine sends the
doesNotUnderstand: message to this object with
the reification of the message leading to this er-
ror. On the classObject the methoddoesNotUn-
derstand: raises an exception which, if it is not
trapped (unhandled exception), opens the debugger.
This method can be specialized to support message
passing control as will be shown in 2.

The reification of the message is done by the VM
by creating an instance of the classMessage. For
example, the message3 zork: 4 leads to the invo-
cation of3 doesNotUnderstand: aMessage for
whichaMessage possesses the following informa-
tion:

aMessage selector -> #zork:
aMessage arguments -> #(4)

A deontological remark. Some of the functional-
ities presented above and used in the techniques to
be described are qualified asprivatein the Smalltalk
versions and therefore are subject to change. It is
common use and good style not to use such private
methods. However, the internal aspects of the pre-
sented techniques imply their use. We stress that if
such methods would had been really private some
interesting techniques would have been simply im-
possible.

1.3 Three Main Techniques

First of all message passing control is not limited to
the definition of auxiliary methods executed before
and after the controlled method. Indeed, a full mes-
sage control should be able to modify the original
arguments, to change the semantics of the message
as in remote-calls or even to refuse the execution of
a method [DBFP95].

We identified 6 different techniques to implement
message passing control. However, some of them
are difficult to reproduce or lead to unportable code.
That’s why we briefly present and sort these tech-
niques before describing the selected ones.

1. Source code modification. One way to control
message passing is to instrument the code via source
code modification and recompilation. In case of im-
plementing a control similating CLOS-like before
and after methods, a controlled methodsetX:setY:
could look as follows after source code modifica-
tion. As the object responsible for the message pass-
ing control is not necessarily the receiver itself, we
use an ellipsis to represent it. For example, in the
case of meta-object approaches [McA95], the re-
ceiver is not its own controller.

setX: t1 setY: t2
...before
Original source code
...after

Note that one might try to use the methodaBlock
valueNowOrOnUnwindDo: anotherBlock that

3

allows one to trap the return out of a method. This
method evaluatesaBlock (the receiver) and when
this block exits, it evaluatesanotherBlock. How-
ever, this is not appropriate, because, as we stated
earlier, the execution of the controlled method can
be delegated to the message passing control and not
limited to additional actions like before and after
method executions. Note that to simplify the pre-
sentation we will present controlling method body in
case of a control simulating before and after CLOS-
like methods and we will discuss how this can ex-
tended to full control.

The main drawbacks of this technique are: All
controlled methods have to be reparsed and recom-
piled. Moreover, another recompilation is needed to
reinstall the original method. This technique is not
applicable in deployed or stripped images in which
scanners and compilers have been removed.

2. Byte code extension. Smalltalk is based on a
byte-code interpreter [GR89, IKM+97], so it is pos-
sible to add new byte-code in order to introduce new
message passing semantics, like in the Concurrent
Smalltalk approach [YT87]. However as the result-
ing interpreter is no longer standard and the applica-
tions are no longer portable, we do not discuss this
technique.

3. Byte code modification. Another way to con-
trol message passing is to directly insert new byte-
code representing the control into the compiled
method byte-codes [MB85]. However, implement-
ing this technique is far from simple. More impor-
tant, it heavily relies on knowledge of the byte code
instructions used by the virtual machines. These
codes are not standardized and can change.

4. Specialization of error handling. The idea
is to encapsulate controlled objects into so called
minimal objectsthat do not understand messages
and to specialize thedoesNotUnderstand: method
[Pas86, Bri89, PWG93] (see section 2).

5. Exploiting the VM method lookup implemen-
tation. This is realized by explicit subclassing or
by the introduction of anonymous classes in the in-
stantiation chain [FJ89, McA95, Mic96, Riv97], or
by the definition of a method dictionary array in
VisualSmalltalk [Bec93b, Bec93a, Pel96] (see sec-
tion 3).

6. Method substitution. The idea is to change
the compiled method associated to the selector in
class method dictionary [BH90, Bra96, Riv97] (see
section 4).

The three last techniques can be implemented
from within the language itself at a reasonable level
of abstraction and, they are portable. That’s why we
only will present and compare them in detail in the
following sections.

Note that we take into account only those tech-
niques that introduce a control ofstandardmessage
passing from the language itself. The key point here
is that we want to control objects already defined in
the Smalltalk language. Therefore we exclude ap-
proaches based on meta-interpreters that define their
own explicit message sending [Coi90].

Remark. Message reification allows a particular
interpretation of the message semantics such as
asynchronous messages [Fer89]. However, message
reification on its own does not allow one to con-
trol specific objects [Fer89, DBFP95]. Moreover, as
mentioned by Adele Goldberg in [GR89] message
reification has only been introduced in Smalltalk
for error handling due to efficiency reasons. Nev-
ertheless, the combination of message reification
and instance-based control techniques offers a wide
range of possibilities. For example, in CodA mes-
sage passing control is implemented using the tech-
nique 5, but the message reification provided by the
technique 4 is also used for the various message se-
mantics offered in CodA [McA95].

1.4 Some Comparison Criteria

To compare the techniques on a common basis we
propose the following comparison criteria.

Control granularity. Sometimes it is necessary to
only control one specific message sent to one spe-
cific object. In other cases, all the messages sent
to a set of objects should be controlled (note that
objects can share the same message passing control
definition without belonging to the same class).

So a control can be applied to all the instances of
one class in a similar manner, or only to certain in-
stances, or only one instance. We call the first pos-
sibility a class-based control, the second agroup-
based controland the third one aninstance-based
control.

Moreover, we qualify a control asglobal if all the
messages sent to an instance are controlled, asclass-
basedif all the methods of the class of the object are
controlled and asselectiveif it is possible to only
control certain specific messages.

Environment Integration. Since Smalltalk im-
plementations offer rich programming environ-
ments, we also consider the impact of the techniques

4

on the proposed tools. It is important to know if
the browsers and their functionality (senders, imple-
mentors, messages, class references, instance vari-
able references,. . .) continue to work after applying
the message passing technique.

Efficiency. To compare the execution costs we
consider that the code executed during the control,
such as a display in a trace, to be constant for all
the techniques. The cost takes into account only
the mechanism used to control the invoked method.
Moreover, we evaluate if the process requires meth-
ods to be recompiled during the installation of and
during the reinstallation of the original methods.

Definition Cost. Finally we should mention if the
proposed solution is easy to implement or if it needs
quite complex mechanisms.

Glossary. Controlling entities (classes and meth-
ods) are those that implement the message passing
control.Original entities are those that are normally
executed in absence of control.

2 Error Handling Specialization

As presented in 1.2, when an object receives an un-
known message the methoddoesNotUnderstand:
is invoked. The technique consists of definingmin-
imal objectsthat will encapsulate the object being
controlled. A minimal object is an object for which
ideallyeach message provokes an error. Note that to
be viable in the Smalltalk environment such an ob-
ject should possess a minimal set of methods that do
not lead to an error. We use thebecome: primitive
to substitute the object to be controlled by a minimal
object that encapsulates it.

The figure 2 illustrates the message passing con-
trol: (1) the original message is sent, (2) the VM
invokes the methoddoesNotUnderstand: and (3)
the original method is executed.

anObj

(3)

(2)
Understand: aMessage
capsule doesNot

a capsule
or a spy

anObj m
(1)

controlled object

VM

old reference

new reference

Figure 2: Installation of minimal objects and mes-
sage passing control by generation and control of
errors.

Note that the use of thebecome: primitive is
only necessary when one needs to controlexist-
ing objects of the Smalltalk library [Pas86, Lal90,
PWG93, GGM95]. In [Ben87, McC87], the goal is
not to control predefined objects but to define con-
trollable objects, so the reference exchange is not
necessary: messages are controlled because they are
simply unknown for the object. Note that for this
particular case the methods inherited fromObject
class should be recompiled to include control and
substitute primitives calls by controllable methods
[McC87].

2.1 Minimal Object

The creation of aminimal object[Bri89, PWG93],
also namedcapsuleor encapsulator, is based on the
creation of a class that does not inherit fromOb-
ject class. Doing so all the messages sent to an
instance of such class invoke thedoesNotUnder-
stand: method and then are controlled. The code
to invoke the original method can be the following
one:

MinimalObject>>doesNotUnderstand: aMessage
...”control specific actions”
originalObject perform: aMessage selector

withArguments: aMessage arguments
...

The creation of classes that inherit fromnil
(the unique instance of theUndefinedObject class
whose value means referring to nowhere) does not
lead to the desired solution. Indeed Smalltalk al-
lows the creation of new root inheritance classes.
To do so, the class creation protocol is redefined on
the classUndefinedObject to permit the creation
of class that does not inherit from any other class.
However, to integrate such classes in the Smalltalk
environment, Smalltalk defines a specialized version
of thedoesNotUnderstand: method that automati-
cally and lazily copies the methods from theObject
class. We then obtain an incremental copy ofObject
class.

The right technique to create a minimal object
is the following: (1) creation of a subclass ofOb-
ject, (2) assignment of the superclass link tonil and
(3) definition of the minimal behavior by copying
the needed methods fromObject. Here follows the
code taken from Actalk [Bri89].

5

MinimalObject class>>initialize
superclass := nil.
#(doesNotUnderstand: error: ˜˜ isNil =

== printString printOn: class inspect basicInspect
basicAt: basicSize instVarAt: instVarAt:put:)

do: [:selector | self recompile: selec-
tor from: Object]

2.2 Problems

This approach implies three main problems identi-
fied by [PWG93].

The self problem. The variableself is a pseudo-
variable with which objects refers to themselves
without using explicit pointers. Messages that an
object sends to itself are not redirected to the min-
imal object and thus not controlled. Moreover, this
problem appears not only when an object sends mes-
sages to itself. In fact a message can only be con-
trolled if: (1) the message is not sent by the object
itself and (2) the reference from the sender of the
message to the receiver of the message (the origi-
nal object) was not installed via a reference toself
[PWG93]. The authors of Spies [PWG93] proposed
a delicate and costly solution based on the dynamic
analysis of the execution stack to detect if the mes-
sages sent should or should not be controlled.

Class Control. Control of classes is impossible
because classes can not be swapped by objects of
different nature. TheClassBuilder usesbecome:
when a class is incrementally defined but the swap
is done between two classes.

Minimal Object. As already mentioned a mini-
mal object should define a minimal set of meth-
ods such asclass, isKindOf,=, ==, instanceVarAt:,
myDependents... This leads to the problem of the
interpretation by the minimal object of messages
that were initially destined for the controlled object.
The problem is double because not only is the mes-
sage executed by the minimal object but the con-
trolled object does not receive the message.

Pascoe proposed a heavy solution that consists
in fully duplicating the inheritance hierarchy and to
prefix all the methods destined for minimal objects
with an E [Pas86]. Even if such a solution works
well, it is heavy to set up and uses lots of memory.

2.3 Discussion

This approach proposes aninstance-based control
with a global granularity: all the methods are con-
trolled. Contrary to other approaches that presup-
pose the knowledge of the messages that should be

controlled, this approach is the only one to offer the
ability to control all the sent messages. It is not
mandatory to know in advance the potentially con-
trollable messages.

In addition to the above mentioned problems this
approach is not efficient as shown in 5.1. Indeed,
the control is based on the error of the lookup of
the method associated with the message. Thus each
control needs one additional lookup and a double
traversal of the execution stack due to exception
handling. Moreover, each control implies a message
instance creation.

This approach is simple to implement when one
does not attempt to solve all its inherent problems
such as those linked to the identity of the object.

3 Exploiting of the VM Method
Lookup Algorithm

In object-oriented programming, the standard ap-
proach for specializing behavior is subclassing. In
Smalltalk, when an object receives a message, the
lookup of the method starts in object class and fol-
lows the inheritance link. Thesuper variable allows
one to invoke overridden methods. Its semantics is
to start the lookup in the superclass of the class in
which the method was found.

Controlling sent messages is possible by interpos-
ing between the object and its original class a new
class that specializes the looked up methods. This
can be achieved by an explicit traditional subclass-
ing (see figure 3) or an implicit subclassing based on
anonymous classes associated to each instances and
a class change (see figure 4).

Common Principle. This approach is composed
by three aspects: (1) creation of the controlling class
that will be interposed between the object and its
original class, (2) definition of controlling methods
in that class and (3) class change (see in 1.2). Con-
trolling methods should have the same selectors as
the original methods.

3.1 Explicit Subclassing

The interposed class is created by invoking the class
creation definition method. Moreover, an original
method can be invoked by the controlling method
by use of thesuper variable.

The newly created class can be inserted usingsu-
perclass: into the class hierarchy, so the subclasses
can benefit from the control of the methods. To sup-
port a control of all the instances of the class, the

6

reference to the original class in the system dictio-
nary class should be changed to refer the subclass.

aCMethod

aCMethod

aClass

’Point’

aClass

’CPoint’

aMethodDictionary

#m1

aMethodDictionary

#m1

a controlling method
invoking the original

the original method

2@2

1@1 4@4

3@3

Figure 3: Explicit subclassing to control message
passing. TheCPoint class defines its own method
dictionary containing controlled methods. Thus,
1@1 and 4@4 are controlled whereas3@3 and
2@3 are not controlled.

Discussion. The control offered by this approach
is a group-basedor class-basedcontrol and pos-
sesses aselectivegranularity. Note that it could be
possible to create as many classes as controlled in-
stances but this would result in a proliferation of ex-
plicit classes.

The control is removed by another class change
(see in 1.2). The execution cost is equal to the cost
of a method execution. The main drawback of this
solution is the creation of an explicit class, so this
solution is not transparent from the point of view of
the controlled objects.

3.2 Implicit Subclassing

Another solution is to interpose an anonymous class
between the object and its class and to define con-
trolling methods local to this specific object as
shown by Fig. 4.

The following steps define the control installa-
tion:

1. Create an anonymous class,nCl, instance
of Behavior2 in VisualWorks or instance of
Class in IBM Smalltalk.

2. Copy the class instance description (format)
from the class tonCl and assign the inheritance
link of nCl to the original class of the object.

3. Change the class of the instance to refer tonCl.

2According to McAffer, Peter Deutsch mentioned that the
classBehavior had been originally designed to allow such im-
plementations [McA95] p. 68.

aCMethod

aClass
’’

aClass
’’

a controlling method
invoking the original

aCMethod

aMethodDictionary

#m1

aCMethod

aMethodDictionary

#m1 a controlling method

aMethodDictionary

#m1

aClass

’Point’

the original method

2@2

1@1

3@3

Figure 4: Implicit subclassing using anonymous
classes to provide instance-based control message
passing in VisualWorks.

4. Compile in nCl the methods that should be
controlled.

VisualWorks Implementation. A possible instal-
lation of the control is illustrated in the following
example method. The line number corresponds to
the previous mentioned steps.

Object>>specialize
| nCl|

(1) nCl := Behavior new
(2) setInstanceFormat: self class format;
(2) superclass: self class;

methodDictionary: MethodDictionary new.
(3) self changeClassToThatOf: nCl basicNew

The fourth step is implemented by invoking the
methodcompile:notifying: of the classBehavior
with a string representing the controlling method.
Such a method source code can be automatically
generated. In the case of a control implementing
before and after CLOS-like methods, the control-
ling method for the method namedsetX:setY: could
look like:

anAnonymousClass>>setX: t1 setY: t2
... before

super setX: t1 setY: t2
... after

IBM Smalltalk Implementation. Joseph Pelrine
in [Pel96] describes a similar implementation:

7

Object>>specialize
| nCl|

(1) nCl := Class new
(2) superclass: self class;
(2) instanceShape: self class instanceShape
(2) instVarNames: self class instVarNames;

setMethodDictionary: MethodDictionary new.
(3) self fixClassTo: class

Integration and semantics ofclass. A good inte-
gration into the programming environment redefines
locally in the anonymous class theclass method.
Without that the control cannot be transparent: a
user could ask for theoriginal class and obtain
the anonymousclass. This method can be com-
piled on the anonymous class as shown in the fol-
lowing method. Note that an access to the anony-
mous class is also compiled.basicCompile: is a
method that invokes in a protected manner thecom-
pile:notifying: method defined in superclasses of
the original class.

AnonymousClass>>installEssentialMethods
self basicCompile: ’class ˆ super class superclass’.
self basicCompile: ’isControlled ˆ true’.
self basicCompile: ’anonymousClass ˆ super class’

Invocation of the original method. The original
method could be invoked from within the control-
ling method defined in the anonymous class. An ob-
vious solution is to directly invoke the method using
thesuper variable. However such a solution is only
possible if the control is done by the receiver via the
anonymous class implementation and not by another
object like in CodA [McA95] or in FLO [DBFP95].

A possible solution in that case is to define the call
to the original method via a block ([super selector
args]) that will be activated later by avalue method.
This solution is costly because this kind of block
closure cannot be optimized by the compiler. An-
other solution is to refer to the compiled method in-
stance in the controlling method using the same trick
as in MethodWrapper (see 4.2) and invoke directly
the method (valueWithReceiver:arguments:).

When the control is done by another object (like
a meta-object), the following code can be automat-
ically generated for the original method with se-
lector setX:setY:. Here the meta-object defines a
methodcontrol:call:withArgs: that effectively does
the control.

anAnonymousClass>>setX: t1 setY: t2
ˆ self meta control: #setX:setY:

call: [super setX: t1 setY: t2]
withArgs: (Array with: t1 with: t2)

3.3 The VisualSmalltalk Solution

Contrary to VisualWorks and IBM Smalltalk, in
which each object refers to its class that has a
method dictionary, in VisualSmalltalk, each object
refers to an array of method dictionaries. Such an
array can be shared amongst all the instances of
a class. Each method dictionary possesses an in-
stance variable calledclass referring to the class to
which it belongs as shown in 5. The method dictio-
naries are sorted from the class to its superclasses.
This different implementation allows one to control
message passing by using the VM method lookup
[Bec93b, Bec93a, Pel96] as shown in fig. 6.

class
x
y

15
10

aPoint

methods
name

aMethodDictionary

aMethodDictionary

#m1

#m2

aCompiled
Method

aCompiled
Method

aClass

’Point’

anArray

Figure 5: Relationship between instances, classes,
method dictionaries and compiled methods in Vi-
sualSmalltalk: 15@10 an instance ofPoint does
not refer to its class directly. It refers to an array
of method dictionaries to which the classPoint also
refers to as method dictionary.

In VisualSmalltalk controlling a message sent to
a specific instance is done by the following steps:
(1) creation of a copy of method dictionary array of
the object, (2) in the first place of this array addition
of a new method dictionary and (3) definition of the
controlling methods in this method dictionary.

8

aMethod
Dictionary

aMethod
Dictionary

aMethod
Dictionary

methods
name

class
x
y

15
10

aPoint

A
controlled
point

class
x
y

with controlled
methods

’Point’

aClass

anArray

anArray

aPoint

A
normal
point

24
6

Figure 6: Instance specialization in VisualSmalltalk:
15@10 is controlled whereas24@6 is not.

Object>>isSpecialized
ˆself methodDictionaryArray
== self class methodDictionaries

Object>>specialize
self isSpecialized ifTrue:[ˆself].
self addBehavior: MethodDictionary new.

Object>>specialize: aString
| assoc|
self specialize.
assoc := Compiler compile: aString in: self class.
self methodDictionaryArray first add: assoc

The argumentaString represents the source of a
controlling method.

3.4 General Discussion

The technique based on anonymous classes is briefly
mentioned in [FJ89], that qualified such classes as
lightweightclasses, and in CodA [McA95]. McAf-
fer uses this technique to implement meta-objects
and to control message passing. Ernest Micklei pro-
posed a similar approach [Mic96]. However the
meta-class is also controlled and his approach is
more complex. NeoClasstalk uses this technique
coupled with a method code change to implement
dynamic specialization [Riv97] (see in 4.3).

These approaches support bothinstance-based
control andselectivecontrol. Note that they can also
supportclass-based, orgroup-basedcontrol by shar-
ing the anonymous class amongst the controlled ob-
jects. Moreover, when all the instances of a given
class have to share the same control, the method
allInstances can be used to access to the instances
of the original class.

These approaches are at the same time flexible
and efficient as shown in 5.1. The lookup and ex-
ecution of methods defined by the VM are used
at their optimum. As the control is not based on
method lookup failure, the cost is only one addi-

tional method execution. However, these techniques
can only control methods that are known in advance
to be controlled.

The implementation of these approaches is rela-
tively simple and adaptable in the various dialects.
However, an error during the installation can ir-
reparably break the system. Indeed method dictio-
naries and format of the instances are crucial in-
formation for the VM. Moreover, method compila-
tion is not necessary to install the control because
the controlling methods can be copied and installed
from predefined method skeletons (see 4.2). There-
fore these techniques have a good installation speed
and can be applied on deployed applications.

Finally, as a last important point, these methods
do not raise the problem of object identity because
the receiver of a controlled message is the object it-
self (see in 2.2).

4 Method Substitution
In Smalltalk, the methods defined in a class are
stored in a method dictionary associated with the
class. Such a dictionary associates each method se-
lector (a symbol) with an instance of classCom-
piledMethod as shown in fig. 1.

As shown in figure 7, changing the compiled
method associated with a selector supports message
passing control. TRACER [BH90] and Method-
Wrappers [Bra96] use this technique. NeoClasstalk
[Riv97] generalizes it. The original method can be
simply stocked in the method dictionary associated
with another symbol as in TRACER or it can be en-
capsulated in the controlling method like in Method-
Wrappers.

4.1 Hidden Methods

Another technique to control message passing is
to associate a new selector (Xm1 in Fig. 7) with
the original method and to associate a controlled
method with the original method selector (m1) in
the method dictionary. In case of before and after
CLOS-like methods a controlling method could be
schematically as:

aClass>>setX: t1 setY: t2
...before...
self XsetX: t1 setY: t2
... after....

As compiled methods do not refer explicitly to
their selector, it is not necessary to recompile the
methods when they are associated with different se-
lectors. Moreover, the installation of the controlled
methods can be done by copying method skeletons

9

a controlling method
invoking the original

aClass

’Point’
aCMethod

aCMethod

aMethodDictionary

#setX:setY:
#XsetX:setY:

2@21@1

the original method

Figure 7: Addition of a new selector that refers to
the controlled method and association.

and changing some method information: if we com-
pare two controlling methods, the only difference is
that they send different selectors to invoke their orig-
inal methods. The selector that is used for such an
invocation can be easily changed by replacing it in
the method’s literal frame. Therefore, to install a
controlling method from a skeleton one only needs
to change the selector, to set up themclass instance
variable to refer to the class (see 1.2) and to change
the source code to refer to the source code of the
original method.

4.2 MethodWrappers

The previous solution has the serious drawback of
introducing new selector-method associations in the
method dictionary and to polluting the interface of
the controlled object class. Although it is unlikely
that a user will invoke a hidden method, this solution
is not good when inspecting the system. Method-
Wrappers is a clever approach that does not stock
the original methods in the method dictionary of the
controlled objects class but in the compiled meth-
ods themselves [Bra96]. Instead of creating a new
association selector-compiled method, the original
method is substituted by a method that encapsulates
the original one – the wrapper has a reference to the
original method as shown in Fig. 8.

4.2.1 Definition.

The following code describes the class Method-
Wrapper subclass ofCompiledMethod. The in-
stance variableclientMethod refers to the original
method andselector represents the original method
selector.

CompiledMethod variableSub-
class #MethodWrapper

instanceVariableNames: ’clientMethod selector’
classVariableNames: ’’
poolDictionaries:’’
category: ’Method Wrappers’

As shown by the control of the methodcolor of

the classPoint below, the class methodon:inClass:
returns a wrapped method that can further be in-
stalled on a compiled method by invoking the
methodinstall.

(MethodWrapper on: #color inClass: Point) install

aMethodDictionary

#m1

aClass

’Point’

1@12@2 mclass
sourceCode copyEmpty:

....

aMethodWrapper
mclass
clientMethod
sourceCode

aCMethod
1

Figure 8: After installation: the original method is
encapsulated into a method wrapper.

MethodWrapper class also specializes the
methodvalueWithReceiver:arguments to intro-
duce message passing control as follows. Note
that in such a case the control is limited to before
and after method executions implemented by helper
methodbeforeMethod andafterMethod.

WrapperMethod>>valueWithReceiver: anObject ar-
guments: args

self beforeMethod.
ˆ [clientMethod valueWithReceiver: object

arguments: args]
valueNowOrOnUnwindDo: [self afterMethod]

A controlling method definition ensures that the
methodvalueWithReceiver:arguments: is called.
The following method source, that is automatically
generated, shows how the arguments are managed.

aClass>>originalSelector: t1
| t2|
(t2 := Array new: 1) at: 1 put: t1.
ˆ#() valueWithReceiver: self arguments: t2

When a message is sent to an object, it is neces-
sary to invoke certain methods on the method wrap-
per itself (like valueWithReceiver:arguments in
the previous code). But Smalltalk does not offer
a pseudo-variable to refer to the current invoked
method. Instead of using thethisContext pseudo-
variable that costly reifies the method execution con-
text, the author of MethodWrappers modifies the lit-
erals of the method wrapper. He uses the#() literal
object in the previous code to reserve place to put a
reference during the installation to the method wrap-
per itself. Note that using theself pseudo-variable
in the source code of the prototype shown above was

10

not the right solution becauseself represents the ob-
ject on which the method was invoked and not the
method itself.

As in the hidden method approach, MethodWrap-
pers do not need to be compiled to be installed. The
controlling method can be copied from a method
skeleton having the same number of arguments.
Then, themclass instance variable, the literal and
the clientMethod should be set. Moreover, to be
fully and transparently integrated in the Smalltalk
environment, the source code of the controlling
method references the source code of controlled one
as shown in Fig. 8.

4.3 NeoClasstalk

NeoClasstalk is a new implementation of Smalltalk
that introduces explicit meta-classes [Riv97]. Neo-
Classtalk allows the definition of class properties
such as method trace, instance variable access trace
and pre- and post- conditions. These properties
are based on acontrolled modification of method
source code. It proposes a framework for the com-
position of the different control policies. A meta-
programmer can specify a part of the method source
code that will be automatically compiled in the con-
trolled methods.

The NeoClasstalk implementation uses similar
techniques to MethodWrapper (prototype and lit-
eral modification) but gives the control to the class.
Moreover, NeoClasstalk uses a dynamic change of
class based on the definition of anonymous classes
(as shown in 3.2).

Control Definition. In NeoClasstalk the execu-
tion of a method is invoked by the methodexecute:-
receiver:arguments: defined on the classAb-
stractClass. The definition (source code) of
this method is defined by the methodgenerate-
BodyOn: of the classTemporalComposition.

Let us suppose that we want to define a mes-
sage passing control that realizes a trace of the
invoked methods. To do so, we define a new
classTraceAllMessages (subclass ofTemporal-
Composition) and we specialize the methodgen-
erateApplyBodyOn: that controls a part of the
method source code generation ofexecute:recei-
ver:arguments:. The following code shows the ad-
dition of the textual definition (source code part) of
a trace to the normal method definition. The last line
ensures that the normal behavior of the method will
be added in this definition.

TraceAllMessages>>generateApplyBodyOn:aStream
aStream nextPutAll: ’| window|

window := self transcript.
cm printNameOn: window.
window cr; endEntry.’.

super generatedApplyBodyOn: aStream

To control the classPoint one should invoke the
temporalComposition: method as follows:.

TraceAllMessages new temporalComposition: Point.

TraceAllMessages new creates an implicit class
with method wrappers. temporalComposition:
Point changes the class of the classPoint so that
it will be instance of the classTraceAllMessages.

A part of the Framework. As shown below,
the methodapplyMethod defined on the class
TemporalComposition specifies the definition of
the source code of the methodexecute:receiver:-
arguments:. A part of this definition is under
the responsibility of the methodgenerateApply-
BodyOn:. The methodapplyMethod ensures a se-
mantic context of the generated method such as the
insurance that the original method will be invoked
(as shown by the messagesuper execute:... be-
low).

TemporalComposition>>applyMethod
”rec is the receiver, args are the arguments
of the method, cm is the currently reified method”

| ws|
ws := (String new: 100) writeStream.
ws nextPutAll: ’execute: cm receiver: rec argu-
ments: args’;crtab;

nextPutAll: ”system generated method”;cr;crtab.
self generateBodyOn:ws. ”<-
the method to override”
ˆ ws contents

TemporalComposition>>generateApplyBodyOn:aStr

aStr crtab;
nextPutAll: ’ˆ super execute: cm receiver: rec ar-

guments: args’

Note that by changing the methodgenerateAp-
plyBodyOn: it is also possible to change the com-
plete semantics of the control.

4.4 Discussion
These techniques possess aclass-basedcontrol and
a selectivegranularity. Indeed all the instances of
a class are controlled without the ability to select

11

them. The control execution cost is the cost of a
method execution.

The first solution based on the definition of new
association selector/method in the method dictio-
nary polluted the interface of the objects. This prob-
lem does not appear with the other approaches. Neo-
Classtalk takes in charge the recompilation of the
methods and proposes a well defined context for the
definition and the composition of the method con-
trol. However, its solution is complex, and this com-
plexity is not due to the concepts used as the auto-
matic recompilation, but by the framework defini-
tion based on explicit meta-classes3. Contrary to the
other approaches the reproduction of the mechanism
is difficult.

Finally, contrary to the approach based on iden-
tity change, the main advantage of message passing
control by means of anonymous classes (see in 3.2)
or method wrappers (MethodWrappers and Neo-
Classtalk) is that the tools defined in the browsers
such as (implementors, senders...) continue to fully
function.

5 Summary and Conclusion

Before presenting how other object-oriented lan-
guages support message passing control, we sum-
marize and compare the techniques.

5.1 Overview

The following table gives a quick overview of the
presented techniques in terms of the criteria de-
fined in 1.4. We present here only the main or de-
fault characterics. For a deeper analysis, the reader
should refer to the previous discussions. Theen-
tity column refers to the granularity of the control
that states which entities can be controlled, themes-
sagecriteria shows if all or some messages can be
controlled, the last criteria establishes if the solu-
tion is well integrated in the Smalltalk environment
in terms of browser functionality (senders and im-
plementors) and transparency from the user point of
view.

3Note that NeoClasstalk proposes tools for selecting class
properties that simplifies the life of the lambda programmer.

Technique entity message integration
Error han-
dling

instance-
based

global average

Explicit
Subclassing

group-
based

selective average

Anonymous
Class

instance-
based

selective good

Hidden
Methods

class-
based

selective bad

Method
Wrapper

class-
based

selective good

NeoClasstalk class-
based

class good

The next table compares the different approaches
for the runtime overhead. These tests were per-
formed on a Power Mac 7100/166 with 24MB
memory using Visualworks2.5. The results are the
mean over five series of 10000 calls with 0,1,2 and
3 arguments. Moreover, during our numerous tests
such results show some variability, therefore we
consider that a difference up to 10 milliseconds is
not really significant.

Technique 0 1 2 3
Explicit Subclass-
ing

40.0 40.0 46.6 39.8

Anonymous Class 40.0 40.2 43.2 43.2
Hidden Methods 40.0 43.2 43.2 43.4
Method Wrapper 200 233 243.4 250
Inlined Method
Wrapper

100 126 140 153

Error handling 213.4 229 233.4 240

As we can expect, the comparison shows that the
techniques based on the explicit and implicit sub-
classing (anonymous classes) have the same over-
head. Moreover, these two techniques have the same
overhead than the technique based on hidden meth-
ods. It shows that the lookup of the method viasu-
per in the two first approaches is equivalent to the
lookup viaself in the hidden method approach. This
is not surprising in presence of method cache mech-
anisms performed by the Virtual Machine. This
comparison shows that the technique based on error
handling is five times slower. The method wrapper
approach has the same cost. This situation comes
from the fact that method wrappers must create ar-
rays for their arguments and that in our tests we
do not remove the call of thevalueNowOrOnUn-
windDo: method.

As an experiment, we change the Method
Wrapper’s implementation, the controlling method
continued to call the methodvalueWithRe-
ceiver:arguments: but we remove the call to the
methodvalueNowOrOnUnwindDo:. The results,

12

named Inlined Method Wrapper are two times faster
than the normal Method Wrapper. Moreover, this
approach could be optimized by inlining in the call
inside the controlling method body instead of calling
the methodvalueWithReceiver:arguments: de-
fined on the classMethodWrapper.

5.2 Message Passing Control in Other
Languages.

CLOS is the object system integrated into Common
Lisp. It is one of the few class based languages to of-
fer the ability to define instance specific methods us-
ing theeql specializer[Kee89]. Moreover CLOS is
also one of the rare languages to provide a meta ob-
ject protocol (MOP) in which message passing con-
trol is an entry point [KdRB91].

In CLOS the message passing concept is replaced
by the generic function4 The CLOS MOP allows
one to control all the aspects of the generic func-
tion application: the application of the generic func-
tion (compute-discriminatingfunction), the appli-
cation of the effective method (compute-effective-
method-function) or the application of a single
method composing the effective method (compute-
method-function).

In the prototype based languages, Moostrap al-
lows a message passing control based on the defi-
nition of a reflective protocol: object meta-object is
responsible for the method lookup and application
[MC93].

In the realm of less flexible languages, the defi-
nition of OpenC++ -that can be perceived in its last
version as an open compiler [Chi95] - shows the in-
terest for a control of message passing. More re-
cently, the definition of MetaJava offers the ability
to control message passing in Java [Gol97]. In this
implementation anonymous classes calledshadow
classesare interposed between the instance and its
original class (see in 3.2). However, in the new
version called MetaXa, the interpreter is extended
by the introduction of new byte-codes. As a direct
consequence MetaXa’s applications are no longer
portable.

Java in its newest version 1.1 reified certain as-
pects of the language such as the classes, the meth-
ods and the instance variables (see Core Reflection
API [Fla97]). However, this reification isonly in-
trospective reflection. Indeed, the classesField,
Method andConstructor are declared as final. This

4A generic function is a group of methods. During the appli-
cation of a generic function, methods from that group are selected
to constitute an effective method application. This is the effective
method that is executed.

implies that they cannot be specialized. Moreover,
only the Java VM can create new instances of these
classes. Only the value of the instance variables can
be modified and the methods can be invoked using
the handle() method. Such an approach was nec-
essary to offer tools comparable to the Smalltalk
browsers in Java. However, this reification is not
causally connected to the language. There is no pos-
sibility to modify the methods or the classes from
within the language itself. This means the reflective
facilities are not really adapted to extend or modify
the language.

5.3 Conclusion
This comparison highlights that the most com-
monly used technique based on the specialization of
the doesNotUnderstand: method is not the best
one. As a first explanation of this situation, one
should note that the ability to directly execute a
method has only lately been introduced in the inter-
preters (methodsvalueWithReceiver:arguments:
on CompiledMethod class in VisualWorks and
executeWithReceiver:andArguments: in IBM
Smalltalk). Moreover, this comparison shows that
the techniques based on VM lookup method or
method wrappers should be considered by more pro-
grammers than it is currently the case.

The reflective aspects of Smalltalk and their
causal connection to the language itself offer strong
advantages for the language extensions or modifica-
tions5. We illustrate them by showing how message
passing control is possible by different approaches.
This study shows the power offered by languages
like CLOS or Smalltalk that provide reflective facil-
ities that are not limited to introspective reflection
like in the new version of Java (1.1).

Acknowledgments. The author would like to
thank J. Brant, P. Cointe, M. Fornarino, J. McAf-
fer, E. Micklei, O. Nierstrasz, F. Pachet, J. Pelrine,
M. Rieger and F. Rivard.

References
[ABV92] M. Aksit, L. Bergmans, and S. Vural. An object-

oriented language-database integration model: The
composition-filters approach. InECOOP’92, LNCS
615, pp 372–395, 1992.

[Bec93a] K. Beck. Instance specific behavior: Digitalk imple-
mentation and the deep meaning of it all.Smalltalk
Report, 2(7), May 1993.

5A reflective aspect of a language is said causal if any change
in the reified aspect immediately influences the represented as-
pect and conversely.

13

[Bec93b] K. Beck. Instance specific behavior: How and why.
Smalltalk Report, 2(6), Mar 1993.

[Bec95] K. Beck. A modest meta proposal.Smalltalk Report,
July/August 1995.

[Ben87] J. K. Bennett. The Design and Implementation of
Distributed Smalltalk. InOOPSLA’87, pp 318–330,
1987.

[BH90] H.-D. Böcker and J. Herczeg. What tracers are made
of. In OOPSLA/ECOOP’90, pp 89–99, 1990.

[BI82] A. H. Borning and D. H. Ingalls. Mutiple Inheritance
in Smalltalk-80. InProc. of NCAI AAAI, pp 234–
237, 1982.

[Bra96] J. Brant. Method Wrappers. http://st-www.cs.uiuc.-
edu/users/brant/Applications/MethodWrappers.ht-
ml, 1996.

[Bri89] J. Briot. Actalk: A Testbed for Classifying and De-
signing Actor Languages in the Smalltalk-80 Envi-
ronment. InECOOP’89, pp 109–129, 1989.

[Chi95] S. Chiba. A Metaobject Protocol for C++. InOOP-
SLA’95, pp 285–299, 1995.

[Coi90] P. Cointe. The ClassTalk System: A Labora-
tory to Study Reflection in Smalltalk. InOOP-
SLA/ECOOP’90 Workshop on Reflection and Met-
alevel Architectures, 1990.

[DBFP95] S. Ducasse, M. Blay-Fornarino, and A. Pinna. A
Reflective Model for First Class Dependencies. In
OOPSLA’95, pp 265–280, 1995.

[Duc97] S. Ducasse. Des techniques de contrˆole de l’envoi de
message en smalltalk.L’Objet, 3(4), 1997. Numero
Special Smalltalk.

[Fer89] J. Ferber. Computational reflection in class based
object oriented languages. InOOPSLA’89, pp 317–
326, 1989.

[FJ89] B. Foote and R. E. Johnson. Reflective facilities in
Smalltalk-80. InOOPSLA’89, pp 327–336, 1989.

[Fla97] D. Flanagan.Java in a Nutshell. O’Reilly, 2nd edi-
tion, 1997.

[GGM95] B. Garbinato, R. Guerraoui, and K. Mazouni. Im-
plementation of the GARF replicated objects plate-
form. Distributed Systems Engineering Journal,
Mar. 1995.

[Gol97] M. Golm. Design and Implementation of a Meta Ar-
chitecture for Java. Master’s thesis, IMMD at F.A.
University, Erlangen-Nuernberg, 1997.

[GR89] A. Goldberg and D. Robson.Smalltalk-80: The
Language and its implementation. Addison-Wesley,
1989. ISBN: 0-201-13688-0.

[Hop94] T. Hopkins. Instance-Based Programming in
Smalltalk. Esug Tutorial, 1994.

[IKM +97] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and
A. Kay. Back to the Future: The Story of Squeak,
A Practical Smalltalk Written in Itself. InOOPSLA
’97, 1997.

[KdRB91] G. Kiczales, J. des Rivieres, and D. G. Bobrow.The
Art of the Metaobject Protocol. MIT Press, 1991.

[Kee89] S. E. Keene. Object-Oriented Programming in
Common-Lisp. Addison-Wesley, 1989.

[Lal90] W. Lalonde.Inside Smalltalk (volume two). Prentice
Hall, 1990.

[LG88] W. R. LaLonde and M. V. Gulik. Building a Back-
tracking Facility in Smalltalk Without Kernel Sup-
port. In Proceedings of OOPSLA’88, pp 105–122,
1988.

[MB85] S. L. Messick and K. Beck. Active Variables in
Smalltalk-80. Cr-85-09, Tektronix, Computer Re-
search Lab., 1985.

[MC93] P. Mulet and P. Cointe. Definition of a reflective ker-
nel for a prototype-based langage. InISOTAS’93,
LNCS 742, pp 128–144, 1993.

[McA95] J. McAffer. A Meta-Level Architecture for Prototyp-
ing Object Systems. PhD thesis, University of Tokyo,
1995.

[McC87] P. L. McCullough. Transparent Forwarding: First
steps. InOOPSLA’87, pp 331–341, 1987.

[Mic96] E. Micklei. Spying messages to objects. Esug Tuto-
rial, 1996.

[Pas86] G. A. Pascoe. Encapsulators: A new software
paradigm in Smalltalk-80. InOOPSLA’86, pp 341–
346, 1986.

[Pel96] J. Pelrine. Meta-level programming in smalltalk.
Esug Tutorial, 1996.

[PWG93] F. Pachet, F. Wolinski, and S. Giroux. Spying as an
Object-Oriented Programming Paradigm. InTOOLS
EUROPE’93, pp 109–118, 1993.

[Riv96] F. Rivard. Smalltalk : a Reflective Language. In
REFLECTION’96, pp 21–38, 1996.

[Riv97] F. Rivard. Evolution du comportement des objets
dans les langages `a classes r´eflexifs, 1997. Ecole des
Mines de Nantes, Th`ese de l’Universit´e de Nantes.

[Sch96] B. Schaeffer. Smalltalk: Elegance and Efficiency.
Ecoop Tutorial, 1996.

[YT87] Y. Yokote and M. Tokoro. Experience and Evolution
of Concurrent Smalltalk. InOOPSLA’87, pp 406–
415, 1987.

14

Designing an Extensible Distributed Language

with a Meta-Level Architecture

Shigeru Chiba� Takashi Masuda

Department of Information Science, The University of Tokyo

E-mail: fchiba,masudag@is.s.u-tokyo.ac.jp

In Proceedings of 7th European Conference on Object-Oriented
Programming (ECOOP'93), Kaiserslautern, July 1993, LNCS 707, pp.482{501

Abstract

This paper presents a methodology for designing extensible languages for distributed com-
puting. As a sample product of this methodology, which is based on a meta-level (or re
ective)
technique, this paper describes a variant of C++ called Open C++, in which the programmer
can alter the implementation of method calls to obtain new language functionalities suitable for
the programmer's applications. This paper also presents a framework called Object Commu-

nities, which is used to help obtain various functionalities for distributed computing on top of
Open C++. Because the overhead due to the meta level computation is negligible in distributed
computing, this methodology is applicable to practical programming.

1 Introduction

Languages for distributed computing have been designed mostly to provide a general functionality
that can be used in a broad range of application domains. Designers of these languages have de-
veloped numerous language primitives or functionalities, such as Ada's rendezvous [26], the remote
procedure call [2], and Orca's shared data-object [1]. Each of these functionalities has its own most
suitable domain of applications, so a language that has a single one of these functionalities will be
small and simple but will not be suitable for some applications. It is, on the other hand, possible
to design a language that has many or all such functionalities, but such a language would be large
and awkward.

The goal of this paper is to demonstrate another approach, which is to make a language ex-
tensible. By this approach, we have been able to design a language that is, at the same time,
simple, elegant, and applicable in a wide range of domains. A programmer can tailor the language
to exploit various functionalities. Language extensibility has long been an important issue, and
Kiczales et al., for example, have recently discussed the designing of extensible class libraries [11].
A typical approach to supporting various functionalities within a single language is to provide a set
of reusable code, called a library program, that implements functionalities that are not supported

�JSPS (Japan Society for the Promotion of Science) Fellow-DC

1

by the language alone. Although functionalities implemented by this approach may show lower
performance than ones implemented by altering the language system such as the compiler, this
approach is broadly employed because su�cient performance is usually obtained by this approach
in practice. The library-program approach, however, is limited in that it cannot implement a
functionality that deals with non-�rst-class entities of the language.

This paper proposes methodology using an object-oriented meta-level technique in designing of
an extensible language for distributed computing. To demonstrate the use of this methodology, we
present Open C++, which is a C++ [23] variant including a simple metaobject protocol (MOP) [10].
In Open C++ the implementation of a method call (or in the object-oriented terminology, message
passing) is made open-ended by that MOP. To obtain a new functionality that �ts the application,
the programmer can easily extend the implementation within Open C++ itself. Performance
overheads are one of major issues in meta-level techniques, but they are not critical in domains
such as distributed computing, which Open C++ deals with. The seriousness of the overheads
depends on the inherent cost of functionalities achieved with the meta-level technique. Since the
overhead of Open C++ is negligible in comparison with the implemented functionalities, we believe
that our approach is | like the library-program approach, which is useful in spite of its relative
slowness | applicable to actual problems.

As with other systems using meta-level techniques, an extension of Open C++ is described
in meta code (meta-level program). Although meta code is usually written only by a system
specialist because MOP would be often complicated and extension was not frequent, we expect
normal programmers (who are not \wizards") to write meta code in Open C++ whenever a new
functionality is required for their applications. The Open C++ MOP is therefore designed to
provide an abstraction that encapsulates implementation details unnecessary to the extension of a
method call. To facilitate extension by normal programmers, this paper also provides a framework,
called Object Communities, that includes some basic functionalities for extending a method call
for distributed computing. With this framework, normal programmers can easily obtain various
functionalities for distributed computing on top of Open C++.

2 Open C++: A Simple MOP for C++

In most imperative languages for distributed computing, procedure calls (or in the object-oriented
terminology, method calls) are extended to support remote communication across a network. Those
extended method calls provide not only a functionality invoking a procedure (or a method) at a
remote machine, but also a functionality synchronizing multiple threads of control. In Ada [26]
and Concurrent C [5], for example, a statement syntactically similar to a procedure call is used
for executing a rendezvous, and a procedure call is extended to block the sender thread until the
receiver is ready. In ConcurrentSmalltalk [28], a method call of Smalltalk-80 [6] is extended to
be synchronous or asynchronous: an asynchronous method call lets a sender thread continue its
execution without blocking, whereas a synchronous method call blocks the sender thread until the
receiver thread �nishes a requested task.

By using a meta-level or so-called re
ection technique [21], Open C++ o�ers normal program-
mers the ability to extend a method call. Normal programmers can modify the implementation of
a method call within a user program to obtain various functionalities for remote communication.

2

The implementation of a method call is exposed to programmers as a metaobject [15], which is
an abstract model of that implementation and conceals implementation details unnecessary to the
extension. A metaobject is almost the same as a normal object, but its behavior corresponds to
the actual execution of the method call. An object at the base level has its metaobject at the meta
level, and the execution of its methods is controlled by the metaobject. If a method of the object
is invoked, the speci�c method of the metaobject, instead of a default implementation embedded
in the compiler, is used to execute the invoked method. Since a metaobject is de�ned in C++,
the programmer can alter the implementation of a method call by de�ning another metaobject and
then substituting it. Our approach does not require rebuilding the compiler but is done within a
user program.

2.1 Base-Level Directives

Open C++ provides a very simple MOP (metaobject protocol�) to make a method call extensible.
The objects controlled by metaobjects are called re
ective objects. Because control by a metaobject
imposes some performance and memory overhead in Open C++, the programmer can specify
whether or not an object is re
ective. A nonre
ective object is compiled to be a normal C++
object, which has no metaobject, so that it is executed without overhead. To distinguish between
re
ective and nonre
ective objects, a re
ective object is identi�ed by a di�erent class name. If the
class of an object that may be re
ective is X, then a re
ective object is refl X and a nonre
ective
object is still X. In the current implementation, the class refl X is a subclass of X.

To create a re
ective object, the class of the object and its metaobject must be declared with
special directives, which are C++ comments that start with //MOP. Note that even if a program
includes the directives of Open C++, that program is still a valid C++ program. The declaration
of a re
ective object takes the form

//MOP reflect class X : M;

This declaration means that an object of the class refl X is a re
ective object controlled by a
metaobject of the class M. Note that it never means that the classes X or refl X are subclasses of M.
The class M is a normal C++ class except that it must inherit from the class MetaObj. To extend
its implementation of a method call, a metaobject can be a re
ective object that is controlled by a
meta-metaobject. Open C++ allows such an ascending tower of metaobjects.

The methods of a re
ective object are divided into two groups, depending on whether the
invocation of the method is controlled by its metaobject. The methods controlled by the metaobject
are called reflect methods, and although reflect methods are invoked in an extended manner,
the other methods are invoked according to the plain C++ method call semantics. The following
is an example of specifying a reflect method.

class X {
public:

X();
//MOP reflect:

int func(int);

�A metaobject protocol is a meta-protocol organized using object-oriented techniques. Here a meta-protocol is a
protocol about the behavior and implementation of another protocol, such as interface and functionality.

3

private:
int p;

};

The methods following the directive \//MOP reflect:" are speci�ed as reflect methods. Here,
for example, func() is a reflectmethod. Such methods may have a category name to enable their
metaobject to recognize a role of the methods. A metaobject may alter the execution of a method
call according to the category name. Consider the following example: The method update() has
a category name \write".

class Y {
public:

...
//MOP reflect(write):

int update(int);

//MOP reflect(metamethod):
void Meta_operation();
...

The category name \metamethod" has a special meaning: it is used to call meta-methods of
a metaobject from the base level across the boundary of the levels. Calling a reflect method in
this category is regarded as calling a meta-method that has the same method name. The reflect
methods having the category name \metamethod" themselves are never executed.

2.2 Metaobject Protocol

When a reflect method is called, its execution is controlled by its metaobject. A metaobject is
de�ned in C++, and its class must inherit from the base class MetaObj, which mainly de�nes the
following two methods.

� void Meta MethodCall(Id method, Id category, ArgPac& args,

ArgPac& reply);

This method implements a method call at the base level. It is invoked if a reflect method
is called.

� void Meta HandleMethodCall(Id method, ArgPac& args,

ArgPac& reply);

This method is used to actually execute a reflect method.

To alter the implementation of a method call, the programmer de�nes a subclass of MetaObj in
which those methods are rede�ned so that the metaobject acts in the intended way.

Suppose that a reflect method f() is called. If the method f() is called, then the method
Meta MethodCall() is instead invoked at the meta level. The �rst argument of the method
Meta MethodCall() is bound to the integer identi�er of the called method f() (the type Id rep-
resents integers), and the second argument represents the category name of the method f(). The
actual arguments of the method call to f() are passed as the third argument, args. Note that
within a metaobject, the actual argument list of a method call is a �rst-class entity because the

4

third argument, args, is a normal C++ object whose class is ArgPac. The argument args has the
same interface as a stack so that the programmer can access any actual argument stored in args.
The programmer can also transfer the argument args to another metaobject that may reside on a
di�erent machine. Converting the actual arguments to an ArgPac-class object corresponds to the
reifying process, which is impossible in C++ alone without support of the Open C++ compiler.

The method Meta MethodCall() carries out certain computation and stores the result into the
fourth argument, reply. The stored result is returned as a return value to the caller that calls the
reflect method f(). The method Meta MethodCall() usually uses the method Meta Handle-

MethodCall() to compute the result value. This method takes a method identi�er and an actual
argument list, and it returns the result value of the speci�ed method. This method allows any
reflect method to be executed at any time. In the example above, the metaobject can execute
another reflect method as well as f() to compute the result value.

To illustrate the Open C++ MOP, consider a simple example in which this metaobject prints
a message before executing a reflect method called at the base level:

class VerboseMetaObj : public MetaObj {
public:

void Meta_MethodCall(Id method, Id category,
ArgPac& args, ArgPac& reply){

printf("***reflect method %s() was called.\n",
Meta_GetMethodName(method));

Meta_HandleMethodCall(method, args, reply);
};

};

If a metaobject of the class VerboseMetaObj is speci�ed, a message is printed on the console every
time a reflect method is called. The method Meta MethodCall() speci�es that this metaobject
prints the name of the called method before actually executing that method. Note that if we
eliminate the line "printf(...);" from this method, the implementation of a method call by
this metaobject becomes the same as the implementation in plain C++. Figure 1 shows how a
metaobject of the class VerboseMetaObj controls a method call. The metaobject controls an object
of the class refl X (as previously shown, a re
ective object of the class X). When a reflectmethod
func() of that object is called, the metaobject traps that method call and executes the method
func() according to the method Meta MethodCall().

Converting the actual arguments to an ArgPac-class object is similar to the marshal-
ing/unmarshaling process in remote procedure calls. In the current implementation, the class
refl X (which the Open C++ compiler generates) rede�nes a reflect method so that the method
carries out such conversion and then invokes the method Meta MethodCall() of its metaobject.
The current Open C++ compiler converts some atomic types (integers, pointers, etc.) implicitly
but does not class types (i.e., objects). The class types that can be an argument of a reflect

method must have some speci�c methods for the conversion. A similar limitation also appears in
the marshaling/unmarshaling process because the e�ciency of converting complex data, such as an
object, often depends on the program semantics. Such conversion should be under programmer's
control [8]. Open C++, however, provides a convenient library to implement the methods for the
conversion, and it also provides some prede�ned classes that facilitate to use a character string
etc. as an argument of a reflect method. Thereby, the limitation on argument types of reflect

5

object (refl_X)

int func() {
 :
}

metaobject (VerboseMetaObj)

void Meta_MethodCall() {
 printf(...);
 Meta_HandleMethodCall();
}

Call

Trap

Return

Meta-level

Base-level

1

2 34

Figure 1: Metaobject protocol of Open C++

methods is not awkward.

2.3 Why Meta? Pros and Cons

Open C++ does not expose the implementation of a method call directly, but through an ab-
stract interface. Although the original implementation of a method call, which is embedded in the
compiler, is described in assembly code, the programmer who attempts to extend the method call
describes a new implementation of C++ methods such as Meta MethodCall() instead of assembly
code. Because of the description through the abstract interface, the programmer need not consider
such details of the implementation as a stack image and the number of arguments. The programmer
can thus concentrate on matters strongly relevant to the extension.

This feature of Open C++ is due to the meta-level technique that Open C++ uses. When a
method of an object is invoked, the computation of the method call is rei�ed to be entities available
in a C++ program, and operations on these entities are re
ected in the actual computation. This
is a di�erence from \pseudo-open" systems, which directly expose their internal structure to be
extensible. Smalltalk-80, for example, provides the whole source code of its runtime system. Thus
in a sense, it is an open-ended system because user programmers can freely modify classes of kernel
objects to extend the system behavior. This feature of Smalltalk-80 may be a kind of re
ectiony.
Such modi�cation of kernel objects, however, can easily lead the system into collapse because the
programmer deals with the complicated kernel code directly, without an abstract interface.

On the other hand, the reifying process implies that the performance of Open C++ degenerates.
The cost of reifying and re
ecting is not negligible compared with the original implementation fully
described in assembly code. This is because the reifying process bridges the wide gap between
the assembly level and the C++ level. The higher the abstract interface Open C++ provides for
extension, the bigger the performance degeneration of the reifying process will be. This degenera-

yPeter Deutsch pointed this out at the BOF session in the '92 workshop on re
ection and meta-level architecture.

6

tion is negligible, however, when Open C++ is used for distributed computing. The method call
extended for distributed computing is so slow that the performance degeneration becomes relatively
insigni�cant. This issue is discussed in detail in Section 5.

Another bene�t of Open C++ is that meta code de�nes the extension independently of each
object so that meta code has high reusability. The same meta code can be used to extend method
calls to di�erent objects. Because meta code is organized according to the metaobject protocol,
furthermore, part of it is also reusable by class inheritance.

Open C++ improves the expressive power of a class library, which is also a technique for
supporting various functionalities within a single language. If a functionality like remote method
calls is implemented solely by means of class libraries, the translation of an argument list into
a network message becomes responsibility to the programmer. This is because the class library
alone cannot deal with any entities except these available at the base level, and an argument list
is available not at the base level but at the meta level. On the other hand, Open C++ enables a
class library to deal with an entity available at the meta level through a metaobject. For example,
it can use a metaobject for transferring an argument list to a di�erent machine and can execute a
remote method.

3 Object Communities | An Additional MOP for Distributed

Computing

Because a method call is a good basis of functionalities for distributed computing, various func-
tionalities can be implemented on top of Open C++. Most imperative languages include a method
call statement, and it has been used to implement a lot of existing functionalities for distributed
computing. A method call can be extended to support not only a remote method call but also
asynchronous message passing and message broadcasting. It can also be extended to be a synchro-
nization mechanism such as a rendezvous or a distributed semaphore.

To obtain a functionality suitable for the application, normal programmers should themselves
describe meta code to extend a method call. Although previous systems usually expected meta code
to be written only by a specialist, the simple MOP of Open C++ makes meta programming possible
for programmers with little knowledge as well as for specialists. The MOP of Open C++, however,
does not in itself support distributed computing; it only provides a platform on top of which a
functionality for distributed computing is implemented. This section proposes a framework, called
Object Communities, that facilitates to implement such a functionality on top of Open C++. This
framework is a class library of metaobjects and includes facilities that are commonly used to extend
a method call. Object Communities add a layered protocol onto the MOP of Open C++. It provides
the classes of metaobjects that implement some typical functionalities for distributed computing
so that programmers can obtain functionalities tailored to their applications by rede�ning some
methods of those classes.

3.1 Background Problem

Object Communities are designed to be a framework for implementing various application-speci�c
functionalities for distributed computing, such as distributed shared data, distributed transactions,

7

Process

Process

Processcommunication

method call

Meta Level

Base Level

metaobject

object

object community

Figure 2: An object community

remote procedure calls. Such a frameworkmust provide a facility managing computation distributed
to multiple processes on di�erent machines. A simple client-server framework based on remote
procedure calls is not su�cient as such a framework because although it can request computation
to another process, it cannot synchronize computation between processes.

The simple client-server framework, for example, cannot in an easily understandable way im-
plement the functionality required by groupware[4] (or multiuser applications), which supports
collaborative work by multiple users. The essential feature of groupware is that an application
program consists of multiple autonomous processes that are responsible for interaction with each
user. Those processes interfere with each other because the users manipulate shared entities, such
as shared documents and pictures, and their actions are therefore restricted by the actions of other
users. The processes may also notify each other when shared entities are updated and they can
request computation, such as redrawing the displays, in order to keep consistent images of the enti-
ties on the displays. To do these things, the application needs a functionality that makes it possible
to block the execution of other processes as well as to request computation to other processes.

3.2 Overview of Object Communities

The fundamental functionality of Object Communities is the management of a group of objects
distributed in di�erent machines. Such a group is called an object community (Figure 2). We
assume that each object belongs to a single process that has its own address space separated from
others and communicates with other processes across a network. A process is invoked explicitly by
the user, and it performs cooperatively with other processes in the same application.

Each object of an object community acts in a manner that depends on behavior of other

8

objects of that object community. The method calls to the objects are executed cooperatively by
the metaobjects so that the objects provide a certain functionality for distributed computing. Note
that although a group of objects as a whole provides some functionality, the de�nition of the objects
does not include any distributed concepts: these appear only in the de�nition of the metaobjects.
The functionality provided is implemented at the meta level, and the base-level programmer has
only to know how a method call is extended at the base level. Object Communities provide a
clear separation between distributed computation and the substantial computation executed in the
application.

In Object Communities, a metaobject has the following additional abilities.

� Concurrency Control . A metaobject controls the internal concurrency of its object. It can
ignore and delay execution of a called method of the object until some condition is satis�ed. A
metaobject can also execute multiple methods of its object concurrently. And a metaobject
can execute a method of its object when other metaobjects request that the method be
executed.

� Communication. A metaobject has two means of communicating with other metaobjects of
the same object community: a remote method call and message broadcasting. A metaobject
can call a remote method of other metaobjects. This is done in a manner similar to that
of a local method call. The caller metaobject is blocked until a reply is returned from the
called object. A metaobject can also send a message to all metaobjects of the same object
community. Because broadcast messages are serialized by the underlying system, all metaob-
jects receive the messages in the same order. A broadcast message is also delivered to the
metaobject that sent the message.

Although a metaobject controls the internal concurrency of its object, there is with few ex-
ceptions no internal concurrency of the metaobject by default. The methods of a metaobject are
executed sequentially, so the behavior of a metaobject is easily understandable. If internal concur-
rency of a metaobject is necessary, it must be controlled by an explicitly speci�ed meta-metaobject.

3.3 MOP of Object Communities

To append the Concurrency Control and Communication abilities, Object Communities provide the
class OcCoreMetaObj, which is a subclass of MetaObj, and the other classes of metaobjects that
implement functionalities based on Object Communities must inherit from this subclass.

The class OcCoreMetaObj de�nes some methods for manipulating an object community, for
network communication, for controlling concurrency, and so on. The following methods are to
manipulate an object community.

� Meta CreateOc(...) creates an object community.

� Meta DestroyOc(...) destroys an existing object community.

� Meta Join(...) lets an object join a speci�ed object community.

� Meta Leave(...) lets an object leave a speci�ed object community.

9

An object community is treated if it were a communication channel. An object can join or leave
an object community at any time, but the object community remains even if no object belongs to
it. It exists until it is destroyed explicitly. To give initial information to a metaobject that joins an
object community, the underlying system holds an initializing message for each object community.
This message, which can be dynamically updated by a metaobject, is passed to a metaobject when
its object joins to an object community.

The class OcCoreMetaObj de�nes three methods for communication with other metaobjects.

� Meta EventNotify(...) broadcasts a message to the other metaobjects of the same object
community.

� Meta Query(...) calls a method of other metaobjects in a manner like that of the remote
procedure call. The metaobject is blocked until a reply message arrives.

� Meta WaitForEvent(...) blocks a metaobject until it is ready to receive a broadcast mes-
sage. A metaobject can use this method to wait for a message broadcast by itself.

A message sent with the �rst two methods must be a pair consisting of an method identi�er (Id) and
an actual argument list (ArgPac). By sending a message, a metaobject requests other metaobjects
to execute a method of their object so that the methods are executed cooperatively.

The behavior of a metaobject receiving a message is de�ned by the following methods. The
class OcCoreMetaObj only declares these methods; their bodies are de�ned in its subclasses to alter
the behavior of each metaobject.

� Meta EventCallbackBody(...) is executed when a broadcast message is received.

� Meta SelfEventCallbackBody(...) is executed when a broadcast message that the metaob-
ject itself sent is received.

� Meta ReplyQueryBody(...) is a method exported to other metaobjects. This method can
be called by other metaobjects with the method Meta Query().

Although basically there is no internal concurrency of a metaobject, these three methods may
be executed concurrently when the metaobject is blocked by either the method Meta Query() or
Meta WaitForEvent(). This exception is necessary to prevent a deadlock.

The current implementation of Object Communities does not provide a preemptive sched-
uler. The programmer must therefore voluntarily cause a context switch at short intervals. The
class OcCoreMetaObj de�nes methods like WakeupTaskSv() and RecvMessage() to cause a con-
text switch. Note that implementing a preemptive scheduler is possible, and that a preemptive
scheduler can, in fact, be obtained if a timer-signal handler is available. The reason that a non-
preemptive scheduler is selected is to prevent the internal concurrency of a metaobject that has no
meta-metaobject. The methods of a metaobject are executed atomically; they are not preempted.

4 Examples of Method-Call Extension

Many functionalities for distributed computing can be implemented as a group of objects on dif-
ferent machines. Since Object Communities provide the ability to manage a group of objects,

10

MetaObj

OcCoreMetaObj

AbsOcMetaObj

QuickOcMetaObj

OcMetaObj

NullMetaObj

OcShareMetaObj

intermediate class

OcLockMetaObj

refl_RpcMetaObj

OcRemoteMetaObj

Figure 3: Class hierarchy of metaobjects

such a functionality is implemented on top of Open C++ by de�ning a subclass of the class
OcCoreMetaObj. In fact, Object Communities already include some subclasses of OcCoreMetaObj,
which implement various functionalities for distributed computing. Figure 3 illustrates the class
hierarchy of metaobjects provided by Object Communities in default.

The class NullMetaObj is irrelevant to Object Communities: it implements a method call that
is done in the original manner of C++ method calls. The other subclasses correspond to various
functionalities. They implement distributed shared data, transactions, and remote procedure calls.
They also implement remote object pointers with which an object can transparently call a method
of an object on a di�erent machine. The implementation of remote object pointers exploits other
programming techniques such as \smart pointers" [23] so that remote object pointers are naturally
available in C++. Furthermore, another subclass implements persistent objects by using the ability
of Open C++ to deal with instance variables of an object by the metaobject. Because of space
limitation, the details of this ability are not given here; we will present them in another paper.

Here we explain two of the subclasses of Object Communities: distributed shared data and
transactions. Distributed shared data are implemented by the class OcMetaObj. The shared data
are replicated and held by the objects that belong to the same object community. The metaobjects
control those objects to hold consistent values of the shared data. Suppose that the shared data is
an integer and is represented as a variable p of the class SharedData at the base level. To update
the variable p, the class SharedData has a method Update(). If the variable p is updated, this
method redraws a graphical display according to the new value of p:

class SharedData {
...

public:
//MOP reflect:

void Update(int new_p) { p = new_p; RedrawDisplay(); }
private:

void RedrawDisplay();
int p; // inaccessible from the outside of the object

};

//MOP reflect class SharedData : OcMetaObj;

11

An object of the class SharedData can be a re
ective object, and the class of the metaobject is
OcMetaObj. The method Update() is a reflectmethod. If an object of the class refl SharedData

is created, the metaobject makes the object join the speci�ed object community. Then the variable
p of the object is maintained by the metaobject to hold the same value as the values of p of the
other objects of the same object community. If the method Update() is called, the metaobject
requests the other metaobjects to use the same argument new p, and execute the same method of
their objects. Thus if the method Update() of an object of the object community is called, then
the methods of all the objects are executed and the values of p are updated keeping consistency.
Note that the de�nition of the class SharedData does not include any code concerning distributed
computation; such code is in the de�nition of the metaobject. Methods of the metaobject are
de�ned as follows:

void OcMetaObj::Meta_MethodCall(Id method_id, Id category,
ArgPac& args, ArgPac& reply){

// notifying others of a method call
Id event = Meta_EventNotify(method_id, args);
// waiting until that noti�cation is serialized
Meta_WaitForEvent(event, args);
// executing the called method actually
Meta_HandleMethodCall(method_id, args, reply);

}

void OcMetaObj::Meta_EventCallbackBody(Id method_id,
ArgPac& args, ArgPac& reply){

// if other metaobjects report a method call,
// the metaobject executes the called method.
Meta_HandleMethodCall(method_id, args, reply);

}

The consistency between the values of p is guaranteed even if two metaobjects attempt to execute
the method Update(). This is because the noti�cations by those metaobjects are serialized so that
every metaobject receives the noti�cations in the same order.

Since there is no restriction in terms of the de�nition of the method Update(), the program-
mer can de�ne any action that is executed whenever the shared data are updated. This kind of
processing cannot be adequately treated by other mechanisms for distributed shared data, such
as distributed shared memory [13], because they do not support a functionality that invokes user-
de�ned actions on each machine that shares the data.

Although in the example above other metaobjects are noti�ed of a method call immediately,
some mechanisms for distributed shared data improve performance by using an algorithm in which
the noti�cation is delayed [24]. Such an algorithm is also available in Open C++ if the programmer
de�nes a subclass of OcMetaObj to implement it. When implementing such an algorithm, it is
necessary to distinguish methods that modify the shared data from methods that simply read the
data. Category names of reflect methods are useful for this. For example,

class SharedData2 {
...

public:
//MOP reflect(write):

void Update(int new_p) { p = new_p; RedrawDisplay(); }

12

//MOP reflect(read):
int Get() { return p; }
...

};

The category names let the metaobject identify the method Update() as a \write" method, and
the method Get() as a \read" one.

Next we show another subclass of Object Communities. The class OcLockMetaObj of metaob-
jects implements atomic transactions. Although the concept of atomic transactions includes recov-
erability (a transaction causes no side-e�ect if it fails), the class OcLockMetaObj does not support
recoverability. It only guarantees atomicity; the sequence of the operations in a transaction is
executed continuously. The method Meta MethodCall() of the class OcLockMetaObj is as follows.

void OcLockMetaObj::Meta_MethodCall(Id method_id, Id category,
ArgPac& args, ArgPac& reply){

while(locked)
Meta_WaitForEvent(); // block until a lock is released.

// the following is the same as the method of OcMetaObj
Id event = Meta_EventNotify(method_id, args);
Meta_WaitForEvent(event, args);
Meta_HandleMethodCall(method_id, args, reply);

}

The metaobject of the class OcLockMetaObj delays the method execution while the execution
is locked. To begin a transaction, the programmer calls a method of the metaobject, which locks
method execution with a broadcast message. Receiving the message, the other metaobjects of
the same object community stop method execution until that metaobject releases the lock. The
variable lock indicates whether execution is locked or unlocked. It is maintained by messages
between metaobjects.

5 Overheads due to having a Meta Level

E�cient implementation of meta-level techniques is a major research topic. Because execution of
a re
ective object in Open C++ is partly interpreted by a metaobject, its execution is slower than
that of a nonre
ective object. This section brie
y shows the result of measurements in terms of
the execution speed.

The current Open C++ compiler is a preprocessor of the C++ compiler. Because no modi�ca-
tion is added to the C++ compiler, an Open C++ program is translated into a plain C++ code.
Calling a reflect method thus imposes some overhead that by some standards is not small.z We
show the result of performance measurements of method calls.

Table 1 lists latency time for three kinds of null method calls. These values were measured on
a SPARC station 2 (SunOS 4.1.1), and the compiler was Sun C++ 2.1. The latency was measured
for di�erent numbers of arguments. The type of arguments was int except for the data of the
rightmost column, for which the type was double. Although the 0-argument method does not

zThe initial version of the Open C++ compiler showed that a reflect method call was 100 times slower than a
virtual method call of C++.

13

Table 1: Average Latency (�sec.) of a null method call

number of arguments 0 1 5 5� double

C++ function 0.3 0.6 1.3 2.1

C++ virtual method 0.8 1.0 1.8 2.2

reflect method 1.8 6.3 13.8 21.7

reflect/virtual ratio 2.3 6.3 7.7 9.9

SPARC 40 MHz (28.5 MIPS) and Sun C++ 2.1

return anything, the other methods return an int value. A method that takes 5 double arguments
returns a double value. The three kinds of null method calls are a C++ function, a virtual

method, and a reflect method. The �rst two are supported by both C++ and Open C++,
whereas the last is available only in Open C++. A C++ function call is to call a method of an
object pointed to by a variable. This takes a form like ptr->func(). A virtual method call is to
call a method of an object whose class is unknown at compile time; a method name is dynamically
bound to a method body. A reflect method call is one controlled by a metaobject of the class
NullMetaObj, which implements a method call so that its behavior is the same as that of a C++
function call.

The last line of the table shows the ratio of the latency of a reflect method call to that of
a virtual method call. This ratio increases with the number of arguments because the overhead
of a reflect method call is mainly due to the reifying process of the argument list of the method
call. Arguments are copied to an ArgPac class object separately when the reflect method is
called. The overhead for this copying increases in proportion to the number of arguments. Since
the 0-argument method takes no argument, its overhead is smaller than that of the other methods.

The result of these measurements shows that a reflect method call is 6 to 8 times slower than
a virtual method call. Although this overhead seems important, it is actually negligible if Open
C++ is used for distributed computing, since the network latency time is between several hundred
microseconds and several milliseconds. The overhead is also reduced by a proper designing of the
applications. In carefully designed applications, distributed computation is localized in a small
number of objects, which would be re
ective, and the other objects are executed without overhead
since Open C++ allows to specify whether or not an object is re
ective. We believe that meta-level
techniques are already applicable to practical programming if the programmer selects a domain in
which the overhead is negligible in comparison with the overhead for performance of a functionality
implemented with the meta-level technique.

Furthermore, from the viewpoint of distributed computing, the overhead of Open C++ is due
to the cost of the marshaling/unmarshaling process, in which transferred data are converted into a
network message. Because this process commonly appears in distributed computing, the overhead
of Open C++ is almost equivalent to that of other approaches such as Sun's RPC [25]. When Sun's
RPC library is used, each conversion of an int argument takes a few microseconds because that
library is a general one, and a few nested function calls are needed whenever a converting routine

14

(an XDR routine) is called.
If the increased overhead of a meta-level technique is limited to within a factor of 10, then the

advantage of that meta-level technique is worthwhile. In the concurrent language ABCL/R2 [17],
for example, the execution that involves a meta-level operation is 6 or 7 times slower than a normal
execution [16]. As in Open C++, the programmer can select whether or not an object is controlled
by a metaobject. As a result, ABCL/R2 improves the execution speed of a program by a meta-level
technique.

6 Related Work

C++ provides some meta-level operations. The macro set of handling a variable argument list
can be considered to provide a few restricted meta-level operations. It allows the programmer
to traverse an argument list whose length and element types are variable, as if the argument list
were a �rst-class entity. Operator overloading is also a meta-level operation because it enables the
replacement of prede�ned operators, such as + and ->, with user-de�ned procedures. No meta-
level information is available in a overloading procedure, however, because operator overloading is
not implemented by using the concept of re
ection.

The stub generator [2] of remote procedure calls, such as Sun's rpcgen [25], has a functionality
similar to that of the Open C++ compiler. It reads the description �le of a remote procedure and
then generates a stub routine, which is a utility routine for calling the remote procedure. Unlike
the Open C++ compiler, however, the stub generator does not expose the inside of a stub routine,
so the programmer cannot alter the implementation of a stub routine in a well-organized manner.
The FOG compiler [7] provides the ability of extending a generated code. It allows to use in C++
a fragmented object (FO), which is a distributed object. In the FOG compiler, the programmer
can specify a communication protocol of a remote procedure call.

Meta-level (or re
ection) techniques have been applied in various domains and they are still
an active area of research. CLOS MOP [10] is the �rst try to apply the meta-level techniques to
a practical language. It provides an extensible implementation of CLOS [22]: all speci�cations
of CLOS are modi�able. The mechanism for method lookup, for example, is extensible by a
metaobject. There are several re
ective language systems other than CLOS MOP. ABCL/R2
applies a meta-level technique to parallel computation, and RbCl [9] tries to minimize the run-time
kernel that is not extensible. AL1/D [18] provides multiple abstract models for each aspect of the
implementation, and this is e�ective when many aspects of the implementation are exposed. The
programmer can alter each aspect independently, without considering other aspects.

Meta-level techniques are also beginning to be used for commercial systems. The Meta-
Information-Protocol (MIP) [3] used in some commercial systems, is a mechanism for accessing
the type information of a C++ object at run time. It represents type information by a metaobject
so that typesafe downcast is available in C++. Because a metaobject in the MIP exposes internal
information but a change of the metaobject does not in
uence behavior of an object, the overheads
of the MIP is obviously small with respect to execution speed compared with Open C++. Meta-
level techniques are also used for developing systems other than languages, such as an operating
system and a window system. Apertos [27] is an operating system completely based on a meta-
level technique, and Silica [19] is a window system with which the programmer can alter how the

15

system draws an image on a window, how the relationship of windows is maintained, and so on.
The Choices operating system uses a meta-level technique to implement its kernel and subsystems
[14]. Using macros and programmer conventions, Choices exploits a meta-level technique within
the con�nes of plain C++.

Some researchers try to reduce the cost associated with having the meta level. CLOS MOP,
for example, has no costs beyond these of plain CLOS. This is achieved by careful protocol design
and by implementation devices in which, for example, calls to the meta-level functions are partially
evaluated. Because the execution mechanism of CLOS has inherent complexity and costs, the cost
due to the meta level can be recovered by those techniques. On the other hand, C++ is designed
so that the program is directly translated into e�cient assembly code. The C++ method call, for
example, is compiled into a few machine instructions. The techniques used for CLOS MOP are
therefore insu�cient to implement Open C++ MOP without overhead.

Anibus [20] and Intrigue [12] support \compile-time" MOPs to reduce the cost due to the meta
level. They are Lisp compilers that are extensible according to MOP. The \compile-time" MOPs
modify the compilers to compile a program in a di�erent scheme. Because a meta code replaces
an internal code of the compilers instead of a compiled code, this approach, like that of CLOS
MOP, does not generate overheads. In this approach, however, meta code must describe not how
an object behaves, but how the compiler generates compiled code that makes an object behave
according to the programmer's intention. Although this approach has no overhead, its meta code
is less straightforward than those in CLOS MOP and Open C++.

7 Conclusion

This paper described Open C++ in order to demonstrate a methodology for designing extensible
languages for distributed computing. Open C++ is designed on the basis of an object-oriented
meta-level (or re
ection) technique so that the implementation of a method call is made open-ended.
The programmer can alter the implementation of a method call according to a simple metaobject
protocol (MOP), and obtain on top of Open C++ a new language functionality for distributed
computing. Open C++ MOP is made so simple and easily understandable that programmers who
are not familiar with the meta system can implement a new functionality e�ortlessly on top of Open
C++. The MOP exposes the implementation of a method call with some abstraction. Open C++
also provides Object Communities, which is a framework that facilitates meta-level programming
for implementing a functionality for distributed computing.

Open C++ clearly separates distributed computation from the other computation that is more
substantial to the programmer. Computation concerning communication and synchronization no-
tions appears only at the meta level, and need not be considered by the programmer writing a
program at the base level. This feature of Open C++ makes a program more understandable and
easier to describe.

The overhead associated with Open C++ MOP is negligible when Open C++ is used for
distributed computing, since even though it is not small, it is negligible in comparison with network
latency time. How much performance the system using the MOP must achieve depends on the
operations controlled by the MOP. Although meta-level techniques are still di�cult to implement
e�ciently, they are already applicable to practical programming if the domain is selected properly.

16

Unlike CLOS MOP, Open C++ introduces a meta-level technique into a compiler-based lan-
guage. Because Open C++ must bridge an abstraction gap between C++ and an assembly lan-
guage, its design considered implementation issues that the design of CLOS MOP did not. It
restricts the extensible part of the language speci�cations in order to reduce the cost associated
with the meta level. The entities that the MOP rei�es are only those necessary for distributed
computing. To apply Open C++ in application domains such as parallel computing as well as
distributed computing, however, the overhead due to extensibility needs to be further reduced.

Acknowledgments

We thank Satoshi Matsuoka for his suggestions on clarifying and organizing this work. We also
thank Gregor Kiczales, Hidehiko Masuhara, and Frank Buschmann for their helpful comments on
earlier drafts of this paper.

References

[1] Bal, H. E., M. F. Kaashoek, and A. S. Tanenbaum, \Orca: A Language For Parallel Pro-
gramming of Distributed Systems," IEEE Trans. Softw. Eng., vol. 18, no. 3, pp. 190{205,
1992.

[2] Birrell, A. D. and B. J. Nelson, \Implementing Remote Procedure Calls," ACM Trans. Comp.

Syst., vol. 2, no. 1, pp. 39{59, 1984.

[3] Buschmann, F., K. Kiefer, F. Paulisch, and M. Stal, \The Meta-Information-Protocol: Run-
Time Type Information for C++," in Proc. of the Int'l Workshop on Re
ection and Meta-Level

Architecture (A. Yonezawa and B. C. Smith, eds.), pp. 82{87, 1992.

[4] Ellis, C., S. Gibbs, and G. Rein, \Groupware {Some Issues and Experiences," Commun. of the

ACM, vol. 34, no. 1, pp. 38{58, 1991.

[5] Gehani, N. and W. Roome, \Concurrent C," Software{Practice and Experience, vol. 16, no. 9,
pp. 821{844, 1986.

[6] Goldberg, A. and D. Robson, Smalltalk-80: The Language and Its Implementation. Addison-
Wesley, 1983.

[7] Gourhant, Y. and M. Shapiro, \FOG/C++: a Fragmented-Object Generator," in Proc. of

USENIX C++ Conference, pp. 63{74, 1990.

[8] Herlihy, M. and B. Liskov, \A Value Transmission Method for Abstract Data Types," ACM

Trans. Prog. Lang. Syst., vol. 4, no. 4, pp. 527{551, 1982.

[9] Ichisugi, Y., S. Matsuoka, and A. Yonezawa, \RbCl: A Re
ective Object-Oriented Concurrent
Language without a Run-time Kernel," in Proc. of the Int'l Workshop on Re
ection and Meta-

Level Architecture (A. Yonezawa and B. C. Smith, eds.), pp. 24{35, 1992.

17

[10] Kiczales, G., J. des Rivi�eres, and D. G. Bobrow, The Art of the Metaobject Protocol. The MIT
Press, 1991.

[11] Kiczales, G. and J. Lamping, \Issues in the Design and Speci�cation of Class Libraries," in
Proc. of ACM Conf. on Object-Oriented Programming Systems, Languages, and Applications,
pp. 435{451, 1992.

[12] Lamping, J., G. Kiczales, L. Rodriguez, and E. Ruf, \An Architecture for an Open Compiler,"
in Proc. of the Int'l Workshop on Re
ection and Meta-Level Architecture (A. Yonezawa and
B. C. Smith, eds.), pp. 95{106, 1992.

[13] Li, K., Shared Virtual Memory on Loosely Coupled Multiprocessors. PhD thesis, Dept. of
Computer Science, Yale Univ., 1986.

[14] Madany, P., P. Kougiouris, N. Islam, and R. H. Campbell, \Practical Examples of Rei�ca-
tion and Re
ection in C++," in Proc. of the Int'l Workshop on Re
ection and Meta-Level

Architecture (A. Yonezawa and B. C. Smith, eds.), pp. 76{81, 1992.

[15] Maes, P., \Concepts and Experiments in Computational Re
ection," in Proc. of ACM Conf.

on Object-Oriented Programming Systems, Languages, and Applications, pp. 147{155, 1987.

[16] Masuhara, H., S. Matsuoka, T. Watanabe, and A. Yonezawa, \Object-Oriented Concurrent
Re
ective Languages can be Implemented E�ciently," in Proc. of ACM Conf. on Object-

Oriented Programming Systems, Languages, and Applications, pp. 127{144, 1992.

[17] Matsuoka, S., T. Watanabe, and A. Yonezawa, \Hybrid Group Re
ective Architecture for
Object-Oriented Concurrent Re
ective Programming," in Proc. of European Conf. on Object-

Oriented Programming '91, no. 512 in LNCS, pp. 231{250, Springer-Verlag, 1991.

[18] Okamura, H., Y. Ishikawa, and M. Tokoro, \AL-1/D: A Distributed Programming System
with Multi-Model Re
ection Framework," in Proc. of the Int'l Workshop on Re
ection and

Meta-Level Architecture (A. Yonezawa and B. C. Smith, eds.), pp. 36{47, 1992.

[19] Rao, R., \Implementational Re
ection in Silica," in Proc. of European Conf. on Object-

Oriented Programming '91, no. 512 in LNCS, pp. 251{267, Springer-Verlag, 1991.

[20] Rodriguez Jr., L. H., \Coarse-Grained Parallelism Using Metaobject Protocols," Techincal
Report SSL-91-61, XEROX PARC, Palo Alto, CA, 1991.

[21] Smith, B. C., \Re
ection and Semantics in Lisp," in Proc. of ACM Symp. on Principles of

Programming Languages, pp. 23{35, 1984.

[22] Steele, G., Common Lisp: The Language. Digital Press, 2nd ed., 1990.

[23] Stroustrup, B., The C++ Programming Language. Addison-Wesley, 2nd ed., 1991.

[24] Stumm, M. and S. Zhou, \Algorithms Implementing Distributed Shared Memory," IEEE Com-

puter, vol. 23, no. 5, pp. 54{64, 1990.

18

[25] Sun Microsystems, Network Programming Guide. Sun Microsystems, Inc., 1990.

[26] U.S. Dept. of Defense, Reference Manual for the Ada Programming Language. ANSI/MIL-
STD-1815A, 1983.

[27] Yokote, Y., \The Apertos Re
ective Operating System: The Concept and Its Implemen-
tation," in Proc. of ACM Conf. on Object-Oriented Programming Systems, Languages, and

Applications, pp. 414{434, 1992.

[28] Yokote, Y. and M. Tokoro, \The Design and Implementation of ConcurrentSmalltalk," in
Proc. of ACM Conf. on Object-Oriented Programming Systems, Languages, and Applications,
pp. 331{340, 1986.

19

A Metaobject Protocol for C++

Shigeru Chiba

Xerox PARC & University of Tokyo

chiba@parc.xerox.com chiba@is.s.u-tokyo.ac.jp

Abstract

This paper presents a metaobject protocol (MOP)
for C++. This MOP was designed to bring the
power of meta-programming to C++ program-
mers. It avoids penalties on runtime performance
by adopting a new meta-architecture in which the
metaobjects control the compilation of programs
instead of being active during program execution.
This allows the MOP to be used to implement
libraries of e�cient, transparent language exten-
sions.

1 Introduction

A metaobject protocol (MOP) is an object-oriented

interface for programmers to customize the be-

havior and implementation of programming lan-

guages and other system software. The useful-

ness of this kind of customizability has been ar-

gued elsewhere[11, 9, 10], and interesting MOPs

have been included in languages such as Lisp[20],

ABCL[21], and, to a lesser degree, Smalltalk[6].

The goal of our work is to bring the power of meta-

programming to the more mainstream language

C++, while respecting their performance concerns

in that community.

This paper proposes a new MOP for C++, called

OpenC++ Version 2. Like previous MOPs, it al-

lows programmers to implement customized lan-

guage extensions such as persistent or distributed

objects, or customized compiler optimizations such

Appeared in OOPSLA'95 Proceedings pp.285{299
c
1995 Association of Computing Machinery. Permission to copy without fee all or part

of this material is granted provided that the copies are not made or distributed for direct

commercial advantage, the ACM copyright and the title of this publication and its date

appear, and notice is given that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee and/or speci�c permission.

as inlining of matrix arithmetic. These can be im-

plemented as libraries1 and then used repeatedly.

Unlike previous MOPs, our proposal incurs zero

runtime speed or space overhead compared to or-

dinary C++.

To make this possible, our MOP works by pro-

viding control over the compilation of programs

rather than over the runtime environment in which

they execute. Speci�cally, our MOP provides con-

trol over the compilation of the following key as-

pects of C++: class de�nition, member access, vir-

tual function invocation, and object creation. This

feature means that the design of our MOP is in-

herently e�cient, as opposed to MOPs, such as the

CLOS MOP, where only sophisticated implemen-

tation techniques enable e�cient execution.

Our MOP has been developed by a synthesis and

re-engineering of a number of ideas in this �eld: we

took our basic protocol structure from the CLOS

MOP [11], we took the basic structure of a compile-

time MOP from Anibus and Intrigue [18, 13], and

we took some ideas for the basic structure of a

MOP for C++ from the meta-information proto-

col (MIP) [2] and our previous work on Open C++

Version 1 [4].

This paper is a status report on the development

of OpenC++ Version 2. Our MOP has been pro-

totyped in Scheme and a number of examples are

running using the prototype. For simplicity, how-

ever, we use C++ notation in this paper. In the

rest of the paper, we �rst discuss what we want our

1We use the term library to mean a collection of reusable

code such as functions, data types, and constants, written

by the language users within the description capability of

the language.

MOP to support, then we present the basic archi-

tecture of the MOP, and we illustrate its suitability

for real-world programming.

2 What We Want to Enable

The motivation for our C++ MOP is to enable

programmers to easily write libraries that provide

language extensions transparently and e�ciently.

This section illustrates what we want to enable

with the MOP.

Suppose we want to implement persistent objects

as a C++ library. In terms of transparency, the

goal is to allow the library users to specify that

some of their classes should produce persistent ob-

jects simply by adding an annotation to ordinary

class de�nitions.

persistent class Node {

public:

Node* next;

double value;

};

The program that deals with persistent objects

should look like:

Node* get_next_of_next(Node* p)

{

Node* q = p->next;

return q->next;

}

The key point is that adding or removing the sim-

ple annotation persistent should be all that is

required to change this from de�ning persistent ob-

jects or transient ones.

Unfortunately, such a simple annotation is quite

di�cult to implement in C++. For example, one

way to try to do this in C++ is to develop a class

library that provides a class PersistentObject

from which other classes can inherit if they want to

be persistent. In such a scheme, the hope is that

the de�nition of the class Node would look like:

class Node : public PersistentObject {

public:

Node* next;

double value;

};

But, the inheritance mechanism does not provide

enough access to implement persistent objects by

itself; the library user will also have to edit their

programs to correctly use that functionality. To

implement persistence, references to persistent ob-

jects must be detected at runtime. If this is not

done in hardware, the software will need to be

edited to look something like:

Node* get_next_of_next(Node* p)

{

Node* q = (p->Load(), p->next);

return (q->Load(), q->next);

}

Because the class PersistentObject cannot

control its subclasses' member accesses, the li-

brary user will have to call the member func-

tion Load() before every access to the object.

Load() is a member function supplied by the class

PersistentObject to load objects from disk on

demand.

The situation may not appear so bad in this sim-

ple example, but tracking down and editing all such

accesses can be quite di�cult. The library imple-

mentor must describe the need for editing in a doc-

ument, and the user must carefully read and fol-

low those instructions. More importantly, chang-

ing code back and forth from persistent to transient

is extremely labor-intensive.

Our MOP provides the ability to implement a

persistent object library so that persistence can be

selected with only a simple edit to the class de�ni-

tion. It enables not only annotations for language

extensions but also ones for compiler optimizations.

From the pragmatic viewpoint, the design crite-

ria of such a MOP are high performance and ar-

bitrary customizability. For the former, the MOP

should not include any runtime overhead or pre-

clude optimization by the current C++ compiler.

For the latter, the MOP should provide the abil-

ity to implement common C++ extensions such as

persistent C++ or distributed C++.

(1)

 C++
compiler

 code
fragments

if OpenC++ code

OpenC++
source

metaobjects

C++
source

(2) (3)

Open C++
compiler

Figure 1: The Protocol Structure

3 The Basic Architecture

The basic architecture of the OpenC++ MOP is

similar to that of the CLOS MOP in that metaob-

jects represent language entities visible to the pro-

grammer. There are class metaobjects and func-

tion metaobjects. The behavior of the program is

controlled by those metaobjects.

3.1 Compile-time and Runtime

A distinguishing feature of the OpenC++ MOP as

compared to the CLOS MOP is that the OpenC++

MOP clearly separates the compile-time environ-

ment and the runtime environment. Ordinary ob-

jects exist only at runtime, and metaobjects exist

only at compile-time.2

Since the metaobjects exist only at compile-time,

the way they alter the behavior of the objects is by

controlling the compilation of the program. The

metaobjects appropriately translate top-level de�-

nitions of the program, and, if necessary, append

supplementary runtime functions, types, and data

to the translated code.

This means that our MOP inherently implies no

penalty in runtime space or speed. On the other

hand, in the CLOS MOP, key aspects of the ob-

2A simple programmer extension that we will show later

can allow some of the functionality of runtime metaobjects.

ject system are executed through runtime method

invocation of the metaobjects. The CLOS MOP

hence requires sophisticated implementation tricks

to achieve good runtime performance.

3.2 Basic Protocol Structure

The OpenC++ MOP controls source-to-source

translation from OpenC++ (extended C++) to

C++. First of all, the source code of the OpenC++

program is parsed and divided into top-level de�ni-

tions for classes and (member-)functions.3 Then a

metaobject is constructed for each such de�nition.

The metaobject then translates the top-level de�-

nition into appropriate ordinary C++ (or C) code.

The translated code is then collected and assem-

bled into contiguous source code. Figure 1 shows

this protocol structure.

To see how this works, we now walk through an

example of how the MOP compiles a small pro-

gram, speci�cally the two de�nitions shown below:

class Point {

public:

void MoveTo(int, int);

int x, y;

};

3The de�nition of global variables is also a top-level def-

inition. But in this paper, we ignore it for simplicity.

CompileSelf()
ComputeMetaclassName()

CompileMemberFunctionCall()
CompileReadDataMember()
CompileWriteDateMember()

CompileNew()

Class Metaobject:Function Metaobject:
CompileSelf()

CompileBody()

intra−object function invocation
inter−object function invocation

CompileVarDeclaration()

Figure 2: Overview of the Protocol

void Point::MoveTo(int new_x,

int new_y)

{

x = new_x; y = new_y;

}

In phase 1, after parsing, the MOP constructs

two metaobjects, one for the class Point and one

for the member function MoveTo(). By default,

the class metaobject is an instance of the class

Class. It contains information given by the class

de�nition such as its name, base classes, members,

etc. The function metaobject is an instance of the

class Function by default. It contains similar in-

formation from the function de�nition, such as its

name, parameters, and the parse tree of the func-

tion body. Since this is a member function, it also

has a pointer to the class metaobject that supplies

this member function.

In phase 2, the metaobjects are called upon to

generate appropriate code fragments to substitute

for the original code fragments of their de�nitions.

To do that, the member function CompileSelf()

of each metaobject is invoked.

In response to CompileSelf(), class metaob-

jects generate an ordinary C++ de�nition | in the

form of parse tree | for their class. The default is

just to emit the original de�nition. Similarly, func-

tion metaobjects generate an ordinary C++ de�-

nition | also in the form of a parse tree. Again,

the default is to just emit the original de�nition.

To translate the function body, function metaob-

jects follow a layered sub-protocol, walking the

parse tree of the body step by step, asking appro-

priate class metaobjects to translate each fragment

of the body. This is done by passing the parse tree

of the code fragment to the class metaobject, and

getting the parse tree of the translated fragment

back. This layered protocol is shown in Figure 2.

Note that since the function metaobject compiles

the function body by making queries of the class

metaobjects, the compilation of the program is

mainly the responsibility of the class metaobjects.

The default action of the class metaobjects is to

just return the given parse tree without any trans-

lation.

In the example of MoveTo(), since x is a data

member of the class Point, it means that when

x=new x is encountered during the tree traver-

sal, the function metaobject invokes the member

function CompileWriteDataMember() of the class

metaobject Point. That member function trans-

lates the parse tree that corresponds to the ex-

pression x=new x, and returns the translated parse

tree. By default, the translated expression is also

x=new x. The original subtree is then replaced with

the returned subtree. Similarly, if the function

metaobject encounters a variable declaration such

as \Point* p", it invokes the member function

CompileVarDeclaration() of the class metaob-

ject Point to translate the subtree of the variable

declaration.

In phase 3, the parse trees generated by the in-

dividual metaobjects are then collected and con-

verted into C++ source text. This source text is

then compiled by the C++ compiler. Since the

MOP is implemented as a separate preprocessor of

the C++ compiler, the converted C++ text is in

the form of character �le. So the C++ compiler

must parse the contents of the �le again. We could

avoid this overhead, however, if we integrated the

MOP into the C++ compiler.

A conceptually signi�cant point is that the meta-

objects are permitted to generate arbitrary code

fragments, so the generated fragments may contain

OpenC++ code. If that happens, the translation

is recursively applied to each generated fragment

until it becomes ordinary C++ code. Phases 1 and

2 are repeated on each fragment so that all code

fragments become C++ code before starting phase

3.

3.3 A Simple Programmer Customiza-

tion

Now we show a simple example of what program-

mers can do with this MOP. Suppose we want to

specialize class metaobjects to implement a mech-

anism for getting class information such as data

member names at runtime. In essence, the idea is

to implement a subset of the functionality of the

Meta-Information Protocol[2]. At runtime, for ev-

ery class, this mechanism will automatically and

transparently make available a record that contains

the class information.

Any C++ customization implemented as a

MOP-based library is usually divided into two

parts: compile-time code and runtime code. The

former is a class library of metaobjects, and the

latter is a set of runtime support routines. Given

the two, the programmer can then write a user pro-

gram that simply uses the C++ customization (see

Figure 3).

First we show the user program the library user

wants to be able to write:

Library

User Program

 class
ClassInfoClass

compile−time code runtime code

 struct
ClassInfo

class
Point

Figure 3: MOP-based library

metaclass Point : ClassInfoClass;

class Point { ... };

...

int i = 0;

char* name;

while((name=ClassDataMemberNames(Point)

[i++]) != NULL)

printf("Point's data member: %s\n",

name);

This program prints the names of the data mem-

bers of the class Point. The �rst statement speci-

�es the metaclass of the class Point. It declares

that the class metaobject for Point should be

an instance of the class ClassInfoClass. This

annotation directs the MOP to produce runtime

class information for the class Point. The user

can then access it through the runtime func-

tions supplied by the library. In the code above,

ClassDataMemberNames() is one such runtime ac-

cess function.

To enable such a user program, the library im-

plementor must write the appropriate compile-time

and runtime library, as shown below. First, we

show the runtime code. It includes the de�nition of

ClassInfo, a record type for class information such

as the class name and the data members. It also

includes the function ClassDataMemberNames() to

access ClassInfo.4

struct ClassInfo {

char* class_name;

char** data_member_names;

};

4That function is implemented as a macro because C++

does not deal with a symbol name as �rst-class data. ## is

a macro operator for concatenating two symbol names.

#define ClassDataMemberNames(name)\

((info_##name).data_member_names)

...

Next, we show the compile-time code. Its ob-

jective is to control the compilation so that the

runtime support routines work appropriately with

the user's program. In this example, compilation

of the de�nition of the class Point must translate

it into this:

class Point { ... }; // not changed
ClassInfo info_Point = {

"Point",

{"x", "y", NULL}

};

The second line makes the record info Point,

which contains the class information of Point. To

do such translation, we de�ne a subclass of Class

for the compile-time library.

class ClassInfoClass : public Class {

public:

Expression CompileSelf();

};

Expression

ClassInfoClass::CompileSelf()

{

Expression code = MakeParseTree(

"ClassInfo info_%s = {\"%s\", {",

name, name);

for(int i = 0;

i < n_data_members;

++i)

code->Append(

MakeParseTree(

"\"%s\",",

data_member_names[i]));

code->Append(

MakeParseTree("NULL}};"));

return Class::CompileSelf()

->Append(code);

}

The member function CompileSelf() simply pro-

duces a parse tree that corresponds to a C++

statement that makes the record data such as

info Point. It �rst constructs the statement

in the form of a character string, then converts

it to a parse tree by using a utility function

MakeParseTree(), which receives a string and re-

places %s symbols with other sub-strings in a sim-

ilar way to C language's printf() function. Then

it converts the string to a parse tree. The result

of CompileSelf() is the concatenation of the pro-

duced parse tree and the result of the base class'

CompileSelf(). It is substituted for the original

de�nition of the class Point in the user's program.

4 Suitability for the Real World

A MOP itself is a mechanism to implement some-

thing necessary. This section presents how the

OpenC++ MOP is utilized for practical program-

ming.

The OpenC++ MOP can be viewed as a tool for

implementing libraries that e�ciently and trans-

parently provide useful facilities for the program-

mer. In other words, the OpenC++ MOP is pri-

marily a mechanism for library implementors. The

bene�t to library users is not the MOP itself but

the transparency and e�ciency of the library im-

plemented with the MOP.

4.1 Persistent-Object Library (revis-

ited)

Using the OpenC++ MOP, the persistent objects

described in Section 2 can be transparently pro-

vided for library users. A new metaclass is used to

encapsulate the implementation of the extension

from the user-de�ned classes. Such a new meta-

class is developed through the three steps seen be-

fore: 1) decide what the user program should look

like, 2) �gure out what it should be translated to,

and 3) write appropriate compile-time and runtime

code to perform and support the translation. We

show the persistent-object library along those three

steps.

First, the program the library user writes should

look as follows:

metaclass Node : PersistentClass;

class Node {

public:

Node* next;

double value;

};

Node* get_next_of_next(Node* p)

{

Node* q = p->next;

return q->next;

}

That is, the library user can obtain persis-

tent objects simply by specifying the metaclass

PersistentClass.5 There is no need for the user

program to explicitly invoke Load() as in the C++

code in Section 2.

The next step is to �gure out how to translate the

user program. The library implementor must de-

cide what should be supplied as the runtime code of

the library, what should be generated for each user

class and should be directly embedded in the trans-

lated code. In this example, the function Load()

is supplied as a runtime support routine, while in-

vocation of Load() is embedded in the translated

code by the metaobjects. The user program should

be translated to:

Node* get_next_of_next(Node* p)

{

Node* q = (Load(p), p->next);
return (Load(q), q->next);

}

Italic letters indicate code inserted by the metaob-

jects. The metaobjects translate the user program

so that it appropriately invokes runtime support

routines. Unlike in Section 2, the inserted code is

Load(p) instead of p->Load(). This syntactical

change is because Load() is an ordinary function.

Load() is not supplied as a member function any

more since the class Node does not inherit from any

base class.

Finally, the library implementor writes the

compile-time code of the library. For the trans-

5Our MOP makes it possible to put even more syn-

tactic sugar on this so the programmer can simply write:

persistent class Node f...g;. This is discussed in Sec-

tion 5.

lation speci�ed at the previous step, the class

PersistentClass is de�ned as a subclass of Class.

It rede�nes the member function CompileRead-

DataMember() and CompileWriteDataMember()

so that the member accesses like p->next are ap-

propriately translated. The de�nition of Compile-

ReadDataMember() is as follows:

Expression

PersistentClass::CompileReadDataMember(

Environment env,

String member_name,

String variable_name)

{

return MakeParseTree(

"(Load(%s), %e)",

member_name,

Class::CompileReadDataMember(

...));

}

The CompileReadDataMember() supplied by the

base class Class returns the parse tree that cor-

responds to the original code, in this example,

p->next.

More Realistic Implementation

The implementation shown above is only part of

the persistent library. In a typical implementation,

when a persistent object is loaded onto memory,

pointers that the object contains must be trans-

lated to point to correct memory addresses because

the actual layout of objects changes every session.

This translation, which is often called pointer swiz-

zling, is needed even if references to persistent ob-

jects are detected by a virtual memory system,

which is more sophisticated implementation.

To perform pointer swizzling, the runtime func-

tion Load() has to know which data �elds of per-

sistent objects hold pointer values. So the library

must record the type of an object and its type def-

initions when the object is constructed at runtime.

Recording the type de�nitions can be implemented

in a similar way to the Meta-Information Protocol

shown in Section 3.3.

To record the type of the object, for example, an

expression new Node() should be translated into:

(Node*)RecordObjectType(new Node(),

"Node")

The runtime support function RecordObject-

Type() receives a pointer to the constructed object

and the type of that object, records the type, and

returns the received pointer.

The de�nition of the member function Compile-

New() that performs that translation is as follows:

Expression

PersistentClass::CompileNew(

Environment env,

Expression arguments,

Expression keywords)

{

char* pat =

"(%s*)RecordObjectType(%e, \"%s\")";

return MakeParseTree(

pat,

name,

Class::CompileNew(env,

arguments,

keywords),

name);

}

4.2 Matrix Library

The next example is a matrix library that can be

implemented more e�ciently if our MOP is ex-

ploited. A new metaclass is used to optimize the

implementation of a speci�c class, which is also pro-

vided by the library.

This example is based on C++'s mechanism of

overloading operators that allows us to implement

a matrix library with which matrices are available

in an arithmetic expression. For example, the pro-

grammer can write:

Matrix a, b, c, d;

...

a = b + c + d;

Although matrix arithmetic is transparently pro-

vided, the performance of this library is quite bad

because each + operation is done through a func-

tion call and thus the intermediate value is passed

as a Matrix object between the function calls. The

following inlining is clearly better.

Matrix a, b, c, d;

...

for(i = 0; i < number of rows; ++i)

for(j = 0;

j < number of columns;
++j)

{

a.element[i][j] = b.element[i][j]

+ c.element[i][j]

+ d.element[i][j];

}

Directing such an inlining scheme to the com-

piler is not possible within the con�nes of C++.

Expecting the C++ compiler to automatically de-

tect all such kinds of optimization is not realistic

[1].

Our MOP enables the programmer to write a li-

brary of such customized optimizations. It allows

the library implementor to provide the class Matrix

with a metaclass for the inlining by using knowl-

edge of implementation details of the class Matrix.

The metaclass MatrixClass will have this member

function:

Expression

MatrixClass::CompileMemberFunctionCall(

Environment env,

String member_name,

String variable_name,

Expression arguments)

{

if(member_name == "="){

Expression assigned_expr

= arguments->GetFirst();

if(inlining is applicable)
return MakeParseTree(

"for(i = 0; ...", ...);

}

// Otherwise, do the default translation.
return

Class::CompileMemberFunctionCall(

env, member_name, ...);

}

Because C++ regards an overloaded operator

as a member function call, the member func-

tion CompileMemberFunctionCall() shown above

is invoked to translate the expression a = b + c

+ d into the inlined form. On this invocation,

the operator = is interpreted as a member func-

tion call on the object a. The sub-expression

b + c + d is an argument of the = operator, so

the parse tree of that sub-expression is passed to

CompileMemberFunctionCall() as the parameter

arguments. The invoked member function checks

the passed parse tree, and then, if the inlining is

applicable, it actually applies the inlining to the ex-

pression; it generates a parse tree that corresponds

to the inlined expression. Otherwise it would have

delegated the translation to the base class.

To determine whether the inlining is applicable,

the compile-time code must traverse the passed

parse tree and see whether the shape of the tree

matches a particular pattern. For example, if the

parse tree represents repetition of an identi�er and

the symbol +, then the inlining is applicable.

4.3 Customizing Implementation of Ob-

jects

Some C++ compilers, such as GNU C++ 2.5.8 for

SPARC and Sun C++ 2.0, do not allocate objects

in registers. For example, if we compile the follow-

ing program:

class Vector {

public:

double x, y;

};

double xpos[1000], ypos[1000];

Vector v;

...

for(int i = 0; i < 1000; ++i){

xpos[i] += v.x;

ypos[i] += v.y;

}

In the for loop, the compiled code loads the values

of v.x and v.y into registers for every iteration.

This is obviously redundant since the values should

be loaded only once before the iteration starts.

An experienced programmer can remove those

redundant load instructions by editing the for

statement as follows:

double s = v.x, t = v.y;

for(int i = 0; i < 1000; ++i){

xpos[i] += s;

ypos[i] += t;

}

Since double variables s and t are allocated on

registers, the compiled code does not include re-

dundant load instructions and runs faster.

Although this kind of technique is popular in C

and C++ programming, the performance of the

compiled code depends on implementation of com-

pilers. The technique shown above works for par-

ticular compilers, but it may not for other compil-

ers or even other versions of those compilers.

Our MOP provides the ability to do such op-

timization in a more sophisticated way. Pro-

grammers can separate description for optimization

from the rest of the program. The program would

look like:

metaclass Vector LightWeightClass;

class Vector {

public:

double x, y;

};

double xpos[1000], ypos[1000];

Vector v;

...

for(int i = 0; i < 1000; ++i){

xpos[i] += v.x;

ypos[i] += v.y;

}

The metaclass LightWeightClass specializes im-

plementation of instances of the class Vector.6

Since the implementation scheme is separately de-

scribed from the program above, programmers can

independently customize it to �t their compilers.

To do the optimization shown �rst, the metaclass

LightWeightClass rede�nes the member functions

to translate the program into:

double xpos[1000], ypos[1000];

double x_of_v, y_of_v;

...

6Our MOP enables more smart annotation. As discussed

later, programmers can switch implementation by simply

adding or removing an annotation lightweight to variable

declaration. For example, if they write:

lightweight Vector v;

the variable v is implemented in the lightweight way. Oth-

erwise, it is done in the ordinary way.

for(int i = 0; i < 1000; ++i){

xpos[i] += x_of_v;

ypos[i] += y_of_v;

}

Now the Vector object v is implemented with two

distinct double variables.

The de�nition of the member function Compile-

VarDeclaration() is as below. It translates vari-

able declarations.

Expression

LightWeightClass::CompileVarDeclaration(

Environment env,

String variable_name)

{

return MakeParseTree(

"double x_of_%s, y_of_%s",

variable_name,

variable_name);

}

Also, the member function CompileDotReadData-

Member() is rede�ned to translate data-member ac-

cesses.

Expression

LightWeightClass

::CompileDotReadDataMember(

Environment env,

String member_name,

String variable_name)

{

return MakeParseTree("%s_of_%s",

member_name,

variable_name);

}

4.4 Selecting a Concrete Class at Com-

pile Time

The last example is a mechanism to select the most

appropriate concrete class for a given abstract class

at compile time. With this mechanism, program-

mers do not have to directly instantiate a speci�c

concrete class. Instead, they can instantiate an ab-

stract class with an annotation about the require-

ment for the implementation of the instance. The

e�ective concrete class is selected by the compiler.

A class like Set can be implemented with di�er-

ent data structures and algorithms. Since appro-

priate implementation depends on user programs, a

typical implementation scheme is to de�ne several

subclasses each of which corresponds to a di�erent

implementation scheme, such as LinkedListSet,

ArraySet, and SortedSet. But in the typical

implementation scheme, selecting the appropriate

concrete class happens at runtime, thereby incur-

ring a performance overhead.

The mechanism we show below is similar to that

in [14], but it automatically selects the most ap-

propriate subclass at compile time. The user just

annotates requirements for each instantiation of a

class, then the compiler selects a subclass to mostly

satisfy the requirements. For example, the user

program of the Set library will look like:

Set* s = new Set("size<=1000;sorted");

The requirement is speci�ed as the �rst initializa-

tion parameter to the class Set.7 The compiler

selects a subclass of Set that matches the spec-

i�ed requirement, and translates the code above

into like:

Set* s = new SortedArraySet();

SortedArraySet is a subclass of Set, which the

compiler selects for that particular user program.

To enable that translation, the library implemen-

tor de�nes a metaclass SetClass of the class Set.

It rede�nes the member function CompileNew() as

follows:

Expression

SetClass::CompileNew(Environment env,

Expression arguments,

Expression keywords)

{

Expression requirement

= arguments->GetFirst();

String class_name = SelectSubclass(

requirement);

return MakeParseTree("new %s()",

class_name);

}

7If we use our MOP's capability to extend the syntax, we

can separate the requirement from the initialization param-

eter. The program could be:

new require("size<=1000;sorted") Set().

String SetClass::SelectSubclass(

Expression requirement)

{

...

}

The member function SelectSubclass() inter-

pretes the requirement, which is passed as a char-

acter string, and returns the name of the selected

subclass for that requirement.

Although the code shown above selects a sub-

class at compile time, it is also possible to postpone

the �nal decision to runtime. For example, the user

may want to use runtime information for the re-

quirement. In this case, the metaobject translates

a new expression into an expression that calls an ap-

propriate runtime support function, which selects a

subclass and returns its instance. This implemen-

tation is also available without the MOP, but if we

use the MOP, interpretation of the requirement can

be done at compile-time. For example, the metaob-

ject may translate the requirement from a string to

an appropriate data structure for the runtime sup-

port function to e�ciently handle it.

5 Other Issues

This section brie
y surveys several other issues on

the OpenC++ MOP.

Inheritance

An interesting issue is whether a subclass should

inherit the metaclass of its base class. This is

important because selecting the metaclass is the

main mechanism for directing what MOP-based

customization programmers use. The OpenC++

MOP provides customizability on this issue as well.

Our MOP selects the metaclass of a given class

X with the following algorithm:

1. If the class X has a base class, then call

ComputeMetaclassName() on the metaobject

for that base class, and select its resulting

value for the metaclass of X. By default, this

member function simply returns the same

metaclass as that of the base class.

2. If the metaclass of X is explicitly speci�ed by

the programmer with the metaclass declara-

tion, then select that metaclass.

3. Otherwise, select the default metaclass Class.

By the �rst rule, subclasses inherit the metaclass

from their base class. This inheritance policy can

be customized by programmers, however. They can

rede�ne the member function ComputeMetaclass-

Name() to customize the policy.

In the case where a class has more than one base

class and the class metaobjects for them give dif-

ferent metaclasses, we simply raise a compilation

error. Other researchers have proposed automatic

derivation of a mixed-in metaclass in this case [5],

but applying that idea to the OpenC++ MOP is

not straightforward because combining the same

member function of two metaclasses is not always

possible.

Syntax extension

The OpenC++ MOP provides limited ability to

extend the language syntax. The programmer can

register new keywords, which can appear only in

certain limited places: the modi�ers of type names,

class names, and the new operator. For example,

the following code is available.

distributed class Point { ... };

lightweight Vector v;

p = require("sorted") new Set;

distributed, lightweight and require are reg-

istered keywords. These keywords are passed to

a metaobject when a code fragment is translated.

The metaobject can use those keywords to decide

how to translate that code fragment. The keywords

may be followed by some meta arguments. For ex-

ample, "sorted" is an argument of the keyword

require. The arguments are simply passed to the

metaobject together.

Otherwise, the keyword registered by the pro-

grammer must appear as the member name in a

member access expression. In this case, the parser

recognizes the whole member access expression as

a user-de�ned statement. For example,

Matrix big_matrix = ...;

big_matrix->foreach(row == 1) {

element = 1.0;

}

foreach is a keyword. It must be followed by

an arbitrary expression (row == 1), and a state-

ment f element = 1.0 g. The expression may

be a list of formal arguments, or it may take the

for statement's style, which is (<expression>;

<expression>; <expression>). The OpenC++

MOP itself does not specify any meaning to the in-

terpretation of that foreach statement. The inter-

pretation is responsibility of the class metaobject

for Matrix, which may translate that statement to

an appropriate statement of C++ as macros do in

Lisp. The translated code may look like:

for(int row = 0;

row < number of rows;
++row)

for(int col = 0;

col < number of columns;
++col)

if(row == 1){

big_matrix->element[row][col]

= 1.0;

}

Although this code is not e�cient, the library im-

plementor can write compile-time code to trans-

late the statement into more e�cient code if the

condition such as (row == 1) matches a particu-

lar pattern. For example, the compile-time code

may check whether the parse tree of the given con-

dition represents a sequence of the identi�er row,

the symbol ==, and an integer. If so, the compile-

time code can remove the for loop on row.

Protocol Overheads

Since programs translated by the OpenC++ MOP

invoke runtime support functions, the MOP may

initially seem to involve runtime penalties. But this

kind of penalty is not due to the MOP itself. It is

due to the implementation scheme of the library.

For example, in the persistent-object library, the

translated program invokes a function Load() ev-

ery member access. But the performance penalty

Class

PersistentClass

Node n1

Point p1

instance−of
subclass−of

<metaclass> <class> <object>

Figure 4: Metaclass, Class, and Object

with this function invocation is inherent in the im-

plementation scheme we chose for the library. In

fact, this function invocation is needed even if we

do not use the MOP, as we saw in Section 2.

Although the OpenC++ MOP does not involve

runtime penalties, it involves compile-time penal-

ties since it moves meta-level computation from

runtime to compile-time. However, at least regard-

ing to the default metaobjects, the compile-time

penalties can be reduced by elaborate implemen-

tation. The phase 2 and 3 of the protocol struc-

ture, which we showed in Section 3.2, are fused into

very simple computation since the member func-

tion CompileSelf() on the default class metaob-

jects is an identity function that generates the same

source code as the input.

Meta Circularity

The design of the OpenC++ MOP is, like other

MOPs, conceptually meta-circular. There are no

substantial di�erences between metaclasses and

classes. A metaclass is simply a class that in-

stantiates other classes (i.e. metaobjects for the

classes). The relationship between a class and a

metaclass is equivalent to the class-instance rela-

tionship (Figure 4). Thus when a program in-

cludes de�nitions of metaclasses, the MOP also

constructs class metaobjects for those metaclasses.

The constructed metaobjects control compilation

of the metaclasses.

The OpenC++ MOP, however, avoids the appar-

ent in�nite regress of this meta circularity in a way

similar to that of other meta-circular MOPs. To

compile a class, its metaclass must be �rst com-

piled, before compiling that metaclass, its meta-

class must be compiled, and so on. But such a chain

of compilation is not in�nite because the metaclass

Class is the root of any class-metaclass chain and

it is the metaclass of itself. The only question we

have to answer is how the MOP compiles Class

for bootstrapping. The answer is simple. Class

is directly compiled by the C++ compiler because

the compilation specialized by Class is equivalent

to the compilation done by the C++ compiler.

6 Related Work

In previous work, we have proposed another MOP

for C++, called OpenC++ Version 1 [3]. That

MOP had the ability to transparently implement

language extensions for distributed computing as

libraries on top of ordinary C++. But, because

that MOP was based on a meta-architecture in

which the metaobjects exist at runtime, it implied

runtime overheads. Also, that MOP provided only

limited ability to control program behavior, cover-

ing only member access and object creation. The

degree of transparency of libraries written with

that MOP was not enough for real-world program-

ming.

A number of ideas for the OpenC++ MOP came

from previous work. The idea of a compile-time

MOP is due to Anibus and Intrigue [18, 13]. These

are compile-time MOPs for controlling a Scheme

compiler. In those MOPs, the metaobjects are not

just language entities, but also represent global in-

formation such as the results of
ow analysis. Our

basic protocol architecture is due to the CLOS

MOP[11]. The major di�erence is that the CLOS

MOP's metaobjects are runtime ones and thus the

CLOS MOP requires relatively large runtime envi-

ronment if it is directly applied to C++. The idea

of a meta-interface of the early-stage of compilation

was also proposed in MPC++[8].

Like the CLOS MOP and OpenC++ Version 1,

a number of systems [15, 7, 17, 22] adopt runtime

metaobjects, which represent underlying mecha-

nisms such as the language interpreter and the OS

kernel, and are responsible for runtime behavior of

the system. Since the runtime metaobjects allow

users to change various decision policies of the sys-

tem, such as scheduling and migration, the users

can tune the system performance to �t their needs.

A drawback of the runtime metaobjects is runtime

overhead. A few ideas have been proposed on this

problem [12, 16, 19]. For example, inlining and par-

tial evaluation are e�ective techniques to reduce

the overhead. It is di�cult to recover the whole

overhead of a runtime meta architecture, however.

7 Current Status

We are in the process of developing OpenC++ Ver-

sion 2. Our methodology is to �rst develop a sim-

pli�ed version of the target system (i.e. C++),

then design and test a MOP for that simpli�ed

system, and �nally port the developed MOP back

to the target system. We have thus developed a

C++-like object system, called S++, on top of

Scheme, and designed the MOP presented in this

paper for S++. A number of examples similar to

these presented here have been implemented to test

the S++ MOP, and we have repeatedly re-designed

the MOP based on the results of the tests. We are

currently porting our MOP back to C++.

8 Conclusion

This paper describes a metaobject protocol for

C++. It was developed to bring the power of meta-

programming to a more mainstream language.

This MOP di�ers from most existing MOPs in that

the metaobjects exist exclusively at compile-time

| they control the compilation of programs to al-

ter the behavior of the basic language constructs of

C++. This feature means that this MOP involves

no runtime speed or space overheads.

This paper also illustrates how the customizabil-

ity provided by our C++ MOP can be used to im-

plement language extensions e�ciently and trans-

parently as libraries. Currently, many language ex-

tensions such as persistence or distribution end up

being re-implemented for each application because

the existing language mechanisms are insu�cient

for customizing existing code to �t each applica-

tion. Our C++ MOP enables us to implement

those extensions as libraries, making such exten-

sions easier to develop and maintain and thus more

reusable.

Acknowledgments

The basic idea of the OpenC++ MOP was pro-

duced through discussions with Gregor Kiczales.

The author thanks John Lamping, Ellen Siegel,

and Chris Maeda for their comments on early drafts

of this paper. The author's work was partially sup-

ported by Japan Society for the Promotion of Sci-

ence.

References

[1] Angus, I. G., \Applications Demand Class-

Speci�c Optimizations: The C++ Compiler

Can DoMore," Scienti�c Programming, vol. 2,

no. 4, pp. 123{131, 1993.

[2] Buschmann, F., K. Kiefer, F. Paulisch, and

M. Stal, \The Meta-Information-Protocol:

Run-Time Type Information for C++," in

Proc. of the Int'l Workshop on Re
ection and

Meta-Level Architecture (A. Yonezawa and

B. C. Smith, eds.), pp. 82{87, 1992.

[3] Chiba, S., \Open C++ Programmer's Guide,"

Technical Report 93-3, Dept. of Information

Science, Univ. of Tokyo, Tokyo, Japan, 1993.

[4] Chiba, S. and T. Masuda, \Designing an Ex-

tensible Distributed Language with a Meta-

Level Architecture," in Proc. of the 7th Eu-

ropean Conference on Object-Oriented Pro-

gramming, LNCS 707, pp. 482{501, Springer-

Verlag, 1993.

[5] Danforth, S. and I. R. Forman, \Re
ections

on Metaclass Programming in SOM," in Proc.

of ACM Conf. on Object-Oriented Program-

ming Systems, Languages, and Applications,

pp. 440{452, 1994.

[6] Goldberg, A. and D. Robson, Smalltalk-

80: The Language and Its Implementation.

Addison-Wesley, 1983.

[7] Honda, Y. and M. Tokoro, \Soft Real-Time

Programming through Re
ection," in Proc. of

the Int'l Workshop on Re
ection and Meta-

Level Architecture (A. Yonezawa and B. C.

Smith, eds.), pp. 12{23, 1992.

[8] Ishikawa, Y., \Meta-Level Architecture for

Extendable C++," Technical Report 94024,

Real World Computing Partnership, Japan,

1994.

[9] Kiczales, G., \Towards a New Model of Ab-

straction in Software Engineering," in Proc. of

the Int'l Workshop on Re
ection and Meta-

Level Architecture (A. Yonezawa and B. C.

Smith, eds.), pp. 1{11, 1992.

[10] G. Kiczales, ed., Workshop on Open Imple-

mentation'94, internet publication (http:

//www.parc.xerox.com/PARC/spl/eca/oi/

workshop-94), Oct. 1994.

[11] Kiczales, G., J. des Rivi�eres, and D. G. Bo-

brow, The Art of the Metaobject Protocol. The

MIT Press, 1991.

[12] Kiczales, G. J. and L. H. Rodriguez Jr., \Ef-

�cient Method Dispatch in PCL," in Proceed-

ings of the 1990 ACM Conference on Lisp and

Functional Programming, pp. 99{105, 1990.

[13] Lamping, J., G. Kiczales, L. Rodriguez,

and E. Ruf, \An Architecture for an Open

Compiler," in Proc. of the Int'l Workshop

on Re
ection and Meta-Level Architecture

(A. Yonezawa and B. C. Smith, eds.), pp. 95{

106, 1992.

[14] Lortz, V. B. and K. G. Shin, \Combining Con-

tracts and Exemplar-Based Programming for

Class Hiding and Customization," in Proc.

of ACM Conf. on Object-Oriented Program-

ming Systems, Languages, and Applications,

pp. 453{467, 1994.

[15] Maes, P., \Concepts and Experiments in

Computational Re
ection," in Proc. of ACM

Conf. on Object-Oriented Programming Sys-

tems, Languages, and Applications, pp. 147{

155, 1987.

[16] Masuhara, H., S. Matsuoka, T. Watanabe,

and A. Yonezawa, \Object-Oriented Concur-

rent Re
ective Languages can be Implemented

E�ciently," in Proc. of ACM Conf. on Object-

Oriented Programming Systems, Languages,

and Applications, pp. 127{144, 1992.

[17] Okamura, H., Y. Ishikawa, and M. Tokoro,

\AL-1/D: A Distributed Programming Sys-

tem with Multi-Model Re
ection Framework,"

in Proc. of the Int'l Workshop on Re
ection

and Meta-Level Architecture (A. Yonezawa

and B. C. Smith, eds.), pp. 36{47, 1992.

[18] Rodriguez Jr., L. H., \Coarse-Grained Paral-

lelism Using Metaobject Protocols," Techincal

Report SSL-91-61, XEROX PARC, Palo Alto,

CA, 1991.

[19] Ruf, E., \Partial Evaluation in Re
ective Sys-

tem Implementation," in Proc. of OOPSLA'93

Workshop on Re
ection and Metalevel Archi-

tectures, 1993.

[20] Steele, G., Common Lisp: The Language. Dig-

ital Press, 2nd ed., 1990.

[21] Watanabe, T. and A. Yonezawa, \Re
ection in

an Object-Oriented Concurrent Language," in

Proc. of ACM Conf. on Object-Oriented Pro-

gramming Systems, Languages, and Applica-

tions, pp. 306{315, 1988.

[22] Yokote, Y., \The Apertos Re
ective Operat-

ing System: The Concept and Its Implemen-

tation," in Proc. of ACM Conf. on Object-

Oriented Programming Systems, Languages,

and Applications, pp. 414{434, 1992.

Load-Time Structural Reflection in Java

Shigeru Chiba

Institute of Information Science and Electronics
University of Tsukuba

and Japan Science and Technology Corp.
chiba@is.tsukuba.ac.jp, chiba@acm.org

Abstract. The standard reflection API of Java provides the ability to
introspect a program but not to alter program behavior. This paper pre-
sents an extension to the reflection API for addressing this limitation.
Unlike other extensions enabling behavioral reflection, our extension cal-
led Javassist enables structural reflection in Java. For using a standard
Java virtual machine (JVM) and avoiding a performance problem, Javas-
sist allows structural reflection only before a class is loaded into the JVM.
However, Javassist still covers various applications including a language
extension emulating behavioral reflection. This paper also presents the
design principles of Javassist, which distinguish Javassist from related
work.

1 Introduction

Java is a programming language supporting reflection. The reflective ability of
Java is called the reflection API. However, it is almost restricted to introspection,
which is the ability to introspect data structures used in a program such as a
class. The Java’s ability to alter program behavior is very limited; it only allows
a program to instantiate a class, to get/set a field value, and to invoke a method
through the API.

To address the limitations of the Java reflection API, several extensions have
been proposed. Most of these extensions enable behavioral reflection, which is
the ability to intercept an operation such as method invocation and alter the
behavior of that operation. If an operation is intercepted, the runtime systems of
those extensions call a method on a metaobject for notifying it of that event. The
programmer can define their own version of metaobject so that the metaobject
executes the intercepted operation with customized semantics, which implement
a language extension for a specific application domain such as fault tolerance [9].

However, behavioral reflection only provides the ability to alter the behavior
of operations in a program but not provides the ability to alter data structures
used in the program, which are statically fixed at compile time (or, in languages
like Lisp, when they are first defined). The latter ability called structural reflec-
tion allows a program to change, for example, the definition of a class, a function,
and a record on demand. Some kinds of language extensions require this ability
for implementation and thus they cannot be implemented with a straightforward

Elisa Bertino (Ed.): ECOOP 2000, LNCS 1850, pp. 313–336, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

314 S. Chiba

program using behavioral reflection; complex programming tricks are often nee-
ded.

To simply implement these language extensions, this paper presents Javassist,
which is a class library for enabling structural reflection in Java. Since portability
is important in Java, we designed a new architecture for structural reflection,
which can be implemented without modifying an existing runtime system or
compiler. Javassist is a Java implementation of that architecture. An essential
idea of this architecture is that structural reflection is performed by bytecode
transformation at compile-time or load time. Javassist does not allow structural
reflection after a compiled program is loaded into the JVM. Another feature of
our architecture is that it provides source-level abstraction: the users of Javassist
do not have to have a deep understanding of the Java bytecode. Our architecture
can also execute structural reflection faster than the compile-time metaobject
protocol used by OpenC++ [3] and OpenJava [20].

In the rest of this paper, we first overview previous extensions enabling be-
havioral reflection in Java and point out limitations of those extensions. Then
we present the design of Javassist in Section 3 and show typical applications of
Javassist in Section 4. In Section 5, we compare our architecture with related
work. Section 6 is conclusion.

2 Extensions to the Reflection Ability of Java

The Java reflection API dose not provide the full reflective capability. It does
not enable alteration of program behavior but it only supports introspection,
which is the ability to introspect data structures, for example, inspecting a class
definition. This design decision was acceptable because implementing the full
capability was difficult without a decline in runtime performance. An imple-
mentation technique using partial evaluation has been proposed [17,2] but the
feasibility of this technique in Java has not been clear.

However, several extensions to the Java reflection API have been proposed.
To avoid performance degradation, most of these extensions enable restricted
behavioral reflection. They only allow alteration of the behavior of specific kinds
of operations such as method calls, field accesses, and object creation. The pro-
grammers can select some of those operations and alter their behavior. The
compilers or the runtime systems of those extensions insert hooks in programs
so that the execution of the selected operations is intercepted. If these operati-
ons are intercepted, the runtime system calls a method on an object (called a
metaobject) associated with the operations or the target objects. The execution
of the intercepted operation is implemented by that method. The programmers
can define their own version of metaobject for implementing new behavior of the
intercepted operations.

The runtime overheads due to this restricted behavioral reflection are low
since only the execution of the intercepted operations involves a performance
penalty and the rest of the program runs without any overheads. Especially, if
hooks for the interception are statically inserted in a program during compila-

Load-Time Structural Reflection in Java 315

tion, the runtime overheads are even lowered. To statically insert hooks, Reflec-
tive Java [22] performs source-to-source translation before compilation and Kava
[21] performs bytecode-level transformation when a program is loaded into the
JVM. MetaXa [16,11] internally performs bytecode-level transformation with a
customized JVM. It uses a customized just-in-time compiler (JIT) for improving
the execution speed of the inserted hooks. This hook-insertion technique is well
known and has been applied to other languages such as C++ [4].

Although the restricted behavioral reflection is useful for implementing va-
rious language extensions, there are some kinds of extensions that cannot be
intuitively implemented with that kind of reflection. An example of these exten-
sions is binary code adaptation (BCA) [13], which is a mechanism for altering
a class definition in binary form to conform changes of the definitions of other
classes. Suppose that we write a program using a class library obtained from
a third party. For example, our class Calendar implements an interface Writable
included in that class library:

class Calendar implements Writable {
public void write(PrintStream s) { ... }

}

The class Calendar implements method write() declared in the interface Writa-
ble.

Then, suppose that the third party gives us a new version of their class
library, in which the interface Writable is renamed into Printable and it declares
a new method print(). To make our program conform this new class library,
we must edit the definitions of all our classes implementing Writable, including
Calendar:

class Calendar implements Printable {
public void write(PrintStream s) { ... }
public void print() { write(System.out); }

}

The interface of Calendar is changed into Printable and method print() is added.
BCA automates this adaptation; it automatically alters class definitions in

binary form according to a configuration file specifying how to alter them. Note
that the method body of print() is identical among all the updated classes
since print() can be implemented with the functionality already provided by
write() for the old version. If that configuration file is supplied by the library
developer, we can run our program without concern about evolution of the class
library.

Unfortunately, implementing BCA with behavioral reflection is not intuitive
or straightforward. Since behavioral reflection cannot directly provide the ability
to alter data structures such as a class definition or construct a new data struc-
ture, these reflective computation must be indirectly implemented. For example,
the implementation of BCA with behavioral reflection defines a metaobject indi-
rectly performing the adaptation specified by a given configuration file. For the
above example, this metaobject is made to be associated with Calendar and it

316 S. Chiba

watches method calls on Calendar objects. If the method print() is called, the
metaobject intercepts that method call and executes the computation correspon-
ding to print() instead of the Calendar object. The metaobject also intercepts
runtime type checking so that the JVM recognizes Calendar as a subtype of Prin-
table. Recall that Java is a statically typed language and the original Calendar
is a subtype of Writable.

The ability to alter data structures used in a program is called structural
reflection, which has not been directly supported by previous systems. Although
a number of language extensions are more easily implemented with structural
reflection than with behavioral reflection, the previous systems have not been
addressing those extensions. They have been too much focused on language
extensions that can be implemented by altering the behavior of method calls
and so on.

3 Javassist

To simply implement language extensions like BCA shown in the previous sec-
tion, we developed Javassist, which is our extension to the Java reflection API
and enables structural reflection instead of behavioral one. Javassist is based on
our new architecture for structural reflection, which can be implemented without
modifying an existing runtime system or a compiler.

3.1 Implementations of Structural Reflection

Structural reflection is the ability to allow a program to alter the definitions of
data structures such as classes and methods. It has been provided by several
languages such as Smalltalk [10], ObjVlisp [6], and CLOS [14]. These languages
implement structural reflection with support mechanisms embedded in runtime
systems. Since the runtime systems contain internal data representing the defini-
tions of data structures such as a class, the support mechanisms allow a program
to directly read and change those internal data and thereby execute structural
reflection on the correspondent data structures.

We could not accept this implementation technique for Javassist since it needs
to modify a standard JVM but portability is important in Java. Furthermore,
a naive application of this technique to Java would cause serious performance
degradation of the JVM because this technique makes it difficult for runtime
systems to employ optimization techniques based on static information of exe-
cuted programs. Since a program may be altered at runtime, efficient dynamic
recompilation is required for redoing optimization on demand. For example, me-
thod inlining is difficult to perform. If an inlined method is altered at runtime
with structural reflection, all the inlined code must be updated. To do this, the
runtime system must record where the code is inlined. This will spend a large
amount of memory space. Another example is the “v-table” technique used for
typical C++ implementations [8]. This technique statically constructs method
dispatch tables so that invoked methods are quickly selected with a constant

Load-Time Structural Reflection in Java 317

offset in the tables. If a new method is added to a class at runtime, then the
dispatch tables may be updated and all offsets in the tables may be recomputed.
Since the dynamic recompilation technique has been used so far for gradually op-
timizing “hot spots” of compiled code at runtime [12], it has been assuming that
a program is never changed at runtime. Effectiveness of dynamic recompilation
without this assumption is an open question.

Another problem is correctness of types. Since Java is a statically typed
language, a variable of type X must be bound to an object of X or a subclass Y
of X. If a program can freely access and change the internal data of the JVM,
it may dynamically change the super class of Y from X to another class. This
change causes a type error for the binding between a variable of type X and an
object of Y. To address this problem, extra runtime type checks or restrictions
on the range of structural reflection are needed.

3.2 Load-Time Structural Reflection

To avoid the problems mentioned above, we designed a new architecture for
structural reflection; it does not need to modify an existing runtime system or
a compiler. On the other hand, it enables structural reflection only before a
program is loaded into a runtime system, that is, at load time. Javassist is a
class library enabling structural reflection based on this architecture. In Java,
the bytecode obtained by compilation of a program is stored in class files, each
of which corresponds to a distinct class. Javassist performs structural reflection
by translating alterations by structural reflection into equivalent bytecode trans-
formation of the class files. After the transformation, the modified class files are
loaded into the JVM and then no alterations are allowed after that. Thereby,
Javassist can be used with a standard JVM, which may use various optimization
techniques.

Javassist is used with a user class loader. Java allows programs to define their
own versions of class loader, which fetch a class file from a not-standard resource
such as a network. A typical definition of the class loader is as follows:

class MyLoader extends ClassLoader {
public Class loadClass(String name) {

byte[] bytecode = readClassFile(name);
return resolveClass(defineClass(bytecode));

}

private byte[] readClassFile(String name) {
// read a class file from a resource.

}
}

The methods defineClass() and resolveClass() are inherited from ClassLo-
ader. They request the JVM to load a class constructed from the bytecode given
as an array of byte. The returned value is a Class object representing the lo-
aded class. Once a class X is manually loaded with an instance of MyLoader,
all classes referenced by that class X are loaded through that class loader. The

318 S. Chiba

JVM automatically calls loadClass() on that class loader for loading them on
demand.

Javassist helps readClassFile() shown above obtain the bytecode of a re-
quested class. It can be regarded as a class library for reading bytecode from
a class file and altering it. However, unlike similar class libraries such as the
JavaClass API [7] and JOIE [5], Javassist provides source-level abstraction so
that it can be used without knowledge of bytecode or the data format of the
class file. Also, Javassist was designed to make it difficult to wrongly produce a
class file rejected by the bytecode verifier of the JVM.

3.3 The Javassist API

We below present the overview of the Javassist API.

Reification and Reflection: The first step of the use of Javassist is to create
a CtClass (compile-time class) object representing the bytecode of a class loaded
into the JVM. This step is for reifying the class to make it accessible from a
program. If stream is an InputStream for reading a class file (from a local disk,
memory, a network, etc.), then:

CtClass c = new CtClass(stream);

creates a new CtClass object representing the bytecode of the class read from
the class file, which contains enough symbolic information to reify the class.
Also, the constructor of CtClass can receive a String class name instead of an
InputStream. If a String class name is given, Javassist searches a class path and
finds an InputStream for reading a class file.

One can call various methods on the CtClass object for introspecting and
altering the class definition. Changes of the class definition are reflected on the
bytecode represented by that object. To obtain the bytecode for loading the
altered class into the JVM, method toBytecode() is called on that object:

byte[] bytecode = c.toBytecode();

Loading the obtained bytecode into the JVM is regarded as the step for reflecting
the CtClass object on the base level. Javassist provides several other methods
for this step. For example, method compile() writes bytecode to a given output
stream such as a local file and a network. Method load() directly loads the class
into the JVM with a class loader provided by Javassist. It returns a Class object
representing the loaded class. Recall that Class is included in the Java reflection
API while CtClass is in Javassist.

Note that Javassist does not provide any framework for specifying how and
what classes are processed with Javassist. The programmer of the class loader
has freedom with respect to this framework. For example, the class loader may
process classes with Javassist only if they are specified by a configuration file
read at the beginning. It may process them according to a hard-coded algorithm.

Load-Time Structural Reflection in Java 319

Table 1. Methods in CtClass for introspection

Method Description
String getName() gets the class name

int getModifiers() gets the class modifiers such as public
boolean isInterface() determines whether this object represents

a class or an interface
CtClass getSuperclass() gets the super class

CtClass[] getInterfaces() gets the interfaces
CtField[] getDeclaredFields() gets the fields declared in the class
CtMethod[] getDeclaredConstructors() gets the constructors declared in the class
CtMethod[] getDeclaredMethods() gets the methods declared in the class

Javassist allows a user class loader to define a new class from scratch without
reading any class file. This is useful if a program needs to dynamically define a
new class on demand. To do this, a CtClass object must be created as follows:

CtClass c2 = new CtNewClass();

The created object c2 represents an empty class that has no methods or fields
although methods and fields can be added to the class later through the Javassist
API shown below. If toBytecode() is called on this object, then it returns the
bytecode corresponding to that empty class.

Introspection: Javassist provides several methods for introspecting the class
represented by a CtClass object. This part of the Javassist API is compatible with
the Java reflection API except that Javassist does not provide methods for crea-
ting an instance or invoking a method because these methods are meaningless
at load time. Table 1 lists selected methods for introspection.

CtClass objects returned by getSuperclass() and getInterfaces() are
constructed from class files found on a class path. They represent the origi-
nal class definitions and thus accept only introspection but not alteration. To
alter a class, another CtClass object must be explicitly created with the new
operator. Modifications to this object have no effect on the CtClass object re-
turned by getSuperclass() or getInterfaces(). For example, suppose that
a class C inherits from a class S. If a CtClass object for S is created with new
and a method m() is added to that object, this modification is not reflected on
the object returned by getSuperclass() on a CtClass object for C. The class C
inherits m() from S only if the CtClass object created with new is converted into
bytecode and loaded into the JVM.

The information about fields and methods is provided by objects separate
from the CtClass object; it is provided by CtField objects obtained by getDeclar-
edFields() and CtMethod objects obtained by getDeclaredMethods(), res-
pectively. The information about a constructor is also provided by a CtMethod
object. Table 2 lists methods in CtField and CtMethod for introspection.

320 S. Chiba

Table 2. Methods in CtField and CtMethod for introspection

Method in CtField Description
String getName() gets the field name
CtClass getDeclaringClass() get the class declaring the field

int getModifiers() gets the field modifiers such as public
CtClass getType() get the field type

Method in CtMethod Description
String getName() gets the method name
CtClass getDeclaringClass() get the class declaring the method

int getModifiers() gets the method modifiers such as public
CtClass[] getParameterTypes() gets the types of the parameters
CtClass[] getExceptionTypes() gets the types of the exceptions that the

method may throw
boolean isConstructor() returns true if the method is a constructor
boolean isClassInitializer() returns true if the method is a class initializer

Table 3. Methods for alteration

Method in CtClass Description
void bePublic() make the class public
void beAbstract() make the class abstract
void notFinal() remove the final modifier from the class
void setName(String name) change the class name
void setSuperclass(CtClass c) change the super class
void setInterfaces(CtClass[] i) change the interfaces
void addConstructor(...) add a new constructor
void addDefaultConstructor() add the default constructor
void addAbstractMethod(...) add a new abstract method
void addMethod(...) add a new method
void addWrapper(...) add a new wrapped method
void addField(...) add a new field

Method in CtField Description
void bePublic() make the field public

Method in CtMethod Description
void bePublic() make the method public
void instrument(...) modify a method body
void setBody(...) substitute a method body
void setWrapper(...) substitute a method body

Alteration: A difference between Javassist and the standard Java reflection
API is that Javassist provides methods for altering class definitions. Several
methods for alteration are defined in CtClass (Table 3). These methods are ca-
tegorized into methods for changing class modifiers, methods for changing class
hierarchy, and methods for adding a new member. They were carefully selected
to satisfy our design goals.

Load-Time Structural Reflection in Java 321

Our design goals are three. (1) The first goal is to provide source-level ab-
straction for programmers. Javassist was designed so that programmers can use
it without knowledge of the Java bytecode. (2) The second goal is to execute
structural reflection as efficiently as possible. (3) The last goal is to help pro-
grams perform structural reflection in a safe manner in terms of types.

As for the first goal, the most significant design decision was how program-
mers specify a method body. Suppose that a new method is added to a class.
If a sequence of bytecode is used for specifying the body of that method, the
programmers would get great flexibility but have to learn details of bytecode.
To achieve the first goal, Javassist allows to copy a method body from another
existing method although this design decision restricts the flexibility of the ad-
ded method. The copied bytecode sequence is adjusted to fit the destination
method. For example, the bytecode for accessing a member through the this
variable contains a symbolic reference to the type of this. This reference is
replaced with one to the class declaring the destination method.

Despite the well-known quasi-equivalence between Java source code and byte-
code, the correspondence between source-level and bytecode-level alterations are
not straightforward. Hiding the gap between the two levels from programmers
is also a part of the first goal.

For example, setName() renames a class but it also substitutes the new
name for all occurrences of the old name in the definition of that class, including
method signatures and bodies. Modifying a single constant-pool item never per-
forms this substitution. If a constructor calls another constructor in the same
class (if it executes this()), then the bytecode of the former constructor is mo-
dified since the bytecode contains a symbolic reference to the name of the class
declaring the latter constructor. This reference must be modified to indicate the
new name.

setSuperclass() performs similar substitution. If it is called, all occurren-
ces of the old super class name is replaced with a new name and all constructors
are modified so that they call a constructor in the new super class. However,
there is an exception to this substitution. If the name of the original super
class is java.lang.Object (the root of the class hierarchy), setSuperclass() does
not perform the substitution except it modifies constructors. This is because
java.lang.Object is often used for representing any class. For example, although
addElement() in java.util.Vector takes a parameter of class java.lang.Object,
which is the super class of java.util.Vector, this never means that addElement()
takes an instance of the super class.

The second design goal is to reduce overheads due to class loading with Ja-
vassist. Since we will use Javassist for implementing a mobile-agent system, in
which Javassist inserts security-check code into bytecode, Javassist must trans-
form bytecode received through a network as efficiently as possible. Mobile agents
frequently move among hosts and thus we cannot ignore the loading time of the
bytecode implementing the mobile agents.

Our design decision on how programmers specify a method body was influen-
ced by the second goal as well as the first one. Javassist does not use source code

322 S. Chiba

for specifying the body of an added method. If source code is used, it must be
compiled on the fly when a class is loaded into the JVM. A naive implementation
of this source-code approach would produce a complete class definition including
the added method at source level and then compile it with a Java compiler such
as javac. As we show later, however, this implementation implies serious per-
formance penalties. To achieve practical efficiency, we need a special compiler
that can quickly compile only a method body. We did not adopt the source-code
approach because of limitations of our resources. Instead, Javassist allows to
copy a pre-compiled method body from a class to another. This approach does
not imply overheads due to source-code compilation at load time.

The third design goal is to prevent programs to wrongly produce a class
including type incorrectness. To achieve this goal, Javassist allows only limited
kinds of alteration of class definitions. In general, reflective systems should im-
pose some restrictions on structural reflection so that programs do not falsely
collapse themselves with reflection. Suppose that a reflective system allows to
remove a field from a class at runtime. If there are already instances of that
class, is it appropriate that the system simply discards the value of the removed
field of those instances?

Since erroneous bytecode produced with Javassist is rejected by the byte-
code verifier, it can never damage the JVM. However, restricting the reflective
capability of Javassist is still necessary because it is often awkward to correct
a program producing erroneous bytecode. For this reason, Javassist does not
provide methods for removing a method or a field from a class because they
cause type incorrectness if there is a method accessing the removed method or
field. Javassist also imposes restrictions on the class passed to setSuperclass(),
which is a method for changing a super class. The new super class must be a
subclass of the original super class since there may be methods that implicitly
cast an instance of that class to the original super class. Of course, the new super
class must not be final. Furthermore, Javassist does not provide a method for
changing the parameters of a method. Programmers are recommended to add a
new method with the same name but with different parameters.

Adding a new member: Javassist provides methods for adding a new method
to a class. To avoid the abstraction and performance problems mentioned above,
addMethod() receives a CtMethod object, which specifies a method body. The
signature of addMethod() is as shown below:

void addMethod(CtMethod m, String name, ClassMap map)

name specifies the name of the added method. The method body is copied from
a given method m. Since a method body is copied from an existing compiled
method, no source-code compilation is needed at load time or no raw bytecode
is given to addMethod(). Programmers can describe a method body in Java and
compile it in advance. Javassist reads the bytecode of the compiled method and
adds it to another class. This improves execution performance of Javassist since
a compiler is not run at load time.

Load-Time Structural Reflection in Java 323

When a method body is copied, some class names appearing in the body
can be replaced according to a hash table map.1 For example, programmers can
declare a class XVector:

public class XVector extends java.util.Vector {
public void add(X e) {

super.addElement(e);
}

}

and copy the method add() into a class StringVector:

CtMethod m = /* method add() in XVector */;
CtClass c = /* class StringVector */;
ClassMap map = new ClassMap();
map.put("X", "java.lang.String");
c.addMethod(m, "addString", map);

The class name java.lang.String is substituted for all occurrences of the class
name X in add(). The added method is as follows:

public void addString(java.lang.String e) {
super.addElement(e);

}

Javassist provides another method addWrapper() for adding a new method.
It allows more generic description of a method body:

void addWrapper(int modifiers, CtClass returnType, String name,
CtClass[] parameters, CtClass[] exceptions,
CtMethod body, ConstParameter constParam)

The first five parameters specify the modifiers, the return type, the method
name, the parameter types, and the exceptions that the method may throw.
The body of the added method is copied from the method specified by body.
No matter what the signature of the added method is, the method specified by
body must have the following signature:

Object m(Object[] args, value-type constValue)

To fill the gap between this signature and the signature of the added method,
addWrapper() implicitly wraps the copied method body in glue code, which
constructs an array of actual parameters passed to the added method and
assigns it to args before executing the copied method body. The glue code
also sets constValue to a constant value specified by constParam passed to
addWrapper(). In the current version of Javassist, an integer value or a String
1 At least, addMethod() replaces all occurrences of the name of the class declaring

the copied method. Even if that class name does not appear at source level, the
corresponding bytecode may include references to it.

324 S. Chiba

object can be specified for the constant value. For example, this constant value
can be used to pass the name of the added method.

The value returned by the copied method body is an Object object. The glue
code also converts it into a value of the type specified by returnType. Then it
returns the converted value to the caller to the added method. If type conversion
fails, then an exception is thrown. Although methods added by addWrapper()
involve runtime overheads due to type conversion, a single method body can be
used as a template of multiple methods receiving a different number of parame-
ters. Examples of the use of addWrapper() are shown in Section 4.

Javassist also provides a method for adding a new field to a class:

void addField(int modifiers, CtClass type, String fieldname,
String accessor, FieldInitializer init)

If accessor is not null, this method also adds an accessor method, which returns
the value of the added field. The name of the accessor is specified by accessor.
Moreover, the last parameter init specifies the initial value of the added field.
The initial value is either one of parameters passed to a constructor, a newly
created object, or the result of a call to a static method.

Altering a method body: Although Javassist does not allow to remove a me-
thod from a class, it provides methods for changing a method body. setBody()
and setWrapper() in CtMethod substitute a given method body for an original
body:

void setBody(CtMethod m, ClassMap map)
void setWrapper(CtMethod m, ConstParameter param)

They correspond to addMethod() and addWrapper() respectively. setBody()
copies a method body from a given method m. Some class names appearing in
the body are replaced with different names according to map. setWrapper() also
copies a method body from m but it wraps the copied body in glue code. The
signature of m must be:

Object m(Object[] args, value-type constValue)

Javassist also provides a method for modifying expressions in a method body.
instrument() in CtMethod performs this modification:

void instrument(CodeConverter converter)

The parameter converter specifies how to instrument a method body. The
CodeConverter object can perform various kinds of instrumentation. Table 4 lists
methods provided by the current implementation of Javassist. They direct a
CodeConverter object to replace a specific kind of expressions with hooks, which
invoke static methods for executing the expressions in a customized manner. The
idea of CodeConverter came from C++’s operator overloading. CodeConverter was

Load-Time Structural Reflection in Java 325

Table 4. Methods in CodeConverter

Method Description
void redirectFieldAccess() change a field-access expression to access

a different field.
void replaceNew() replace a new expression with a static method

call.
void replaceFieldRead() replace a field-read expression with a static

method call.
void replaceFieldWrite() replace a field-write expression with a static

method call.

designed for safely altering the behavior of operators such as new and . (dot)
independently of the context.

For example, expressions for instantiating a specific class can be replaced
with expressions for calling a static method. Suppose that variables xclass and
yclass represent class X and Y, respectively. Then a program:

CtMethod m = ... ;
CodeConverter conv = new CodeConverter();
conv.replaceNew(xclass, yclass, "create");
m.instrument(conv);

instruments the body of the method represented by the CtMethod object m. All
expressions for instantiating the class X such as:

new X(3, 4);

are translated into expressions for calling a static method create() declared in
the class Y:

Y.create(3, 4);

The parameters to the new expression are passed to the static method.

Reflective class loader: The class loader provided by Javassist allows a loaded
program to control the class loading by that class loader. If a program is loaded
by Javassist’s class loader L and it includes a class C, then it can intercept
the loading of C by L to self-reflectively modify the bytecode of C (Figure 1).
For avoiding infinite recursion, while the loading of a class is intercepted, further
interception is prohibited. The load() method in CtClass requires that a program
is loaded by Javassist’s class loader although the other methods work without
Javassist’s class loader.

Java’s standard class loader never allows this self-reflective class loading for
security reasons. If it is allowed, a program may change some private fields to
public ones at load time for reading hidden values. Furthermore, in Java, if a
program creates a class loader and loads a class C with that class loader, the
loaded class is regarded as a different one from the class denoted by the name
C appearing in that program. The latter class is loaded by the class loader that
loaded the program.

326 S. Chiba

loader L

class C

bytecode

class X

load

intercept

Fig. 1. Javassist’s class loader allows self-reflective class loading

Using Javassist without a class loader: Javassist can be used without a
user class loader. There are three kinds of usage of Javassist: with a user class
loader, with a web server, and off line.

For security reasons, an applet is usually prohibited from using a user class
loader. However, we can write an applet working with Javassist if we use a web
server as a replacement of a user class loader. Since classes used in an applet are
loaded from a web server into the JVM of a web browser, we can customize the
web server so that it runs Javassist for processing the classes before sending them
to the web browser. Javassist includes a simple web server written in Java as a
basis for such customization. We can extend it to perform structural reflection
with Javassist. The program of the customized web server would be as follows:

for (;;) {
receive an http request from a web browser.
CtClass c = new CtClass(the requested class);
do structural reflection on c if needed.
byte[] bytecode = c.toBytecode();
send the bytecode to the web browser.

}

Before sending a requested class to a web browser, it performs structural reflec-
tion on the class according to the algorithm, for example, given as a configuration
file.

Another usage of Javassist is “off line”. We can perform structural reflection
on a class and overwrite the original class file of that class with the bytecode
obtained as the result. The altered class can be later loaded into the JVM without
a user class loader. The following is an example of the off-line use of Javassist:

CtClass c = new CtClass("Rectangle");
do structural reflection on c if needed.
c.compile(); // writes bytecode on the original class file.

This program performs structural reflection on class Rectangle and overwrites
the class file of that class with the bytecode obtained by c.toBytecode().

Load-Time Structural Reflection in Java 327

4 Examples

This section shows three applications of Javassist. We illustrate that Javassist
can be used to implement non-trivial alteration required by these applications
despite the level of the abstraction.

4.1 Binary Code Adaptation

The mechanism of binary code adaptation (BCA) [13] automatically alters class
definitions according to a file written by the users, called a delta file:

delta class implements Writable {
rename Writable Printable;
add public void print() { write(System.out); }

}

This delta file specifies adaptation that we mentioned in Section 2.
If Javassist is used, the implementor of BCA has only to write a parser

of delta file and a user class loader performing adaptation with Javassist. For
example, the parser translates the delta file shown above into the Java program
shown below:

class Exemplar implements Printable {
public void write(PrintStream s) { /* dummy */ }
public void print() { write(System.out); }

}

class Adaptor {
public void adapt(CtClass c) {

CtMethod printM = /* method print() in Exemplar */;
CtClass[] interfaces = c.getInterfaces();
for (int i = 0; i < interfaces.length; ++i)

if (interfaces[i].getName().equals("Writable")) {
interfaces[i] = CtClass.forName("Printable");
c.setInterfaces(interfaces);
c.addMethod(printM, new ClassMap());
return;

}
}

}

The class Exemplar is compiled together with Adapter in advance so that adapt()
can obtain a CtMethod object representing print(). adapt() uses the reifica-
tion and introspection API of Javassist for obtaining it. It first constructs a
CtClass object representing Exemplar and then obtains the CtMethod object by
getDeclaredMethods() in CtClass. The class file for Exemplar is automatically
found by Javassist on the class path used for loading Adapter.

The user class loader calls adapt() in Adaptor whenever a class is loaded
into the JVM. It creates a CtClass object representing the loaded class and
calls adapt() with that object. The method adapt() performs adaptation if the

328 S. Chiba

loaded class implements Writable. Then the user class loader converts the CtClass
object into bytecode and loads into the JVM.

Note that this implementation is more intuitive than the implementation with
behavioral reflection. Moreover, it is simpler than the implementation without
reflection since the implementor does not have to care about low-level bytecode
transformation. If the users of BCA can directly write the classes Exemplar and
Adaptor instead of a delta file, then the implementation would be much simpler
since we do not need the parser of delta file.

4.2 Behavioral Reflection

Behavioral reflection enabled by MetaXa [16,11] and Kava [21] can be imple-
mented with an approximately 750-line program (including comments) using
Javassist. A key idea of their implementations is to insert hooks in a program
when a class is loaded into the JVM. We below see an overview of a user class
loader performing this insertion with Javassist.

Let a metaobject be an instance of MyMetaobject, which is a subclass of
Metaobject:
public class MyMetaobject extends Metaobject {

public Object trapMethodcall(String methodName, Object[] args) {
/* called if a method call is intercepted. */ }

public Object trapFieldRead(String fieldName) {
/* called if the value of a field is read. */ }

public void trapFieldWrite(String fieldName, Object value) {
/* called if a field is set. */ }

}

If field accesses and method calls on an instance of C:
public class C {

public int m(int x) { return x + f; }
public int f;

}

are intercepted by the metaobject, then the user class loader alters the definition
of the class C into the following:2

public class C implements Metalevel {
public int m(int x) { /* notify a metaobject */ }
public int f;
private Metaobject _metaobject = new MyMetaobject(this);
public Metaobject _getMetaobject() { return _metaobject; }
public int orig_m(int x) { return x + f; }
public static int read_f(Object target) {

/* notify a metaobject */ }
public static void write_f(Object target, int value) {

/* notify a metaobject */ }
}

where the interface Metalevel declares the method getMetaobject().
2 For simplicity, this implementation ignores static members although extending

the implementation for handling static members is possible within the ability of
Javassist.

Load-Time Structural Reflection in Java 329

class Exemplar {
private Metaobject _metaobject;

public Object trap(Object[] args, String methodName) {
return _metaobject.trapMethodcall(methodName, args);

}

public static Object trapRead(Object[] args, String name) {
Metalevel target = (Metalevel)args[0];
return target._getMetaobject().trapFieldRead(name);

}

public static Object trapWrite(Object[] args, String name) {
Metalevel target = (Metalevel)args[0];
Object value = args[1];
target._getMetaobject().trapFieldWrite(name, value);

}
}

Fig. 2. Class Exemplar

This alteration can be performed within the ability of Javassist. The interface
Metalevel is added by setInterfaces() in CtClass. The field metaobject and
the accessor getMetaobject() are added by addField() in CtClass.

For intercepting method calls, the user class loader first makes a copy of every
method in C by calling addMethod() in CtClass. For example, it adds orig m()3

as a copy of m(). Then it replaces the body of every method in C with a copy
of the body of the method trap() in Exemplar (see Figure 2). This modification
is performed by setWrapper() in CtMethod. The gap between the signatures
of m() and trap() is filled by setWrapper(). The substituted method body
notifies a metaobject of interception. The first parameter args is a list of actual
parameters and the second one name is the name of the copy of the original
method such as "orig m". These two parameters are used for the metaobject to
invoke the original method through the Java reflection API.

For intercepting field accesses, the user class loader instruments the bodies
of methods in all classes. All accesses to a field f in C are translated into calls
to a static method read f() or write f(). This instrumentation is performed
by instrument() in CtMethod and replaceFieldRead() and replaceField-
Write() in CodeConverter. The methods read f() and write f() notify a me-
taobject of the accesses. They are added by addWrapper() in CtClass as co-
pies of trapRead() and trapWrite() in Exemplar. The gap between the signa-
tures of read f() (or write f()) and trapRead() (or trapWrite()) is filled
by addWrapper(). For example, actual parameters to read f() are converted
into the first parameter args to trapRead(). The second parameter name to
trapRead() is the name of the accessed field such as "f".

3 If a method name is overloaded, a copy of each method must be given a different
name such as orig m1(), orig m2(), ...

330 S. Chiba

4.3 Remote Method Invocation

Generating stub code for remote method invocation is another application of
Javassist. A Java program cannot directly call a method on a remote object on
a different computer. It needs the Java RMI tools generating stub code, which
translates a method call into lower-level network data transfer such as TCP/IP
communication. However, the Java RMI tools are compile-time ones; a program
must be processed by the RMI compiler, which generates and saves stub code on
a local disk. Also, a program using the Java RMI must be subject to a protocol
(i.e. API) specified by the Java RMI.

Javassist allows programmers to develop their own version of the RMI tools,
which specify a customized protocol and produce stub code at either compile-
time or even runtime. Suppose that an applet needs to call a method on a
Counter object on a web server written in Java. For remote method invocation,
the applet needs stub code defining a proxy object of the Counter object, which
has the same set of methods as the Counter object. If the Counter object has
a method setCount(), the proxy object also has a method setCount() with
the same signature. However, the method on the proxy object serializes given
parameters and sends them to the web server, where setCount() is invoked on
the Counter object with the received parameters.

This stub code can be generated at runtime with Javassist at the server side
and it can be sent on demand to the applet side. The applet programmer can
easily write the applet without concern about low-level network programming.
The stub code for accessing the Counter object is as follows:

public class ProxyCounter {
private RmiStream rmi;
public ProxyCounter(int objectRef) {

rmi = new RmiStream(objectRef);
}
public int setCount(int value) { /* remote method invocation */ }

}

An instance of ProxyCounter is a proxy object. An RmiStream object handles
low-level network communication. The class RmiStream is provided by a runtime
support library.

ProxyCounter can be defined within the confines of Javassist. The field rmi
is added by addField() in CtClass and the initialization of rmi in a constructor
can be specified by a FieldInitializer object passed to addField().

The method setCount() is added by addWrapper() in CtClass as a copy of
the method invoke() in Exemplar shown below:

class Exemplar {
private RmiStream rmi;
Object invoke(Object[] args, String methodName) {

return rmi.rpc(methodName, args);
}

}

Load-Time Structural Reflection in Java 331

The gap between the signatures of setCount() and invoke() is filled by add-
Wrapper(). If setCount() is called, the actual parameter value is converted into
an array of Object and assigned to args. methodName is set to a method name
"setCount"4. Then rpc() is called on the RmiStream object for serializing the
given parameters and sends them to the web server. Note that the parameters
can be serialized within the ability of the standard Java if they are converted
into an array of Object.

Stub code generation is another example, which is not straightforward to im-
plement with behavioral reflection. In a typical implementation with behavioral
reflection, a proxy object is an instance of the class Counter although all method
calls on the proxy object are intercepted by a metaobject and forwarded to a
remote object; the class ProxyCounter is not produced. Therefore, if the proxy
object is created, a constructor declared in Counter is called and may cause fatal
side-effects since the class Counter is defined as a class at the server side but the
proxy object is not at that side.

5 Related Work

Reflection in Java: MetaXa [16,11] and Kava [21] enable behavioral reflection
in Java whereas Javassist enables structural reflection. They are suitable for im-
plementing different kinds of language extensions. However, Javassist indirectly
covers applications of MetaXa and Kava since a class loader providing functio-
nality equivalent to MetaXa and Kava can be implemented with Javassist as we
showed in Section 4.2.

Although Kava performs bytecode transformation of class files before the
JVM loads them as Javassist does, they only insert hooks for interception in
bytecode but do not run metaobjects at that time. They enable reflection at
runtime and their ability is not structural reflection but the restricted behavioral
reflection.

The Java reflection API was recently extended in the JDK 1.3 beta to par-
tially enable behavioral reflection [19]. The new API allows a program to dy-
namically define a proxy class implementing given interfaces. An instance of
this proxy class delegates all method invocations to another object through a
type-independent interface.

Javassist is not the first system enabling structural reflection in Java. For
example, Kirby et al proposed a system enabling structural reflection (they called
it linguistic reflection) in Java although their system only allows to dynamically
define a new class but not to alter a given class definition at load time [15]. With
their system, a Java program can produce a source file of a new class, compile
it with an external compiler such as javac, and load the compiled class with a
user class loader. They reported that their system could be used for defining a
class optimized for a given runtime condition.

4 If a method name is overloaded, this should be setCount1, setCount2, ... for distin-
ction.

332 S. Chiba

Compile-time metaobject protocol: The compile-time metaobject protocol
[3] is another architecture enabling structural reflection without modifying an
existing runtime system. OpenJava [20] is a Java implementation of this archi-
tecture. As Javassist does, it restricts structural reflection within the time before
a class is loaded into the JVM although it was designed mainly for off-line use
at compile time. However, OpenJava is source-code basis although Javassist is
bytecode basis; OpenJava reads source code for creating an object representing
a class, a method, or a field. Alteration to the object is translated into corre-
sponding transformation of the source code. The bytecode for the altered class
is obtained by compiling the modified source code. Since OpenJava is source-
code basis, it can deal with syntax extensions within a framework of structural
reflection. For example, one can extend the syntax of class declaration and make
it possible to add an annotation to a class declaration.

On the other hand, the source-code basis means that OpenJava needs the
source file of every processed class whereas Javassist needs only a class file (com-
piled binary). This is a disadvantage because source files are not always available
if the class is provided by a third party. OpenJava also involves a performance
overhead due to handling source code; the source file of every class must be par-
sed for reification and compiled for reflection. Although this overhead is compen-
sation for the capability for fine-grained transformation of source code (including
syntax extension), it is not negligible if OpenJava is used by a class loader for
altering a loaded class. Some kinds of applications such as a mobile agent system
do not need fine-grained transformation but fast class loading.

Although the implementations of OpenJava or Javassist have not been tuned
up, the performance difference between OpenJava and Javassist is notable with
respect to reification and reflection. If a class loader can be implemented with
either OpenJava or Javassist, Javassist achieves shorter loading time. To show
this performance difference, we compared Javassist and OpenJava with two small
applications. We implemented BCA 5 and behavioral reflection presented in
Section 4 with both Javassist and OpenJava and we measured the time needed
for altering a given class with each implementation. For fair comparison, the
implementations with Javassist write modified class files back on a local disk.

Table 5 lists the results. The execution time is the average of five continuous
repetitions, which do not include the first repetition. Since a program is gradually
loaded into the JVM during the first repetition, the first one is tremendously
slow. For compiling a modified source file, OpenJava uses a compiler provided
by the Sun JDK for Solaris. However, it never uses the javac command since it
starts the compiler in a separate process; instead, it directly runs the compiler
(sun.tools.javac) on the same JVM.

Although the sizes of the programs implementing the applications are almost
equal between Javassist and OpenJava, Javassist processed a class more than ten
times faster than OpenJava. Note that the execution time by Javassist is shorter
than the time needed only for compiling a modified source file. This is because

5 Of course, the implementation of BCA with OpenJava does not modify a class file
in binary form. It emulates equivalent adaptation at source-code level.

Load-Time Structural Reflection in Java 333

Table 5. Performance comparison between Javassist and OpenJava

execution program original modified
time size source class file class file

(msec) (lines) (lines) (bytes) (bytes)
BCA Javassist 42 26 24 372 551

OpenJava 543 (172†) 17 24 548
Reflection Javassist 142 205 35 946 3932

OpenJava 4108 (302†) 247 35 2244

Sun JDK 1.2.2 (HotSpot VM 1.0.1), UltraSPARC II 300MHz
†compilation time by sun.tools.javac (Java compiler).

Javassist can move compilation penalties to an earlier stage. Even a method
body is not compiled while Javassist is running; it is pre-compiled in advance
and the resulting bytecode is directly copied to a target class at run time.

Bytecode translators: Bytecode translators such as JOIE [5] and the Ja-
vaClass API [7] provide a functionality similar to Javassist. They enable a Java
program to alter a class definition at load time. However, they are toolkits for
directly dealing with bytecode, that is, the raw data structure of a class file. For
example, classes included in JOIE are ClassInfo, Code, and Instruction. They show
that JOIE was designed for experienced programmers who have a deep under-
standing of the Java bytecode and want to implement complex transformation.
On the other hand, Javassist was designed to be easy to use; it does not require
programmers to have knowledge of the Java bytecode but instead it provides
source-level abstraction for manipulating bytecode in a relatively safe manner.
Although a range of instrumentation of a method body is restricted, we showed
that Javassist can be used to implement non-trivial applications. Javassist can
be regarded as a front end for easily and safely using a bytecode translator like
JOIE; it is not a replacement of the bytecode translators.

Using bytecode instrumentation for implementing a reflective facility is a
known technique in Smalltalk [1]. A uniqueness of Javassist against this is the
design of the API providing source-level abstraction. The Javassist API was
carefully designed to avoid wrongly producing a class definition containing type
incorrectness.

Others: OpenJIT [18] is a just-in-time compiler that allows a Java program to
control how bytecode are compiled into native code. It provides better flexibi-
lity than Javassist with respect to instrumenting a method body while OpenJIT
does not allow to add a new method or field to a class. However, using OpenJIT
is more difficult than using Javassist because OpenJIT requires programmers to
have knowledge of both the Java bytecode and native code. Although OpenJIT
can be used without knowledge of the Java bytecode if programmers use a me-

334 S. Chiba

chanism of OpenJIT for translating bytecode into a parse tree of an equivalent
Java program, overheads due to that translation has not been reported.

The idea of enabling reflection only at load time for avoiding performance
problems is found in the CLOS MOP [14]. For example, the CLOS MOP allows
a program to alter the algorithm of determining the super classes of a given
class but the super classes are statically determined when the class is loaded;
the program cannot dynamically change the super classes at runtime.

Some readers may think that Javassist is very similar to BCA. However,
Javassist was designed for a wider range of applications than BCA, which is
specialized for on-line class adaptation. BCA only allows to modify a given class
but not to dynamically define a new class from scratch. On the other hand, BCA
allows programmers to describe the algorithm of adaptation in declarative form.

6 Conclusion

This paper presented Javassist, which is an extension to the Java reflection
API. Unlike other extensions, it enables structural reflection in Java; it allows a
program to alter a given class definition and to dynamically define a new class.
A number of language extensions are more easily implemented with structural
reflection than with behavioral reflection.

For avoiding portability and performance problems, the design of Javassist
is based on our new architecture for structural reflection. Javassist performs
structural reflection by instrumenting bytecode of a loaded class. Therefore, it
can be used with a standard JVM and compiler although structural reflection is
allowed only before a class is loaded into the JVM, that is, at load time. Since
a standard JVM is used, the classes processed by Javassist are subject to the
bytecode verifier and the SecurityManager of Java. Javassist never breaks security
guarantees given by Java.

The followings are important features of Javassist:

– Javassist is portable. It is implemented in only Java without native methods
and it runs with a standard JVM. It does not need a platform-dependent
class library. Portability is significant in Java programming.

– Javassist provides source-level abstraction for manipulating bytecode in a
safe manner while bytecode translators, such as JOIE [5] and the JavaClass
API [7], provide no higher-level abstraction. The users of Javassist do not
have to have a deep understanding of the Java bytecode or to be careful for
avoiding wrongly making an invalid class rejected by the bytecode verifier.

– Javassist never needs source code whereas OpenJava [20], which is another
system for structural reflection with source-level abstraction, does. Since
OpenJava performs structural reflection by transforming source code, it must
parse and compile source code for reifying and reflecting a class. Thus a
class loader using Javassist can load a class faster than one using OpenJava.
However, OpenJava enables fine-grained manipulation of class definitions so
that the resulting definitions may be smaller and more efficient than ones by
Javassist.

Load-Time Structural Reflection in Java 335

The architecture that we designed for Javassist can be applied to other object-
oriented languages if a compiled binary program includes enough symbolic in-
formation to construct a class object. However, the API must be individually
designed for each language so that it allows a program to alter class definitions
in a safe manner with respect to the semantics of that language.

Acknowledgment. The author thanks Michiaki Tatsubori, who wrote pro-
grams using OpenJava for the experiment in Section 5. He also thanks Hidehiko
Masuhara for his comments on an early draft of this paper, and the anonymous
reviewers for their helpful comments.

References

1. Brant, J., B. Foote, R. E. Johnson, and D. Roberts, “Wrappers to the Rescure,”
in ECOOP’98 - Object Oriented Programming, LNCS 1445, pp. 396–417, Springer,
1998.

2. Braux, M. and J. Noyé, “Towards Partially Evaluating Reflection in Java,” in Proc.
of Symposium on Partial Evaluation and Semantics-Based Program Manipulation
(PEPM’00), SIGPLAN Notices vol. 34, no. 11, pp. 2–11, ACM, 1999.

3. Chiba, S., “A Metaobject Protocol for C++,” in Proc. of ACM Conf. on Object-
Oriented Programming Systems, Languages, and Applications, SIGPLAN Notices
vol. 30, no. 10, pp. 285–299, ACM, 1995.

4. Chiba, S. and T. Masuda, “Designing an Extensible Distributed Language with
a Meta-Level Architecture,” in Proc. of the 7th European Conference on Object-
Oriented Programming, LNCS 707, pp. 482–501, Springer-Verlag, 1993.

5. Cohen, G. A., J. S. Chase, and D. L. Kaminsky, “Automatic Program Transfor-
mation with JOIE,” in USENIX Annual Technical Conference ’98, 1998.

6. Cointe, P., “Metaclasses are first class: The ObjVlisp model,” in Proc. of ACM
Conf. on Object-Oriented Programming Systems, Languages, and Applications,
pp. 156–167, 1987.

7. Dahm, M., “Byte Code Engineering with the JavaClass API,” Techincal Report
B-17-98, Institut für Informatik, Freie Universität Berlin, January 1999.

8. Ellis, M. and B. Stroustrup, eds., The Annotated C++ Reference Manual. Addison-
Wesley, 1990.

9. Fabre, J. C. and T. Pérennou, “A Metaobject Architecture for Fault Tolerant Dis-
tributed Systems: The FRIENDS Approach,” IEEE Transactions on Computers,
vol. 47, no. 1, pp. 78–95, 1998.

10. Goldberg, A. and D. Robson, Smalltalk-80: The Language and Its Implementation.
Addison-Wesley, 1983.

11. Golm, M. and J. Kleinöder, “Jumping to the Meta Level, Behavioral Reflection
Can Be Fast and Flexible,” in Proc. of Reflection ’99, LNCS 1616, pp. 22–39,
Springer, 1999.

12. Hölzle, U. and D. Ungar, “A Third Generation Self Implementation: Reconciling
Responsiveness with Performance,” in Proc. of ACM Conf. on Object-Oriented
Programming Systems, Languages, and Applications, SIGPLAN Notices vol. 29,
no. 10, pp. 229–243, 1994.

13. Keller, R. and U. Hölzle, “Binary Component Adaptation,” in ECOOP’98 - Object
Oriented Programming, LNCS 1445, pp. 307–329, Springer, 1998.

336 S. Chiba

14. Kiczales, G., J. des Rivières, and D. G. Bobrow, The Art of the Metaobject Protocol.
The MIT Press, 1991.

15. Kirby, G., R. Morrison, and D. Stemple, “Linguistic Reflection in Java,” Software
– Practice and Experience, vol. 28, no. 10, pp. 1045–1077, 1998.

16. Kleinöder, J. and M. Golm, “MetaJava: An Efficient Run-Time Meta Architec-
ture for Java,” in Proc. of the International Workshop on Object Orientation in
Operating Systems (IWOOS’96), IEEE, 1996.

17. Masuhara, H. and A. Yonezawa, “Design and Partial Evaluation of Meta-objects
for a Concurrent Reflective Languages,” in ECOOP’98 - Object Oriented Program-
ming, LNCS 1445, pp. 418–439, Springer, 1998.

18. Ogawa, H., K. Shimura, S. Matsuoka, F. Maruyama, Y. Sohda, and F. Kimura,
“OpenJIT : An Open-Ended, Reflective JIT Compiler Framework for Java,” in
Proc. of ECOOP’2000, Springer Verlag, 2000. To appear.

19. Sun Microsystems, “JavaTM 2 SDK Documentation.” version 1.3 (beta release),
1999.

20. Tatsubori, M., S. Chiba, M.-O. Killijian, and K. Itano, “OpenJava: A Class-based
Macro System for Java,” in Reflection and Software Engineering (W. Cazzola, R. J.
Stroud, and F. Tisato, eds.), LNCS 1826, Springer Verlag, 2000.

21. Welch, I. and R. Stroud, “From Dalang to Kava — The Evolution of a Reflective
Java Extension,” in Proc. of Reflection ’99, LNCS 1616, pp. 2–21, Springer, 1999.

22. Wu, Z., “Reflective Java and A Reflective-Component-Based Transaction Archi-
tecture,” in Proc. of OOPSLA’98 Workshop on Reflective Programming in C++
and Java (J.-C. Fabre and S. Chiba, eds.), 1998.

	Reflective Programming and Open Implementations
	1. Reflective Programming and Open Implementations 1
	2. The Study of a Minimal Object-Oriented Reflective Kernel 30
	3. About Metaclass Composition 82
	4. Open Implementation: the CLOS MOP Example 123
	5. Open Implementation Design Issues 155
	6. Comparing Reflection in CLOS, Smalltalk and Java 169
	7. Implementing Message Passing Control in Smalltalk: an Analysis 173
	1. Reflective Programming and Open Implementations
	Goal of this Lecture
	Outline of the Lecture
	What we could have made...
	History,Concepts,Definitions and Examples
	Why Do We Need Reflective Programming?
	Why Do We Need Reflective Programming?
	Traditional vs Reflective Answers
	Role ot Reflective Prog in Software Engineering
	Definitions (I)
	Consequences
	Meta Programming in Programming Language Context
	Three Approaches
	Infinite Tower of (Meta)Interpreters
	Reflective Languages
	Open Implementation and MOPs
	The Basic Claim of Open Implementation
	Meta Object Protocols
	Meta Programming in CLOS
	Infinite Tower vs Open Implementation
	A Simple Application as Example
	Programming in Explicit Metaclass Context
	Reusing Meta Programs
	MetaProgramming in OO Context
	MetaProgramming by Example
	Costs of Reflective Programming
	Designing Reflective Systems
	Meta-Problems
	Meta and Open are not Limited to Programming Languages

	2. The Study of a Minimal Object-Oriented Reflective Kernel
	Goals of this Lecture
	Outline
	Recall: Meta Programming in Programming Language Context
	Class as Objects
	Some Class Properties
	Some Method based Properties
	Metaclass Responsibilities
	Outline
	Why ObjVlisp?
	The Loops Approach
	The Smalltalk Pragmatical Approach
	ObjVlisp in 5 Postulates (i)
	How to Stop Infinite Recursion?
	ObjVlisp in 5 Postulates (ii)
	Unification between Classes and Instances
	About the 6th ObjVlisp’s Postulate
	Instance Structure: Instance Variables
	Instance Behavior: Methods
	Minimal Structure of an Object
	Class as an Object: Structure
	The class Class: a Reflective class
	A Complete Example
	Outline
	Message Passing (i)
	Message Passing (ii)
	Object Creation by Example
	Object Creation: the Method new
	Object Allocation
	Object Initialization
	Object Creation: the Metaclass Role
	Class Creation
	A Simple Instantiation Graph
	What is the minimal behavior shared by all the objects?
	Outline
	Two Forms of Inheritance
	Dynamic Method Inheritance
	A Simple Inheritance Graph
	Method Lookup Example (i)
	Method Lookup Example (ii)
	Semantics of super
	Let us be Absurb!
	A Simple Uniform Kernel
	Class initialization: a Two Steps Process
	Recap: Class class
	Recap: Object class
	Outline
	Bootstrapping the Kernel
	Abstract Classes
	Abstract
	Abstract Class and Method Lookup

	3. About Metaclass Composition
	On the Road
	Recap: A Simple Uniform Kernel
	Recap: Method Lookup
	Sets
	The Metaclass Set
	Sharing Metaclasses
	Zooming in: Creation of Memo-Point (i)
	Zooming in: Creation of Memo-Point (ii)
	On the Road
	Problems with Explicit Metaclass Programming
	Interlevel Calls -> Interlevel Coupling
	Relevance of The Problem
	Upward Compatibility
	Upward Compatibility Definition
	Downward Compatibility
	Downward Compatibility Definition
	On the Road
	ObjVlisp
	CLOS
	SOM
	Derived Metaclasses in SOM
	Limit of Derived Metaclass
	Class Property Propagation in SOM
	Smalltalk Approach
	Deep into it: Smalltalk Metaclasses in 7 points
	Smalltalk Metaclasses in 7 points (iii)
	Smalltalk Metaclasses in 7 points (iv)
	Responsibilities
	Class Property Propagation in Smalltalk
	NeoClasstalk: Compatibility Model
	Compatibility? Yes!
	Refactoring the Smalltalk Boolean Hierarchy
	The Complete Architecture
	Class Property Composition
	An Example of Class Property Composition
	Extending the Smalltalk Kernel with the Compatibility Model
	NeoClasstalk Programmers
	Summary
	If You Really Want to Know More

	4. Open Implementation: the CLOS MOP Example
	Goals of this Lecture
	CLOS
	CLOS in a nutshell
	Class Definition
	Instance Creation
	Encapsulation and Attribute Accesses
	Inheritance
	Multiple Inheritance Conflict Resolution
	Generic Function
	Method Definition (i)
	(Method) Generic Function Application
	Method Selection
	Why CLOS MOP?
	Meta Programming in CLOS
	CLOS was too big!
	5 MetaObjects
	Static Elements
	Structure Protocols (i)
	Structure Protocols (ii)
	Extension Example
	Dynamic Elements
	Class Definition: Defclass
	Instance creation
	Method Creation: Defmethod (i)
	Defmethod (ii)
	Method lookup and apply protocol
	Apply Protocol Example
	Slot Access Protocol
	Finalize Inheritance
	Open Implementation and Reflective Languages

	5. Open Implementation Design Issues
	Goals of this Lecture
	Locality in MOP Design
	Open Implementation Design Guidelines
	Quality in interface designs
	Set Module: Design A
	Set Module: Design B
	First Guideline
	Second Guideline
	Third Guideline
	Subject Matter
	Fourth Guideline
	Design D
	Last Guideline: Layered Interfaces

	6. Comparing Reflection in CLOS, Smalltalk and Java
	Sorry but this is your work!
	Some Criterias

	7. Implementing Message Passing Control in Smalltalk: an Analysis
	Outline
	Why Controling Message?
	Controling What Exactly!
	A Limited Survey
	CLOS Example (i)
	CLOS Example (ii)
	CLOS Example (iii)
	A Coverage Tool in Smalltalk
	Smalltalk: Do It Yourself Syndrome
	Smalltalk Basic Reflective Tools
	6 Techniques
	Unknown Messages
	Creating a MinimalObject
	Wrapping anObject
	Evaluation
	Method Wrappers: an Example
	Method Wrappers
	Control
	MethodWrapper Optimization
	MW method body
	Installation
	MW Evaluation
	Exploiting VM Lookup Algorithm
	Let’s view it
	Interceptor: Anonymous Classes
	Let us think a bit
	Essential Methods
	Naive Control Implementation (i)
	Naive Control Implementation (ii)
	Naive Control Implementation (iii)
	Possible Optimization
	Evaluation
	Why A Mop for Smalltalk is Needed?
	Pratice!
	Selected Bibliography
	Web pages

	allPapers.pdf
	Chib00a.pdf
	Introduction
	Extensions to the Reflection Ability of Java
	Javassist
	Implementations of Structural Reflection
	Load-Time Structural Reflection
	The Javassist API

	Examples
	Binary Code Adaptation
	Behavioral Reflection
	Remote Method Invocation

	Related Work
	Conclusion

