
ESE
Einführung in Software Engineering

Prof. O. Nierstrasz
Dr. Serge Demeyer

Wintersemester 2000/2001

i

Table Of Contents i

1. ESE — Einführung in Software Engineering 1
Other Books 2
Course Overview 3
Why Software Engineering? 4
What is Software Engineering? 5
Software Development Activities 6
The Classical Software Lifecycle 7
Problems with the Software Lifecycle 8
Iterative Development 9
Iterative and Incremental Development 10
The Unified Process 11
Boehm’s Spiral Lifecycle 12
Requirements Collection 13
Requirements Analysis and Specification 14
Prototyping 15
Design 16
Implementation and Testing 17
Maintenance 18
Maintenance 19
Methods and Methodologies 20
Why use a Method? 21
Object-Oriented Methods: A History 22
Summary 23

2. Project Management 24
Why Project Management? 25
What is Project Management? 26
Risk Management 27
Risk Management Techniques 28

Focus on Scope 29
Scope and Objectives 30
Effort Estimation 31
Measurement-based Estimation 32
Estimation and Commitment 33
Planning and Scheduling 34
Deliverables and Milestones 35
Example: Task Durations and Dependencies 36
Pert Chart: Activity Network 37
Gantt Chart: Activity Timeline 38
Gantt Chart: Staff Allocation 39
Delays 40
Dealing with Delays 41
Earned Value: Tasks Completed 42
Gantt Chart: Slip Line 43
Timeline Chart 44
Slip Line vs. Timeline 45
Software Teams 46
Chief Programmer Teams 47
Directing Teams 48
Conway’s Law 49
Summary 50

3. Requirements Collection 51
The Requirements Engineering Process 52
Requirements Engineering Activities 53
Requirements Analysis 54
Problems of Requirements Analysis 55
The Requirements Analysis Process 56
Use Cases and Viewpoints 57
Unified Modeling Language 58

Writing Requirements Definitions 59
Functional and Non-functional Requirements 60
Types of Non-functional Requirements 61
Examples of Non-functional Requirements 62
Requirements Verifiability 63
Precise Requirements Measures 64
Prototyping Objectives 65
Evolutionary Prototyping 66
Throw-away Prototyping 67
Requirements Checking 68
Requirements Reviews 69
Traceability 70
Summary 71

4. Responsibility-Driven Design 72
Why Responsibility-driven Design? 73
What is Object-Oriented Design? 74
Design Steps 75
Finding Classes 76
Drawing Editor Requirements Specification 77
Drawing Editor: noun phrases 78
Class Selection Rationale (I) 79
Class Selection Rationale (II) 80
Class Selection Rationale (III) 81
Candidate Classes 82
CRC Cards 83
Finding Abstract Classes 84
Identifying and Naming Groups 85
Recording Superclasses 86
Responsibilities 87
Identifying Responsibilities 88

Table Of Contents

ii

Assigning Responsibilities 89
Relationships Between Classes 90
Recording Responsibilities 91
Collaborations 92
Finding Collaborations 93
Recording Collaborations 94
Summary 95

5. Detailed Design 96
Sharing Responsibilities 97
Multiple Inheritance 98
Building Good Hierarchies 99
Building Kind-Of Hierarchies 100
Refactoring Responsibilities 101
Identifying Contracts 102
Applying the Guidelines 103
What are Subsystems? 104
Subsystem Cards 105
Class Cards 106
Simplifying Interactions 107
Protocols 108
Refining Responsibilities 109
Specifying Your Design: Classes 110
Specifying Subsystems and Contracts 111
Summary 112

6. Modeling Objects and Classes 113
Why UML? 114
What is UML? 115
Class Diagrams 116
Visibility and Scope of Features 117
UML Lines and Arrows 118
Parameterized Classes 119
Interfaces 120
Utilities 121
Objects 122
Associations 123

Aggregation and Navigability 124
Association Classes 125
Qualified Associations 126
Inheritance 127
What is Inheritance For? 128
Design Patterns as Collaborations 129
Constraints 130
Design by Contract in UML 131
Using the Notation 132
Summary 133

7. Modeling Behaviour 134
Use Case Diagrams 135
Sequence Diagrams 136
UML Message Flow Notation 137
Collaboration Diagrams 138
Message Labels 139
State Diagrams 140
State Diagram Notation 141
State Box with Regions 142
Transitions and Operations 143
Composite States 144
Sending Events between Objects 145
Concurrent Substates 146
Branching and Merging 147
History Indicator 148
Creating and Destroying Objects 149
Using the Notations 150
Summary 151

8. Software Architecture 152
What is Software Architecture? 153
How Architecture Drives Implementation 154
Sub-systems, Modules and Components 155
Cohesion 156
Coupling 157
Tight Coupling 158

Loose Coupling 159
Architectural Parallels 160
Layered Architectures 161
Abstract Machine Model 162
OSI Reference Model 163
Client-Server Architectures 164
Client-Server Architectures 165
Four-Tier Architectures 166
Blackboard Architectures 167
Repository Model 168
Event-driven Systems 169
Selective Broadcasting 170
Dataflow Models 171
Invoice Processing System 172
Compilers as Dataflow Architectures 173
Compilers as Blackboard Architectures 174
UML: Package Diagram 175
UML: Deployment Diagram 176
Summary 177

9. User Interface Design 178
Interface Design Models 179
GUI Characteristics 180
GUI advantages 181
User Interface Design Principles 182
Direct Manipulation 183
Interface Models 184
Menu Systems 185
Menu Structuring 186
Command Interfaces 187
Information Presentation 188
Analogue vs. Digital Presentation 189
Colour Displays 190
User Guidance 191
Design Factors in Message Wording 192
Error Message Guidelines 193

iii

Good and Bad Error Messages 194
Help System Design 195
User Interface Evaluation 196
Summary 197

10. Software Validation 198
Software Reliability, Failures and Faults 199
Programming for Reliability 200
Common Sources of Software Faults 201
Fault Tolerance 202
Approaches to Fault Tolerance 203
Defensive Programming 204
Verification and Validation 205
The Testing Process 206
Regression Testing 207
Test Planning 208
Testing Strategies 209
Defect Testing 210
Functional testing 211
Equivalence Partitioning 212
Test Cases and Test Data 213
Structural Testing 214
Binary Search Method 215
Path Testing 216
Basis Path Testing: The Technique 217
Condition Testing 218
Statistical Testing 219
Static Verification 220
When to Stop? 221
Summary 222

11. Software Quality 223
What is Quality? 224
Hierarchical Quality Model 225
Quality Attributes 226
Correctness, Reliability, Robustness 227
Efficiency, Usability 228

Maintainability 229
Verifiability, Understandability 230
Productivity, Timeliness, Visibility 231
Quality Control Assumption 232
The Quality Plan 233
Types of Quality Reviews 234
Review Meetings and Minutes 235
Review Guidelines 236
Sample Review Checklists (I) 237
Sample Review Checklists (II) 238
Review Results 239
Product and Process Standards 240
Sample Java Code Conventions 241
Quality System 242
ISO 9000 243
ISO 9001 244
Capability Maturity Model (CMM) 245
Summary 246

12. Software Metrics 247
Why Metrics? 248
Why Software Metrics 249
What are Software Metrics? 250
Possible Problems 251
Empirical Relations 252
Measurement Mapping 253
Representation Condition 254
Scale 255
Scale Types 256
GQM 257
Quantitative Quality Model 258
“Define your own” Quality Model 259
Sample Size (and Inheritance) Metrics 260
Sample Coupling & Cohesion Metrics 261
Sample External Quality Metrics (i) 262
Sample External Quality Metrics (II) 263

Conclusion: Metrics for QA (I) 264
Conclusion: Metrics for QA (II) 265
Summary 266

13. Outlook: Heavy vs. Light Methods 267

ESE 1.

Universität Bern ESE — Einführung in Software Engineering

1. ESE — Einführung in Software Engineering

Lecturer: Matthias Rieger
Schützenmattstr. 14/206, Tel.631.3547
rieger@iam.unibe.ch

Secretary: Frau Th. Schmid, Tel.631.4692
Assistants: Michele Lanza, Tel. 631.4868

David Jud, Michael Locher
WWW: http://www.iam.unibe.ch/~scg/Teaching/ESE

Principle Texts:
❑ [Somm96a] Software Engineering, I. Sommerville, Addison-Wesley, Fifth Edn.,

1996. => Sixth Edition out in summer 2000
❑ [Pres97a] Software Engineering — A Practitioner’s Approach, R. Pressman,

Mc-Graw Hill, Fourth Edn., 1997.
❑ [Wirf90a] Designing Object-Oriented Software, R. Wirfs-Brock, B. Wilkerson, L.

Wiener, Prentice Hall, 1990.
❑ [Ghez91a] Fundamentals of Software Engineering, C. Ghezzi, M. Jazayeri, D.

Mandroli, Prentice Hall, 1991.

ESE 2.

Universität Bern ESE — Einführung in Software Engineering

Other Books

❑ The Mythical Man-Month, F. Brooks, Addison-Wesley, Anniversary Edition
1995.

❑ Object Lessons — Lessons Learned in Object-Oriented Development Projects,
T. Love, SIGS Books, 1993

❑ Object-Oriented Development — The Fusion Method, D. Coleman, et al.,
Prentice Hall, 1994.

❑ Succeeding with Objects: Decision Frameworks for Project Management, A.
Goldberg and K. Rubin, Addison-Wesley, 1995

❑ A Discipline for Software Engineering, W. Humphrey, Addison Wesley, 1995
❑ Object-Oriented Software Construction, B. Meyer, Prentice Hall, Second Edn.,

1997.
❑ Objects, Components and Frameworks with UML, D. D'Souza, A. Wills,

Addison-Wesley, 1999
❑ UML Distilled, M. Fowler with K. Scott, Addison Wesley, Second Edition, 2000
❑ UML@Work, M. Hitz, G. Kappel, DPunkt, 1999

ESE 3.

Universität Bern ESE — Einführung in Software Engineering

Course Overview

1. 10-25-2000 Introduction — The Software Lifecycle
2. 11-01-2000 Project Management
3. 11-08-2000 Requirements Collection
4. 11-15-2000 Responsibility-Driven Design
5. 11-22-2000 Detailed Design
6. 12-29-2000 Modeling Objects and Classes
7. 12-06-2000 Modeling Behaviour
8. 12-13-2000 Software Architecture
9. 12-20-2000 User Interface Design
10. 01-10-2001 Software Validation
11. 01-17-2001 Software Quality
12. 01-24-2001 Software Metrics
13. 31-01-2001 Outlook: Heavy vs. Light Methods

02-07-2001 Final exam

ESE 4.

Universität Bern ESE — Einführung in Software Engineering

Why Software Engineering?

A naive view:

But ...
❑ Where did the specification come from?
❑ How do you know the specification correspond to the user’s needs?
❑ How did you decide how to structure your program?
❑ How do you know the program actually meets the specification?
❑ How do you know your program will always work correctly?
❑ What do you do if the users’ needs change?
❑ How do you divide tasks up if you have more than a one-person team?

Problem Specification Final Programcoding

ESE 5.

Universität Bern ESE — Einführung in Software Engineering

What is Software Engineering?
Some Definitions and Issues
“state of the art of developing quality software on time and within budget”

❑ Trade-off between perfection and physical constraints
☞ SE has to deal with real-world issues

❑ State of the art!
☞ Community decides on “best practice” + life-long education

“multi-person construction of multi-version software” (Parnas)
❑ Team-work

☞ Scale issue (“program well” is not enough) + Communication Issue
❑ Successful software systems must evolve or perish

☞ Change is the norm, not the exception
“software engineering is different from other engineering disciplines” ([Somm96a])

❑ Not constrained by physical laws
☞ limit = human mind

❑ It is constrained by political forces
☞ balancing stake-holders

ESE 6.

Universität Bern ESE — Einführung in Software Engineering

Software Development Activities

Requirements Collection
❑ Establish customer’s needs

Analysis
❑ Model and specify the requirements (“what”)

Design
❑ Model and specify a solution (“how”)

Implementation
❑ Construct a solution in software

Testing
❑ Validate the solution against the requirements

Maintenance
❑ Repair defects and adapt the solution to new requirements

NB: these are ongoing activities, not sequential phases!

ESE 7.

Universität Bern ESE — Einführung in Software Engineering

The Classical Software Lifecycle

The waterfall model is unrealistic for many reasons, especially:
❑ requirements must be “frozen” too early in the life-cycle
❑ requirements are validated too late

The classical software lifecycle
models the software development as
a step-by-step “waterfall” between the
various development phases.

Requirements
Collection

Analysis

Design

Implementation

Testing

Maintenance

ESE 8.

Universität Bern ESE — Einführung in Software Engineering

Problems with the Software Lifecycle

1. “Real projects rarely follow the sequential flow that the model proposes. Iteration
always occurs and creates problems in the application of the paradigm”

2. “It is often difficult for the customer to state all requirements explicitly. The classic
life cycle requires this and has difficulty accommodating the natural uncertainty
that exists at the beginning of many projects.”

3. “The customer must have patience. A working version of the program(s) will not
be available until late in the project timespan. A major blunder, if undetected until
the working program is reviewed, can be disastrous.”

— Pressman, SE, p. 26

ESE 9.

Universität Bern ESE — Einführung in Software Engineering

Iterative Development

In practice, development is always iterative, and all activities progress in parallel.

✎ If the waterfall model is pure fiction, why is it still the standard software process?

Requirements
Collection

Testing

Design

Analysis

Implementation

Validation through prototyping

Testing based on requirements

Testing throughout implementation

Maintenance through iteration

Design through refactoring

ESE 10.

Universität Bern ESE — Einführung in Software Engineering

Iterative and Incremental Development

Plan to iterate your analysis, design and implementation.
☞ You won’t get it right the first time, so integrate, validate and test as

frequently as possible.

The later in the lifecycle errors are discovered, the more expensive they are to fix!

Plan to incrementally develop (i.e., prototype) the system.
☞ If possible, always have a running version of the system, even if most

functionality is yet to be implemented.
☞ Integrate new functionality as soon as possible.
☞ Validate incremental versions against user requirements.

ESE 11.

Universität Bern ESE — Einführung in Software Engineering

The Unified Process

How do you plan the number of iterations? How do you decide on completion?

Inception Elaboration Construction Transition

Requirements

Analysis

Design

Implementation

Test

Iter.
#1

Iter.
#2

Iter.
#n-1

Iter.
#n...

ESE 12.

Universität Bern ESE — Einführung in Software Engineering

Boehm’s Spiral Lifecycle
Risk Analysis =

Engineering =Customer Evaluation =
evolving system

initial requirements

first prototype

alpha demo

determination of objectives,
alternatives and constraints

Analysis of alternatives and
identification/resolution of risks

Development of the
“next level” product

Assessment of the results
of engineering

go, no-go decisioncompletion

Risk = something that will delay
project or increase its cost

Planning =

ESE 13.

Universität Bern ESE — Einführung in Software Engineering

Requirements Collection

User requirements are often expressed informally:
☞ features
☞ usage scenarios

Although requirements may be documented in written form, they may be incomplete,
ambiguous, or even incorrect.

Requirements will change!
☞ inadequately captured or expressed in the first place
☞ user and business needs may change during the project

Validation is needed throughout the software lifecycle, not only when the “final system”
is delivered!

☞ build constant feedback into your project plan
☞ plan for change
☞ early prototyping [e.g., UI] can help clarify requirements

ESE 14.

Universität Bern ESE — Einführung in Software Engineering

Requirements Analysis and Specification

Analysis is the process of specifying what a system will do. The intention is to provide a
clear understanding of what the system is about and what its underlying concepts are.
The result of analysis is a specification document.

An object-oriented analysis results in models of the system which describe:
❑ classes of objects that exist in the system
❑ relationships between those classes
❑ use cases and scenarios describing

☞ operations that can be performed on the system
☞ allowable sequences of those operations

Does the requirements specification correspond to the users’ actual needs?

ESE 15.

Universität Bern ESE — Einführung in Software Engineering

Prototyping

A prototype is a software program developed to test, explore or validate a hypothesis, i.e.
to reduce risks.

An exploratory prototype, also known as a throwaway prototype, is intended to validate
requirements or explore design choices.

❑ UI prototype — validate user requirements
❑ rapid prototype — validate functional requirements
❑ experimental prototype — validate technical feasibility

An evolutionary prototype is intended to evolve in steps into a finished product

❑ iteratively “grow” the application, redesigning and refactoring along the way

✔ First do it, then do it right, then do it fast.

ESE 16.

Universität Bern ESE — Einführung in Software Engineering

Design

Design is the process of specifying how the specified system behaviour will be realized
from software components. The results are architecture and detailed design documents.

Object-oriented design delivers models that describe:
❑ how system operations are implemented by interacting objects
❑ how classes refer to one another and how they are related by inheritance
❑ attributes of, and operations, on classes

Design is an iterative process, proceeding in parallel with implementation!

ESE 17.

Universität Bern ESE — Einführung in Software Engineering

Implementation and Testing

Implementation is the activity of constructing a software solution to the customer’s
requirements.
Testing is the process of validating that the solution meets the requirements.

The result of implementation and testing is a fully documented and validated solution.

❑ Design, implementation and testing are iterative activities
☞ The implementation does not “implement the design”, but rather the design

document documents the implementation!

❑ System tests reflect the requirements specification
❑ Ideally, test case specification precedes design and implementation

☞ Repeatable, automated tests enable evolution and refactoring

ESE 18.

Universität Bern ESE — Einführung in Software Engineering

Maintenance

Maintenance is the process of changing a system after it has been deployed.

❑ Corrective maintenance: identifying and repairing defects
❑ Adaptive maintenance: adapting the existing solution to new platforms
❑ Perfective maintenance: implementing new requirements

In a spiral lifecycle, everything after the delivery and deployment of the first prototype can
be considered “maintenance”!

“Maintenance” entails:
❑ configuration and version management
❑ reengineering (redesigning and refactoring)
❑ updating all analysis, design and user documentation

ESE 19.

Universität Bern ESE — Einführung in Software Engineering

Maintenance

Changes in User
Requirements

Documentation

Hardware
Changes

Emergency
Fixes

Routine
Debugging

Other

Changes in
Data Formats

Efficiency
Improvements

41.8

17.4

12.4

9
6.2

5.5

4

3.4

Breakdown of
maintenance costs.
Source: Lientz 1979

ESE 20.

Universität Bern ESE — Einführung in Software Engineering

Methods and Methodologies
Principle

❑ = general and abstract statements describing desirable properties
Method and Technique

❑ method = general guidelines that govern the execution of some activity
❑ technique = more technical and mechanical than method

Methodology
❑ = set of methods and techniques packaged together

Principle

Methods and Techniques

Methodologies

Tools

Relationship between principles, techniques, methodologies and tools [Ghez91a]

ESE 21.

Universität Bern ESE — Einführung in Software Engineering

Why use a Method?

Requirements checking:
❑ System Modeling helps uncover omissions and ambiguities in requirements

Clearer concepts:
❑ Domain analysis models can be reused/adapted when requirements change

Less design rework:
❑ Analysis and design models allow alternatives to be studied before

implementation starts
Better refactoring of design work:

❑ Analysis and design helps to decompose large systems into manageable parts
Improved communications between developers:

❑ Standard notations provide a common vocabulary for analysis and design
Less effort needed on maintenance:

❑ Analysis and design documents help maintainers understand complex systems

ESE 22.

Universität Bern ESE — Einführung in Software Engineering

Object-Oriented Methods: A History

First generation:
❑ Adaptation of existing notations (ER diagrams, state diagrams ...):

☞ Booch, OMT, Shlaer and Mellor, ...
❑ Specialized design techniques:

☞ CRC cards; responsibility-driven design; design by contract
Second generation:

❑ Fusion:
☞ Booch + OMT + CRC + formal methods

Third generation:
❑ Unified Modeling Language:

☞ uniform notation: Booch + OMT + Use Cases + ...
☞ complete lifecycle support (to be defined!)

Object-oriented methods are still maturing. Notations are converging, but:
☞ transition is still risky
☞ few methods deal seriously with software reuse.

ESE 23.

Universität Bern ESE — Einführung in Software Engineering

Summary

You should know the answers to these questions:
❑ How does Software Engineering differ from programming?
❑ Why is the “waterfall” model unrealistic?
❑ What is the difference between analysis and design?
❑ Why plan to iterate? Why develop incrementally?
❑ Why is programming only a small part of the cost of a “real” software project?
❑ What are the key advantages and disadvantages of object-oriented methods?

Can you answer the following questions?
✎ What is the appeal of the “waterfall” model?
✎ Why do requirements change?
✎ How can you validate that an analysis model captures users’ real needs?
✎ When does analysis stop and design start?
✎ When can implementation start?

ESE 24.

Universität Bern Project Management

2. Project Management

Overview:
❑ Risk management
❑ Scoping and estimation, planning and scheduling
❑ Dealing with delays
❑ Staffing, directing,teamwork

Sources:
❑ Software Engineering, I. Sommerville, Addison-Wesley, Fifth Edn., 1996.
❑ Software Engineering — A Practitioner’s Approach, R. Pressman, Mc-Graw Hill,

Third Edn., 1994.
Recommended Reading:

❑ The Mythical Man-Month, F. Brooks, Addison-Wesley, 1975
❑ Object Lessons, T. Love, SIGS Books, 1993
❑ Succeeding with Objects: Decision Frameworks for Project Management, A.

Goldberg and K. Rubin, Addison-Wesley, 1995
❑ Extreme Programming Explained: Embrace Change, Kent Beck, Addison

Wesley, 1999

ESE 25.

Universität Bern Project Management

Why Project Management?

Almost all software products are obtained via projects.
(as opposed to manufactured products)

Project Concern= Deliver on time and within budget

The Project Team is the
primary Resource!

Limited Resources
Achieve Interdependent &

Conflicting Goals

ESE 26.

Universität Bern Project Management

What is Project Management?

Management Functions

❑ Planning: Estimate and schedule resources
❑ Organization: Who does what
❑ Staffing: Recruiting and motivating personnel
❑ Directing: Ensure team acts as a whole
❑ Monitoring (Controlling): Detect plan deviations + corrective actions

Project Management = Plan the work and work the plan

ESE 27.

Universität Bern Project Management

Risk Management

If you don’t actively attack risks, they will actively attack you.

— Tom Gilb

Project risks
☞ budget, schedule, resources, size, personnel, morale ...

Technical risks
☞ implementation technology, verification, maintenance ...

Business risks
☞ market, sales, management, commitment ...

Management must:
❑ identify risks as early as possible
❑ assess whether risks are acceptable
❑ take appropriate action to mitigate and manage risks

☞ e.g., training, prototyping, iteration, ...
❑ monitor risks throughout the project

ESE 28.

Universität Bern Project Management

Risk Management Techniques

Risk Items Risk Management Techniques

Personnel shortfalls Staffing with top talent; team building; cross-
training; pre-scheduling key people

Unrealistic schedules and budgets Detailed multisource cost & schedule estimation;
incremental development; reuse; re-scoping

Developing the wrong software functions User-surveys; prototyping; early users’s manuals

Continuing stream of requirements
changes

High change threshold; information hiding;
incremental development

Real time performance shortfalls Simulation; benchmarking; Modeling;
prototyping; instrumentation; tuning

Straining computer science capabilities Technical analysis; cost-benefit analysis;
prototyping; reference checking

ESE 29.

Universität Bern Project Management

Focus on Scope

For decades, programmers have been whining, “The customers can’t tell us
what they want. When we give them what they say they want, they don’t like
it.” Get over it. This is an absolute truth of software development. The
requirements are never clear at first. Customers can never tell you exactly
what they want.

— Kent Beck

ESE 30.

Universität Bern Project Management

Scope and Objectives

Myth: “A general statement of objectives is enough to start coding.”
Reality: Poor up-front definition is the major cause of project failure.

In order to plan, you must set clear scope & objectives

Objectives identify the general goals of the project, not how they will be achieved.

Scope identifies the primary functions that the software is to accomplish, and bounds
these functions in a quantitative manner.

❑ Goals must be realistic and measurable
❑ Constraints, performance, reliability must be explicitly stated
❑ Customer must set priorities

ESE 31.

Universität Bern Project Management

Effort Estimation

Estimation Strategies
❑ Expert judgement — cheap, but unreliable

☞ Consult experts and compare estimates
❑ Estimation by analogy — limited applicability

☞ Compare with other projects in the same application domain
❑ Parkinson's Law — pessimistic management strategy

☞ Work expands to fill the time available
❑ Pricing to win — requires trust between parties

☞ You do what you can with the budget available

Estimation Techniques
“Decomposition” and “Algorithmic cost modeling” are used together

❑ Decomposition — top-down or bottom-up estimation
☞ Estimate costs for components + integrating costs ...

❑ Algorithmic cost modeling — requires correlation data
☞ Exploit database of historical facts to map size on costs

ESE 32.

Universität Bern Project Management

Measurement-based Estimation

A. Measure
Develop a system model
and measure its size

B. Estimate
Determine the effort with respect to
an empirical database of
measurements from similar projects

C. Interpret
Adapt the effort with respect to a
specific development project plan

ESE 33.

Universität Bern Project Management

Estimation and Commitment

Example: The XP process

1. a. Customers write stories and
b. Programmers estimate stories

☞ if they can’t, they ask the customers to split/merge/rewrite stories
2. Programmers measure the team load factor, the ratio of ideal programming time

to the calendar
3. Customers sort stories by priority
4. Programmers sort stories by risk
5. a. Customers pick date, programmers calculate budget, customers pick stories

adding up to that number, or
b. Customers pick stories, programmers calculate date
(customers complain, programmers suggest customers reduce scope,
customers complain some more but reduce scope anyway)

ESE 34.

Universität Bern Project Management

Planning and Scheduling
Good planning depends a lot on project manager’s intuition and experience!

❑ Split project into tasks.
☞ Tasks into subtasks etc.

❑ For each task, estimate the time.
☞ Define tasks small enough for reliable estimation.

❑ Significant tasks should end with a milestone.
☞ Milestone = A verifiable goal that must be met after task completion
☞ Clear unambiguous milestones are a necessity!

(“80% coding finished” is a meaningless statement)
☞ Monitor progress via milestones

❑ Define dependencies between project tasks
☞ Total time depends on longest (= critical) path in activity graph
☞ Minimize task dependencies to avoid delays

❑ Organize tasks concurrently to make optimal use of workforce

Planning is iterative => monitor and revise schedules during the project!

ESE 35.

Universität Bern Project Management

Deliverables and Milestones

Myth: “The only deliverable for a successful project is the working program.”
Reality: Documentation of all aspects of software development are needed to ensure

maintainability.

Project deliverables are results that are delivered to the customer.

❑ E.g.:
☞ initial requirements document
☞ UI prototype
☞ architecture specification

❑ Milestones and deliverables help to monitor progress
☞ Should be scheduled roughly every 2-3 weeks

NB: Deliverables must evolve as the project progresses!

ESE 36.

Universität Bern Project Management

Example: Task Durations and Dependencies

✎ What is the minimum total duration of this project?

Task Duration (days) Dependencies

T1 8

T2 15

T3 15 T1

T4 10

T5 10 T2, T4

T6 5 T1, T2

T7 20 T1

T8 25 T4

T9 15 T3, T6

T10 15 T5, T7

T11 7 T9

T12 10 T11

ESE 37.

Universität Bern Project Management

Pert Chart: Activity Network

ESE 38.

Universität Bern Project Management

Gantt Chart: Activity Timeline

ESE 39.

Universität Bern Project Management

Gantt Chart: Staff Allocation

(Overall tasks such as reviewing, reporting, ... are difficult to incorporate)

Tobias

Marta

Leo

Ryan

Sylvia

Laura

F M A M J J A S O N D J F M A M J JJ A

Free timeOccupied time

1

1 2. Design

2. Design

3.3. Code Gen.2. Design

2. Design3.3. Code Gen.

3.1

3.1

3.1 3.2. Parser

3.2. Parser

3.2. Parser

4. Integrate&Test

4. Integrate&Test

4. Integrate&Test

4. Integrate&Test

5. Manual

5. Manual

7

7

ESE 40.

Universität Bern Project Management

Delays

Myth: “If we get behind schedule, we can add more programmers and catch up.”
Reality: Adding more people typically slows a project down.

Scheduling problems
❑ Estimating the difficulty of problems and the cost of developing a solution is hard
❑ Productivity is not proportional to the number of people working on a task
❑ Adding people to a late project makes it later due to communication overhead
❑ The unexpected always happens. Always allow contingency in planning
❑ Cutting back in testing and reviewing is a recipe for disaster
❑ Working overnight? Only short term benefits!

Planning under uncertainty
❑ State clearly what you know and don’t know
❑ State clearly what you will do to eliminate unknowns
❑ Make sure that all early milestones can be met
❑ Plan to replan

ESE 41.

Universität Bern Project Management

Dealing with Delays
Spot potential delays as soon as possible

... then you have more time to recover

How to spot?
❑ Earned value analysis

☞ planned time is the project budget
☞ time of a completed task is credited to the project budget

How to recover?
A combination of following 3 actions

❑ Adding senior staff for well-specified tasks
☞ outside critical path to avoid communication overhead

❑ Prioritize requirements and deliver incrementally
☞ deliver most important functionality on time
☞ testing remains a priority (even if customer disagrees)

❑ Extend the deadline

ESE 42.

Universität Bern Project Management

Earned Value: Tasks Completed
The 0/100 Technique

❑ earned value := 0% when task not completed
❑ earned value := 100% when task completed

☞ tasks should be rather small
☞ gives a pessimistic impression

The 50/50 Technique
❑ earned value := 50% when task started
❑ earned value := 100% when task completed

☞ tasks are rather large
☞ may give an optimistic impression

❑ variant with 20/80

The Milestone Technique
❑ earned value := number of milestones completed / total number of milestones

☞ tasks should be large with lots of intermediate milestones
☞ better to split task in several subtasks and fall back on 0/100

ESE 43.

Universität Bern Project Management

Gantt Chart: Slip Line
❑ Visualise percentage of task completed via shading

☞ draw a slip line at current date, connecting endpoints of the shaded areas
☞ bending to the right = ahead of schedule, to the left = behind schedule

Interpretation (end of october):
Task 3.2 is finished ahead of schedule and task 4 is started ahead of schedule
Tasks 3.3 and 6 seem to be behind schedule (i.e., less completed than planned)

1.Start
2.Design
3.Implementation

3.1.build scanner
3.2.build parser
3.3. build code generator

4.Integrate & Test
5.Write manual
6. Reviewing
7. Finish

F M A M J J A S O N D J F M A M J JJ A

ESE 44.

Universität Bern Project Management

Timeline Chart
Visualise slippage evolution

❑ downward lines represent planned completion time as they vary in current time
❑ bullets at the end of a line represent completed tasks

Interpretation (end of october):
Task 3.1: completed on time.
Task 3.2: rescheduled 2 weeks earlier end of August, finished 2 weeks ahead of time.
Task 3.3: rescheduled with one month delay at the end of August

F M A M J J A S O N D J F M A M J JJ

M
J

J
A

S
O

N
D

A
ctual T

im
e

Planned Time

3.1.scanner

3.2 parser

3.3 code generator

Today

ESE 45.

Universität Bern Project Management

Slip Line vs. Timeline

Slip Line

Monitors current slip status of project tasks
❑ many tasks
❑ only for 1 point in time

☞ include a few slip lines from the past to illustrate evolution

Timeline

Monitors how the slip status of project tasks evolves
❑ few tasks

☞ crossing lines quickly clutter the figure
☞ colours can be used to show more tasks

❑ complete time scale

ESE 46.

Universität Bern Project Management

Software Teams

Team organisation

❑ Teams should be relatively small (< 8 members)
☞ minimize communication overhead
☞ team quality standard can be developed
☞ members can work closely together
☞ programs are regarded as team property (“egoless programming”)
☞ continuity can be maintained if members leave

❑ Break big projects down into multiple smaller projects
❑ Small teams may be organised in an informal, democratic way
❑ Chief programmer teams try to make the most effective use of skills and

experience

ESE 47.

Universität Bern Project Management

Chief Programmer Teams

❑ Consist of a kernel of specialists helped by others as required
☞ chief programmer takes full responsibility for design, programming, testing

and installation of system
☞ backup programmer keeps track of CP’s work and develops test cases
☞ librarian manages all information
☞ others may include: project administrator, toolsmith, documentation editor,

language/system expert, tester, and support programmers

❑ Reportedly successful but problems are:
☞ Difficult to find talented chief programmers
☞ Disrupting to normal organisational structures
☞ De-motivating for those who are not chief programmers

ESE 48.

Universität Bern Project Management

Directing Teams
Directing a team = the whole becomes more then the sum of its parts

Managers serve their team
❑ Managers ensure that team has the necessary information and resources

“The managers function is not to make people work, it is to make it possible
for people to work” (Tom DeMarco)

Responsibility demands authority
❑ Managers must delegate

☞ Trust your own people and they will trust you.

Managers manage
❑ Managers cannot perform tasks on the critical path

☞ Especially difficult for technical managers

Developers control deadlines
❑ A manager cannot meet a deadline to which the developers have not agreed

ESE 49.

Universität Bern Project Management

Conway’s Law

“Organizations that design systems are constrained to produce designs that
are copies of the communication structures of these organizations”

ESE 50.

Universität Bern Project Management

Summary

You should know the answers to these questions:
❑ How can prototyping help to reduce risk in a project?
❑ What are milestones, and why are they important?
❑ What can you learn from an activity network? An activity timeline?
❑ What’s the difference between the 0/100; the 50/50 and the milestone technique

for calculating the earned value.
❑ Why should programming teams have no more than about 8 members?

Can you answer the following questions?
✎ What will happen if the developers, not the customers, set the project priorities?
✎ What is a good way to measure the size of a project (based on requirements alone)?
✎ When should you sign a contract with the customer?
✎ Would you consider bending slip lines as a good sign or a bad sign? Why?
✎ How would you select and organize the perfect software development team?
✎ What are good examples of Conway’s Law in action?

ESE 51.

Universität Bern Requirements Collection

3. Requirements Collection

Overview:
❑ The Requirements Engineering Process

☞ Requirements Analysis, Definition and Specification
❑ Use cases and scenarios
❑ Functional and non-functional requirements
❑ Evolutionary and throw-away prototyping
❑ Requirements checking and reviews

Sources:
❑ Software Engineering, I. Sommerville, Addison-Wesley, Fifth Edn., 1996.
❑ Software Engineering — A Practitioner’s Approach, R. Pressman, Mc-Graw Hill,

Third Edn., 1994.
❑ Objects, Components and Frameworks with UML, D. D'Souza, A. Wills,

Addison-Wesley, 1999

ESE 52.

Universität Bern Requirements Collection

The Requirements Engineering Process

ESE 53.

Universität Bern Requirements Collection

Requirements Engineering Activities

Feasibility study
❑ Determine if the user needs can be satisfied with the available technology and

budget.
Requirements analysis

❑ Find out what system stakeholders require from the system.
Requirements definition

❑ Define the requirements in a form understandable to the customer.
Requirements specification

❑ Define the requirements in detail.
Written as a contract between client and contractor.

“Requirements are for users; specifications are for analysts and developers.”

ESE 54.

Universität Bern Requirements Collection

Requirements Analysis

Sometimes called requirements elicitation or requirements discovery

Technical staff work with customers to determine
❑ the application domain,
❑ the services that the system should provide and
❑ the system’s operational constraints.

Involves various stakeholders:
❑ e.g., end-users, managers, engineers involved in maintenance, domain

experts, trade unions, etc.

ESE 55.

Universität Bern Requirements Collection

Problems of Requirements Analysis

Various problems typically arise:
❑ Stakeholders don’t know what they really want
❑ Stakeholders express requirements in their own terms
❑ Different stakeholders may have conflicting requirements
❑ Organisational and political factors may influence the system requirements
❑ The requirements change during the analysis process.

New stakeholders may emerge.

Requirements evolution
❑ Requirements always evolve as a better understanding of user needs is

developed and as the organisation’s objectives change
❑ It is essential to plan for change in the requirements as the system is being

developed and used

ESE 56.

Universität Bern Requirements Collection

The Requirements Analysis Process

ESE 57.

Universität Bern Requirements Collection

Use Cases and Viewpoints

A use case is the specification of a sequence of actions, including variants, that a system
(or other entity) can perform, interacting with actors of the system”.

A scenario is a particular trace of action occurrences, starting from a known initial state.

Stakeholders represent different problem viewpoints.
❑ Interview as many different kinds of stakeholders as possible/necessary
❑ Translate requirements into use cases or “stories” about the desired system

involving a fixed set of actors (users and system objects)
❑ For each use case, capture both typical and exceptional usage scenarios

Users tend to think about systems in terms of “features”.
❑ You must get them to tell you stories involving those features.
❑ Use cases and scenarios can tell you if the requirements are complete and

consistent!

ESE 58.

Universität Bern Requirements Collection

Unified Modeling Language

The “Unified Modeling Language” (UML) is an emerging industrial standard for
documenting object-oriented analysis and design models.

❑ Class Diagrams: specify classes, objects and their relationships
☞ visualize logical structure of system

❑ Use Case Diagrams: show external actors and use cases they participate in
❑ Sequence Diagrams: list the message exchanges in a use case scenario

☞ visualizes temporal message ordering
❑ Collaboration Diagrams: show messages exchanged by objects

☞ visualize object relationships
❑ State Diagrams: specify the possible internal states of an object

and others ...

ESE 59.

Universität Bern Requirements Collection

Writing Requirements Definitions

Requirements definitions usually consist of natural language, supplemented by (e.g.,
UML) diagrams and tables.

Three types of problem can arise:

❑ Lack of clarity:
☞ It is hard to write documents that are both precise and easy-to-read.

❑ Requirements confusion:
☞ Functional and non-functional requirements tend to be intertwined.

❑ Requirements amalgamation:
☞ Several different requirements may be expressed together.

ESE 60.

Universität Bern Requirements Collection

Functional and Non-functional Requirements

Functional requirements describe system services or functions

Non-functional requirements are constraints on the system or the development process:

❑ Product requirements:
☞ specify that the delivered product must behave in a particular way e.g.

execution speed, reliability, etc.
❑ Organisational requirements:

☞ are a consequence of organisational policies and procedures e.g. process
standards used, implementation requirements, etc.

❑ External requirements:
☞ arise from factors which are external to the system and its development

process e.g. interoperability requirements, legislative requirements, etc.

Non-functional requirements may be more critical than functional requirements.
If these are not met, the system is useless!

ESE 61.

Universität Bern Requirements Collection

Types of Non-functional Requirements

ESE 62.

Universität Bern Requirements Collection

Examples of Non-functional Requirements

Product requirement
❑ It shall be possible for all necessary communication between the APSE and the

user to be expressed in the standard Ada character set.

Organisational requirement
❑ The system development process and deliverable documents shall conform to

the process and deliverables defined in XYZCo-SP-STAN-95.

External requirement
❑ The system shall provide facilities that allow any user to check if personal data

is maintained on the system. A procedure must be defined and supported in the
software that will allow users to inspect personal data and to correct any errors
in that data.

ESE 63.

Universität Bern Requirements Collection

Requirements Verifiability

Requirements must be written so that they can be objectively verified.

Imprecise:

The system should be easy to use by experienced controllers and should be
organised in such a way that user errors are minimised.

Terms like “easy to use” and “errors shall be minimised” are useless as specifications.

Verifiable:

Experienced controllers should be able to use all the system functions after
a total of two hours training. After this training, the average number of errors
made by experienced users should not exceed two per day.

ESE 64.

Universität Bern Requirements Collection

Precise Requirements Measures
Property Measure

Speed Processed transactions/second
User/Event response time
Screen refresh time

Size K Bytes; Number of RAM chips

Ease of use Training time
Rate of errors made by trained users
Number of help frames

Reliability Mean time to failure
Probability of unavailability
Rate of failure occurrence

Robustness Time to restart after failure
Percentage of events causing failure
Probability of data corruption on failure

Portability Percentage of target dependent statements
Number of target systems

ESE 65.

Universität Bern Requirements Collection

Prototyping Objectives

The objective of evolutionary prototyping is to deliver a working system to end-users.

❑ Development starts with the requirements that are best understood.

The objective of throw-away prototyping is to validate or derive the system requirements.

❑ Prototyping starts with that requirements that are poorly understood.

ESE 66.

Universität Bern Requirements Collection

Evolutionary Prototyping

❑ Must be used for systems where the specification cannot be developed in
advance.
☞ e.g. AI systems and user interface systems

❑ Based on techniques which allow rapid system iterations.
☞ e.g., executable specification languages, VHL languages, 4GLs,

component toolkits

❑ Verification is impossible as there is no specification.
☞ Validation means demonstrating the adequacy of the system.

ESE 67.

Universität Bern Requirements Collection

Throw-away Prototyping

❑ Used to reduce requirements risk

❑ The prototype is developed from an initial specification, delivered for experiment
then discarded

❑ The throw-away prototype should not be considered as a final system
☞ Some system characteristics may have been left out

(e.g., platform requirements may be ignored)
☞ There is no specification for long-term maintenance
☞ The system will be poorly structured and difficult to maintain

ESE 68.

Universität Bern Requirements Collection

Requirements Checking

Validity:
❑ Does the system provide the functions which best support the customer’s

needs?

Consistency:
❑ Are there any requirements conflicts?

Completeness:
❑ Are all functions required by the customer included?

Realism:
❑ Can the requirements be implemented given available budget and technology?

ESE 69.

Universität Bern Requirements Collection

Requirements Reviews

Requirements reviews
❑ Regular reviews should be held while the requirements definition is being

formulated
❑ Both client and contractor staff should be involved in reviews
❑ Reviews may be formal (with completed documents) or informal.

Good communications between developers, customers and users can
resolve problems at an early stage

Review checks
❑ Verifiability. Is the requirement realistically testable?
❑ Comprehensibility. Is the requirement properly understood?
❑ Traceability. Is the origin of the requirement clearly stated?
❑ Adaptability. Can the requirement be changed without a large impact on other

requirements?

ESE 70.

Universität Bern Requirements Collection

Traceability
To protect against changes you should be able to trace back from every system
component to the original requirement that caused its presence.

❑ A software process should help you keeping this virtual table up-to-date
❑ Simple techniques may be quite valuable (naming conventions, ...)

C
om

p
1

C
om

p
2

... C
om

p
m

Req 1 x x
Req 2 x x
...
... x x x
...
... x
... x x
Req n

ESE 71.

Universität Bern Requirements Collection

Summary

You should know the answers to these questions:
❑ What is the difference between requirements analysis and specification?
❑ Why is it hard to define and specify requirements?
❑ What are use cases and scenarios?
❑ What is the difference between functional and non-functional requirements?
❑ What’s wrong with a requirement that says a product should be “user-friendly”?
❑ What’s the difference between evolutionary and throw-away prototyping?

Can you answer the following questions?
✎ Why isn’t it enough to specify requirements as a set of desired features?
✎ Which is better for specifying requirements: natural language or diagrams?
✎ How would you prototype a user interface for a web-based ordering system?
✎ Would it be an evolutionary or throw-away prototype?
✎ What would you expect to gain from the prototype?
✎ How would you check a requirement for “adaptability”?

ESE 72.

Universität Bern Responsibility-Driven Design

4. Responsibility-Driven Design

Overview:
❑ What is Object-Oriented Design?
❑ Finding Classes
❑ Identifying Responsibilities
❑ Finding Collaborations

Source:
❑ Designing Object-Oriented Software, R. Wirfs-Brock, B. Wilkerson, L. Wiener,

Prentice Hall, 1990.

ESE 73.

Universität Bern Responsibility-Driven Design

Why Responsibility-driven Design?

Functional Decomposition
❑ Good in a “waterfall” approach: stable requirements and one monolithic function

However
❑ Naive: Modern systems perform more than one function
❑ Maintainability: system functions evolve => redesign affect whole system
❑ Interoperability: interfacing with other system is difficult

Object-Oriented Decomposition
❑ Better for complex and evolving systems

However
❑ How to find the objects?

Object-Oriented Decomposition Functional Decomposition

Decompose according to the objects a
system is supposed to manipulate.

Decompose according to the functions
a system is supposed to perform.

ESE 74.

Universität Bern Responsibility-Driven Design

What is Object-Oriented Design?

“Object-oriented [analysis and] design is the process by which software
requirements are turned into a detailed specification of objects. This
specification includes a complete description of the respective roles and
responsibilities of objects and how they communicate with each other.”

❑ The result of the design process is not a final product:
☞ design decisions may be revisited, even after implementation
☞ design is not linear but iterative

❑ The design process is not algorithmic:
☞ a design method provides guidelines, not fixed rules
☞ “a good sense of style often helps produce clean, elegant designs —

designs that make a lot of sense from the engineering standpoint”

✔ Responsibility-driven design is an (analysis and) design technique that works well in
combination with various methods and notations.

ESE 75.

Universität Bern Responsibility-Driven Design

Design Steps

The Initial Exploration
1. Find the classes in your system
2. Determine the responsibilities of each class

☞ What are the client-server contracts?
3. Determine how objects collaborate with each other to fulfil their responsibilities

☞ What are the client-server roles?

The Detailed Analysis
1. Factor common responsibilities to build class hierarchies
2. Streamline collaborations between objects

☞ Is message traffic heavy in parts of the system?
☞ Are there classes that collaborate with everybody?
☞ Are there classes that collaborate with nobody?
☞ Are there groups of classes that can be seen as subsystems?

3. Turn class responsibilities into fully specified signatures

ESE 76.

Universität Bern Responsibility-Driven Design

Finding Classes

Start with requirements specification: what are the goals of the system being designed,
its expected inputs and desired responses.

1. Look for noun phrases:
☞ separate into obvious classes, uncertain candidates, and nonsense

2. Refine to a list of candidate classes. Some guidelines are:
☞ Model physical objects — e.g. disks, printers
☞ Model conceptual entities — e.g. windows, files
☞ Choose one word for one concept — what does it mean within the system
☞ Be wary of adjectives — does it really signal a separate class?
☞ Be wary of missing or misleading subjects — rephrase in active voice
☞ Model categories of classes — delay modelling of inheritance
☞ Model interfaces to the system — e.g., user interface, program interfaces
☞ Model attribute values, not attributes — e.g., Point vs. Centre

ESE 77.

Universität Bern Responsibility-Driven Design

Drawing Editor Requirements Specification
The drawing editor is an interactive graphics editor. With it, users
can create and edit drawings composed of lines, rectangles,
ellipses and text.

Tools control the mode of operation of the editor. Exactly one tool is
active at any given time.

Two kinds of tools exist: the selection tool and creation tools. When
the selection tool is active, existing drawing elements can be
selected with the cursor. One or more drawing elements can be
selected and manipulated; if several drawing elements are
selected, they can be manipulated as if they were a single element.
Elements that have been selected in this way are referred to as the
current selection. The current selection is indicated visually by
displaying the control points for the element. Clicking on and
dragging a control point modifies the element with which the control
point is associated.

When a creation tool is active, the current selection is empty. The
cursor changes in different ways according to the specific creation
tool, and the user can create an element of the selected kind. After
the element is created, the selection tool is made active and the
newly created element becomes the current selection.

The text creation tool changes the shape of the cursor to that of an
I-beam. The position of the first character of text is determined by

where the user clicks the mouse button. The creation tool is no
longer active when the user clicks the mouse button outside the text
element. The control points for a text element are the four corners
of the region within which the text is formatted. Dragging the control
points changes this region. The other creation tools allow the
creation of lines, rectangles and ellipses. They change the shape
of the cursor to that of a crosshair. The appropriate element starts
to be created when the mouse button is pressed, and is completed
when the mouse button is released. These two events create the
start point and the stop point.

The line creation tool creates a line from the start point to the stop
point. These are the control points of a line. Dragging a control point
changes the end point.

The rectangle creation tool creates a rectangle such that these
points are diagonally opposite corners. These points and the other
corners are the control points. Dragging a control point changes the
associated corner.

The ellipse creation tool creates an ellipse fitting within the
rectangle defined by the two points described above. The major
radius is one half the width of the rectangle, and the minor radius is
one half the height of the rectangle. The control points are at the
corners of the bounding rectangle. Dragging control points changes
the associated corner.

ESE 78.

Universität Bern Responsibility-Driven Design

Drawing Editor: noun phrases
The drawing editor is an interactive graphics editor. With it, users
can create and edit drawings composed of lines, rectangles,
ellipses and text.

Tools control the mode of operation of the editor. Exactly one tool is
active at any given time.

Two kinds of tools exist: the selection tool and creation tools. When
the selection tool is active, existing drawing elements can be
selected with the cursor. One or more drawing elements can be
selected and manipulated; if several drawing elements are
selected, they can be manipulated as if they were a single element.
Elements that have been selected in this way are referred to as the
current selection. The current selection is indicated visually by
displaying the control points for the element. Clicking on and
dragging a control point modifies the element with which the control
point is associated.

When a creation tool is active, the current selection is empty. The
cursor changes in different ways according to the specific creation
tool, and the user can create an element of the selected kind. After
the element is created, the selection tool is made active and the
newly created element becomes the current selection.

The text creation tool changes the shape of the cursor to that of an
I-beam. The position of the first character of text is determined by

where the user clicks the mouse button. The creation tool is no
longer active when the user clicks the mouse button outside the text
element. The control points for a text element are the four corners
of the region within which the text is formatted. Dragging the control
points changes this region. The other creation tools allow the
creation of lines, rectangles and ellipses. They change the shape
of the cursor to that of a crosshair. The appropriate element starts
to be created when the mouse button is pressed, and is completed
when the mouse button is released. These two events create the
start point and the stop point.

The line creation tool creates a line from the start point to the stop
point. These are the control points of a line. Dragging a control point
changes the end point.

The rectangle creation tool creates a rectangle such that these
points are diagonally opposite corners. These points and the other
corners are the control points. Dragging a control point changes the
associated corner.

The ellipse creation tool creates an ellipse fitting within the
rectangle defined by the two points described above. The major
radius is one half the width of the rectangle, and the minor radius is
one half the height of the rectangle. The control points are at the
corners of the bounding rectangle. Dragging control points changes
the associated corner.

ESE 79.

Universität Bern Responsibility-Driven Design

Class Selection Rationale (I)

Model physical objects:
☞ mouse button [event or attribute]

Model conceptual entities:
☞ ellipse, line, rectangle
☞ Drawing, Drawing Element
☞ Tool, Creation Tool, Ellipse Creation Tool, Line Creation Tool,

Rectangle Creation Tool, Selection Tool, Text Creation Tool
☞ text, Character
☞ Current Selection

Choose one word for one concept:
☞ Drawing Editor ⇒ editor, interactive graphics editor
☞ Drawing Element ⇒ element
☞ Text Element ⇒ text
☞ Ellipse Element, Line Element, Rectangle Element

⇒ ellipse, line, rectangle

ESE 80.

Universität Bern Responsibility-Driven Design

Class Selection Rationale (II)

Be wary of adjectives:
☞ Ellipse Creation Tool, Line Creation Tool, Rectangle Creation Tool,

Selection Tool, Text Creation Tool — all have different requirements
☞ bounding rectangle, rectangle, region ⇒ Rectangle

— common meaning, but different from Rectangle Element
☞ Point ⇒ end point, start point, stop point
☞ Control Point — more than just a coordinate
☞ corner ⇒ associated corner, diagonally opposite corner

— no new behaviour
Be wary of sentences with missing or misleading subjects:

☞ “The current selection is indicated visually by displaying the control points
for the element.” — by what? Assume Drawing Editor ...

Model categories:
☞ Tool, Creation Tool

ESE 81.

Universität Bern Responsibility-Driven Design

Class Selection Rationale (III)

Model interfaces to the system:
☞ user — don’t need to model user explicitly
☞ cursor — cursor motion handled by operating system

Model values of attributes, not attributes themselves:
☞ height of the rectangle, width of the rectangle
☞ major radius, minor radius
☞ position — of first text character; probably Point attribute
☞ mode of operation — attribute of Drawing Editor
☞ shape of the cursor, I-beam, crosshair — attributes of Cursor
☞ corner — attribute of Rectangle
☞ time — an implicit attribute of the system

ESE 82.

Universität Bern Responsibility-Driven Design

Candidate Classes

Preliminary analysis yields the following candidates:

Expect the list to evolve as design progresses.

Character
Control Point
Creation Tool
Current Selection
Drawing
Drawing Editor
Drawing Element
Ellipse Creation Tool
Ellipse Element
Line Creation Tool

Line Element
Point
Rectangle
Rectangle Creation Tool
Rectangle Element
Selection Tool
Text Creation Tool
Text Element
Tool

ESE 83.

Universität Bern Responsibility-Driven Design

CRC Cards
Use CRC cards to record candidate classes:

Write a short description of the purpose of the class on the back of the card
☞ compact, easy to manipulate, easy to modify or discard!
☞ easy to arrange, reorganize
☞ easy to retrieve discarded classes

Class: Drawing
superclasses

subclasses

responsibilities ... collaborations

ESE 84.

Universität Bern Responsibility-Driven Design

Finding Abstract Classes

Abstract classes factor out common behaviour shared by other classes
They are abstract because they need not be completely implemented.

☞ group related classes with common attributes
☞ introduce abstract superclasses that represent the group
☞ “categories” are good candidates for abstract classes

✔ Warning: beware of premature classification; your hierarchy will evolve

Tool

Creation
Tool

Selection
Tool

Rectangle
Tool

Ellipse
Tool

Line
Tool

Text
Tool

ESE 85.

Universität Bern Responsibility-Driven Design

Identifying and Naming Groups

If you have trouble naming a group:
☞ enumerate common attributes to derive the name
☞ divide into more clearly defined subcategories

Attributes of abstract classes should serve to distinguish subgroups
☞ Physical vs. conceptual
☞ Active vs. passive
☞ Temporary vs. permanent
☞ Generic vs. specific
☞ Shared vs. unshared

Classes may be missing because the specification is incomplete or imprecise
☞ editing ⇒ undoing ⇒ need for a Cut Buffer

ESE 86.

Universität Bern Responsibility-Driven Design

Recording Superclasses

Record superclasses and subclasses on all class cards:

Class: Creation Tool
Tool
Ellipse Tool, Line Tool, Rectangle Tool, Text Tool

ESE 87.

Universität Bern Responsibility-Driven Design

Responsibilities

What are responsibilities?
☞ the knowledge an object maintains and provides
☞ the actions it can perform

Responsibilities represent the public services an object may provide to clients,
not the way in which those services may be implemented

☞ specify what an object does, not how it does it
☞ don’t describe the interface yet, only conceptual responsibilities

ESE 88.

Universität Bern Responsibility-Driven Design

Identifying Responsibilities

❑ Study the requirements specification:
☞ highlight verbs and determine which represent responsibilities
☞ perform a walk-though of the system

➪ exploring as many scenarios as possible
➪ identify actions resulting from input to the system

❑ Study the candidate classes:
☞ class names ⇒ roles ⇒ responsibilities
☞ recorded purposes on class cards ⇒ responsibilities

ESE 89.

Universität Bern Responsibility-Driven Design

Assigning Responsibilities

❑ Evenly distribute system intelligence
☞ avoid procedural centralization of responsibilities
☞ keep responsibilities close to objects rather than their clients

❑ State responsibilities as generally as possible
☞ “draw yourself” vs. “draw a line/rectangle etc.”

❑ Keep behaviour together with any related information
☞ principle of encapsulation

❑ Keep information about one thing in one place
☞ if multiple objects need access to the same information

(i) a new object may be introduced to manage the information, or
(ii) one object may be an obvious candidate, or
(iii) the multiple objects may need to be collapsed into a single one

❑ Share responsibilities among related objects
☞ break down complex responsibilities

ESE 90.

Universität Bern Responsibility-Driven Design

Relationships Between Classes

Additional responsibilities can be uncovered by examining relationships between
classes, especially:

❑ The “Is-Kind-Of” Relationship:
☞ classes sharing a common attribute often share a common superclass
☞ common superclasses suggest common responsibilities

e.g., to create a new Drawing Element, a Creation Tool must:
1. accept user input implemented in subclass
2. determine location to place it generic
3. instantiate the element implemented in subclass

❑ The “Is-Analogous-To” Relationship:
☞ similarities between classes suggest as-yet-undiscovered superclasses

❑ The “Is-Part-Of” Relationship:
☞ distinguish (don’t share) responsibilities of part and of whole

Difficulties in assigning responsibilities suggest:
☞ missing classes in design, or
☞ free choice between multiple classes

ESE 91.

Universität Bern Responsibility-Driven Design

Recording Responsibilities

List responsibilities as succinctly as possible:

Too many responsibilities to fit onto one card suggests over-centralization:
☞ Check if responsibilities really belong in a superclass,

or if they can be distributed to cooperating classes.
Having more classes leads to a more flexible and maintainable design. If necessary,
classes can later be consolidated.

Class: Drawing

Know which elements it contains

ESE 92.

Universität Bern Responsibility-Driven Design

Collaborations

What are collaborations?

❑ collaborations are client requests to servers needed to fulfil responsibilities
❑ collaborations reveal control and information flow and, ultimately, subsystems
❑ collaborations can uncover missing responsibilities
❑ analysis of communication patterns can reveal misassigned responsibilities

ESE 93.

Universität Bern Responsibility-Driven Design

Finding Collaborations

For each responsibility:
1. Can the class fulfil the responsibility by itself?
2. If not, what does it need, and from what other class can it obtain what it needs?

For each class:
1. What does this class know?
2. What other classes need its information or results? Check for collaborations.
3. Classes that do not interact with others should be discarded. (Check carefully!)

Check for these relationships:
❑ The “Is-Part-Of” Relationship
❑ The “Has-Knowledge-Of” Relationship
❑ The “Depends-Upon” Relationship

ESE 94.

Universität Bern Responsibility-Driven Design

Recording Collaborations

Collaborations exist only to fulfil responsibilities.
Enter the class name of the server role next to client’s responsibility:

Note each collaboration required for a responsibility.
Include also collaborations between peers.
Validate your preliminary design with another walk-through.

Class: Drawing

Know which elements it contains
Maintain ordering between elements Drawing Element

ESE 95.

Universität Bern Responsibility-Driven Design

Summary

You should know the answers to these questions:
❑ What criteria can you use to identify potential classes?
❑ How can class cards help during analysis and design?
❑ How can you identify abstract classes?
❑ What are class responsibilities, and how can you identify them?
❑ How can identification of responsibilities help in identifying classes?
❑ What are collaborations, and how do they relate to responsibilities?

Can you answer the following questions?
✎ When should an attribute be promoted to a class?
✎ Why is it useful to organize classes into a hierarchy?
✎ How can you tell if you have captured all the responsibilities and collaborations?

ESE 96.

Universität Bern Detailed Design

5. Detailed Design

Overview:
❑ Structuring Inheritance Hierarchies
❑ Identifying Subsystems
❑ Specifying Class Protocols (Interfaces)

Source:
❑ Designing Object-Oriented Software, R. Wirfs-Brock, B. Wilkerson, L. Wiener,

Prentice Hall, 1990

ESE 97.

Universität Bern Detailed Design

Sharing Responsibilities

Concrete classes may be both instantiated and inherited from.
Abstract classes may only be inherited from. Note on class cards and on class diagram.

Venn Diagrams can be used to visualize shared responsibilities:

(Warning: not part of UML!)

Tool
{ abstract }

Creation Tool
{ abstract }

Selection
Tool

Tool Creation ToolSelection Tool

ESE 98.

Universität Bern Detailed Design

Multiple Inheritance

Array

Matrix String Date

Ordered Collection
{ abstract }

Indexable Collection
{ abstract }

Magnitude
{ abstract }

Decide whether a
class will be
instantiated to
determine if it is
abstract or concrete.

DateArray

Ordered
Collection

MagnitudeMatrix

String
Indexable
Collection

Responsibilities of
subclasses are
larger than those of
superclasses.

Intersections
represent common
superclasses.

ESE 99.

Universität Bern Detailed Design

Building Good Hierarchies

Model a “kind-of” hierarchy:
☞ Subclasses should support all inherited responsibilities, and possibly more

Factor common responsibilities as high as possible:
☞ Classes that share common responsibilities should inherit from a common

abstract superclass; introduce any that are missing

Make sure that abstract classes do not inherit from concrete classes:
☞ Eliminate by introducing common abstract superclass: abstract classes

should support responsibilities in an implementation-independent way

Eliminate classes that do not add functionality:
☞ Classes should either add new responsibilities, or a particular way of

implementing inherited ones

ESE 100.

Universität Bern Detailed Design

Building Kind-Of Hierarchies

A B

C

BA C

E

G

E G

D

E GD

Correctly Formed Subclass
Responsibilities

Incorrect
Subclass/Superclass

Relationships
Subclasses should assume all
superclass responsibilities

Revised Inheritance
Relationships

Introduce abstract
superclasses to encapsulate
common responsibilities

{ abstract }

E G

ESE 101.

Universität Bern Detailed Design

Refactoring Responsibilities

Drawing Element
{ abstract }

Rectangle
Element

Group
Element

Text
Element

Line
Element

Ellipse
Element

Lines, Ellipses and Rectangles
are responsible for keeping
track of the width and colour of
the lines they are drawn with.
This suggests a common
superclass.

Drawing Element
{ abstract }

Rectangle
Element

Group
Element

Text
Element

Line
Element

Ellipse
Element

Linear Element
{ abstract }

ESE 102.

Universität Bern Detailed Design

Identifying Contracts

A contract defines a set of requests that a client can make of a server related to a
cohesive set of closely-related responsibilities.

Contracts introduce another level of abstraction, and help to simplify your design.

❑ Group responsibilities used by the same clients:
☞ conversely, separate clients suggest separate contracts

❑ Maximize the cohesiveness of classes:
☞ unrelated contracts belong in subclasses

❑ Minimize the number of contracts:
☞ unify responsibilities and move as high in the hierarchy as appropriate

ESE 103.

Universität Bern Detailed Design

Applying the Guidelines

1. Start by defining contracts at the top of your hierarchies

2. Introduce new contracts only for subclasses that add significant new functionality
☞ do new responsibilities represent new functionality, or do they just

specialize inherited functionality?

3. For each class card, assign responsibilities to an appropriate contract
☞ briefly describe each contract and assign a unique number
☞ number responsibilities according to the associated contract

4. For each collaboration on each class card, determine which contract represents it
☞ model collaborations as associations in class diagrams

(AKA “collaboration graphs”)

ESE 104.

Universität Bern Detailed Design

What are Subsystems?

Subsystems are groups of classes that collaborate to support a set of contracts.

❑ Subsystems simplify design by raising abstraction levels:
☞ subsystems group logically related responsibilities, and encapsulate

related collaborations

❑ Don’t confuse with superclasses:
☞ subsystems group related responsibilities rather than factoring out

common responsibilities

Find subsystems by looking for strongly-coupled classes:
☞ list the collaborations and identify strong inter-dependencies
☞ identify and highly frequently-travelled communication paths

Subsystems, like classes, also support contracts. Identify the services provided to clients
outside the subsystem to determine the subsystem contracts.

ESE 105.

Universität Bern Detailed Design

Subsystem Cards

For each subsystem, record its name, its contracts, and, for each contract, the in-
ternal class or subsystem that supports it:

Subsystem: Drawing Subsystem
Access a drawing Drawing
Modify part of a drawing Drawing Element
Display a drawing Drawing

ESE 106.

Universität Bern Detailed Design

Class Cards

For each collaboration from an outside client, change the client’s class card to record a
collaboration with the subsystem:

Record on the subsystem card the delegation to the agent class.

Class: File (Abstract)

Document File, Graphics File, Text File
Knows its contents
Print its contents Printing Subsystem

ESE 107.

Universität Bern Detailed Design

Simplifying Interactions

Complex collaborations lead to unmaintainable systems.
Exploit subsystems to simplify overall structure.

❑ Minimize the number of collaborations a class has with other classes:
☞ centralizing communications into a subsystem eases evolution

❑ Minimize the number of classes to which a subsystem delegates:
☞ centralized subsystem interfaces reduce complexity

❑ Minimize the number of different contracts supported by a class:
☞ group contracts that require access to common information

Checking Your Design:
☞ model collaborations as associations in class diagrams
☞ update class/subsystem cards and class hierarchies
☞ walk through scenarios:

➪ Has coupling been reduced? Are collaborations simpler?

ESE 108.

Universität Bern Detailed Design

Protocols

A protocol is a set of signatures (i.e., method names, parameter types and return types)
to which a class will respond.

☞ Generally, protocols are specified for public responsibilities
☞ Protocols for private responsibilities should be specified if they will be used

or implemented by subclasses

1. Construct protocols for each class
2. Write a design specification for each class and subsystem
3. Write a design specification for each contract

ESE 109.

Universität Bern Detailed Design

Refining Responsibilities

Select method names carefully:
☞ Use a single name for each conceptual operation in the system
☞ Associate a single conceptual operation with each method name
☞ Common responsibilities should be explicit in the inheritance hierarchy

Make protocols as generally useful as possible:
☞ The more general it is, the more messages that should be specified

Define reasonable defaults:
1. Define the most general message with all possible parameters
2. Provide reasonable default values where appropriate
3. Define specialized messages that rely on the defaults

ESE 110.

Universität Bern Detailed Design

Specifying Your Design: Classes

Specifying Classes
1. Class name; abstract or concrete
2. Immediate superclasses and subclasses
3. Location in inheritance hierarchies and class diagrams
4. Purpose and intended use
5. Contracts supported (as server); inherited contracts and ancestor
6. For each contract, list responsibilities, method signatures, brief description and

any collaborations
7. List private responsibilities; if specified further, also give method signatures etc.
8. Note: implementation considerations, possible algorithms, real-time or memory

constraints, error conditions etc.

ESE 111.

Universität Bern Detailed Design

Specifying Subsystems and Contracts

Specifying Subsystems
1. Subsystem name; list all encapsulated classes and subsystems
2. Purpose of the subsystem
3. Contracts supported
4. For each contract, list the responsible class or subsystem

Formalizing Contracts
1. Contract name and number
2. Server(s)
3. Clients
4. A description of the contract

ESE 112.

Universität Bern Detailed Design

Summary

You should know the answers to these questions:
❑ How can you identify abstract classes?
❑ What criteria can you use to design a good class hierarchy?
❑ How can refactoring responsibilities help to improve a class hierarchy?
❑ What is the difference between contracts and responsibilities?
❑ What are subsystems (“categories”) and how can you find them?
❑ What is the difference between protocols and contracts?

Can you answer the following questions?
✎ What use is multiple inheritance during design if your programming language does

not support it?
✎ Why should you try to minimize coupling and maximize cohesion?
✎ How would you use Responsibility Driven design together with the Unified Modeling

Language?

ESE 113.

Universität Bern Modeling Objects and Classes

6. Modeling Objects and Classes

❑ Classes, attributes and operations
❑ Visibility of Features
❑ Parameterized Classes
❑ Objects
❑ Associations
❑ Inheritance
❑ Constraints

Sources:
❑ Unified Modeling Language — Notation Guide, version 1.3, Rational Software

Corporation, 1997.
❑ Object-Oriented Development — The Fusion Method, D. Coleman, et al.,

Prentice Hall, 1994.
❑ UML Distilled, Martin Fowler, Kendall Scott, Addison-Wesley, Second Editon,

2000.

ESE 114.

Universität Bern Modeling Objects and Classes

Why UML?
Why a Graphical Modeling Language?

❑ Software projects are carried out in team
❑ Team members need to communicate

☞ ... sometimes even with the end users
❑ “One picture conveys a thousand words”

☞ the question is only which words
☞ Need for different views on the same software artefact

Why UML?
❑ Represents de-facto standard

☞ more tool support, more people understand your diagrams, less education
❑ Is reasonably well-defined

☞ ... although there are interpretations and dialects
❑ Is open

☞ stereotypes, tags and constraints to extend basic constructs
☞ has a meta-meta-model for advanced extensions

ESE 115.

Universität Bern Modeling Objects and Classes

What is UML?
❑ uniform notation: Booch + OMT + Use Cases (+ state charts)

☞ UML is not a method or process
☞ .. The Unified Development Process is

History
❑ 1994: Grady Booch (Booch method) + James Rumbaugh (OMT) at Rational
❑ 1994: Ivar Jacobson (OOSE, use cases) joined Rational

☞ “The three amigos”
❑ 1996: Rational formed a consortium to support UML
❑ January, 1997: UML1.0 submitted to OMG by consortium
❑ November, 1997: UML 1.1 accepted as OMG standard

☞ However, OMG names it UML1.0
❑ December, 1998: UML task force cleans up standard in UML1.2
❑ June, 1999: UML task force cleans up standard in UML1.3
❑ ...: Major revision to UML2.0

ESE 116.

Universität Bern Modeling Objects and Classes

Class Diagrams

“Class diagrams show generic descriptions of possible systems, and object diagrams
show particular instantiations of systems and their behaviour.”

Attributes and operations are also collectively called features.

Class name, attributes and operations:

Polygon

centre: Point
vertices: List of Point
borderColour: Colour
fillColour: Colour

display (on: Surface)
rotate (angle: Integer)
erase ()
destroy ()
select (p: Point): Boolean

A collapsed class view:

Polygon

Class with Package name:

ZWindows::Window

ESE 117.

Universität Bern Modeling Objects and Classes

Visibility and Scope of Features

Attributes are specified as: name: type = initialValue { property string }
Operations are specified as: name (param: type = defaultValue, ...) : resultType

«user interface»
Window

{ abstract }

+size: Area = (100, 100)
#visibility: Boolean = false
+default-size: Rectangle
#maximum-size: Rectangle
-xptr: XWindow*

+display ()
+hide ()
+create ()
-attachXWindow (xwin: Xwindow*)
...

Stereotype
(what “kind” of class is it?)

User-defined properties
(e.g., abstract, readonly,
owner = “Pingu”)

underlined attributes
have class scope

italic attributes are
abstract

Ellipsis signals that
further entries are not
shown

+ = “public”
= “protected”
− = “private”

ESE 118.

Universität Bern Modeling Objects and Classes

UML Lines and Arrows
Constraint
(usually annotated)

Dependency
e.g., «requires»,
«imports» ...

Realization
e.g., class/template,
class/interface

Aggregation
i.e., “consists of”

Association
e.g., «uses»

Navigable association
e.g., part-of

“Generalization”
i.e., specialization (!)
e.g., class/superclass,
concrete/abstract class

“Composition”
i.e., containment

ESE 119.

Universität Bern Modeling Objects and Classes

Parameterized Classes

Parameterized (aka “template” or “generic”) classes are depicted with their parameters
shown in a dashed box.
Parameters may be either types (just a name) or values (name: Type).

Instantiation of a class from a template can be shown by a dashed arrow (Realization).

NB: All forms of arrows (directed arcs) go from the client to the supplier!

FArray

FArray<Point, 3> AddressList

T, n: Integer

«bind»(Address,24)

ESE 120.

Universität Bern Modeling Objects and Classes

Interfaces
Interfaces, equivalent to abstract classes with no attributes, are represented as classes
with the stereotype «interface» or, alternatively, with the Lollipop-Notation:

HashTable

«interface»
Comparable

isEqual(String): Boolean
hash(): Integer

String

...

isEqual(String): Boolean
hash(): Integer
...

Comparable

«use»

String

HashTable

NB: Interfaces cannot have
(navigable) associations!

ESE 121.

Universität Bern Modeling Objects and Classes

Utilities

A “utility” is a grouping of global attributes and operations. It is represented as a class
with the stereotype «utility». Utilities may be parameterized.

NB: A utility’s attributes are already interpreted as being in class scope, so it is redundant
to underline them.

A “note” is a text comment associated with a view, and represented as box with the top
right corner folded over.

«utility»
MathPack

randomSeed : long = 0
pi : long = 3.14158265358979

sin (angle : double) : double
cos (angle : double) : double
random () : double

return sin (angle + pi/2.0);

ESE 122.

Universität Bern Modeling Objects and Classes

Objects

Objects are shown as rectangles with their name and type underlined in one
compartment, and attribute values, optionally, in a second compartment.

triangle1: Polygon

centre = (0, 0)
vertices = ((0,0), (4,0), (4,3))
borderColour = black
fillColour = white

triangle1: Polygon

: Polygon

triangle1

At least one of the name
or the type must be present.

ESE 123.

Universität Bern Modeling Objects and Classes

Associations
Associations represent structural relationships between objects of different classes.

☞ usually binary (but may be ternary etc.)
☞ optional name and direction
☞ (unique) role names and multiplicities at end-points
☞ can traverse using navigation expressions

e.g., Sandoz.employee[name = “Pingu”].boss

Company

name
address

Person

name
AHV Nr.
address

**
Works-for

Employs

employeeemployer

husband

wife

Married-to

0..1

0..1

0..1

boss
worker *

Manages

ESE 124.

Universität Bern Modeling Objects and Classes

Aggregation and Navigability

Aggregation is denoted by a diamond and indicates a part-whole dependency:

A hollow diamond indicates a reference; a solid diamond an implementation.

If the link terminates with an arrowhead, then one can navigate from the whole to the part.

If the multiplicity of a role is > 1, it may be marked as { ordered }, or as { sorted }.

Polygon
1 Contains

{ ordered }
Point

3..*

GraphicsBundle

colour
texture
density

1

1

ESE 125.

Universität Bern Modeling Objects and Classes

Association Classes

An association may be an instance of an association class:

In many cases the association class only stores attributes, and its name can be left out.

Authorization

priority
privileges

start session

User Workstation* *
Authorized on

*

Directory

home directory1

ESE 126.

Universität Bern Modeling Objects and Classes

Qualified Associations

A qualified association uses a special qualifier value to identify the object at the other end
of the association:

“The multiplicity attached to the target role denotes the possible cardinalities of the set of
target objects selected by the pairing of a source object and a qualifier value.”

NB: Qualifiers are part of the association, not the class

Airline

frequent flyer #

Person

*

0..1

Catalogue

part number

Part

1

0..1

isPassenger

ESE 127.

Universität Bern Modeling Objects and Classes

Inheritance
A subclass inherits the features of its superclasses:

Figure1dim
{ abstract }

colour

display ()

Line

endpoints

display ()

Arc

radius
start angle
arc angle

display ()

Spline

control points

display ()

Drawing*

. . .

ESE 128.

Universität Bern Modeling Objects and Classes

What is Inheritance For?

New software often builds on old software by imitation, refinement or combination.
Similarly, classes may be extensions, specializations or combinations of existing classes.

Inheritance supports:
Conceptual hierarchy:

❑ conceptually related classes can be organized into a specialization hierarchy
☞ people, employees, managers
☞ geometric objects ...

Software reuse:
❑ related classes may share interfaces, data structures or behaviour

☞ geometric objects ...
Polymorphism:

❑ objects of distinct, but related classes may be uniformly treated by clients
☞ array of geometric objects

ESE 129.

Universität Bern Modeling Objects and Classes

Design Patterns as Collaborations
Design Patterns can be represented as parameterized collaborations:

A Design Pattern in use (an instantiation) can be described with a dashed oval:

Target

Request()

Adapter

Request ()

Adaptee

SpecificRequest ()

Client

adaptee.SpecificRequest()

adaptee

Adapter

Shape

boudingBox()

TextView

getExtent()

TextShape

boudingBox() Adapter

Adaptee

Adapter

ESE 130.

Universität Bern Modeling Objects and Classes

Constraints

Constraints are restrictions on values attached to classes or associations.
☞ Binary constraints may be shown as dashed lines between elements
☞ Derived values and associations can be marked with a “/”

Constraints are specified between braces, either free or within a note:

Person

birthdate
/age

Person Committee

Member-of

Chair-of

{ subset }

* *

*1

{ age = currentDate - birthdate }

Person Company

employee

* 0..1

employerworker

boss

*

0..1

{ Person.employer = Person.boss.employer }

ESE 131.

Universität Bern Modeling Objects and Classes

Design by Contract in UML

Combine constraints with stereotypes:

NB: «invariant», «precondition», and «postcondition» are predefined in UML.

«invariant»
(isEmpty ()) or (! isEmpty ())

Stack

/size
...

push (char)
pop (): char
isEmpty(): boolean

let oldSize:Integer = self.size in
pre: oldSize > 0
post: self.size = oldSize-1

«postcondition»
(! isEmpty ()) and
(top () = char)

(OCL)

ESE 132.

Universität Bern Modeling Objects and Classes

Using the Notation

During Analysis:
❑ Capture classes visible to users
❑ Document attributes and responsibilities
❑ Identify associations and collaborations
❑ Identify conceptual hierarchies
❑ Capture all visible features

During Design:
❑ Specify contracts and operations
❑ Decompose complex objects
❑ Factor out common interfaces and functionalities

The graphical notation is only part of the analysis or design document. For example, a
data dictionary cataloguing and describing all names of classes, roles, associations, etc.
must be maintained throughout the project.

ESE 133.

Universität Bern Modeling Objects and Classes

Summary

You should know the answers to these questions:
❑ How do you represent classes, objects and associations?
❑ How do you specify the visibility of attributes and operations to clients?
❑ How is a utility different from a class? How is it similar?
❑ Why do we need both named associations and roles?
❑ Why is inheritance useful in analysis? In design?
❑ How are constraints specified?

Can you answer the following questions?
✎ Why would you want a feature to have class scope?
✎ Why don’t you need to show operations when depicting an object?
✎ Why aren’t associations drawn with arrowheads?
✎ How is aggregation different from any other kind of association?
✎ How are associations realized in an implementation language?

ESE 134.

Universität Bern Modeling Behaviour

7. Modeling Behaviour

❑ Use Case Diagrams
❑ Sequence Diagrams
❑ Collaboration Diagrams
❑ State Diagrams

Sources:
❑ Unified Modeling Language — Notation Guide, version 1.1, Rational Software

Corporation, 1997.
❑ Object-Oriented Development — The Fusion Method, D. Coleman, et al.,

Prentice Hall, 1994.

ESE 135.

Universität Bern Modeling Behaviour

Use Case Diagrams

IdentifyCustomer

Auditor

Clerk

Loan Officer

Bank
Clear

checks

Prepare
statements

Counter
transaction

Loan
application

Audit

A use case is a generic
description of an entire
transaction involving several
actors.
A use case diagram presents
a set of use cases (ellipses)
and the external actors that
interact with the system.
Dependencies and
associations between use
cases may be indicated.

A scenario is an instance of a
use case showing a typical
example of its execution.

«include»

«include»

ESE 136.

Universität Bern Modeling Behaviour

Sequence Diagrams

caller lifts receiver

dial tone begins

dial (1)

dial tone ends

dial (2)

dial (2)

ringing tone phone rings

answer phone

ringing stopstone stops

tim
e

Caller Phone Line CalleeA sequence diagram depicts a
scenario by showing the
interactions among a set of
objects in temporal order.

Objects (not classes!) are shown
as vertical bars.
Events or message dispatches
are shown as horizontal (or
slanted) arrows from the send to
the receiver.

Recall that a scenario describes a
typical example of a use case, so
conditionality is not expressed!

ESE 137.

Universität Bern Modeling Behaviour

UML Message Flow Notation

Filled solid arrowhead
procedure call or other nested control flow

Stick arrowhead
flat, sequential control flow (usually asynchronous)

Half-stick arrowhead
asynchronous control flow between objects within a
procedural sequence

ESE 138.

Universität Bern Modeling Behaviour

Collaboration Diagrams

Collaboration diagrams depict scenarios as flows of messages between objects:

redisplay()

1: displayPositions(window)

window

{ temp }

1.1.3.1: add(self)
contents

1.1*[i=1..n]: drawSegment(i)

«self» 1.1.2: line := create(r0, r1)
1.1.3: display(window)

i-1 i

{ temp }

1.1.1a: r0 := position() 1.1.1b: r1 := position()

: Controller : Window

: Line { new }wire : Wire

left : Bead right : Bead

wire

«local» line

«parameter»
window

{ new }

ESE 139.

Universität Bern Modeling Behaviour

Message Labels

Messages from one object to another are labelled with text strings showing the direction
of message flow and information indicating the message sequence.

Message labels:
1. Prior messages from other threads (e.g. “[A1.3, B6.7.1]”)

☞ only need with concurrent flow of control
2. Dot-separated list of sequencing elements:

☞ sequencing integer (e.g., “3.1.2” is invoked by “3.1” and follows “3.1.1”)
☞ letter indicating concurrent threads (e.g., “1.2a” and “1.2b”)
☞ iteration indicator (e.g., “1.1*[i=1..n]”)
☞ conditional indicator (e.g., “2.3 [#items = 0]”)

3. Return value binding (e.g., “status :=”)
4. Message name
5. Argument list

ESE 140.

Universität Bern Modeling Behaviour

State Diagrams

Idle

Dialing

Pinned

Talking

callee
answers

callee
hangs up

Timeout
do / play message

DialTone
do / play dial tone

Invalid
do / play message

Busy
do / play busy tone

Ringing
do / play ringing tone

Connecting

Active

callee answers / enable speech

dial digit(n)

after (15 sec.) after (15 sec.)

dial digit(n)
[incomplete]

dial digit(n) [invalid]

connected

dial digit(n) [valid]
/connect

busycaller
hangs up
/ disconnect

lift receiver
/ get dial tone

ESE 141.

Universität Bern Modeling Behaviour

State Diagram Notation

A State Diagram describes the temporal evolution of an object of a given class in
response to interactions with other objects inside or outside the system.

An event is a one-way (asynchronous) communication from one object to another:
❑ atomic (non-interruptible)
❑ includes events from hardware and real-world objects

e.g., message receipt, input event, elapsed time, ...
❑ notation: eventName(parameter: type, ...)
❑ may cause object to make a transition between states

A state is a period of time during which an object is waiting for an event to occur:
❑ depicted as rounded box with (up to) three sections:

☞ name — optional
☞ state variables — name: type = value (valid only for that state)
☞ triggered operations — internal transitions and ongoing operations

❑ may be nested

ESE 142.

Universität Bern Modeling Behaviour

State Box with Regions

Typing Password

entry / set echo invisible
exit / set echo normal
character / handle character
help / display help

name

internal operations

The entry event occurs whenever a transition is made into this state, and the
exit operation is triggered when a transition is made out of this state.
The help and character events cause internal transitions with no change of
state, so the entry and exit operations are not performed.

ESE 143.

Universität Bern Modeling Behaviour

Transitions and Operations
Transitions:

❑ A response to an external event received by an object in a given state
❑ May invoke an operation, and cause object to change state
❑ May send an event to an external object
❑ Transition syntax (each part is optional):

❑ External transitions label arcs between states;
internal transitions are part of the triggered operations of a state

Operations:
❑ Operations invoked by transitions are atomic actions
❑ Entry and exit operations can be associated with states

Activities:
❑ Ongoing operations while object is in a given state
❑ Modelled as internal transitions labelled with the pseudo-event do

event (arguments)
[condition]
^target.sendEvent
operation (arguments)

/

event-signature

action-expression

plus guard

ESE 144.

Universität Bern Modeling Behaviour

Composite States
Composite states may depicted either as high-level or low-level views.
To indicate the presence of internal states, “stubbed transitions” may be used in the high-
level view:

Starting and termination substates are shown as black spots and “bulls-eyes”:

Idle Dialing Connecting
lift receiver dialedNumber(number)

Start
do / play dial tone

Partial Dial
entry / number.append(n)

Dialing

number : String = “”

digit(n) [number.isValid()]

/ ^dialedNumber(number)

digit(n)

ESE 145.

Universität Bern Modeling Behaviour

Sending Events between Objects

TV mode VCR mode

VCR button

TV button
Power button

Power buttonRemote Control

Off On

toggle Power

toggle Power
VCR

Off On

toggle Power

toggle Power
Television

toggle Power

toggle Power

ESE 146.

Universität Bern Modeling Behaviour

Concurrent Substates

Lab1

Term Project

Final Test

Lab2
lab done lab done

project done

pass

Incomplete

Failed

Passed

fail

Taking Class

ESE 147.

Universität Bern Modeling Behaviour

Branching and Merging

Entering concurrent states:
Entering a state with concurrent substates means that each of the substates is entered
concurrently (one logical thread per substate).

Leaving concurrent states:
A labelled transition out of any of the substates terminates all of the substates.
An unlabelled transition out of the overall state waits for all substates to terminate.

An alternative notation for explicit branching and merging uses a “synchronization bar”:

A2A1

B2B1

Startup Cleanup

e/a e’/a’

ESE 148.

Universität Bern Modeling Behaviour

History Indicator

A “history indicator” can be used to indicate that the current composite state should be
remembered upon an external transition. To return to the saved state, a transition should
point explicitly to the history icon:

A2

A1

H

A C
interrupt

resume

ESE 149.

Universität Bern Modeling Behaviour

Creating and Destroying Objects

Creation and destruction of objects can be depicted by using the start and terminal
symbols as top-level states:

Writeable
lock

ReadOnlyunlock

modify

destroy

create

CreatedFile

File

ESE 150.

Universität Bern Modeling Behaviour

Using the Notations

The diagrams introduced here complement class and object diagrams.

During Analysis:
❑ Use case, sequence and collaboration diagrams document use cases and their

scenarios during requirements specification

During Design:
❑ Sequence and collaboration diagrams can be used to document

implementation scenarios or refine use case scenarios
❑ State diagrams document internal behaviour of classes and must be validated

against the specified use cases

ESE 151.

Universität Bern Modeling Behaviour

Summary

You should know the answers to these questions:
❑ What is the purpose of a use case diagram?
❑ Why do scenarios depict objects but not classes?
❑ How can timing constraints be expressed in scenarios?
❑ How do you specify and interpret message labels in a scenario?
❑ How do you use nested state diagrams to model object behaviour?
❑ What is the difference between “external” and “internal” transitions?
❑ How can you model interaction between state diagrams for several classes?

Can you answer the following questions?
✎ Can a sequence diagram always be translated to an collaboration diagram?
✎ Or vice versa?
✎ Why are arrows depicted with the message labels rather than with links?
✎ When should you use concurrent substates?

ESE 152.

Universität Bern Software Architecture

8. Software Architecture

Overview:
❑ What is Software Architecture?
❑ Coupling and Cohesion
❑ Architectural styles:

☞ Layered, Client-Server, Blackboard, Dataflow, ...
❑ UML diagrams for architectures

Sources:
❑ Software Engineering, I. Sommerville, Addison-Wesley, Fifth Edn., 1996.
❑ Objects, Components and Frameworks with UML, D. D'Souza, A. Wills,

Addison-Wesley, 1999
❑ Pattern-Oriented Software Architecture — A System of Patterns, F.

Buschmann, et al., John Wiley, 1996
❑ Software Architecture: Perspectives on an Emerging Discipline, M. Shaw, D.

Garlan, Prentice-Hall, 1996

ESE 153.

Universität Bern Software Architecture

What is Software Architecture?

A neat-looking drawing of some boxes, circles, and lines, laid out nicely in
Powerpoint or Word, does not constitute an architecture.

The architecture of a system consists of:
❑ the structure(s) of its parts

☞ including design-time, test-time, and run-time hardware and software parts
❑ the externally visible properties of those parts

☞ modules with interfaces, hardware units, objects
❑ the relationships and constraints between them

in other words:
❑ The set of design decisions about any system (or subsystem) that keeps its

implementors and maintainers from exercising “needless creativity.”

ESE 154.

Universität Bern Software Architecture

How Architecture Drives Implementation

❑ Use a 3-tier client-server architecture: all business logic must be in the middle
tier, presentation and dialogue on the client, and data services on the server;
that way you can scale the application server processing independently of
persistent store.

❑ Use Corba for all distribution, using Corba event channels for notification and
the Corba relationship service; do not use the Corba messaging service as it is
not yet mature.

❑ Use Collection Galore’s collections for representing any collections; by default
use their List class, or document your reason otherwise.

❑ Use Model-View-Controller with an explicit ApplicationModel object to connect
any UI to the business logic and objects.

ESE 155.

Universität Bern Software Architecture

Sub-systems, Modules and Components

❑ A sub-system is a system in its own right whose operation is independent of the
services provided by other sub-systems.

❑ A module is a system component that provides services to other components
but would not normally be considered as a separate system.

❑ A component is an independently deliverable unit of software that encapsulates
its design and implementation and offers interfaces to the out-side, by which it
may be composed with other components to form a larger whole.

ESE 156.

Universität Bern Software Architecture

Cohesion

Cohesion is a measure of how well the parts of a component “belong together.”

Cohesion is weak if elements are bundled simply because they perform similar or related
functions (e.g., java.lang.Math).

Cohesion is strong if all parts are needed for the functioning of other parts (e.g.
java.lang.String).

Strong cohesion promotes maintainability and adaptability by limiting the scope of
changes to small numbers of components.

There are many definitions and interpretations of cohesion.
Most attempts to formally define it are inadequate!

ESE 157.

Universität Bern Software Architecture

Coupling

Coupling is a measure of the strength of the interconnections between system
components.

Coupling is tight between components if they depend heavily on one another, (e.g., there
is a lot of communication between them).

Coupling is loose if there are few dependencies between components.

Loose coupling promotes maintainability and adaptability since changes in one
component are less likely to affect other ones.

ESE 158.

Universität Bern Software Architecture

Tight Coupling

ESE 159.

Universität Bern Software Architecture

Loose Coupling

ESE 160.

Universität Bern Software Architecture

Architectural Parallels

❑ Architects are the technical interface between the customer and the contractor
building the system

❑ A bad architectural design for a building cannot be rescued by good
construction — the same is true for software

❑ There are specialized types of building and software architects

❑ There are schools or styles of building and software architecture

An architectural style defines a family of systems in terms of a pattern of
structural organization. More specifically, an architectural style defines a
vocabulary of components and connector types, and a set of constraints on
how they can be combined.

— Shaw and Garlan

ESE 161.

Universität Bern Software Architecture

Layered Architectures

A layered architecture organises a system into a set of layers each of which provide a set
of services to the layer “above.”

❑ Normally layers are constrained so elements only see

– other elements in the same layer, or

– elements of the layer below

❑ Callbacks may be used to communicate to higher layers

❑ Supports the incremental development of sub-systems in different layers.
☞ When a layer interface changes, only the adjacent layer is affected

ESE 162.

Universität Bern Software Architecture

Abstract Machine Model

ESE 163.

Universität Bern Software Architecture

OSI Reference Model

ESE 164.

Universität Bern Software Architecture

Client-Server Architectures

A client-server architecture distributes application logic and services respectively to a
number of client and server sub-systems, each potentially running on a different machine
and communicating through the network (e.g, by RPC).

Advantages
❑ Distribution of data is straightforward
❑ Makes effective use of networked systems. May require cheaper hardware
❑ Easy to add new servers or upgrade existing servers

Disadvantages
❑ No shared data model so sub-systems use different data organisation.

Data interchange may be inefficient
❑ Redundant management in each server
❑ May require a central register of names and services — it may be hard to find

out what servers and services are available

ESE 165.

Universität Bern Software Architecture

Client-Server Architectures

ESE 166.

Universität Bern Software Architecture

Four-Tier Architectures

ESE 167.

Universität Bern Software Architecture

Blackboard Architectures

A blackboard architecture distributes application logic to a number of independent sub-
systems, but manages all data in a single, shared repository (or “blackboard”).

Advantages
❑ Efficient way to share large amounts of data
❑ Sub-systems need not be concerned with how data is produced, backed up etc.
❑ Sharing model is published as the repository schema

Disadvantages
❑ Sub-systems must agree on a repository data model
❑ Data evolution is difficult and expensive
❑ No scope for specific management policies
❑ Difficult to distribute efficiently

ESE 168.

Universität Bern Software Architecture

Repository Model

ESE 169.

Universität Bern Software Architecture

Event-driven Systems

In an event-driven architecture components perform services in reaction to external
events generated by other components.

❑ In broadcast models an event is broadcast to all sub-systems. Any sub-system
which can handle the event may do so.

❑ In interrupt-driven models real-time interrupts are detected by an interrupt
handler and passed to some other component for processing.

Broadcast model
❑ Effective in integrating sub-systems on different computers in a network
❑ Can be implemented using a publisher-subscriber pattern:

☞ Sub-systems register an interest in specific events
☞ When these occur, control is transferred to the subscribed sub-systems

❑ Control policy is not embedded in the event and message handler. Sub-systems
decide on events of interest to them

❑ However, sub-systems don’t know if or when an event will be handled

ESE 170.

Universität Bern Software Architecture

Selective Broadcasting

ESE 171.

Universität Bern Software Architecture

Dataflow Models

In a dataflow architecture each component performs functional transformations on its
inputs to produce outputs.

❑ Dataflows should be free of cycles

❑ The single-input, single-output variant is known as pipes and filters
☞ e.g., UNIX (Bourne) shell

☞ e.g., CGI Scripts for interactive Web-content

❑ Not really suitable for interactive systems

tar cf - . gzip -9 rsh picasso dd

data source filter data sink

HTML Form CGI Script generated HTML page

data source filter data sink

ESE 172.

Universität Bern Software Architecture

Invoice Processing System

ESE 173.

Universität Bern Software Architecture

Compilers as Dataflow Architectures

ESE 174.

Universität Bern Software Architecture

Compilers as Blackboard Architectures

ESE 175.

Universität Bern Software Architecture

UML: Package Diagram
Decompose system in packages (containing any other UML element, incl. packages)

Processing Orders
Customer

Management

RDB Interface

query()

Database Layer

Domain Layer

Application Layer

CustomerOrder

ESE 176.

Universität Bern Software Architecture

UML: Deployment Diagram
Shows physical lay-out of run-time components on hardware nodes.

myMac: Mac

:Netscape

aPC: PC

:IExplorer

:UnixHost

:WebServer

:UnixHost

:Database

«internet»

«internet»
«ethernet»

ESE 177.

Universität Bern Software Architecture

Summary

You should know the answers to these questions:
❑ How does software architecture constrain a system?
❑ How does choosing an architecture simplify design?
❑ What are coupling and cohesion?
❑ What is an architectural style?
❑ Why shouldn’t elements in a software layer “see” the layer above?
❑ What kinds of applications are suited to event-driven architectures?

Can you answer the following questions?
✎ What is meant by a “fat client” or a “thin client” in a 4-tier architecture?
✎ What kind of architectural styles are supported by the Java AWT? by RMI?
✎ How do callbacks reduce coupling between software layers?
✎ How would you implement a dataflow architecture in Java?
✎ Is it easier to understand a dataflow architecture or an event-driven one?
✎ What are the coupling and cohesion characteristics of each architectural style?

ESE 178.

Universität Bern User Interface Design

9. User Interface Design

Overview:
❑ Interface design models
❑ Design principles
❑ Information presentation
❑ User Guidance
❑ Evaluation

Sources:
❑ Software Engineering, I. Sommerville, Addison-Wesley, Fifth Edn., 1996.
❑ Software Engineering — A Practitioner’s Approach, R. Pressman, Mc-Graw Hill,

Third Edn., 1994.

ESE 179.

Universität Bern User Interface Design

Interface Design Models

Four different models occur in HCI design:

1. The design model expresses the software design.

2. The user model describes the profile of the end users.
(i.e., novices vs. experts, cultural background, etc.)

3. The user’s model is the end users’ perception of the system.

4. The system image is the external manifestation of the system
(look and feel + documentation etc.)

ESE 180.

Universität Bern User Interface Design

GUI Characteristics

Characteristic Description

Windows Multiple windows allow different information to be displayed
simultaneously on the user’s screen.

Icons Usually icons represent files (including folders and applications),
but they may also stand for processes (e.g., printer drivers).

Menus Menus bundle and organize commands (eliminating the need for a
command language).

Pointing A pointing device such as a mouse is used for selecting choices
from a menu or indicating items of interest in a window.

Graphics Graphical elements can be mixed with text on the same display.

ESE 181.

Universität Bern User Interface Design

GUI advantages

❑ They are easy to learn and use.
☞ Users without experience can learn to use the system quickly.

❑ The user may switch attention between tasks and applications.
☞ Information remains visible in its own window when attention is switched.

❑ Fast, full-screen interaction is possible with immediate access to the entire
screen

But
❑ A GUI is not automatically a good interface

☞ Many software systems are never used due to poor UI design
☞ A poorly designed UI can cause a user to make catastrophic errors

ESE 182.

Universität Bern User Interface Design

User Interface Design Principles
Principle Description

User familiarity Use terms and concepts familiar to the user.

Consistency Comparable operations should be activated in the same way.
Commands and menus should have the same format, etc.

Minimal
surprise

If a command operates in a known way, the user should be able to predict
the operation of comparable commands.

Feedback Provide the user with visual and auditory feedback, maintaining two-way
communication.

Memory load Reduce the amount of information that must be remembered between
actions. Minimize the memory load.

Efficiency Seek efficiency in dialogue, motion and thought. Minimize keystrokes
and mouse movements.

Recoverability Allow users to recover from their errors. Include undo facilities,
confirmation of destructive actions, 'soft' deletes, etc.

User guidance Incorporate some form of context-sensitive user guidance and assistance.

ESE 183.

Universität Bern User Interface Design

Direct Manipulation

A direct manipulation interface presents the user with a model of the information space
which is modified by direct action.

Examples
❑ forms (direct entry)
❑ WYSIWYG document editors

Advantages
❑ Users feel in control and are less likely to be intimidated by the system
❑ User learning time is relatively short
❑ Users get immediate feedback on their actions

☞ mistakes can be quickly detected and corrected
Problems

❑ Finding the right user metaphor may be difficult
❑ It can be hard to navigate efficiently in a large information space.
❑ It can be complex to program and demanding to execute

ESE 184.

Universität Bern User Interface Design

Interface Models

Desktop metaphor.
❑ The model of an interface is a “desktop” with icons representing files, cabinets,

etc.

Control panel metaphor.
❑ The model of an interface is a hardware control panel with interface entities

including:
☞ buttons, switches, menus, lights, displays, sliders etc.

ESE 185.

Universität Bern User Interface Design

Menu Systems

Menu systems allow users to make a selection from a list of possibilities presented to
them by the system by pointing and clicking with a mouse, using cursor keys or by typing
(part of) the name of the selection.

Advantages
❑ Users don’t need to remember command names
❑ Typing effort is minimal
❑ User errors are trapped by the interface
❑ Context-dependent help can be provided (based on the current menu selection)

Problems
❑ Actions involving logical conjunction (and) or disjunction (or) are awkward to

represent
❑ If there are many choices, some menu structuring facility must be used
❑ Experienced users find menus slower than command language

ESE 186.

Universität Bern User Interface Design

Menu Structuring

❑ Scrolling menus
☞ The menu can be scrolled to reveal additional choices
☞ Not practical if there is a very large number of choices

❑ Hierarchical menus
☞ Selecting a menu item causes the menu to be replaced by a sub-menu

❑ Walking menus
☞ A menu selection causes another menu to be revealed

❑ Associated control panels
☞ When a menu item is selected, a control panel pops-up with further options

ESE 187.

Universität Bern User Interface Design

Command Interfaces

With a command language, the user types commands to give instructions to the system

❑ May be implemented using cheap terminals
❑ Easy to process using compiler techniques
❑ Commands of arbitrary complexity can be created by command combination
❑ Concise interfaces requiring minimal typing can be created

Advantages
❑ Allow experienced users to interact quickly with the system
❑ Commands can be scripted

Problems
❑ Users have to learn and remember a command language
❑ Not suitable for occasional or inexperienced users
❑ An error detection and recovery system is required
❑ Typing ability is required

ESE 188.

Universität Bern User Interface Design

Information Presentation

Information display factors
❑ Is the user interested in precise information or data relationships?
❑ How quickly do information values change?

Must the change be indicated immediately?
❑ Must the user take some action in response to a change?
❑ Is there a direct manipulation interface?
❑ Is the information textual or numeric? Are relative values important?

ESE 189.

Universität Bern User Interface Design

Analogue vs. Digital Presentation

Digital presentation
❑ Compact - takes up little screen space
❑ Precise values can be communicated

Analogue presentation
❑ Easier to get an 'at a glance' impression of a value
❑ Possible to show relative values
❑ Easier to see exceptional data values

ESE 190.

Universität Bern User Interface Design

Colour Displays

Colour can help the user understand complex information structures.

Colour use guidelines
❑ Don’t use (only) colour to communicate meaning!

☞ Open to misinterpretation (colour-blindness, cultural differences ...)
☞ Design for monochrome then add colour

❑ Use colour coding to support user tasks
☞ highlight exceptional events
☞ allow users to control colour coding

❑ Use colour change to show status change
❑ Don't use too many colours

☞ Avoid colour pairings which clash
❑ Use colour coding consistently

ESE 191.

Universität Bern User Interface Design

User Guidance

The user guidance system is integrated with the user interface to help users when they
need information about the system or when they make some kind of error.

User guidance covers:
❑ System messages, including error messages
❑ Documentation provided for users
❑ On-line help

ESE 192.

Universität Bern User Interface Design

Design Factors in Message Wording

Context
The user guidance system should be aware of what the user is doing and should
adjust the output message to the current context.

Experience
The user guidance system should provide both longer, explanatory messages
for beginners, and more terse messages for experienced users.

Skill level
Messages should be tailored to the user’s skills as well as their experience.
I.e., depending on the terminology which is familiar to the reader.

Style
Messages should be positive rather than negative.
They should never be insulting or try to be funny.

Culture
Wherever possible, the designer of messages should be familiar with the
culture of the country (or environment) where the system is used.
A suitable message for one culture might be unacceptable in another.

ESE 193.

Universität Bern User Interface Design

Error Message Guidelines

❑ Speak the user’s language
❑ Give constructive advice for recovering from the error
❑ Indicate negative consequences of the error (e.g., possibly corrupted files)
❑ Give an audible or visual cue
❑ Don’t make the user feel guilty!

ESE 194.

Universität Bern User Interface Design

Good and Bad Error Messages

ESE 195.

Universität Bern User Interface Design

Help System Design

Help? means “Please help. I want information.”
Help! means “HELP. I'm in trouble.”

Help information
❑ Should not simply be an on-line manual

☞ Screens or windows don't map well onto paper pages
❑ Dynamic characteristics of display can improve information presentation

☞ but people are not so good at reading screens as they are text.

Help system use
❑ Multiple entry points should be provided

☞ the user should be able to get help from different places
❑ The help system should indicate where the user is positioned
❑ Navigation and traversal facilities must be provided

ESE 196.

Universität Bern User Interface Design

User Interface Evaluation

User interface design should be evaluated to assess its suitability and usability.

Usability attributes

Attribute Description

Learnability How long does it take a new user to become productive with the system?

Speed of operation How well does the system response match the user’s work practice?

Robustness How tolerant is the system of user error?

Recoverability How good is the system at recovering from user errors?

Adaptability How closely is the system tied to a single model of work?

ESE 197.

Universität Bern User Interface Design

Summary

You should know the answers to these questions:
❑ What models are important to keep in mind in UI design?
❑ What is the principle of minimal surprise?
❑ What problems arise in designing a good direct manipulation interface?
❑ What are the trade-offs between menu systems and command languages?
❑ How can you use colour to improve a UI?
❑ In what way can a help system be context sensitive?

Can you answer the following questions?
✎ Why is it important to offer “keyboard short-cuts” for equivalent mouse actions?
✎ How would you present the current load on the system? Over time?
✎ What is the worst UI you every used? Which design principles did it violate?
✎ What’s the worst web site you’ve used recently? How would you fix it?
✎ What’s good or bad about the MS-Word help system?

ESE 198.

Universität Bern Software Validation

10. Software Validation

Overview:
❑ Reliability, Failures and Faults
❑ Fault Tolerance
❑ Software Testing: Black box and white box testing
❑ Static Verification

Source:
❑ Software Engineering, I. Sommerville, Addison-Wesley, Fifth Edn., 1996.

ESE 199.

Universität Bern Software Validation

Software Reliability, Failures and Faults

The reliability of a software system is a measure of how well it provides the services
expected by its users, expressed in terms of software failures.

A software failure is an execution event where the software behaves in an unexpected or
undesirable way.
A software fault is an erroneous portion of a software system which may cause failures
to occur if it is run in a particular state, or with particular inputs.

Failure class Description

Transient Occurs only with certain inputs

Permanent Occurs with all inputs

Recoverable System can recover without operator intervention

Unrecoverable Operator intervention is needed to recover from failure

Non-corrupting Failure does not corrupt data

Corrupting Failure corrupts system data

ESE 200.

Universität Bern Software Validation

Programming for Reliability

Fault avoidance:
☞ development techniques to reduce the number of faults in a system

Fault tolerance:
☞ developing programs that will operate despite the presence of faults

Fault avoidance depends on:
1. A precise system specification (preferably formal)
2. Software design based on information hiding and encapsulation
3. Extensive validation reviews during the development process
4. An organizational quality philosophy to drive the software process
5. Planned system testing to expose faults and assess reliability

ESE 201.

Universität Bern Software Validation

Common Sources of Software Faults
Several features of programming languages and systems are common sources of faults
in software systems:

❑ Goto statements and other unstructured programming constructs make
programs hard to understand, reason about and modify.
☞ Use structured programming constructs

❑ Floating point numbers are inherently imprecise and may lead to invalid
comparisons.
☞ Fixed point numbers are safer for exact comparisons

❑ Pointers are dangerous because of aliasing, and the risk of corrupting memory
☞ Pointer usage should be confined to abstract data type implementations

❑ Parallelism is dangerous because timing differences can affect overall program
behaviour in hard-to-predict ways.
☞ Minimize inter-process dependencies

❑ Recursion can lead to convoluted logic, and may exhaust (stack) memory.
☞ Use recursion in a disciplined way, within a controlled scope

❑ Interrupts force transfer of control independent of the current context, and may
cause a critical operation to be terminated.
☞ Minimize the use of interrupts; prefer disciplined exceptions

ESE 202.

Universität Bern Software Validation

Fault Tolerance

A fault-tolerant system must carry out four activities:

1. Failure detection:
☞ detect that the system has reached a particular state or will result in a

system failure
2. Damage assessment:

☞ detect which parts of the system state have been affected by the failure
3. Fault recovery:

☞ restore the state to a known, “safe” state (either by correcting the damaged
state, or backing up to a previous, safe state)

4. Fault repair:
☞ modify the system so the fault does not recur (!)

ESE 203.

Universität Bern Software Validation

Approaches to Fault Tolerance

N-version Programming:
Multiple versions of the software system are implemented independently
by different teams. The final system:

– runs all the versions in parallel,

– compares their results using a voting system, and

– rejects inconsistent outputs. (At least three versions should be available!)

Recovery Blocks:
A finer-grained approach in which a program unit contains a test to check
for failure, and alternative code to back up and try in case of failure.

– alternatives are executed in sequence, not in parallel

– the failure test is independent (not by voting)

ESE 204.

Universität Bern Software Validation

Defensive Programming

Failure detection:
❑ Use the type system as much as possible to ensure that state variables do not

get assigned invalid values.
❑ Use assertions to detect failures and raise exceptions. Explicitly state and check

all invariants for abstract data types, and pre- and post-conditions of procedures
as assertions. Use exception handlers to recover from failures.

❑ Use damage assessment procedures, where appropriate, to assess what parts
of the state have been affected, before attempting to fix the damage.

Fault recovery:
❑ Backward recovery: backup to a previous, consistent state
❑ Forward recovery: make use of redundant information to reconstruct a

consistent state from corrupted data

ESE 205.

Universität Bern Software Validation

Verification and Validation

Validation:
❑ Are we building the right product?

Verification:
❑ Are we building the product right?

Static techniques include program inspection, analysis and formal verification.
Dynamic techniques include statistical testing and defect testing ...

Requirements
specification

High-level
design

Formal
specifications

ProgramDetailed
design

Prototype

Static
verification

Dynamic
validation

ESE 206.

Universität Bern Software Validation

The Testing Process

1. Unit testing:
☞ Individual (stand-alone) components are tested to ensure that they operate

correctly.
2. Module testing:

☞ A collection of related components (a module) is tested as a group.
3. Sub-system testing:

☞ The phase tests a set of modules integrated as a sub-system. Since the
most common problems in large systems arise from sub-system interface
mismatches, this phase focuses on testing these interfaces.

4. System testing:
☞ This phase concentrates on (i) detecting errors resulting from unexpected

interactions between sub-systems, and (ii) validating that the complete
systems fulfils functional and non-functional requirements.

5. Acceptance testing (alpha/beta testing):
☞ The system is tested with real rather than simulated data.

Testing is iterative! Regression testing is performed when defects are repaired.

ESE 207.

Universität Bern Software Validation

Regression Testing

Regression testing means testing that everything that used to work still works after
changes are made to the system!

❑ tests must be deterministic and repeatable

❑ should test “all” functionality
☞ every interface
☞ all boundary situations
☞ every feature
☞ every line of code
☞ everything that can conceivably go wrong!

It costs extra work to define tests up front, but they pay off in debugging & maintenance!

NB: Testing can only reveal the presence of defects, not their absence!

ESE 208.

Universität Bern Software Validation

Test Planning

The preparation of the test plan should begin when the system requirements are
formulated, and the plan should be developed in detail as the software is designed.

The plan should be revised regularly, and tests should be repeated and extended
wherever iteration occurs in the software process.

Acceptance
test plan

System
integration
test plan

Requirements
specification

Sub-system
integration
test plan

System
specification

System
design

Detailed
design

Module and unit
code and test

Sub-system
integration test

System
integration test

Acceptance
testService

ESE 209.

Universität Bern Software Validation

Testing Strategies
Top-down Testing:

☞ Start with sub-systems, where modules are represented by “stubs”
☞ Similarly test modules, representing functions as stubs
☞ Coding and testing are carried out as a single activity
☞ Design errors can be detected early on, avoiding expensive redesign
☞ Always have a running (if limited) system
☞ BUT: may be impractical for stubs to simulate complex components

Bottom-up Testing:
☞ Start by testing units and modules
☞ Test drivers must be written to exercise lower-level components
☞ Works well for reusable components to be shared with other projects
☞ BUT: pure bottom-up testing will not uncover architectural faults till late in

the software process

Typically a combination of top-down and bottom-up testing is best.

ESE 210.

Universität Bern Software Validation

Defect Testing

Tests are designed to reveal the presence of defects in the system.
Testing should, in principle, be exhaustive, but in practice can only be representative.

Test data are inputs devised to test the system.
Test cases are input/output specifications for a particular function being tested.

Petschenik (1985) proposes:
1. “Testing a system’s capabilities is more important than testing its components.”

☞ Choose test cases that will identify situations that may prevent users from
doing their job.

2. “Testing old capabilities is more important than testing new capabilities.”
☞ Always perform regression tests when the system is modified.

3. “Testing typical situations is more important than testing boundary value cases.”
☞ If resources are limited, focus on typical usage patterns.

ESE 211.

Universität Bern Software Validation

Functional testing
Functional testing treats a component as a “black box” whose behaviour can be
determined only by studying its inputs and outputs.

Test cases are derived from the external specification of the component.
Coverage criteria:

– all exceptions
– all data ranges (incl. invalid input) generating different classes of output
– all boundary values

Ie
Input set

Oe

Output set

Component

Inputs causing
anomalous behaviour

Outputs revealing the
presence of defects

ESE 212.

Universität Bern Software Validation

Equivalence Partitioning
Test cases can be derived from a component’s interface, by assuming that the
component will behave similarly for all members of an equivalence partition.

Example:
private int[] _elements;
public boolean find(int key) { ... }

Check input partitions:
❑ Do the inputs fulfil the pre-conditions?
❑ Is the key in the array?

☞ leads to (at least) 2x2 equivalence classes

Check boundary conditions:
❑ Is the array of length 1?
❑ Is the key at the start or end of the array?

☞ leads to further subdivisions (not all combinations make sense)

ESE 213.

Universität Bern Software Validation

Test Cases and Test Data

Generate test data that cover all meaningful equivalence partitions.

Test Cases Test Data

Array length 0 key = 17, elements = { }

Array not sorted key = 17, elements = { 33, 20, 17, 18 }

Array size 1, key in array key = 17, elements = { 17 }

Array size 1, key not in array key = 0, elements = { 17 }

Array size > 1, key is first element key = 17, elements = { 17, 18, 20, 33 }

Array size > 1, key is last element key = 33, elements = { 17, 18, 20, 33 }

Array size > 1, key is in middle key = 20, elements = { 17, 18, 20, 33 }

Array size > 1, key not in array key = 50, elements = { 17, 18, 20, 33 }

...

ESE 214.

Universität Bern Software Validation

Structural Testing
Structural testing treats a component as a “white box”
or “glass box” whose structure can be examined to
generate test cases.
Derive test cases to maximize coverage of that
structure, yet minimize number of test cases

Coverage criteria:
– every statement at least once
– all portions of control flow at least once
– all possible values of compound

conditions at least once
– all portions of data flow at least once
– for all loops L, with n allowable passes:

(i) skip the loop;
(ii) 1 pass through the loop; (iii) 2 passes;
(iv) m passes where 2 < m < n; (v) n-1, n, n+1 passes

Path testing is a white-box strategy which exercises every independent execution path
through a component.

Component
code

Test
data

Test
outputs

Derive test data

Run tests

Produce output

ESE 215.

Universität Bern Software Validation

Binary Search Method
public boolean find(int key) throws assertionViolation { // (1)

assert(isSorted()); // pre-condition
if (isEmpty()) { return false; } // Trivially can't find key in an empty list
int bottom = 0;
int top = _elements.length-1;
int lastIndex = (bottom+top)/2;
int mid;
boolean found = key == _elements[lastIndex];

while ((bottom <= top) && !found) { // (2) (3)
assert(bottom <= top); // loop invariant
mid = (bottom + top) / 2;
found = key == _elements[mid];
if (found) { // (5)

lastIndex = mid; // (6)
} else {

if (_elements[mid] < key) { // (7)
bottom = mid + 1; // (8)

} else { top = mid - 1; } // (9)
} // loop variant decreases: top - bottom

} // (4)
assert((key == _elements[lastIndex]) || !found); // post-condition
return found;

}

ESE 216.

Universität Bern Software Validation

Path Testing
A set of independent paths of a flow graph must cover all the edges in the graph:
e.g., {1,2,3,4,12,13}, {1,2,3,5,6,11,2,12,13}, {1,2,3,5,7,8,10,11,2,12,13},
{1,2,3,5,7,9,10,11,2,12,13}

Test cases should be chosen to cover all independent paths through a routine.

1

2

3
4

6
5

7
8

13

9
10

11
12

while (bottom <= top)

if (key == _elements[mid])

if (_elements[mid] < key)

if (! found)

ESE 217.

Universität Bern Software Validation

Basis Path Testing: The Technique
See [Press92a]

1. Draw a control flow graph
Nodes represent nonbranching statements; edges represent control flow.

2. Compute the Cyclomatic Complexity
= #(edges) - #(nodes) + 2 = number of conditions + 1

3. Determine a set of independent paths
Several possibilities. Upper bound = Cyclomatic Complexity

4. Prepare test cases that force each of these paths
Choose values for all variables that control the branches.
Predict the result in terms of values and/or exceptions raised

5. Write test driver for each test case

if-then-else while case-of and / or

ESE 218.

Universität Bern Software Validation

Condition Testing
For complex boolean expressions, Basis Path Testing is not enough!

public int abs (int x, int y) throws assertionViolation {
int result;

if (x > y) {
result = x - y;

} else {
result = y - x;

}
assert (result > 0); // post-condition
return result;

}

Input values {x = 3, y=4} and {x = 4, y=3} will exercise all paths, but... {x = 3, y=3}
☞ Condition Testing exercises all logical conditions
☞ Domain Testing: for each occurrence of <, <=, =, <>, >= 3 tests

ESE 219.

Universität Bern Software Validation

Statistical Testing

The objective of statistical testing is to determine the reliability of the software, rather than
to discover software faults. Reliability may be expressed as:

❑ probability of failure on demand,
❑ rate of failure occurrence,
❑ mean time to failure,
❑ availability

Tests are designed to reflect the frequency of actual user inputs and, after running the
tests, an estimate of the operational reliability of the system can be made:

1. Determine usage patterns of the system (classes of input and probabilities)
2. Select or generate test data corresponding to these patterns
3. Apply the test cases, recording execution time to failure
4. Based on a statistically significant number of test runs, compute reliability

ESE 220.

Universität Bern Software Validation

Static Verification

Program Inspections:
❑ Small team systematically checks program code
❑ Inspection checklist often drives this activity

☞ e.g., “Are all invariants, pre- and post-conditions checked?” ...

Static Program Analysers:
❑ Complements compiler to check for common errors

☞ e.g., variable use before initialization

Mathematically-based Verification:
❑ Use mathematical reasoning to demonstrate that program meets specification

☞ e.g., that invariants are not violated, that loops terminate, etc.

Cleanroom Software Development:
❑ Systematically use (i) incremental development, (ii) formal specification, (iii)

mathematical verification, and (iv) statistical testing

ESE 221.

Universität Bern Software Validation

When to Stop?
When are we done testing? When do we have enough tests?

Cynical Answers (sad but true)
❑ You’re never done: each run of the system is a new test

☞ Each bug-fix should be accompanied by a new regression test
❑ You’re done when you are out of time/money

☞ Include testing in the project plan AND DO NOT GIVE IN TO PRESSURE
☞ ... in the long run, tests save time

Statistical Testing
❑ Test until you’re reduced failure rate under risk threshold

☞ Testing is like an insurance company calculating risks

Errors per
test hour

Execution
Time

ESE 222.

Universität Bern Software Validation

Summary

You should know the answers to these questions:
❑ What is the difference between a failure and a fault?
❑ What kinds of failure classes are important?
❑ How can a software system be made fault-tolerant?
❑ How do assertions help to make software more reliable?
❑ What are the goals of software validation and verification?
❑ What is the difference between test cases and test data?
❑ How can you develop test cases for your programs?
❑ What is the goal of path testing?

Can you answer the following questions?
✎ When would you combine top-down testing with bottom-up testing?
✎ When would you combine black-box testing with white-box testing?
✎ Is it acceptable to deliver a system that is not 100% reliable?

ESE 223.

Universität Bern Software Quality

11. Software Quality

Overview:
❑ What is quality?
❑ Quality Attributes
❑ Quality Assurance: Planning and Reviewing
❑ Quality System and Standards

Sources:
❑ Software Engineering, I. Sommerville, Addison-Wesley, Fifth Edn., 1996.
❑ Software Engineering — A Practitioner’s Approach, R. Pressman, Mc-Graw Hill,

Third Edn., 1994.
❑ Fundamentals of Software Engineering, C. Ghezzi, M. Jazayeri, D. Mandroli,

Prentice-Hall 1991

ESE 224.

Universität Bern Software Quality

What is Quality?

Software Quality is conformance to
❑ explicitly stated functional and performance requirements,
❑ explicitly documented development standards,
❑ implicit characteristics that are expected of all professionally developed

software.

Problems:
❑ Software specifications are usually incomplete and often inconsistent
❑ There is tension between:

☞ customer quality requirements (efficiency, reliability, etc.)
☞ developer quality requirements (maintainability, reusability, etc.)

❑ Some quality requirements are hard to specify in an unambiguous way
☞ directly measurable qualities (e.g., errors/KLOC),
☞ indirectly measurable qualities (e.g., usability).

Quality management is not just about reducing defects!

ESE 225.

Universität Bern Software Quality

Hierarchical Quality Model
Define quality via hierarchical quality model, i.e. number of quality attributes
(a.k.a. quality factors, quality aspects, ...)

Choose quality attributes (and weights) depending on the project context

Software
Quality

...

Reliability

Efficiency

Usability

Maintainability

Portability

may be further refined into
subattributes

Quality attribute

ESE 226.

Universität Bern Software Quality

Quality Attributes

Quality attributes apply both to the product and the process.

❑ product: delivered to the customer
❑ process: produces the software product
❑ (resources: both the product and the process require resources)

☞ Underlying assumption: a quality process leads to a quality product
(cf. metaphor of manufacturing lines)

Quality attributes can be external or internal .

❑ External: Derived from the relationship between the environment and the
system (or the process).
(To derive, the system or process must run)

❑ Internal: Derived immediately from the product or process description
(To derive, it is sufficient to have the description)
☞ Underlying assumption: internal quality leads to external quality

(cfr. metaphor manufacturing lines)

ESE 227.

Universität Bern Software Quality

Correctness, Reliability, Robustness
3 external product attributes

Correctness
❑ A system is correct if it behaves according to its specification

☞ An absolute property (i.e., a system cannot be “almost correct”)
☞ ... in theory and practice undecideable

Reliability
❑ The user may rely on the system behaving properly
❑ The probability that the system will operate as expected over a specified interval

☞ A relative property (a system has a mean time between failure of 3 weeks)

Robustness
❑ A system is robust if it behaves reasonably even in circumstances that were not

specified
☞ A vague property (once you specify the abnormal circumstances they

become part of the requirements)

ESE 228.

Universität Bern Software Quality

Efficiency, Usability
2 external attributes, both process and product

Efficiency (Performance)
❑ Use of resources such as computing time, memory

☞ Affects user-friendliness and scalability
☞ Hardware technology changes fast!
☞ (Remember: First do it, then do it right, then do it fast)

❑ For process, resources are man-power, time and money
☞ relates to the “productivity” of a process

Usability (User Friendliness, Human Factors, Human Engineering)
❑ The degree to which the human users find the system (process) easy to use

☞ Depends a lot on the target audience (novices vs. experts)
☞ Often a system has various kinds of users (end-users, operators, installers)
☞ Typically expressed in “amount of time to learn the system”

ESE 229.

Universität Bern Software Quality

Maintainability
external product attributes (evolvability also applies to process)

Maintainability
❑ How easy it is to change a system after its initial release

☞ software enthropy => maintainability gradually decreases over time

Often refined in ...
Repairability

❑ How much work is needed to correct a defect

Evolvability (Adaptability)
❑ How much work is needed to adapt to changing requirements

(both system and process)

Portability
❑ How much work is needed to port to new environment or platforms

ESE 230.

Universität Bern Software Quality

Verifiability, Understandability
internal (and external) product attribute

Verifiability

❑ How easy it is to verify whether desired attributes are there?
☞ internally: e.g., verify requirements, code inspections
☞ externally: e.g., testing, efficiency

Understandability

❑ How easy it is to understand the system
☞ internally: contributes to maintainability
☞ externally: contributes to usability

ESE 231.

Universität Bern Software Quality

Productivity, Timeliness, Visibility
external process attribute (visibility also internal)

Productivity
❑ Amount of product produced by a process for a given number of resources

☞ productivity among individuals varies a lot
☞ often: productivity (∑ individuals) < ∑ productivity (individuals)

Timeliness
❑ Ability to deliver the product on time

☞ important for marketing (“short
time to market”)

☞ often a reason to sacrifice other
quality attributes

☞ incremental development may
provide an answer

Visibility (Transparency, Glasnost)
❑ Current process steps and project

status is accessible
☞ important for management; also

deal with staff turn-over

Time

Function

User needs
System
capability

t0 t1 t2 t3 t4
initial

redesigndelivery

ESE 232.

Universität Bern Software Quality

Quality Control Assumption

Assumptions:

Otherwise, quality is mere coincidence!

Project Concern = Deliver on time and within budget

External (and Internal)
Product Attributes

Process Attributes

❑ Internal quality => External quality
❑ Process quality => Product quality

Control during project Obtain after project

ESE 233.

Universität Bern Software Quality

The Quality Plan
Project Management:

A quality plan should:
❑ set out desired product qualities and how these are assessed

☞ define the most significant quality attributes
❑ define the quality assessment process

☞ i.e., the controls used to ensure quality
❑ set out which organisational standards should be applied

☞ may define new standards, i.e., if new tools or methods are used

NB: Quality Management should be separate from project management to ensure
independence

Project Plan

Schedule
Budget
Quality Plan

❑ Plan Time
❑ Plan Money
❑ Plan Quality

ESE 234.

Universität Bern Software Quality

Types of Quality Reviews
A quality review is carried out by a group of people who carefully examine part or all of a
software system and its associated documentation.

❑ Reviews should be recorded and records maintained
☞ Software or documents may be “signed off” at a review
☞ Progress to the next development stage is thereby approved

Review type Principal purpose

Formal Technical
Reviews
(a.k.a. design or
program inspections)

Driven by checklist
❑ detect detailed errors in any product
❑ mismatches between requirements and product
❑ check whether standards have been followed.

Progress reviews Driven by budgets, plans and schedules
❑ check whether project runs according to plan
❑ requires precise milestones
❑ both a process and a product review

ESE 235.

Universität Bern Software Quality

Review Meetings and Minutes

Review meetings should:
❑ typically involve 3-5 people
❑ require a maximum of 2 hours advance preparation
❑ last less than 2 hours

The review report should summarize:
1. What was reviewed
2. Who reviewed it?
3. What were the findings and conclusions?

The review should conclude whether the product is:
1. Accepted without modification
2. Provisionally accepted, subject to corrections (no follow-up review)
3. Rejected, subject to corrections and follow-up review

ESE 236.

Universität Bern Software Quality

Review Guidelines

1. Review the product, not the producer
2. Set an agenda and maintain it
3. Limit debate and rebuttal
4. Identify problem areas, but don’t attempt to solve every problem noted
5. Take written notes
6. Limit the number of participants and insist upon advance preparation
7. Develop a checklist for each product that is likely to be reviewed
8. Allocate resources and time schedule for reviews
9. Conduct meaningful training for all reviewers
10. Review your early reviews

ESE 237.

Universität Bern Software Quality

Sample Review Checklists (I)

Software Project Planning
1. Is software scope unambiguously defined and bounded?
2. Are resources adequate for scope?
3. Have risks in all important categories been defined?
4. Are tasks properly defined and sequenced?
5. Is the basis for cost estimation reasonable?
6. Have historical productivity and quality data been used?
7. Is the schedule consistent? ...

Requirements Analysis
1. Is information domain analysis complete, consistent and accurate?
2. Does the data model properly reflect data objects, attributes and relationships?
3. Are all requirements traceable to system level?
4. Has prototyping been conducted for the user/customer?
5. Are requirements consistent with schedule, resources and budget? ...

ESE 238.

Universität Bern Software Quality

Sample Review Checklists (II)
Design

1. Has modularity been achieved?
2. Are interfaces defined for modules and external system elements?
3. Are the data structures consistent with the information domain?
4. Are the data structures consistent with the requirements?
5. Has maintainability been considered? ...

Code
1. Does the code reflect the design documentation?
2. Has proper use of language conventions been made?
3. Have coding standards been observed?
4. Are there incorrect or ambiguous comments? ...

Testing
1. Have test resources and tools been identified and acquired?
2. Have both white and black box tests been specified?
3. Have all the independent logic paths been tested?
4. Have test cases been identified and listed with expected results?
5. Are timing and performance to be tested? ...

ESE 239.

Universität Bern Software Quality

Review Results

Comments made during the review should be classified.

❑ No action.
☞ No change to the software or documentation is required.

❑ Refer for repair.
☞ Designer or programmer should correct an identified fault.

❑ Reconsider overall design.
☞ The problem identified in the review impacts other parts of the design.

Requirements and specification errors may have to be referred to the client.

ESE 240.

Universität Bern Software Quality

Product and Process Standards

Product standards define characteristics that all components should exhibit.
Process standards define how the software process should be enacted.

Problems
❑ Not always seen as relevant and up-to-date by software engineers
❑ May involve too much bureaucratic form filling
❑ May require tedious manual work if unsupported by software tools

Product standards Process standards

Design review form Design review conduct

Document naming standards Submission of documents

Procedure header format Version release process

Java programming style standard Project plan approval process

Project plan format Change control process

Change request form Test recording process

ESE 241.

Universität Bern Software Quality

Sample Java Code Conventions

4.2 Wrapping Lines
When an expression will not fit on a single line, break it according to these general
principles:

❑ Break after a comma.
❑ Break before an operator.
❑ Prefer higher-level breaks to lower-level breaks.
❑ Align the new line with the beginning of the expression at the same level on the

previous line.
❑ If the above rules lead to confusing code or to code that’s squished up against

the right margin, just indent 8 spaces instead.

10.3 Constants
Numerical constants (literals) should not be coded directly, except for -1, 0, and 1, which
can appear in a for loop as counter values.

ESE 242.

Universität Bern Software Quality

Quality System
When starting a project, the project will include a Quality Plan

• Ideally, such a plan should be an instance of the organization’s Quality System

Certain customers require an externally reviewed quality system
• An organization may request to certify its quality system

Quality System

Quality Manual

Standards &
Procedures

Project Plan x
Quality plan x

instantiates

feedback
& improve

Quality Assurance

Quality Standards
(ISO 9001, CMM)

influences

External Body
audit

Accreditation
Body

certification
request

Certification

ESE 243.

Universität Bern Software Quality

ISO 9000

ISO 9000 is an international set of standards for quality management applicable to a
range of organisations from manufacturing to service industries.

ISO 9001 is a generic model of the quality process, applicable to organisations whose
business processes range all the way from design and development, to production,
installation and servicing;

• ISO 9001 must be instantiated for each organisation
• ISO 9000-3 interprets ISO 9001 for the software developer

ISO = International Organisation for Standardization
• ISO main site: http://www.iso.ch/
• ISO 9000 main site: http://www.tc176.org/

ESE 244.

Universität Bern Software Quality

ISO 9001

Describes quality standards and procedures for developing products of any kind:

Management responsibility Quality system

Control of non-conforming products Design control

Handling, storage, packaging and
delivery

Purchasing

Purchaser-supplied products Product identification and
traceability

Process control Inspection and testing

Inspection and test equipment Inspection and test status

Contract review Corrective action

Document control Quality records

Internal quality audits Training

Servicing Statistical techniques

ESE 245.

Universität Bern Software Quality

Capability Maturity Model (CMM)
Assess how well contractors manage software processes (says little on projects).
(See [Somm96a] 31.4 The SEI Process maturity model)

Level 1: Initial (Ad Hoc)
No effective QA procedures, quality is luck

Level 2: Repeatable
Formal QA procedures in place

Level 3: Defined
QA process is defined and institutionalized

Level 4: Managed
QA Process + quantitative data collection

Level 5: Optimizing
Improvement is fed back into QA process

Quantitative data is
necessary for
improvement!

Quality depends on
individual project
managers!

Quality depends on
individuals!

ESE 246.

Universität Bern Software Quality

Summary

You should know the answers to these questions:
❑ Can a correctly functioning piece of software still have poor quality?
❑ What’s the difference between an external and an internal quality attribute? And

between a product and a process attribute?
❑ Why should quality management be separate from project management?
❑ How should you organize and run a review meeting?
❑ What information should be recorded in the review minutes?

Can you answer the following questions?
✎ Why does a project need a quality plan?
✎ Why are coding standards important?
✎ What would you include in a documentation review checklist?
✎ How often should reviews by scheduled?
✎ Would you trust software developed by an ISO 9000 certified company? And if it

were CMM?

ESE 247.

Universität Bern Software Metrics

12. Software Metrics

Overview:
❑ Measurement Theory
❑ GQM Paradigm
❑ Quantitative Quality Model
❑ Sample Quality Metrics

Sources:
❑ Software Engineering, I. Sommerville, Addison-Wesley, Fifth Edn., 1996.
❑ Software Engineering — A Practitioner’s Approach, R. Pressman, Mc-Graw Hill,

Third Edn., 1994.
❑ Norman E. Fenton, Shari l. Pfleeger, “Software Metrics: A rigorous & Practical

Approach”, Thompson Computer Press, 1996.

ESE 248.

Universität Bern Software Metrics

Why Metrics?
When you can measure what you are speaking about and express it in
numbers, you know something about it; but when you cannot measure, when
you cannot express it in numbers, your knowledge is of a meagre and
unsatisfactory kind: it may be the beginning of knowledge, but you have
scarcely, in your thoughts, advanced to the stage of science. — Lord Kelvin

Measurement quantifies concepts
☞ understand, control and improve

Date Measurement Comment

2000 BC Rankings “hotter than” By touching objects, people could compare
temperature

1600 AD Thermometer “hotter
than”

A separate device is able to compare
temperature

1720 AD Fahrenheit scale Quantification allows to log temperature,
study trends, predict phenomena (weather
forecasting), ...1742 AD Celsius scale

1854 AD Kelvin scale Absolute zero allows for more precise
descriptions of physical phenomena

ESE 249.

Universität Bern Software Metrics

Why Software Metrics

Effort (and Cost) Estimation
❑ Measure early in the life-cycle to deduce later production efforts

Quality Assessment and Improvement
❑ Control software quality attributes during development
❑ Compare (and improve) software production processes
❑ Remember Quality Assumptions

❑ Internal quality => External quality
❑ Process quality => Product quality

Control during project Obtain after project

ESE 250.

Universität Bern Software Metrics

What are Software Metrics?
Software metrics

❑ Any type of measurement which relates to a software system, process or
related documentation
☞ Lines of code in a program
☞ the Fog index (calculates readability of a piece of documentation)

0.4 *(# words / # sentences) + (percentage of words >= 3 syllables)
☞ number of person-days required to implement a use-case

❑ According to measurement theory, Metric is an incorrect name for Measure
☞ a Metric m is a function measuring distance between two objects

such that m(x,x) = 0; m(x,y) = m(y,x); m(x,z) <= m(x,y) + m(y,z)

Direct Measures
❑ Measured directly in terms of the observed attribute (usually by counting)

☞ Length of source-code, Duration of process, Number of defects discovered
Indirect Measures

❑ Calculated from other direct and indirect measures
☞ Module Defect Density = Number of defects discovered / Length of source
☞ Temperature is usually derived from the length of a liquid column

ESE 251.

Universität Bern Software Metrics

Possible Problems
Example: Compare productivity of programmers in lines of code per time unit.

❑ Do we use the same units to compare? [“Preciseness” of Measurement]
☞ What is a “line of code”? What is the “time unit”?

❑ Is the context the same?
☞ Were programmers familiar with the language? [“Preciseness”]

❑ Is “code size” really what we want to produce? [Representation Condition]
☞ What about code quality?

❑ How do we want to interpret results? [Scale and Scale Types]
☞ Average productivity of a programmer?

Programmer X is more productive than Y?
Programmer X is twice as productive as Y?

❑ What do we want to do with the results? [GQM-paradigm]
☞ Do you reward “productive” programmers?

Do you compare productivity of software processes?

Metrics theory will help us to answer these questions...

ESE 252.

Universität Bern Software Metrics

Empirical Relations
Observe true/false relationships between (attributes of) real world entities
Empirical relations are complete, i.e. defined for all possible combinations

Examples: empirical relationships between height attributes of persons

Frank “is taller
than” Laura

“is taller than” binary relationship

Joe “is not taller
than” Laura

“is tall” unary relationship

Frank
“is tall”

Laura
“is tall”

Joe “is
not tall”

Frank “is not much
taller than” Laura

Frank “is much taller
than” Joe

“is much taller than” binary relationship
“... is higher than ... + ...”
ternary relationship

Frank “is not higher than”
Joe on Laura’s shoulders

ESE 253.

Universität Bern Software Metrics

Measurement Mapping
Measure & Measurement
A measure is a function mapping

❑ an attribute of a real world entity
(= the domain)

onto
❑ a symbol in a set with known

mathematical relations (= the range).
A measurement is then the symbol assigned to
the real world attribute by the measure.

Purpose
Manipulate symbol(s) in the range => draw conclusions about attribute(s) in the domain

Preciseness
To be precise, the definition of the measure must specify

❑ domain: do we measure people’s height or width?
❑ range: do we measure height in centimetres or inches?
❑ mapping rules: do we allow shoes to be worn?

Frank
Joe

Laura

1.80

1.65

1.73

Example: measure mapping “height”
attribute of person on a number
representing “height in meters”.

ESE 254.

Universität Bern Software Metrics

Representation Condition
To be valid, a measure must satisfy the representation condition

❑ empirical relations (in domain) <=> mathematical relations (in range)
In general, the more empirical relations, the more difficult it is to find a valid measure.

Empirical Relation Measure 1 Measure 2
is-taller-than x > y x > y
Frank, Laura true 1.80 > 1.73 true 1.80 > 1.73 true
Joe, Laura false 1.65 > 1.73 false 1.70 > 1.73 false
is-much-taller-than x > y + .10 x > y + .10
Frank, Laura false 1.80 > 1.73 + .10 false 1.80 > 1.73 + .10 false
Frank, Joe true 1.80 > 1.65 + .10 true 1.80 > 1.70 + .10 false

Frank

Joe

Laura

1.80

1.65

1.73

Frank

Joe

Laura

1.80

1.70

1.73M
ea

su
re

 1

M
ea

su
re

 2

ESE 255.

Universität Bern Software Metrics

Scale

Scale
= the symbols in the range of a measure + the permitted manipulations
☞ When choosing among valid measures, we prefer a richer scale

(i.e., one where we can apply more manipulations)
☞ Classify scales according to permitted manipulations => Scale Type

Typical Manipulations on Scales
❑ Mapping: Transform each symbol in one set into a symbol in another set

☞ {false, true} -> {0, 1}
❑ Arithmetic: Add, Substract, Multiply, Divide

☞ It will take us twice as long to implement use-case X than use-case Y
❑ Statistics: Averages, Standard Deviation, ...

☞ The average yearly temperature in Helsinki is 4.4oC

ESE 256.

Universität Bern Software Metrics

Scale Type s
Name Characteristics

Permitted Manipulations
Example
Forbidden Manipulations

Nominal - n different symbols
- no ordering

{true, false}
{design error, implementation error}

- all one-to-one transformations - no magnitude, no ordering
- no median, percentile

Ordinal - n different symbols
- ordering is implied

{trivial, simple, moderate, complex}
{superior, equal, inferior}

- order preserving transformations
- median, percentile

- no arithmetic
- no average, no deviation

Interval Difference between any pair is
preserved by measure

Degrees in Celsius or Fahrenheit

- Addition (+), Substraction (-)
- Averages, Standard Deviation
- Mapping have the form M = aM’ + b

- Multiplication (*), Division (/) not
(“20oC is twice as hot as 10oC” is
forbidden as expression)

Ratio Difference and ratios between any pair
is preserved by measure. There is an
absolute zero.

Degrees in Kelvin
Length, size, ...

- All arithmetic
- Mappings have the form M = aM’

nihil

ESE 257.

Universität Bern Software Metrics

GQM

Goal - Question - Metrics approach
([Somm96a], [Press94a] all citing [Basili et al. 1984])

❑ Define Goal
⇒ e.g., “How effective is the coding standard XYZ?”

❑ Break down into Questions
⇒ “Who is using XYZ?”
⇒ “What is productivity/quality with/without XYZ?”

❑ Pick suitable Metrics
⇒ Proportion of developers using XYZ
⇒ Their experience with XYZ ...
⇒ Resulting code size, complexity, robustness ...

ESE 258.

Universität Bern Software Metrics

Quantitative Quality Model
Quality according to ISO 9126 standard

❑ Divide-and conquer approach via “hierarchical quality model”
❑ Leaves are simple metrics, measuring basic attributes

Software
Quality

Functionality

Reliability

Efficiency

Usability

Maintainability

Portability

ISO 9126 Factor Characteristic Metric

Error tolerance

Accuracy

Simplicity

Modularity

Consistency

defect density
= #defects / size

correction impact
= #components

changed

correction time

ESE 259.

Universität Bern Software Metrics

“Define your own” Quality Model
Define the quality model with the development team

❑ Team chooses the characteristics, design principles, metrics...
❑ ... and the thresholds

Maintainability

Factor Characteristic Design Principle Metric

Modularity

design class as an
abstract data-type

encapsulate all
attributes

avoid complex
interfaces

number of private
attributes]2, 10[

number of public
attributes]0, 0[

number of public
methods]5, 30[

average number of
arguments [0, 4[

ESE 260.

Universität Bern Software Metrics

Sample Size (and Inheritance) Metrics
These are Internal Product Metrics

Inheritance Metrics
- hierarchy nesting level (HNL)
- # immediate children (NOC)
- # inherited methods, unmodified (NMI)
- #overridden methods (NMO) Class

Method Attribute

inherits
belongsTo

access

invokes

Class Size Metrics
- # methods (NOM)
- # attributes, instance/class (NIA, NCA)
- # Σ of method size (WMC)

Method Size Metrics
- # invocations (NOI)
- # statements (NOS)
- # lines of code (LOC)
- # arguments (NOA)

ESE 261.

Universität Bern Software Metrics

Sample Coupling & Cohesion Metrics
These are Internal Product Metrics

Following definitions stem from [Chid91a], later republished as [Chid94a]
Coupling Between Objects (CBO)
CBO = number of other class to which given class is coupled

Interpret as “number of other classes a class requires to compile”

Lack of Cohesion in Methods (LCOM)
LCOM = number of disjoint sets (= not accessing same attribute) of local methods

Beware
Researchers disagree whether coupling/cohesion methods are valid

❑ Classes that are observed to be cohesive may have a high LCOM value
☞ due to accessor methods

❑ Classes that are not much coupled may have high CBO value
☞ no distinction between data, method or inheritance coupling

ESE 262.

Universität Bern Software Metrics

Sample External Quality Metrics (i)
Productivity (Process Metric)

❑ functionality / time
❑ functionality in LOC or FP; time in hours, weeks, months

☞ be careful to compare: the same unit does not always represent the same
❑ Does not take into account the quality of the functionality!

Reliability (Product Metric)
❑ mean time to failure = mean of probability density function

PDF
☞ MTTF (T) = ∫ t f(t) dt
☞ for hardware, PDF is usually a negative exponential

f(t) = λe-λt

☞ for software one must take into account the fact that repairs will influence
the rest of the function => quite complicated formulas

❑ average time between failures = # failures / time
☞ time in execution time or calendar time
☞ necessary to calibrate the probability density function

❑ mean time between failure = MTTF + mean time to repair
☞ to know when your system will be available, take into account repair

probability
density
function

time

fa
ilu

re

ESE 263.

Universität Bern Software Metrics

Sample External Quality Metrics (II)
Correctness (Product Metric)

❑ a system is correct or not, so one cannot measure correctness
❑ defect density = # known defects / product size

☞ product size in LOC or FP
☞ # known defects is a time based count!

❑ do NOT compare across projects unless you’re data collection is sound!

Maintainability (Product Metric)
❑ #time to repair certain categories of changes
❑ “mean time to repair” vs. “average time to repair”

☞ similar to “mean time to failure” and “average time between failures”
❑ beware for the units

☞ categories of changes is subjective
☞ time =?

problem recognition time + administrative delay time +
problem analysis time + change time + testing & reviewing time

ESE 264.

Universität Bern Software Metrics

Conclusion: Metrics for QA (I)
Question:

❑ Can internal product metrics reveal which components have good/poor quality?

Yes, but...
❑ Not reliable

– false positives: “bad” measurements, yet good quality
– false negatives: “good” measurements, yet poor quality

❑ Heavy Weight Approach
– Requires team to develop (customize?) a quantitative quality model
– Requires definition of thresholds (trial and error)

❑ Difficult to interpret
– Requires complex combinations of simple metrics

However...
❑ Cheap once you have the quality model and the thresholds
❑ Good focus (± 20% of components are selected for further inspection)

Note: focus on the most complex components first

ESE 265.

Universität Bern Software Metrics

Conclusion: Metrics for QA (II)

Question:
❑ Can external product/process metrics reveal quality?

Yes, ...
❑ More reliably then internal product metrics

However...
❑ Requires a finished product or process
❑ It is hard to achieve preciseness

☞ even if measured in same units
☞ beware to compare results from one project to another

ESE 266.

Universität Bern Software Metrics

Summary

You should know the answers to these questions
❑ What are the possible problems of metrics usage in software engineering? How

does the metrics theory address them?
❑ What kind of measurement scale would you need to say “A specification error

is worse than a design error”? And what if we want to say “A specification error
is twice as bad as a design error?”

❑ What’s the difference between “Mean time to failure” and “Average time
between failures”? Why is the difference important?

Can you answer the following questions?
❑ During which phases in a software project would you use metrics?
❑ Why is it so important to have “good” product size metrics?
❑ Why do we prefer measuring Internal Product Attributes instead of External

Product Attributes during Quality Control? What is the main disadvantage of
doing that?

❑ Why are coupling/cohesion metrics important? Why then are they so rarely
used?

ESE 267.

Universität Bern Outlook: Heavy vs. Light Methods

13. Outlook: Heavy vs. Light Methods

Soon in this theatre!

	ESE
	Table Of Contents
	1. ESE — Einführung in Software Engineering
	Other Books
	Course Overview
	Why Software Engineering?
	What is Software Engineering?
	Software Development Activities
	The Classical Software Lifecycle
	Problems with the Software Lifecycle
	Iterative Development
	Iterative and Incremental Development
	The Unified Process
	Boehm’s Spiral Lifecycle
	Requirements Collection
	Requirements Analysis and Specification
	Prototyping
	Design
	Implementation and Testing
	Maintenance
	Maintenance
	Methods and Methodologies
	Why use a Method?
	Object-Oriented Methods: A History
	Summary

	2. Project Management
	Why Project Management?
	What is Project Management?
	Risk Management
	Risk Management Techniques
	Focus on Scope
	Scope and Objectives
	Effort Estimation
	Measurement-based Estimation
	Estimation and Commitment
	Planning and Scheduling
	Deliverables and Milestones
	Example: Task Durations and Dependencies
	Pert Chart: Activity Network
	Gantt Chart: Activity Timeline
	Gantt Chart: Staff Allocation
	Delays
	Dealing with Delays
	Earned Value: Tasks Completed
	Gantt Chart: Slip Line
	Timeline Chart
	Slip Line vs. Timeline
	Software Teams
	Chief Programmer Teams
	Directing Teams
	Conway’s Law
	Summary

	3. Requirements Collection
	The Requirements Engineering Process
	Requirements Engineering Activities
	Requirements Analysis
	Problems of Requirements Analysis
	The Requirements Analysis Process
	Use Cases and Viewpoints
	Unified Modeling Language
	Writing Requirements Definitions
	Functional and Non-functional Requirements
	Types of Non-functional Requirements
	Examples of Non-functional Requirements
	Requirements Verifiability
	Precise Requirements Measures
	Prototyping Objectives
	Evolutionary Prototyping
	Throw-away Prototyping
	Requirements Checking
	Requirements Reviews
	Traceability
	Summary

	4. Responsibility-Driven Design
	Why Responsibility-driven Design?
	What is Object-Oriented Design?
	Design Steps
	Finding Classes
	Drawing Editor Requirements Specification
	Drawing Editor: noun phrases
	Class Selection Rationale (I)
	Class Selection Rationale (II)
	Class Selection Rationale (III)
	Candidate Classes
	CRC Cards
	Finding Abstract Classes
	Identifying and Naming Groups
	Recording Superclasses
	Responsibilities
	Identifying Responsibilities
	Assigning Responsibilities
	Relationships Between Classes
	Recording Responsibilities
	Collaborations
	Finding Collaborations
	Recording Collaborations
	Summary

	5. Detailed Design
	Sharing Responsibilities
	Multiple Inheritance
	Building Good Hierarchies
	Building Kind-Of Hierarchies
	Refactoring Responsibilities
	Identifying Contracts
	Applying the Guidelines
	What are Subsystems?
	Subsystem Cards
	Class Cards
	Simplifying Interactions
	Protocols
	Refining Responsibilities
	Specifying Your Design: Classes
	Specifying Subsystems and Contracts
	Summary

	6. Modeling Objects and Classes
	Why UML?
	What is UML?
	Class Diagrams
	Visibility and Scope of Features
	UML Lines and Arrows
	Parameterized Classes
	Interfaces
	Utilities
	Objects
	Associations
	Aggregation and Navigability
	Association Classes
	Qualified Associations
	Inheritance
	What is Inheritance For?
	Design Patterns as Collaborations
	Constraints
	Design by Contract in UML
	Using the Notation
	Summary

	7. Modeling Behaviour
	Use Case Diagrams
	Sequence Diagrams
	UML Message Flow Notation
	Collaboration Diagrams
	Message Labels
	State Diagrams
	State Diagram Notation
	State Box with Regions
	Transitions and Operations
	Composite States
	Sending Events between Objects
	Concurrent Substates
	Branching and Merging
	History Indicator
	Creating and Destroying Objects
	Using the Notations
	Summary

	8. Software Architecture
	What is Software Architecture?
	How Architecture Drives Implementation
	Sub-systems, Modules and Components
	Cohesion
	Coupling
	Tight Coupling
	Loose Coupling
	Architectural Parallels
	Layered Architectures
	Abstract Machine Model
	OSI Reference Model
	Client-Server Architectures
	Client-Server Architectures
	Four-Tier Architectures
	Blackboard Architectures
	Repository Model
	Event-driven Systems
	Selective Broadcasting
	Dataflow Models
	Invoice Processing System
	Compilers as Dataflow Architectures
	Compilers as Blackboard Architectures
	UML: Package Diagram
	UML: Deployment Diagram
	Summary

	9. User Interface Design
	Interface Design Models
	GUI Characteristics
	GUI advantages
	User Interface Design Principles
	Direct Manipulation
	Interface Models
	Menu Systems
	Menu Structuring
	Command Interfaces
	Information Presentation
	Analogue vs. Digital Presentation
	Colour Displays
	User Guidance
	Design Factors in Message Wording
	Error Message Guidelines
	Good and Bad Error Messages
	Help System Design
	User Interface Evaluation
	Summary

	10. Software Validation
	Software Reliability, Failures and Faults
	Programming for Reliability
	Common Sources of Software Faults
	Fault Tolerance
	Approaches to Fault Tolerance
	Defensive Programming
	Verification and Validation
	The Testing Process
	Regression Testing
	Test Planning
	Testing Strategies
	Defect Testing
	Functional testing
	Equivalence Partitioning
	Test Cases and Test Data
	Structural Testing
	Binary Search Method
	Path Testing
	Basis Path Testing: The Technique
	Condition Testing
	Statistical Testing
	Static Verification
	When to Stop?
	Summary

	11. Software Quality
	What is Quality?
	Hierarchical Quality Model
	Quality Attributes
	Correctness, Reliability, Robustness
	Efficiency, Usability
	Maintainability
	Verifiability, Understandability
	Productivity, Timeliness, Visibility
	Quality Control Assumption
	The Quality Plan
	Types of Quality Reviews
	Review Meetings and Minutes
	Review Guidelines
	Sample Review Checklists (I)
	Sample Review Checklists (II)
	Review Results
	Product and Process Standards
	Sample Java Code Conventions
	Quality System
	ISO 9000
	ISO 9001
	Capability Maturity Model (CMM)
	Summary

	12. Software Metrics
	Why Metrics?
	Why Software Metrics
	What are Software Metrics?
	Possible Problems
	Empirical Relations
	Measurement Mapping
	Representation Condition
	Scale
	Scale Types
	GQM
	Quantitative Quality Model
	“Define your own” Quality Model
	Sample Size (and Inheritance) Metrics
	Sample Coupling & Cohesion Metrics
	Sample External Quality Metrics (i)
	Sample External Quality Metrics (II)
	Conclusion: Metrics for QA (I)
	Conclusion: Metrics for QA (II)
	Summary

	13. Outlook: Heavy vs. Light Methods

