
7029 Informatik 2A

Prof. O. Nierstrasz

Sommersemester 1998

Table of Conte ii.

Table of Con

1. Informatik 2
Course Ove
Introduction
What is Softw
Some Softwa
The Classica
Problems wit
The Software
The Software
Maintenanc
Programs vs
Software Qu
Criteria for M
Rules to ensu
Principles of
The Open-C
The Role of M
Component
Summary

2. The Softwar
Phases of So
Requiremen
Requiremen
Design
Iterative and
Not Program
Why use a M
Functions, D
The Top-Dow
Why Use a B
What is Obje
Encapsulatio
Example: Ci
The Promise
Problems wit

Using the Notations 72
Summary 73

5. Responsibility-Driven Design 74
What is Object-Oriented Design? 75
Design Steps 76
Finding Classes 77
Drawing Editor Requirements Specification 78
Drawing Editor: noun phrases 79
Class Selection Rationale (I) 80
Class Selection Rationale (II) 81
Class Selection Rationale (III) 82
Candidate Classes 83
Class Cards 84
Finding Abstract Classes 85
Identifying and Naming Groups 86
Recording Superclasses 87
Responsibilities 88
Identifying Responsibilities 89
Assigning Responsibilities 90
Relationships Between Classes 91
Recording Responsibilities 92
Collaborations 93
Finding Collaborations 94
Recording Collaborations 95
Summary 96

6. Detailed Design 97
Sharing Responsibilities 98
Multiple Inheritance 99
Building Good Hierarchies 100
Building Kind-Of Hierarchies 101
Refactoring Responsibilities 102
Identifying Contracts 103
Applying the Guidelines 104
What are Subsystems? 105
Subsystem Cards 106
Class Cards 107
nts

March 9, 1998

tents ii

A — Software Engineering 1
rview 2

3
are Engineering? 4
re Myths 5

l Software Lifecycle 6
h the Software Lifecycle 7
 Crisis: Symptoms 8
 Crisis: Causes 9

e 10
. Products 11
ality 12
odularity 13
re Modularity 14
Modularity 15
losed Principle 16

odularity 17
-Oriented Development 18

19

e Lifecycle 20
ftware Development 21
ts Collection 22
ts Analysis 23

24
 Incremental Development 25
ming 26
ethod? 27

ata and Continuity 28
n Functional Approach 29

ottom-Up Data-driven Design? 30
ct-Oriented Design? 31
n and Information Hiding 32

rcle Class 33
of Object-Orientation 34
h Object-Orientation 35

Object-Oriented Methods 36
Unified Modeling Language 37
Summary 38

3. Modelling Objects and Classes 39
Class Diagrams 40
Visibility and Scope of Features 41
UML Lines and Arrows 42
Parameterized Classes 43
Utilities 44
Objects 45
Associations 46
Aggregation and Navigability 47
Association Classes 48
Qualified Associations 49
Inheritance 50
What is Inheritance For? 51
Multiple Inheritance 52
Constraints 53
Using the Notation 54
Summary 55

4. Modelling Behaviour 56
Use Case Diagrams 57
Sequence Diagrams 58
UML Message Flow Notation 59
Collaboration Diagrams 60
Message Labels 61
State Diagrams 62
State Diagram Notation 63
State Box with Regions 64
Transitions and Operations 65
Composite States 66
Sending Events between Objects 67
Concurrent Substates 68
Branching and Merging 69
History Indicator 70
Creating and Destroying Objects 71

Table of Contents

Tab iii.

S
P
R
S
S
S

7. S
S
P
C
F
A
D
V
T
T
T
D
F
E
T
S
B
P
S
S
S

8. D
A
P
C
E
S
C
U
U
C
S
L
U

Costs and Risks 188
Problems and Challenges 189
Challenges 190
Object Lessons 191
Summary 192

11. Computer-Aided Software Engineering 193
What is CASE? 194
CASE Tool Functionality 195
CASE Tool Process Support 196
Quality of Tools Support 197
Tools, Workbenches and Environments 198
Integrated CASE 199
The CASE life cycle 200
Programming Workbenches 201
Static Program Analysers 202
Stages of Static Analysis 203
4GL Workbenches 204
Analysis and Design Workbenches 205
Testing Workbenches 206
Testing Tools 207
Configuration Management Tools 208
Software Engineering Environments 209
Summary 210

12. 4th Generation Systems — Delphi 211
le of Contents

March 9, 1998

implifying Interactions 108
rotocols 109
efining Responsibilities 110
pecifying Your Design: Classes 111
pecifying Subsystems and Contracts 112
ummary 113

oftware Validation 114
oftware Reliability, Failures and Faults 115
rogramming for Reliability 116
ommon Sources of Software Faults 117

ault Tolerance 118
pproaches to Fault Tolerance 119
efensive Programming 120
erification and Validation 121
he Testing Process 122
est Planning 123
esting Strategies 124
efect Testing 125
unctional testing 126
quivalence Partitioning 127
est Cases and Test Data 128
tructural Testing 129
inary Search Method 130
ath Testing 131
tatistical Testing 132
tatic Verification 133
ummary 134

esign by Contract 135
ssertions 136
rogramming by Contract 137
hecking Preconditions 138
xample — the STACK Class 139
TACK Operations ... 140
lass Invariants 141
sing the Stack 142
sing the STACK ... 143
lass Correctness 144

ide Effects in Functions 145
egitimate Side Effects 146
sing Assertions 147

Exceptions 148
Disciplined Exceptions 149
Rescue and Retry 150
Summary 151

9. Design Patterns 152
What are Design Patterns? 153
What Design Patterns are not ... 154
How are Design Patterns Specified? 155
Common Design Techniques 156
Improving Design Flexibility 157
Example: Template Method 158
Template Method — Motivation 159
Template Method — Motivation ... 160
Template Method — Applicability 161
Template Method — Structure 162
Template Method — Participants 163
Template Method — Consequences 164
Template Method — Consequences ... 165
Template Method — Implementation 166
Template Method — Sample Code 167
Template Method — Known Uses 168
Sample Design Patterns 169
What Problems do Design Patterns Solve? 170
Summary 171

10. Project Management 172
Software Management 173
Software Teams 174
Planning and Scheduling 175
Ten Golden Rules for Using Objects 176
Transitioning Projects 177
Product Process Model 178
Reuse-based Life Cycle 179
Project Plan and Control 180
Reuse Process Model 181
Expert Services Business Model 182
Training Plan 183
Software Measurement Program 184
First Project 185
The Pilot Project Team 186
Staffing 187

I2A 1.

U Informatik 2A — Software Engineering

ineering

er, Lukas Steiger

esley, Fifth Edn., 1996.
rsion 1.1, Rational Software

ck, B. Wilkerson, L. Wiener,

d., B. Meyer, Prentice Hall,

ley, 1975.
niversität Bern

1. Informatik 2A — Software Eng

Lecturer: Prof. Oscar Nierstrasz
Schützenmattstr. 14/103, Tel. 631.4618

Secretary: Frau I. Huber, Tel. 631.4692
Assistants: Jean-Guy Schneider, Tobias Röthlisberg

WWW: http://www.iam.unibe.ch/~scg

Principle Texts:
❑ Software Engineering, I. Sommerville, Addison-W
❑ Unified Modeling Language — Notation Guide, ve

Corporation, 1997.
❑ Designing Object-Oriented Software, R. Wirfs-Bro

Prentice Hall, 1990.
❑ Object-Oriented Software Construction, Second e

1997.
❑ The Mythical Man-Month, F. Brooks, Addison-Wes

I2A 2.

U Informatik 2A — Software Engineering

gineering
niversität Bern

Course Overview

1. 27.03 Introduction: Modularity and Software En
2. 03.04 The Software Lifecycle

10.04 Good Friday — no lecture
3. 17.04 Modelling Objects and Classes
4. 24.04 Modelling Behaviour
5. 01.05 Responsibility-Driven Design
6. 08.04 Detailed Design
7. 15.05 Software Validation
8. 22.05 Design by Contract
9. 29.05 Design Patterns
10. 05.06 Project Management
11. 12.06 Software Tools
12. 19.06 4GLs: Delphi — guest lecture

26.06 Final exam

I2A 3.

U Informatik 2A — Software Engineering

g practice
niversität Bern

Introduction

❑ What is Software Engineering?

❑ Problems with the Classical Software Lifecycle
☞ chronically inaccurate cost estimates
☞ low productivity
☞ inflexible software products

❑ Modularity as the key to good Software Engineerin

I2A 4.

U Informatik 2A — Software Engineering

the user’s needs?
?

 specification?
orrectly?

 a one-person team?

!

iples in order to obtain
ntly on real machines.

— F. Bauer, 1969

Final Program
niversität Bern

What is Software Engineering?

A naive view:

But ...
❑ Where did the specification come from?
❑ How do you know the specification correspond to
❑ How did you decide how to structure your program
❑ How do you know the program actually meets the
❑ How do you know your program will always work c
❑ What do you do if the users’ needs change?
❑ How do you divide tasks up if you have more than

Software Engineering is much more than just programming

The establishment and use of sound engineering princ
economically software that is reliable and works efficie

Problem Specification coding

I2A 5.

U Informatik 2A — Software Engineering

art coding.”
ct failure.

rammers and catch up.”
.

e working program.”
ent are needed to ensure

ctured in the classical sense

sembled from components”
niversität Bern

Some Software Myths
Myth: “A general statement of objectives is enough to st
Reality: Poor up-front definition is the major cause of proje

Myth: “If we get behind schedule, we can add more prog
Reality: Adding more people typically slows a project down

“Myth: “The only deliverable for a successful project is th
Reality: Documentation of all aspects of software developm

maintainability.

Why software isn’t like hardware:
❑ “Software is developed or engineered, not manufa
❑ Software doesn’t ‘wear out’
❑ Most software is custom-built rather than being as

I2A 6.

U Informatik 2A — Software Engineering

esting

Maintenance
niversität Bern

The Classical Software Lifecycle

The classical software lifecycle
models the software development as
a step-by-step “waterfall” between the
various development phases.

Requirements
Collection

Analysis

Design

Coding

T

I2A 7.

U Informatik 2A — Software Engineering

cycle

he model proposes. Iteration
ion of the paradigm”

ments explicitly. The classic
ting the natural uncertainty

on of the program(s) will not
r blunder, if undetected until
.”

 Pressman, SE, p. 26
niversität Bern

Problems with the Software Life

1. “Real projects rarely follow the sequential flow that t
always occurs and creates problems in the applicat

2. “It is often difficult for the customer to state all require
life cycle requires this and has difficulty accommoda
that exists at the beginning of many projects.”

3. “The customer must have patience. A working versi
be available until late in the project timespan. A majo
the working program is reviewed, can be disastrous

—

I2A 8.

U Informatik 2A — Software Engineering

tware industry to develop
changing requirements of its

 build software to tap

 with the demand for new

ed by poor design and

Pressman, SE, pp. 6-7
niversität Bern

The Software Crisis: Symptoms

The “software crisis” refers to the chronic inability of the sof
reliable, flexible software systems that meet the constantly
ever expanding customer base ...

1. “Hardware sophistication has outpaced our ability to
hardware’s potential.

2. Our ability to build new programs cannot keep pace
programs.

3. Our ability to maintain existing programs is threaten
inadequate resources.”

—

I2A 9.

U Informatik 2A — Software Engineering

curate.”
ce with the demand for their

quate.”

ctability; weak basis to

mulation/understanding of
mer and developer
ures of reliability and quality

 systems”); maintenance is

ssman, SE, pp. 17-18
niversität Bern

The Software Crisis: Causes

Problems:
1. “Schedule and cost estimates are often grossly inac
2. “The ‘productivity’ of software people hasn’t kept pa

services.”
3. “The quality of software is sometimes less than ade

Causes:
❑ Few reliable data on software process; poor predi

evaluate new tools, methods etc.
❑ Frequent customer dissatisfaction; inadequate for

requirements; poor communication between custo
❑ Software quality is often suspect; quantitative meas

assurance are only now emerging
❑ Existing software can be hard to maintain (“legacy

typically more expensive than initial development

— Pre

I2A 10.

U Informatik 2A — Software Engineering

ser
s

Emergency
Fixes

utine
bugging

Changes in
Data Formats

1.8

17.4

12.4
niversität Bern

Maintenance

Changes in U
Requirement

Documentation

Hardware
Changes Ro

De

Other

Efficiency
Improvements

4

9
6.2

5.5

4

3.4

Breakdown of
maintenance costs.
Source: Lientz 1979

I2A 11.

U Informatik 2A — Software Engineering

 Programming
System

rogramming Sys-
tems Product

ces, System Integration)

— Brooks, MMM, p. 5
niversität Bern

Programs vs. Products

AA Program

A Programming
Product

A P

(Generalization, Testing,
Documentation, Maintenance)

(Interfa

× 3

× 3
× 9

I2A 12.

U Informatik 2A — Software Engineering

 Meyer, OOSC, ch. 1

 their exact tasks, as

propriately to abnormal

 changes of specification
r the construction of many

 with others
few demands as possible

 to various hardware and

ckgrounds and
ucts ...
niversität Bern

Software Quality

—

Correctness is the ability of software products to perform
defined by their specifications

Robustness is the ability of software systems to react ap
conditions

Extendibility is the ease of adapting software products to
Reusability is the ability of software elements to serve fo

different applications
Compatibility is the ease of combining software elements
Efficiency is the ability of a software system to place as

on hardware resources ...
Portability is the ease of transferring software products

software environments
Ease of use is the ease with which people of various ba

qualifications can learn to use software prod

I2A 13.

U Informatik 2A — Software Engineering

yer, OOSC, pp. 40-46

ftware problem into a small

ments which may then be
s
an reader can understand
e others
tion will trigger a change in
modules)
t of an abnormal condition
main confined to that

ing modules)
niversität Bern

Criteria for Modularity
A design method supports modularity if:

— Me

Decomposability it helps in the task of decomposing a so
number of less complex subproblems

Composability it favours the production of software ele
freely combined to produce new system

Understandability it helps produce software in which a hum
each module without having to know th

Continuity a small change in the problem specifica
just one module (or a small number of

Protection it yields architectures in which the effec
occurring at run time in a module will re
module (or at worst to a few neighbour

I2A 14.

U Informatik 2A — Software Engineering

yer, OOSC, pp. 46-53

stem should be compatible
odeling the problem domain
 as few others as possible
ld exchange as little

nicate, this must be obvious

ct a subset of the module’s
ublic interface to authors of
niversität Bern

Rules to ensure Modularity
We can ensure modularity if:

— Me

Direct Mapping the modular structure of the software sy
with the modular structure devised in m

Few interfaces every module should communicate with
Small interfaces
(weak coupling)

if two modules communicate, they shou
information as possible

Explicit interfaces whenever two modules A and B commu
from the text of A or B or both

Information hiding the designer of every module must sele
properties to be made available as the p
client modules

I2A 15.

U Informatik 2A — Software Engineering

nt:

yer, OOSC, pp. 53-63

tactic units in the

strive to make all
rt of the module itself
should be available
 does not betray

rough storage or

d closed
st support a set of
odule in the system
niversität Bern

Principles of Modularity
The following principles guide modular software developme

— Me

Linguistic Modular Units modules must correspond to syn
language used

Self Documentation the designer of a module should
information about the module pa

Uniform Access all services offered by a module
through a uniform notation (which
whether they are implemented th
computation)

Open-Closed modules should be both open an
Single Choice whenever a software system mu

alternatives, one and only one m
should know their exhaustive list

I2A 16.

U Informatik 2A — Software Engineering

n.”

modules. This assumes that
description (i.e., interface).

yer, OOSC, pp. 57-58
niversität Bern

The Open-Closed Principle

❑ “A module is open if it is still available for extensio

❑ “A module is closed if it is available for use by other
the module has been given a well-defined, stable

— Me

I2A 17.

U Informatik 2A — Software Engineering

portion of software
anges in software

e physical structure of

ility and extendibility.”

nguages that are both
 and programming do

eyer, OOSC, 1st edn.
niversität Bern

The Role of Modularity

“Software maintenance, which consumes a large pro
costs, is penalized by the difficulty of implementing ch
products, and by over-dependence of programs on th
the data they manipulate.”

“Modularity is the key to achieving the aims of reusab

“Effective project management requires support for la
open and closed. But classical approaches to design
not permit this.”

— M

I2A 18.

U Informatik 2A — Software Engineering

ment

Specific

ents specification

 Model

n

ance
niversität Bern

Component-Oriented Develop

Generic

Domain models Requirem

Prototyping tools Analysis

Design patterns, generic architectures Desig

Frameworks, 4GLs Coding

Automated testing tools ... Testing

Generic architectures ... Mainten

I2A 19.

U Informatik 2A — Software Engineering

mming?
ycle?

 the software lifecycle?

g?

als of software engineering?
niversität Bern

Summary

You should know the answers to these questions:
❑ How does Software Engineering differ from progra
❑ What are the phases of the classical software lifec
❑ Why is the “waterfall” model unrealistic?
❑ Why is maintenance the most expensive phase of
❑ How does modularity enhance maintainability?

Can you answer the following questions?
✎ How does Software Engineering differ from Engineerin
✎ What is the difference between Analysis and Design?
✎ How should requirements be specified?
✎ How does object-oriented programming support the go

I2A 20.

U The Software Lifecycle

od, D. Coleman, et al.,

. Meyer, Prentice Hall, 1997.
niversität Bern

2. The Software Lifecycle

❑ Phases of Software Development
❑ Analysis vs. Design
❑ Iterative and incremental development
❑ Software architecture driven by functions or data?
❑ Object-oriented design

Sources:
❑ Object-Oriented Development — The Fusion Meth

Prentice Hall, 1994.
❑ Object-Oriented Software Construction, 2d edn., B

I2A 21.

U The Software Lifecycle

nt

stems

sted System

 System in use
niversität Bern

Phases of Software Developme

Requirements

Specification

Tested SubsyArchitecture

Code

Te

Analysis

Design

Implementation

I2A 22.

U The Software Lifecycle

, they may be incomplete,

t place
 the project

nly when the “final system”

uirements
niversität Bern

Requirements Collection

User requirements are often expressed informally:
☞ features
☞ usage scenarios

Although requirements may be documented in written form
ambiguous, or even incorrect.

Requirements will change!
☞ inadequately captured or expressed in the firs
☞ user and business needs may change during

Validation is needed throughout the software lifecycle, not o
is delivered!

☞ build constant feedback into your project plan
☞ plan for change
☞ early prototyping [e.g., UI] can help clarify req

I2A 23.

U The Software Lifecycle

The intention is to provide a
ts underlying concepts are.

 the system which describe:

s’ actual needs?
niversität Bern

Requirements Analysis

Analysis is the process of specifying what a system will do.
clear understanding of what the system is about and what i
The result of analysis is a specification document.

An object-oriented analysis [cf. Fusion] results in models of
❑ classes of objects that exist in the system
❑ relationships between those classes
❑ operations that can be performed on the system
❑ allowable sequences of those operations

Does the requirements specification correspond to the user

I2A 24.

U The Software Lifecycle

m behaviour will be realized
cument.

cribe:
cting objects
e related by inheritance
niversität Bern

Design

Design is the process of specifying how the specified syste
from software components. The result is an architecture do

Object-oriented design [cf. Fusion] delivers models that des
❑ how system operations are implemented by intera
❑ how classes refer to one another and how they ar
❑ attributes of, and operations, on classes

I2A 25.

U The Software Lifecycle

lopment

e, validate and test as

pensive they are to fix!

the system, even if most

le.
quirements.
niversität Bern

Iterative and Incremental Deve

Plan to iterate your analysis, design and implementation.
☞ You won’t get it right the first time, so integrat

frequently as possible.

The later in the lifecycle errors are discovered, the more ex

Plan to incrementally develop (i.e., prototype) the system.
☞ If possible, always have a running version of

functionality is yet to be implemented.
☞ Integrate new functionality as soon as possib
☞ Validate incremental versions against user re

I2A 26.

U The Software Lifecycle

cts are not directly related to

cation, dependencies ...
niversität Bern

Not Programming

Many critical aspects of software engineering in “real” proje
programming:

☞ project planning: deliverables, manpower allo
☞ cost estimation, monitoring
☞ documentation
☞ configuration management
☞ validation and testing
☞ ...

I2A 27.

U The Software Lifecycle

mbiguities in requirements

hen requirements change

e studied before

tems into manageable parts

 for analysis and design

nderstand complex systems
niversität Bern

Why use a Method?

Requirements checking:
❑ System modelling helps uncover omissions and a

Clearer concepts:
❑ Domain analysis models can be reused/adapted w

Less design rework:
❑ Analysis and design models allow alternatives to b

implementation starts
Better refactoring of design work:

❑ Analysis and design helps to decompose large sys
Improved communications between developers:

❑ Standard notations provide a common vocabulary
Less effort needed on maintenance:

❑ Analysis and design documents help maintainers u

I2A 28.

U The Software Lifecycle

 or data?

 in terms of initial
changing requirements.

tend to be the most volatile
form new functions! An
onality will not evolve as

d functionality, a system will

rds, tax information, etc.;
cons, etc.)
niversität Bern

Functions, Data and Continuity

Should we structure software architecture around functions

Recall the criterion of continuity:
The quality of an architecture should not be measured only
requirements, but in terms of how robust it is in the face of

☞ As a system evolves, the functions it performs
part. Successful systems will be asked to per
architecture based extensively on initial functi
smoothly as the requirements.

☞ Even in the face of changing requirements an
tend to deal with the same kinds of data.
(Payroll programs manipulate employee reco
window systems deal with windows, menus, i

I2A 29.

U The Software Lifecycle

oach

nt:

tokens

syntax tree

d unchanging
 appropriate

sability
niversität Bern

The Top-Down Functional Appr

Traditional top-down design is based on stepwise refineme
❑ Translate a C program to Motorola 68030 code

– Read the program and produce a sequence of

– Parse the sequence of tokens into an abstract

– Decorate the tree with semantic information

– Generate code from the decorated tree

Why it fails for long-term evolution:
☞ requirements are assumed to be complete an
☞ viewing a system as a single function is rarely
☞ data structure is easily neglected
☞ top-down development does not promote reu

“Real systems have no top.”

I2A 30.

U The Software Lifecycle

en Design?

gree on the common data

nities for reuse can be

are the most stable parts of
niversität Bern

Why Use a Bottom-Up Data-driv

Compatibility:
❑ Subsystems can be easily combined only if they a

structures.

Reusability:
❑ Component reuse is inherently bottom-up: opportu

recognized by understanding how data are used.

Continuity:
❑ Over time, data structures — viewed abstractly —

a system.

I2A 31.

U The Software Lifecycle

?

he architecture of any
than “the” function it is

t to!

 Meyer, OOSC, p. 116
niversität Bern

What is Object-Oriented Design

Object-oriented [design] is the method which bases t
software system on the objects it manipulates (rather
meant to ensure).

Ask not first what the system does: ask what it does i

—

I2A 32.

U The Software Lifecycle

 Hiding

blic Interface

Private
presentation

ding distinguishes the
rm some action from the
 taken to do so. Objects
bilities through a public

hat functionality and
required by other objects
est.
niversität Bern

Encapsulation and Information

Information

Operations

Pu

Re

Encapsulation is the bundling together
of related entities. Objects encapsulate
information and the operations that
may be performed with the information.

Information hi
ability to perfo
specific steps
reveal these a
interface.

First abstract related functionality and
information, and encapsulate them in
an object.

Then decide w
information is
and hide the r

I2A 33.

U The Software Lifecycle

ORIENTED APPROACH

circle_data

surface

move

perimeter
niversität Bern

Example: Circle Class

CONVENTIONAL APPROACH

OBJECT

perimeter_circle

circle_datamove_circle

surface_circle

I2A 34.

U The Software Lifecycle

ion

ation

mpatible interfaces

ftware development

nd data as reusable software

ce
asier to modify

s

niversität Bern

The Promise of Object-Orientat

Data abstraction:
❑ Clients are protected from variations in implement

Compatibility:
❑ Software components can be defined with plug-co

Decomposition:
❑ Groups of related classes form natural units for so

Reuse:
❑ Classes are a convenient way to bundle methods a

Extensibility:
❑ software frameworks can be extended by inheritan
❑ classes form loosely coupled structures that are e

Maintenance:
❑ classes and inheritance limit the effects of change

I2A 35.

U The Software Lifecycle

on

lopment process

 to partition

ling

se

”

niversität Bern

Problems with Object-Orientati

Focus on code:
❑ too much emphasis on language; too little on deve

Difficult to find the objects:
❑ software objects are not “real” objects; many ways

Function-oriented methods are not appropriate:
❑ focus on specific needs rather than domain model

Management changes:
❑ different roles are required; more emphasis on reu

Transition is risky:
❑ object-orientation requires a major “paradigm shift

I2A 36.

U The Software Lifecycle

te diagrams ...):

gn by contract

 + ...

nverging, but:

se.
niversität Bern

Object-Oriented Methods

First generation:
❑ Adaptation of existing notations (ER diagrams, sta

☞ Booch, OMT, Shlaer and Mellor, ...
❑ Specialized design techniques:

☞ CRC cards; responsibility-driven design; desi
Second generation:

❑ Fusion:
☞ Booch + OMT + CRC + formal methods

Third generation:
❑ Unified Modeling Language:

☞ uniform notation: Booch + OMT + Use Cases
☞ complete lifecycle support (to be defined!)

Object-oriented methods are still maturing. Notations are co
☞ transition is still risky
☞ few methods deal seriously with software reu

I2A 37.

U The Software Lifecycle

ify the Booch and OMT
g concepts and notation are
ject-oriented models.

ir relationships

e cases they participate in
s in a use case scenario

nged by objects

tes of an object
niversität Bern

Unified Modeling Language

The “Unified Modeling Language” (UML) is an attempt to un
object-oriented analysis and design methods. The modellin
bound to become an industry standard for documenting ob

❑ Class Diagram: specifies classes, objects and the
☞ visualizes logical structure of system

❑ Use Case Diagram: shows external actors and us
❑ Sequence Diagram: lists the message exchange

☞ visualizes temporal message ordering
❑ Collaboration Diagram: shows messages excha

☞ visualizes object relationships
❑ State Diagram: specifies the possible internal sta

and others ...

I2A 38.

U The Software Lifecycle

pment phases?
n?

 feature-oriented?
 data/object-oriented?

of a “real” software project?
of object-oriented methods?
alysis and design models?

users’ real needs?

? Which don’t?
niversität Bern

Summary

You should know the answers to these questions:
❑ Why is feedback needed between software develo
❑ What is the difference between analysis and desig
❑ Why plan to iterate? Why develop incrementally?
❑ Why should requirements and analysis models be
❑ Why should design and implementation models be
❑ Why is programming only a small part of the cost
❑ What are the key advantages and disadvantages
❑ Why is a common notation useful for specifying an

Can you answer the following questions?
✎ Why do requirements change?
✎ How can you validate that an analysis model captures
✎ When does analysis stop and design start?
✎ When can implementation start?
✎ What kinds of projects call for object-oriented methods

I2A 39.

U Modelling Objects and Classes

es

rsion 1.1, Rational Software

od, D. Coleman, et al.,
niversität Bern

3. Modelling Objects and Class

❑ Classes, attributes and operations
❑ Visibility of Features
❑ Parameterized Classes
❑ Objects
❑ Associations
❑ Inheritance
❑ Constraints
❑ Packages

Sources:
❑ Unified Modeling Language — Notation Guide, ve

Corporation, 1997.
❑ Object-Oriented Development — The Fusion Meth

Prentice Hall, 1994.

I2A 40.

U Modelling Objects and Classes

ems, and object diagrams
r.”

s.

lapsed class view:

Polygon

ith Package name:

Windows::Window
niversität Bern

Class Diagrams

“Class diagrams show generic descriptions of possible syst
show particular instantiations of systems and their behaviou

Attributes and operations are also collectively called feature

Class name, attributes and operations:

Polygon

centre: Point
vertices: List of Point
borderColour: Colour
fillColour: Colour

display (on: Surface)
rotate (angle: Integer)
erase ()
destroy ()
select (p: Point): Boolean

A col

Class w

Z

I2A 41.

U Modelling Objects and Classes

e { property string }
efaultValue, ...) : resultType

 }

User-defined properties
(e.g., abstract, readonly,
owner = “Pingu”)

underlined attributes
have class scope
italic attributes are
abstract
niversität Bern

Visibility and Scope of Features

Attributes are specified as: name: type = initialValu
Operations are specified as: name (param: type = d

«user interface»
Window

{ abstract

+size: Area = (100, 100)
#visibility: Boolean = false
+default-size: Rectangle
#maximum-size: Rectangle
-xptr: XWindow*

+display ()
+hide ()
+create ()
-attachXWindow (xwin: Xwindow*)

Stereotype
(what “kind” of class is it?)

+ = “public”
= “protected”
− = “private”

I2A 42.

U Modelling Objects and Classes

Association
e.g., «uses»

Navigable association
e.g., part-of

“Generalization”
i.e., specialization (!)
e.g., class/superclass,
concrete/abstract class

“Composition”
i.e., containment
niversität Bern

UML Lines and Arrows
Constraint
(usually annotated)

Dependency
e.g., «requires»,
«imports» ...

Refinement
e.g., class/template,
class/interface

Aggregation
i.e., “consists of”

I2A 43.

U Modelling Objects and Classes

picted with their parameters

me: Type).

dashed arrow.

 the supplier!

>

niversität Bern

Parameterized Classes

Parameterized (aka “template” or “generic”) classes are de
shown in a dashed box.
Parameters may be either types (just a name) or values (na

Instantiation of a class from a template can be shown by a

NB: All forms of arrows (directed arcs) go from the client to

FArray

FArray<Point, 3> FArray<Address, 4

T, n: Integer

I2A 44.

U Modelling Objects and Classes

t is represented as a class
.

ass scope, so it is redundant

esented as box with the top

urn sin (angle + pi/2.0);
niversität Bern

Utilities

A “utility” is a grouping of global attributes and operations. I
with the stereotype «utility». Utilities may be parameterized

NB: A utiliy’s attributes are already interpreted as being in cl
to underline them.

A “note” is a text comment associated with a view, and repr
right corner folded over.

«utility»
MathPack

randomSeed : long = 0
pi : long = 3.14158265358979

sin (angle : double) : double
cos (angle : double) : double
random () : double

ret

I2A 45.

U Modelling Objects and Classes

underlined in one
ompartment.

: P olygon

olygon
niversität Bern

Objects

Objects are shown as rectangles with their name and type
compartment, and attribute values, optionally, in a second c

At least one of the name or the type must be present.

triangle1: P olygon

centre = (0, 0)
vertices = ((0,0), (4,0), (4,3))
borderColour = black
fillColour = white

triangle1

: P

I2A 46.

U Modelling Objects and Classes

ects of different classes.

points

gu”].boss

rson

r.
ss

sband

wife

Married-to

0..1

0..1

0..1

boss
orker *

Manages
niversität Bern

Associations
Associations represent structural relationships between obj

☞ usually binary (but may be ternary etc.)
☞ optional name and direction
☞ (unique) role names and multiplicities at end-
☞ can traverse using navigation expressions

e.g., Sandoz.employee[name = “Pin

Company

name
address

Pe

name
AHV N
addre

**
Works-for

Employs

employeeemployer

hu

w

I2A 47.

U Modelling Objects and Classes

whole dependency:

 implementation.

te from the whole to the part.

red }, or as { sorted }.

Point

phicsBundle

r
re
ity
niversität Bern

Aggregation and Navigability

Aggregation is denoted by a diamond and indicates a part-

A hollow diamond indicates a reference; a solid diamond an

If the link terminates with an arrowhead, then one can naviga

If the multiplicity of a role is > 1, it may be marked as { orde

Polygon
1 Contains

{ ordered }

3..*

Gra

colou
textu
dens

1

1

I2A 48.

U Modelling Objects and Classes

and its name can be left out.

Workstation
niversität Bern

Association Classes

An association may be an instance of an association class:

In many cases the association class only stores attributes,

Authorization

priority
privileges

start session

User * *
Authorized on

*

Directory

home directory1

I2A 49.

U Modelling Objects and Classes

ify the object at the other end

ible cardinalities of the set of
 a qualifier value.”

atalogue

t number

Part

1

0..1
niversität Bern

Qualified Associations

A qualified association uses a special qualifier value to ident
of the association:

“The multiplicity attached to the target role denotes the poss
target objects selected by the pairing of a source object and

NB: Qualifiers are part of the association, not the class

Airline

frequent flyer #

Person

*

0..1

C

par

I2A 50.

U Modelling Objects and Classes

line

ol points

y ()
niversität Bern

Inheritance
A subclass inherits the features of its superclasses:

Figure1dim
{ abstract }

colour

display ()

Line

endpoints

display ()

Arc

radius
start angle
arc angle

display ()

Sp

contr

displa

I2A 51.

U Modelling Objects and Classes

ement or combination.
binations of existing classes.

 a specialization hierarchy

res or behaviour

ormly treated by clients
niversität Bern

What is Inheritance For?

New software often builds on old software by imitation, refin
Similarly, classes may be extensions, specializations or com

Inheritance supports:
Conceptual hierarchy:

❑ conceptually related classes can be organized into
☞ people, employees, managers
☞ geometric objects ...

Software reuse:
❑ related classes may share interfaces, data structu

☞ geometric objects ...
Polymorphism:

❑ objects of distinct, but related classes may be unif
☞ array of geometric objects

I2A 52.

U Modelling Objects and Classes

d unless they have been
 are considered replicated.
ce conflicts.

le

Boat
niversität Bern

Multiple Inheritance

A class may inherit features from multiple superclasses:

In Eiffel, features inherited from common parents are share
renamed along one of the inheritance paths. Such features
Other languages may adopt other rules to resolve inheritan

Vehicle

LandVehicle WaterVehic

AmphibiousVehicleCar

I2A 53.

U Modelling Objects and Classes

r associations.
ines between elements
ed with a “/”

hin a note:

Person

birthdate
/age

{ age = currentDate - birthdate }

Company

ployer }
niversität Bern

Constraints

Constraints are restrictions on values attached to classes o
☞ Binary constraints may be shown as dashed l
☞ Derived values and associations can be mark

Constraints are specified between braces, either free or wit

Person Committee

Member-of

Chair-of

subset

* *

*1

Person

employee

* 0..1

employerworker

boss

*

0..1

{ Person.employer = Person.boss.em

I2A 54.

U Modelling Objects and Classes

 document. For example, a
ses, roles, associations, etc.
niversität Bern

Using the Notation

During Analysis:
❑ Capture classes visible to users
❑ Document attributes and responsibilities
❑ Identify associations and collaborations
❑ Identify conceptual hierarchies
❑ Capture all visible features

During Design:
❑ Specify contracts and operations
❑ Decompose complex objects
❑ Factor out common interfaces and functionalities

The graphical notation is only part of the analysis or design
data dictionary cataloguing and describing all names of clas
must be maintained throughout the project.

I2A 55.

U Modelling Objects and Classes

iations?
perations to clients?
ilar?

les?

g an object?

ociation?
guage?
niversität Bern

Summary

You should know the answers to these questions:
❑ How do you represent classes, objects and assoc
❑ How do you specify the visibility of attributes and o
❑ How is a utility different from a class? How is it sim
❑ Why do we need both named associations and ro
❑ Why is inheritance useful in analysis? In design?
❑ How are constraints specified?

Can you answer the following questions?
✎ Why would you want a feature to have class scope?
✎ Why don’t you need to show operations when depictin
✎ Why aren’t associations drawn with arrowheads?
✎ How is aggregation different from any other kind of ass
✎ How are associations realized in an implementation lan

I2A 56.

U Modelling Behaviour

rsion 1.1, Rational Software

od, D. Coleman, et al.,
niversität Bern

4. Modelling Behaviour

❑ Use Case Diagrams
❑ Sequence Diagrams
❑ Collaboration Diagrams
❑ State Diagrams

Sources:
❑ Unified Modeling Language — Notation Guide, ve

Corporation, 1997.
❑ Object-Oriented Development — The Fusion Meth

Prentice Hall, 1994.

I2A 57.

U Modelling Behaviour

Clerk

Loan Officer

Clear
checks

pare
ments

nter
action

an
cation

udit
niversität Bern

Use Case Diagrams

IdentifyCustomer

Auditor

Bank

Pre
state

Cou
trans

Lo
appli

A

A use case is a generic
description of an entire
transaction involving several
actors.
A use case diagram presents
a set of use cases (ellipses)
and the external actors that
interact with the system.
Dependencies and
associations between use
cases may be indicated.

A scenario is an instance of a
use case showing a typical
example of its execution.

I2A 58.

U Modelling Behaviour

r

phone rings

answer phone

ringing stops

hone Line Callee
niversität Bern

Sequence Diagrams

caller lifts receive

dial tone begins

dial (1)

dial tone ends

dial (2)

dial (2)

ringing tone

tone stops

tim
e

Caller PA sequence diagram depicts a
scenario by showing the
interactions among a set of
objects in temporal order.

Objects (not classes!) are shown
as vertical bars.
Events or message dispatches
are shown as horizontal (or
slanted) arrows from the send to
the receiver.

Recall that a scenario describes a
typical example of a use case, so
conditionality is not expressed!

I2A 59.

U Modelling Behaviour

rol flow

 asynchronous)

 objects within a
niversität Bern

UML Message Flow Notation

Filled solid arrowhead
procedure call or other nested cont

Stick arrowhead
flat, sequential control flow (usually

Half-stick arrowhead
asynchronous control flow between
procedural sequence

I2A 60.

U Modelling Behaviour

ges between objects:

{ temp }

1.1.3.1: add(self)

contents { new }

: Window

: Line { new }

window
niversität Bern

Collaboration Diagrams

Collaboration diagrams depict scenarios as flows of messa

redisplay()

1: displayPositions(window)

window

1.1*[i=1..n]: drawSegment(i)

«self» 1.1.2: create(r0, r1)
1.1.3: display(window)

i-1 i

{ temp }

1.1.1a: r0 := position() 1.1.1b: r1 := position()

: Controller

wire : Wire

left : Bead right : Bead

wire

«local» line

«parameter»

I2A 61.

U Modelling Behaviour

strings showing the direction
quence.

7.1]”)

 “3.1” and follows “3.1.1”)
a” and “1.2b”)
niversität Bern

Message Labels

Messages from one object to another are labelled with text
of message flow and information indicating the message se

Message labels:
1. Prior messages from other threads (e.g. “[A1.3, B6.

☞ only need with concurrent flow of control
2. Dot-separated list of sequencing elements:

☞ sequencing integer (e.g., “3.1.2” is invoked by
☞ letter indicating concurrent threads (e.g., “1.2
☞ iteration indicator (e.g., “1.1*[i=1..n]”)
☞ conditional indicator (e.g., “2.3 [#items = 0]”)

3. Return value binding (e.g., “status :=”)
4. Message name
5. Argument list

I2A 62.

U Modelling Behaviour

Dialing

Ringing
do / play ringing tone

Connecting

h

15 sec.

dial digit(n)
[incomplete]

connected

dial digit(n) [valid]
/connect

busy
niversität Bern

State Diagrams

Idle

Pinned

Talking

callee
answers

callee
hangs up

Timeout
do / play message

DialTone
do / play dial tone

Invalid
do / play message

Busy
do / play busy tone

Active

callee answers / enable speec

dial digit(n)

15 sec.

dial digit(n) [invalid]

caller
hangs up
/ disconnect

lift receiver
/ get dial tone

I2A 63.

U Modelling Behaviour

ject of a given class in
 the system.

 one object to another:

cts
..

ates
 for an event to occur:
s:

only for that state)
d ongoing operations
niversität Bern

State Diagram Notation

A State Diagram describes the temporal evolution of an ob
response to interactions with other objects inside or outside

An event is a one-way (asynchronous) communication from
❑ atomic (non-interruptible)
❑ includes events from hardware and real-world obje

e.g., message receipt, input event, elapsed time, .
❑ notation: eventName(parameter: type, ...)
❑ may cause object to make a transition between st

A state is a period of time during which an object is waiting
❑ depicted as rounded box with (up to) three section

☞ name — optional
☞ state variables — name: type = value (valid
☞ triggered operations — internal transitions an

❑ may be nested

I2A 64.

U Modelling Behaviour

name

rnal operations

into this state, and the
out of this state.
tions with no change of

ed.
niversität Bern

State Box with Regions

Typing Password

entry / set echo invisible
exit / set echo normal
character / handle character
help / display help

inte

The entry event occurs whenever a transition is made
exit operation is triggered when a transition is made
The help and character events cause internal transi
state, so the entry and exit operations are not perform

I2A 65.

U Modelling Behaviour

ject in a given state
nge state

ions of a state

ns
tates

seudo-event do
niversität Bern

Transitions and Operations

Transitions:
❑ A response to an external event received by an ob
❑ May invoke an operation, and cause object to cha
❑ May send an event to an external object
❑ Transition syntax (each part is optional):

event (arguments)
[condition]
^target.sendEvent (arguments)
/ operation (arguments)

❑ External transitions label arcs between states;
internal transitions are part of the triggered operat

Operations:
❑ Operations invoked by transitions are atomic actio
❑ Entry and exit operations can be associated with s

Activities:
❑ Ongoing operations while object is in a given state
❑ Modelled as internal transitions labelled with the p

I2A 66.

U Modelling Behaviour

level views.
ns” may be used in the high-

ts and “bulls-eyes”:

Connecting
um)

[number.isValid()]

^ dialedNumber(num)
niversität Bern

Composite States
Composite states may depicted either as high-level or low-
To indicate the presence of internal states, “stubbed transitio
level view:

Starting and termination substates are shown as black spo

Idle Dialinglift receiver dialedNumber(n

Start
do / play dial tone

Partial Dial
entry / number.append(n)

Dialing

number : String = “”

digit(n)

digit(n)

I2A 67.

U Modelling Behaviour

ts

R mode

Power button

On

On

toggle Power
niversität Bern

Sending Events between Objec

TV mode VC

VCR button

TV button
Power button

Remote Control

Off

toggle Power

toggle Power
VCR

Off

toggle Power

toggle Power
Television

toggle Power

I2A 68.

U Modelling Behaviour

one

Failed

Passed
niversität Bern

Concurrent Substates

Lab1

Term Project

Final Test

Lab2
lab done lab d

project done

pass

Incomplete

fail

Taking Class

I2A 69.

U Modelling Behaviour

 of the substates is entered

all of the substates.
substates to terminate.

ses a “synchronization bar”:

Cleanup
niversität Bern

Branching and Merging

Entering concurrent states:
Entering a state with concurrent substates means that each
concurrently (one logical thread per substate).

Leaving concurrent states:
A labelled transition out of any of the substates terminates
An unlabelled transition out of the overall state waits for all

An alternative notation for explicit branching and merging u

A2A1

B2B1

Startup

I2A 70.

U Modelling Behaviour

t composite state should be
ved state, a transition should

C
rupt

e

niversität Bern

History Indicator

A “history indicator” can be used to indicate that the curren
remembered upon an external transition. To return to the sa
point explicitly to the history icon:

A2

A1

H

A
inter

resum

I2A 71.

U Modelling Behaviour

ts

g the start and terminal

nly
niversität Bern

Creating and Destroying Objec

Creation and destruction of objects can be depicted by usin
symbols as top-level states:

Writeable
lock

ReadOunlock

modify

destroy

create

CreatedFile
File

I2A 72.

U Modelling Behaviour

t diagrams.

ocument use cases and their

d to document
arios
sses and must be validated
niversität Bern

Using the Notations

The diagrams introduced here complement class and objec

During Analysis:
❑ Use case, sequence and collaboration diagrams d

scenarios during requirements specification

During Design:
❑ Sequence and collaboration diagrams can be use

implementation scenarios or refine use case scen
❑ State diagrams document internal behaviour of cla

against the specified use cases

I2A 73.

U Modelling Behaviour

rios?
in a scenario?
bject behaviour?
rnal” transitions?
rams for several classes?

llaboration diagram?

er than with links?
niversität Bern

Summary

You should know the answers to these questions:
❑ What is the purpose of a use case diagram?
❑ Why do scenarios depict objects but not classes?
❑ How can timing constraints be expressed in scena
❑ How do you specify and interpret message labels
❑ How do you use nested state diagrams to model o
❑ What is the difference between “external” and “inte
❑ How can you model interaction between state diag

Can you answer the following questions?
✎ Can a sequence diagram always be translated to an co
✎ Or vice versa?
✎ Why are arrows depicted with the message labels rath
✎ When should you use concurrent substates?

I2A 74.

U Responsibility-Driven Design

ck, B. Wilkerson, L. Wiener,
niversität Bern

5. Responsibility-Driven Design

Overview:
❑ What is Object-Oriented Design?
❑ Finding Classes
❑ Identifying Responsibilities
❑ Finding Collaborations

Source:
❑ Designing Object-Oriented Software, R. Wirfs-Bro

Prentice Hall, 1990.

I2A 75.

U Responsibility-Driven Design

?

 by which software
of objects. This
spective roles and
 with each other.”

uct:
 implementation

d rules
an, elegant designs —
ineering standpoint”

technique that works well in
niversität Bern

What is Object-Oriented Design

“Object-oriented [analysis and] design is the process
requirements are turned into a detailed specification
specification includes a complete description of the re
responsibilities of objects and how they communicate

❑ The result of the design process is not a final prod
☞ design decisions may be revisited, even after
☞ design is not linear but iterative

❑ The design process is not algorithmic:
☞ a design method provides guidelines, not fixe
☞ “a good sense of style often helps produce cle

designs that make a lot of sense from the eng

✔ Responsibility-driven design is an (analysis and) design
combination with various methods and notations.

I2A 76.

U Responsibility-Driven Design

to fulfil their responsibilities

chies

?
ody?
y?
as subsystems?
ures
niversität Bern

Design Steps

The Initial Exploration
1. Find the classes in your system
2. Determine the responsibilities of each class

☞ What are the client-server contracts?
3. Determine how objects collaborate with each other

☞ What are the client-server roles?

The Detailed Analysis
1. Factor common responsibilities to build class hierar
2. Streamline collaborations between objects

☞ Is message traffic heavy in parts of the system
☞ Are there classes that collaborate with everyb
☞ Are there classes that collaborate with nobod
☞ Are there groups of classes that can be seen

3. Turn class responsibilities into fully specified signat

I2A 77.

U Responsibility-Driven Design

 the system being designed,

idates, and nonsense
es are:

es
es it mean within the system
 separate class?
rephrase in active voice
g of inheritance
terface, program interfaces

Point vs. Centre
niversität Bern

Finding Classes

Start with requirements specification: what are the goals of
its expected inputs and desired responses.

1. Look for noun phrases:
☞ separate into obvious classes, uncertain cand

2. Refine to a list of candidate classes. Some guidelin
☞ Model physical objects — e.g. disks, printers
☞ Model conceptual entities — e.g. windows, fil
☞ Choose one word for one concept — what do
☞ Be wary of adjectives — does it really signal a
☞ Be wary of missing or misleading subjects —
☞ Model categories of classes — delay modellin
☞ Model interfaces to the system — e.g., user in
☞ Model attribute values, not attributes — e.g.,

I2A 78.

U Responsibility-Driven Design

ecification
 the mouse button. The creation tool is no

user clicks the mouse button outside the text
points for a text element are the four corners
ich the text is formatted. Dragging the control
gion. The other creation tools allow the

angles and ellipses. They change the shape
f a crosshair. The appropriate element starts
e mouse button is pressed, and is completed
on is released. These two events create the
p point.

creates a line from the start point to the stop
ontrol points of a line. Dragging a control point
t.

n tool creates a rectangle such that these
opposite corners. These points and the other
l points. Dragging a control point changes the

ool creates an ellipse fitting within the
the two points described above. The major
width of the rectangle, and the minor radius is
 the rectangle. The control points are at the
g rectangle. Dragging control points changes

r.
niversität Bern

Drawing Editor Requirements Sp
The drawing editor is an interactive graphics editor. With it, users
can create and edit drawings composed of lines, rectangles,
ellipses and text.

Tools control the mode of operation of the editor. Exactly one tool is
active at any given time.

Two kinds of tools exist: the selection tool and creation tools. When
the selection tool is active, existing drawing elements can be
selected with the cursor. One or more drawing elements can be
selected and manipulated; if several drawing elements are
selected, they can be manipulated as if they were a single element.
Elements that have been selected in this way are referred to as the
current selection. The current selection is indicated visually by
displaying the control points for the element. Clicking on and
dragging a control point modifies the element with which the control
point is associated.

When a creation tool is active, the current selection is empty. The
cursor changes in different ways according to the specific creation
tool, and the user can create an element of the selected kind. After
the element is created, the selection tool is made active and the
newly created element becomes the current selection.

The text creation tool changes the shape of the cursor to that of an
I-beam. The position of the first character of text is determined by

where the user clicks
longer active when the
element. The control
of the region within wh
points changes this re
creation of lines, rect
of the cursor to that o
to be created when th
when the mouse butt
start point and the sto

The line creation tool
point. These are the c
changes the end poin

The rectangle creatio
points are diagonally
corners are the contro
associated corner.

The ellipse creation t
rectangle defined by
radius is one half the
one half the height of
corners of the boundin
the associated corne

I2A 79.

U Responsibility-Driven Design

 the mouse button. The creation tool is no
user clicks the mouse button outside the text

points for a text element are the four corners
ich the text is formatted. Dragging the control
gion. The other creation tools allow the

angles and ellipses. They change the shape
f a crosshair. The appropriate element starts
e mouse button is pressed, and is completed
on is released. These two events create the
p point.

creates a line from the start point to the stop
ontrol points of a line. Dragging a control point
t.

n tool creates a rectangle such that these
opposite corners. These points and the other
l points. Dragging a control point changes the

ool creates an ellipse fitting within the
the two points described above. The major
width of the rectangle, and the minor radius is
 the rectangle. The control points are at the
g rectangle. Dragging control points changes

r.
niversität Bern

Drawing Editor: noun phrases
The drawing editor is an interactive graphics editor. With it, users
can create and edit drawings composed of lines, rectangles,
ellipses and text.

Tools control the mode of operation of the editor. Exactly one tool is
active at any given time.

Two kinds of tools exist: the selection tool and creation tools. When
the selection tool is active, existing drawing elements can be
selected with the cursor. One or more drawing elements can be
selected and manipulated; if several drawing elements are
selected, they can be manipulated as if they were a single element.
Elements that have been selected in this way are referred to as the
current selection. The current selection is indicated visually by
displaying the control points for the element. Clicking on and
dragging a control point modifies the element with which the control
point is associated.

When a creation tool is active, the current selection is empty. The
cursor changes in different ways according to the specific creation
tool, and the user can create an element of the selected kind. After
the element is created, the selection tool is made active and the
newly created element becomes the current selection.

The text creation tool changes the shape of the cursor to that of an
I-beam. The position of the first character of text is determined by

where the user clicks
longer active when the
element. The control
of the region within wh
points changes this re
creation of lines, rect
of the cursor to that o
to be created when th
when the mouse butt
start point and the sto

The line creation tool
point. These are the c
changes the end poin

The rectangle creatio
points are diagonally
corners are the contro
associated corner.

The ellipse creation t
rectangle defined by
radius is one half the
one half the height of
corners of the boundin
the associated corne

I2A 80.

U Responsibility-Driven Design

e Creation Tool,
t Creation Tool

editor

ment
niversität Bern

Class Selection Rationale (I)

Model physical objects:
☞ mouse button [event or attribute]

Model conceptual entities:
☞ ellipse, line, rectangle
☞ Drawing, Drawing Element
☞ Tool, Creation Tool, Ellipse Creation Tool, Lin

Rectangle Creation Tool, Selection Tool, Tex
☞ text, Character
☞ Current Selection

Choose one word for one concept:
☞ Drawing Editor ⇒ editor, interactive graphics
☞ Drawing Element ⇒ element
☞ Text Element ⇒ text
☞ Ellipse Element, Line Element, Rectangle Ele

⇒ ellipse, line, rectangle

I2A 81.

U Responsibility-Driven Design

tangle Creation Tool,
 different requirements
angle
ngle Element

ite corner

displaying the control points
g Editor ...
niversität Bern

Class Selection Rationale (II)

Be wary of adjectives:
☞ Ellipse Creation Tool, Line Creation Tool, Rec

Selection Tool, Text Creation Tool — all have
☞ bounding rectangle, rectangle, region ⇒ Rect

— common meaning, but different from Recta
☞ Point ⇒ end point, start point, stop point
☞ Control Point — more than just a coordinate
☞ corner ⇒ associated corner, diagonally oppos

— no new behaviour
Be wary of sentences with missing or misleading subjects:

☞ “The current selection is indicated visually by
for the element.” — by what? Assume Drawin

Model categories:
☞ Tool, Creation Tool

I2A 82.

U Responsibility-Driven Design

 system

int attribute
tor
butes of Cursor
niversität Bern

Class Selection Rationale (III)

Model interfaces to the system:
☞ user — don’t need to model user explicitly
☞ cursor — cursor motion handled by operating

Model values of attributes, not attributes themselves:
☞ height of the rectangle, width of the rectangle
☞ major radius, minor radius
☞ position — of first text character; probably Po
☞ mode of operation — attribute of Drawing Edi
☞ shape of the cursor, I-beam, crosshair — attri
☞ corner — attribute of Rectangle
☞ time — an implicit attribute of the system

I2A 83.

U Responsibility-Driven Design

ent

e
e Creation Tool
e Element
 Tool
tion Tool
ent
niversität Bern

Candidate Classes

Preliminary analysis yields the following candidates:

Expect the list to evolve as design progresses.

Character
Control Point
Creation Tool
Current Selection
Drawing
Drawing Editor
Drawing Element
Ellipse Creation Tool
Ellipse Element
Line Creation Tool

Line Elem
Point
Rectangl
Rectangl
Rectangl
Selection
Text Crea
Text Elem
Tool

I2A 84.

U Responsibility-Driven Design

back of the card
or discard!

orations
niversität Bern

Class Cards

Use class cards to record candidate classes:

Write a short description of the purpose of the class on the
☞ compact, easy to manipulate, easy to modify
☞ easy to arrange, reorganize
☞ easy to retrieve discarded classes

Class: Drawing
superclasses

subclasses

responsibilities ... collab

I2A 85.

U Responsibility-Driven Design

ther classes
plemented.

t the group
 classes

rchy will evolve

Text
Tool
niversität Bern

Finding Abstract Classes

Abstract classes factor out common behaviour shared by o
They are abstract because they need not be completely im

☞ group related classes with common attributes
☞ introduce abstract superclasses that represen
☞ “categories” are good candidates for abstract

✔ Warning: beware of premature classification; your hiera

Tool

Creation
Tool

Selection
Tool

Rectangle
Tool

Ellipse
Tool

Line
Tool

I2A 86.

U Responsibility-Driven Design

s

ame

bgroups

plete or imprecise
niversität Bern

Identifying and Naming Group

If you have trouble naming a group:
☞ enumerate common attributes to derive the n
☞ divide into more clearly defined subcategories

Attributes of abstract classes should serve to distinguish su
☞ Physical vs. conceptual
☞ Active vs. passive
☞ Temporary vs. permanent
☞ Generic vs. specific
☞ Shared vs. unshared

Classes may be missing because the specification is incom
☞ editing ⇒ undoing ⇒ need for a Cut Buffer

I2A 87.

U Responsibility-Driven Design

Text Tool
niversität Bern

Recording Superclasses

Record superclasses and subclasses on all class cards:

Class: Creation Tool
Tool
Ellipse Tool, Line Tool, Rectangle Tool,

I2A 88.

U Responsibility-Driven Design

es

y provide to clients,

t
al responsibilities
niversität Bern

Responsibilities

What are responsibilities?
☞ the knowledge an object maintains and provid
☞ the actions it can perform

Responsibilities represent the public services an object ma
not the way in which those services may be implemented

☞ specify what an object does, not how it does i
☞ don’t describe the interface yet, only conceptu

I2A 89.

U Responsibility-Driven Design

t responsibilities

 system

ibilities
niversität Bern

Identifying Responsibilities

❑ Study the requirements specification:
☞ highlight verbs and determine which represen
☞ perform a walk-though of the system

➪ exploring as many scenarios as possible
➪ identify actions resulting from input to the

❑ Study the candidate classes:
☞ class names ⇒ roles ⇒ responsibilities
☞ recorded purposes on class cards ⇒ respons

I2A 90.

U Responsibility-Driven Design

ties
an their clients

”
ion

formation
 the information, or
r
sed into a single one
niversität Bern

Assigning Responsibilities

❑ Evenly distribute system intelligence
☞ avoid procedural centralization of responsibili
☞ keep responsibilities close to objects rather th

❑ State responsibilities as generally as possible
☞ “draw yourself” vs. “draw a line/rectangle etc.

❑ Keep behaviour together with any related informat
☞ principle of encapsulation

❑ Keep information about one thing in one place
☞ if multiple objects need access to the same in

(i) a new object may be introduced to manage
(ii) one object may be an obvious candidate, o
(iii) the multiple objects may need to be collap

❑ Share responsibilities among related objects
☞ break down complex responsibilities

I2A 91.

U Responsibility-Driven Design

elationships between

re a common superclass
onsibilities
ation Tool must:
mented in subclass
ric
mented in subclass

ndiscovered superclasses

rt and of whole
niversität Bern

Relationships Between Classes

Additional responsibilities can be uncovered by examining r
classes, especially:

❑ The “Is-Kind-Of” Relationship:
☞ classes sharing a common attribute often sha
☞ common superclasses suggest common resp

e.g., to create a new Drawing Element, a Cre
1. accept user input imple
2. determine location to place it gene
3. instantiate the element imple

❑ The “Is-Analogous-To” Relationship:
☞ similarities between classes suggest as-yet-u

❑ The “Is-Part-Of” Relationship:
☞ distinguish (don’t share) responsibilities of pa

Difficulties in assigning responsibilities suggest:
☞ missing classes in design, or
☞ free choice between multiple classes

I2A 92.

U Responsibility-Driven Design

r-centralization:
erclass,
sses.
ble design. If necessary,
niversität Bern

Recording Responsibilities

List responsibilities as succinctly as possible:

Too many responsibilities to fit onto one card suggests ove
☞ Check if responsibilities really belong in a sup

or if they can be distributed to cooperating cla
Having more classes leads to a more flexible and maintaina
classes can later be consolidated.

Class: Drawing

Know which elements it contains

I2A 93.

U Responsibility-Driven Design

d to fulfil responsibilities
and, ultimately, subsystems
s
assigned responsibilities
niversität Bern

Collaborations

What are collaborations?

❑ collaborations are client requests to servers neede
❑ collaborations reveal control and information flow
❑ collaborations can uncover missing responsibilitie
❑ analysis of communication patterns can reveal mis

I2A 94.

U Responsibility-Driven Design

 can it obtain what it needs?

Check for collaborations.
iscarded. (Check carefully!)
niversität Bern

Finding Collaborations

For each responsibility:
1. Can the class fulfil the responsibility by itself?
2. If not, what does it need, and from what other class

For each class:
1. What does this class know?
2. What other classes need its information or results?
3. Classes that do not interact with others should be d

Check for these relationships:
❑ The “Is-Part-Of” Relationship
❑ The “Has-Knowledge-Of” Relationship
❑ The “Depends-Upon” Relationship

I2A 95.

U Responsibility-Driven Design

onsibility:

.

ing Element
niversität Bern

Recording Collaborations

Collaborations exist only to fulfil responsibilities.
Enter the class name of the server role next to client’s resp

Note each collaboration required for a responsibility.
Include also collaborations between peers.
Validate your preliminary design with another walk-through

Class: Drawing

Know which elements it contains
Maintain ordering between elements Draw

I2A 96.

U Responsibility-Driven Design

ses?
ign?

dentify them?
entifying classes?
 responsibilities?

ilities and collaborations?
niversität Bern

Summary

You should know the answers to these questions:
❑ What criteria can you use to identify potential clas
❑ How can class cards help during analysis and des
❑ How can you identify abstract classes?
❑ What are class responsibilities, and how can you i
❑ How can identification of responsibilities help in id
❑ What are collaborations, and how do they relate to

Can you answer the following questions?
✎ When should an attribute be promoted to a class?
✎ Why is it useful to organize classes into a hierarchy?
✎ How can you tell if you have captured all the responsib

I2A 97.

U Detailed Design

ck, B. Wilkerson, L. Wiener,
niversität Bern

6. Detailed Design

Overview:
❑ Structuring Inheritance Hierarchies
❑ Identifying Subsystems
❑ Specifying Class Protocols (Interfaces)

Source:
❑ Designing Object-Oriented Software, R. Wirfs-Bro

Prentice Hall, 1990

I2A 98.

U Detailed Design

m.
cards and on class diagram.

lities:

ool
tract }

ion Tool
niversität Bern

Sharing Responsibilities

Concrete classes may be both instantiated and inherited fro
Abstract classes may only be inherited from. Note on class

Venn Diagrams can be used to visualize shared responsibi

(Warning: not part of Unified Notation!)

Tool
{ abstract }

Creation T
{ abs

Selection
Tool

Tool CreatSelection Tool

I2A 99.

U Detailed Design

Decide whether a
class will be
instantiated to
determine if it is
abstract or concrete.

DateMagnitude

tring
niversität Bern

Multiple Inheritance

Array

Matrix String Date

Ordered Collection
{ abstract }

Indexable Collection
{ abstract }

Magnitude
{ abstract }

Array

Ordered
Collection

Matrix

S
Indexable
Collection

Responsibilities of
subclasses are
larger than those of
superclasses.

Intersections
represent common
superclasses.

I2A 100.

U Detailed Design

nsibilities, and possibly more

ould inherit from a common
issing

e classes:
perclass: abstract classes
ntation-independent way

s, or a particular way of
niversität Bern

Building Good Hierarchies

Model a “kind-of” hierarchy:
☞ Subclasses should support all inherited respo

Factor common responsibilities as high as possible:
☞ Classes that share common responsibilities sh

abstract superclass; introduce any that are m

Make sure that abstract classes do not inherit from concret
☞ Eliminate by introducing common abstract su

should support responsibilities in an impleme

Eliminate classes that do not add functionality:
☞ Classes should either add new responsibilitie

implementing inherited ones

I2A 101.

U Detailed Design

BA C

E GD

Incorrect
Subclass/Superclass

Relationships
Subclasses should assume all
superclass responsibilities
niversität Bern

Building Kind-Of Hierarchies

A B

C

E

G

E G

D

Correctly Formed Subclass
Responsibilities

Revised Inheritance
Relationships

Introduce abstract
superclasses to encapsulate
common responsibilities

{ abstract }

E G

I2A 102.

U Detailed Design

ing Element
{ abstract }

Rectangle
Element

Group
Element

Ellipse
Element

ar Element
{ abstract }
niversität Bern

Refactoring Responsibilities

Drawing Element
{ abstract }

Rectangle
Element

Group
Element

Text
Element

Line
Element

Ellipse
Element

Lines, Ellipses and Rectangles
are responsible for keeping
track of the width and colour of
the lines they are drawn with.
This suggests a common
superclass.

Draw

Text
Element

Line
Element

Line

I2A 103.

U Detailed Design

of a server related to a

o simplify your design.

 contracts

hierarchy as appropriate
niversität Bern

Identifying Contracts

A contract defines a set of requests that a client can make
cohesive set of closely-related responsibilities.

Contracts introduce another level of abstraction, and help t

❑ Group responsibilities used by the same clients:
☞ conversely, separate clients suggest separate

❑ Maximize the cohesiveness of classes:
☞ unrelated contracts belong in subclasses

❑ Minimize the number of contracts:
☞ unify responsibilities and move as high in the

I2A 104.

U Detailed Design

hies

significant new functionality
nality, or do they just

propriate contract
ique number

ciated contract

e which contract represents it
 diagrams
niversität Bern

Applying the Guidelines

1. Start by defining contracts at the top of your hierarc

2. Introduce new contracts only for subclasses that add
☞ do new responsibilities represent new functio

specialize inherited functionality?

3. For each class card, assign responsibilities to an ap
☞ briefly describe each contract and assign a un
☞ number responsibilities according to the asso

4. For each collaboration on each class card, determin
☞ model collaborations as associations in class

(AKA “collaboration graphs”)

I2A 105.

U Detailed Design

ort a set of contracts.

 levels:
ilities, and encapsulate

er than factoring out

-dependencies
nication paths

e services provided to clients
ts.
niversität Bern

What are Subsystems?

Subsystems are groups of classes that collaborate to supp

❑ Subsystems simplify design by raising abstraction
☞ subsystems group logically related responsib

related collaborations

❑ Don’t confuse with superclasses:
☞ subsystems group related responsibilities rath

common responsibilities

Find subsystems by looking for strongly-coupled classes:
☞ list the collaborations and identify strong inter
☞ identify and highly frequently-travelled commu

Subsystems, like classes, also support contracts. Identify th
outside the subsystem to determine the subsystem contrac

I2A 106.

U Detailed Design

r each contract, the in-

g
g Element
g

niversität Bern

Subsystem Cards

For each subsystem, record its name, its contracts, and, fo
ternal class or subsystem that supports it:

Subsystem: Drawing Subsystem
Access a drawing Drawin
Modify part of a drawing Drawin
Display a drawing Drawin

I2A 107.

U Detailed Design

lient’s class card to record a

class.

Abstract)

bsystem
niversität Bern

Class Cards

For each collaboration from an outside client, change the c
collaboration with the subsystem:

Record on the subsystem card the delegation to the agent

Class: File (

Document File, Graphics File, Text File
Knows its contents
Print its contents Printing Su

I2A 108.

U Detailed Design

 with other classes:
 eases evolution

tem delegates:
plexity

ted by a class:
n information

 diagrams
rchies

rations simpler?
niversität Bern

Simplifying Interactions

Complex collaborations lead to unmaintainable systems.
Exploit subsystems to simplify overall structure.

❑ Minimize the number of collaborations a class has
☞ centralizing communications into a subsystem

❑ Minimize the number of classes to which a subsys
☞ centralized subsystem interfaces reduce com

❑ Minimize the number of different contracts suppor
☞ group contracts that require access to commo

Checking Your Design:
☞ model collaborations as associations in class
☞ update class/subsystem cards and class hiera
☞ walk through scenarios:

➪ Has coupling been reduced? Are collabo

I2A 109.

U Detailed Design

eter types and return types)

sponsibilities
specified if they will be used

ystem
niversität Bern

Protocols

A protocol is a set of signatures (i.e., method names, param
to which a class will respond.

☞ Generally, protocols are specified for public re
☞ Protocols for private responsibilities should be

or implemented by subclasses

1. Construct protocols for each class
2. Write a design specification for each class and subs
3. Write a design specification for each contract

I2A 110.

U Detailed Design

tion in the system
each method name
 the inheritance hierarchy

at should be specified

arameters
te
lts
niversität Bern

Refining Responsibilities

Select method names carefully:
☞ Use a single name for each conceptual opera
☞ Associate a single conceptual operation with
☞ Common responsibilities should be explicit in

Make protocols as generally useful as possible:
☞ The more general it is, the more messages th

Define reasonable defaults:
1. Define the most general message with all possible p
2. Provide reasonable default values where appropria
3. Define specialized messages that rely on the defau

I2A 111.

U Detailed Design

s

ms

 and ancestor
tures, brief description and

give method signatures etc.
rithms, real-time or memory
niversität Bern

Specifying Your Design: Classe

Specifying Classes
1. Class name; abstract or concrete
2. Immediate superclasses and subclasses
3. Location in inheritance hierarchies and class diagra
4. Purpose and intended use
5. Contracts supported (as server); inherited contracts
6. For each contract, list responsibilities, method signa

any collaborations
7. List private responsibilities; if specified further, also
8. Note: implementation considerations, possible algo

constraints, error conditions etc.

I2A 112.

U Detailed Design

ntracts

 subsystems

ystem
niversität Bern

Specifying Subsystems and Co

Specifying Subsystems
1. Subsystem name; list all encapsulated classes and
2. Purpose of the subsystem
3. Contracts supported
4. For each contract, list the responsible class or subs

Formalizing Contracts
1. Contract name and number
2. Server(s)
3. Clients
4. A description of the contract

I2A 113.

U Detailed Design

ierarchy?
e a class hierarchy?
onsibilities?
you find them?
tracts?

rogramming language does

 cohesion?
er with the Unified Modeling
niversität Bern

Summary

You should know the answers to these questions:
❑ How can you identify abstract classes?
❑ What criteria can you use to design a good class h
❑ How can refactoring responsibilities help to improv
❑ What is the difference between contracts and resp
❑ What are subsystems (“categories”) and how can
❑ What is the difference between protocols and con

Can you answer the following questions?
✎ What use is multiple inheritance during design if your p

not support it?
✎ Why should you try to minimize coupling and maximize
✎ How would you use Responsibility Driven design togeth

Language?

I2A 114.

U Software Validation

esley, Fifth Edn., 1996.
niversität Bern

7. Software Validation

Overview:
❑ Reliability, Failures and Faults
❑ Fault Tolerance
❑ Software Testing: Black box and white box testing
❑ Static Verification

Source:
❑ Software Engineering, I. Sommerville, Addison-W

I2A 115.

U Software Validation

d Faults

ll it provides the services
es.

ehaves in an unexpected or

m which may cause failures
uts.

rator intervention

to recover from failure
niversität Bern

Software Reliability, Failures an

The reliability of a software system is a measure of how we
expected by its users, expressed in terms of software failur

A software failure is an execution event where the software b
undesirable way.
A software fault is an erroneous portion of a software syste
to occur if it is run in a particular state, or with particular inp

Failure class Description

Transient Occurs only with certain inputs

Permanent Occurs with all inputs

Recoverable System can recover without ope

Unrecoverable Operator intervention is needed

Non-corrupting Failure does not corrupt data

Corrupting Failure corrupts system data

I2A 116.

U Software Validation

r of faults in a system

 the presence of faults

capsulation
t process
tware process
 reliability
niversität Bern

Programming for Reliability

Fault avoidance:
☞ development techniques to reduce the numbe

Fault tolerance:
☞ developing programs that will operate despite

Fault avoidance depends on:
1. A precise system specification (preferably formal)
2. Software design based on information hiding and en
3. Extensive validation reviews during the developmen
4. An organizational quality philosophy to drive the sof
5. Planned system testing to expose faults and assess

I2A 117.

U Software Validation

aults
re common sources of faults

ing constructs make
odify.

nd may lead to invalid

arisons
he risk of corrupting memory
data type implementations
s can affect overall program

xhaust (stack) memory.
ntrolled scope
he current context, and may

ed exceptions
niversität Bern

Common Sources of Software F
Several features of programming languages and systems a
in software systems:

❑ Goto statements and other unstructured programm
programs hard to understand, reason about and m
☞ Use structured programming constructs

❑ Floating point numbers are inherently imprecise a
comparisons.
☞ Fixed point numbers are safer for exact comp

❑ Pointers are dangerous because of aliasing, and t
☞ Pointer usage should be confined to abstract

❑ Parallelism is dangerous because timing difference
behaviour in hard-to-predict ways.
☞ Minimize inter-process dependencies

❑ Recursion can lead to convoluted logic, and may e
☞ Use recursion in a disciplined way, within a co

❑ Interrupts force transfer of control independent of t
cause a critical operation to be terminated.
☞ Minimize the use of interrupts; prefer disciplin

I2A 118.

U Software Validation

ar state or will result in a

een affected by the failure

r by correcting the damaged

 (!)
niversität Bern

Fault Tolerance

A fault-tolerant system must carry out four activities:

1. Failure detection:
☞ detect that the system has reached a particul

system failure
2. Damage assessment:

☞ detect which parts of the system state have b
3. Fault recovery:

☞ restore the state to a known, “safe” state (eithe
state, or backing up to a previous, safe state)

4. Fault repair:
☞ modify the system so the fault does not recur

I2A 119.

U Software Validation

mented independently

nd

ions should be available!)

ontains a test to check
 in case of failure.

rallel
niversität Bern

Approaches to Fault Tolerance

N-version Programming:
Multiple versions of the software system are imple
by different teams. The final system:

– runs all the versions in parallel,

– compares their results using a voting system, a

– rejects inconsistent outputs. (At least three vers

Recovery Blocks:
A finer-grained approach in which a program unit c
for failure, and alternative code to back up and try

– alternative are executed in sequence, not in pa

– the failure test is independent (not by voting)

I2A 120.

U Software Validation

e that state variables do not

ns. Explicitly state and check
ost-conditions of procedures
from failures.
opriate, to assess what parts
 to fix the damage.

ent state
tion to reconstruct a
niversität Bern

Defensive Programming

Failure detection:
❑ Use the type system as much as possible to ensur

get assigned invalid values.
❑ Use assertions to detect failures and raise exceptio

all invariants for abstract data types, and pre- and p
as assertions. Use exception handlers to recover

❑ Use damage assessment procedures, where appr
of the state have been affected, before attempting

Fault recovery:
❑ Backward recovery: backup to a previous, consist
❑ Forward recovery: make use of redundant informa

consistent state from corrupted data

I2A 121.

U Software Validation

 formal verification.
sting ...

Programtailed
sign

Dynamic
validation
niversität Bern

Verification and Validation

Validation:
❑ Are we building the right product?

Verification:
❑ Are we building the product right?

Static techniques include program inspection, analysis and
Dynamic techniques include statistical testing and defect te

Requirements
specification

High-level
design

Formal
specifications

De
de

Prototype

Static
verification

I2A 122.

U Software Validation

d to ensure that they operate

) is tested as a group.

s a sub-system. Since the
e from sub-system interface
ese interfaces.

s resulting from unexpected
lidating that the complete
equirements.

ulated data.

efects are repaired.
niversität Bern

The Testing Process

1. Unit testing:
☞ Individual (stand-alone) components are teste

correctly.
2. Module testing:

☞ A collection of related components (a module
3. Sub-system testing:

☞ The phase tests a set of modules integrated a
most common problems in large systems aris
mismatches, this phase focuses on testing th

4. System testing:
☞ This phase concentrates on (i) detecting error

interactions between sub-systems, and (ii) va
systems fulfils functional and non-functional r

5. Acceptance testing (alpha/beta testing):
☞ The system is tested with real rather than sim

Testing is iterative! Regression testing is performed when d

I2A 123.

U Software Validation

tem requirements are
he software is designed.

epeated and extended

Detailed
design

Module and unit
code and test

Sub-system
integration test
niversität Bern

Test Planning

The preparation of the test plan should begin when the sys
formulated, and the plan should be developed in detail as t

The plan should be revised regularly, and tests should be r
wherever iteration occurs in the software process.

Acceptance
test plan

System
integration
test plan

Requirements
specification

Sub-system
integration
test plan

System
specification

System
design

System
integration test

Acceptance
testService

I2A 124.

U Software Validation

presented by “stubs”
 as stubs
 activity
ing expensive redesign

 complex components

-level components
ared with other projects
architectural faults till late in

is best.
niversität Bern

Testing Strategies
Top-down Testing:

☞ Start with sub-systems, where modules are re
☞ Similarly test modules, representing functions
☞ Coding and testing are carried out as a single
☞ Design errors can be detected early on, avoid
☞ Always have a running (if limited) system
☞ BUT: may be impractical for stubs to simulate

Bottom-up Testing:
☞ Start by testing units and modules
☞ Test drivers must be written to exercise lower
☞ Works well for reusable components to be sh
☞ BUT: pure bottom-up testing will not uncover

the software process

Typically a combination of top-down and bottom-up testing

I2A 125.

U Software Validation

 system.
an only be representative.

nction being tested.

an testing its components.”
that may prevent users from

ing new capabilities.”
tem is modified.

sting boundary value cases.”
e patterns.
niversität Bern

Defect Testing

Tests are designed to reveal the presence of defects in the
Testing should, in principle, be exhaustive, but in practice c

Test data are inputs devised to test the system.
Test cases are input/output specifications for a particular fu

Petschenik (1985) proposes:
1. “Testing a system’s capabilities is more important th

☞ Choose test cases that will identify situations
doing their job.

2. “Testing old capabilities is more important than test
☞ Always perform regression tests when the sys

3. “Testing typical situations is more important than te
☞ If resources are limited, focus on typical usag

I2A 126.

U Software Validation

se behaviour can be

e component.

Inputs causing
anomalous behaviour

utputs revealing the
resence of defects
niversität Bern

Functional testing

Functional testing treats a component as a “black box” who
determined only by studying its inputs and outputs.

Test cases are derived from the external specification of th

Ie
Input set

Oe

Output set

Component

O
p

I2A 127.

U Software Validation

y assuming that the
valence partition.

ions make sense)
niversität Bern

Equivalence Partitioning
Test cases can be derived from a component’s interface, b
component will behave similarly for all members of an equi

Example:
feature {ANY}

find (key: INTEGER) : BOOLEAN is ...
feature {NONE}

elements : ARRAY [INTEGER] -- sorted

Check input partitions:
❑ Do the inputs fulfil the pre-conditions?
❑ Is the key in the array?

☞ leads to (at least) 2x2 equivalence classes

Check boundary conditions:
❑ Is the array of length 1?
❑ Is the key at the start or end of the array?

☞ leads to further subdivisions (not all combinat

I2A 128.

U Software Validation

rtitions.

Test Data

ed = { }

ted = { 33, 20, 17, 18 }

rted = { 17 }

ed = { 17 }

rted = { 17, 18, 20, 33 }

rted = { 17, 18, 20, 33 }

rted = { 17, 18, 20, 33 }

rted = { 17, 18, 20, 33 }
niversität Bern

Test Cases and Test Data

Generate test data that cover all meaningful equivalence pa

Test Cases

Array length 0 key = 17, sort

Array not sorted key = 17, sor

Array size 1, key in array key = 17, so

Array size 1, key not in array key = 0, sort

Array size > 1, key is first element key = 17, so

Array size > 1, key is last element key = 33, so

Array size > 1, key is in middle key = 20, so

Array size > 1, key not in array key = 50, so

...

I2A 129.

U Software Validation

ss box” whose structure can

ndependent execution path
niversität Bern

Structural Testing

Structural testing treats a component as a “white box” or “gla
be examined to generate test cases.

Path testing is a white-box strategy which exercises every i
through a component.

Component
code

Test
data

Test
outputs

Derive test data

Run tests

Produce output

I2A 130.

U Software Validation

arch

))
niversität Bern

Binary Search Method
find (v: INTEGER) : BOOLEAN is

-- find v in sorted array elements (an instance variable) by binary se
require not_empty: not (empty) -- i.e., not(upper<lower)
local bottom, top, mid : INTEGER
do

from bottom := lower -- lower index of elements array
top := upper -- upper index of elements array
last_index := (bottom + top) // 2
Result := v.is_equal (elements.item (last_index))

invariant bottom <= top
variant top - bottom
until Result or else (bottom > top)
loop

mid := (bottom + top) // 2
if (v.is_equal (elements.item (mid))) then

Result := True
last_index := mid

else
if (elements.item (mid) < v) then

bottom := mid + 1
else

top := mid - 1
end -- if

end -- if
end -- loop

ensure (Result = True) implies v.is_equal (elements.item (last_index
end -- find

I2A 131.

U Software Validation

e edges in the graph:
11,2,12,13},

s through a routine.

9

lse (bottom > top)

 (elements.item (mid)))

elements.item (mid) < v)
niversität Bern

Path Testing
A set of independent paths of a flow graph must cover all th
e.g., {1,2,3,4,12,13}, {1,2,3,5,6,11,2,12,13}, {1,2,3,5,7,8,10,
{1,2,3,5,7,9,10,11,2,12,13}

Test cases should be chosen to cover all independent path

1

2

3
4

6
5

7
8

13

10
11

12

until Result or e

if (bottom = top) if (v.is_equal

if (

if (Result)

I2A 132.

U Software Validation

y of the software, rather than
:

puts and, after running the
 can be made:

 input and probabilities)
 patterns
ilure
ns, compute reliability
niversität Bern

Statistical Testing

The objective of statistical testing is to determine the reliabilit
to discover software faults. Reliability may be expressed as

❑ probability of failure on demand,
❑ rate of failure occurrence,
❑ mean time to failure,
❑ availability

Tests are designed to reflect the frequency of actual user in
tests, an estimate of the operational reliability of the system

1. Determine usage patterns of the system (classes of
2. Select or generate test data corresponding to these
3. Apply the test cases, recording execution time to fa
4. Based on a statistically significant number of test ru

I2A 133.

U Software Validation

ns checked?” ...

s

rogram meets specification
s terminate, etc.

i) formal specification, (iii)
g

niversität Bern

Static Verification

Program Inspections:
❑ Small team systematically checks program code
❑ Inspection checklist often drives this activity

☞ e.g., “Are all invariants, pre- and post-conditio

Static Program Analysers:
❑ Complements compiler to check for common error

☞ e.g., variable use before initialization

Mathematically-based Verification:
❑ Use mathematical reasoning to demonstrate that p

☞ e.g., that invariants are not violated, that loop

Cleanroom Software Development:
❑ Systematically use (i) incremental development, (i

mathematical verification, and (iv) statistical testin

I2A 134.

U Software Validation

lt?

t?
liable?
fication?
t data?
s?

-up testing?
-box testing?
liable?
niversität Bern

Summary

You should know the answers to these questions:
❑ What is the difference between a failure and a fau
❑ What kinds of failure classes are important?
❑ How can a software system be made fault-toleran
❑ How do assertions help to make software more re
❑ What are the goals of software validation and veri
❑ What is the difference between test cases and tes
❑ How can you develop test cases for your program
❑ What is the goal of path testing?

Can you answer the following questions?
✎ When would you combine top-down testing with bottom
✎ When would you combine black-box testing with white
✎ Is it acceptable to deliver a system that is not 100% re

I2A 135.

U Design by Contract

s

dn., B. Meyer, Prentice Hall,
niversität Bern

8. Design by Contract

Overview:
❑ Assertions
❑ Programming by Contract: Pre- and Post-condition
❑ Class invariants and correctness
❑ Functions and side-effects
❑ Disciplined Exceptions

Source:
❑ Object-Oriented Software Construction, Second E

1997.

I2A 136.

U Design by Contract

 at various points during

pty

ments = old numElements + 1

K

niversität Bern

Assertions
An assertion is a property over values of program entities:

Assertions are used to specify conditions which should hold
program execution.

class STACK [T]

feature { ANY }
numElements : INTEGER
empty : BOOLEAN is do ... end
full : BOOLEAN is do ... end

pop is
require

not empty
do ...
ensure

not full
numElements = old numElements - 1

end

top : T is
require

not empty
do ... end

push (x : T) is
require

not full
do ...
ensure

not em
top = x
numEle

end

end -- class STAC

I2A 137.

U Design by Contract

a class establishes the

onditions under which a call

t defines the conditions that

n I, in return,
t is satisfied.”

Benefits

a new stack top on return (top
ments increased by 1)

t cases in which the stack is
niversität Bern

Programming by Contract

By associating require pre and ensure post to a routine r,
contract with its clients:

☞ The precondition binds clients: it defines the c
to the routine is legitimate.

☞ The postcondition, in return, binds the class: i
must be ensured by the routine on return.

“If you promise to call r with pre satisfied, the
promise to deliver a final state in which pos

Obligations

Client
Programmer

Only callpush(x) on a
non-full stack

Getx added as
yieldsx , numEle

Module
Implementor

Make sure thatx is pushed
on top of the stack

No need to trea
already full

I2A 138.

U Design by Contract

object is under no obligation

he responsibility of clients

dlessly complicates code.
itions as a guard against

ntainability and clear
niversität Bern

Checking Preconditions

sqrt (x : REAL) : REAL is
-- square root of x
require

x >= 0
do ...

What happens if a precondition is not satisfied?

If the client fails to satisfy the precondition to a contract, the
to provide anything in return

❑ Objects should not check preconditions; they are t
that make requests

❑ Redundant checking is not only inefficient but nee
❑ In practice, however, objects must check precond

programming errors!

✔ Rigorous use of preconditions promotes readability, mai
assignment of responsibilities.

I2A 139.

U Design by Contract
niversität Bern

Example — the STACK Class
class STACK [T]

creation { ANY }
make

feature { NONE }

contents : ARRAY [T]

maxSize : INTEGER

make(n :INTEGER) is

do
if n>0
then

maxSize := n
!!contents.make(1,n)

end
end

feature { ANY}

numElements : INTEGER

empty : BOOLEAN is
do

Result := (numElements = 0)
end

full : BOOLEAN is
do

Result := (numElements = maxSize)
end

I2A 140.

U Design by Contract
niversität Bern

STACK Operations ...
pop is

require
not empty

do
numElements := numElements - 1

ensure
not full
numElements = old numElements - 1

end

top : T is
require

not empty
do

Result := contents @ numElements
end

push (x : T) is
require

not full
do

numElements := numElements + 1
contents.put (x, numElements)

ensure
not empty
top = x
numElements = old numElements + 1

end

end -- class STACK

I2A 141.

U Design by Contract
niversität Bern

Class Invariants

What are valid “stable” states of an instance of Stack?

class STACK [T]
...

feature { NONE }

contents : ARRAY [T]
maxSize : INTEGER
...

feature { ANY}
numElements : INTEGER
...

end -- class STACK

Need:
invariant

0 <= numElements; numElements <= maxSize

I2A 142.

U Design by Contract

e from myStack
s,
 and continue

N -- initially False

 ("Popping ")
tack.top
)

 ("%N")
p

ROR: stack is empty%N")
niversität Bern

Using the Stack

class MAIN

creation {ANY}
make

feature {NONE}

myStack : STACK [INTEGER]

make is
do

io.putstring ("Making stack%N")
!!myStack.make(5)
trypush(10)
trypush(20)
trypop
trypop
trypop -- empty stack
trypush(30)
trypush(40)
trypush(50)
trypush(60)
trypush(70)
trypush(80) -- full stack

end

trypop is
-- try to pop a valu
-- if an error occur
-- print a message

local
top : INTEGER
error : BOOLEA

do
if not error
then

io.putstring
top := myS
io.putint(top
io.putstring
myStack.po
printsize

end

rescue
io.putstring ("ER
error := True
retry

end

I2A 143.

U Design by Contract

ntinue
niversität Bern

Using the STACK ...
trypush (n : INTEGER) is

-- try to push a value onto myStack; if an error occurs, print a message and co
local

error : BOOLEAN -- initially False
do

if not error
then

io.putstring ("Pushing ")
io.putint(n)
io.putstring ("%N")
myStack.push(n)
printsize

end
rescue

io.putstring ("ERROR: stack is full%N")
error := True
retry

end

printsize is
local

n : INTEGER
do

n := myStack.numElements
io.putstring ("Stack has ")
io.putint(n)
io.putstring (" elements%N")

end

end -- class MAIN

I2A 144.

U Design by Contract

r a class C if and only if:
guments satisfying its
their default values, yields a

ied to arguments and a state
, yields a state satisfying I.

ure.

ate and arguments.
final states, the arguments
niversität Bern

Class Correctness

Invariant rule: An assertion I is a correct class invariant fo
☞ the create procedure of C, when applied to ar

precondition in a state where attributes have
state satisfying I; and

☞ every exported routine of the class, when appl
satisfying both I and the routine’s precondition

Note:
❑ Every class is considered to have a create proced
❑ The state of an object is defined by its attributes.
❑ The precondition of a routine may involve initial st
❑ The postcondition may only involve the initial and

and the Result.
❑ The invariant may only involve the state.

I2A 145.

U Design by Contract

 be used safely as queries

eturn results.
niversität Bern

Side Effects in Functions

Recommended style:
Functions should be free of visible side-effects, so they can
(for example, in assertions).
Procedures should implement commands, and should not r

Objects as Machines

Queries monitor state
without altering it.

Commands alter the
state of an object.

I2A 146.

U Design by Contract

n object, but sometimes it is
entation:
niversität Bern

Legitimate Side Effects

Functions should not modify the visible (abstract) state of a
convenient for them to change the hidden (concrete) repres

☞ caching computed queries
☞ switching between alternative representations
☞ garbage collection ...

I2A 147.

U Design by Contract

ants is a conceptual aid to

rect

tract to clients of a module
niversität Bern

Using Assertions

Assertions have four principle applications:
❑ Help in writing correct software
❑ Documentation aid
❑ Debugging tool
❑ Support for software fault tolerance

Correctness:
☞ specifying pre- and post-conditions and invari

developing correct software in the first place
☞ assertions can be used to prove software cor

Documentation:
☞ concise and unambiguous specification of con

I2A 148.

U Design by Contract

me:
niversität Bern

Exceptions

Assertions can be checked and exceptions caught at run-ti
☞ debugging
☞ failure recovery
☞ fault tolerance

Three levels of checking:
1. no checking
2. checking pre-conditions only (the default)
3. checking all assertions

I2A 149.

U Design by Contract

ring the execution of a

urpose.
ot satisfying its specification.

aised.

lient (“organized panic”)
nd retry

cial notification.

 exception, then you are
niversität Bern

Disciplined Exceptions

An exception is the occurrence of an abnormal condition du
software element.
A failure is the inability of a software element to satisfy its p
An error is the presence in the software of some element n

When an assertion is violated at run-time, an exception is r
There are only two reasonable courses of action:

1. clean up the environment and report failure to the c
2. attempt to change the conditions that led to failure a

It is not acceptable to return control to the client without spe

✔ If it is not possible to run your program without raising an
abusing the exception-handling mechanism!

I2A 150.

U Design by Contract

ring its execution and the

ect to the precondition true
ition given by the class

successful termination

failure
niversität Bern

Rescue and Retry

A routine execution fails (in Eiffel) if an exception occurs du
routine terminates by executing its rescue code.

Rescue rule: The rescue clause must be correct with resp
and (except for a branch ending in a retry) to the postcond
invariant.

routine is
require ...
local ...
do

body
ensure ...
rescue

rescue clause
if ...
then retry
end

end

I2A 151.

U Design by Contract

t-conditions?
ed?

robustness?
ed?
e clause?

echanism?
ass invariant?
niversität Bern

Summary

You should know the answers to these questions:
❑ What is an assertion?
❑ How are contracts are formalized by pre- and pos
❑ What is a class invariant and how can it be specifi
❑ What are assertions useful for?
❑ How can exceptions be used to improve program
❑ What situations may cause an exception to be rais
❑ What kind of activity should you perform in a rescu

Can you answer the following questions?
✎ How would you apply disciplined exceptions in C++?
✎ How about in a language with no exception handling m
✎ How do you know if you have correctly specified the cl

I2A 152.

U Design Patterns

 John Vlissides,
Oriented Software,

tterns to Develop Reusable
unications of the ACM, Vol.

 — Towns · Buildings ·
niversität Bern

9. Design Patterns

Overview:
❑ What are (not) Design Patterns?
❑ How are they specified?
❑ Common OO Design Techniques
❑ Example: the Template Method pattern
❑ What problems do Design Patterns solve?

Source:
❑ Erich Gamma, Richard Helm, Ralph Johnson and

Design Patterns — Elements of Reusable Object-
Addison Wesley, Reading, MA, 1995

❑ Douglas C. Schmidt, “Experience Using Design Pa
Object-Oriented Communication Software,” Comm
38, No. 10, Oct. 1995

❑ Christopher Alexander, et al., A Pattern Language
Construction, Oxford University Press, 1977

I2A 153.

U Design Patterns

 of architecture:

and over again in our
tion to that problem, in
es over, without ever

l., A Pattern Language

ommon design problems:

, and evaluates an
tems. Our goal is to
use effectively.”

 et al., Design Patterns
niversität Bern

What are Design Patterns?

Patterns were first systematically catalogued in the domain

“Each pattern describes a problem which occurs over
environment, and then describes the core of the solu
such a way that you can use this solution a million tim
doing it the same way twice.”

Alexander, et a

Software design patterns document standard solutions to c

“Each design pattern systematically names, explains
important and recurring design in object-oriented sys
capture design experience in a form that people can

Gamma,

I2A 154.

U Design Patterns

esign problems
r is a design pattern

roblem
ifferent implementations
sing design patterns

rchitecture using an object-

specific design problem
th design patterns
om experience with multiple
niversität Bern

What Design Patterns are not ...

Algorithms are not design patterns
☞ algorithms solve computation problems, not d
☞ merge-sort is an algorithm; divide and conque

Software components are not design patterns
☞ design patterns describe a way of solving a p
☞ design patterns document pros and cons of d
☞ software components may be implemented u

Frameworks are not design patterns
☞ a framework implements a generic software a

oriented language
☞ a design pattern documents the solution to a
☞ a framework may use and be documented wi
☞ like frameworks, design patterns are drawn fr

applications solving related problems

I2A 155.

U Design Patterns

ied?

essence of pattern

 pattern
ed use
solution
rn be applied
nts

 their responsibilities
ponsibilities
ing the pattern
guage issues
malltalk etc.
n real systems
atterns
niversität Bern

How are Design Patterns Specif

1. Pattern Name and Classification: should convey
☞ Also Known As: other common names

2. The Problem Forces: describes when to apply the
☞ Intent: short statement of rationale and intend
☞ Motivation: a problem scenario and example
☞ Applicability: in which situations can the patte

3. The Solution: abstract description of design eleme
☞ Structure: class and scenario diagrams
☞ Participants: participating classes/objects and
☞ Collaborations: how participants carry out res

4. The Consequences: results and trade-offs of apply
☞ Implementation: pitfalls, hints, techniques, lan
☞ Sample Code: illustrative examples in C++, S
☞ Known Uses: examples of the pattern found i
☞ Related Patterns: competing and supporting p

I2A 156.

U Design Patterns

ues:

entation

stract, not concrete classes
te classes to instantiate

rent class implementation
ncreases run-time flexibility

ating it to another object
aviour to change at run-time
niversität Bern

Common Design Techniques

Design patterns make use of many common design techniq

❑ Class vs. Interface inheritance
☞ Class inheritance supports sharing of implem
☞ Interface inheritance supports polymorphism

❑ Program to an interface, not an implementation!
☞ Increase flexibility by declaring variables of ab
☞ Localize knowledge concerning which concre

❑ Inheritance vs. Object Composition
☞ Inheritance occurs statically, and exposes pa
☞ Object composition occurs dynamically, and i

❑ Delegation vs. Inheritance
☞ An object can “implement” a service by deleg
☞ Delegation increases flexibility by allowing beh

I2A 157.

U Design Patterns

ility:

actory” or “Prototype” object
e
ally select operations

tails from clients
ns
s from cascading

ize algorithms

id tight coupling

heritance

e and adapt them
niversität Bern

Improving Design Flexibility
Many design problems are concerned with achieving flexib

❑ Varying which classes are instantiated
☞ Create objects indirectly by delegating to a “F

❑ Varying which operations are performed at run-tim
☞ Use polymorphism and delegation to dynamic

❑ Varying hardware or software platform
☞ Use polymorphism to hide implementation de

❑ Varying object representations and implementatio
☞ Encapsulate dependencies to prevent change

❑ Varying algorithms
☞ Use polymorphism to substitute or parameter

❑ Decoupling objects
☞ Use object composition and delegation to avo

❑ Extending functionality in arbitrary ways
☞ Prefer object composition and delegation to in

❑ Adapting existing classes
☞ Use object composition and delegation to hid

I2A 158.

U Design Patterns

0.

g some steps to subclasses.
n algorithm without changing
niversität Bern

Example: Template Method

Adapted from “Design Patterns,” Gamma, et al., pp. 325-33

Name

Template Method

Intent

“Define the skeleton of an algorithm in an operation, deferrin
Template Method lets subclasses redefine certain steps of a
the algorithm’s structure.”

I2A 159.

U Design Patterns

ument classes.
ts stored in an external

instance.
plication and Document

on
{ abstract }

t ()
t ()
ment () empty

tion

t()
t()
ment()
niversität Bern

Template Method — Motivation
Motivation
An application framework provides Application and Doc
Application is responsible for opening existing documen
format. An open document is represented by a Document
An application built with the framework should subclass Ap
for specific kinds of documents.

Document
{ abstract }

+Save()
+Open()
+Close()
+DoRead ()

MyDocument

+DoRead ()

Applicati

+AddDocument()
+OpenDocument()
+DoCreateDocumen
#CanOpenDocumen
#AboutToOpenDocu

MyApplica

+DoCreateDocumen
#CanOpenDocumen
#AboutToOpenDocu

docs
*

I2A 160.

U Design Patterns

 ...

ing and reading a document

t be opened?

n

subclass instances

lgorithm in terms of abstract
haviour. Subclasses must
ument . If special actions
 specified by overriding
niversität Bern

Template Method — Motivation

The abstract Application class defines the algorithm for open
in its OpenDocument operation:

void Application::OpenDocument (const char* name)
{

if (!CanOpenDocument(name)) { // can the documen
return;

}

Document* doc = DoCreateDocument(name);

if (doc) { // successful creatio
_docs->AddDocument(doc);
AboutToOpenDocument(doc); // warn Application
doc->Open();
doc->DoRead();

}
}

OpenDocument is a template method, since it defines an a
operations that subclasses override to provide concrete be
provide the logic for CanOpenDocument and DoCreateDoc
are needed to prepare for opening documents, they may be
AboutToOpenDocument .

I2A 161.

U Design Patterns

lity

once and allow subclasses

into a common superclass
ze”.]

emplate method that calls
ting extensions only at those
niversität Bern

Template Method — Applicabi

Applicability

The Template Method should be used:

❑ to implement the non-varying parts of an algorithm
to implement the parts that may vary

❑ to refactor common behaviour among subclasses
[This is a good example of “refactoring to generali

❑ to control subclass extensions. You can define a t
“hook” operations at specific points, thereby permit
points.

I2A 162.

U Design Patterns

ation1()

ation2()
niversität Bern

Template Method — Structure

Structure

AbstractClass
{ abstract }

+TemplateMethod()
#PrimitiveOperation1()
#PrimitiveOperation2()

...
PrimitiveOper
...
PrimitiveOper
...

ConcreteClass

#PrimitiveOperation1()
#PrimitiveOperation2()

I2A 163.

U Design Patterns

ts

crete subclasses define to

e skeleton of an algorithm.
tions as well as operations

ut subclass-specific steps of

plement the non-varying
niversität Bern

Template Method — Participan

Participants
❑ AbstractClass (e.g., Application)

☞ declares abstract primitive operations that con
implement steps of an algorithm

☞ defines a template method that implements th
The template method calls the primitive opera
defined in AbstractClass or elsewhere.

❑ ConcreteClass (e.g., MyApplication)
☞ implements the primitives operations to carry o

the algorithm

Collaborations
❑ ConcreteClass relies on AbstractClass to im

steps of the algorithm

I2A 164.

U Design Patterns

nces

g out common behaviour in

sses calls the operations of

ations:

tractClass)
ing objects)

ons are hooks (may be
rridden).
niversität Bern

Template Method — Conseque

Consequences

Template methods are a fundamental technique for factorin
class libraries.
They lead to an inverted control structure since a parent cla
a subclass and not the other way around.

Template methods tend to call one of several kinds of oper
❑ concrete operations (on client classes)
❑ concrete AbstractClass operations
❑ primitive operations (i.e., declared abstract in Abs

❑ factory methods (i.e., abstract operations for creat
❑ hook operations that subclasses can extend

It’s important for template methods to specify which operati
overridden) and which are abstract operations (must be ove

I2A 165.

U Design Patterns

nces ...

r by overriding the operation

. We can transform such an
over how subclasses extend

haviour of Operation :
niversität Bern

Template Method — Conseque

A subclass can extend a parent class operation’s behaviou
and calling the parent operation explicitly:

void DerivedClass::Operation() {
ParentClass::Operation();
// DerivedClass extended behaviour ...

}

Unfortunately it’s easy to forget to call the parent operation
operation into a template method to give the parent control
it:

void ParentClass::Operation() {
// ParentClass behaviour ...
HookOperation();

}

HookOperation does nothing in ParentClass :
void ParentClass::HookOperation() { }

Subclasses just override HookOperation to extend the be
void DerivedClass::HookOperation() {

// derived class extension ...
}

I2A 166.

U Design Patterns

tation

rations can be declared
 called by the template
n are declared pure virtual.
, so it can be declared non-

e the number of primitive
the algorithm of the template
the more tedious things get

s that should be overridden
 MacApp framework for
mes with “Do-”: e.g.,

s are “virtual”.
niversität Bern

Template Method — Implemen

Implementation

Three implementation issues are worth noting:
1. Using C++ access control. In C++, the primitive ope

protected members. This ensures that they are only
method. Primitive operations that must be overridde
The template method itself should not be overridden
virtual.

2. Minimizing primitive operations. You should minimiz
operations that a subclass must override to flesh out
method. The more operations that need overriding,
for clients.

3. Naming conventions. You can identify the operation
by adding a prefix to their names. For example, the
Macintosh applications prefixes primitive method na
“DoCreateDocument”, “DoRead”, and so on.

NB: “pure virtual” = “deferred” in Eiffel. In Eiffel all operation

I2A 167.

U Design Patterns

ode

ss can enforce an invariant
 screen. It enforces the
t becomes the “focus,” which
ts) to be set up properly.

nes two concrete operations,
 drawing state, respectively.
g.

e in subclasses

lay , and View subclasses

classes.
niversität Bern

Template Method — Sample C

Sample Code

This example, from NeXT’s AppKit, shows how a parent cla
for its subclasses. The class View supports drawing on the
invariant that its subclasses can draw into a view only after i
requires certain drawing state (for example, colours and fon

The Display template method sets up this state. View defi
SetFocus and ResetFocus , that set up and clean up the
The DoDisplay hook operation performs the actual drawin

void View::Display () { // template method
SetFocus(); // set up drawing state
DoDisplay(); // hook operation to overrid
ResetFocus(); // release drawing state

}

To maintain the invariant, the View ’s clients always call Disp
always override DoDisplay .
DoDisplay does nothing in View , and is overridden in sub

I2A 168.

U Design Patterns

s

nd in almost every abstract
ssion of template methods.

he Motivation example, the
ate method OpenDocument .
an algorithm. Strategies use
niversität Bern

Template Method — Known Use

Known Uses

Template methods are so fundamental that they can be fou
class. Wirfs-Brock et al. provide a good overview and discu

Related Patterns

Factory Methods are often called by template methods. In t
factory method DoCreateDocument is called by the templ
Strategy: Template methods use inheritance to vary part of
delegation to vary the entire algorithm.

I2A 169.

U Design Patterns

amma, et al.

ubclasses decide which class to
ntiation to subclasses.

otypical instance, and create new

ace clients expect. Adapter lets
ause of incompatible interfaces.

mically. Decorators provide a
nctionality.

ts so that when one object changes
automatically.

n, deferring some steps to
efine certain steps of an algorithm
niversität Bern

Sample Design Patterns
The following design patterns are typical of those found in G

Creational Patterns

Factory Method Define an interface for creating an object, but let s
instantiate. Factory Method lets a class defer insta

Prototype Specify the kinds of objects to create using a prot
objects by copying this prototype.

Structural Patterns

Adapter Convert the interface of a class into another interf
classes work together that couldn’t otherwise bec

Decorator Attach additional responsibilities to an object dyna
flexible alternative to subclassing for extending fu

Behavioural Patterns

Observer Define a one-to-many dependency between objec
state, all its dependents are notified and updated

Template Method
Define the skeleton of an algorithm in an operatio
subclasses. Template method lets subclasses red
with changing the algorithm’s structure.

I2A 170.

U Design Patterns

rns Solve?

hitecture
s software development

nced developers already

 technology

e-centric” viewpoints

midt, CACM Oct 1995
niversität Bern

What Problems do Design Patte

Patterns document design experience:

❑ Patterns enable widespread reuse of software arc
❑ Patterns improve communication within and acros

teams
❑ Patterns explicitly capture knowledge that experie

understand implicitly
❑ Useful patterns arise from practical experience
❑ Patterns help ease the transition to object-oriented
❑ Patterns facilitate training of new developers
❑ Patterns help to transcend “programming languag

Sch

I2A 171.

U Design Patterns

oftware?

ogram design?
se?

ram? Pascal?

 Lock”?
niversität Bern

Summary

You should know the answers to these questions:
❑ How can you recognize a design pattern?
❑ How does a design pattern differ from a piece of s
❑ What is the structure of a design pattern?
❑ How does object composition promote flexibility?
❑ Why is delegation more flexible than inheritance?
❑ When should you use Template Method in your pr
❑ How does Template Method promote software reu

Can you answer the following questions?
✎ How would you use Template Method in an Eiffel prog
✎ Is “Binary Search” a design pattern?
✎ “What about Window System”? “Dynamic Array”? “File
✎ Is it a good idea to invent new design patterns?

I2A 172.

U Project Management

esley, Fifth Edn., 1996.
onference 94 tutorial notes.
P 94 tutorial notes.
. Bowles, OOP 94 tutorial

ley, 1975
r Project Management, A.
niversität Bern

10. Project Management

Overview:
❑ Software Management
❑ Introducing Object-Oriented Technology
❑ Object Lessons

Sources:
❑ Software Engineering, I. Sommerville, Addison-W
❑ “Succeeding with Objects,” K. Rubin, CHOOSE C
❑ “Transition Management Strategies,” M. Lenzi, OO
❑ “Strategies for Managing O-O Cultural Change,” A

notes.
❑ Object Lessons, T. Love, SIGS Books, 1993

Recommended Reading:
❑ The Mythical Man-Month, F. Brooks, Addison-Wes
❑ Succeeding with Objects: Decision Frameworks fo

Goldberg and K. Rubin, Addison-Wesley, 1995

I2A 173.

U Project Management

?

niversität Bern

Software Management

❑ The Software Process:
☞ How is software developed?

❑ The Management Process:
☞ How is development organized and monitored

❑ Group Working:
☞ How are software teams structured?

❑ Planning and Scheduling:
☞ How are projects planned?

I2A 174.

U Project Management

. 8 members):

oless programming”)
e

lified: takes full responsibility
ion of system
ck of CP’s programmer and

ith project
tor, toolsmith (produces
tor (prepares doc. written by
velops test cases), and
cs by CP)
niversität Bern

Software Teams

❑ Programming teams should not be too large (max
☞ minimize communication overhead
☞ team quality standard can be developed
☞ members can work closely together
☞ programs are regarded as team property (“eg
☞ continuity can be maintained if members leav

❑ Chief programmer teams (see e.g. Brooks):
☞ chief programmer is experienced & highly qua

for design, programming, testing and installat
☞ skilled backup programmer (deputy) keeps tra

develops test cases to verify the work
☞ librarian manages all information associated w
☞ other experts may include: project administra

supporting software tools), documentation edi
CP & BP), language/system expert, tester (de
support programmers (code from detailed spe

I2A 175.

U Project Management

 of software process
port; requirements

s

edules must be monitored

 unanticipated problems
hly twice as long as coding
 documented (total time
niversität Bern

Planning and Scheduling

❑ Project Milestones:
☞ Milestones are reports delivered at end-points

activities: e.g., feasibility study → feasibility re
specification → req. spec. document; ...

☞ Should be scheduled roughly every 2-3 week

❑ Project Scheduling:
☞ Planning and estimation are iterative and sch

and revised during the project
☞ Schedules should account for anticipated and
☞ Requirements analysis and design takes roug
☞ Dependencies between project tasks must be

depends on longest path in activity graph)

I2A 176.

U Project Management

ects

cale
ppliers

cts

 are used to

ty, not fashion
n
library
niversität Bern

Ten Golden Rules for Using Obj

❑ Choose a small but real project without tight times
❑ Take care with your selection of both tools and su
❑ Invest in up-front staff training
❑ Establish an infrastructure to support all OO proje
❑ Use the mentor model for on-the-job training
❑ Spend longer thinking about your design than you
❑ Prototyping is essential at all stages of the project
❑ Choose your programming language for practicali
❑ Adopt a more democratic project team organizatio
❑ Put your strongest people in charge of your class

I2A 177.

U Project Management

n making in which decisions

y can help you to achieve

e improvement projects:
niversität Bern

Transitioning Projects

Why adopt OO Technology? How to introduce it?

Determine goals and objectives; set up a structure for decisio
are traceable back to these goals and objectives.
Set realistic expectations for how object-oriented technolog
your software development goals and objectives.

Assess your current situation and set up process or resourc
❑ Select product process model
❑ Set up project plan and control
❑ Select reuse process model
❑ Select team structure
❑ Select software development environment
❑ Set up training plan
❑ Set up software measurement program

I2A 178.

U Project Management

egration produce effec-

emove mistakes or make

t”

es or rates
s
stomer feedback
titions as early as possible

of the system
 key decisions
niversität Bern

Product Process Model

Incremental decision-making, development, testing and int
tive project results.

❑ Iterative development:
☞ Controlled reworking of parts of a system to r

improvements based on user feedback
☞ “We get things wrong before we get them righ

❑ Incremental development:
☞ Partition systems and develop at different tim
☞ Test and integrate as each partition complete
☞ Make progress in small steps to get earlier cu
☞ Obtain better quality testing by integrating par

❑ Prototyping:
☞ Creating a scaled-down model of some or all
☞ Benefit by “buying” information before making

I2A 179.

U Project Management

lication Maintenance
and Evolution

Specific
Application

ecific Application
Requirements
niversität Bern

Reuse-based Life Cycle

Component
Engineering

App

Framework Refinement
and Evolution

Application
Development

Component
Framework

Existing Applications
and Domain Knowledge

Sp

I2A 180.

U Project Management

artial plans are set,

s and cost of each task.

ompleted partitions affect

ns
niversität Bern

Project Plan and Control

Planning and execution are interleaved activities whereby p
carried out, and the results used to do further planning.

Identify required milestones, major system capabilities, task

Uncertainties in OOD:
❑ Iterative development: how many iterations?
❑ Incremental development: how will evaluation of c

work on yet-to-be completed partitions?
❑ Prototyping: used to resolve what questions?

Planning under uncertainty:
❑ State clearly what you know and don’t know
❑ State clearly what you will do to eliminate unknow
❑ Make sure that all early milestones can be met
❑ Plan to replan

I2A 181.

U Project Management

n.

of acquiring, distributing and

is not useful
support
heme, process
niversität Bern

Reuse Process Model

Reusable assets are strategic products of the organizatio

Set up a structure in which to plan and manage the process
maintaining reusable assets throughout the organization.

Acquiring Reusable Assets:
☞ Give focus: collecting everything is not useful
☞ Give direction: collecting redundant solutions
☞ Certification: documentation, testing, history,
☞ Classification: representation, classification sc

Distribution and Maintenance:
☞ Communicate availability
☞ Locate, retrieve, understand and use assets
☞ Update reusers when assets change

I2A 182.

U Project Management

nd the reusable assets

porarily join application

se within organization
niversität Bern

Expert Services Business Model

❑ Technology transfer through people who understa

❑ Virtual hallway through teams whose members tem
teams

❑ Corporate funding to emphasize importance of reu

I2A 183.

U Project Management
niversität Bern

Training Plan

❑ Training takes 80-200 class hours:
☞ Object basics
☞ Analysis and design
☞ Languages

❑ Learning takes 6-12 months:
☞ On-the-job pilot projects
☞ Mentoring is highly cost-effective
☞ “Mistakes” are an invaluable asset

I2A 184.

U Project Management
niversität Bern

Software Measurement Program

❑ Proper Program:
☞ plan for evaluation/measurement
☞ measures from the start
☞ team size, responsibility, experience level
☞ key classes + support classes

➪ methods/class
➪ LOC/methods (avg 5, largest 25)
➪ hierarchy nesting
➪ comments/method
➪ coupling/cohesion

❑ Number of classes, methods depends on:
☞ size of application
☞ data or process intensive application
☞ maturity of model
☞ available inventory of parts

I2A 185.

U Project Management
niversität Bern

First Project

Select the right pilot project application:

❑ Important but not time critical
❑ Add value to the business
❑ Be apolitical
❑ Have definable requirements
❑ 4-6 month duration
❑ Big enough

I2A 186.

U Project Management
niversität Bern

The Pilot Project Team

Select the right pilot project team:
❑ 5-6 of your best people
❑ Look for some good abstract thinkers
❑ Support learning, change and teamwork
❑ Train the team professionally
❑ Provide mentoring facilities
❑ Allocate time for re-work (get your models right!!!)
❑ Don’t impose anxiety and frustration
❑ Need to reward:

☞ reuse
☞ library additions
☞ low defect rate
☞ not lines of code!!!

I2A 187.

U Project Management

ypes, delivering applications

usable components

 implementation
niversität Bern

Staffing

Concentrate on skills, not job titles
❑ Business Analysts: End-user requirements, protot
❑ Model builders: design business frameworks
❑ Component builders: review/extend classes into re
❑ System Architects: facilitate reuse
❑ Coaches/Mentors: facilitate object introduction and

Project team sizing:
❑ first few pilots: < 6 staff
❑ first major project: <9 staff
❑ scope projects: < 15 staff

I2A 188.

U Project Management

rds “just in time” training and

b training is critical

rial; team sport; technology
niversität Bern

Costs and Risks

Biggest cost is education: technical and non-technical
☞ Trend away from “big-bang” training and towa

mentoring/internships
☞ Mind-set does not change overnight: on-the-jo

Dangers:
☞ Ignoring the cost of learning: conceptual mate

and infrastructure
☞ Training people at the wrong time
☞ Training the wrong people

I2A 189.

U Project Management

practices
niversität Bern

Problems and Challenges

Reusability problems:
❑ Some evidence of reuse (25%)
❑ No rewards for programmers
❑ Lack of standards
❑ Incompatible languages

Gains and Costs:
❑ Productivity gains of 3:1, but

☞ Higher initial training costs
☞ Immature tools

User needs:
❑ Industry wide standards
❑ Improved quality in basic tools
❑ CASE support for OO A&D
❑ Reusable class libraries
❑ Redesign of existing management structures and

I2A 190.

U Project Management

es, languages
niversität Bern

Challenges

❑ Lack of standards: interoperability, class hierarchi
❑ Tools & methods in flux
❑ Usefulness/availability of third party libraries

I2A 191.

U Project Management

ypes are not products
specified and reviewed with
earliest possible stage
to OO productivity (if ever)
 incentives and support
 to available skills & talents
uilding, acquiring ...)
review all code produced by
derstand all code produced

s are constrained to produce
tures of these organizations”
niversität Bern

Object Lessons

❑ Prototyping: plan to throw one (two?) away; protot
❑ Requirements and Design: both must be formally

the customer to correct misunderstandings at the
❑ Training: 6-12 months to train software engineers
❑ Reusability: high programmer resistance; requires
❑ Productivity: can vary by 50:1; match organization
❑ Tools: devote 20% of project staff to toolsmiths (b
❑ Leading vs. Managing: team leaders should read &

the team; managers should be able to read and un
by their organization

❑ Conway’s Law: “Organizations that design system
designs that are copies of the communication struc

I2A 192.

U Project Management

an about 8 members?
mental development?

the class library (instead of

ducing new methods?

er than implementation?
mples?)

hnology?
niversität Bern

Summary

You should know the answers to these questions:
❑ Why should programming teams have no more th
❑ What is the difference between iterative and incre
❑ What is the role of prototyping in a project?
❑ What is meant by “plan to throw one away”?
❑ Why would you put your best people in charge of

say, programming or design)?
❑ What is mentoring and why is it important for intro
❑ Why should managers need to understand code?

Can you answer the following questions?
✎ Why does requirements analysis and design take long
✎ What are good examples of reusable assets? (Bad exa
✎ What is a good example of a first project using OO tec
✎ What are good examples of Conway’s Law in action?

I2A 193.

U Computer-Aided Software Engineering

ngineering

esley, Fifth Edn., 1996.
niversität Bern

11. Computer-Aided Software E

Overview:
❑ What is CASE?

☞ CASE tool functionality vs. process support
❑ Tools, Workbenches and Environments

☞ Programming workbenches
☞ Analysis and design workbenches
☞ Testing workbenches

❑ Software Engineering Environments

Source:
❑ Software Engineering, I. Sommerville, Addison-W

I2A 194.

U Computer-Aided Software Engineering

d support for the software
chnology:

 specification, design,
e-spread)

nd process management

opted)
niversität Bern

What is CASE?

“Computer-aided Software Engineering” refers to automate
engineering process. There are mainly 3 levels of CASE te

1. Production-process support technology:
☞ includes support for process activities such as

implementation, testing etc. (mature, and wid

2. Process management technology:
☞ includes tools to support process modelling a

(few products available)

3. Meta-CASE technology:
☞ tools for generating CASE tools (not widely ad

I2A 195.

U Computer-Aided Software Engineering

port for the software process.

les

ord processors

s, change management systems

 interface generators

s, code generators

tatic analysers, dynamic analysers

arators

ditors

ram restructuring systems
niversität Bern

CASE Tool Functionality

CASE tools can be classified by functionality or by their sup

Tool type Examp

Management Tools PERT tools, estimation tools

Editing tools Text editors, diagram editors, w

Configuration management tools Version management system

Prototyping tools Very high-level languages, user

Method support tools Design editors, data dictionarie

Language processing tools Compilers, interpreters

Program analysis tools Cross-reference generators, s

Testing tools Test data generators, file comp

Debugging tools Interactive debugging systems

Documentation tools Page layout programs, image e

Re-engineering tools Cross-reference systems, prog

I2A 196.

U Computer-Aided Software Engineering

plementation
Verification

and Validation

✓ ✓

✓ ✓

✓ ✓

✓ ✓

✓

✓

✓ ✓

✓ ✓

✓ ✓

✓

✓

✓

niversität Bern

CASE Tool Process Support
Tools Specification Design Im

Planning and Estimation ✓ ✓

Text Editing ✓ ✓

Document Preparation ✓ ✓

Configuration Management ✓ ✓

Prototyping ✓

Diagram Editing ✓ ✓

Data Dictionary ✓ ✓

User Interface Management ✓

Method Support ✓ ✓

Language Processing

Program Analysis

Interactive Debugging

Program Transformation

Modelling and Simulation ✓

Test Data Generation

I2A 197.

U Computer-Aided Software Engineering

Good Excellent
niversität Bern

Quality of Tools Support

Poor Moderate

Requirements definition

Formal specification

Function-oriented design

Data modelling

Object-oriented design

Programming

Testing

Maintenance

Management

I2A 198.

U Computer-Aided Software Engineering

nments

Environments

Integrated
ironments

Process-centred
environments

Testing

Language specific
workbenches
niversität Bern

Tools, Workbenches and Enviro

CASE
Technology

Tools Workbenches

Editors Compilers File Comparators
env

Analysis and design Programming

Multi-method
workbenches

Single-method
workbenches

General-purpose
workbenches

I2A 199.

U Computer-Aided Software Engineering

man 1990):

stem platform

of other tools

odel and process engine
niversität Bern

Integrated CASE

CASE systems can be integrated at various levels:(Wasser
1. Platform integration

☞ Tools run on the same hardware/operating sy

2. Data integration
☞ Tools operate using a shared data model

3. Presentation integration
☞ Tools offer a common user interface

4. Control integration
☞ Tools may activate and control the operation

5. Process integration
☞ Tool usage is guided by an explicit process m

I2A 200.

U Computer-Aided Software Engineering

ment, current methods and
ion domain, security, and
training and maintenance)

es installation, process
ion, and documentation of

 to user resistance (CASE
mposing discipline),
management resistance
res increases risks for

nnot simply be scrapped,
 a transition period.
niversität Bern

The CASE life cycle

Procurement

Tailoring

Introduction

Operation

Evolution

Obsolescence

During CASE system procure
standards, platform, applicat
CASE system cost (including
must be considered.

CASE system tailoring involv
model definition, tool integrat
the installation.

Introduction can be risky due
systems restrict freedom by i
inadequate training, or even
(changing tools and procedu
individual projects).

An obsolete CASE system ca
but must be phased out over

I2A 201.

U Computer-Aided Software Engineering

Dynamic
analyser

cer

r

ser Program
report

Formatted
source listing

calls

ing workbench is a set of
ort program development.
niversität Bern

Programming Workbenches
Source
program

Structured
editor

Symbol
table

Syntax
tree

Language
compiler

Compiled
code

Program
libraries

Linker

Executable
program

Loader

Interactive
debugger

Executing
program

Cross-referen

Prettyprinte

Static analy

Execution
report

user

A programm
tools to supp

I2A 202.

U Computer-Aided Software Engineering

ssible faults and anomalies:

signment
niversität Bern

Static Program Analysers

Static program analysers scan the source code to detect po

☞ Unreachable code
☞ Unconditional branches into loops
☞ Undeclared variables
☞ Variables used before initialization
☞ Variables declared and never used
☞ Variables written twice with no intervening as
☞ Parameter type mismatches
☞ Parameter number mismatches
☞ Uncalled functions and procedures
☞ Non-usage of function results
☞ Possible array bound violations
☞ Misuse of pointers

I2A 203.

U Computer-Aided Software Engineering

reachable code ...

used variables ...

e, unused functions ...

 input
niversität Bern

Stages of Static Analysis

1. Control flow analysis:
☞ loops with multiple exit or entry points and un

2. Data use analysis:
☞ use of uninitialized variables, declared but un

3. Interface analysis:
☞ consistency of procedure declarations and us

4. Information flow analysis:
☞ identifies dependencies of output variables on

5. Path analysis:
☞ identifies all possible paths through program

I2A 204.

U Computer-Aided Software Engineering

programming workbench for
m and spreadsheet views on

Report
generatoret
niversität Bern

4GL Workbenches

A so-called “Fourth Generation Language” (4GL) is really a
producing interactive applications that provide users with for
an underlying (relational) database.

Database Management System

Form
designer

DB query
language Spreadshe

I2A 205.

U Computer-Aided Software Engineering

hes
ses of the software process,

, UML etc.), and may or may
D, Booch, etc.).

Report generation
facilities

Import/export
facilities

Query language
facilities
niversität Bern

Analysis and Design Workbenc
Analysis and design workbenches support the modelling pha
usually by means of a graphical notation (e.g., dataflow, ER
not support a specific analysis and design method (e.g., JS

Central information
repository

Structured
diagramming tools

Data
dictionary

Skeleton code
generator

Forms
creation tools

Design analysis and
checking tools

I2A 206.

U Computer-Aided Software Engineering

o workbenches are typically

Specification

Test
predictions

“Oracle”

s

File
comparator

Report
generator
niversität Bern

Testing Workbenches
Testing tends to be application and organization specific, s
developed in-house using standard tools.

Test results
report

Test data
generator

Test data

Test result

Test
manager

Source
code

Dynamic
analyser

Program being
tested

Execution
report Simulator

I2A 207.

U Computer-Aided Software Engineering

rallel system, human)

ults (e.g., UNIX “diff”)

added to program
d

niversität Bern

Testing Tools

Test Data Generators:
☞ automatic generation of test inputs
☞ output analysis by “oracle” (i.e., prototype, pa

File Comparators:
☞ automatically comparing old and new test res

Simulators:
☞ hardware — cost, availability, risk ...
☞ events — real-time, reproducibility, load ...

Dynamic Analysers:
☞ instrumentation statements are automatically
☞ execution profiles are generated and analyse

I2A 208.

U Computer-Aided Software Engineering

ols

ent of procedures and
ct.

nerate any version)
rallel ⇒ tree of versions)
niversität Bern

Configuration Management To

Configuration management is concerned with the developm
standards for managing an evolving software system produ

Tool examples:
Version Control — SCCS and RCS:

☞ check-out and check-in of components
☞ logging changes (who, where, when)
☞ changes converted to system “deltas” (can ge
☞ “freezing” of versions as releases (possibly pa

System Building — Make:
☞ dependency specification
☞ rules for generation of intermediate files
☞ automatic re-generation of out-of-date files

I2A 209.

U Computer-Aided Software Engineering

ents

ardware and software
ay to provide support
ification through to

erville, 5th edn., p. 548

 integrated configuration

e development activities

e Portable Common Tool
rd framework for SEEs ...
niversität Bern

Software Engineering Environm

A software engineering environment (SEE) is a set of h
tools which can act in combination in an integrated w
for the whole of the software process from initial spec
testing and system delivery.

— Somm

SEEs vs. CASEs:
❑ SEEs are fully integrated (all 5 levels)
❑ SEEs support development by teams and provide

management
❑ SEEs support workbenches for a range of softwar

Although there are presently no good examples of SEEs, th
Environment (PCTE) has been widely adopted as a standa

I2A 210.

U Computer-Aided Software Engineering

t?
configuration management?
ated?

lysis?

nt not as good as for design

ation?
 multi-method one?
niversität Bern

Summary

You should know the answers to these questions:
❑ What are the key features of a CASE environmen
❑ Which phases of the software lifecycle benefit from
❑ In what different ways can CASE system be integr
❑ What are the risks in adopting a CASE system?
❑ What kinds of errors can be detected by static ana
❑ What is an “oracle” and how is it used?

Can you answer the following questions?
✎ Why is the quality of tool support for project manageme

and programming?
✎ Where does SNiFF+ fit into the CASE system classific
✎ Is it better to use a single method A&D workbench or a
✎ Why is Meta-CASE technology not widely used?
✎ Why are there no good examples of SEEs in use?

I2A 211.

U 4th Generation Systems — Delphi

elphi
niversität Bern

12. 4th Generation Systems — D

Invited Lecture

Markus Lumpe

	7029 Informatik 2A
	Table of Contents
	1. Informatik 2A — Software Engineering
	Principle Texts:
	Course Overview
	Introduction
	What is Software Engineering?
	A naive view:
	Software Engineering is much more than just programming!

	Some Software Myths
	Why software isn’t like hardware:

	The Classical Software Lifecycle
	Problems with the Software Lifecycle
	The Software Crisis: Symptoms
	The Software Crisis: Causes
	Problems:
	Causes:

	Maintenance
	Programs vs. Products
	Software Quality
	Criteria for Modularity
	A design method supports modularity if:

	Rules to ensure Modularity
	We can ensure modularity if:

	Principles of Modularity
	The following principles guide modular software development:

	The Open-Closed Principle
	The Role of Modularity
	Component-Oriented Development
	Summary
	You should know the answers to these questions:
	Can you answer the following questions?

	2. The Software Lifecycle
	Sources:
	Phases of Software Development
	Requirements Collection
	Requirements Analysis
	Design
	Iterative and Incremental Development
	Not Programming
	Why use a Method?
	Requirements checking:
	Clearer concepts:
	Less design rework:
	Better refactoring of design work:
	Improved communications between developers:
	Less effort needed on maintenance:

	Functions, Data and Continuity
	Should we structure software architecture around functions or data?

	The Top-Down Functional Approach
	Traditional top-down design is based on stepwise refinement:
	Why it fails for long-term evolution:
	“Real systems have no top.”

	Why Use a Bottom-Up Data-driven Design?
	Compatibility:
	Reusability:
	Continuity:

	What is Object-Oriented Design?
	Encapsulation and Information Hiding
	Example: Circle Class
	The Promise of Object-Orientation
	Data abstraction:
	Compatibility:
	Decomposition:
	Reuse:
	Extensibility:
	Maintenance:

	Problems with Object-Orientation
	Focus on code:
	Difficult to find the objects:
	Function-oriented methods are not appropriate:
	Management changes:
	Transition is risky:

	Object-Oriented Methods
	First generation:
	Second generation:
	Third generation:

	Unified Modeling Language
	Summary
	You should know the answers to these questions:
	Can you answer the following questions?

	3. Modelling Objects and Classes
	Sources:
	Class Diagrams
	Visibility and Scope of Features
	UML Lines and Arrows
	Constraint
	Dependency
	Refinement
	Aggregation

	Parameterized Classes
	Utilities
	Objects
	Associations
	Aggregation and Navigability
	Association Classes
	Qualified Associations
	Inheritance
	What is Inheritance For?
	Inheritance supports:

	Multiple Inheritance
	Constraints
	Using the Notation
	During Analysis:
	During Design:

	Summary
	You should know the answers to these questions:
	Can you answer the following questions?

	4. Modelling Behaviour
	Sources:
	Use Case Diagrams
	Sequence Diagrams
	UML Message Flow Notation
	Filled solid arrowhead
	Stick arrowhead
	Half-stick arrowhead

	Collaboration Diagrams
	Message Labels
	Message labels:

	State Diagrams
	State Diagram Notation
	State Box with Regions
	Transitions and Operations
	Transitions:
	Operations:
	Activities:

	Composite States
	Sending Events between Objects
	Concurrent Substates
	Branching and Merging
	Entering concurrent states:
	Leaving concurrent states:

	History Indicator
	Creating and Destroying Objects
	Using the Notations
	During Analysis:
	During Design:

	Summary
	You should know the answers to these questions:
	Can you answer the following questions?

	5. Responsibility-Driven Design
	Overview:
	Source:
	What is Object-Oriented Design?
	Design Steps
	The Initial Exploration
	The Detailed Analysis

	Finding Classes
	Drawing Editor Requirements Specification
	Drawing Editor: noun phrases
	Class Selection Rationale (I)
	Model physical objects:
	Model conceptual entities:
	Choose one word for one concept:

	Class Selection Rationale (II)
	Be wary of adjectives:
	Be wary of sentences with missing or misleading subjects:
	Model categories:

	Class Selection Rationale (III)
	Model interfaces to the system:
	Model values of attributes, not attributes themselves:

	Candidate Classes
	Preliminary analysis yields the following candidates:

	Class Cards
	Use class cards to record candidate classes:

	Finding Abstract Classes
	Abstract classes factor out common behaviour shared by other classes

	Identifying and Naming Groups
	Recording Superclasses
	Record superclasses and subclasses on all class cards:

	Responsibilities
	What are responsibilities?

	Identifying Responsibilities
	Assigning Responsibilities
	Relationships Between Classes
	Additional responsibilities can be uncovered by examining relationships between classes, especially:
	Difficulties in assigning responsibilities suggest:

	Recording Responsibilities
	List responsibilities as succinctly as possible:

	Collaborations
	What are collaborations?

	Finding Collaborations
	For each responsibility:
	For each class:
	Check for these relationships:

	Recording Collaborations
	Collaborations exist only to fulfil responsibilities.
	Enter the class name of the server role next to client’s responsibility:

	Summary
	You should know the answers to these questions:
	Can you answer the following questions?

	6. Detailed Design
	Overview:
	Source:
	Sharing Responsibilities
	Multiple Inheritance
	Building Good Hierarchies
	Model a “kind-of” hierarchy:
	Factor common responsibilities as high as possible:
	Make sure that abstract classes do not inherit from concrete classes:
	Eliminate classes that do not add functionality:

	Building Kind-Of Hierarchies
	Refactoring Responsibilities
	Identifying Contracts
	Applying the Guidelines
	What are Subsystems?
	Subsystem Cards
	For each subsystem, record its name, its contracts, and, for each contract, the internal class or...

	Class Cards
	Simplifying Interactions
	Protocols
	Refining Responsibilities
	Select method names carefully:
	Make protocols as generally useful as possible:
	Define reasonable defaults:

	Specifying Your Design: Classes
	Specifying Classes

	Specifying Subsystems and Contracts
	Specifying Subsystems
	Formalizing Contracts

	Summary
	You should know the answers to these questions:
	Can you answer the following questions?

	7. Software Validation
	Overview:
	Source:
	Software Reliability, Failures and Faults
	Programming for Reliability
	Common Sources of Software Faults
	Fault Tolerance
	Approaches to Fault Tolerance
	Defensive Programming
	Verification and Validation
	The Testing Process
	Test Planning
	Testing Strategies
	Defect Testing
	Functional testing
	Equivalence Partitioning
	Test Cases and Test Data
	Structural Testing
	Binary Search Method
	Path Testing
	Statistical Testing
	Static Verification
	Summary
	You should know the answers to these questions:
	Can you answer the following questions?

	8. Design by Contract
	Overview:
	Source:
	Assertions
	An assertion is a property over values of program entities:

	Programming by Contract
	Checking Preconditions
	What happens if a precondition is not satisfied?

	Example — the STACK Class
	STACK Operations ...
	Class Invariants
	What are valid “stable” states of an instance of Stack?

	Using the Stack
	Using the STACK ...
	Class Correctness
	Side Effects in Functions
	Recommended style:

	Legitimate Side Effects
	Using Assertions
	Assertions have four principle applications:
	Correctness:
	Documentation:

	Exceptions
	Assertions can be checked and exceptions caught at run-time:

	Disciplined Exceptions
	Rescue and Retry
	Summary
	You should know the answers to these questions:
	Can you answer the following questions?

	9. Design Patterns
	Overview:
	Source:
	What are Design Patterns?
	What Design Patterns are not ...
	How are Design Patterns Specified?
	Common Design Techniques
	Improving Design Flexibility
	Example: Template Method
	Name
	Intent

	Template Method — Motivation
	Motivation

	Template Method — Motivation ...
	Template Method — Applicability
	Applicability

	Template Method — Structure
	Structure

	Template Method — Participants
	Participants
	Collaborations

	Template Method — Consequences
	Consequences

	Template Method — Consequences ...
	Template Method — Implementation
	Implementation

	Template Method — Sample Code
	Sample Code

	Template Method — Known Uses
	Known Uses
	 Related Patterns

	Sample Design Patterns
	What Problems do Design Patterns Solve?
	Summary
	You should know the answers to these questions:
	Can you answer the following questions?

	10. Project Management
	Overview:
	Sources:
	Recommended Reading:
	Software Management
	Software Teams
	Planning and Scheduling
	Ten Golden Rules for Using Objects
	Transitioning Projects
	Why adopt OO Technology? How to introduce it?

	Product Process Model
	Incremental decision-making, development, testing and integration produce effective project results.

	Reuse-based Life Cycle
	Project Plan and Control
	Planning and execution are interleaved activities whereby partial plans are set, carried out, and...
	Uncertainties in OOD:
	Planning under uncertainty:

	Reuse Process Model
	Reusable assets are strategic products of the organization.
	Acquiring Reusable Assets:
	Distribution and Maintenance:

	Expert Services Business Model
	Training Plan
	Software Measurement Program
	First Project
	Select the right pilot project application:

	The Pilot Project Team
	Select the right pilot project team:

	Staffing
	Concentrate on skills, not job titles
	Project team sizing:

	Costs and Risks
	Biggest cost is education: technical and non-technical
	Dangers:

	Problems and Challenges
	Reusability problems:
	Gains and Costs:
	User needs:

	Challenges
	Object Lessons
	Summary
	You should know the answers to these questions:
	Can you answer the following questions?

	11. Computer-Aided Software Engineering
	Overview:
	Source:
	What is CASE?
	CASE Tool Functionality
	CASE Tool Process Support
	Quality of Tools Support
	Tools, Workbenches and Environments
	Integrated CASE
	The CASE life cycle
	Programming Workbenches
	Static Program Analysers
	Stages of Static Analysis
	4GL Workbenches
	Analysis and Design Workbenches
	Testing Workbenches
	Testing Tools
	Test Data Generators:
	File Comparators:
	Simulators:
	Dynamic Analysers:

	Configuration Management Tools
	Version Control — SCCS and RCS:
	System Building — Make:

	Software Engineering Environments
	Summary
	You should know the answers to these questions:
	Can you answer the following questions?

	12. 4th Generation Systems — Delphi

