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Course Overview

1. 27.03 Introduction: Modularity and Software En
2. 03.04 The Software Lifecycle

10.04 Good Friday — no lecture
3. 17.04 Modelling Objects and Classes
4. 24.04 Modelling Behaviour
5. 01.05 Responsibility-Driven Design
6. 08.04 Detailed Design
7. 15.05 Software Validation
8. 22.05 Design by Contract
9. 29.05 Design Patterns
10. 05.06 Project Management
11. 12.06 Software Tools
12. 19.06 4GLs: Delphi — guest lecture

26.06 Final exam
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Introduction

❑ What is Software Engineering?

❑ Problems with the Classical Software Lifecycle
☞ chronically inaccurate cost estimates
☞ low productivity
☞ inflexible software products

❑ Modularity as the key to good Software Engineerin
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What is Software Engineering?

A naive view:

But ...
❑ Where did the specification come from?
❑ How do you know the specification correspond to 
❑ How did you decide how to structure your program
❑ How do you know the program actually meets the
❑ How do you know your program will always work c
❑ What do you do if the users’ needs change?
❑ How do you divide tasks up if you have more than

Software Engineering is much more than just programming

The establishment and use of sound engineering princ
economically software that is reliable and works efficie

Problem Specification coding
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Some Software Myths
Myth: “A general statement of objectives is enough to st
Reality: Poor up-front definition is the major cause of proje

Myth: “If we get behind schedule, we can add more prog
Reality: Adding more people typically slows a project down

“Myth: “The only deliverable for a successful project is th
Reality: Documentation of all aspects of software developm

maintainability.

Why software isn’t like hardware:
❑ “Software is developed or engineered, not manufa
❑ Software doesn’t ‘wear out’
❑ Most software is custom-built rather than being as



I2A 6.

U Informatik 2A — Software Engineering

esting

Maintenance
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The Classical Software Lifecycle

The classical software lifecycle
models the software development as
a step-by-step “waterfall” between the
various development phases.

Requirements
Collection

Analysis

Design

Coding

T
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 Pressman, SE, p. 26
niversität Bern

Problems with the Software Life

1. “Real projects rarely follow the sequential flow that t
always occurs and creates problems in the applicat

2. “It is often difficult for the customer to state all require
life cycle requires this and has difficulty accommoda
that exists at the beginning of many projects.”

3. “The customer must have patience. A working versi
be available until late in the project timespan. A majo
the working program is reviewed, can be disastrous

—
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The Software Crisis: Symptoms

The “software crisis” refers to the chronic inability of the sof
reliable, flexible software systems that meet the constantly
ever expanding customer base ...

1. “Hardware sophistication has outpaced our ability to
hardware’s potential.

2. Our ability to build new programs cannot keep pace
programs.

3. Our ability to maintain existing programs is threaten
inadequate resources.”

— 
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The Software Crisis: Causes

Problems:
1. “Schedule and cost estimates are often grossly inac
2. “The ‘productivity’ of software people hasn’t kept pa

services.”
3. “The quality of software is sometimes less than ade

Causes:
❑ Few reliable data on software process; poor predi

evaluate new tools, methods etc.
❑ Frequent customer dissatisfaction; inadequate for

requirements; poor communication between custo
❑ Software quality is often suspect; quantitative meas

assurance are only now emerging
❑ Existing software can be hard to maintain (“legacy

typically more expensive than initial development

— Pre
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Emergency
Fixes
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Data Formats
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Maintenance

Changes in U
Requirement

Documentation

Hardware
Changes Ro

De

Other

Efficiency
Improvements

4

9
6.2

5.5

4

3.4

Breakdown of
maintenance costs.
Source: Lientz 1979
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System

rogramming Sys-
tems Product

ces, System Integration)

— Brooks, MMM, p. 5
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Programs vs. Products

AA Program

A Programming
Product

A P

(Generalization, Testing,
Documentation, Maintenance)

(Interfa

× 3

× 3
× 9
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Software Quality

—

Correctness is the ability of software products to perform
defined by their specifications

Robustness is the ability of software systems to react ap
conditions

Extendibility is the ease of adapting software products to
Reusability is the ability of software elements to serve fo

different applications
Compatibility is the ease of combining software elements
Efficiency is the ability of a software system to place as

on hardware resources ...
Portability is the ease of transferring software products

software environments
Ease of use is the ease with which people of various ba

qualifications can learn to use software prod
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Criteria for Modularity
A design method supports modularity if:

— Me

Decomposability it helps in the task of decomposing a so
number of less complex subproblems

Composability it favours the production of software ele
freely combined to produce new system

Understandability it helps produce software in which a hum
each module without having to know th

Continuity a small change in the problem specifica
just one module (or a small number of 

Protection it yields architectures in which the effec
occurring at run time in a module will re
module (or at worst to a few neighbour
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stem should be compatible
odeling the problem domain
 as few others as possible
ld exchange as little

nicate, this must be obvious

ct a subset of the module’s
ublic interface to authors of
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Rules to ensure Modularity
We can ensure modularity if:

— Me

Direct Mapping the modular structure of the software sy
with the modular structure devised in m

Few interfaces every module should communicate with
Small interfaces
(weak coupling)

if two modules communicate, they shou
information as possible

Explicit interfaces whenever two modules A and B commu
from the text of A or B or both

Information hiding the designer of every module must sele
properties to be made available as the p
client modules
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tactic units in the
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should be available
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rough storage or

d closed
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Principles of Modularity
The following principles guide modular software developme

— Me

Linguistic Modular Units modules must correspond to syn
language used

Self Documentation the designer of a module should 
information about the module pa

Uniform Access all services offered by a module 
through a uniform notation (which
whether they are implemented th
computation)

Open-Closed modules should be both open an
Single Choice whenever a software system mu

alternatives, one and only one m
should know their exhaustive list
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The Open-Closed Principle

❑ “A module is open if it is still available for extensio

❑ “A module is closed if it is available for use by other
the module has been given a well-defined, stable 

— Me
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The Role of Modularity

“Software maintenance, which consumes a large pro
costs, is penalized by the difficulty of implementing ch
products, and by over-dependence of programs on th
the data they manipulate.”

“Modularity is the key to achieving the aims of reusab

“Effective project management requires support for la
open and closed. But classical approaches to design
not permit this.”

— M
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Component-Oriented Develop

Generic

Domain models Requirem

Prototyping tools Analysis

Design patterns, generic architectures Desig

Frameworks, 4GLs Coding

Automated testing tools ... Testing

Generic architectures ... Mainten
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Summary

You should know the answers to these questions:
❑ How does Software Engineering differ from progra
❑ What are the phases of the classical software lifec
❑ Why is the “waterfall” model unrealistic?
❑ Why is maintenance the most expensive phase of
❑ How does modularity enhance maintainability?

Can you answer the following questions?
✎ How does Software Engineering differ from Engineerin
✎ What is the difference between Analysis and Design?
✎ How should requirements be specified?
✎ How does object-oriented programming support the go
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2. The Software Lifecycle

❑ Phases of Software Development
❑ Analysis vs. Design
❑ Iterative and incremental development
❑ Software architecture driven by functions or data?
❑ Object-oriented design

Sources:
❑ Object-Oriented Development — The Fusion Meth

Prentice Hall, 1994.
❑ Object-Oriented Software Construction, 2d edn., B
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Phases of Software Developme

Requirements

Specification

Tested SubsyArchitecture

Code

Te

Analysis

Design

Implementation
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, they may be incomplete,

t place
 the project

nly when the “final system”
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Requirements Collection

User requirements are often expressed informally:
☞ features
☞ usage scenarios

Although requirements may be documented in written form
ambiguous, or even incorrect.

Requirements will change!
☞ inadequately captured or expressed in the firs
☞ user and business needs may change during

Validation is needed throughout the software lifecycle, not o
is delivered!

☞ build constant feedback into your project plan
☞ plan for change
☞ early prototyping [e.g., UI] can help clarify req
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 the system which describe:
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Requirements Analysis

Analysis is the process of specifying what a system will do.
clear understanding of what the system is about and what i
The result of analysis is a specification document.

An object-oriented analysis [cf. Fusion] results in models of
❑ classes of objects that exist in the system
❑ relationships between those classes
❑ operations that can be performed on the system
❑ allowable sequences of those operations

Does the requirements specification correspond to the user
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Design

Design is the process of specifying how the specified syste
from software components. The result is an architecture do

Object-oriented design [cf. Fusion] delivers models that des
❑ how system operations are implemented by intera
❑ how classes refer to one another and how they ar
❑ attributes of, and operations, on classes
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Iterative and Incremental Deve

Plan to iterate your analysis, design and implementation.
☞ You won’t get it right the first time, so integrat

frequently as possible.

The later in the lifecycle errors are discovered, the more ex

Plan to incrementally develop (i.e., prototype) the system.
☞ If possible, always have a running version of 

functionality is yet to be implemented.
☞ Integrate new functionality as soon as possib
☞ Validate incremental versions against user re
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Not Programming

Many critical aspects of software engineering in “real” proje
programming:

☞ project planning: deliverables, manpower allo
☞ cost estimation, monitoring
☞ documentation
☞ configuration management
☞ validation and testing
☞ ...
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Why use a Method?

Requirements checking:
❑ System modelling helps uncover omissions and a

Clearer concepts:
❑ Domain analysis models can be reused/adapted w

Less design rework:
❑ Analysis and design models allow alternatives to b

implementation starts
Better refactoring of design work:

❑ Analysis and design helps to decompose large sys
Improved communications between developers:

❑ Standard notations provide a common vocabulary
Less effort needed on maintenance:

❑ Analysis and design documents help maintainers u
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changing requirements.
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Functions, Data and Continuity

Should we structure software architecture around functions

Recall the criterion of continuity:
The quality of an architecture should not be measured only
requirements, but in terms of how robust it is in the face of 

☞ As a system evolves, the functions it performs
part. Successful systems will be asked to per
architecture based extensively on initial functi
smoothly as the requirements.

☞ Even in the face of changing requirements an
tend to deal with the same kinds of data.
(Payroll programs manipulate employee reco
window systems deal with windows, menus, i



I2A 29.

U The Software Lifecycle

oach

nt:

tokens

syntax tree

d unchanging
 appropriate

sability
niversität Bern

The Top-Down Functional Appr

Traditional top-down design is based on stepwise refineme
❑ Translate a C program to Motorola 68030 code

– Read the program and produce a sequence of 

– Parse the sequence of tokens into an abstract 

– Decorate the tree with semantic information

– Generate code from the decorated tree

Why it fails for long-term evolution:
☞ requirements are assumed to be complete an
☞ viewing a system as a single function is rarely
☞ data structure is easily neglected
☞ top-down development does not promote reu

“Real systems have no top.”
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nities for reuse can be
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Why Use a Bottom-Up Data-driv

Compatibility:
❑ Subsystems can be easily combined only if they a

structures.

Reusability:
❑ Component reuse is inherently bottom-up: opportu

recognized by understanding how data are used.

Continuity:
❑ Over time, data structures — viewed abstractly —

a system.
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 Meyer, OOSC, p. 116
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What is Object-Oriented Design

Object-oriented [design] is the method which bases t
software system on the objects it manipulates (rather
meant to ensure).

Ask not first what the system does: ask what it does i

—
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Private
presentation

ding distinguishes the
rm some action from the
 taken to do so. Objects
bilities through a public

hat functionality and
required by other objects
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Encapsulation and Information

Information

Operations

Pu

Re

Encapsulation is the bundling together
of related entities. Objects encapsulate
information and the operations that
may be performed with the information.

Information hi
ability to perfo
specific steps
reveal these a
interface.

First abstract related functionality and
information, and encapsulate them in
an object.

Then decide w
information is
and hide the r
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ORIENTED APPROACH

circle_data

surface

move

perimeter
niversität Bern

Example: Circle Class

CONVENTIONAL APPROACH

OBJECT 

perimeter_circle

circle_datamove_circle

surface_circle
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The Promise of Object-Orientat

Data abstraction:
❑ Clients are protected from variations in implement

Compatibility:
❑ Software components can be defined with plug-co

Decomposition:
❑ Groups of related classes form natural units for so

Reuse:
❑ Classes are a convenient way to bundle methods a

Extensibility:
❑ software frameworks can be extended by inheritan
❑ classes form loosely coupled structures that are e

Maintenance:
❑ classes and inheritance limit the effects of change
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Problems with Object-Orientati

Focus on code:
❑ too much emphasis on language; too little on deve

Difficult to find the objects:
❑ software objects are not “real” objects; many ways

Function-oriented methods are not appropriate:
❑ focus on specific needs rather than domain model

Management changes:
❑ different roles are required; more emphasis on reu

Transition is risky:
❑ object-orientation requires a major “paradigm shift
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Object-Oriented Methods

First generation:
❑ Adaptation of existing notations (ER diagrams, sta

☞ Booch, OMT, Shlaer and Mellor, ...
❑ Specialized design techniques:

☞ CRC cards; responsibility-driven design; desi
Second generation:

❑ Fusion:
☞ Booch + OMT + CRC + formal methods

Third generation:
❑ Unified Modeling Language:

☞ uniform notation: Booch + OMT + Use Cases
☞ complete lifecycle support (to be defined!)

Object-oriented methods are still maturing. Notations are co
☞ transition is still risky
☞ few methods deal seriously with software reu
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Unified Modeling Language

The “Unified Modeling Language” (UML) is an attempt to un
object-oriented analysis and design methods. The modellin
bound to become an industry standard for documenting ob

❑ Class Diagram:  specifies classes, objects and the
☞ visualizes logical structure of system

❑ Use Case Diagram:  shows external actors and us
❑ Sequence Diagram:  lists the message exchange

☞ visualizes temporal message ordering
❑ Collaboration Diagram:  shows messages excha

☞ visualizes object relationships
❑ State Diagram:  specifies the possible internal sta

and others ...
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Summary

You should know the answers to these questions:
❑ Why is feedback needed between software develo
❑ What is the difference between analysis and desig
❑ Why plan to iterate? Why develop incrementally?
❑ Why should requirements and analysis models be
❑ Why should design and implementation models be
❑ Why is programming only a small part of the cost 
❑ What are the key advantages and disadvantages 
❑ Why is a common notation useful for specifying an

Can you answer the following questions?
✎ Why do requirements change?
✎ How can you validate that an analysis model captures 
✎ When does analysis stop and design start?
✎ When can implementation start?
✎ What kinds of projects call for object-oriented methods
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3. Modelling Objects and Class

❑ Classes, attributes and operations
❑ Visibility of Features
❑ Parameterized Classes
❑ Objects
❑ Associations
❑ Inheritance
❑ Constraints
❑ Packages

Sources:
❑ Unified Modeling Language — Notation Guide, ve

Corporation, 1997.
❑ Object-Oriented Development — The Fusion Meth

Prentice Hall, 1994.
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lapsed class view:

Polygon

ith Package name:

Windows::Window
niversität Bern

Class Diagrams

“Class diagrams show generic descriptions of possible syst
show particular instantiations of systems and their behaviou

Attributes and operations are also collectively called feature

Class name, attributes and operations:

Polygon

centre: Point
vertices: List of Point
borderColour: Colour
fillColour: Colour

display (on: Surface)
rotate (angle: Integer)
erase ( )
destroy ( )
select (p: Point): Boolean

A col

Class w

Z
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e { property string }
efaultValue, ...) : resultType

 }

User-defined properties
(e.g., abstract, readonly,
owner = “Pingu”)

underlined attributes
have class scope
italic attributes are
abstract
niversität Bern

Visibility and Scope of Features

Attributes are specified as: name: type = initialValu
Operations are specified as: name (param: type = d

«user interface»
Window

{ abstract

+size: Area = (100, 100)
#visibility: Boolean = false
+default-size: Rectangle
#maximum-size: Rectangle
-xptr: XWindow*

+display ( )
+hide ( )
+create ( )
-attachXWindow (xwin: Xwindow*)

Stereotype
(what “kind” of class is it?)

+ = “public”
# = “protected”
− = “private”
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Association
e.g., «uses»

Navigable association
e.g., part-of

“Generalization”
i.e., specialization (!)
e.g., class/superclass,
concrete/abstract class

“Composition”
i.e., containment
niversität Bern

UML Lines and Arrows
Constraint
(usually annotated)

Dependency
e.g., «requires»,
«imports» ...

Refinement
e.g., class/template,
class/interface

Aggregation
i.e., “consists of”
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picted with their parameters

me: Type ).

dashed arrow.

 the supplier!

>
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Parameterized Classes

Parameterized (aka “template” or “generic”) classes are de
shown in a dashed box.
Parameters may be either types (just a name) or values (na

Instantiation of a class from a template can be shown by a 

NB: All forms of arrows (directed arcs) go from the client to

FArray

FArray<Point, 3> FArray<Address, 4

T, n: Integer
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t is represented as a class
.

ass scope, so it is redundant

esented as box with the top

urn sin (angle + pi/2.0);
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Utilities

A “utility” is a grouping of global attributes and operations. I
with the stereotype «utility». Utilities may be parameterized

NB: A utiliy’s attributes are already interpreted as being in cl
to underline them.

A “note” is a text comment associated with a view, and repr
right corner folded over.

«utility»
MathPack

randomSeed : long = 0
pi : long = 3.14158265358979

sin (angle : double) : double
cos (angle : double) : double
random ( ) : double

ret
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underlined in one
ompartment.

: P olygon

olygon
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Objects

Objects are shown as rectangles with their name and type 
compartment, and attribute values, optionally, in a second c

At least one of the name or the type must be present.

triangle1: P olygon

centre = (0, 0)
vertices = ((0,0), (4,0), (4,3))
borderColour = black
fillColour = white

triangle1

: P
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ects of different classes.

points

gu”].boss

rson

r.
ss

sband

wife

Married-to

0..1

0..1

0..1

boss
orker *

Manages
niversität Bern

Associations
Associations represent structural relationships between obj

☞ usually binary (but may be ternary etc.)
☞ optional name and direction
☞ (unique) role names and multiplicities at end-
☞ can traverse using navigation expressions

e.g., Sandoz.employee[name = “Pin

Company

name
address

Pe

name
AHV N
addre

**
Works-for

Employs

employeeemployer

hu

w
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whole dependency:

 implementation.

te from the whole to the part.

red }, or as { sorted }.

Point

phicsBundle

r
re
ity
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Aggregation and Navigability

Aggregation is denoted by a diamond and indicates a part-

A hollow diamond indicates a reference; a solid diamond an

If the link terminates with an arrowhead, then one can naviga

If the multiplicity of a role is > 1, it may be marked as { orde

Polygon
1 Contains

{ ordered }

3..*

Gra

colou
textu
dens

1

1



I2A 48.

U Modelling Objects and Classes

and its name can be left out.

Workstation
niversität Bern

Association Classes

An association may be an instance of an association class:

In many cases the association class only stores attributes, 

Authorization

priority
privileges

start session

User * *
Authorized on

*

Directory

home directory1
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ify the object at the other end

ible cardinalities of the set of
 a qualifier value.”

atalogue

t number

Part

1

0..1
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Qualified Associations

A qualified association uses a special qualifier value to ident
of the association:

“The multiplicity attached to the target role denotes the poss
target objects selected by the pairing of a source object and

NB: Qualifiers are part of the association, not the class

Airline

frequent flyer #

Person

*

0..1

C

par
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line

ol points

y ( )
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Inheritance
A subclass inherits the features of its superclasses:

Figure1dim
{ abstract }

colour

display ( )

Line

endpoints

display ( )

Arc

radius
start angle
arc angle

display ( )

Sp

contr

displa
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ement or combination.
binations of existing classes.

 a specialization hierarchy

res or behaviour

ormly treated by clients
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What is Inheritance For?

New software often builds on old software by imitation, refin
Similarly, classes may be extensions, specializations or com

Inheritance supports:
Conceptual hierarchy:

❑ conceptually related classes can be organized into
☞ people, employees, managers
☞ geometric objects ...

Software reuse:
❑ related classes may share interfaces, data structu

☞ geometric objects ...
Polymorphism:

❑ objects of distinct, but related classes may be unif
☞ array of geometric objects
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d unless they have been
 are considered replicated.
ce conflicts.

le

Boat
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Multiple Inheritance

A class may inherit features from multiple superclasses:

In Eiffel, features inherited from common parents are share
renamed along one of the inheritance paths. Such features
Other languages may adopt other rules to resolve inheritan

Vehicle

LandVehicle WaterVehic

AmphibiousVehicleCar
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r associations.
ines between elements
ed with a “/”

hin a note:

Person

birthdate
/age

{ age = currentDate - birthdate }

Company

ployer }
niversität Bern

Constraints

Constraints are restrictions on values attached to classes o
☞ Binary constraints may be shown as dashed l
☞ Derived values and associations can be mark

Constraints are specified between braces, either free or wit

Person Committee

Member-of

Chair-of

subset

* *

*1

Person

employee

* 0..1

employerworker

boss

*

0..1

{ Person.employer = Person.boss.em
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 document. For example, a
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Using the Notation

During Analysis:
❑ Capture classes visible to users
❑ Document attributes and responsibilities
❑ Identify associations and collaborations
❑ Identify conceptual hierarchies
❑ Capture all visible features

During Design:
❑ Specify contracts and operations
❑ Decompose complex objects
❑ Factor out common interfaces and functionalities

The graphical notation is only part of the analysis or design
data dictionary cataloguing and describing all names of clas
must be maintained throughout the project.
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Summary

You should know the answers to these questions:
❑ How do you represent classes, objects and assoc
❑ How do you specify the visibility of attributes and o
❑ How is a utility different from a class? How is it sim
❑ Why do we need both named associations and ro
❑ Why is inheritance useful in analysis? In design?
❑ How are constraints specified?

Can you answer the following questions?
✎ Why would you want a feature to have class scope?
✎ Why don’t you need to show operations when depictin
✎ Why aren’t associations drawn with arrowheads?
✎ How is aggregation different from any other kind of ass
✎ How are associations realized in an implementation lan
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4. Modelling Behaviour

❑ Use Case Diagrams
❑ Sequence Diagrams
❑ Collaboration Diagrams
❑ State Diagrams

Sources:
❑ Unified Modeling Language — Notation Guide, ve

Corporation, 1997.
❑ Object-Oriented Development — The Fusion Meth

Prentice Hall, 1994.
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Clerk

Loan Officer

Clear
checks

pare
ments

nter
action

an
cation

udit
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Use Case Diagrams

IdentifyCustomer

Auditor

Bank

Pre
state

Cou
trans

Lo
appli

A

A use case is a generic
description of an entire
transaction involving several
actors.
A use case diagram presents
a set of use cases (ellipses)
and the external actors that
interact with the system.
Dependencies and
associations between use
cases may be indicated.

A scenario is an instance of a
use case showing a typical
example of its execution.
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r

phone rings

answer phone

ringing stops

hone Line Callee
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Sequence Diagrams

caller lifts receive

dial tone begins

dial (1)

dial tone ends

dial (2)

dial (2)

ringing tone

tone stops

tim
e

Caller PA sequence diagram depicts a
scenario by showing the
interactions among a set of
objects in temporal order.

Objects (not classes!) are shown
as vertical bars.
Events or message dispatches
are shown as horizontal (or
slanted) arrows from the send to
the receiver.

Recall that a scenario describes a
typical example of a use case, so
conditionality is not expressed!
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rol flow

 asynchronous)

 objects within a
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UML Message Flow Notation

Filled solid arrowhead
procedure call or other nested cont

Stick arrowhead
flat, sequential control flow (usually

Half-stick arrowhead
asynchronous control flow between
procedural sequence
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ges between objects:

{ temp }

1.1.3.1: add(self)

contents { new }

: Window

: Line { new }

window
niversität Bern

Collaboration Diagrams

Collaboration diagrams depict scenarios as flows of messa

redisplay( )

1: displayPositions(window)

window

1.1*[i=1..n]: drawSegment(i)

«self» 1.1.2: create(r0, r1)
1.1.3: display(window)

i-1 i

{ temp }

1.1.1a: r0 := position( ) 1.1.1b: r1 := position( )

: Controller

wire : Wire

left : Bead right : Bead

wire

«local» line

«parameter» 
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strings showing the direction
quence.

7.1]”)

 “3.1” and follows “3.1.1”)
a” and “1.2b”)
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Message Labels

Messages from one object to another are labelled with text
of message flow and information indicating the message se

Message labels:
1. Prior messages from other threads (e.g. “[A1.3, B6.

☞ only need with concurrent flow of control
2. Dot-separated list of sequencing elements:

☞ sequencing integer (e.g., “3.1.2” is invoked by
☞ letter indicating concurrent threads (e.g., “1.2
☞ iteration indicator (e.g., “1.1*[i=1..n]”)
☞ conditional indicator (e.g., “2.3 [#items = 0]”)

3. Return value binding (e.g., “status :=”)
4. Message name
5. Argument list
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Dialing

Ringing
do / play ringing tone

Connecting

h

15 sec.

dial digit(n)
[incomplete]

connected

dial digit(n) [valid]
/connect

busy
niversität Bern

State Diagrams

Idle

Pinned

Talking

callee
answers

callee
hangs up

Timeout
do / play message

DialTone
do / play dial tone

Invalid
do / play message

Busy
do / play busy tone

Active

callee answers / enable speec

dial digit(n)

15 sec.

dial digit(n) [invalid]

caller
hangs up
/ disconnect

lift receiver
/ get dial tone
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cts
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only for that state)
d ongoing operations
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State Diagram Notation

A State Diagram describes the temporal evolution of an ob
response to interactions with other objects inside or outside

An event is a one-way (asynchronous) communication from
❑ atomic (non-interruptible)
❑ includes events from hardware and real-world obje

e.g., message receipt, input event, elapsed time, .
❑ notation: eventName(parameter: type, ...)
❑ may cause object to make a transition between st

A state is a period of time during which an object is waiting
❑ depicted as rounded box with (up to) three section

☞ name — optional
☞ state variables — name: type = value  (valid 
☞ triggered operations — internal transitions an

❑ may be nested
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name

rnal operations

into this state, and the
out of this state.
tions with no change of

ed.
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State Box with Regions

Typing Password

entry / set echo invisible
exit / set echo normal
character / handle character
help / display help

inte

The entry event occurs whenever a transition is made
exit  operation is triggered when a transition is made 
The help  and character events cause internal transi
state, so the entry and exit operations are not perform



I2A 65.

U Modelling Behaviour
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nge state

ions of a state
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tates

seudo-event do
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Transitions and Operations

Transitions:
❑ A response to an external event received by an ob
❑ May invoke an operation, and cause object to cha
❑ May send an event to an external object
❑ Transition syntax (each part is optional):

event (arguments)
[condition]
^target.sendEvent (arguments)
/ operation (arguments)

❑ External transitions label arcs between states;
internal transitions are part of the triggered operat

Operations:
❑ Operations invoked by transitions are atomic actio
❑ Entry and exit operations can be associated with s

Activities:
❑ Ongoing operations while object is in a given state
❑ Modelled as internal transitions labelled with the p
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level views.
ns” may be used in the high-

ts and “bulls-eyes”:

Connecting
um)

[number.isValid( )]

^ dialedNumber(num)
niversität Bern

Composite States
Composite states may depicted either as high-level or low-
To indicate the presence of internal states, “stubbed transitio
level view:

Starting and termination substates are shown as black spo

Idle Dialinglift receiver dialedNumber(n

Start
do / play dial tone

Partial Dial
entry / number.append(n)

Dialing

number : String = “”

digit(n)

digit(n)
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ts

R mode

Power button

On

On

toggle Power
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Sending Events between Objec

TV mode VC

VCR button

TV button
Power button

Remote Control

Off

toggle Power

toggle Power
VCR

Off

toggle Power

toggle Power
Television

toggle Power
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one

Failed

Passed
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Concurrent Substates

Lab1

Term Project

Final Test

Lab2
lab done lab d

project done

pass

Incomplete

fail

Taking Class
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 of the substates is entered

all of the substates.
substates to terminate.

ses a “synchronization bar”:

Cleanup
niversität Bern

Branching and Merging

Entering concurrent states:
Entering a state with concurrent substates means that each
concurrently (one logical thread per substate).

Leaving concurrent states:
A labelled transition out of any of the substates terminates
An unlabelled transition out of the overall state waits for all 

An alternative notation for explicit branching and merging u

A2A1

B2B1

Startup
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t composite state should be
ved state, a transition should

C
rupt

e
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History Indicator

A “history indicator” can be used to indicate that the curren
remembered upon an external transition. To return to the sa
point explicitly to the history icon:

A2

A1

H

A
inter

resum
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g the start and terminal

nly
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Creating and Destroying Objec

Creation and destruction of objects can be depicted by usin
symbols as top-level states:

Writeable
lock

ReadOunlock

modify

destroy

create

CreatedFile
File
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Using the Notations

The diagrams introduced here complement class and objec

During Analysis:
❑ Use case, sequence and collaboration diagrams d

scenarios during requirements specification

During Design:
❑ Sequence and collaboration diagrams can be use

implementation scenarios or refine use case scen
❑ State diagrams document internal behaviour of cla

against the specified use cases
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Summary

You should know the answers to these questions:
❑ What is the purpose of a use case diagram?
❑ Why do scenarios depict objects but not classes?
❑ How can timing constraints be expressed in scena
❑ How do you specify and interpret message labels 
❑ How do you use nested state diagrams to model o
❑ What is the difference between “external” and “inte
❑ How can you model interaction between state diag

Can you answer the following questions?
✎ Can a sequence diagram always be translated to an co
✎ Or vice versa?
✎ Why are arrows depicted with the message labels rath
✎ When should you use concurrent substates?
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5. Responsibility-Driven Design

Overview:
❑ What is Object-Oriented Design?
❑ Finding Classes
❑ Identifying Responsibilities
❑ Finding Collaborations

Source:
❑ Designing Object-Oriented Software, R. Wirfs-Bro

Prentice Hall, 1990.
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What is Object-Oriented Design

“Object-oriented [analysis and] design is the process
requirements are turned into a detailed specification 
specification includes a complete description of the re
responsibilities of objects and how they communicate

❑ The result of the design process is not a final prod
☞ design decisions may be revisited, even after
☞ design is not linear but iterative

❑ The design process is not algorithmic:
☞ a design method provides guidelines, not fixe
☞ “a good sense of style often helps produce cle

designs that make a lot of sense from the eng

✔ Responsibility-driven design is an (analysis and) design
combination with various methods and notations.
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Design Steps

The Initial Exploration
1. Find the classes in your system
2. Determine the responsibilities of each class

☞ What are the client-server contracts?
3. Determine how objects collaborate with each other 

☞ What are the client-server roles?

The Detailed Analysis
1. Factor common responsibilities to build class hierar
2. Streamline collaborations between objects

☞ Is message traffic heavy in parts of the system
☞ Are there classes that collaborate with everyb
☞ Are there classes that collaborate with nobod
☞ Are there groups of classes that can be seen 

3. Turn class responsibilities into fully specified signat
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 the system being designed,

idates, and nonsense
es are:

es
es it mean within the system
 separate class?
rephrase in active voice
g of inheritance
terface, program interfaces

Point vs. Centre
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Finding Classes

Start with requirements specification: what are the goals of
its expected inputs and desired responses.

1. Look for noun phrases:
☞ separate into obvious classes, uncertain cand

2. Refine to a list of candidate classes. Some guidelin
☞ Model physical objects — e.g. disks, printers
☞ Model conceptual entities — e.g. windows, fil
☞ Choose one word for one concept — what do
☞ Be wary of adjectives — does it really signal a
☞ Be wary of missing or misleading subjects — 
☞ Model categories of classes — delay modellin
☞ Model interfaces to the system — e.g., user in
☞ Model attribute values, not attributes — e.g., 
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l points. Dragging a control point changes the
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g rectangle. Dragging control points changes
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Drawing Editor Requirements Sp
The drawing editor is an interactive graphics editor. With it, users
can create and edit drawings composed of lines, rectangles,
ellipses and text.

Tools control the mode of operation of the editor. Exactly one tool is
active at any given time.

Two kinds of tools exist: the selection tool and creation tools. When
the selection tool is active, existing drawing elements can be
selected with the cursor. One or more drawing elements can be
selected and manipulated; if several drawing elements are
selected, they can be manipulated as if they were a single element.
Elements that have been selected in this way are referred to as the
current selection. The current selection is indicated visually by
displaying the control points for the element. Clicking on and
dragging a control point modifies the element with which the control
point is associated.

When a creation tool is active, the current selection is empty. The
cursor changes in different ways according to the specific creation
tool, and the user can create an element of the selected kind. After
the element is created, the selection tool is made active and the
newly created element becomes the current selection.

The text creation tool changes the shape of the cursor to that of an
I-beam. The position of the first character of text is determined by

where the user clicks
longer active when the
element. The control
of the region within wh
points changes this re
creation of lines, rect
of the cursor to that o
to be created when th
when the mouse butt
start point and the sto

The line creation tool
point. These are the c
changes the end poin

The rectangle creatio
points are diagonally
corners are the contro
associated corner.

The ellipse creation t
rectangle defined by 
radius is one half the
one half the height of
corners of the boundin
the associated corne
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user clicks the mouse button outside the text
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Drawing Editor: noun phrases
The drawing editor is an interactive graphics editor. With it, users
can create and edit drawings composed of lines, rectangles,
ellipses and text.

Tools control the mode of operation of the editor. Exactly one tool is
active at any given time.

Two kinds of tools exist: the selection tool and creation tools. When
the selection tool is active, existing drawing elements can be
selected with the cursor. One or more drawing elements can be
selected and manipulated; if several drawing elements are
selected, they can be manipulated as if they were a single element.
Elements that have been selected in this way are referred to as the
current selection. The current selection is indicated visually by
displaying the control points for the element. Clicking on and
dragging a control point modifies the element with which the control
point is associated.

When a creation tool is active, the current selection is empty. The
cursor changes in different ways according to the specific creation
tool, and the user can create an element of the selected kind. After
the element is created, the selection tool is made active and the
newly created element becomes the current selection.

The text creation tool changes the shape of the cursor to that of an
I-beam. The position of the first character of text is determined by

where the user clicks
longer active when the
element. The control
of the region within wh
points changes this re
creation of lines, rect
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Class Selection Rationale (I)

Model physical objects:
☞ mouse button [event or attribute]

Model conceptual entities:
☞ ellipse, line, rectangle
☞ Drawing, Drawing Element
☞ Tool, Creation Tool, Ellipse Creation Tool, Lin

Rectangle Creation Tool, Selection Tool, Tex
☞ text, Character
☞ Current Selection

Choose one word for one concept:
☞ Drawing Editor ⇒ editor, interactive graphics 
☞ Drawing Element ⇒ element
☞ Text Element ⇒ text
☞ Ellipse Element, Line Element, Rectangle Ele

⇒ ellipse, line, rectangle
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Class Selection Rationale (II)

Be wary of adjectives:
☞ Ellipse Creation Tool, Line Creation Tool, Rec

Selection Tool, Text Creation Tool — all have
☞ bounding rectangle, rectangle, region ⇒ Rect

— common meaning, but different from Recta
☞ Point ⇒ end point, start point, stop point
☞ Control Point — more than just a coordinate
☞ corner ⇒ associated corner, diagonally oppos

— no new behaviour
Be wary of sentences with missing or misleading subjects:

☞ “The current selection is indicated visually by
for the element.” — by what? Assume Drawin

Model categories:
☞ Tool, Creation Tool
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Class Selection Rationale (III)

Model interfaces to the system:
☞ user — don’t need to model user explicitly
☞ cursor — cursor motion handled by operating

Model values of attributes, not attributes themselves:
☞ height of the rectangle, width of the rectangle
☞ major radius, minor radius
☞ position — of first text character; probably Po
☞ mode of operation — attribute of Drawing Edi
☞ shape of the cursor, I-beam, crosshair — attri
☞ corner — attribute of Rectangle
☞ time — an implicit attribute of the system
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Candidate Classes

Preliminary analysis yields the following candidates:

Expect the list to evolve as design progresses.

Character
Control Point
Creation Tool
Current Selection
Drawing
Drawing Editor
Drawing Element
Ellipse Creation Tool
Ellipse Element
Line Creation Tool

Line Elem
Point
Rectangl
Rectangl
Rectangl
Selection
Text Crea
Text Elem
Tool
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Class Cards

Use class cards to record candidate classes:

Write a short description of the purpose of the class on the 
☞ compact, easy to manipulate, easy to modify 
☞ easy to arrange, reorganize
☞ easy to retrieve discarded classes

Class:  Drawing
superclasses

subclasses

responsibilities ... collab
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Finding Abstract Classes

Abstract classes factor out common behaviour shared by o
They are abstract because they need not be completely im

☞ group related classes with common attributes
☞ introduce abstract superclasses that represen
☞ “categories” are good candidates for abstract

✔ Warning:  beware of premature classification; your hiera

Tool

Creation
Tool

Selection
Tool

Rectangle
Tool

Ellipse
Tool

Line
Tool
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Identifying and Naming Group

If you have trouble naming a group:
☞ enumerate common attributes to derive the n
☞ divide into more clearly defined subcategories

Attributes of abstract classes should serve to distinguish su
☞ Physical vs. conceptual
☞ Active vs. passive
☞ Temporary vs. permanent
☞ Generic vs. specific
☞ Shared vs. unshared

Classes may be missing because the specification is incom
☞ editing ⇒ undoing ⇒ need for a Cut Buffer



I2A 87.

U Responsibility-Driven Design

Text Tool
niversität Bern

Recording Superclasses

Record superclasses and subclasses on all class cards:

Class:  Creation Tool
Tool
Ellipse Tool, Line Tool, Rectangle Tool, 
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Responsibilities

What are responsibilities?
☞ the knowledge an object maintains and provid
☞ the actions it can perform

Responsibilities represent the public services an object ma
not the way in which those services may be implemented

☞ specify what an object does, not how it does i
☞ don’t describe the interface yet, only conceptu
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Identifying Responsibilities

❑ Study the requirements specification:
☞ highlight verbs and determine which represen
☞ perform a walk-though of the system

➪ exploring as many scenarios as possible
➪ identify actions resulting from input to the

❑ Study the candidate classes:
☞ class names ⇒ roles ⇒ responsibilities
☞ recorded purposes on class cards ⇒ respons
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Assigning Responsibilities

❑ Evenly distribute system intelligence
☞ avoid procedural centralization of responsibili
☞ keep responsibilities close to objects rather th

❑ State responsibilities as generally as possible
☞ “draw yourself” vs. “draw a line/rectangle etc.

❑ Keep behaviour together with any related informat
☞ principle of encapsulation

❑ Keep information about one thing in one place
☞ if multiple objects need access to the same in

(i) a new object may be introduced to manage
(ii) one object may be an obvious candidate, o
(iii) the multiple objects may need to be collap

❑ Share responsibilities among related objects
☞ break down complex responsibilities
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Relationships Between Classes

Additional responsibilities can be uncovered by examining r
classes, especially:

❑ The “Is-Kind-Of” Relationship:
☞ classes sharing a common attribute often sha
☞ common superclasses suggest common resp

e.g., to create a new Drawing Element, a Cre
1. accept user input imple
2. determine location to place it gene
3. instantiate the element imple

❑ The “Is-Analogous-To” Relationship:
☞ similarities between classes suggest as-yet-u

❑ The “Is-Part-Of” Relationship:
☞ distinguish (don’t share) responsibilities of pa

Difficulties in assigning responsibilities suggest:
☞ missing classes in design, or
☞ free choice between multiple classes
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Recording Responsibilities

List responsibilities as succinctly as possible:

Too many responsibilities to fit onto one card suggests ove
☞ Check if responsibilities really belong in a sup

or if they can be distributed to cooperating cla
Having more classes leads to a more flexible and maintaina
classes can later be consolidated.

Class:  Drawing

Know which elements it contains



I2A 93.

U Responsibility-Driven Design

d to fulfil responsibilities
and, ultimately, subsystems
s
assigned responsibilities
niversität Bern

Collaborations

What are collaborations?

❑ collaborations are client requests to servers neede
❑ collaborations reveal control and information flow 
❑ collaborations can uncover missing responsibilitie
❑ analysis of communication patterns can reveal mis
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Finding Collaborations

For each responsibility:
1. Can the class fulfil the responsibility by itself?
2. If not, what does it need, and from what other class

For each class:
1. What does this class know?
2. What other classes need its information or results? 
3. Classes that do not interact with others should be d

Check for these relationships:
❑ The “Is-Part-Of” Relationship
❑ The “Has-Knowledge-Of” Relationship
❑ The “Depends-Upon” Relationship
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Recording Collaborations

Collaborations exist only to fulfil responsibilities.
Enter the class name of the server role next to client’s resp

Note each collaboration required for a responsibility.
Include also collaborations between peers.
Validate your preliminary design with another walk-through

Class:  Drawing

Know which elements it contains
Maintain ordering between elements Draw
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Summary

You should know the answers to these questions:
❑ What criteria can you use to identify potential clas
❑ How can class cards help during analysis and des
❑ How can you identify abstract classes?
❑ What are class responsibilities, and how can you i
❑ How can identification of responsibilities help in id
❑ What are collaborations, and how do they relate to

Can you answer the following questions?
✎ When should an attribute be promoted to a class?
✎ Why is it useful to organize classes into a hierarchy?
✎ How can you tell if you have captured all the responsib
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6. Detailed Design

Overview:
❑ Structuring Inheritance Hierarchies
❑ Identifying Subsystems
❑ Specifying Class Protocols (Interfaces)

Source:
❑ Designing Object-Oriented Software, R. Wirfs-Bro

Prentice Hall, 1990
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Sharing Responsibilities

Concrete classes may be both instantiated and inherited fro
Abstract classes may only be inherited from. Note on class

Venn Diagrams can be used to visualize shared responsibi

(Warning: not part of Unified Notation!)

Tool
{ abstract }

Creation T
{ abs

Selection
Tool

Tool CreatSelection Tool
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Decide whether a
class will be
instantiated to
determine if it is
abstract or concrete.

DateMagnitude

tring
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Multiple Inheritance

Array

Matrix String Date

Ordered Collection
{ abstract }

Indexable Collection
{ abstract }

Magnitude
{ abstract }

Array

Ordered
Collection

Matrix

S
Indexable
Collection

Responsibilities of
subclasses are
larger than those of
superclasses.

Intersections
represent common
superclasses.
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Building Good Hierarchies

Model a “kind-of” hierarchy:
☞ Subclasses should support all inherited respo

Factor common responsibilities as high as possible:
☞ Classes that share common responsibilities sh

abstract superclass; introduce any that are m

Make sure that abstract classes do not inherit from concret
☞ Eliminate by introducing common abstract su

should support responsibilities in an impleme

Eliminate classes that do not add functionality:
☞ Classes should either add new responsibilitie

implementing inherited ones
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Incorrect
Subclass/Superclass

Relationships
Subclasses should assume all
superclass responsibilities
niversität Bern

Building Kind-Of Hierarchies

A B

C

E

G

E G

D

Correctly Formed Subclass
Responsibilities

Revised Inheritance
Relationships

Introduce abstract
superclasses to encapsulate
common responsibilities

{ abstract }

E G



I2A 102.

U Detailed Design

ing Element
{ abstract }

Rectangle
Element

Group
Element

Ellipse
Element

ar Element
{ abstract }
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Refactoring Responsibilities

Drawing Element
{ abstract }

Rectangle
Element

Group
Element

Text
Element

Line
Element

Ellipse
Element

Lines, Ellipses and Rectangles
are responsible for keeping
track of the width and colour of
the lines they are drawn with.
This suggests a common
superclass.

Draw

Text
Element

Line
Element

Line
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Identifying Contracts

A contract defines a set of requests that a client can make 
cohesive set of closely-related responsibilities.

Contracts introduce another level of abstraction, and help t

❑ Group responsibilities used by the same clients:
☞ conversely, separate clients suggest separate

❑ Maximize the cohesiveness of classes:
☞ unrelated contracts belong in subclasses

❑ Minimize the number of contracts:
☞ unify responsibilities and move as high in the 
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Applying the Guidelines

1. Start by defining contracts at the top of your hierarc

2. Introduce new contracts only for subclasses that add
☞ do new responsibilities represent new functio

specialize inherited functionality?

3. For each class card, assign responsibilities to an ap
☞ briefly describe each contract and assign a un
☞ number responsibilities according to the asso

4. For each collaboration on each class card, determin
☞ model collaborations as associations in class

(AKA “collaboration graphs”)
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What are Subsystems?

Subsystems are groups of classes that collaborate to supp

❑ Subsystems simplify design by raising abstraction
☞ subsystems group logically related responsib

related collaborations

❑ Don’t confuse with superclasses:
☞ subsystems group related responsibilities rath

common responsibilities

Find subsystems by looking for strongly-coupled classes:
☞ list the collaborations and identify strong inter
☞ identify and highly frequently-travelled commu

Subsystems, like classes, also support contracts. Identify th
outside the subsystem to determine the subsystem contrac
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Subsystem Cards

For each subsystem, record its name, its contracts, and, fo
ternal class or subsystem that supports it:

Subsystem:  Drawing Subsystem
Access a drawing Drawin
Modify part of a drawing Drawin
Display a drawing Drawin
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Class Cards

For each collaboration from an outside client, change the c
collaboration with the subsystem:

Record on the subsystem card the delegation to the agent 

Class:  File  (

Document File, Graphics File, Text File
Knows its contents
Print its contents Printing Su
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Simplifying Interactions

Complex collaborations lead to unmaintainable systems.
Exploit subsystems to simplify overall structure.

❑ Minimize the number of collaborations a class has
☞ centralizing communications into a subsystem

❑ Minimize the number of classes to which a subsys
☞ centralized subsystem interfaces reduce com

❑ Minimize the number of different contracts suppor
☞ group contracts that require access to commo

Checking Your Design:
☞ model collaborations as associations in class
☞ update class/subsystem cards and class hiera
☞ walk through scenarios:

➪ Has coupling been reduced? Are collabo
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Protocols

A protocol is a set of signatures (i.e., method names, param
to which a class will respond.

☞ Generally, protocols are specified for public re
☞ Protocols for private responsibilities should be

or implemented by subclasses

1. Construct protocols for each class
2. Write a design specification for each class and subs
3. Write a design specification for each contract
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Refining Responsibilities

Select method names carefully:
☞ Use a single name for each conceptual opera
☞ Associate a single conceptual operation with 
☞ Common responsibilities should be explicit in

Make protocols as generally useful as possible:
☞ The more general it is, the more messages th

Define reasonable defaults:
1. Define the most general message with all possible p
2. Provide reasonable default values where appropria
3. Define specialized messages that rely on the defau
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Specifying Your Design: Classe

Specifying Classes
1. Class name; abstract or concrete
2. Immediate superclasses and subclasses
3. Location in inheritance hierarchies and class diagra
4. Purpose and intended use
5. Contracts supported (as server); inherited contracts
6. For each contract, list responsibilities, method signa

any collaborations
7. List private responsibilities; if specified further, also 
8. Note: implementation considerations, possible algo

constraints, error conditions etc.
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Specifying Subsystems and Co

Specifying Subsystems
1. Subsystem name; list all encapsulated classes and
2. Purpose of the subsystem
3. Contracts supported
4. For each contract, list the responsible class or subs

Formalizing Contracts
1. Contract name and number
2. Server(s)
3. Clients
4. A description of the contract
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Summary

You should know the answers to these questions:
❑ How can you identify abstract classes?
❑ What criteria can you use to design a good class h
❑ How can refactoring responsibilities help to improv
❑ What is the difference between contracts and resp
❑ What are subsystems (“categories”) and how can 
❑ What is the difference between protocols and con

Can you answer the following questions?
✎ What use is multiple inheritance during design if your p

not support it?
✎ Why should you try to minimize coupling and maximize
✎ How would you use Responsibility Driven design togeth

Language?
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7. Software Validation

Overview:
❑ Reliability, Failures and Faults
❑ Fault Tolerance
❑ Software Testing: Black box and white box testing
❑ Static Verification

Source:
❑ Software Engineering, I. Sommerville, Addison-W
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Software Reliability, Failures an

The reliability of a software system is a measure of how we
expected by its users, expressed in terms of software failur

A software failure is an execution event where the software b
undesirable way.
A software fault is an erroneous portion of a software syste
to occur if it is run in a particular state, or with particular inp

Failure class Description

Transient Occurs only with certain inputs

Permanent Occurs with all inputs

Recoverable System can recover without ope

Unrecoverable Operator intervention is needed 

Non-corrupting Failure does not corrupt data

Corrupting Failure corrupts system data
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Programming for Reliability

Fault avoidance:
☞ development techniques to reduce the numbe

Fault tolerance:
☞ developing programs that will operate despite

Fault avoidance depends on:
1. A precise system specification (preferably formal)
2. Software design based on information hiding and en
3. Extensive validation reviews during the developmen
4. An organizational quality philosophy to drive the sof
5. Planned system testing to expose faults and assess
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Common Sources of Software F
Several features of programming languages and systems a
in software systems:

❑ Goto statements and other unstructured programm
programs hard to understand, reason about and m
☞ Use structured programming constructs

❑ Floating point numbers are inherently imprecise a
comparisons.
☞ Fixed point numbers are safer for exact comp

❑ Pointers are dangerous because of aliasing, and t
☞ Pointer usage should be confined to abstract 

❑ Parallelism is dangerous because timing difference
behaviour in hard-to-predict ways.
☞ Minimize inter-process dependencies

❑ Recursion can lead to convoluted logic, and may e
☞ Use recursion in a disciplined way, within a co

❑ Interrupts force transfer of control independent of t
cause a critical operation to be terminated.
☞ Minimize the use of interrupts; prefer disciplin
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Fault Tolerance

A fault-tolerant system must carry out four activities:

1. Failure detection:
☞ detect that the system has reached a particul

system failure
2. Damage assessment:

☞ detect which parts of the system state have b
3. Fault recovery:

☞ restore the state to a known, “safe” state (eithe
state, or backing up to a previous, safe state)

4. Fault repair:
☞ modify the system so the fault does not recur
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Approaches to Fault Tolerance

N-version Programming:
Multiple versions of the software system are imple
by different teams. The final system:

– runs all the versions in parallel,

– compares their results using a voting system, a

– rejects inconsistent outputs. (At least three vers

Recovery Blocks:
A finer-grained approach in which a program unit c
for failure, and alternative code to back up and try

– alternative are executed in sequence, not in pa

– the failure test is independent (not by voting)
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Defensive Programming

Failure detection:
❑ Use the type system as much as possible to ensur

get assigned invalid values.
❑ Use assertions to detect failures and raise exceptio

all invariants for abstract data types, and pre- and p
as assertions. Use exception handlers to recover 

❑ Use damage assessment procedures, where appr
of the state have been affected, before attempting

Fault recovery:
❑ Backward recovery: backup to a previous, consist
❑ Forward recovery: make use of redundant informa

consistent state from corrupted data
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Verification and Validation

Validation:
❑ Are we building the right product?

Verification:
❑ Are we building the product right?

Static techniques include program inspection, analysis and
Dynamic techniques include statistical testing and defect te

Requirements
specification

High-level
design

Formal
specifications

De
de

Prototype

Static
verification
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The Testing Process

1. Unit testing:
☞ Individual (stand-alone) components are teste

correctly.
2. Module testing:

☞ A collection of related components (a module
3. Sub-system testing:

☞ The phase tests a set of modules integrated a
most common problems in large systems aris
mismatches, this phase focuses on testing th

4. System testing:
☞ This phase concentrates on (i) detecting error

interactions between sub-systems, and (ii) va
systems fulfils functional and non-functional r

5. Acceptance testing (alpha/beta testing):
☞ The system is tested with real rather than sim

Testing is iterative! Regression testing is performed when d
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Test Planning

The preparation of the test plan should begin when the sys
formulated, and the plan should be developed in detail as t

The plan should be revised regularly, and tests should be r
wherever iteration occurs in the software process.

Acceptance
test plan

System
integration
test plan

Requirements
specification

Sub-system
integration
test plan

System
specification

System
design

System
integration test

Acceptance
testService
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Testing Strategies
Top-down Testing:

☞ Start with sub-systems, where modules are re
☞ Similarly test modules, representing functions
☞ Coding and testing are carried out as a single
☞ Design errors can be detected early on, avoid
☞ Always have a running (if limited) system
☞ BUT: may be impractical for stubs to simulate

Bottom-up Testing:
☞ Start by testing units and modules
☞ Test drivers must be written to exercise lower
☞ Works well for reusable components to be sh
☞ BUT: pure bottom-up testing will not uncover 

the software process

Typically a combination of top-down and bottom-up testing 
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Defect Testing

Tests are designed to reveal the presence of defects in the
Testing should, in principle, be exhaustive, but in practice c

Test data are inputs devised to test the system.
Test cases are input/output specifications for a particular fu

Petschenik (1985) proposes:
1. “Testing a system’s capabilities is more important th

☞ Choose test cases that will identify situations
doing their job.

2. “Testing old capabilities is more important than test
☞ Always perform regression tests when the sys

3. “Testing typical situations is more important than te
☞ If resources are limited, focus on typical usag
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Functional testing

Functional testing treats a component as a “black box” who
determined only by studying its inputs and outputs.

Test cases are derived from the external specification of th

Ie
Input set

Oe

Output set

Component

O
p
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Equivalence Partitioning
Test cases can be derived from a component’s interface, b
component will behave similarly for all members of an equi

Example:
feature {ANY}

find ( key: INTEGER) : BOOLEAN is ...
feature {NONE}

elements : ARRAY [INTEGER] -- sorted

Check input partitions:
❑ Do the inputs fulfil the pre-conditions?
❑ Is the key in the array?

☞ leads to (at least) 2x2 equivalence classes

Check boundary conditions:
❑ Is the array of length 1?
❑ Is the key at the start or end of the array?

☞ leads to further subdivisions (not all combinat
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ed = { }

ted = { 33, 20, 17, 18 }

rted = { 17 }

ed = { 17 }

rted = { 17, 18, 20, 33 }

rted = { 17, 18, 20, 33 }

rted = { 17, 18, 20, 33 }

rted = { 17, 18, 20, 33 }
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Test Cases and Test Data

Generate test data that cover all meaningful equivalence pa

Test Cases

Array length 0 key = 17, sort

Array not sorted key = 17, sor

Array size 1, key in array key = 17, so

Array size 1, key not in array key = 0, sort

Array size > 1, key is first element key = 17, so

Array size > 1, key is last element key = 33, so

Array size > 1, key is in middle key = 20, so

Array size > 1, key not in array key = 50, so

...
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Structural Testing

Structural testing treats a component as a “white box” or “gla
be examined to generate test cases.

Path testing is a white-box strategy which exercises every i
through a component.

Component
code

Test
data

Test
outputs

Derive test data

Run tests

Produce output
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Binary Search Method
find ( v: INTEGER) : BOOLEAN is

-- find v in sorted array elements (an instance variable) by binary se
require not_empty: not (empty) -- i.e., not(upper<lower)
local bottom, top, mid : INTEGER
do

from bottom := lower -- lower index of elements array
top := upper -- upper index of elements array
last_index := (bottom + top) // 2
Result := v.is_equal (elements.item (last_index))

invariant bottom <= top
variant top - bottom
until Result or else (bottom > top)
loop

mid := (bottom + top) // 2
if (v.is_equal (elements.item (mid))) then

Result := True
last_index := mid

else
if (elements.item (mid) < v) then

bottom := mid + 1
else

top := mid - 1
end  -- if

end  -- if
end  -- loop

ensure (Result = True) implies v.is_equal (elements.item (last_index
end  -- find
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Path Testing
A set of independent paths of a flow graph must cover all th
e.g., {1,2,3,4,12,13}, {1,2,3,5,6,11,2,12,13}, {1,2,3,5,7,8,10,
{1,2,3,5,7,9,10,11,2,12,13}

Test cases should be chosen to cover all independent path

1

2

3
4

6
5

7
8

13

10
11

12

until Result or e

if (bottom = top) if (v.is_equal

if (

if (Result)
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Statistical Testing

The objective of statistical testing is to determine the reliabilit
to discover software faults. Reliability may be expressed as

❑ probability of failure on demand,
❑ rate of failure occurrence,
❑ mean time to failure,
❑ availability

Tests are designed to reflect the frequency of actual user in
tests, an estimate of the operational reliability of the system

1. Determine usage patterns of the system (classes of
2. Select or generate test data corresponding to these
3. Apply the test cases, recording execution time to fa
4. Based on a statistically significant number of test ru



I2A 133.

U Software Validation

ns checked?” ...

s

rogram meets specification
s terminate, etc.

i) formal specification, (iii)
g

niversität Bern

Static Verification

Program Inspections:
❑ Small team systematically checks program code
❑ Inspection checklist often drives this activity

☞ e.g., “Are all invariants, pre- and post-conditio

Static Program Analysers:
❑ Complements compiler to check for common error

☞ e.g., variable use before initialization

Mathematically-based Verification:
❑ Use mathematical reasoning to demonstrate that p

☞ e.g., that invariants are not violated, that loop

Cleanroom Software Development:
❑ Systematically use (i) incremental development, (i

mathematical verification, and (iv) statistical testin
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Summary

You should know the answers to these questions:
❑ What is the difference between a failure and a fau
❑ What kinds of failure classes are important?
❑ How can a software system be made fault-toleran
❑ How do assertions help to make software more re
❑ What are the goals of software validation and veri
❑ What is the difference between test cases and tes
❑ How can you develop test cases for your program
❑ What is the goal of path testing?

Can you answer the following questions?
✎ When would you combine top-down testing with bottom
✎ When would you combine black-box testing with white
✎ Is it acceptable to deliver a system that is not 100% re
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8. Design by Contract

Overview:
❑ Assertions
❑ Programming by Contract: Pre- and Post-condition
❑ Class invariants and correctness
❑ Functions and side-effects
❑ Disciplined Exceptions

Source:
❑ Object-Oriented Software Construction, Second E

1997.
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Assertions
An assertion is a property over values of program entities:

Assertions are used to specify conditions which should hold
program execution.

class STACK [T]

feature { ANY }
numElements : INTEGER
empty : BOOLEAN is do ... end
full : BOOLEAN is do ... end

pop is
require

not empty
do ...
ensure

not full
numElements = old numElements - 1

end

top : T is
require

not empty
do ... end

push ( x : T) is
require

not full
do ...
ensure

not em
top = x
numEle

end

end -- class STAC



I2A 137.

U Design by Contract

a class establishes the

onditions under which a call

t defines the conditions that

n I, in return,
t is satisfied.”

Benefits

a new stack top on return (top
ments  increased by 1)

t cases in which the stack is
niversität Bern

Programming by Contract

By associating require  pre and ensure  post to a routine r, 
contract with its clients:

☞ The precondition binds clients: it defines the c
to the routine is legitimate.

☞ The postcondition, in return, binds the class: i
must be ensured by the routine on return.

“If you promise to call r with pre satisfied, the
promise to deliver a final state in which pos

Obligations

Client
Programmer

Only callpush(x)  on a
non-full stack

Getx added as
yieldsx , numEle

Module
Implementor

Make sure thatx is pushed
on top of the stack

No need to trea
already full



I2A 138.

U Design by Contract

object is under no obligation

he responsibility of clients

dlessly complicates code.
itions as a guard against

ntainability and clear
niversität Bern

Checking Preconditions

sqrt (x : REAL) : REAL is
-- square root of x
require

x >= 0
do ...

What happens if a precondition is not satisfied?

If the client fails to satisfy the precondition to a contract, the
to provide anything in return

❑ Objects should not check preconditions; they are t
that make requests

❑ Redundant checking is not only inefficient but nee
❑ In practice, however, objects must check precond

programming errors!

✔ Rigorous use of preconditions promotes readability, mai
assignment of responsibilities.
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Example — the STACK Class
class STACK [T]

creation { ANY }
make

feature { NONE }

contents : ARRAY [T]

maxSize : INTEGER

make( n :INTEGER) is

do
if n>0
then

maxSize := n
!!contents.make(1,n)

end
end

feature { ANY}

numElements : INTEGER

empty : BOOLEAN is
do

Result := (numElements = 0)
end

full : BOOLEAN is
do

Result := (numElements = maxSize)
end
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STACK Operations ...
pop is

require
not empty

do
numElements := numElements - 1

ensure
not full
numElements = old numElements - 1

end

top : T is
require

not empty
do

Result := contents @ numElements
end

push ( x : T) is
require

not full
do

numElements := numElements + 1
contents.put (x, numElements)

ensure
not empty
top = x
numElements = old numElements + 1

end

end -- class STACK
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Class Invariants

What are valid “stable” states of an instance of Stack?

class STACK [T]
...

feature { NONE }

contents : ARRAY [T]
maxSize : INTEGER
...

feature { ANY}
numElements : INTEGER
...

end -- class STACK

Need:
invariant

0 <= numElements; numElements <= maxSize
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Using the Stack

class MAIN

creation {ANY}
make

feature {NONE}

myStack : STACK [INTEGER]

make is
do

io.putstring ("Making stack%N")
!!myStack.make(5)
trypush(10)
trypush(20)
trypop
trypop
trypop -- empty stack
trypush(30)
trypush(40)
trypush(50)
trypush(60)
trypush(70)
trypush(80) -- full stack

end

trypop is
-- try to pop a valu
-- if an error occur
-- print a message

local
top : INTEGER
error : BOOLEA

do
if not error
then

io.putstring
top := myS
io.putint(top
io.putstring
myStack.po
printsize

end

rescue
io.putstring ("ER
error := True
retry

end



I2A 143.

U Design by Contract

ntinue
niversität Bern

Using the STACK ...
trypush ( n : INTEGER) is

-- try to push a value onto myStack; if an error occurs, print a message and co
local

error : BOOLEAN -- initially False
do

if not error
then

io.putstring ("Pushing ")
io.putint(n)
io.putstring ("%N")
myStack.push(n)
printsize

end
rescue

io.putstring ("ERROR: stack is full%N")
error := True
retry

end

printsize is
local

n : INTEGER
do

n := myStack.numElements
io.putstring ("Stack has ")
io.putint(n)
io.putstring (" elements%N")

end

end -- class MAIN
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Class Correctness

Invariant rule:  An assertion I is a correct class invariant fo
☞ the create procedure of C, when applied to ar

precondition in a state where attributes have 
state satisfying I; and

☞ every exported routine of the class, when appl
satisfying both I and the routine’s precondition

Note:
❑ Every class is considered to have a create proced
❑ The state of an object is defined by its attributes.
❑ The precondition of a routine may involve initial st
❑ The postcondition may only involve the initial and 

and the Result.
❑ The invariant may only involve the state.
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Side Effects in Functions

Recommended style:
Functions should be free of visible side-effects, so they can
(for example, in assertions).
Procedures should implement commands, and should not r

Objects as Machines

Queries monitor state
without altering it.

Commands alter the
state of an object.
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Legitimate Side Effects

Functions should not modify the visible (abstract) state of a
convenient for them to change the hidden (concrete) repres

☞ caching computed queries
☞ switching between alternative representations
☞ garbage collection ...
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Using Assertions

Assertions have four principle applications:
❑ Help in writing correct software
❑ Documentation aid
❑ Debugging tool
❑ Support for software fault tolerance

Correctness:
☞ specifying pre- and post-conditions and invari

developing correct software in the first place
☞ assertions can be used to prove software cor

Documentation:
☞ concise and unambiguous specification of con
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Exceptions

Assertions can be checked and exceptions caught at run-ti
☞ debugging
☞ failure recovery
☞ fault tolerance

Three levels of checking:
1. no checking
2. checking pre-conditions only (the default)
3. checking all assertions
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Disciplined Exceptions

An exception is the occurrence of an abnormal condition du
software element.
A failure is the inability of a software element to satisfy its p
An error is the presence in the software of some element n

When an assertion is violated at run-time, an exception is r
There are only two reasonable courses of action:

1. clean up the environment and report failure to the c
2. attempt to change the conditions that led to failure a

It is not acceptable to return control to the client without spe

✔ If it is not possible to run your program without raising an
abusing the exception-handling mechanism!
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Rescue and Retry

A routine execution fails (in Eiffel) if an exception occurs du
routine terminates by executing its rescue code.

Rescue rule:  The rescue clause must be correct with resp
and (except for a branch ending in a retry ) to the postcond
invariant.

routine is
require  ...
local ...
do

body
ensure  ...
rescue

rescue clause
if ...
then retry
end

end
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Summary

You should know the answers to these questions:
❑ What is an assertion?
❑ How are contracts are formalized by pre- and pos
❑ What is a class invariant and how can it be specifi
❑ What are assertions useful for?
❑ How can exceptions be used to improve program 
❑ What situations may cause an exception to be rais
❑ What kind of activity should you perform in a rescu

Can you answer the following questions?
✎ How would you apply disciplined exceptions in C++?
✎ How about in a language with no exception handling m
✎ How do you know if you have correctly specified the cl
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9. Design Patterns

Overview:
❑ What are (not) Design Patterns?
❑ How are they specified?
❑ Common OO Design Techniques
❑ Example: the Template Method pattern
❑ What problems do Design Patterns solve?

Source:
❑ Erich Gamma, Richard Helm, Ralph Johnson and

Design Patterns — Elements of Reusable Object-
Addison Wesley, Reading, MA, 1995

❑ Douglas C. Schmidt, “Experience Using Design Pa
Object-Oriented Communication Software,” Comm
38, No. 10, Oct. 1995

❑ Christopher Alexander, et al., A Pattern Language
Construction, Oxford University Press, 1977
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What are Design Patterns?

Patterns were first systematically catalogued in the domain

“Each pattern describes a problem which occurs over
environment, and then describes the core of the solu
such a way that you can use this solution a million tim
doing it the same way twice.”

Alexander, et a

Software design patterns document standard solutions to c

“Each design pattern systematically names, explains
important and recurring design in object-oriented sys
capture design experience in a form that people can 

Gamma,
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What Design Patterns are not ...

Algorithms are not design patterns
☞ algorithms solve computation problems, not d
☞ merge-sort is an algorithm; divide and conque

Software components are not design patterns
☞ design patterns describe a way of solving a p
☞ design patterns document pros and cons of d
☞ software components may be implemented u

Frameworks are not design patterns
☞ a framework implements a generic software a

oriented language
☞ a design pattern documents the solution to a
☞ a framework may use and be documented wi
☞ like frameworks, design patterns are drawn fr

applications solving related problems
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How are Design Patterns Specif

1. Pattern Name and Classification:  should convey
☞ Also Known As: other common names

2. The Problem Forces:  describes when to apply the
☞ Intent: short statement of rationale and intend
☞ Motivation: a problem scenario and example 
☞ Applicability: in which situations can the patte

3. The Solution:  abstract description of design eleme
☞ Structure: class and scenario diagrams
☞ Participants: participating classes/objects and
☞ Collaborations: how participants carry out res

4. The Consequences:  results and trade-offs of apply
☞ Implementation: pitfalls, hints, techniques, lan
☞ Sample Code: illustrative examples in C++, S
☞ Known Uses: examples of the pattern found i
☞ Related Patterns: competing and supporting p
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Common Design Techniques

Design patterns make use of many common design techniq

❑ Class vs. Interface inheritance
☞ Class inheritance supports sharing of implem
☞ Interface inheritance supports polymorphism

❑ Program to an interface, not an implementation!
☞ Increase flexibility by declaring variables of ab
☞ Localize knowledge concerning which concre

❑ Inheritance vs. Object Composition
☞ Inheritance occurs statically, and exposes pa
☞ Object composition occurs dynamically, and i

❑ Delegation vs. Inheritance
☞ An object can “implement” a service by deleg
☞ Delegation increases flexibility by allowing beh
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Improving Design Flexibility
Many design problems are concerned with achieving flexib

❑ Varying which classes are instantiated
☞ Create objects indirectly by delegating to a “F

❑ Varying which operations are performed at run-tim
☞ Use polymorphism and delegation to dynamic

❑ Varying hardware or software platform
☞ Use polymorphism to hide implementation de

❑ Varying object representations and implementatio
☞ Encapsulate dependencies to prevent change

❑ Varying algorithms
☞ Use polymorphism to substitute or parameter

❑ Decoupling objects
☞ Use object composition and delegation to avo

❑ Extending functionality in arbitrary ways
☞ Prefer object composition and delegation to in

❑ Adapting existing classes
☞ Use object composition and delegation to hid
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Example: Template Method

Adapted from “Design Patterns,” Gamma, et al., pp. 325-33

Name

Template Method

Intent

“Define the skeleton of an algorithm in an operation, deferrin
Template Method lets subclasses redefine certain steps of a
the algorithm’s structure.”
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Template Method — Motivation
Motivation
An application framework provides Application  and Doc
Application  is responsible for opening existing documen
format. An open document is represented by a Document  
An application built with the framework should subclass Ap
for specific kinds of documents.

Document
{ abstract }

+Save( )
+Open( )
+Close( )
+DoRead ( )

MyDocument

+DoRead ( )

Applicati

+AddDocument( )
+OpenDocument( )
+DoCreateDocumen
#CanOpenDocumen
#AboutToOpenDocu

MyApplica

+DoCreateDocumen
#CanOpenDocumen
#AboutToOpenDocu

docs
*
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Template Method — Motivation

The abstract Application class defines the algorithm for open
in its OpenDocument  operation:

void Application::OpenDocument (const char* name)
{

if (!CanOpenDocument(name)) { // can the documen
return;

}

Document* doc = DoCreateDocument(name);

if (doc) { // successful creatio
_docs->AddDocument(doc);
AboutToOpenDocument(doc); // warn Application 
doc->Open();
doc->DoRead();

}
}

OpenDocument is a template method, since it defines an a
operations that subclasses override to provide concrete be
provide the logic for CanOpenDocument  and DoCreateDoc
are needed to prepare for opening documents, they may be
AboutToOpenDocument .
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Template Method — Applicabi

Applicability

The Template Method should be used:

❑ to implement the non-varying parts of an algorithm
to implement the parts that may vary

❑ to refactor common behaviour among subclasses 
[This is a good example of “refactoring to generali

❑ to control subclass extensions. You can define a t
“hook” operations at specific points, thereby permit
points.
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Template Method — Structure

Structure

AbstractClass
{ abstract }

+TemplateMethod( )
#PrimitiveOperation1( )
#PrimitiveOperation2()

...
PrimitiveOper
...
PrimitiveOper
...

ConcreteClass

#PrimitiveOperation1( )
#PrimitiveOperation2( )
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Template Method — Participan

Participants
❑ AbstractClass  (e.g., Application )

☞ declares abstract primitive operations that con
implement steps of an algorithm

☞ defines a template method that implements th
The template method calls the primitive opera
defined in AbstractClass  or elsewhere.

❑ ConcreteClass  (e.g., MyApplication )
☞ implements the primitives operations to carry o

the algorithm

Collaborations
❑ ConcreteClass  relies on AbstractClass  to im

steps of the algorithm
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Template Method — Conseque

Consequences

Template methods are a fundamental technique for factorin
class libraries.
They lead to an inverted control structure since a parent cla
a subclass and not the other way around.

Template methods tend to call one of several kinds of oper
❑ concrete operations (on client classes)
❑ concrete AbstractClass  operations
❑ primitive operations (i.e., declared abstract in Abs

❑ factory methods (i.e., abstract operations for creat
❑ hook operations that subclasses can extend

It’s important for template methods to specify which operati
overridden) and which are abstract operations (must be ove



I2A 165.

U Design Patterns

nces ...

r by overriding the operation

. We can transform such an
over how subclasses extend

haviour of Operation :
niversität Bern

Template Method — Conseque

A subclass can extend a parent class operation’s behaviou
and calling the parent operation explicitly:

void DerivedClass::Operation() {
ParentClass::Operation();
// DerivedClass extended behaviour ...

}

Unfortunately it’s easy to forget to call the parent operation
operation into a template method to give the parent control
it:

void ParentClass::Operation() {
// ParentClass behaviour ...
HookOperation();

}

HookOperation  does nothing in ParentClass :
void ParentClass::HookOperation() { }

Subclasses just override HookOperation  to extend the be
void DerivedClass::HookOperation() {

// derived class extension ...
}
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Template Method — Implemen

Implementation

Three implementation issues are worth noting:
1. Using C++ access control. In C++, the primitive ope

protected members. This ensures that they are only
method. Primitive operations that must be overridde
The template method itself should not be overridden
virtual.

2. Minimizing primitive operations. You should minimiz
operations that a subclass must override to flesh out
method. The more operations that need overriding, 
for clients.

3. Naming conventions. You can identify the operation
by adding a prefix to their names. For example, the
Macintosh applications prefixes primitive method na
“DoCreateDocument”, “DoRead”, and so on.

NB: “pure virtual” = “deferred” in Eiffel. In Eiffel all operation
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Template Method — Sample C

Sample Code

This example, from NeXT’s AppKit, shows how a parent cla
for its subclasses. The class View  supports drawing on the
invariant that its subclasses can draw into a view only after i
requires certain drawing state (for example, colours and fon

The Display template method sets up this state. View defi
SetFocus  and ResetFocus , that set up and clean up the
The DoDisplay  hook operation performs the actual drawin

void View::Display () { // template method
SetFocus(); // set up drawing state
DoDisplay(); // hook operation to overrid
ResetFocus(); // release drawing state

}

To maintain the invariant, the View ’s clients always call Disp
always override DoDisplay .
DoDisplay  does nothing in View , and is overridden in sub
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Template Method — Known Use

Known Uses

Template methods are so fundamental that they can be fou
class. Wirfs-Brock et al. provide a good overview and discu

Related Patterns

Factory Methods are often called by template methods. In t
factory method DoCreateDocument is called by the templ
Strategy: Template methods use inheritance to vary part of
delegation to vary the entire algorithm.
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Sample Design Patterns
The following design patterns are typical of those found in G

Creational Patterns

Factory Method Define an interface for creating an object, but let s
instantiate. Factory Method lets a class defer insta

Prototype Specify the kinds of objects to create using a prot
objects by copying this prototype.

Structural Patterns

Adapter Convert the interface of a class into another interf
classes work together that couldn’t otherwise bec

Decorator Attach additional responsibilities to an object dyna
flexible alternative to subclassing for extending fu

Behavioural Patterns

Observer Define a one-to-many dependency between objec
state, all its dependents are notified and updated 

Template Method
Define the skeleton of an algorithm in an operatio
subclasses. Template method lets subclasses red
with changing the algorithm’s structure.



I2A 170.

U Design Patterns

rns Solve?

hitecture
s software development

nced developers already

 technology

e-centric” viewpoints

midt, CACM Oct 1995
niversität Bern

What Problems do Design Patte

Patterns document design experience:

❑ Patterns enable widespread reuse of software arc
❑ Patterns improve communication within and acros

teams
❑ Patterns explicitly capture knowledge that experie

understand implicitly
❑ Useful patterns arise from practical experience
❑ Patterns help ease the transition to object-oriented
❑ Patterns facilitate training of new developers
❑ Patterns help to transcend “programming languag

Sch
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Summary

You should know the answers to these questions:
❑ How can you recognize a design pattern?
❑ How does a design pattern differ from a piece of s
❑ What is the structure of a design pattern?
❑ How does object composition promote flexibility?
❑ Why is delegation more flexible than inheritance?
❑ When should you use Template Method in your pr
❑ How does Template Method promote software reu

Can you answer the following questions?
✎ How would you use Template Method in an Eiffel prog
✎ Is “Binary Search” a design pattern?
✎ “What about Window System”? “Dynamic Array”? “File
✎ Is it a good idea to invent new design patterns?
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10. Project Management

Overview:
❑ Software Management
❑ Introducing Object-Oriented Technology
❑ Object Lessons

Sources:
❑ Software Engineering, I. Sommerville, Addison-W
❑ “Succeeding with Objects,” K. Rubin, CHOOSE C
❑ “Transition Management Strategies,” M. Lenzi, OO
❑ “Strategies for Managing O-O Cultural Change,” A

notes.
❑ Object Lessons, T. Love, SIGS Books, 1993

Recommended Reading:
❑ The Mythical Man-Month, F. Brooks, Addison-Wes
❑ Succeeding with Objects: Decision Frameworks fo

Goldberg and K. Rubin, Addison-Wesley, 1995
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Software Management

❑ The Software Process:
☞ How is software developed?

❑ The Management Process:
☞ How is development organized and monitored

❑ Group Working:
☞ How are software teams structured?

❑ Planning and Scheduling:
☞ How are projects planned?
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Software Teams

❑ Programming teams should not be too large (max
☞ minimize communication overhead
☞ team quality standard can be developed
☞ members can work closely together
☞ programs are regarded as team property (“eg
☞ continuity can be maintained if members leav

❑ Chief programmer teams (see e.g. Brooks):
☞ chief programmer is experienced & highly qua

for design, programming, testing and installat
☞ skilled backup programmer (deputy) keeps tra

develops test cases to verify the work
☞ librarian manages all information associated w
☞ other experts may include: project administra

supporting software tools), documentation edi
CP & BP), language/system expert, tester (de
support programmers (code from detailed spe
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Planning and Scheduling

❑ Project Milestones:
☞ Milestones are reports delivered at end-points

activities: e.g., feasibility study → feasibility re
specification → req. spec. document; ...

☞ Should be scheduled roughly every 2-3 week

❑ Project Scheduling:
☞ Planning and estimation are iterative and sch

and revised during the project
☞ Schedules should account for anticipated and
☞ Requirements analysis and design takes roug
☞ Dependencies between project tasks must be

depends on longest path in activity graph)
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Ten Golden Rules for Using Obj

❑ Choose a small but real project without tight times
❑ Take care with your selection of both tools and su
❑ Invest in up-front staff training
❑ Establish an infrastructure to support all OO proje
❑ Use the mentor model for on-the-job training
❑ Spend longer thinking about your design than you
❑ Prototyping is essential at all stages of the project
❑ Choose your programming language for practicali
❑ Adopt a more democratic project team organizatio
❑ Put your strongest people in charge of your class 
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Transitioning Projects

Why adopt OO Technology? How to introduce it?

Determine goals and objectives; set up a structure for decisio
are traceable back to these goals and objectives.
Set realistic expectations for how object-oriented technolog
your software development goals and objectives.

Assess your current situation and set up process or resourc
❑ Select product process model
❑ Set up project plan and control
❑ Select reuse process model
❑ Select team structure
❑ Select software development environment
❑ Set up training plan
❑ Set up software measurement program
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Product Process Model

Incremental decision-making, development, testing and int
tive project results.

❑ Iterative development:
☞ Controlled reworking of parts of a system to r

improvements based on user feedback
☞ “We get things wrong before we get them righ

❑ Incremental development:
☞ Partition systems and develop at different tim
☞ Test and integrate as each partition complete
☞ Make progress in small steps to get earlier cu
☞ Obtain better quality testing by integrating par

❑ Prototyping:
☞ Creating a scaled-down model of some or all 
☞ Benefit by “buying” information before making
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Reuse-based Life Cycle

Component
Engineering

App

Framework Refinement
and Evolution

Application
Development

Component
Framework

Existing Applications
and Domain Knowledge

Sp
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Project Plan and Control

Planning and execution are interleaved activities whereby p
carried out, and the results used to do further planning.

Identify required milestones, major system capabilities, task

Uncertainties in OOD:
❑ Iterative development: how many iterations?
❑ Incremental development: how will evaluation of c

work on yet-to-be completed partitions?
❑ Prototyping: used to resolve what questions?

Planning under uncertainty:
❑ State clearly what you know and don’t know
❑ State clearly what you will do to eliminate unknow
❑ Make sure that all early milestones can be met
❑ Plan to replan
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Reuse Process Model

Reusable assets are strategic  products of the organizatio

Set up a structure in which to plan and manage the process
maintaining reusable assets throughout the organization.

Acquiring Reusable Assets:
☞ Give focus: collecting everything is not useful
☞ Give direction: collecting redundant solutions 
☞ Certification: documentation, testing, history, 
☞ Classification: representation, classification sc

Distribution and Maintenance:
☞ Communicate availability
☞ Locate, retrieve, understand and use assets
☞ Update reusers when assets change
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Expert Services Business Model

❑ Technology transfer through people who understa

❑ Virtual hallway through teams whose members tem
teams

❑ Corporate funding to emphasize importance of reu
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Training Plan

❑ Training takes 80-200 class hours:
☞ Object basics
☞ Analysis and design
☞ Languages

❑ Learning takes 6-12 months:
☞ On-the-job pilot projects
☞ Mentoring is highly cost-effective
☞ “Mistakes” are an invaluable asset
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Software Measurement Program

❑ Proper Program:
☞ plan for evaluation/measurement
☞ measures from the start
☞ team size, responsibility, experience level
☞ key classes + support classes

➪ methods/class
➪ LOC/methods (avg 5, largest 25)
➪ hierarchy nesting
➪ comments/method
➪ coupling/cohesion

❑ Number of classes, methods depends on:
☞ size of application
☞ data or process intensive application
☞ maturity of model
☞ available inventory of parts
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First Project

Select the right pilot project application:

❑ Important but not time critical
❑ Add value to the business
❑ Be apolitical
❑ Have definable requirements
❑ 4-6 month duration
❑ Big enough
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The Pilot Project Team

Select the right pilot project team:
❑ 5-6 of your best people
❑ Look for some good abstract thinkers
❑ Support learning, change and teamwork
❑ Train the team professionally
❑ Provide mentoring facilities
❑ Allocate time for re-work (get your models right!!!)
❑ Don’t impose anxiety and frustration
❑ Need to reward:

☞ reuse
☞ library additions
☞ low defect rate
☞ not lines of code!!!
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Staffing

Concentrate on skills, not job titles
❑ Business Analysts: End-user requirements, protot
❑ Model builders: design business frameworks
❑ Component builders: review/extend classes into re
❑ System Architects: facilitate reuse
❑ Coaches/Mentors: facilitate object introduction and

Project team sizing:
❑ first few pilots: < 6 staff
❑ first major project: <9 staff
❑ scope projects: < 15 staff
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Costs and Risks

Biggest cost is education: technical and non-technical
☞ Trend away from “big-bang” training and towa

mentoring/internships
☞ Mind-set does not change overnight: on-the-jo

Dangers:
☞ Ignoring the cost of learning: conceptual mate

and infrastructure
☞ Training people at the wrong time
☞ Training the wrong people
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Problems and Challenges

Reusability problems:
❑ Some evidence of reuse (25%)
❑ No rewards for programmers
❑ Lack of standards
❑ Incompatible languages

Gains and Costs:
❑ Productivity gains of 3:1, but

☞ Higher initial training costs
☞ Immature tools

User needs:
❑ Industry wide standards
❑ Improved quality in basic tools
❑ CASE support for OO A&D
❑ Reusable class libraries
❑ Redesign of existing management structures and 
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Challenges

❑ Lack of standards: interoperability, class hierarchi
❑ Tools & methods in flux
❑ Usefulness/availability of third party libraries
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Object Lessons

❑ Prototyping: plan to throw one (two?) away; protot
❑ Requirements and Design: both must be formally 

the customer to correct misunderstandings at the 
❑ Training: 6-12 months to train software engineers 
❑ Reusability: high programmer resistance; requires
❑ Productivity: can vary by 50:1; match organization
❑ Tools: devote 20% of project staff to toolsmiths (b
❑ Leading vs. Managing: team leaders should read &

the team; managers should be able to read and un
by their organization

❑ Conway’s Law: “Organizations that design system
designs that are copies of the communication struc
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Summary

You should know the answers to these questions:
❑ Why should programming teams have no more th
❑ What is the difference between iterative and incre
❑ What is the role of prototyping in a project?
❑ What is meant by “plan to throw one away”?
❑ Why would you put your best people in charge of 

say, programming or design)?
❑ What is mentoring and why is it important for intro
❑ Why should managers need to understand code?

Can you answer the following questions?
✎ Why does requirements analysis and design take long
✎ What are good examples of reusable assets? (Bad exa
✎ What is a good example of a first project using OO tec
✎ What are good examples of Conway’s Law in action?
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11. Computer-Aided Software E

Overview:
❑ What is CASE?

☞ CASE tool functionality vs. process support
❑ Tools, Workbenches and Environments

☞ Programming workbenches
☞ Analysis and design workbenches
☞ Testing workbenches

❑ Software Engineering Environments

Source:
❑ Software Engineering, I. Sommerville, Addison-W
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What is CASE?

“Computer-aided Software Engineering” refers to automate
engineering process. There are mainly 3 levels of CASE te

1. Production-process support technology:
☞ includes support for process activities such as

implementation, testing etc. (mature, and wid

2. Process management technology:
☞ includes tools to support process modelling a

(few products available)

3. Meta-CASE technology:
☞ tools for generating CASE tools (not widely ad
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CASE Tool Functionality

CASE tools can be classified by functionality or by their sup

Tool type Examp

Management Tools PERT tools, estimation tools

Editing tools Text editors, diagram editors, w

Configuration management tools Version management system

Prototyping tools Very high-level languages, user

Method support tools Design editors, data dictionarie

Language processing tools Compilers, interpreters

Program analysis tools Cross-reference generators, s

Testing tools Test data generators, file comp

Debugging tools Interactive debugging systems

Documentation tools Page layout programs, image e

Re-engineering tools Cross-reference systems, prog
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✓ ✓

✓ ✓

✓ ✓

✓ ✓

✓

✓

✓ ✓

✓ ✓

✓ ✓

✓

✓

✓
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CASE Tool Process Support
Tools Specification Design Im

Planning and Estimation ✓ ✓

Text Editing ✓ ✓

Document Preparation ✓ ✓

Configuration Management ✓ ✓

Prototyping ✓

Diagram Editing ✓ ✓

Data Dictionary ✓ ✓

User Interface Management ✓

Method Support ✓ ✓

Language Processing

Program Analysis

Interactive Debugging

Program Transformation

Modelling and Simulation ✓

Test Data Generation
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Quality of Tools Support

Poor Moderate

Requirements definition

Formal specification

Function-oriented design

Data modelling

Object-oriented design

Programming

Testing

Maintenance

Management



I2A 198.

U Computer-Aided Software Engineering

nments

Environments

Integrated
ironments

Process-centred
environments

Testing

Language specific
workbenches
niversität Bern

Tools, Workbenches and Enviro

CASE
Technology

Tools Workbenches

Editors Compilers File Comparators
env

Analysis and design Programming

Multi-method
workbenches

Single-method
workbenches

General-purpose
workbenches
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Integrated CASE

CASE systems can be integrated at various levels:(Wasser
1. Platform integration

☞ Tools run on the same hardware/operating sy

2. Data integration
☞ Tools operate using a shared data model

3. Presentation integration
☞ Tools offer a common user interface

4. Control integration
☞ Tools may activate and control the operation 

5. Process integration
☞ Tool usage is guided by an explicit process m
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The CASE life cycle

Procurement

Tailoring

Introduction

Operation

Evolution

Obsolescence

During CASE system procure
standards, platform, applicat
CASE system cost (including
must be considered.

CASE system tailoring involv
model definition, tool integrat
the installation.

Introduction can be risky due
systems restrict freedom by i
inadequate training, or even 
(changing tools and procedu
individual projects).

An obsolete CASE system ca
but must be phased out over
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Programming Workbenches
Source
program

Structured
editor

Symbol
table

Syntax
tree

Language
compiler

Compiled
code

Program
libraries

Linker

Executable
program

Loader

Interactive
debugger

Executing
program

Cross-referen

Prettyprinte

Static analy

Execution
report

user

A programm
tools to supp
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Static Program Analysers

Static program analysers scan the source code to detect po

☞ Unreachable code
☞ Unconditional branches into loops
☞ Undeclared variables
☞ Variables used before initialization
☞ Variables declared and never used
☞ Variables written twice with no intervening as
☞ Parameter type mismatches
☞ Parameter number mismatches
☞ Uncalled functions and procedures
☞ Non-usage of function results
☞ Possible array bound violations
☞ Misuse of pointers
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Stages of Static Analysis

1. Control flow analysis:
☞ loops with multiple exit or entry points and un

2. Data use analysis:
☞ use of uninitialized variables, declared but un

3. Interface analysis:
☞ consistency of procedure declarations and us

4. Information flow analysis:
☞ identifies dependencies of output variables on

5. Path analysis:
☞ identifies all possible paths through program
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4GL Workbenches

A so-called “Fourth Generation Language” (4GL) is really a
producing interactive applications that provide users with for
an underlying (relational) database.

Database Management System

Form
designer

DB query
language Spreadshe
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Analysis and Design Workbenc
Analysis and design workbenches support the modelling pha
usually by means of a graphical notation (e.g., dataflow, ER
not support a specific analysis and design method (e.g., JS

Central information
repository

Structured
diagramming tools

Data
dictionary

Skeleton code
generator

Forms
creation tools

Design analysis and
checking tools
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Testing Workbenches
Testing tends to be application and organization specific, s
developed in-house using standard tools.

Test results
report

Test data
generator

Test data

Test result

Test
manager

Source
code

Dynamic
analyser

Program being
tested

Execution
report Simulator
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Testing Tools

Test Data Generators:
☞ automatic generation of test inputs
☞ output analysis by “oracle” (i.e., prototype, pa

File Comparators:
☞ automatically comparing old and new test res

Simulators:
☞ hardware — cost, availability, risk ...
☞ events — real-time, reproducibility, load ...

Dynamic Analysers:
☞ instrumentation statements are automatically 
☞ execution profiles are generated and analyse
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Configuration Management To

Configuration management is concerned with the developm
standards for managing an evolving software system produ

Tool examples:
Version Control — SCCS and RCS:

☞ check-out and check-in of components
☞ logging changes (who, where, when)
☞ changes converted to system “deltas” (can ge
☞ “freezing” of versions as releases (possibly pa

System Building — Make:
☞ dependency specification
☞ rules for generation of intermediate files
☞ automatic re-generation of out-of-date files
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Software Engineering Environm

A software engineering environment (SEE) is a set of h
tools which can act in combination in an integrated w
for the whole of the software process from initial spec
testing and system delivery.

— Somm

SEEs vs. CASEs:
❑ SEEs are fully integrated (all 5 levels)
❑ SEEs support development by teams and provide

management
❑ SEEs support workbenches for a range of softwar

Although there are presently no good examples of SEEs, th
Environment (PCTE) has been widely adopted as a standa
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Summary

You should know the answers to these questions:
❑ What are the key features of a CASE environmen
❑ Which phases of the software lifecycle benefit from
❑ In what different ways can CASE system be integr
❑ What are the risks in adopting a CASE system?
❑ What kinds of errors can be detected by static ana
❑ What is an “oracle” and how is it used?

Can you answer the following questions?
✎ Why is the quality of tool support for project manageme

and programming?
✎ Where does SNiFF+ fit into the CASE system classific
✎ Is it better to use a single method A&D workbench or a
✎ Why is Meta-CASE technology not widely used?
✎ Why are there no good examples of SEEs in use?
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