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Principle Texts:
❑ David Flanagan, Java in Nutshell: 3d

1999.
❑ James Rumbaugh, Ivar Jacobson, G

Unified Modeling Language Referen
Wesley, 1999

❑ Bertrand Meyer, Object-Oriented 
Construction, Prentice Hall, 1997.

❑ Rebecca Wirfs-Brock, Brian Wilker
Designing Object-Oriented Softwa
1990.
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Goals of this cour
Object-Oriented Design

❑ How to use responsibility-driven de
into objects

❑ How to exploit inheritance to make 
flexible

❑ How to iteratively refactor system
clean designs

Software Quality
❑ How to use design by contract to d

software
❑ How to test and validate software

...
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Goals ...
Communication

❑ How to keep software as simple as 
❑ How to write software that commu
❑ How to document a design

Skills, Techniques and Tools
❑ How to use debuggers, version cont

profilers and other tools
❑ How and when to use standard softw

architectures
❑ How and when to apply common patt

rules of thumb
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What is programmi

❑ Implementing data structures and 
❑ Writing instructions for machines?
❑ Implementing client specifications?
❑ Coding and debugging?
❑ Plugging together software compon
❑ Specification? Design?
❑ Testing?
❑ Maintenance?

Which of these are “not programming”?
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Programming and Software D
❑ How do you get your requirements?
❑ How do you know that the documen

reflect the user’s needs?
❑ How do you decide what priority to

requirement?
❑ How do you select a suitable softwa
❑ How do you do detailed design?
❑ How do you know your implementat
❑ How, when and what do you test?
❑ How do you accommodate changes i
❑ How do you know when you’re done?

Is “programming” distinct from “software
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Programming activit
❑ Documentation
❑ Prototyping
❑ Interface specification
❑ Integration
❑ Reviewing
❑ Refactoring
❑ Testing
❑ Debugging
❑ Profiling
❑ ...

What do these activities have in common?
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What is a software sy
A computer program is an application that

❑ requirements are typically well-def
❑ often single-user at a time
❑ little or no configuration required

A software system supports multiple task
❑ open requirements
❑ multiple users
❑ implemented by a set of programs o
❑ multiple installations and configura
❑ long-lived (never “finished”)

Programming techniques address systems
reducing complexity.
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What is good (bad) de

Consider two programs with identical beh

❑ Could the one be well-designed and
designed?

❑ What would this mean?
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A procedural desig
Problem: compute the total area of a set

public static long sumShapes(Shape shapes[]) {
long sum = 0;
for (int i=0; i<shapes.length; i++) {

switch (shapes[i].kind()) {
// 

case Shape.CIRCLE:
sum += shapes[i].circleArea();
break;

... // more cases
}

}
return sum;

}

case Shape.RECTANGLE:
sum += shapes[i].rectangleArea();
break;



P2 — S2002 12.

P2 — Object-Oriented Programming

proach

 shapes[]) {

++) {
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An object-oriented ap
A typical object-oriented solution:

public static long sumShapes(Shape
long sum = 0;
for (int i=0; i<shapes.length; i

}
return sum;

}

What are the advantages and disadvantag
solutions?

sum += shapes[i].area();
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Object-Oriented De

OO vs. functional design ...

Object-oriented [design] is the meth
the architecture of any software sys
objects it manipulates (rather than “t
meant to ensure).

Ask not first what the system does: a
it to!
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Responsibility-Driven D
RDD factors a software system into objec
responsibilities:

❑ Objects are responsible to maintain
provide services:
☞ Operations are always associate

objects
☞ Always delegate to another obje

do yourself

❑ A good design exhibits:
☞ high cohesion of operations and 
☞ low coupling between classes and

...
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Responsibility-Driven De

❑ Every method should perform one, 
☞ Separation of concerns — reduc
☞ High level of abstraction — write

an implementation

❑ Iterative Development
☞ Refactor the design as it evolve
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Refactoring
Refactor your design whenever the code s

❑ methods that are too long or hard t
☞ decompose and delegate respons

❑ duplicated code
☞ factor out the common parts (te

❑ violation of encapsulation, or
❑ too much communication between ob

☞ reassign responsibilities
❑ big case statements

☞ introduce subclass responsibiliti
❑ hard to adapt to different context

☞ separate mechanism from policy
...
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What is Software Qu

...

Correctness is the ability of software p
their exact tasks, as defin
specifications

Robustness is the ability of software s
appropriately to abnormal c

Extendibility is the ease of adapting sof
changes of specification

Reusability is the ability of software e
for the construction of ma
applications
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Software Quality 

— Me

Compatibility is the ease of combining so
with others

Efficiency is the ability of a software
few demands as possible on
resources

Portability is the ease of transferring
to various hardware and so
environments

Ease of use is the ease with which peop
backgrounds and qualificat
software products
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How to achieve software

Design by Contract
❑ Assertions (pre- and post-condition
❑ Disciplined exceptions

Standards
❑ Protocols, components, libraries, fr

standard interfaces
❑ Software architectures, design pat

...
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erformance 
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How to achieve software 

Testing and Debugging
❑ Unit tests, system tests ...
❑ Repeatable regression tests

Do it, do it right, do it fast
❑ Aim for simplicity and clarity, not p
❑ Fine-tune performance only when t

demonstrated need!
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What is a programming l

A programming language is a tool for:

❑ specifying instructions for a compu
❑ expressing data structures and alg
❑ communicating a design to another 
❑ describing software systems at var

abstraction
❑ specifying configurations of softwa

A programming language is a tool for comm
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Communication
How do you write code that communicates

❑ Do the simplest thing you can think
☞ Don't over-design
☞ Implement things once and only 

❑ Program so your code is (largely) se
☞ Write small methods
☞ Say what you want to do, not ho

❑ Practice reading and using other pe
☞ Subject your code to reviews
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Why use object-oriented pr

Modelling
❑ complex systems can be naturally d

software objects

Data abstraction
❑ Clients are protected from variatio

Polymorphism
❑ clients can uniformly manipulate plu

...
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Why use OOP? ..

Component reuse 
❑ client/supplier contracts can be ma

simplifying reuse

Evolution 
❑ classes and inheritance limit the im
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Why Java?
Special characteristics

❑ Resembles C++ minus the complexit
❑ Clean integration of many features
❑ Dynamically loaded classes
❑ Large, standard class library

Simple Object Model
❑ “Almost everything is an object” 
❑ No pointers
❑ Garbage collection
❑ Single inheritance; multiple subtypi
❑ Static and dynamic type-checking

Few innovations, but reasonably clean, sim
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Lisp

Prolog

Modula-2

Modula-3

Oberon

a 95
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History

1960

1970

1980

1990

FORTRAN
Algol 60 CO

PL/1Simula 67

Smalltalk 72

Smalltalk 80

Objective C

C

C++ Ad

Pascal

ANSI C++

Squeak

Eiffel

Algol 68

Clu

Ad

Self

Java
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What you should kn
✎ What is the difference between a com

software system?
✎ What defines a good object-oriented 
✎ When does software need to be refac
✎ What is “software quality”?
✎ How does OOP attempt to ensure high
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Can you answer these qu
✎ What does it mean to “violate encapsu

bad?
✎ Why shouldn’t you try to design your s

efficient from the start?
✎ Why (when) are case statements bad?
✎ When might it be “all right” to duplica
✎ How do you program classes so they wi

you sure?
✎ Which is easier to understand — a pro

object-oriented one?
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2. Design by Cont

Overview
❑ Declarative programming and Data 
❑ Abstract Data Types
❑ Class Invariants
❑ Programming by Contract: pre- and
❑ Assertions and Disciplined Exceptio

Source
❑ Bertrand Meyer, Object-Oriented 

Construction, Prentice Hall, 1997.
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stcondition guaranteed
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Contracts

SupplierClient

Servic
if

pr
then

po

request(okArgs)

result

request(badArgs)

failure If eithe
does no
respect
failure 
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Exceptions, failures and

An exception is the occurrence of an abnor
the execution of a software element.

A failure is the inability of a software ele
purpose.

A defect (AKA “bug”) is the presence in th
element not satisfying its specification.

Contracts may fail due due to defects in t
code. Failure should signalled by raising an
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sh and pop.

size() top()
0 (error)
1 6
2 7
3 3
2 7
3 2
2 7
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Stacks
A Stack is a classical data abstraction wit
in computer programming.

Stacks support two mutating methods: pu

Operation Stack isEmpty()
true

push(6) 6 false
push(7) 6 7 false
push(3) 6 7 3 false
pop() 6 7 false
push(2) 6 7 2 false
pop() 6 7 false
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Example: Balancing Pare

Problem:
☞ Determine whether an expressio

parentheses ( ), brackets [ ] and
correctly balanced.

Examples:

balanced if (a.b()) { c[d
else { f[g][h].i

not balanced. ((a+b())
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compare it to the 
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n is not balanced

 whole expression is 
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A simple algorithm
Approach: 

❑ when you read a left parenthesis, p
parenthesis on a stack

❑ when you read a right parenthesis, 
value on top of the stack
☞ if they match, you pop and conti
☞ if they mismatch, the expressio

❑ if the stack is empty at the end, the
balanced, otherwise not
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rentheses

Stack
)
) ]
) ] }
) ]
)
)
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Using a Stack to match pa

Sample input: “( [ { } ] ]”

Input Case Op
( left push )
[ left push ]
{ left push }
} match pop
] match pop
] mismatch ^false
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The ParenMatch cl
A ParenMatch object uses a stack to chec
text String are balanced:

public class ParenMatch {
String line_;
StackInterface stack_;

public ParenMatch (String line,

{
line_ = line;
stack_ = stack;

}

StackInterface
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l of abstraction:

i++) { ...
t match later

;

uld equal top
urn false; }

 {

} }
nced if empty

Paren(c)))

 Character(c)))
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A declarative algori
We implement our algorithm at a high leve
public boolean parenMatch() ... {
for (int i=0; i<line_.length(); 

 { // expec

} else {
 { // sho

 { ret

;
} else { return false; } } 

; // bala
}

if (isLeftParen(c))
stack_.push(...(matchingRight

if (isRightParen(c))
if (stack_.isEmpty())
if (stack_.top().equals(new
stack_.pop()

return stack_.isEmpty()
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 break;
 break;
 break;

) == c) {
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A cluttered algorit
public boolean parenMatch() throws AssertionExce

for (int i=0; i<line_.length(); i++) {
char c = line_.charAt(i);
switch (c) {
case '{' : stack_.push(new Character('}'));
case '(' : stack_.push(new Character(')'));
case '[' : stack_.push(new Character(']'));
case ']' : case ')' : case '}' :

if (stack_.isEmpty()) { return false; }
if (((Character) stack_.top()).charValue(

stack_.pop();
} else { return false; }
break;

default : break;
}

}
return stack_.isEmpty();

}



P2 — S2002 39.

Design by Contract

nt, and their details 

 c) {
 || (c == '{');
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 || (c == '}');
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Helper methods
The helper methods are trivial to impleme
only get in the way of the main algorithm.

private boolean isLeftParen(char
return (c == '(') || (c == '[')

}

private boolean isRightParen(cha
return (c == ')') || (c == ']')

}

...
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What is Data Abstrac
An implementation of a stack consists of:

❑ a data structure to represent the s
❑ a set of operations that access and

Encapsulation means bundling together re

Information hiding means exposing an abs
hiding the rest.

An Abstract Data Type (ADT):
❑ encapsulates data and operations, a
❑ hides the implementation behind a 

interface.
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StackInterface
Interfaces let us abstract from concrete

public  StackInterface {
public boolean isEmpty();
public int size();
public void push(Object item)

public Object top() throws Ass
public void pop() throws Ass

}

➤ How can clients accept multiple impleme
✔ Make them depend only on an interface

interface

throws Ass
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Interfaces in Jav
Interfaces reduce coupling between obje

❑ A class can implement multiple inte
☞ ... but can only extend one paren

❑ Clients should depend on an interfa
implementation
☞ ... so implementations don’t need

class

Define an interface for any ADT that will
implementation
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tends Exception {
}

; }

constructor, and a 
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Exceptions
All Exception classes look like this!
Define your own exception class to disting
from any other kind.

public class AssertionException ex
AssertionException() { ; 
AssertionException(String s) { 

}

The implementation consists of a default 
constructor that takes a simple message s
Both constructors call super() to ensure t
properly initialized.

super()
s
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Why are ADTs impor
Communication

❑ An ADT exports what a client needs
more!

❑ By using ADTs, you communicate wh
not how to do it!

❑ ADTs allow you to directly model yo
rather than how you will use to the

...
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 in implementation.
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Why are ADTs importa
Software Quality and Evolution

❑ ADTs help to decompose a system 
parts, each of which can be separat
validated.

❑ ADTs protect clients from changes
❑ ADTs encapsulate client/server con
❑ Interfaces to ADTs can be extende

clients.
❑ New implementations of ADTs can 

added to a system.
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stack.pop()
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Stacks as Linked Li
A Stack can easily be implemented by a li

size = 3

6 7 3

top =

size = 2

6 7

top =

stack.push(3)
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 as an inner class 

StackInterface {

 

next) {
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LinkStack Cells
We can define the Cells of the linked list
within LinkStack:
public class LinkStack implements 
private Cell top_;

...
}

public class Cell {
public Object item;
public Cell next;
public Cell(Object item, Cell 
this.item = item;
this.next = next;

}
}
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or protected.

stances are strictly 
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Private vs Public instance

➤ When should instance variables be publ

✔ Always make instance variables private 

The Cell class is a special case, since its in
private to LinkStack!
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e variable.

ss what the purpose 

 variable represents 
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Naming instance vari

➤ How should you name a private or prote
variable?

✔ Pick a name that reflects the role of th
✔ Tag the name with an underscore (_).

Role-based names tell the reader of a cla
of the variables is.

A tagged name reminds the reader that a
hidden state.
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StackInterface {
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LinkStack ADT
The constructor must construct a valid in

public class LinkStack implements 
...
private int size_;
public LinkStack() {
// Establishes the invariant.
top_ = null;
size_ = 0;

}
...
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g invariant:
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Class Invariants
A class invariant is any condition that exp
states for objects of that class:

❑ it must be established by every con

❑ every public method
☞ may assume it holds when the m
☞ must re-establish it when it fini

Stack instances must satisfy the followin
❑ size ≥ 0

...
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where (== null)

ell containing the 
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LinkStack Class Inva

A valid LinkStack instance has a integer si
points to a sequence of linked Cells, such 

❑ size_ is always ≥ 0

❑ When size_ is zero, top_ points no

❑ When size_ > 0, top_ points to a C
top item
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Programming by Cont
Every ADT is designed to provide certain s
assumptions hold.
An ADT establishes a contract with its cli
precondition and a postcondition to every
states:

Consequence:
❑ if the precondition does not hold, t

required to provide anything!

“If you promise to call O with the p
satisfied, then I, in return, promise
final state in which the postconditi
satisfied.”
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ments.

pplier: 
DT ensures on 

nal states, the 
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Pre- and Postcondit
The precondition binds clients: 

❑ it defines what the ADT requires f
operation to be legitimate.

❑ it may involve initial state and argu

The postcondition, in return, binds the su
❑ it defines the conditions that the A

return.
❑ it may only involve the initial and fi

arguments and the result
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ons for both clients 

Benefits
 size decreases by 1.
ement is removed.
ed to handle case 
tack is empty!
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Benefits and Obligat
A contract provides benefits and obligati
and suppliers:

Obligations

Client Only call pop() on a non-
empty stack!

Stack
Top el

Supplier Decrement the size. 
Remove the top element.

No ne
when s
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ontract:

Ensures
 state change
 state change
t empty, 
e == old size + 1,
 == item

 state change
e == old size -1
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Stack pre- and postcon
Our Stacks should deliver the following c

Operation Requires
isEmpty() - no
size() - no

push(Object item) item != null
no
siz
top

top() not empty no
pop() not empty siz
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Assertions
An assertion is any boolean expression we 
some point :
Assertions have four principle application

1. Help in writing correct software
☞ formalizing invariants, and pre- 

2. Documentation aid
☞ specifying contracts

3. Debugging tool
☞ testing assertions at run-time

4. Support for software fault toleranc
☞ detecting and handling failures 
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Testing Assertion
It is easy to add an assertion-checker to 

private void assert(boolean assert
throws AssertionException {

}

➤ What should an object do if an assertio
✔ Throw an exception.

if (!assertion) {
throw new AssertionException(
"Assertion failed in LinkStac

}
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Testing Invariant
Every class has its own invariant:

private boolean invariant() {
return (size_ >= 0) &&
( (size_ == 0 && this.top_ == n
|| (size_ > 0 && this.top_ != n

}
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tion-handling 
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Disciplined Excepti
There are only two reasonable ways to re

1. clean up the environment and report
(“organized panic”)

2. attempt to change the conditions th
retry

It is not acceptable to return control to t
special notification.

➤ When should an object throw an except
✔ If and only if an assertion is violated

If it is not possible to run your program w
exception, then you are abusing the excep
mechanism!
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condition
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ceptions if they fail.
© O. Nierstrasz — U. Berne

Checking pre-condit
Assert pre-conditions to inform clients w
contract. 

public Object top() throws Asserti
 // pre-

return top_.item;
}

➤ When should you check pre-conditions t
✔ Always check pre-conditions, raising ex

assert(!this.isEmpty());
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/ post-condition
/ post-condition

?
on is non-trivial.
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Checking post-condit
Assert post-conditions and invariants to in
you violate the contract.

public void push(Object item)
throws AssertionException {

top_ = new Cell(item, top_);
size_++;

/
/

}

➤ When should you check post-conditions
✔ Check them whenever the implementati

assert(item != null);

assert(!this.isEmpty());
assert(this.top() == item);
assert(invariant());
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;

xpression");

);

stem.in))

stack).reportMatch()
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Running parenMatc
public static void parenMatchLoop(

BufferedReader in = 

String line;
try {

System.out.println("Enter a parenthesized e
System.out.println("(empty line to stop)");
do {

line = ;
System.out.println(

} while(line != null && line.length() > 0);
System.out.println("bye!");

} catch (IOException err) {
} catch (AssertionException err) {

;
}

}

StackInterface

new BufferedReader(new InputStreamReader(Sy

in.readLine()
new ParenMatch(line, 

err.printStackTrace()
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Running parenMatch
java -cp stack.jar TestStack
Please enter parenthesized expressions to test
(empty line to stop)
(hello) (world)
"(hello) (world)" is balanced
()
"()" is balanced
static public void main(String args[]) {
"static public void main(String args[]) {" is no
()

}
"}" is balanced

"" is balanced
bye!

✎ Which contract is being violated?

"()" is not balanced
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What you should kn
✎ How can helper methods make an imple

declarative?
✎ What is the difference between encap

information hiding?
✎ What is an assertion?
✎ How are contracts formalized by pre- 
✎ What is a class invariant and how can i
✎ What are assertions useful for?
✎ How can exceptions be used to improv

robustness?
✎ What situations may cause an exceptio
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formance?
ck methods?
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Can you answer these qu
✎ Why is strong coupling between clients

thing?
✎ When should you call super() in a const
✎ When should you use an inner class?
✎ How would you write a general assert()

for any class?
✎ What happens when you pop() an empt

this good or bad?
✎ What impact do assertions have on per
✎ Can you implement the missing LinkSta
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3. Testing and Deb

Overview
❑ Testing — definitions
❑ Testing various Stack implementati
❑ Understanding the run-time stack a
❑ Wrapping — a simple integration st
❑ Timing benchmarks

Source
❑ I. Sommerville, Software Engineeri

Fifth Edn., 1996.
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Testing

Testing is always iterative! 

Unit testing: test individual (stan

Module testing: test a collection of 
(a module)

Sub-system testing: test sub-system int

System testing:

(i) test interactions
systems, and
(ii) test that the co
fulfils functional an
requirements

Acceptance testing 
(alpha/beta testing):

test system with re
simulated data.
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Regression testin
Regression testing means testing that eve
work still works after changes are made t

❑ tests must be deterministic and re
❑ should test “all” functionality

☞ every interface
☞ all boundary situations
☞ every feature
☞ every line of code
☞ everything that can conceivably

It costs extra work to define tests up fro
in debugging & maintenance!
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Caveat: Testing and Cor

Testing can only reveal the pr
of defects, not their absenc
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tests!");
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Testing a Stack
We define a simple regression test that e
StackInterface methods and checks the 
static public void testStack(Stack
try {
System.out.print("Testing "

+ stack.getClass().getName(
;

... // more tests here ...
System.out.println("passed all 

} catch (Exception err) { // NB:
err.printStackTrace();

} 
}

assert(stack.isEmpty())
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Value() == 10);

ully exercise a Stack 
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Build simple test ca
Construct a test case and check the obvio

for (int i=1; i<=10; i++) {
stack.push(new Integer(i));

}
assert(!stack.isEmpty());

;
assert(((Integer) stack.top()).int

✎ What other test cases do you need to f
implementation?

assert(stack.size() == 10)
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be true
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Check that failures are
How do we check that an assertion fails w
...

; // 
boolean ;
try {
// we expect pop() to raise an e

;
} catch(AssertionException err) {
// we should get here!

;
}

; // should 

assert(stack.isEmpty())
emptyPopCaught = false

stack.pop()

emptyPopCaught = true

assert(emptyPopCaught)
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ut instantiating an 

rogram
actory methods
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a.lang.Math)
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When (not) to use static
A static method belongs to a class, not an

❑ Static methods can be called witho
object
—necessary for starting the main p
—necessary for constructors and f
—useful for test methods

❑ Static methods are just procedure
☞ avoid them in OO designs!
☞ (counter-)example: utilities (jav

...
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s!
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When (not) to use static 
A static instance variable also belongs to a

❑ Static instance variables can be acc
instantiating an object
—useful for representing data shar

of a class

❑ Static variables are global variable
☞ avoid them in OO designs!
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ArrayStack
We can also implement a (variable) Stack u
array to store its elements:

public class ArrayStack implements
;// defau

int capacity_ = 0; // curre
int size_ = 0; // numbe

...

✎ What would be a suitable class invarian

Object store_ [] = null
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Handling overflow
Whenever the array runs out of space, th
allocating a larger array, and copying elem
array.
public void push(Object item) 

throws Assertion
{

// NB:
}

✎ How would you implement the grow() m

if (size_ == capacity_) {
grow(); 

}
store_[++size_] = item;
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size_ == 0; }
}

onException {

Exception {

ersion!
ts too small?
© O. Nierstrasz — U. Berne

Checking pre-condit
public boolean isEmpty() { return 
public int size() { return size_; 

public Object top() throws Asserti
assert(!this.isEmpty());
return store_[size_-1];

}
public void pop() throws Assertion
assert(!this.isEmpty());
size_--;

}

NB: we only check pre-conditions in this v
✎ Should we also shrink() is the Stack ge



P2 — S2002 79.

Testing and Debugging

k
urprise:

Code)
:12)
icMethodDispatcher
96)
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Testing ArrayStac
When we test our ArrayStack, we get a s

Testing ArrayStack ... 

at 
at TestStack.testStack(Compiled 
at TestStack.main(TestStack.java
at com.apple.mrj.JManager.JMStat

.run(JM-AWTContextImpl.java:7
at java.lang.Thread.run(Thread.j

Exception.printStackTrace() tells us exac
exception occurred ...

java.lang.ArrayIndexOutOfBoundsExc
ArrayStack.push(ArrayStack.ja
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" + fact(3));
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The Run-time Sta
The run-time stack is a fundamental data
record the context of a procedure that w
a later point in time. This context (AKA “s
the arguments to the procedure and its lo

Practically all programming languages use 
public static void main(String a
System.out.println( "fact(3) = 

}
public static int  {
if (n<=0) { return 1; } 
else { return n*  ; }

}

fact(int n)

fact(n-1)
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ction ...
ure call ...

t(1) ...

t(0)=? n=0;fact(0) ...

t(0)=? return 1

1

© O. Nierstrasz — U. Berne

The run-time stack in a
A stack frame is pushed with each proced

... and popped with each return.

main ...

fact(3)=? n=3; ...

fact(3)=? n=3;fact(2)=? n=2;fact(2) ...

fact(3)=? n=3;fact(2)=? n=2;fact(1)=? n=1;fac

fact(3)=? n=3;fact(2)=? n=2;fact(1)=? n=1;fac

fact(3)=? n=3;fact(2)=? n=2;fact(1)=? n=1;fac

fact(3)=? n=3;fact(2)=? n=2;fact(1)=? return 

fact(3)=? n=3;fact(2)=? return 2

fact(3)=? return 6

fact(3)=6
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RunTimeHeap

: Integ er

: Object [ ]

Arra yStac k

city_ : integer
_ : integer
_ : Object [ ]

: String [ ]
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The Stack and the H

and shrinks 
when Objects 
are garbage-
collected.

RunTimeStac k

Arra yStac k.push

item_ : Object

TestStac k.testStac k

stack : StackInterface
i : integer

TestStac k.main

args : String [ ]

com.apple .mrj...run 

...

java.lang.Thread.ja va 

...

: 

capa
size
store

The Heap grows 
with each new 
Object created,
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Fixing our mistak
We erroneously used the incremented size
store, instead of the new size - 1:

public void push(Object item) ... 
if (size_ == capacity_) { grow()

; // old s
assert(this.top() == item);
assert(invariant());

}

NB: perhaps it would be clearer to write:
store_[this.topIndex()] = item;

store_[size_++] = item
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java.util.Stack
Java also provides a Stack implementation
compatible with our interface:
public class Stack extends Vector 
public Stack();
public Object push(Object item);
public synchronized Object pop()
public synchronized Object peek(
public boolean empty();
public synchronized int search(O

}

If we change our programs to work with t
won’t be able to work with our own Stack 
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Wrapping Object
Wrapping is a fundamental programming te
integration.

➤ What do you do with an object whose in
your expectations?

✔ You wrap it.

✎ What are possible disadvantages of wr
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k
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/ wrapped instance 
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A Wrapped Stac
A wrapper class implements a required inte
requests to an instance of the wrapped cl
import java.util.Stack;
public class SimpleWrappedStack

implements StackInterface 
{
protected Stack stack_;
public SimpleWrappedStack() { 

; /
}
public boolean isEmpty() { 
return ; // 

}
...

stack_ = new Stack()

stack_.empty()
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A Wrapped Stack 
public int size() {
return stack_.size();

}
public Object top() throws Asser
return stack_.peek(); 

}
public void pop() 
stack_.pop();

}
... // similar for push()

}

✎ Do you see any flaws with our wrapper

throws Asserti
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dStack()) yields:

a:60)
WrappedStack.java:

Code)
:13)
cMethodDispatcher.
)
ava:474)

va:78)
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A contract mismat
But running testStack(new SimpleWrappe
Testing SimpleWrappedStack ... 

at 
at java.util.Stack.pop(Stack.jav
at SimpleWrappedStack.pop(Simple

29)
at TestStack.testStack(Compiled 
at TestStack.main(TestStack.java

 at com.apple.mrj.JManager.JMStati
run(JMAWTContextImpl.java:796

at java.lang.Thread.run(Thread.j

✎ What went wrong?

java.util.EmptyStackException
java.util.Stack.peek(Stack.ja
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Fixing the problem 
Our tester expects an empty Stack to thro
it is popped, but java.util.Stack doesn’t do
wrapper should check its preconditions!
public class WrappedStack extends 
{
public Object top() throws Asser
assert(!this.isEmpty());
return super.top();

}
public void pop() throws Asserti

;
super.pop();

} ...

assert(!this.isEmpty())
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Timing benchmark
Which of the Stack implementations perf

;
for (int i=0; i<iterations; i++) {
stack.push(item);

}
elapsed = ;
System.out.println(elapsed + " mil

+ iterations + " pushes");
...

➤ Complexity aside, how can you tell which
strategy will perform best?

✔ Run a benchmark.

timer.reset()

timer.timeElapsed()
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Timer
import java.util.Date;
public class Timer {
protected Date startTime_;
public Timer() { 
this.reset(); 

}
public void reset() { 
startTime_ = new Date();

}
public long timeElapsed() {
return 

}
}

// Ab
// d

new Date().getTime() 
- startTime_.getTime();



P2 — S2002 92.

Testing and Debugging

iseconds)

 what you expected?

K pushes 100K pops
2809 100

474 56
725 293
5151 1236
1519 681

8748 8249
3026 189

877 94
5927 5318
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Sample benchmarks (mill

✎ Can you explain these results? Are they

Java VM Stack Implementation 100

Apple MRJ
LinkStack

ArrayStack
WrappedStack

Metrowerks
LinkStack

ArrayStack
WrappedStack

MW JIT
LinkStack

ArrayStack
WrappedStack
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What you should kn
✎ What is a regression test? Why is it im
✎ When should you (not) use static meth
✎ What strategies should you apply to d
✎ What are the run-time stack and heap
✎ How can you adapt client/supplier inte

match?
✎ When are benchmarks useful?
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Can you answer these qu
✎ Why can’t you use tests to demonstrat

defects?
✎ How would you implement ArrayStack.
✎ Why doesn’t Java allocate objects on t
✎ What are the advantages and disadvan
✎ What is a suitable class invariant for W
✎ How can we learn where each Stack im

spending its time?
✎ How much can the same benchmarks di

several times?
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4. Iterative Develo

Overview
❑ Iterative development
❑ Responsibility-Driven Design

☞ How to find the objects ...
☞ TicTacToe example ...

Sources
❑ R. Wirfs-Brock, B. Wilkerson, L. W

Object-Oriented Software, Prentic
❑ Kent Beck, Extreme Programming E

Change, Addison-Wesley, 1999.
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The Classical Software L

The waterfall model is unrealistic for man
❑ requirements must be “frozen” too e
❑ requirements are validated too late

The classical softwa
the software deve

by-step “waterfa
various develop

Design

Implementation

T

Analysis

Requirements
Collection
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ve, and all software 

why is it still the 

based on requirements

ing throughout

hrough refactoring

plementation

tion
© O. Nierstrasz — U. Berne

Iterative Developm
In practice, development is always iterati
phases progress in parallel.

✎ If the waterfall model is pure fiction, 
standard software process?

Validation through

Testing 

Test

Maintenance through iteration

Design t

prototyping
im

Requirements
Collection

Testing

Implementa

Analysis

Design
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en Design?

esign in terms of 

 be fulfilled to meet 

te objects (i.e., that 
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What is Responsibility-Driv

Responsibility-Driven Design is
❑ a method for deriving a software d

collaborating objects

❑ by asking what responsibilities must
the requirements,

❑ and assigning them to the appropria
can carry them out).
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bility?

 accept?
someone else.”

e?

igns than those 
ata-driven design.
ble over time than 
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How to assign responsi
Pelrine’s Laws:
➤ Which responsibilities should an object
✔ “Don't do anything you can push off to 

➤ How much state should an object expos
✔ “Don't let anyone else play with you.”

RDD leads to fundamentally different des
obtained by functional decomposition or d
Class responsibilities tend to be more sta
functionality or representation.
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rks down only 
oes], each 
 the nine 
wo vertical lines 
inner being the 
y row or 

ouse Dictionary

nts the rules of Tic 
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Example: Tic Tac T
Requirements:

“A simple game in which one player ma
crosses and another only ciphers [zer
alternating in filling in marks in any of
compartments of a figure formed by t
crossed by two horizontal lines, the w
first to fill in three of his marks in an
diagonal.” 

— Random H

We should design a program that impleme
Tac Toe.
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rough a browser?

rong!
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Setting Scope

Questions:
❑ Should we support other games?
❑ Should there be a graphical UI?
❑ Should games run on a network? Th
❑ Can games be saved and restored?

A monolithic paper design is bound to be w

...
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.

uirements that are 

s and test cases
ng roles and 

er in the first 

rovide value to the 
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Setting Scope ..
An iterative development strategy:

❑ limit initial scope to the minimal req
interesting

❑ grow the system by adding feature
❑ let the design emerge by refactori

responsibilities

➤ How much functionality should you deliv
version of a system?

✔ Select the minimal requirements that p
client.



P2 — S2002 103.

Iterative Development

ts
requirements:

re likely to end up as 

ilities
ules

teraction

tate
© O. Nierstrasz — U. Berne

Tic Tac Toe Objec
Some objects can be identified from the 

Entities with clear responsibilities are mo
objects in our design.
...

Objects Responsib
Game Maintain game r
Player Make moves

Mediate user in
Compartment Record marks
Figure (State) Maintain game s
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ht” set of objects?
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cation
s

partment
ate

er
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Tic Tac Toe Objects
Others can be eliminated:

➤ How can you tell when you have the “rig
✔ Each object has a clear and natural set

Non-Objects Justifi
Crosses, ciphers Same as Mark
Marks Value of Com
Vertical lines Display of St
Horizontal lines ditto
Winner State of Play
Row View of State
Diagonal ditto
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ponsibilities:

he Game state?

e is over?

 the Game.

issing in your design?
assigned.
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Missing Objects
Now we check if there are unassigned res

❑ Who starts the Game?

❑ Who is responsible for displaying t

❑ How do Players know when the Gam

Let us introduce a Driver that supervises

➤ How can you tell if there are objects m
✔ When there are responsibilities left un
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f interactions:

 for this problem?

create

 X Player Y
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Scenarios
A scenario describes a typical sequence o

✎ Are there other equally valid scenarios

create create
print getMove
done?

print getMove
done?
print getMove
done?

getMove

Driver Game Player
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on)

rgs[]) {
);

 }
 }

?
rogram.

n false;
("TicTacToe\n");
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Version 1.0 (skelet
Our first version does very little!
class GameDriver {
static public void main(String a
TicTacToe game = new TicTacToe(

}
public class TicTacToe {
 public boolean notOver() { 
public String toString() { 

}

➤ How do you iteratively “grow” a program
✔ Always have a running version of your p

do { System.out.print(game); }
while(game.notOver());

retur
return
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ests)
3x3 array of chars 
sing chess notation, 
' through '3'.

col++)
row++)
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Version 1.1 (simple t
The state of the game is represented as 
marked ‘ ’, ‘X’, or ‘O’. We index the state u
i.e., column is 'a' through 'c' and row is '1

public class TicTacToe {
private char[][] gameState_;
public TicTacToe() {
gameState_ = new char[3][3];

}
...

for (char col='a'; col <='c'; 
for (char row='1'; row<='3'; 
this.set(col,row,' ');
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ions
ion to array indices.
w, char mark) {
: precondition
ark;

w) {

1'];

char row) {
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Checking pre-condit
set() and get() translate from chess notat
private void set(char col, char ro

 // NB
gameState_[col-'a'][row-'1'] = m

}
private char get(char col, char ro
assert(inRange(col, row));
return gameState_[col-'a'][row-'

}
private boolean inRange(char col, 
return (('a'<=col) && (col<='c')
&& ('1'<=row) && (row<='3'));

}

assert(inRange(col, row));
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hods
nd get() methods:

acToe tests");
;

;

cToe tests");

;

;

© O. Nierstrasz — U. Berne

Testing the new met
For now, we just exercise the new set() a
public void test() {
System.err.println("Started TicT
assert(this.get('a','1') == ' ')

this.set('c','3',' ');
assert(this.get('c','3') == ' ')
assert(!this.inRange('d','4'));
System.err.println("Passed TicTa

}

assert(this.get('c','3') == ' ')
this.set('c','3','X');
assert(this.get('c','3') == 'X')
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d, we can bundle our 

rgs[]) {
);
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Testing the applicat

If each class provides its own test() metho
unit tests in a single driver class:

class TestDriver {
static public void main(String a
TicTacToe game = new TicTacToe(

 ;
}

}

game.test()



P2 — S2002 112.

Iterative Development

e
), we can view the 
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Printing the Stat
By re-implementing TicTacToe.toString(
state of the game:

3    |   |  
  ---+---+---
2    |   |  
  ---+---+---
1    |   |  
   a   b   c

➤ How do you make an object printable?
✔ Override Object.toString()
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;
--) {
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fer()
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TicTacToe.toStrin
Use a StringBuffer (not a String) to build
representation:
public String toString() {
StringBuffer 
for (char row='3'; row>='1'; row
rep.append(row);
rep.append("   ");
for (char col='a'; col <='c'; c
...

}
rep.append("   a   b   c\n");
return( );

}

rep = new StringBuf

rep.toString()
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Player X Player Y
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Refining the interact
We will want both real 
and test Players, so 
the Driver should 
create them. 

Updating the Game 
and printing it should 
be separate 
operations.

The Game should ask 
the Player to make a 
move, and then the 
Player will attempt to 
do so.

create cre
print

mo

done?

moupdate

print

done?

update mo

Driver Game
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cts

 O
als previous turn)
O or blank
e in a row

 is the turn of X
cupied, or there is a 

is already marked

e, if the invariants 
© O. Nierstrasz — U. Berne

Tic Tac Toe Contra
Explicit invariants:

❑ turn (current player) is either X or
❑ X and O swap turns (turn never equ
❑ game state is 3×3 array marked X, 
❑ winner is X or O iff winner has thre

Implicit invariants: 
❑ initially winner is nobody; initially it
❑ game is over when all squares are oc

winner
❑ a player cannot mark a square that 

Contracts:
❑ the current player may make a mov

are respected
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; // = nobody

// initial turn

// constants

yer()
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Version 1.2 (functio
We must introduce state variables to imp

public class TicTacToe {
private char[][] gameState_;
private Player 
private Player[] player_;
private int ;
private int ;
static final int X = 0;
static final int O = 1;

...

winner_ = new Pla

turn_ = X
squaresLeft_ = 9



P2 — S2002 117.

Iterative Development

ers
rs, but accepts them 

 Player playerO)
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Supporting test Play
The Game no longer instantiates the Playe
as constructor arguments:

public TicTacToe(Player playerX,
throws AssertionException

{ // ...
player_ = new Player[2];
player_[X] = playerX;
player_[O] = playerO;

}
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)

]
]

e, initially:
);

ethods should be 
 public or private.

).isNobody()
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Invariants
These conditions may seem obvious, which
should be checked ...
private boolean invariant() {
return (
&& ( this.notOver() 
|| this.winner() == player_[X
|| this.winner() == player_[O
|| this.winner().isNobody())

&& ( // els
|| 

}

Assertions and tests often tell us what m
implemented, and whether they should be

turn_ == X || turn_ == O

squaresLeft_ < 9
turn_ == X && this.winner(
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ctly!
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Delegating Responsibi
When Driver updates the Game, the Game
to make a move:

public void update() throws IOEx
player_[turn_].move(this);

}

Note that the Driver may not do this dire

...
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tionException

" + col + row);
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Delegating Responsibilit
The Player, in turn, calls the Game’s move

public void move(char col, char 
throws Asser

{ assert(notOver());
assert(inRange(col, row));
assert(get(col, row) == ' ');
System.out.println(mark + " at 

assert(invariant());
}

this.set(col, row, mark);
this.squaresLeft_--;
this.swapTurn();
this.checkWinner();
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of your code clear.

;

ly eliminate the need 
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Small Methods
Introduce methods that make the intent 

public boolean notOver() {
return this.winner().isNobody()

&& this.squaresLeft() > 0
}
private void swapTurn() {

;
}

Well-named variables and methods typical
for explanatory comments!

turn_ = (turn_ == X) ? O : X
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Accessor Method
Accessor methods protect clients from c
implementation:

public Player winner() {
return winner_;

}
public int squaresLeft() {
return this.squaresLeft_;

}

➤ When should instance variables be publ
✔ Almost never! Declare public accessor m
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--) {
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Code Smells — TicTacToe.ch
Check for a winning row, column or diagon
private void checkWinner()
throws AssertionException

{
char player;
for (char row='3'; row>='1'; row
player = this.get('a',row);
if (player == this.get('b',row)
&& player == this.get('c',row
this.setWinner(player);
return;

}
} ...
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l++) {

)) {
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Code Smells ...
More of the same ...
...
for (char col='a'; col <='c'; co
player = this.get(col,'1');
if (player == this.get(col,'2')
&& player == this.get(col,'3'
this.setWinner(player);
return;

}
}

...

and yet some more ...
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 {
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Code Smells ...
player = this.get('b','2');
if (player == this.get('a','1')
&& player == this.get('c','3'))
this.setWinner(player);
return;

}
if (player == this.get('a','3')
&& player == this.get('c','1'))
this.setWinner(player);
return;

}
}

✎ Duplicated code stinks! How can we cle
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rgs[]) {

) {

e(X, O);
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GameDriver
In order to run test games, we separated
from Game playing:
public class GameDriver {
public static void main(String a
try {
Player X = new Player('X');
Player O = new Player('O');

playGame(game);
} catch (AssertionException err
...

}
}

TicTacToe game = new TicTacTo
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The Player
We use different constructors to make r

public class Player {
private final char mark_;
private final BufferedReader in_

A real player reads from the standard inp
public Player(char mark) {
this(mark, new BufferedReader(

));
}

This constructor just calls another one ...
...

new InputStreamRe
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 ...
s its moves from any 

eredReader in) {

led directly.
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Player constructors
But a Player can be constructed that read
input buffer:

protected Player(char mark, Buff
mark_ = mark;
in_ = in;

}

This constructor is not intended to be cal
...
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 ...
 buffer:
moves) {

 Player representing 

moves)
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Player constructors
A test Player gets its input from a String

public Player(char mark, String 
this(mark, new BufferedReader(

));
}

The default constructor returns a dummy
“nobody”

public Player() {
this(' ');

}

new StringReader(
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s
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b1\nc1\n";

rgs[]) {
);

a1\nb2\nc3\n"
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Defining test case
The TestDriver builds games using test Pla
various test cases:

public class TestDriver {
private static String 
private static String testO1 = "
// + other test cases ...

public static void main(String a
testGame(testX1, testO1, "X", 4
// ...

}
...

testX1 = "
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ves)

uals(winner));
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Checking test cas
The TestDriver checks if the results are 
public static void testGame(String

String Omoves, String winner, i
{
try {

Player O = new Player('O', Omov
TicTacToe game = new TicTacToe(
GameDriver.playGame(game);

} catch (AssertionException err)
}

Player X = new Player('X', Xmo

assert(game.winner().name().eq
assert(game.squaresLeft() == s
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ves: X at c3
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--
 
--
O
c

Game test
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Running the test ca
Started testGame test
3    |   |  
  ---+---+---
2    |   |  
  ---+---+---
1    |   |  
   a   b   c
Player X moves: X at a1
3    |   |  
  ---+---+---
2    |   |  
  ---+---+---
1  X |   |  
   a   b   c
...

Player O mo
3    |   | 
  ---+---+-
2    | X | 
  ---+---+-
1  X | O | 
   a   b   
Player X mo
3    |   | 
  ---+---+-
2    | X | 
  ---+---+-
1  X | O | 
   a   b   
game over!
Passed test
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ow!
w does it differ from 

lp you to design 

 wasn’t in our 

 TicTacToe design?
hey are all supposed 

hat are only one or 
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What you should kn
✎ What is Iterative Development, and ho

the Waterfall model?
✎ How can identifying responsibilities he

objects?
✎ Where did the Driver come from, if it

requirements?
✎ Why is Winner not a likely class in our
✎ Why should we evaluate assertions if t

to be true anyway?
✎ What is the point of having methods t

two lines long?
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estions?
o change?
ot the Driver that 

e TicTacToe 

 TestDriver?
h version of an 
uld be called?
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ Why should you expect requirements t
✎ In our design, why is it the Game and n

prompts a Player to move?
✎ When and where should we evaluate th

invariant?
✎ What other tests should we put in our
✎ How does the Java compiler know whic

overloaded method or constructor sho
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factoring

ism and code reuse

g design

ce complexity

iener, Designing 
e Hall, 1990.
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5. Inheritance and Re

Overview 
❑ Uses of inheritance

☞ conceptual hierarchy, polymorph
❑ TicTacToe and Gomoku

☞ interfaces and abstract classes
❑ Refactoring

☞ iterative strategies for improvin
❑ Top-down decomposition

☞ decomposing algorithms to redu
Source

❑ R. Wirfs-Brock, B. Wilkerson, L. W
Object-Oriented Software, Prentic
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What is Inheritanc

Inheritance in object-oriented programm
mechanism to:

❑ derive new subclasses from existin

❑ where subclasses inherit all the fea
parent(s)

❑ and may selectively override the imp
features.



P2 — S2002 137.

Inheritance and Refactoring

sms
rent ways:
methods
 inherited methods
le superclasses

inherit from only)

ts of features
d return types
tances can be 
s
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Inheritance mechani
OO languages realize inheritance in diffe

self dynamically access subclass 
super statically access overridden,

multiple 
inheritance 

inherit features from multip

abstract 
classes 

partially defined classes (to 

mixins build classes from partial se
interfaces specify method argument an

subtyping guarantees that subclass ins
substituted for their parent



P2 — S2002 138.

Inheritance and Refactoring

re are many other 
wo players with a 

d with players 
t to place five 

 Random House

t can be used to play 
e same game-playing 
 Go-moku).
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The Board Game
Tic Tac Toe is a pretty dull game, but the
interesting games that can be played by t
board and two colours of markers.

Example: Go-moku 
“A Japanese game played on a go boar
alternating and attempting to be firs
counters in a row.”

—

We would like to implement a program tha
several different kinds of games using th
abstractions (starting with TicTacToe and
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ce
ing languages can be 
losely related 

ic Tac Toe is-a kind 

 can be uniformly 
ame by a client 
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Uses of Inheritan
Inheritance in object-oriented programm
used for (at least) three different, but c
purposes:

Conceptual hierarchy:
❑ Go-moku is-a kind of Board Game; T

of Board Game

Polymorphism: 
❑ Instances of Gomoku and TicTacToe

manipulated as instances of BoardG
program

...
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 ...

oardGame interface
xtend the 
 implementations of 

lysis; polymorphism 
and implementation.

e can also be 
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Uses of Inheritance
Software reuse: 

❑ Gomoku and TicTacToe reuse the B
❑ Gomoku and TicTacToe reuse and e

BoardGame representation and the
its operations

Conceptual hierarchy is important for ana
and reuse are more important for design 

Note that these three kinds of inheritanc
exploited separately and independently.
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TicTacToe
: char [3][3]
er
r
er[2]

t : int
er, Player)

char, char)
layer

: boolean
t( ) : int
ar, char)
ar) : char

r( )
r col, char row) : boolean
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Class Diagrams
The TicTacToe class currently 
looks like this: -gameState 

-winner: Play
-turn : Playe
-player : Play
-squaresLef
+create(Play
+update( )
+move(char, 
+winner( ) : P
+notOver( ) 
+squaresLef
-set(char, ch
-get(char, ch
-swapTurn( )
-checkWinne
-inRange(cha

Key
- private feature
# protected feature
+ public feature
create( ) static feature
checkWinner( ) abstract feature
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TicTacToe
-gameState : char [3][3]
...
...

Gomoku
meState : char [19][19]

reate ( )
heckWinner( )
© O. Nierstrasz — U. Berne

A bad idea ...
Why not simply use inheritance for 
incremental modification?

Exploiting inheritance for code reuse 
without refactoring tends to lead to:

❑ duplicated code (similar, but 
not reusable methods)

❑ conceptually unclear design 
(arbitrary relationships 
between classes)

Gomoku is not a kind of TicTacToe

-ga
...
+c
+c
...
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mented by the 

TicTacToe
...
+create ( )
...

Game
abstract

e

r, char)
er
olean
: int
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Class Hierarchy

Behaviour that is not shared will be imple
subclasses.

Gomoku
...
+create ( )
...

AbstractBoard

«interface»

BoardGam
+update( )
+move(char, cha
+winner( ) : Play
+notOver( ) : bo
+squaresLeft( ) 

Both Go-moku and Tic Tac 
Toe are kinds of Board 
games (IS-A). We would 
like to define a common 
interface, and factor the 
common functionality into 
a shared parent class.
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trategy

ctionality will:
nd Gomoku

for a 19×19 board!
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Iterative development s

We need to find out which TicTacToe fun
❑ already work for both TicTacToe a
❑ need to be adapted for Gomoku
❑ can be generalized to work for both

Example: set() and get() will not work 

...
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ategy ...
sign, we will 

hat TicTacToe 

 to an 

non-generic features
class of 

n tests to make sure 

tests?
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Iterative development str
Rather than attempting a “big bang” rede
iteratively redesign our game:

❑ introduce a BoardGame interface t
implements

❑ move all TicTacToe implementation
AbstractBoardGame parent

❑ fix, refactor or make abstract the 
❑ introduce Gomoku as a concrete sub

AbstractBoardGame
After each iteration we run our regressio
nothing is broken!

➤ When should you run your (regression) 
✔ After every change to the system.
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 should implement:

ception;
row, char mark)

/ NB: new method

 the current 
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Version 1.3 (add inter
We specify the interface both subclasses
public interface BoardGame {
public void update() throws IOEx
public void move(char col, char 
throws AssertionException;

public Player currentPlayer(); /
public Player winner();
public boolean notOver();
public int squaresLeft();
public void test();

}

Initially we focus only on abstracting from
TicTacToe implementation
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face
nly depend on the 

rgs[]) {

;

) { ... }

ion.

oe(X, O)

Game game
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Speaking to an Inter
Clients of TicTacToe and Gomoku should o
BoardGame interface:
public class GameDriver {
public static void main(String a
try {
Player X = new Player('X');
Player O = new Player('O');

 game = 
playGame(game);
...

}
public static void playGame(

Speak to an interface, not an implementat

BoardGame new TicTacT

Board
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f the game after 
est has failed.

 occurred!
ame game,

)

inting to playGame().

n verbose
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Quiet Testing
Our current TestDriver prints the state o
each move, making it hard to tell when a t

Tests should be silent unless an error has
public static void playGame(BoardG

{ ...
 {

System.out.println();
System.out.println(game);

...
}

NB: we must shift all responsibility for pr

boolea

if (verbose)
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)
nt supply the 

ame game,
)

t to a Null stream:
mal printing

; // testing

tream out

()
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Quiet Testing (2
A more flexible approach is to let the clie
PrintStream:
public static void playGame(BoardG

{ ...
;

...
}

The TestDriver can simply send the outpu
playGame(game, System.out); // nor
playGame(game, 

PrintS

out.println(game)

new NullPrintStream
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th null methods:
ds PrintStream {
.out); }

}
}

gs and switches.
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NullPrintStream
A Null Object implements an interface wi
public class NullPrintStream exten
NullPrintStream() { super(System
public void print() { }
public void print(Object x) { }
public void print(String s) { }
public void println() { }
public void println(Object x) { 
public void println(String s) { 
...

}

Null Objects are useful for eliminating fla
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port the current 

BoardGame {

er fixing any bugs) 
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TicTacToe adaptati
In order to pass responsibility for printing
a BoardGame must provide a method to ex
Player:

public class TicTacToe implements 
...
public Player currentPlayer() {
return player_[turn_];

}

Now we run our regression tests and (aft
continue.
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dGame
 BoardGame

layer();

r row, char mark)

ct?
d to be subclassed, 
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Version 1.4 (add abstra
AbstractBoardGame will provide common 
methods for TicTacToe and Gomoku.
public  AbstractBoar

implements
{ protected char[][] gameState_;
protected Player winner_ = new P
protected Player[] player_;
...

protected void set(char col, cha
...

➤ When should a class be declared abstra
✔ Declare a class abstract if it is intende

but not instantiated.

abstract class
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n classes
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Refactoring
Refactoring is a process of moving metho
variables from one class to another to imp
specifically to:

❑ reassign responsibilities

❑ eliminate duplicated code

❑ reduce coupling: interaction betwee

❑ increase cohesion: interaction with
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 strategy, first 
 from TicTacToe to 
ate features to 

tractBoardGame {
 Player playerO)

pty 
shared code there.
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Refactoring strateg
We have adopted one possible refactoring
moving everything except the constructor
AbstractBoardGame, and changing all priv
protected:

public class TicTacToe extends Abs
public TicTacToe(Player playerX,
...

We could equally have started with an em
AbstractBoardGame and gradually moved 
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eusability)
actBoardGame are 
h must be deferred 

d the winning score 

 an init() method
nRange() and test()
r a 19×19 board

ent (e.g., “f17”)
 integer coordinates

written ...
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Version 1.5 (refactor for r
Now we must check which parts of Abstr
generic, which must be repaired, and whic
to its subclasses:

❑ the number of rows and columns an
may vary
☞ introduce instance variables and
☞ rewrite toString(), invariant(), i

❑ set() and get() are inappropriate fo
☞ index directly by integers
☞ fix move() to take String argum
☞ add methods to parse String into

❑ getWinner() must be completely re
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 1.5
ry sized boards:
dGame ... {

r playerO) { ... 

ubclasses:
layer playerO) {
 = 3
rO);

for 

t cols, int score,
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AbstractBoardGame
We introduce an init() method for arbitra
public abstract class AbstractBoar
protected void init(

Player playerX, Playe
}

And call it from the constructors of our s
public TicTacToe(Player playerX, P

// 3x3 board with winning score
playerX, playe

}

✎ Why not just introduce a constructor 
AbstractBoardGame?

int rows, in

this.init(3,3,3,
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BoardGame 1.5
Most of the changes in AbstractBoardGam
methods. 

The only public (interface) method to cha

public interface BoardGame {
...
public void move( , c
throws AssertionException;

...
}

String coord
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ly simplified:
rows IOException {

nput");
); }

e ignored ("
)"); }

e for checking if the 

))
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Player 1.5
The Player’s move() method is now radical
public void move(BoardGame game) th
String ;
if (line == null)
throw new IOException("end of i

try { 
catch (AssertionException err) {
System.err.println("Invalid mov

+ line + "
}

✎ How can we make the Player responsibl
move is valid?

line = in_.readLine()

game.move(line, this.mark(
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for both TicTacToe 

t fails

or either TicTacToe 
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Version 1.6 (Gomok
The final steps are:

❑ rewrite checkWinner() 

❑ introduce Gomoku
☞ modify TestDriver to run tests 

and Gomoku
☞ print game state whenever a tes

❑ modify GameDriver to query user f
or Gomoku
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Keeping Score
The Go board is too large to search exhau
Go-moku score.

We know that a winning sequence 
must include the last square 
marked. So, it suffices to search 
in all four directions starting 
from that square to see if we find 
5 in a row.

✎ Whose responsibility is it to search?
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 ...
rching for a winning 

 So let’s introduce a 
layer’s pieces.
, int row)... {

;

)
n; }

ingScore_)
n; }

 col, row)

ingScore_
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A new responsibility
Maintaining the state of the board and sea
run seem to be unrelated responsibilities.
new object (a Runner) to run and count a P
protected void checkWinner(int col
char player = this.get(col,row);
Runner runner = 
// check vertically
if (
{ this.setWinner(player); retur

// check horizontally
if (runner.run(1,0) >= this.winn
{ this.setWinner(player); retur

...
}

new Runner(this,

runner.run(0,1) >= this.winn
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e col and row
rent col & row

t col, int row)
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The Runner
The Runner must know its game, its home 
its current position:
public class Runner {
BoardGame game_;
int homeCol_, homeRow_; // Hom
int col_=0, row_=0; // Cur

public Runner(BoardGame game, in
{
game_ = game;
homeCol_ = col;
homeRow_ = row;

}
...
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Top-down decompos
Implement algorithms abstractly, introdu
for each abstract step, as you decompose
public int run(int dcol, int drow)
throws AssertionException

{
int score = 1;

 ;
score += 
this.goHome();
score += 
return score;

}

Well-chosen names eliminate the need for

this.goHome()
this.forwardRun(dcol, d

this.reverseRun(dcol, d
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Recursion
Many algorithms are more naturally expre
than iteration.

Recursively move forward as long as we are
length of the run:
private int forwardRun(int dcol, i
throws AssertionException

{
this.move(dcol, drow);
if (this.samePlayer())

else
return 0;

}

return 1 + this.forwardRun(dco



P2 — S2002 165.

Inheritance and Refactoring

ds
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amePlayer()?

row)
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More helper metho
Helper methods keep the main algorithm c
and are mostly trivial to implement.

private int reverseRun(int dcol, i
return 

}

private void goHome() {
col_= homeCol_;
row_ = homeRow_;

}

✎ How would you implement move() and s

this.forwardRun(-dcol, -d
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)

int row);

 really need, and will 
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BoardGame 1.6
The Runner now needs access to the get()
methods so we make them public:
public interface BoardGame {
...

 char get(int col, int row
throws AssertionException;

 boolean inRange(int col, 
...

}

➤ Which methods should be public?
✔ Only publicize methods that clients will

not break encapsulation.

public

public
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 is played on a 19x19 
ow.

ctBoardGame {
ayer playerO)

re = 5
;

inherit everything 
GameBoard!

yerO)
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Gomoku
Gomoku is similar to TicTacToe, except it
Go board, and the winner must get 5 in a r

public class Gomoku extends Abstra
public Gomoku(Player playerX, Pl
{
// 19x19 board with winning sco

}
}

In the end, Gomoku and TicTacToe could 
(except their constructor) from Abstract

this.init(19,19,5,playerX, pla
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ow!
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tected rather than 

e code reuse?
do it in small steps?
sm?
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What you should kn
✎ How does polymorphism help in writing
✎ When should features be declared pro

public or private?
✎ How do abstract classes help to achiev
✎ What is refactoring? Why should you 
✎ How do interfaces support polymorphi
✎ Why should tests be silent?
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 from a class whose 

variant() methods 

, or the other way 

rarchy so that you 
rent sizes?
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ What would change if we didn’t declar

AbstractBoardGame to be abstract?
✎ How does an interface (in Java) differ

methods are all abstract?
✎ Can you write generic toString() and in

for AbstractBoardGame?
✎ Is TicTacToe a special case of Gomoku

around?
✎ How would you reorganize the class hie

could run Gomoku with boards of diffe



P2 — S2002 170.

Programming Tools

ools

 Ant
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6. Programming T

Overview
❑ Managing dependencies — make and
❑ Version control — RCS and CVS
❑ Debuggers
❑ Profilers
❑ Documentation generation — Javad
❑ Integrated Development Environme

Sources
❑ Ant: jakarta.apache.org/ant/
❑ CVS: www.cvshome.org

http://jakarta.apache.org/ant/index.html
http://www.cvshome.org/
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Make
Make is a Unix and Windows-based tool fo
dependencies between files.

You can specify in a “Makefile”:
❑ Which files various targets depend
❑ Rules to generate each target
❑ Macros used in the dependencies an
❑ Generic rules based on filename suf

When files are modified, make will apply t
rules to bring the targets up-to-date.
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 default target
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A Typical Makefil
.SUFFIXES: .class .java

.java.class : #
javac $<

CLASS = AbstractBoardGame.class AssertionExcepti
BoardGame.class GameDriver.class Gomoku.class
Runner.class TestDriver.class TicTacToe.class

all : TicTacToe.jar Test.jar #

#
#

Test.jar : manifest-test $(CLASS)
jar cmf manifest-test $@ $(CLASS)

clean :
rm -f *.class *.jar

TicTacToe.jar : manifest-run $(CLASS)
jar cmf manifest-run $@ $(CLASS)
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dGame.class AssertionEx-
omoku.class Player.class

e.class AssertionExcep-
moku.class Player.class

e.class AssertionExcep-
moku.class Player.class
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Running make
% make
javac AbstractBoardGame.java
javac GameDriver.java
javac TestDriver.java
jar cmf manifest-run TicTacToe.jar AbstractBoar
ception.class BoardGame.class GameDriver.class G
Runner.class TestDriver.class TicTacToe.class
jar cmf manifest-test Test.jar AbstractBoardGam
tion.class BoardGame.class GameDriver.class Go
Runner.class TestDriver.class TicTacToe.class

% touch Runner.java
% make Test.jar 
javac Runner.java
jar cmf manifest-test Test.jar AbstractBoardGam
tion.class BoardGame.class GameDriver.class Go
Runner.class TestDriver.class TicTacToe.class
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Ant
Ant is a Java-based make-like utility that 
dependencies and build rules.

You can specify in a “buildfile.xml”:
❑ the name of a project
❑ the default target to create
❑ the basedir for the files of the pro
❑ dependencies for each target
❑ tasks to execute to create targets
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/>
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A Typical build.xm
<project name="TicTacToe" default="all" basedir=

<!-- set global properties for this build -->
<property name="src" value="."/>
<property name="build" value="build"/>
<property name="runjar" value="TicTacToe.jar"
<property name="testjar" value="Test.jar"/>

<target name="all" 
<target name="init">

<!-- Create the time stamp -->
<tstamp/>
<mkdir dir="${build}"/>

</target>

<target name="compile" depends="init">
<!-- Compile the java code from ${src} into

</target>

depends="${runjar},${testj

<javac srcdir="${src}" destdir="${build}"/>
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...
<target name="${runjar}" depends="compile">

<!-- Compile the java code from ${src} into
<jar jarfile="${runjar}" manifest="manifest

basedir="${build}"/>
</target>

<target name="${testjar}" depends="compile">
<jar jarfile="${testjar}" manifest="manifes

basedir="${build}"/>
</target>

<target name="clean">
<!-- Delete the ${build} directory -->
<delete dir="${build}"/>

</target>
</project>
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cTacToe/1.6/build

cToe.jar

jar
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Running Ant
% ant
Buildfile: build.xml
init:
[mkdir] Created dir: /Scratch/TicTacToe/1.6/buil
compile:
[javac] Compiling 10 source files to /Scratch/Ti
${runjar}:
[jar] Building jar: /Scratch/TicTacToe/1.6/TicTa
${testjar}:
[jar] Building jar: /Scratch/TicTacToe/1.6/Test.
all:
BUILD SUCCESSFUL
Total time: 2 seconds
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Version Control Syst
A version control system keeps track of m

❑ check-in and check-out of files
❑ logging changes (who, where, when)
❑ merge and comparison of versions
❑ retrieval of arbitrary versions
❑ “freezing” of versions as releases
❑ reduces storage space (manages sou

“deltas”)

SCCS and RCS are two popular version co
UNIX. CVS is popular on Mac, Windows an
(see www.cvshome.org)

http://www.cyclic.com
http://www.cvshome.org
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Version Control 
Version control enables you to make radic
software system, with the assurance that
back to the last working version.

➤ When should you use a version control s
✔ Use it whenever you have one available, f

project!

Version control is as important as testing
development!



P2 — S2002 180.

Programming Tools

iew

f RCS files
an RCS file
s
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evisions
 files into a third
e not been changed
 configuration
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RCS command overv
ci Check in revisions
co Check out revisions
rcs Set up or change attributes o

ident Extract keyword values from 
rlog Display a summary of revision

merge Merge changes from two files
rcsdiff Report differences between r

rcsmerge Merge changes from two RCS
rcsclean Remove working files that hav

rcsfreeze Label the files that make up a
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) file for editing
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een versions
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Using RCS
When file is checked in, an RCS file calle
in the RCS directory:
mkdir RCS # create subdirectory
ci file # put file under cont

Working copies must be checked out and 
co -l file # check out (and lock
ci file # check in a modified
co file # check out a read-on
ci -u file # check in file; leave
ci -l file # check in file; leav
rcsdiff file # report changes betw
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tained by RCS:

elease.level
ck-in

on (username)
ck-in
n (prompted 
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Additional RCS Feat
Keyword substitution

❑ Various keyword variables are main

Revision numbering:
❑ Usually each revision is numbered r
❑ Level is incremented upon each che
❑ A new release is created explicitly:

ci -r2.0 file

$Author$ who checked in revisi
$Date$ date and time of che
$Log$ description of revisio

during check-in)
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CVS
CVS is comparable to RCS, but is more su
projects. 

❑ Understands RCS-style keywords
❑ Shared repository for teamwork

☞ Manages hierarchies of files
☞ Manages parallel development b

❑ Uses optimistic version control
☞ no locking
☞ merging on conflict

❑ Offers network-based CVS server
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d out files
out files
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Using CVS
mkdir CVS create CVS repos
mkdir CVS/CVSROOT
setenv CVSROOT /.../CVS set environment 

cd TicTacToe/1.0 put project unde
cvs import -m "P2 TicTacToe" p2/tictactoe p2 sta
... can delete origi
cd working checkout working

 
cd p2/tictactoe/
... modify and add f

 AssertionException.java TestDriver.java
 commit changes

... time passes ...
 update working c

cvs history report on checke
cvs release release checked 

cvs checkout p2/tictactoe

cvs add
cvs commit

cvs update
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Debuggers
A debugger is a tool that allows you to ex
running program:

❑ step through the program instructi
❑ view the source code of the execut
❑ inspect (and modify) values of varia

formats
❑ set and unset breakpoints anywher
❑ execute up to a specified breakpoin
❑ examine the state of an aborted pr

file”)
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Using Debuggers
Interactive debuggers are available for m
programming languages.

Classical debuggers are line-oriented (e.g
ones are graphical.

➤ When should you use a debugger?
✔ When you are unsure why (or where) yo

working.

NB: debuggers are object code specific, s
with programs compiled with compilers ge
object files.
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Using jdb

% jdb -attach 8000
Initializing jdb...
> stop in AbstractBoardGame.move
Set breakpoint AbstractBoardGame.move
Breakpoint hit: thread="main", AbstractBoardGame

94 assert(this.notOver());
main[1] where

[1] AbstractBoardGame.move (AbstractBoardGame
[2] Player.move (Player.java:68)
[3] AbstractBoardGame.update (AbstractBoardGa
[4] GameDriver.playGame (GameDriver.java:54)
[5] GameDriver.playGame (GameDriver.java:29)
[6] GameDriver.main (GameDriver.java:17)

% java -Xdebug \
-Xrunjdwp:transport=dt_socket,address=8000,
-jar TicTacToe.jar

Hi! Would you like to play TicTacToe (t) or G
...



P2 — S2002 188.

Programming Tools

ar mark)

.move(), line=95, bci=8
© O. Nierstrasz — U. Berne

main[1] list
91 public void move(String coord, ch
92 throws AssertionException
93 {
94 => assert(this.notOver());
95 int col = getCol(coord);
96 int row = getRow(coord);
main[1] next
main[1] 
Step completed: thread="main", AbstractBoardGame

95 int col = getCol(coord);
main[1] locals
Method arguments:

coord = "b2"
mark = X

Local variables:
main[1] print this._gameState[1][1]

this._gameState[1][1] = 
main[1] cont
...
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Debugging Strateg
Develop tests as you program

❑ Apply Design by Contract to decora
invariants and pre- and post-condit

❑ Develop unit tests to exercise all p
program
☞ use assertions (not print statem

program state 
☞ print the state only when an ass

❑ After every modification, do regre

...
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ts!
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Debugging Strategy
If errors arise during testing or usage

❑ Use the test results to track down

❑ If you can’t tell where the bug is, t
☞ use a debugger to identify the f
☞ fix the bug
☞ identify and add any missing tes

All software bugs are a matter of false a

If you make your assumptions explicit, yo
out your bugs.
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Profilers
A profiler (e.g., java -prof) tells you wher
program has spent its time.

1. your program must first be instrume
(i) setting a compiler (or interpreter
(ii) adding instrumentation code to y

2. the program is run, generating a pro
3. the profiler is executed with the pr

The profiler can then display the call grap

Caveat: the technical details vary from co
...
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.readBytes
initFields
inflateBytes
m.writeBytes

Byte.getNative
assLoader.loadClass
append
stemPackage
normalize

l.ssl.Provider$1.run
pen
© O. Nierstrasz — U. Berne

Using java -Xpro
% java -Xprof -jar TicTacToe.jar
...

Interpreted + native Method
98.20% 0 + 696 java.io.FileInputStream
0.10% 1 + 0 java.util.zip.ZipEntry.
0.10% 0 + 1 java.util.zip.Inflater.
0.10% 0 + 1 java.io.FileOutputStrea
0.10% 1 + 0 AbstractBoardGame.get
0.10% 1 + 0 sun.io.CharToByteSingle
0.10% 0 + 1  sun.misc.Launcher$AppCl
0.10% 1 + 0 java.lang.StringBuffer.
0.10% 0 + 1 java.lang.Package.getSy
0.10% 0 + 1 java.io.UnixFileSystem.
0.10% 0 + 1 GameDriver.main
0.10% 0 + 1 com.sun.net.ssl.interna
0.10% 0 + 1 java.util.zip.ZipFile.o

100.00% 5 + 704 Total interpreted
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rof
10 -jar Test.jar

:12:04 2002

teSingleByte.getNative
rties.load
dReader.readLine
Game
able.<init>
me.move
g.charAt
dReader.readLine
gBuffer.append
me.set
Loader.defineClass
dWriter.ensureOpen
g.concat
© O. Nierstrasz — U. Berne

Using java -Xrunhp
% java -Xrunhprof:cpu=times,file=log.txt,depth=

CPU TIME (ms) BEGIN (total = 380) Sat Mar 16 12
rank self accum count trace method

1 5.26% 5.26% 272 18 sun.io.CharToBy
2 5.26% 10.53% 1 24 java.util.Prope
3 5.26% 15.79% 106 9 java.io.Buffere
4 2.63% 18.42% 5 27 TestDriver.test
5 2.63% 21.05% 5 31 java.lang.Throw
6 2.63% 23.68% 40 26 AbstractBoardGa
7 2.63% 26.32% 509 38 java.lang.Strin
8 2.63% 28.95% 40 42 java.io.Buffere
9 2.63% 31.58% 128 15 java.lang.Strin
10 2.63% 34.21% 361 21 AbstractBoardGa
11 2.63% 36.84% 1 30 java.lang.Class
12 2.63% 39.47% 10 13 java.io.Buffere
13 2.63% 42.11% 1 10 java.lang.Strin
...
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 to tune 

out performance?
gram with poor 

rts of the program 
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Using Profilers

➤ When should you use a profiler?
✔ Always run a profiler before attempting

performance.

➤ How early should you start worrying ab
✔ Only after you have a clean, running pro

performance.

NB: The call graph also tells you which pa
have (not) been tested!
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HTML format for 

otected method may 
een /** and */.
e.g., @author) and 
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Javadoc
Javadoc generates API documentation in 
specified Java source files.

Each class, interface and each public or pr
be preceded by “javadoc comments” betw
Comments may contain special tag values (
(some) HTML tags.
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g

ernative source
ringReader).

dReader in) { ...
© O. Nierstrasz — U. Berne

Javadoc input
import java.io.*;
/**
 * Manage interaction with user.
 * @author Oscar.Nierstrasz@acm.or
 * @version 1.5 1999-02-07
 */
public class Player { ...
/**
 * Constructor to specify an alt
 * of moves(e.g., a test case St
 */
public Player(char mark, Buffere



P2 — S2002 197.

Programming Tools
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Javadoc 
output

View it with 
your favourite 
web browser!
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 your environment!

anger help to detect 
s, such as “memory 

d directories into a 

 according to editing 
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Other tools
Be familiar with the programming tools in

❑ memory inspection tools: like ZoneR
other memory management problem
leaks”

❑ zip/jar: store and compress files an
single “zip file”

❑ awk, sed and perl: process text files
scripts/programs
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vironments
(IDE) provides a 
ing tools:

gramming tools were 
© O. Nierstrasz — U. Berne

Integrated Development En
An Integrated Development Environment 
common interface to a suite of programm

❑ project manager
❑ browsers and editors
❑ compilers and linkers
❑ make utility
❑ version control system
❑ interactive debugger
❑ profiler
❑ memory usage monitor
❑ documentation generator

Many of the graphical object-oriented pro
pioneered in Smalltalk.
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 languages and 
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CodeWarrior
CodeWarrior is a popular IDE for multiple
platforms

The Project Browser 
organizes the source and 
object files belonging to a 
project, and lets you 
modify the project 
settings, edit source files, 
and compile and run the 
application.
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owser
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CodeWarrior Class Br
The Class 
Browser 
provides one 
way to navigate 
and edit 
project files ...
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Browser
he class hierarchy.
© O. Nierstrasz — U. Berne

CodeWarrior Hierarchy 
A Hierarchy Browser provides a view of t

NB: no distinction is 
made between 
interfaces and 
classes. Classes that 
implement multiple 
interfaces appear 
multiple times in the 
hierarchy!



P2 — S2002 203.

Programming Tools

ts
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Setting Breakpoin
You can set 
breakpoints by 
simply clicking 
next to 
selected 
statements.

Execution will 
be interrupted 
every time 
breakpoint is 
reached, 
displaying the 
current 
program state.
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ow!
building?
rol system support?

you set them?
ed a bug?
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What you should kn
✎ How do make and Ant support system 
✎ What functionality does a version cont
✎ When should you use a debugger?
✎ What are breakpoints? Where should 
✎ What should you do after you have fix
✎ When should you use a profiler?
✎ What is an IDE?
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estions?
make?
RCS?
sion of your system?
our project as a new 

the compiler (rather 

ry part of your 
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Can you answer these qu
✎ When should you use Ant rather than 
✎ When should you use CVS rather than 
✎ How often should you checkpoint a ver
✎ When should you specify a version of y

“release”?
✎ How can you tell when there is a bug in 

than in your program)?
✎ How can you tell if you have tested eve

system?
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.junit.org)
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7. A Testing Fram

Overview
❑ What is a framework?
❑ JUnit — a simple testing framewor
❑ Money and MoneyBag — a testing c
❑ Double Dispatch — how to add diff

objects
❑ Testing practices

Sources
❑ JUnit 3.7 documentation (from www

http://www.junit.org/
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h development. 
 progress of 

mething starts 
king.”

 exhaustive.

y?
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The Problem

“Testing is not closely integrated wit
This prevents you from measuring the
development — you can't tell when so
working or when something stops wor

Interactive testing is tedious and seldom
Automated tests are better, but, 

❑ how to introduce tests interactivel
❑ how to organize suites of tests?
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ality, write the tests 

.

ftware to add new 
nd run the 

g.
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Testing Practices
During Development

❑ When you need to add new function
first.
You will be done when the test runs

❑ When you need to redesign your so
features, refactor in small steps, a
(regression) tests after each step.
Fix what’s broken before proceedin

...
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...

in your code, first 
 code is working.
.

omething into a 
ssion, write it as 

Martin Fowler
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Testing Practices 
During Debugging

❑ When someone discovers a defect 
write a test that will succeed if the
Then debug until the test succeeds

“Whenever you are tempted to type s
print statement or a debugger expre
a test instead.”
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t provides:
Test Suites
 up test data 

ing tests

errors:
n anticipated 

eck for.
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JUnit
JUnit is a simple “testing framework” tha

❑ classes for writing Test Cases and 
❑ methods for setting up and cleaning

(“fixtures”)
❑ methods for making assertions 
❑ textual and graphical tools for runn

JUnit distinguishes between failures and 
❑ A failure is a failed assertion, i.e., a

problem that you test.
❑ An error is a condition you didn’t ch
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aries
ser code makes use 
cedures or classes:

hip between generic 
 both generic 
:

me — I’ll call you.”

ibrary classes

User classes
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Frameworks vs. Libr
In traditional application architectures, u
of library functionality in the form of pro

A framework reverses the usual relations
and application code. Frameworks provide
functionality and application architecture

Essentially, a framework says: “Don’t call 

User Application
L

main()

Framework Application
main()
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rk
«utility»

Assert

rtTrue(boolean) 
rtEquals(Object, Object)

TestResult 

ate() 
id run(TestCase) 
Error(Test, Throwable)
Failure(Test, Throwable)
ors() : Enumeration
lures() : Enumeration

errors and failures are 
ected into a TestResult.
© O. Nierstrasz — U. Berne

The JUnit Framewo
«interface»

Test
+ countTestCases() : int
+ run(TestResult)

TestCase
abstract

+ create(String)
+ fail() 
+ void runBare() 
# void runTest()
# void setUp() 
# void tearDown()
+ name() : String

TestSuite 

+ create() 
+ create(Class)
+ addTest(Test)

*
+ asse
+ asse
...

+ cre
# vo
+ add
+ add
+ err
+ fai

A Test can 
run a number 
of concrete 
test cases

All 
coll

A TestSuite 
bundles a set 
of Tests
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io

t you define for your 

n(tc)

are()

addFailure()

tr:TestResult
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A Testing Scenar

The framework calls the test methods tha
test cases.

run(tr)
run(tr)

ru

runB
setUp()

runTest()

tearDown()

:TestRunner :TestSuite tc:TestCase
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 of code, then a 
to write a test 
hat will make it 

st a single class
fore you implement)
functionality

their time 
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Testing Style

“The style here is to write a few lines
test that should run, or even better, 
that won't run, then write the code t
run.”

❑ write unit tests that thoroughly te
❑ write tests as you develop (even be
❑ write tests for every new piece of 

“Developers should spend 25-50% of 
developing tests.”
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problem of 
 currencies. 
 is trivial, you 
gs get more 
re involved.”
© O. Nierstrasz — U. Berne

Representing multiple cu

The problem ...

“The program we write will solve the 
representing arithmetic with multiple
Arithmetic between single currencies
can just add the two amounts. ... Thin
interesting once multiple currencies a
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ss to handle a single 

ow to add different 

Money
fAmount : int
fCurrency : String
create(int, String)
amount() : int
currency() : String
add(Money) : Money
equals( Object) : boolean
toString() : String
© O. Nierstrasz — U. Berne

Money
We start by designing a simple Money cla
currency:

public class Money {
...
public Money add(Money m) {
return ;

}
...

}

NB: The first version does not consider h
currencies!

- 
- 
+ 
+ 
+ 
+ 
+ 
+ 

new Money(...)
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Case that exercises 

 {

super(name); }

eate the test data

tCase
© O. Nierstrasz — U. Berne

MoneyTest
To test our Money class, we define a Test
some test data (the fixture):

public class MoneyTest 
private Money f12CHF;
private Money f14CHF;
public MoneyTest(String name) { 

protected void  { // cr

f14CHF = new Money(14, "CHF");
}
...

}

import junit.framework.*;
extends Tes

setUp()
f12CHF = new Money(12, "CHF");
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ct to be true ...

);

;
F));

"CHF");
F);

)

(12, "CHF"))
© O. Nierstrasz — U. Berne

Some basic tests
We define methods to test what we expe

public void testEquals() {
assertTrue(
assertEquals(f12CHF, f12CHF);
assert
assertTrue(!f12CHF.equals(f14CH

}
public void testSimpleAdd() {
Money expected = new Money(26, 
Money result = f12CHF.add(f14CH
assertEquals(expected, result);

}

!f12CHF.equals(null

Equals(f12CHF, new Money
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ite
uite:

;
;

stSimpleAdd"));

 TestCase instances
ic method called 

e()
estEquals"))
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Building a Test Su
... and we bundle these tests into a Test S

 {
TestSuite suite = 

suite.addTest(new MoneyTest("te
;

}

A Test Suite:
❑ bundles together a bunch of named
❑ by convention, is returned by a stat

suite()

public static Test suite()
new TestSuit

suite.addTest(new MoneyTest("t

return suite
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The TestRunner

junit.ui.TestRunner is a 
GUI that we can use to 
instantiate and run the 
suite:
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ce a MoneyBag class 
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MoneyBags
To handle multiple currencies, we introdu
that can hold several instances of Money:

...

MoneyBag
- fMonies : HashTable
+ create(Money, Money)
+ create(Money [ ])
- appendMoney(Money)
+ toString() : String
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;

i++)

Money) {
Money.currency());
oney); }
}

;

Hashtable(5)

 m)
© O. Nierstrasz — U. Berne

MoneyBags ...
class MoneyBag {
private Hashtable 
MoneyBag(Money bag[]) {
for (int i= 0; i < bag.length; 

;
}
private void appendMoney(Money a
Money m = (Money) fMonies.get(a
if (m != null) { m = m.add(aM
else { m = aMoney; 

}
}

fMonies = new 

appendMoney(bag[i])

fMonies.put(aMoney.currency(),
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 (I)
e fixture ...

tCase {

;
USD);
USD)
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Testing MoneyBags
To test MoneyBags, we need to extend th

public class MoneyTest extends Tes
...
protected void setUp() {
f12CHF = new Money(12, "CHF");
f14CHF = new Money(14, "CHF");

;
f21USD = new Money(21, "USD");

fMB2 = new MoneyBag(f14CHF, f21
}

f7USD = new Money( 7, "USD")

fMB1 = new MoneyBag(f12CHF, f7
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(II)

;

);
);

;estBagEquals"))
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Testing MoneyBags 
... define some new (obvious) tests ...

public void testBagEquals() {
assertTrue( )
assert ;
assertTrue(!fMB1.equals(f12CHF)
assertTrue(!f12CHF.equals(fMB1)
assertTrue(!fMB1.equals(fMB2));

}

... add them to the test suite ...
public static Test suite() { ...

return suite;
}

!fMB1.equals(null)
Equals(fMB1, fMB1)

suite.addTest(new MoneyTest("t
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III)
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Testing MoneyBags (

and run the tests.



P2 — S2002 226.

A Testing Framework

s
itrary Monies and 
e as equals:

 {
HF][7 USD]}
;
g(bag);

;

ould implement a 

}

add(f7USD))
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Adding MoneyBag
We would like to freely add together arb
MoneyBags, and be sure that equals behav

public void testMixedSimpleAdd()
// [12 CHF] + [7 USD] == {[12 C
Money bag[] = 
MoneyBag expected = new MoneyBa
assertEquals(expected, 

}

That implies that Money and MoneyBag sh
common interface ...

{ f12CHF, f7USD 

f12CHF.
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e (I)
nies

terface?

MoneyBag

endMoney(Money) 
endBag(MoneyBag) 
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The IMoney interfac
Monies know how to be added to other Mo

Do we need anything else in the IMoney in

Money

+ amount() : int
+ currency() : String

«interface» 

IMoney
+ add(IMoney) : IMoney

- app
- app
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I)
ing encapsulation?
.

add me as a Money

 ...

 add as a MoneyBag

 an additional call to 
ling with...”
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Double Dispatch (
How do we implement add() without break
class Money implements IMoney { ..
public IMoney add(IMoney m) {
return m. (this); // 

} ...
}
class MoneyBag implements IMoney {
public IMoney add(IMoney m) {
return m.  (this); //

} ...
}

“The idea behind double dispatch is to use
discover the kind of argument we are dea

addMoney

addMoneyBag
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.
{
y()))
mount(), 
);

ag s) {
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Double Dispatch (I
The rest is then straightforward ...
class Money implements IMoney { ..
public IMoney addMoney(Money m) 
if (m.currency().equals(currenc
return new Money(amount()+m.a

currency()
else
return new MoneyBag(this, m);

}
public IMoney addMoneyBag(MoneyB
return s.addMoney(this);

} ...

and MoneyBag takes care of the rest.
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 (II)

;

eyBag);

ly needed within the 

«interface» 

IMoney
ney) : IMoney
y(Money) : IMoney
yBag(MoneyBag) : IMoney
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The IMoney interface

So, the common 
interface has to be:

public interface IMoney {
public IMoney add(IMoney aMoney)
IMoney addMoney(Money aMoney);
IMoney addMoneyBag(MoneyBag aMon

}

NB: addMoney() and addMoneyBag() are on
Money package.

+ add(IMo
+ addMone
+ addMone
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A Failed test
This time we are not so lucky ...
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ag.equals()!

 ... 
bject) {
g) {
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The fix ...
It seems we forgot to implement MoneyB

We fix it:
class MoneyBag implements IMoney {
public boolean equals(Object anO
if (anObject instanceof MoneyBa
...

} else {
return false;

}
}

... test it, and continue developing.
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 the name mean?
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What you should kn
✎ How does a framework differ from a l
✎ Why do TestCase and TestSuite imple

interface?
✎ What is a unit test?
✎ What is a test “fixture”?
✎ What should you test in a TestCase?
✎ What is “double dispatch”? What does
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estions?
 in debugging?
ich test methods to 

ight suite() method?
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g declared?
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Can you answer these qu
✎ How does implementing toString() help
✎ How does the MoneyTest suite know wh

run?
✎ How does the TestRunner invoke the r
✎ Why doesn’t the Java compiler compla

MoneyBag.equals() is used without bein
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 Collections

le

 and Maps

 The Java Tutorial , 
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8. Software Components:

Overview
❑ Example problem: The Jumble Puzz
❑ The Java 2 collections framework
❑ Interfaces: Collections, Sets, Lists
❑ Implementations ...
❑ Algorithms: sorting ...
❑ Iterators

Source
❑ “Collections 1.2”, by Joshua Bloch, in

java.sun.com
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provided
services
© O. Nierstrasz — U. Berne

Components
Components are black-box entities that:

❑ import required services and
❑ export provided services
❑ must be designed to be composed 

Components may be fine-grained (classes)
(applications).

required services
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The Jumble Puzzle
The Jumble Puzzle tests your 
English vocabulary by presenting 
four jumbled, ordinary words.
The circled letters of the 
unjumbled words represent the 
jumbled answer to a cartoon 
puzzle.

Since the jumbled words can be 
found in an electronic dictionary, 
it should be possible to write a 
program to automatically solve 
the first part of the puzzle 
(unjumbling the four words).
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efficient: a word 
ations. A five-letter 
-letter word may 
rmutations.

iven word have?

abacus
abalone
abase
...
Zurich
zygote

n, 

e 
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Naive Solution

The obvious, naive solution is extremely in
with n characters may have up to n! permut
word may have 120 permutations and a six
have 720 permutations. “rupus” has 60 pe

✎ Exactly how many permutations will a g

rupus
urpus
uprus
purus
pruus

...

Generate all 
permutations 
of the jumbled 
words:

For each 
permutatio
check if it 
exists in th
word list:
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roblem

s”) can be unjumbled 
ords are jumbles of 

e anagrams?
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Rethinking the Jumble P

Observation: if a jumbled word (e.g. “rupu
to a real word in the list, then these two w
each other (i.e. they are anagrams).

Is there a fast way to tell if two words ar

...
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oblem ...
 up of the same set 

sisting of its letters 
suu”.

 same key

 for a word with the 
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Rethinking the Jumble Pr
Two words are anagrams if they are made
of characters. 

We can assign each word a unique “key” con
in sorted order. The key for “rupus” is “pr

Two words are anagrams if they have the

We can unjumble “rupus” by simply looking
same key.
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 associative arrays, 
ponents.

Key Word
aabcsu abacus
aabelno abalone
... ...
prsuu usurp
... ...
chiruz zurich
egotyz zygote
© O. Nierstrasz — U. Berne

An Efficient Solut
1. Build an associative array of keys 

and words for every word in the 
dictionary:

2. Generate the key of a jumbled 
word:
key(“rupus”) = “prsuu”

3. Look up and return the words with 
the same key.

To implement a software solution, we need
lists, sort routines, and possibly other com
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work
interfaces, 
lating collections of 

«interface»

Map

«interface»

SortedMap

Maps manage 
mappings from 
keys to values.
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The Collections Frame
The Java Collections framework contains 
implementations and algorithms for manipu
elements.

«interface»

Collection

«interface»

SortedSet

«interface»

Set
«interface»

List

Sets and Lists 
are kinds of 
collections.
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es

«interface»

List
(int) : Object
(int, Object) : Object
(int, Object) 
ove(int) : Object
xOf(Object) : int

Iterator() : ListIterator
List(int from, to) : List

Lists may 
contains 
duplicated 
elements. 
Sets may 
not.
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Collection Interfac

«interface»

Set

«interface»

Collection
+ size() : int
+ isEmpty() : boolean
+ contains(Object) : boolean
+ add(Object): boolean 
+ remove(Object) : boolean 
+ iterator() : Iterator
+ toArray() : Object[] 

+ get
+ set
+ add
+ rem
+ inde
+ list
+ sub

«interface»

SortedSet
+ subSet(Object from, to) : SortedSet
+ first() : Object
+ last() : Object
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ementations of each 

entations work?

AbstractList

AbstractSequentialList

LinkedList

«interface»

List
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Implementations
The framework provides at least two impl
interface.

✎ Can you guess how the standard implem

AbstractCollection

AbstractSet

HashSet ArraySet

«interface»

Collection
«interface»

Set

ArrayList
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 Classes

ot classes

rfaces

multiple subtyping

haviour shared by 
stantiated 
plete
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Interface and Abstract
Principles at play:

❑ Clients depend only on interfaces, n

❑ Classes may implement multiple inte

❑ Single inheritance doesn’t prohibit 

❑ Abstract classes collect common be
multiple subclasses but cannot be in
themselves, because they are incom
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«interface»

Map
y, value) : Object

ey) : Object
ct key) : Object

bject key) : boolean
(Object value) : boolean

olean
t
ection
et

«interface»

ortedMap
st() : Object
t() : Object
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Maps

A Map is an object that 
manages a set of (key, value) 
pairs.

Map is implemented by 
HashMap and TreeMap.

A Sorted Map maintains its 
entries in ascending order.

+ put(Object ke
+ get(Object k
+ remove(Obje
+ containsKey(O
+ containsValue
+ size() : int
+ isEmpty() : bo
+ keySet() : Se
+ values() : Coll
+ entrySet() : S

S
+ fir
+ las
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 {

rgs[]) {

 } 

d dictionary");

p

s[0]);
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Jumble
We can implement the Jumble dictionary a
public class Jumble 
public static void main(String a
if (args.length == 0) { ... }
Jumble wordMap = null;
try { 
catch (IOException err) {
System.err.println("Can't loa
return;

}

} 
...

extends HashMa

wordMap = new Jumble(arg

wordMap.inputLoop();



P2 — S2002 248.

Software Components: Collections

r
ds to load ...

OException {
class invariant!

erate a key for each 
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Jumble constructo
A Jumble dictionary knows the file of wor

private String wordFile_;

Jumble(String wordFile) throws I
super(); // NB: establish super
wordFile_ = wordFile;
loadDictionary();

}

Before we continue, we need a way to gen
word ...
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 be avoided in an OO 
e to break this rule?

Collections
Search(List, Object) : int
ist, List) 
ollection) : Object
ollection) : Object
se(List) 
le(List) 
ist) 
ist, Comparator) 
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Algorithms
The Collections framework 
provides various algorithms, 
such as sorting and searching, 
that work uniformly for all kinds 
of Collections and Lists.
(Also any that you define 
yourself!)

These algorithms are static 
methods of the Collections class.

✎ As a general rule, static methods should
design. Are there any good reasons her

+ binary
+ copy(L
+ max(C
+ min(C
+ rever
+ shuff
+ sort(L
+ sort(L
...
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Arrays

[]) 
[], int, int) 
le[]) 
le[], int, int) 
[]) 
[], int, int) 
) 
, int, int) 
ct[]) 
ct[], Comparator) 
ct[], int, int) 
ct[], int, int, Comparator) 
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Array algorithms

There is also a class, Arrays, 
consisting of static methods 
for searching and sorting that 
operate on Java arrays of basic 
data types.

✎ Which sort routine should 
we use to generate unique 
keys for the Jumble puzzle?

...
+ sort(char
+ sort(char
+ sort(doub
+ sort(doub
+ sort(float
+ sort(float
+ sort(int[]
+ sort(int[]
+ sort(Obje
+ sort(Obje
+ sort(Obje
+ sort(Obje
...
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d to an array of 
ult back to a String.

g word) {
;ay()
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Sorting arrays of char

The easiest solution is to convert the wor
characters, sort that, and convert the res

public static String sortKey(Strin
char [] 

;
return ;

}

✎ What other possibilities do we have?

letters = word.toCharArr
Arrays.sort(letters)

new String(letters)
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rows IOException {

ader(wordFile_));

;ord)
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Loading the diction
Reading the dictionary is straightforward

private void loadDictionary() th
BufferedReader in = 
new BufferedReader(new FileRe

String ;
while (word != null) {

word = in.readLine();
}

}
...

word = in.readLine()

this.addPair(sortKey(word), w
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 String word) {
;t(key)
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Loading the dictionar
... but there may be a List of words for an

private void addPair(String key,
List 
if (wordList == null)
wordList = new ArrayList();

;
this.put(key, wordList);

}

wordList = (List) this.ge

wordList.add(word)
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!= null) { ...

;

 unjumble ...”;

: " + wordList);

ord))
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The input loop
Now the input loop is straightforward ...
public void inputLoop() { ...

System.out.print("Enter a word 
String word;
while (( ) 

List wordList =
(List) 

if (wordList == null) {
System.out.println("Can't

} else {
System.out.println(

word + " unjumbles to
} ...

word = in.readLine()

this.get(sortKey(w
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Running the unjumble
Enter a word to unjumble: rupus
rupus unjumbles to: [usurp]
Enter a word to unjumble: hetab
hetab unjumbles to: [bathe]
next word: please
please unjumbles to: [asleep, elap
next word: java
Can't unjumble java
next word: 
Quit? (y/n): y
bye!
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the list has the 
s the largest set of 

 whose elements are 
© O. Nierstrasz — U. Berne

Searching for anagr

We would now like to know which word in 
largest number of anagrams — i.e., what i
words with the same key.

➤ How do you iterate through a Collection
unordered?

✔ Use an iterator.
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«interface»

Iterator
+ hasNext() : boolean
+ next() : Object
+ remove()

«interface»

ListIterator
+ add(Object) 
+ hasPrevious() : boolean
+ nextIndex() : int 
+ previous() : Object
+ previousIndex() : int
+ set(Object) 
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Iterators

An Iterator is an object that lets you 
walk through an arbitrary collection, 
whether it is ordered or not.

Lists additionally provide ListIterators 
that allows you to traverse the list in 
either direction and modify the list 
during iteration. 



P2 — S2002 258.

Software Components: Collections

ey set

;

;
y);

erator()
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Iterating through the k
public List maxAnagrams() {
int max = 0;
List anagrams = null;
Iterator 

 {
String 
List words = (List) this.get(ke
if (words.size() > max) {
anagrams = words;
max = words.size();

}
}
return anagrams;

}

keys = this.keySet().it
while (keys.hasNext())

key = (String) keys.nex
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agrams

]
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Running Jumble.maxAn
Printing wordMap.maxAnagrams() yields:

[caret, carte, cater, crate, trace
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 so you can mix and 

 on the collections 
rete classes.

ace that does the 
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How to use the frame
❑ If you need collections in your appl

standard interfaces.

❑ Use one of the default implementat

❑ If you need a specialized implement
compatible with the standard ones,
match.

❑ Make your applications depend only
interfaces, if possible, not the conc

❑ Always use the least specific interf
job (Collection, if possible).
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What you should kn
✎ How are Sets and Lists similar? How d
✎ Why is Collection an interface rather 
✎ Why are the sorting and searching algo

as static methods?
✎ What is an iterator? What problem do
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 super()?
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Can you answer these qu
✎ Of what use are the AbstractCollectio

AbstractList?
✎ Why doesn’t Map extend Collection?
✎ Why does the Jumble constructor call
✎ Which implementation of Map will make

Why?
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 edition, O’Reilly, 

 The Java Tutorial , 
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9. GUI Construct

Overview 
❑ Applets
❑ Model-View-Controller
❑ AWT Components, Containers and L
❑ Events and Listeners
❑ Observers and Observables

Sources
❑ David Flanagan, Java in Nutshell: 3d

1999.
❑ Mary Campione and Kathy Walrath,

The Java Series, Addison-Wesley, 
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A Graphical TicTacT

Our existing TicTacToe implementation is
❑ single-user at a time
❑ textual input and display

We would like to migrate it towards an int
based game:

❑ players on separate machines
❑ running the game as an “applet” in a
❑ with graphical display and mouse in

As first step, we will migrate the game to



P2 — S2002 265.

GUI Construction

) use of 

chine) 
ed dynamically.
and can be used to 

Server
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asses ... AClass
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Applets
Applet classes 
can be 
downloaded 
from an HTTP 
server and 
instantiated 
by a client.

The Applet instance may make (restricted
1. standard API classes 

(already accessible to the virtual ma
2. other Server classes to be download

java.applet.Applet extends java.awt.Panel 
construct a UI ...

Client

other cl

:Applet

API Classes

:AClass
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for Graphics

 {

request a refresh

{
0, 30 );

by the client.

pplet
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The Hello World Ap
The simplest Applet:
import java.awt.*; // 

;
public class HelloApplet 

// 

public void paint( Graphics g ) 
g. , 3

}
}

The Applet will be initialized and started 

import java.applet.Applet
extends A

public void init() {
repaint();

}

drawString("Hello World!"
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HEAD>
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The Hello World Ap
<HTML>
<HEAD><TITLE>HelloApplet</TITLE></
<BODY>

</BODY>
</HTML>

<APPLET
CODEBASE = "."
ARCHIVE = "HelloApplet.jar"
CODE = "HelloApplet.class"
NAME = "HelloApplet"
WIDTH = 400
HEIGHT = 300

>
</APPLET>
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Accessing the game as a
The compiled TicTacToe classes will be m
directory “AppletClasses” on our web serv

<title>GameApplet</title>
<applet

width=200
height=200>

</applet>

GameApplet extends java.applet.Applet
Its init() will instantiate and connect th

codebase="AppletClasses"
code="tictactoe.GameApplet.class
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ent a graphical view 

n from its GUI so 
nected and updated.

()

Model

:MouseListener
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Model-View-Contro
Version 1.6 of our game implements a mod
without a GUI. The GameApplet will implem
and a controller for GUI events.

The MVC paradigm separates an applicatio
that multiple views can be dynamically con

clicks mouse

1:mouseClicked()

1.1:move()

1.1.1:update()

1.1.2:update

Views
Controller

:MouseListener

:TicTacToe
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 to define colours, 

tton Label

ponent

A Window 
is a top-level 
container.
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AWT Components and Co
The java.awt package defines GUI compon
their layout managers.

NB: There are also many graphics classes
fonts, images etc.

Panel Window

BuContainer

Com

java.applet.Applet

A Container is a 
component that 
may contain other 
components.

A Panel is a 
container inside 
another container. 
(E.g., an Applet 
inside a browser.)
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ontaining a Button 
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squares (Panels) and 

rdLayout and 

Applet

anel :Label

:Panel..
© O. Nierstrasz — U. Berne

The GameApplet
The GameApplet is a Panel using a BorderL
and up to four border components), and c
(“North”), a Panel (“Center”) and a Label (

The central Panel itself contains a grid of 
uses a GridLayout.
Other layout managers are FlowLayout, Ca
GridBagLayout ...

:Game

:P:Button

:Panel .
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/ instantiate game
/ initialize view

/ connect to model
().mark() 
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Laying out the GameA
public void init() {
game_ = ; /

; /
setSize(MINSIZE*game_.cols(),

MINSIZE*game_.rows());
;

add("Center", makeGrid());
label_ = new Label();
add("South", label_);

; /
showFeedBack(game_.currentPlayer

+ " plays");
}

makeGame()
setLayout(new BorderLayout())

add("North", makeControls())

game_.addObserver(this)
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Helper methods
As usual, we introduce helper methods to
GUI construction ...

private Component makeControls() {
Button again = new Button("New g
...
return again;

}
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sibly multiple) 

back methods

e handled by 
subscribed 

Listener 
objects
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Events and Listeners
Instead of actively checking for GUI eve
callback methods that will be invoked whe
receive events:

AWT Components publish events and (pos
Listeners subscribe interest in them.

AWT Framework

Call

... ar

Hardware events ...
(MouseEvent, KeyEvent, ...)



P2 — S2002 275.

GUI Construction

 (II)
 of different events 
ner interfaces).

Listener methods
actionPerformed()

mouseClicked()
mouseEntered()
mouseExited()
mousePressed()
mouseReleased()
mouseDragged()
mouseMoved()
keyPressed()
keyReleased()
keyTyped()
© O. Nierstrasz — U. Berne

Events and Listeners
Every AWT component publishes a variety
(see java.awt.event) with associated Liste

Component Events Listener Interface
Button ActionEvent ActionListener

Component

MouseEvent

MouseListener

MouseMotionListener

KeyEvent
KeyListener

 ...
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o avoid defining a 

onListener() {
tionEvent e) {
me ...");
s to methods
class!
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Listening for Button e
When we create the “New game” Button, 
ActionListener with the Button.addAction
private Component makeControls() {
Button again = new Button("New g

return again;
}

We instantiate an anonymous inner class t
named subclass of ActionListener.

again.addActionListener(new Acti
public void actionPerformed(Ac
showFeedBack("starting new ga
newGame(); // NB: has acces

} // of enclosing 
});
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--) {
) { 
 xImage, oImage);

;
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Listening for mouse c
We also attach a MouseListener to each P
private Component makeGrid() { ...
Panel grid = new Panel();
grid.setLayout(new GridLayout(ro
place_s = new Place[cols][rows];
for (int row=rows-1; row>=0; row
for (int col=0; col<cols; col++
Place p = new Place(col, row,

...
return grid;

}

p.addMouseListener(
new PlaceListener(p, this))
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 MouseAdapter {

;
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The PlaceListene
MouseAdapter is a convenience class that
MouseListener methods (!)

public class PlaceListener extends
private final Place place_;
private final GameApplet applet_
public PlaceListener(...) {
place_ = place;
applet_ = applet;

}
...
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...
) method:

.mark() + " plays");

d ...");

me.winner() + " wins!");

ve(col,row);
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The PlaceListener 
We only have to define the mouseClicked(

{
...
if (game.notOver()) {

try {

applet_.showFeedBack(game.currentPlayer()
} catch (AssertionException err) {

applet_.showFeedBack("Invalid move ignore
}
if (!game.notOver()) {

applet_.showFeedBack("Game over -- " + ga
}

} else {
applet_.showFeedBack("The game is over!");

}
}

public void mouseClicked(MouseEvent e)

((AppletPlayer) game.currentPlayer()).mo
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«interface»

Observer
date(Observable, Object ) 

Observable

ddObserver(Observer) 
eleteObserver(Observer) 
otifyObservers() 
otifyObservers(Object) 
eleteObservers() 
etChanged() 
learChanged()
asChanged() : boolean
ountObservers() : int

*
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Observers and Observ
A class can implement the 
java.util.Observer interface when 
it wants to be informed of 
changes in Observable objects. 

An Observable object can have 
one or more Observers.

After an observable instance 
changes, calling 
notifyObservers() causes all 
observers to be notified by 
means of their update() method.

+ up

+ a
+ d
+ n
+ n
+ d
# s
# c
+ h
+ c
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Observing the BoardG
In our case, the GameApplet represents a
role of an Observer:
public class GameApplet

extends Applet 
{ ...

Move move = (Move) arg;
showFeedBack("got an update: " 

}
}
...

implem

public void update(Observable o,

place_s[move.col][move.row]
.setMove(move.player);
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ow, p));
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Observing the BoardGa
The BoardGame represents the Model, so
Observable:
public abstract class AbstractBoar

 im
{ ...
public void move(int col, int ro
throws AssertionException

{ ...

}
}

extends Observable

setChanged();
notifyObservers(new Move(col, r
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Communicating chan
A Move instance bundles together inform
of state in a BoardGame:
public class Move {

 int col, row; // NB:
public final Player player;
public Move(int col, int row, Pl
this.col = col; this.row = row;
this.player = player;

}
public String toString() {
return "Move(" + col + "," + ro

+ "," + player + "
}

}

public final
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tions
 method is called, 
ponents to be 

bserver to the game, 
vents for each Place 

:AppletPlayer

:TicTacToe
his)
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Setting up the connec
When the GameApplet is loaded, its init()
causing the model, view and controller com
instantiated.

The GameApplet subscribes itself as an O
and subscribes a PlaceListener to MouseE
on the view of the BoardGame.

:PlaceListener

:Place

:GameApplet

5:new

1:new

3:addObserver(t

2:new

4:new
6:addMouseListener()

start
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del’s state changes, 
ew).

tPlayer()

ve()

1.2.1:move()

1.2.1.2:notifyObservers()

)

1.2.1.1:set()

:AppletPlayer

:TicTacToe
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Playing the game

If the corresponding move is valid, the mo
and the GameApplet updates the Place (vi

click

1:mouseClicked()
1.1:curren

1.2:mo

1.2.1.2.1:update(

1.2.1.2.1.1:setMove()

:PlaceListener

:Place

:GameApplet

Mouse clicks are propagated 
from a Place (controller)
to the BoardGame (model):
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tivePlayer and 

 BoardGame to 

eDriver.playGame() 
trix of Players, not 
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Refactoring the Board
Adding a GUI to the game affects many cla
introduce changes, and rerun our tests af

❑ Shift responsibilities between Boar
(both should be passive!)
☞ introduce Player interface, Inac

StreamPlayer classes
☞ move getRow() and getCol() from

Player
☞ move BoardGame.update() to Gam
☞ change BoardGame to hold a ma

marks
...
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 changes from 
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Refactoring the BoardG
❑ Introduce Applet classes (GameApp

PlaceListener)
☞ Introduce AppletPlayer
☞ PlaceListener triggers AppletPla

❑ BoardGame must be observable
☞ Introduce Move to communicate

BoardGame to Observer
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ding whole 
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 than programming it 
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GUI objects in practi
Use Java webstart, not applets

❑ avoid browser problems by downloa
applications in a secure way

Use Swing, not AWT 
❑ javax.swing provides a set of “light

language) components that (more or
on all platforms. 

Use a GUI builder
❑ Interactively build your GUI rather

— add the hooks later.
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What you should kn
✎ Why doesn’t an Applet need a main() m
✎ What are models, view and controllers
✎ Why does Container extend Componen
✎ What does a layout manager do?
✎ What are events and listeners? Who p

subscribes to events?
✎ The TicTacToe game knows nothing ab

or Places. How is this achieved? Why i
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Can you answer these qu
✎ How could you get Applets to download

just classes?
✎ How could you make the game start up
✎ What is the difference between an ev

observer?
✎ The Move class has public instance var

bad idea?
✎ What kind of tests would you write fo
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 Nutshell, O’Reilly, 

 Waldo, in The Java 
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10. Clients and Se

Overview 
❑ RMI — Remote Method Invocation
❑ Remote interfaces
❑ Serializable objects
❑ Synchronization
❑ Threads
❑ Compiling and running an RMI applic

Sources
❑ David Flanagan, Java Examples in a

1997
❑ “RMI 1.2”, by Ann Wollrath and Jim

Tutorial , java.sun.com
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A Networked TicTac

We now have a usable GUI for our game, 
only a single user.

We would like to support:
❑ players on separate machines
❑ each running the game as an applet
❑ with a “game server” managing the 
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Client “O”

join

move

new
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The concept

:GameFactory

Client “X”

Server

:Gomoku

X:Player O:Player

join

new

move

new new

move move

updateupdate

new
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The problem

Unfortunately Applets alone are not enou
scenario!

We must answer several questions:
❑ Who creates the GameFactory?
❑ How does the Applet connect to th
❑ How do the server objects connect

objects?
❑ How do we download objects (rathe
❑ How do the server objects synchro

requests?
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va object under a 
erver machine.

he public name, and 
roxy for the remote 
).

registry

main

server

 Server()

ming.bind (name, server)
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Remote Method Invoc
RMI allows an application to register a Ja
public name with an RMI registry on the s

A client may look up up the service using t
obtain a local object (stub) that acts as a p
server object (represented by a skeleton

client

1a:new

1b:Naming.lookup(name)
2a:Na

skeletonstub

2b:server.service()
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Why do we need RM
RMI

❑ hides complexity of network protoc
❑ offers a standard rmiregistry imple
❑ automates marshalling and unmarsh
❑ automates generation of stubs and 
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Developing an RMI app
There are several steps to using RMI:

1. Implement a server
☞ Decide which objects will be rem

specify their interfaces
☞ Implement the server objects

2. Implement a client
☞ Clients must use the remote int
☞ Objects passed as parameters m

...
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ation ...

te stubs and 
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Developing an RMI applic

3. Compile and install the software
☞ Use the rmic compiler to genera

skeletons for remote objects

4. Run the application
☞ Start the RMI registry
☞ Start and register the servers
☞ Start the client
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terfaces
hould be as small as 

ng
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Designing client/server in
Interfaces between clients and servers s
possible. 

Low coupling:
❑ simplifies development and debuggi
❑ maximizes independence
❑ reduces communication overhead
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nts (view), the 
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d from the server 
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BoardGame client/server i
We split the game into three packages:

❑ client — contains the GUI compone
EventListeners and the Observer

❑ server — contains the server inter
communication classes

❑ tictactoe — contains the model and
implementation classes

NB: The client’s Observer must be update
side, so is also a “server”!
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rfaces
ed three interfaces:

tory

me state and to 

xy
by hiding Player 

pdates
er
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Identifying remote inte
To implement the distributed game, we ne
RemoteGameFactory

❑ called by the client to join a game
❑ implemented by tictactoe.GameFac

RemoteGame 
❑ called by the client to query the ga

handle moves
❑ implemented by tictactoe.Gamepro

☞ we simplify the game interface 
instances

RemoteObserver
❑ called by the server to propagate u
❑ implemented by client.GameObserv
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rfaces

.Remote

throw 

ust:
.), or
.Serializable, or
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Specifying remote inte
To define a remote interface:

❑ the interface must extend java.rmi

❑ every method must be declared to 
java.rmi.RemoteException

❑ every argument and return value m
☞ be a primitive data type (int, etc
☞ be declared to implement java.io
☞ implement a Remote interface
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ry
game.
the existing game. 

 extends Remote {

xception;

oteGame interface.

e client side and 
eGame
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RemoteGameFacto
This interface is used by clients to join a 
If a game already exists, the client joins 
Else a new game is made.

public interface RemoteGameFactory
public RemoteGame joinGame() 

throws RemoteE
}

The object returned implements the Rem

RMI will automatically create a stub on th
skeleton on the server side for the Remot
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 by the client:

s Remote {
;

..;

 ...;

moteException

server o)
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RemoteGame
RemoteGame exports only what is needed

public interface RemoteGame extend
public boolean ready() 
public char join() ...;
public boolean  .
public int cols() ...;
public int rows() ...;
public char currentPlayer() ...;
public String winner() ...;
public boolean notOver() ...;
public void 

}

throws Re

move(Move move)

addObserver(RemoteOb
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ts to the server:

tends Remote {

ion;

h java.util.Observer, 
ion ...
 on the server side.
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RemoteObserver

This is the only interface the client expor

public interface RemoteObserver ex
public void update(Move move)

throws RemoteExcept
}

NB: RemoteObserver is not compatible wit
since update() may throw a RemoteExcept
We will have to bridge the incompatibility
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ar mark) { ... }

on to communicate 

io.Serializable
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Serializable objec
Objects to be passed as values must be de
java.io.Serializable.

public class Move 
public final int col;
public final int row;
public final char mark;
public Move(int col, int row, ch
public String toString() { ... }

}

Move encapsulates the minimum informati
between client and server.

implements java.
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 RemoteGameFactory

 args) { ... }
 {

must throw 

nicastRemoteObject

teException
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Implementing Remote o
Remote objects should extend 
java.rmi.server.UnicastRemoteObject:
public class GameFactory 

implements
{
private RemoteGame game_;
public static void main(String[]
public GameFactory() 
super();

}
...

NB: All constructors for Remote objects 
RemoteException!

extends U

throws Remo
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oinGame()
eException

ayer => new game
ku( ...));

ng game
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Implementing Remote ob
...
public  RemoteGame j

throws Remot
{
RemoteGame game = game_;
if (game == null) { // first pl
game = new GameProxy(new Gomo
game_ = game;

} else { game_ = null; }
// second player => join existi
return game;

}
}

synchronized
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onized.

:GameProxy

meApplet

O:Player
© O. Nierstrasz — U. Berne

A simple view of synchro
A synchronized method obtains a lock for
executing its body.

➤ How can servers protect their state fr
requests?

✔ Declare their public methods as synchr

Concurrent Clients

Synchronized Servers

Passive Objects

:GameFactory
- game : RemoteGame

X:GameApplet O:Ga

X:Player
:Gomoku
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y main() method:

rgs) {

d so that RMI can 

== null) {

ityManager());
urity manager");
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Registering a remote 
The server must be started by an ordinar

public static void main(String[] a

...

There must be a security manager installe
safely download classes!

if (System.getSecurityManager() 
System.setSecurityManager(

new RMISecur
System.out.println("Set new Sec

}
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ject ...
eFactory and 

/GameFactory";

ber of the registry 

w GameFactory();
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Registering a remote ob
The main() method must instantiate a Gam
register it with a running RMI registry.

...

if (args.length != 1) { ... }
String name = "//" + args[0] + "
try {

} catch (Exception e) { ... }
}

The argument is the host id and port num
(e.g., www.iam.unibe.ch:2001)

RemoteGameFactory factory = ne
Naming.rebind(name, factory);
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 RemoteGame

(Move move)

layer();
;

, current);
eeded

k) return false

 { return false; }
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GameProxy
The GameProxy interprets Moves and prot
any AssertionExceptions:
public class GameProxy extends Uni

implements
{ ...
public  boolean move
throws RemoteException

{ Player current = game_.currentP

try {
game_.move(move.col, move.row
return true; // the move succ

} 
} ...

synchronized

if (current.mark() != move.mar

catch (AssertionException e)
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the server
ocked by a call to the 

ver to implement 

bserver {

o) {
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Using Threads to protect 
We must prevent the server from being bl
remote client.

WrappedObserver adapts a RemoteObser
java.util.Observer:

class WrappedObserver implements O
private RemoteObserver remote_;

WrappedObserver(RemoteObserver r
remote_ = ro;

}

...



P2 — S2002 314.

Clients and Servers

e server ...
 Object arg) {
// for inner class
 {

 the Thread
gnore results

 continue ...

) { }
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Using Threads to protect th
public void update(Observable o,

 Move move = (Move) arg; 
Thread doUpdate = 

};
 ; // start

} // and i
}

Even if the Thread blocks, the server can

final
new Thread()

public void run() {
try {
remote_.update(move);

} catch(RemoteException err
}

doUpdate.start()
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ame ...
e:
 tictactoe packages
ner, TicTactoe or 
 AppletPlayer to 

 and addObserver()
pt RemoteObserver
te objects

eView (to allow 

Game (not Player)
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Refactoring the BoardG
Most of the changes were on the GUI sid

❑ defined separate client, server and
❑ no changes to Drivers, Players, Run

Gomoku from 2.0 (except renaming
PassivePlayer)

❑ added BoardGame methods player()
☞ added WrappedObserver to ada

❑ added remote interfaces and remo
❑ changed all client classes

☞ separated GameApplet from Gam
multiple views)

☞ view now uses Move and Remote
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e
 and install the 
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files.
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Compiling the cod
We compile the source packages as usual,
results in a web-accessible location so tha
has access to the client and server .class 
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c.)

 not need to run rmic 
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Generating Stubs and S
In addition, the client and the server nee
and skeleton class files.
On Unix, chdir to the directory containing
tictactoe class file hierarchies

rmic -d . tictactoe.GameFactory
rmic -d . tictactoe.GameProxy
rmic -d . client.GameObserver

This will generate stub and skeleton class 
objects. (I.e., GameFactory_Skel.class et

NB: Move is not a remote object, so we do
on its class file.
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ion
ww.iam.unibe.ch):

tp:.../classes/ \

n appletviewer ...
 so it can instantiate 
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Running the applicat
We start the RMI registry on the host (w

rmiregistry 2001 &

We start and register the servers:
setenv CLASSPATH ./classes
java -Djava.rmi.server.codebase=ht

tictactoe.GameFactory \
www.iam.unibe.ch:2001

And start the clients with a browser or a
NB: the RMI registry needs the codebase
the stubs and skeletons!
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:PassivePlayer

:Gomoku

:GameProxy

:WrappedObserv

1.
1b

:c
ur

re
nt

Pl
ay

er
()

b:move()

b:move()

update()

:PassivePlayer
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Playing the game

:PlaceListener

:GameView

:GameObserver

:Placeclick

1a:mouseClicked()

1.1a:move()

1.2

1.2.1

1.2.1.1b:

1c:update()1.1d:update()

1b:move()

1d:update()

1.1.1d:setMove()

stub skel

skel stub
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2 enabled
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curity don’t mix well.

way from applets!
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Caveat!
This only works with JDK 1.1:

❑ Most web browsers are not Java 1.
❑ Applets can only connect to the hos
❑ Security is more complex in Java 1.

☞ clients must specify a policy file

Web browsers, Applets, RMI and Java se

If you plan to use RMI and Java 2, stay a
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Other approache
CORBA

❑ for non-java components

COM (DCOM, Active-X ...)
❑ for talking to MS applications

Sockets
❑ for talking other TCP/IP protocols

Software buses
❑ for sharing information across mult
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lable to clients?
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rface fulfil?
ote object and a 

ds to handle 
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What you should kn
✎ How do you make a remote object avai
✎ How does a client obtain access to a re
✎ What are stubs and skeletons, and whe

from?
✎ What requirements must a remote inte
✎ What is the difference between a rem

serializable object?
✎ Why do servers often start new threa

requests?
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estions?
with Players instead 
te objects or 

tractBoardGame 

or the networked 

ify users when a 

 object over the net 
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Can you answer these qu
✎ Suppose we modified the view to work 

of Moves. Should Players then be remo
serializable objects?

✎ Why don’t we have to declare the Abs
methods as synchronized?

✎ What kinds of tests would you write f
game?

✎ How would you extend the game to not
second player is connected?

✎ What exactly happens when you send an
via RMI?
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11. Guidelines, Idioms a

Overview
❑ Programming style: Code Talks; Cod
❑ Idioms, Patterns and Frameworks
❑ Basic Idioms

☞ Delegation, Super, Interface
❑ Basic Patterns

☞ Adapter, Proxy, Template Meth
Observer
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 Wesley, Reading, 
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rns, Wiley, 1996
me 1, Wiley, 1998
Patterns, Prentice 

iki?CodeSmells
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Sources
❑ Erich Gamma, Richard Helm, Ralph 

Vlissides, Design Patterns, Addison
MA, 1995. 

❑ Frank Buschmann, et al., Pattern-O
Architecture — A System of Patte

❑ Mark Grand, Patterns in Java, Volu
❑ Kent Beck, Smalltalk Best Practice 

Hall, 1997
❑ “Code Smells”, http://c2.com/cgi/w
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once
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, not how they do it
plementation
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Style
Code Talks

❑ Do the simplest thing you can think
☞ Don't over-design
☞ Implement things once and only 
☞ First do it, then do it right, the

(don’t optimize too early)

❑ Make your intention clear
☞ Write small methods
☞ Each method should do one thin
☞ Name methods for what they do
☞ Write to an interface, not an im
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s

ling)

rove your design ...
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Refactoring
Redesign and refactor when the code star
Code Smells

❑ Methods too long or too complex
☞ decompose using helper method

❑ Duplicated code
☞ factor out the common parts

(e.g., using a Template method)
❑ Violation of encapsulation

☞ redistribute responsibilities
❑ Too much communication (high coup

☞ redistribute responsibilities
Many idioms and patterns can help to imp
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tterns?

 idioms and patterns.

ming techniques and 
 language-specific.
solutions to design 
-independent.
functions, 
re components that 
ions.
ies that define the 
pplication, and can 
riving new classes.
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What are Idioms and Pa

Frameworks typically make use of common

Idioms Idioms are common program
conventions. They are often

Patterns Patterns document common 
problems. They are language

Libraries
Libraries are collections of 
procedures or other softwa
can be used in many applicat

Frameworks
Frameworks are open librar
generic architecture of an a
be extended by adding or de
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e behaviour of a 
ombine features.
eping roles and 
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Delegation
➤ How can an object share behaviour with

✔ Delegate some of its work to another o

Inheritance is a common way to extend th
class, but can be an inappropriate way to c
Delegation reinforces encapsulation by ke
responsibilities distinct.
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oriented idioms, and 
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Delegation
Example

❑ When a TestSuite is asked to run()
work to each of its TestCases.

Consequences
More flexible, less structured than inher

Delegation is one of the most basic object-
is used by almost all design patterns.
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Delegation examp
public class TestSuite implements 
...
public void run(TestResult resul
for(Enumeration e = fTests.elem

e.hasMoreElements();) 
{
if (result.shouldStop())

 break;
Test test = (Test) e.nextElem

;
}

}
}

test.run(result)
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 from a superclass?

nd a message to 

ed behaviour, rather 
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Super
➤ How do you extend behaviour inherited

✔ Overwrite the inherited method, and se
“super” in the new method.

Sometimes you just want to extend inherit
than replace it.
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eption invoke their 

superclass: if you 
alls may break!

rent than the one 
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Super
Examples

❑ WrappedStack.top() extends Stack
condition assertion.

❑ Constructors for subclasses of Exc
superclass constructors.

Consequences
Increases coupling between subclass and 
change the inheritance structure, super c

Never use super to invoke a method diffe
being overwritten — use “this” instead!
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tionException {

onException {
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Super example
public class WrappedStack extends 
{
...
public Object top() throws Asser
assert(!this.isEmpty());
return ;

}
public void pop() throws Asserti
assert(!this.isEmpty());

;
}

}

super.top()

super.pop()
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vice provider, then 
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 class that 
rovide the service.
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Interface
➤ How do you keep a client of a service ind

that provide the service?

✔ Have the client use the service through
than a concrete class.

If a client names a concrete class as a ser
only instances of that class or its subclas
future.
By naming an interface, an instance of any
implements the interface can be used to p
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Interface
Example

❑ Any object may be registered with
implements the Observer interface

Consequences
Interfaces reduce coupling between class
They also increase complexity by adding i
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+ move);

 Observer

 Object arg)
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Interface exampl
public class GameApplet extends Ap

{ ...

Move move = (Move) arg;
showFeedBack("got an update: " 
places_[move.col][move.row]

.setMove(move.player);
}

}

implements

public void update(Observable o,
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 right features but 

ass into another 
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Adapter
➤ How do you use a class that provide the

the wrong interface?

✔ Introduce an adapter.

An adapter converts the interface of a cl
interface clients expect. 
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tack, throwing an 
op() are called on an 

o actionPerformed() 

 independent.
ion.
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Adapter
Examples

❑ A WrappedStack adapts java.util.S
AssertionException when top() or p
empty stack.

❑ An ActionListener converts a call t
to the desired handler method.

Consequences
The client and the adapted object remain
An adapter adds an extra level of indirect

Also known as Wrapper
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game");
tionListener() {
ctionEvent e) {
game ...");
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Adapter example
private Component makeControls()
Button again = new Button("New 

return again;
}

again.addActionListener(new Ac
public void actionPerformed(A
showFeedBack("starting new 
newGame();

}
});
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Proxy
➤ How do you hide the complexity of acce

require pre- or post-processing?

✔ Introduce a proxy to control access to 

Some services require special pre or post-p
include objects that reside on a remote m
with security restrictions. 
A proxy provides the same interface as th
controls access to.
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 Proxy introduces a 

s not change the 
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Proxy
Example

❑ A Java “stub” for a remote object 
Method Invocation (RMI).

Consequences
A Proxy decouples clients from servers. A
level of indirection.

Proxy differs from Adapter in that it doe
object’s interface.



P2 — S2002 343.

Guidelines, Idioms and Patterns

:Service
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Proxy example

:ServiceStub
1.1:doit()1:doit()

Machine A
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Template Method
➤ How do you implement a generic algorit

parts to subclasses?

✔ Define it as a Template Method.

A Template Method factors out the comm
algorithms, and delegates the rest to:

❑ hook methods that subclasses may 
❑ abstract methods that subclasses m
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trol structure since 
subclass and not the 

orks to allow 
the functionality of 
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Template Method
Example

❑ TestCase.runBare() is a template m
hook method setUp().

Consequences
Template methods lead to an inverted con
a parent classes calls the operations of a 
other way around.

Template Method is used in most framew
application programmers to easily extend 
framework classes.
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mple
verride hook method 
est().
lements Test {

owable {

pty by default

Throwable { ... }
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Template method exa
Subclasses of TestCase are expected to o
setUp() and possibly tearDown() and runT
public abstract class TestCase imp
...
public void runBare() throws Thr

}
protected void setUp() { } // em
protected void tearDown() { }
protected void runTest() throws 

}

setUp();
try { runTest(); } 
finally { tearDown(); }
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Composite
➤ How do you manage a part-whole hierar

consistent way?

✔ Define a common interface that both p
implement.

Typically composite objects will implemen
delegating to their parts.
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Composite
Examples

❑ A TestSuite is a composite of Test
TestSuites, both of which impleme
interface.

❑ A Java GUI Container is a composit
Components, and also extends Comp

Consequences
Clients can uniformly manipulate parts and
In a complex hierarchy, it may not be easy
interface that all classes should implemen
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Test
untTestCases() : int
n(TestResult)
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Composite exampl
A TestSuite is a Test that bundles a set o
TestSuites.

+ co
+ ru

*
TestCase

abstract

+ create(String)
+ assert(boolean) 
+ assertEquals(Object, Object)
+ fail() 
+ void runBare() 
# void runTest()
# void setUp() 
# void tearDown()
+ name() : String

TestSu

+ create() 
+ create(Clas
+ addTest(Te
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Observer
➤ How can an object inform arbitrary clie

state?

✔ Clients  implement a common Observer 
register with the “observable” object; th
observers when it changes state.

An observable object publishes state cha
subscribers, who must implement a commo
receiving notification.
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Observer
Examples

❑ The GameApplet implements java.u
registers with a BoardGame.

❑ A Button expects its observers to 
ActionListener interface.
(see the Interface and Adapter ex

Consequences
Notification can be slow if there are man
observable, or if observers are themselve
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 CACM Oct 1995
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What Problems do Design Pat
Patterns:

❑ document design experience
❑ enable widespread reuse of softwa
❑ improve communication within and a

development teams
❑ explicitly capture knowledge that e

developers already understand impl
❑ arise from practical experience
❑ help ease the transition to object-o
❑ facilitate training of new developer
❑ help to transcend “programming lan

viewpoints
Doug Schmidt,
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What you should kn
✎ What’s wrong with long methods? How 

be?
✎ What’s the difference between a patt
✎ When should you use delegation instea
✎ When should you call “super”?
✎ How does a Proxy differ from an Adap
✎ How can a Template Method help to el

code?
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Can you answer these qu
✎ What idioms do you regularly use when

patterns do you use?
✎ What is the difference between an int

abstract class?
✎ When should you use an Adapter inste

interface that doesn’t fit?
✎ Is it good or bad that java.awt.Compon

class and not an interface?
✎ Why do the Java libraries use differen

Observer pattern (java.util.Observer, 
java.awt.event.ActionListener etc.)?
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12. Common Errors, a f

Overview 
❑ Common errors:

☞ Round-off 
☞ == vs. equals()
☞ Forgetting to clone objects
☞ Dangling else
☞ Off-by-1 ...

❑ A few Java puzzles ...
Sources

❑ Cay Horstmann, Computing Concept
Essentials, Wiley, 1998

❑ The Java Report, April 1999
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Round-off errors
What does this print?

double f = 2e15 + 0.13;
double g = 2e15 + 0.02;

println(100*(f-g));
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string");

));
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== versus equals() 
When are two Strings equal?

String s1 = new String("This is a 
String s2 = new String("This is a 
test("String==", s1 == s2);
test("String.equals", s1.equals(s2

static void test(String name, boolean bool) {
println(name + ": " + (bool?"true":"false"));

}
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;
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== versus equals() 
When are two Objects equal?

Object x = new Object();
Object y = new Object();
test("object==", x == y);
test("object.equals", x.equals(y))
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));
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== versus equals() 
When are two Strings equal?

String s3 = "This is a string";
String s4 = "This is a string";
test("String==", s3 == s4);
test("String.equals", s3.equals(s4
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Forgetting to clone an 
Is “now” really before “later”?
Date now = new Date();
Date later = now;
later.setHours(now.getHours() + 1)
if (now.before(later))
println("see you later");

else
println("see you now");
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The dangling else pro
static void checkEven(int n) {
boolean result = true;

}

What is printed when we run these che
checkEven(-1);
checkEven(0);
checkEven(1);

if (n>=0)
if ((n%2) == 0)
println(n + " is even");

else
println(n + " is negative");
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Off-by-1 errors

The binomial coefficient is 

Is this a correct implementation?
 static int binomial(int n, int 
int bc = 1;
for (int )
bc = bc * (n+1-i) / i;

return bc;
}

n
k 

  n
1
--- …× n –--------×

i=1; i<k; i++
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 do k multiplications?

start with n/1 and 

on mistakes in 
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Avoiding Off-by-1 e
To avoid off-by-1 errors:

1. Count the iterations — do we always
(no)

2. Check boundary conditions — do we 
finish with (n-k+1)/k?
(no)

Off-by-1 errors are among the most comm
implementing algorithms.
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Don’t use equality tests to te
For which values does this function wor
static int brokenFactorial(int n) 
int result=1;
for (int )
result = result*(i+1);

return result;
}

i=0; i!=n; i++
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iable! (return a clone 
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Some other common e
Magic numbers

❑ Never use magic numbers; declare 
Forgetting to set a variable in some bra

❑ If you have non-trivial control flow
make sure it starts off with a reas

Underestimating size of data sets
❑ Don’t write programs with arbitrar

line-length); they will break when y
Leaking encapsulation

❑ Never return a private instance var
instead)

Bugs are always matter of invalid assumpt
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Puzzle 1
Are private methods inherited? 
class A {
public void m() { this.p(); }

 { println("A.p(
}
class B extends A {

 { println("B.p(
}

Which is called? A.p() or B.p()?
A b = new B();
b.m();

private void p()

private void p()
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Static and Dynamic T
Consider:
A a = new B();

The static type of variable a is A — i.e., th
class to which it belongs.
The static type never changes.

The dynamic type of a is B — i.e., the clas
currently bound to a.
The dynamic type may change throughout

a = new A();

Now the dynamic type is also A!
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A)"); };
B)"); };
A)"); };
B)"); };

c argument type?
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Puzzle 2
How are overloaded method calls resolv
class A { }
class B extends A { }
void  { println("m(A,
void  { println("m(A,
void m(B b1, A a1) { println("m(B,
void m(B b1, B b2) { println("m(B,

Which is considered: the static or dynami
m(a, a);
m(a, b);
m(b, a);
m(b, b);

m(A a1, A a2)
m(A a1, B b1)

B b = new B(); A a = b;



P2 — S2002 369.

Common Errors, a few Puzzles

)

© O. Nierstrasz — U. Berne

Puzzle 2 (part II
What happens if we comment out:

❑ m(A,A)?

❑ m(B,B)?

❑ m(A,B)?

Will the examples still compile?
If so, which methods are called?
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 } 
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Puzzle 3
How do static and dynamic types intera
class A {
void  { println("A.m(A)");

}
class B extends A {
void  { println("B.m(B)");

}

In which cases will B.m(B) be called?
a.m(a);
a.m(b);
b.m(a);
b.m(b);

m(A a)

m(B b)

B b = new B(); A a = b;
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Puzzle 4 (part I)
How do default values and constructors
class C {
int i = 100, j = 100, 
C() { i = 0; ; }
int init() { j = 0; l = 100; ret

}

What gets printed? 0 or 100?
C c = new C();
println("C.i = " + c.i);
println("C.j = " + c.j);
println("C.k = " + c.k);
println("C.l = " + c.l);

k = init()
k = 0
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; }
(int value);

) { i = value; }

 = 200
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Puzzle 4 
(part II)

What gets printed? 0, 100 or 200?
B b = new B();
println("B.i = " + b.i);
println("B.j = " + b.j);

abstract class A {
int ;
A() { init(100); 
abstract void init

}
class B extends A {
int i = 0, ;
B() { super(); }
void init(int value

}

j = 100
j

j = 0
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Puzzle 5
Does try or finally return?
class A {
int m() {

catch (Exception err) { return 
 

}
}

Prints 1, 2, or 3?
A a = new A();
println(a.m());

try { return 1; }

finally { return 3; }
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What you should kn
✎ When can you trust floating-point arit
✎ To which “if” does an “else” belong in a 
✎ How can you avoid off-by-1 errors?
✎ Why should you never use equality test
✎ Are private methods inherited?
✎ What are the static and dynamic types
✎ How are they used to dispatch overloa
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Can you answer these qu
✎ When is method dispatching ambiguou
✎ Is it better to use default values or co

initialize variables?
✎ If both a try clause and its finally clau

exception, which exception is really th
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