S7038 Programmierung 2

Object-Oriented Programming with Java

Prof. O. Nierstrasz

Sommersemester 2002

1. P2 — Object-Oriented Programming

Principle Texts:

Overview

Goals of this course

Goals ...

What is programming?
Programming and Software Development
Programming activities

What is a software system?

What is good (bad) design?

A procedural design

An object-oriented approach
Object-Oriented Design
Responsibility-Driven Design
Responsibility-Driven Design ...
Refactoring

What is Software Quality?

Software Quality ...

How to achieve software quality
How to achieve software quality ...
What is a programming language?
Communication

Why use object-oriented programming?
Why use OOP? ...

Why Java?

History

What you should know!

Can you answer these questions?

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
2]
22
23
24
25
26
27
28

Table of Contents

2. Design by Conftract

Contracts

Exceptions, failures and defects
Stacks

Example: Balancing Parentheses
A simple algorithm

Using a Stack to match parentheses

The ParenMatch class

A declarative algorithm

A cluftered algorithm
Helper methods

What is Data Abstraction?
Stackinterface

Interfaces in Java
Exceptions

Why are ADTs important?
Why are ADTs important? ...
Stacks as Linked Lists
LinkStack Cells

Private vs Public instance variables
Naming instance variables
LinkStack ADT

Class Invariants

LinkStack Class Invariant
Programming by Contract
Pre- and Postconditions
Benefits and Obligations
Stack pre- and postconditions
Assertions

Testing Assertions

29
30
31

32
33
34
35
36
37
38
39
40
4]

42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58

Testing Invariants

Disciplined Exceptions

Checking pre-conditions
Checking post-conditions
Running parenMatch

Running parenMatch ...

What you should know!

Can you answer these questions?

. Testing and Debugging

Testing

Regression testing

Caveat: Testing and Correctness
Testing a Stack

Build simple test cases

Check that failures are caught
When (not) to use static methods
When (noft) to use static variables
ArrayStack

Handling overflow

Checking pre-conditions

Testing ArrayStack

The Run-time Stack

The run-time stack in action ...
The Stack and the Heap

Fixing our mistake

java.util.Stack

Wrapping Objects

A Wrapped Stack

A Wrapped Stack ...

A contract mismatch

Fixing the problem ...

Timing benchmarks

59
60
61
62
63
64
65
66

67
68
69
70
71

72
73
74
75
76
77
78
79
80
81

82
83
84
85
86
87
88
89
90

Timer

Sample benchmarks (milliseconds)
What you should know!

Can you answer these questions?

4. lterative Development

The Classical Software Lifecycle
lterative Development

What is Responsibility-Driven Design?

How to assign responsibility?
Example: Tic Tac Toe
Setting Scope

Setting Scope ...

Tic Tac Toe Objects

Tic Tac Toe Objects ...
Missing Objects

Scenarios

Version 1.0 (skeleton)
Version 1.1 (simple tests)
Checking pre-conditions
Testing the new methods
Testing the application
Printing the State
TicTacToe.toString()
Refining the interactions
Tic Tac Toe Contracts
Version 1.2 (functional)
Supporting test Players
Invariants

Delegating Responsibilities
Delegating Responsibilities ...
Small Methods

Accessor Methods

91
92
93
94

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

Code Smells — TicTacToe.checkWinner()
Code Smells ...

Code Smells ...

GameDriver

The Player

Player constructors ...

Player constructors ...

Defining test cases

Checking test cases

Running the test cases

What you should know!

Can you answer these questions?

5. Inheritance and Refactoring

What is Inheritance?
Inheritance mechanisms

The Board Game

Uses of Inheritance

Uses of Inheritance ...

Class Diagrams

A badidea ...

Class Hierarchy

lterative development strategy
Iterative development strategy ...
Version 1.3 (add interface)
Speaking to an Interface

Quiet Testing

Quiet Testing (2)
NullPrintStream

TicTacToe adaptations

Version 1.4 (add abstract class)
Refactoring

Refactoring strategies

123
124
125
126
127
128
129
130
131
132
133
134

135
136
137
138
139
140
141

142
143
144
145
146
147
148
149
150
1581

162
183
154

Version 1.5 (refactor for reusability)
AbstractBoardGame 1.5
BoardGame 1.5

Player 1.5

Version 1.6 (Gomoku)

Keeping Score

A new responsibility ...

The Runner

Top-down decompaosition
Recursion

More helper methods
BoardGame 1.6

Gomoku

What you should know!

Can you answer these questions?

6. Programming Tools

Make

A Typical Makefile
Running make
Ant

A Typical build.xml

Running Ant

Version Control Systems

Version Control

RCS command overview
Using RCS

Additional RCS Features
CVS

Using CVS

Debuggers

Using Debuggers

165
156
157
158
169
160
161
162
163
164
165
166
167
168
169

170
171

172
173
174
175
176
177
178
179
180
181

182
183
184
185
186

Using jdb

Debugging Strategy

Debugging Strategy ...

Profilers

Using java -Xprof

Using java -Xrunhprof

Using Profilers

Javadoc

Javadoc input

Javadoc output

Other tools

Integrated Development Environments
CodeWarrior

CodeWarrior Class Browser
CodeWarrior Hierarchy Browser
Setting Breakpoints

What you should know!

Can you answer these questions?

7. A Testing Framework

The Problem

Testing Practices
Testing Practices ...
JUnit

Frameworks vs. Libraries
The JUnit Framework

A Testing Scenario
Testing Style
Representing multiple currencies
Money

MoneyTest

Some basic tests
Building a Test Suite

187
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

206
207
208
209
210
211

212
213
214
215
216
217
218
219

The TestRunner
MoneyBags

MoneyBags ...

Testing MoneyBags (1)
Testing MoneyBags (Il)
Testing MoneyBags (lIl)
Adding MoneyBags
The IMoney interface (1)
Double Dispatch (1)
Double Dispatch (II)

The IMoney interface (ll)
A Failed test

The fix ...

What you should know!
Can you answer these questions?

8. Software Components: Collections

Components

The Jumble Puzzle

Naive Solution

Rethinking the Jumble Problem
Rethinking the Jumble Problem ...
An Efficient Solution

The Collections Framework
Collection Interfaces
Implementations

Interface and Abstract Classes
Maps

Jumble

Jumble constructor

Algorithms

Array algorithms

Sorting arrays of characters

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

235
236
237
238
239
240
241

242
243
244
245
246
247
248
249
250
251

Loading the dictionary
Loading the dictionary ...

The input loop

Running the unjumbler ...
Searching for anagrams
Iterators

Iterating through the key set
Running Jumble.maxAnagrams
How to use the framework
What you should know!

Can you answer these questions?

. GUI Construction

A Graphical TicTacToe?
Applets

The Hello World Applet

The Hello World Applet
Accessing the game as an Applet
Model-View-Controller

AWT Components and Containers
The GameApplet

Laying out the GameApplet
Helper methods

Events and Listeners (1)

Events and Listeners (ll)
Listening for Bufton events
Listening for mouse clicks

The Placelistener

The Placelistener ...
Observers and Observables
Observing the BoardGame
Observing the BoardGame ...
Communicating changes

252
253
254
255
256
257
258
259
260
261
262

263
264
265
266
267
268
269
270
271

272
273
274
275
276
277
278
279
280
281

282
283

Setting up the connections
Playing the game

Refactoring the BoardGame
Refactoring the BoardGame ...
GUl objects in practice ...

What you should know!

Can you answer these questions?

10. Clients and Servers

A Networked TicTacToe?

The concept

The problem

Remote Method Invocation

Why do we need RMI?
Developing an RMI application
Developing an RMI application ...
Designing client/server interfaces
BoardGame client/server interfaces
ldentifying remote interfaces
Specifying remote interfaces
RemoteGameFactory
RemoteGame

RemoteObserver

Serializable objects
Implementing Remote objects
Implementing Remote objects ...
A simple view of synchronization
Registering a remote object
Regqistering a remote object ...
GameProxy

Using Threads to protect the server

Using Threads to protect the server ...

Refactoring the BoardGame ...

284
285
286
287
288
289
290

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315

Compiling the code

Generating Stubs and Skeletons
Running the application

Playing the game

Caveat!

Other approaches

What you should know!

Can you answer these questions?

11. Guidelines, Idioms and Patterns

Sources

Style

Refactoring

What are Idioms and Patterns?
Delegation
Delegation
Delegation example
Super

Super

Super example
Interface

Interface

Interface example
Adapter

Adapter

Adapter example
Proxy

Proxy

Proxy example
Template Method
Template Method
Template method example
Composite

316
317
318
319
320
321
322
323

324
325
326
327
328
329
330
331

332
333
334
335
336
337
338
339
340
341

342
343
344
345
346
347

Composite

Composite example

Observer

Observer

What Problems do Design Patterns Solve?
What you should know!

Can you answer these questions?

12. Common Errors, a few Puzzles

Round-off errors

== versus equals() (1)

== versus equals() (2)

== versus equals() (3)

Forgetting to clone an object
The dangling else problem.
Off-by-1 errors

Avoiding Off-by-1 errors

Don’t use equality tests to terminate loops!
Some other common errors
Puzzle 1

Static and Dynamic Types

Puzzle 2

Puzzle 2 (part II)

Puzzle 3

Puzzle 4 (part 1)

Puzzle 4 (part)

Puzzle 5

What you should know!

Can you answer these questions?

348
349
350
351
352
353
354

355
356
357
358
359
360
361

362
363
364
365
366
367
368
369
370
371

372
373
374
375

Patterns, Rules and Guidelines

1. P2 — Object-Oriented Programming - - - - - - - - - = = - = - - = = = = = - & - - - - - - - - - - oo oo 1
2.Designby Contract - oo oo oo oo oo o oo oo oo oo oo oo 29
How can clients accept multiple implementations of an AD T 2. it e 41
Make them depend only on an interface or an abstract Class. et 41
When should instance variables be public? 48
Always make instance variables private or ProtecCted. 48
How should you name a private or protected instance variable?. 49
Pick a name that reflects the role of the variable.. 49

Tag the name With an UNdersCore (). e e e e e e e e e e e e e 49
What should an object do if an assertion does not hold?. 58
TRrOW @n €XCEPLION. e e e e e 58
When should an object throw an eXCeptioN? 60
If and only if an assertion is violated. 60
When should you check pre-conditions to Methods?. e 61
Always check pre-conditions, raising exceptions if they fail. 61
When should you check post-CoNditioNS ? e e e e e e 62
Check them whenever the implementation iS NON-triVIal. et 62

3. Testing and Debugging - - - - - - - = = = = = - = = - - - - - - - - - oo oo oo o oo oo oo oo oo 67
What do you do with an object whose interface doesn't fit your expectations?. i 85
YOU WP IT.. . . e e e e e e e e e e e 85
Complexity aside, how can you tell which implementation strategy will performbest? 90

RUN @ beNChmMark. 0

4. lterative Development - - - - - - - - - - - - - - - - - - - oo oo oo oo oo oo o oo oo oo oo - oo 95

Which responsibilities should an object acCept? 99
“Don't do anything you can push off t0 SOMeoNe €ISE.” 99
How much state should an 0bjeCt EXPOSE 2 e 99
“Don't let anyone else play With YOU.”. 99
How much functionality should you deliver in the first version of a system? i 102
Select the minimal requirements that provide value to the client.. e e 102
How can you tell when you have the “right” set of ObjeCtS?. e 104
Each object has a clear and natural set of responsibIlIties. e 104
How can you tell if there are objects misSsing iN YOUr deSigN? ittt e e e 105
When there are responsibilities left Unassigned. 105
How do you iteratively “grow” @ Program?ttt e et e e e e 107
Always have a running version of YOUI PrOGram.0t e e e e e e e et e e e e 107
How do you make an object printable? 112
Override ObJECL.tOSIIING(). o o e 112
When should instance variables be public? 122
Almost never! Declare public accessor methods INStead. e 122

5. Inheritance and Refactoring- oo oo oo oo o oo oo o 135
When should you run your (regresSion) teStS 2. i e e e 145
After every change to the SYSIEIM. e e e e e 145
When should a class be declared abstract?. 152
Declare a class abstract if it is intended to be subclassed, but not instantiated. 152
Which methods should be publiC? 166
Only publicize methods that clients will really need, and will not break encapsulation. 166

6. Programming ToOIS - - - - - - - - - = - = - - - - - - - - oo oo oo oo oo o oo oo - oo 170
When should you use a version CoNtrol SYStemM e 179

Use it whenever you have one available, for even the smallest project! 179

When should you USe @ debugger?o e 186

When you are unsure why (or where) your program is NOt WOIKiNG.ttt a s 186
When should you Use a Profiler? e 194
Always run a profiler before attempting to tune performance. e 194
How early should you start worrying about performancCe? 194
Only after you have a clean, running program with poor performance.t 194

7. ATesting Framework - - - - - - - - = - - - - - - - - - - oo oo oo oo oo o o oo oo - oo 206
8. Software Components: Collections - - - - - - - - - - = = - = - - - - - - - - - - - - - - - oo oo oo oo 235
How do you iterate through a Collection whose elements are unordered? e 256
USE AN TEEIaLOr. o e e e 256
9.GUICoNnstruction = = = = = = = = = = = = = = = & & & & & et et emesssses -msesessee s s 263
10. Clients and Servers - - - - - - = - = = = = = = - - - - - - - - - - - oo oo oo o oo oo oo oo oo 291
How can servers protect their state from CONCUIMMENt FEQUESTS 2. oottt e e e e e 309
Declare their public methods as synchronized. e 309

11. Guidelines, Idioms and Patterns- oo oo oo oo oo oo oo - 324
How can an object share behaviour without inheritance? e 329
Delegate some of its Work to another ODJECL. 329
How do you extend behaviour inherited from a SUPerclass? 332
Overwrite the inherited method, and send a message to “super” in the new method. 332
How do you keep a client of a service independent of classes that provide the service? 335
Have the client use the service through an interface rather than a concrete class. e, 335
How do you use a class that provide the right features but the wrong interface? 338
INtroduce an adapler. 338
How do you hide the complexity of accessing objects that require pre- or post-processing?, 341
Introduce a proxy to control access to the ODJECL. 341
How do you implement a generic algorithm, deferring some partsto subclasses? 344

Define it as a Template MEtNOd.. e 344

How do you manage a part-whole hierarchy of objects in a consistentway? 347

Define a common interface that both parts and composites implement. 347
How can an object inform arbitrary clients when it changes state? e 350
Clients implement a common Observer interface and register with the “observable” object; the object notifies its observers when
IEChANQES STalE. 350

12. Common Errors, a few Puzzles - - - - - - - - - - - - - - - - - oo oo oo oo e o o oo - 355

1. P2 — Object-Oriented
Programming

Prof. Oscar Nierstrasz

Lecturer: | g hiitzenmattstr. 14/103

Tel: 631.4618

Email: Oscar.Nierstrasz@iam.unibe.ch

Alexandre Bergel, Frank Buchli, Marc Hugi,

Assistants: Joél Marbach, Andreas Wullimann

www.iam.unibe.ch/~scg/Teaching/P2/
(includes full examples)

WWWw:

http://www.iam.unibe.ch/~scg/Teaching/P2/

Principle Texts:

[1)avid Flanagan, Java in Nutshell: 3d edition, O'Reilly,
999.

James Rumbaugh, Ivar Jacobson, Grady Booch, The
Unified Modeling Language Reference Manual, Addison-
Wesley, 1999

Bertrand Meyer, Object-Oriented Software
Construction, Prentice Hall, 1997.

Rebecca Wirfs-Brock, Brian Wilkerson, Lauren Wiener,
Designing Object-Oriented Software, Prentice Hall,
1990.

—_ = —
REBOVENSORwWN:

03-29
04-05
04-12
04-19
04 -26
05-03
05-10
05-17
05-24
05-31
06 -07
06-14
06 -21
06 -28

Overview

Good Friday

Introduction

Design by Contract

Testing and Debugging
Iterative Development
Inheritance and Refactoring
Programming Tools

A Testing Framework
Collections

GUI Construction

Clients and Servers
Guidelines, Idioms and Patterns
Common Errors, a few Puzzles
Final Exam

Goals of this course

Object-Oriented Design

0 How to use responsibility-driven design to split systems
into objects

0 How to exploit inheritance to make systems generic and
flexible

0 How to iteratively refactor systems to arrive at simple,
clean designs

Software Quality

0 How to use design by contract to develop robust
software

[1 How to test and validate software

Goals ...

Communication
0 How to keep software as simple as possible
[0 How to write software that communicates its design
[0 How to document a design

Skills, Techniques and Tools

0 How to use debuggers, version control systems,
profilers and other tools

0 How and when to use standard software components and
architectures

0 How and when to apply common patterns, guidelines and
rules of thumb

What is programming?

Implementing data structures and algorithms?
Writing instructions for machines?
Implementing client specifications?

Coding and debugging?

Plugging together software components?
Specification? Design?

Testing?

Maintenance?

N N I O I B

Which of these are "not programming”?

Programming and Software Development

[]

How do you get your requirements?

How do you know that the documented requirements
reflect the user's needs?

How do you decide what priority to give each
requirement?

How do you select a suitable software architecture?
How do you do detailed design?

How do you know your implementation is “correct"?
How, when and what do you tes??

How do you accommodate changes in requirements?
How do you know when you're done?

[]

[]

N Y Y N B A

Is "programming” distinct from “software development”?

Programming activities

Documentation
Prototyping

Interface specification
Integration

Reviewing

Refactoring

Testing

Debugging

Profiling

N N N Oy IO I

What do these activities have in common?

What is a software system?

A computer program is an application that solves a single task:
0 requirements are typically well-defined
[0 often single-user at a time
O little or no configuration required

A software system supports multiple tasks.
[] open requirements
0 multiple users
0 implemented by a set of programs or modules
0 multiple installations and configurations
0 long-lived (never “finished")

Programming techniques address systems development by
reducing complexity.

What is good (bad) design?

Consider two programs with identical behaviour.

0 Could the one be well-desighed and the other badly-
designed?

[0 What would this mean?

A procedural design
Problem: compute the total area of a set of geometric shapes

public static |ong suntShapes(Shape shapes[]) {
| ong sum = 0;
for (int 1=0; i<shapes.length; i++) {
switch (shapes[i].kind()) {
case Shape. RECTANGLE: /] a class constant
sum += shapes|[i].rectangl eArea();
br eak;
case Shape. Cl RCLE:
sum += shapes[i].circl eArea();
br eak:;
. Il more cases

j.

}

return sum

An object-oriented approach

A typical object-oriented solution:

public static | ong sunfhapes(Shape shapes[]) {
| ong sum = O;
for (int 1=0; i<shapes.length; i++) {
sum += shapes[i].area();

}

return sum

}

What are the advantages and disadvantages of the two
solutions?

Object-Oriented Design

OO vs. functional design ...

Object-oriented [design] is the method which bases
the architecture of any software system on the
objects it manipulates (rather than "the” function it is

meant to ensure).

Ask not first what the system does: ask what it does
it tol

— Meyer, OOSC

Responsibility-Driven Design

RDD factors a software system into objects with well-defined
responsibilities:
0 Objects are responsible to maintain information and
provide services:

[0 Operations are always associated to responsible
objects

0 Always delegate to another object what you cannot
do yourself

[0 A good desigh exhibits:
00 high cohesion of operations and data within classes
O low coupling between classes and subsystems

Responsibility -Driven Design ...

0 Every method should perform one, well-defined task:
0 Separation of concerns — reduce complexity

0 High level of abstraction — write to an interface, not
an implementation

0 Iterative Development
[0 Refactor the design as it evolves

Refactoring

Refactor your design whenever the code starts to hurt:

[]

[]

1 [

methods that are too /ong or hard to read

0 decompose and delegate responsibilities

duplicated code

0 factor out the common parts (template methods etc.)
violation of encapsulation, or

too much communication between objects (high coupling)
O reassignh responsibilities

big case statements

O intfroduce subclass responsibilities

hard to adapt to different contexts

[separate mechanism from policy

What is Software Quality?

Correctness is the ability of software products to perform
their exact tasks, as defined by their
specifications

Robustness is the ability of software systems to react
appropriately to abnormal conditions

Extendibility is the ease of adapting software products to
changes of specification

Reusability s the ability of software elements to serve
for the construction of many different
applications

Software Quality ...

Compatibility is the ease of combining software elements
with others

Efficiency is the ability of a software system to place as
few demands as possible on hardware
resources

Portability is the ease of transferring software products
to various hardware and software
environments

Ease of use is the ease with which people of various
backgrounds and qualifications can learn to use
software products

— Meyer, OOSC, ch. 1

How to achieve software quality

Design by Contract
[0 Assertions (pre- and post-conditions, class invariants)
O Disciplined exceptions

Standards

[Protocols, components, libraries, frameworks with
standard interfaces

0 Software architectures, design patterns

How to achieve software quality ...

Testing and Debugging
[Unit tests, system tests ...
[0 Repeatable regression tests

Do it, do it right, do it fast
0 Aim for simplicity and clarity, not performance

0 Fine-tune performance only when there is a
demonstrated need!

What is a programming language?

A programming language is a tool for:

specifying instructions for a computer
expressing data structures and algorithms
communicating a design to another programmer

describing software systems at various levels of
abstraction

specifying configurations of software components

I I I A

[]

A programming language is a tool for communication!

Communication

How do you write code that communicates its design?

[0 Do the simplest thing you can think of (KISS)
[0 Don't over-design
0 Implement things once and only once

0 Program so your code is (largely) self-documenting
O Write small methods
0 Say what you want to do, not how to do it

0 Practice reading and using other people's code
[0 Subject your code to reviews

Why use object-oriented programming?

Modelling

0 complex systems can be naturally decomposed into
software objects

Data abstraction
0 Clients are protected from variations in implementation

Polymorphism
O clients can uniformly manipulate plug-compatible objects

Why use OOP? ...

Component reuse

O client/supplier contracts can be made explicit,
simplifying reuse

Evolution
0 classes and inheritance /imit the impact of changes

Why Java?

Special characteristics
[0 Resembles C++ minus the complexity
O Clean integration of many features
O Dynamically loaded classes
0 Large, standard class library

Simple Object Model
0 "Almost everything is an object”
[No pointers
[0 Garbage collection
0 Single inheritance; multiple subtyping
0 Static and dynamic type-checking

Few innovations, but reasonably clean, simple and usable.

History

FORTRAN

Algol 60

Simula 67

Algol 68

1970 rgpmall

COBOL -

talk 72

Small

1980

talk 80—

Modula-2

Objective C

Oberon

ANST C++

Modula-3

oo 0O

What you should know!

What is the dif ference between a computer program and a
software system?

What defines a good object-oriented design?

When does software need to be refactored? Why?
What is "software quality”?

How does OOP attempt to ensure high software quality?

O OOt 0O O

Can you answer these questions?

What does it mean to "violate encapsulation”? Why is that
bad?

Why shouldn’t you try to design your software to be
efficient from the start?

Why (when) are case statements bad?
When might it be "all right” to duplicate code?

How do you program classes so they will be "reusable”? Are
you sure?

Which is easier to understand — a procedural design or an
object-oriented one?

2. Design by Contract

Overview
0 Declarative programming and Data Abstraction
[0 Abstract Data Types
0 Class Invariants
0 Programming by Contract: pre- and post-conditions
[0 Assertions and Disciplined Exceptions

Source

O Bertrand Meyer, Object-Oriented Software
Construction, Prentice Hall, 1997.

Contracts

Client

Supplier

1

=

. .7_

request(okArgs)

result

request(badArgs)

failure

— T

Service Contract: AN
if

precondition fulfilled
then

postcondition guaranteed

If either client or server
does not (or cannot)
respect the contract,
failure is signalled.

Exceptions, failures and defects

An exceptionis the occurrence of an abnormal condition during
the execution of a software element.

A failure is the inability of a software element to satisfy its
purpose.

A defect (AKA "bug") is the presence in the software of some
element not satisfying its specification.

Contracts may fail due due to defects in the client or server
code. Failure should signalled by raising an exception.

Stacks

A Stack is a classical data abstraction with many applications
in computer programming.

Operation Stack isEmpty() size() top()
[true 0 (error)
push(6) [6] false 1 6
push(7) [6]7T false 2 7
push(3) [6]7]3] false 3 3
pop() [6]7] false 2 7
push(2) [6]7]2] false 3 2
pop() [6]7] false 2 7

Stacks support two mutating methods: push and pop.

Example: Balancing Parentheses

Problem:

[0 Determine whether an expression containing
parentheses (), brackets [] and braces { } is
correctly balanced.

Examples:

balanced T (a. b#%) f CldJ-e(ii ;

not balanced.

A simple algorithm

Approach:

0 when you read a /eft ﬁaren’rhesis, push the matching
parenthesis on a stac

0 when you read a right parenthesis, compare it to the
value on top of the stack

O if they match, you pop and continue
O if they mismatch, the expression is not balanced

0 if the stack is empty at the end, the whole expression is
balanced, otherwise not

Using a Stack to match parentheses

Sample input:"([{} 1]

Input Case Op Stack
(eft push))
[eft push])]
{ eft push }) [1 [}]
} match pop)]
] match pop)
] mismatch “false)

The ParenMatch class

A ParenMatch object uses a stack to check if parentheses ina
text String are balanced:

public class ParenMatch {
String line_;
Stacklnterface stack

public ParenMatch (String |1ine,
St ackl nterface stack)

{
line_ = 1line;
stack = stack;

}

A declarative algorithm

We implement our algorithm at a high level of abstraction:
publ i ¢ bool ean parenMatch() ... {
for (int i=0; i<line .length(): i++) { ...
I f (isLeftParen(c)) { // expect match |ater
stack . push(...(matchingRi ghtParen(c)));:
} else {
I f (isRightParen(c)) { // should equal top
| f (stack .isEnpty()) { return false; }
I f (stack .top().equal s(new Character(c))) {
stack . pop();
} else { return false; } } } }
return stack .isEmpty(); // balanced if enpty

J

A cluttered algorithm

public bool ean parenMatch() throws AssertionException {
for (int i=0; i<line .length(); i++) {

char ¢ = line_.charAt(i);

swtch (c) {

case '{' : stack .push(new Character('}')); break;
case '(' : stack .push(new Character(')')); break;
case '[' : stack .push(new Character(']')); break;
case ']' : case ')' : case '}’

I f (stack .isEnpty()) { return false; }
I f (((Character) stack .top()).charValue() == c¢) {
stack . pop();
} else { return false; }
br eak:;
default : break;

}

}
return stack_.isEnmpty():

Helper methods

The helper methods are trivial to implement, and their details
only get in the way of the main algorithm.

private boolean isLeftParen(char c) {
return (¢ =="(') || (c=="[") || (c =="{");
}

private bool ean I sRi ghtParen(char c) {
return (¢ ==")") || (c=="1") || (c=="}");

}

What is Data Abstraction?

An implementation of a stack consists of:
0 a data structure to represent the state of the stack
0 a set of operations that access and modify the stack

Encapsulation means bundling together related entities.

Information hiding means exposing an abstract interface and
hiding the rest.

An Abstract Data Type (ADT):
[encapsulates data and operations, and

0 hides the implementation behind a well-defined
interface.

StackInterface

Interfaces let us abstract from concrete implementations:

public interface Stacklnterface {
publ i c bool ean 1 sSEmpty();
public int size();
public void push(Ooject item
t hrows AssertionException;
public Qoject top() t hrows AssertionException;
public void pop() t hrows AssertionException;

}

O How can clients accept multiple implementations of an ADT?
[] Make them depend only on an interface or an abstract class.

Interfaces in Java

Interfaces reduce coupling between objects and their clients:

0 A class can implement multiple interfaces
0 ... but can only extend one parent class

0 Clients should depend on an interface, not an
implementation

0 ...so implementations don't need to extend a specific
class

Define an interface for any ADT that will have more than one
implementation

Exceptions

All Exception classes look like this!

Define your own exception class to distinguish your exceptions
from any other kind.

public class AssertionException extends Exception {
AssertionException() { super(); }
AssertionException(String s) { super(s); }

}

The implementation consists of a default constructor, and a
constructor that takes a simple message string as an argument.

Both constructors call super() to ensure that the instance is
properly initialized.

Why are ADTs important?

Communication

0 An ADT exports what a client needs to know, and nothing
morel

0 By using ADTs, You communicate what you want to do,
not how to do it!

0 ADTs allow you to directly model your problem domain
rather than how you will use to the computer to do so.

Why are ADTs important? ...

Software Quality and Evolution

[]

1 OO O

ADTs help to decompose a system into manageable
parts, each of which can be separately implemented and
validated.

ADTs protect clients from changes in implementation.
ADTs encapsulate client/server contracts

Interfaces to ADTs can be extended without affecting
clients.

New implementations of ADTs can be transparently
added to a system.

Stacks as Linked Lists

A Stack can easily be implemented by a /inked data structure:

size = 2||top = * |
v \
~ @ 6~@ 7
stack.push(3)
size = 3

TOP:I « J

~® 6~0 /- @ 3 stack.pop()

LinkStack Cells

We can define the Cells of the linked list as an inner class
within LinkStack:
public class LinkStack inplenments Stacklnterface {
private Cell top_;
public class Cell {
public Object item
public Cell next;
public Cell (Qnject item Cell next) {
this.item=item
this.next = next;

}
}

Private vs Public instance variables

[0 When should instance variables be public?

[J Always make instance variables private or protected.

The Cell class is a special case, since its instances are strictly
private to LinkStack!

Naming instance variables

0 How should you name a private or protected instance
variable?

[1 Pick a name that reflects the role of the variable.
[1 Tag the name with an underscore (_).

Role-based names tell the reader of a class what the purpose
of the variables is.

A tagged name reminds the reader that a variable represents
hidden state.

LinkStack ADT

The constructor must construct a valid initial state:

public class LinkStack inplenments Stacklnterface {

private int size_ ;

public LinkStack() {
/| Establishes the Invariant.
top_ = null;
size = 0;

}

Class Invariants

A class invariant is any condition that expresses the valid
states for objects of that class:

O it must be established by every constructor

0 every public method
0 may assume it holds when the method starts
0 must re-establish it when it finishes

Stack instances must satisfy the following invariant:
0 size=0

LinkStack Class Invariant

A valid LinkStack instance has a integer si ze_,and at op_ that
points to a sequence of linked Cells, such that:

0 size_ isalways =0
0 Whensize_is zero, t op_ points nowhere (== nul |)

0 Whensize_ > 0,top_ points fo a Cel | containing the
top item

Programming by Contract

Every ADT is designed to provide certain services given certain
assumptions hold.

An ADT establishes a contract with its clients by associated a
precondition and a postcondition to every operation O, which
states:

"If you promise to call O with the precondition
satisfied, then I, in return, promise to deliver a
final state in which the postcondition is
satisfied.”

Consequence:
0 if the precondition does not hold, the ADT is not
required to provide anything!

Pre- and Postconditions

The precondition binds clients:
[0 it defines what the ADT requires for a call to the
operation to be legitimate.
O it may involve initial state and arguments.

The postcondition, in return, binds the supplier:
O it defines the conditions that the ADT ensures on
return.
0 it may only involve the initial and final states, the
arguments and the result

Benefits and Obligations

A contract provides benefits and obligations for both clients
and suppliers:

Obligations Benefits

Only call pop() on a non-|Stack si ze decreases by 1.

Client empty stack! Top element is removed.

Decrement the si ze. No need to handle case

Supplier Remove the top element. when stack is empty!

Stack pre- and postconditions

Our Stacks should deliver the following contract:

Operation Requires Ensures
i SEnpt y() - no state change
si ze() - no state change
hot empty,
push(Object item | item |=null size == old size + 1,
top == item
t op() not empty | no state change
pop() not empty |size == old size -1

Assertions

An assertion is any boolean expression we expect to be true at
some point :
Assertions have four principle applications:
1. Help in writing correct software
0 formalizing invariants, and pre- and post-conditions
2. Documentation aid
0 specifying contracts
3. Debugging tool
[testing assertions at run-time
4. Support for software fault tolerance
[0 detecting and handling failures at run-time

Testing Assertions

It is easy to add an assertion-checker to a class:

private void assert(bool ean assertion)
t hrows AssertionException {
I f (lassertion) {
t hrow new Asserti onExcepti on(
"Assertion failed in LinkStack");

}
J

0 What should an object do if an assertion does not hold?
[J Throw an exception.

Testing Invariants

Every class has its own invariant:

private bool ean invariant() {
return (size >=0) &&
((size. == 0 && this.top_ == null)
|| (size_ >0 && this.top_!=null));

Disciplined Exceptions

There are only two reasonable ways to react to an exception:
1. clean up the environment and report failure to the client
("organized panic")
2. attempt to change the conditions that led to failure and
retfry

It is not acceptable to return control to the client without
special notification.

[When should an object throw an exception?
[1 If and only if an assertion is violated

If it is not possible to run your program without raising an
exception, then you are abusing the exception-handling
mechanism!

Checking pre-conditions

Assert pre-conditions to inform clients when they violate the
contract.

public Cbject top() throws AssertionException {
assert(!this.isemty()); // pre-condition
return top .item

}

[0 When should you check pre-conditions to methods?
[J Always check pre-conditions, raising exceptions if they fail.

Checking post-conditions

Assert post-conditions and invariants to inform yourself when
you violate the contract.

public void push(Qbject item

}

t hrows AssertionException {

assert(item!= null);
top_ = new Cell (item top_);

Sl ze ++;
assert(!this.isEmty()); /| post-condition
assert(this.top() == item; // post-condition

assert(invariant());

[0 When should you check post-conditions?

[1 Check them whenever the implementation is non-trivial.

Running parenMatch

public static void parenMatchlLoop(Stackl nterface stack) {

}

Buf f eredReader in =
new Buf f er edReader (new I nput St r eanReader (Systemin)) ;
String line;
try {
Systemout.println("Enter a parenthesized expression");
Systemout.printlin("(enpty line to stop)");
do {
| ine = in.readLi ne();
Systemout. println(new ParenMat ch(line, stack).reportMtch());
} while(line !'=null & line.length() > 0);
Systemout.println("bye!'");
} catch (I Ckxception err) {
} catch (AssertionException err) {
err.printStackTrace();

}

Running parenMatch ...

java -cp stack.jar Test Stack

Pl ease enter parenthesized expressions to test
(empty line to stop)

(hello) (world)

"(hello) (world)" is balanced

()
"()" is balanced

static public void main(String args[]) {

"static public void main(String args[]) {" is not bal anced
()
"()" is not bal anced

}

"1" is bal anced

' 1s bal anced
bye!

[1 Which contract is being violated?

O OCOoOooogo O O

What you should know!

How can helper methods make an implementation more
declarative?

What is the difference between encapsulation and
information hiding?

What is an assertion?

How are contracts formalized by pre- and post-conditions?
What is a class invariant and how can it be specified?
What are assertions useful for?

How can exceptions be used to improve program
robustness?

What situations may cause an exception to be raised?

oo O Ooboogo O

Can you answer these questions?

Why is strong coupling between clients and suppliers a bad
thing?

When should you call super() in a constructor?

When should you use an inner class?

How would you write a general assert() method that works
for any class?

What happens when you pop() an empty java.util.Stack? Is
this good or bad?

What impact do assertions have on performance?
Can you implement the missing LinkStack methods?

3. Testing and Debugging

Overview
0 Testing — definitions
[0 Testing various Stack implementations
0 Understanding the run-time stack and heap
0 Wrapping — a simple integration strategy
0 Timing benchmarks

Source

O I. Sommerville, Software Engineering,Addison-Wesley,
Fifth Edn., 1996.

Testing

Unit testing: test individual (stand-alone) components

test a collection of related components

Module testing: (a module)

Sub-system testing: | test sub-system interface mismatches

(i) test interactions between sub-
systems, and

System testing: |(ii) test that the complete systems
fulfils functional and non-functional
requirements

Acceptance testing |test system with real rather than
(alpha/beta testing): | simulated data.

Testing is always iterative!

Regression testing

Regression testing means testing that everything that used to
work still works after changes are made to the system!

0 tests must be deterministic and repeatable
0 should test "all” functionality
[every interface
all boundary situations
every feature
every line of code
everything that can conceivably go wrong

I I R R

It costs extra work to define tests up front, but they pay of f
in debugging & maintenance!

P2 — 52002 70,

Caveat: Testing and Correctness

Tesfil;lﬂ can only reveal the presence
of defects, not their absence!

®© O. Nierstrasz — U. Berne Testing and Debugging

Testing a Stack

We define a simple regression test that exercises all
StackInterface methods and checks the boundary situations:

static public void testStack(Stacklnterface stack) {

try {

Systemout.print("Testing "
+ stack.getC ass().getName() + " ... ");

assert(stack.isempty());

. /] nore tests here ...
Systemout.println("passed all tests!");

} catch (Exception err) { // NB: any kind!
err.printStackTrace();

}
}

Build simple test cases

Construct a test case and check the obvious conditions:

for (int i=1; i<=10; i++) {
st ack. push(new I nteger(i));

}
assert (!stack.isEmty());
assert (stack.size() == 10);

assert(((lInteger) stack.top()).intValue() == 10);

[J What other test cases do you need to fully exercise a Stack
implementation?

Check that failures are caught

How do we check that an assertion fails when it should?

assert(stack.iseEmpty()); //
bool ean enpt yPopCaught = fal se;

try {
[l we expect pop() to raise an exception

st ack. pop() ;

} catch(AssertionkException err) {
/] we shoul d get here!
empt yPopCaught = true;

}
assert (enpt yPopCaught); // should be true

When (not) to use static methods

A static method belongs to a class, not an object.

[0 Static methods can be called without instantiating an
object

—necessary for starting the main program
—necessary for constructors and factory methods
—useful for test methods

0 Static methods are just procedures!
[0 avoid them in OO designs!
O (counter-)example: utilities (java.lang.Math)

When (not) to use static variables

A static instance variable also belongs to a class, not an object.

[1 Static instance variables can be accessed without
instantiating an object

—useful for representing data shared by all instances
of a class

[0 Static variables are global variables!
[0 avoid them in OO designs!

ArrayStack

We can also implement a (variable) Stack using a (fixed-length)
array to store its elements:

public class ArrayStack i nplenents Stacklnterface {
(bj ect store_ [] = null;// default val ue
I nt capacity_ = 0; /] current size of store
Int size = 0; [/ nunber of used slots

[1 What would be a suitable class invariant for ArrayStack?

Handling overflow

Whenever the array runs out of space, the Stack "grows" by
allocating a larger array, and copying elements to the new
array.

public void push(Ooject item
t hrows AssertionException

{
I f (size_ == capacity) {
grow() ;
}
store [++Size | = item [/ NB: subtle error!
}

[0 How would you implement the grow() method?

Checking pre-conditions

public boolean isEnpty() { return size == 0; }
public int size() { return size_ ; }

public Qoject top() throws AssertionException {
assert(!this.iskEmpty());
return store [size -1];

}

public void pop() throws AssertionException {
assert(!this.isEmpty());
sl ze --;

}

NB: we only check pre-conditions in this version!
[1 Should we also shrink() is the Stack gets too small?

Testing ArrayStack

When we test our ArrayStack, we get a surprise:

Testing ArrayStack ...
java. | ang. Arrayl ndexQut O BoundsException: 2
at ArrayStack. push(ArrayStack. java: 28)
at Test Stack.test Stack(Conpil ed Code)
at Test St ack. mai n(Test St ack. j ava: 12)
at com appl e.nrj.JManager. JVst at i cMet hodDi spat cher
.run(JM AWCont ext | npl . | ava: 796)
at java.lang. Thread. run(Thread.|ava: 474)

Exception.printStackTrace() tells us exactly where the
exception occurred ...

The Run-time Stack

The run-time stack is a fundamental data structure used to
record the context of a procedure that will be returned to at
a later point in time. This context (AKA "stack frame") stores
the arguments to the procedure and its local variables.

Practically all programming languages use a run-time stack:
public static void main(String args[]) {
Systemout.println("fact(3) =" + fact(3));
}
public static int fact(int n) {
If (n<=0) { return 1; }
else { return n*fact(n-1) ; }

}

The run-time stack in action ...

A stack frame is pushed with each procedure call ...

main ...

fact(3)=?|n=3; ...

fact(3)=? |n=3;fact(2)=? n=2;fact(2) ...

fact(3)=? n=3;fact(2)=? n=2;fact(1)=? |n=1;fact(1l) ...
fact(3)=?|n=3;fact(2)=?|n=2;fact(1)=" n=1; fact (0)=? n=0;fact(0) ...
fact(3)=? n=3;fact(2)=? n=2;fact(1)=? |n=1;fact(0)=? |return 1
fact(3)=?|n=3;fact(2)=?|n=2;fact(1)=" return 1
fact(3)=?|n=3;fact(2)=?|return 2

fact(3)=? |return 6

fact (3)=6

... and popped with each return.

The Stack and the Heap

- The He
RunTimeStac k Wﬂ'h/—e/agf\ %I;OWWS RunTimeHeap
Object created,
ArrayStack.push R = . Integ er
item_ : Object
TestStac k.testStac k . Object []
stack : StacklInterface
| : integer
. ArrayStack
TestStac k.main .
—— capacity _:integer
args : String [size_:integer
com.apple .mrj...run store_: Object []
: and shrinks | _
java.lang.Thread.ja va When ObJZCTS -sString [1

are garbage-

collected.

Fixing our mistake

We erroneously used the incremented size as an index into the
store, instead of the new size - 1

public void push(Coject item) ... {
I f (size == capacity) { grow(); }
store [size ++] =item // old size = new size-1
assert(this.top() ==i1tem;
assert(invariant());
}

NB: perhaps it would be clearer to write:
store [this.toplndex()] = item

java.util.Stack

Java also provides a Stack implementation, but it is not
compatible with our interface:

public class Stack extends Vector {
public Stack();
public Qoject push(Object item;
public synchroni zed Object pop();
publ i ¢ synchroni zed Qbj ect peek();

publ i ¢ bool ean empty();
public synchroni zed int search(Cbject 0);

}

If we change our programs to work with the Java Stack, we
won't be able to work with our own Stack implementations ...

Wrapping Objects

Wrapping is a fundamental programming technique for systems
integration.

[What do you do with an object whose interface doesn't fit
your expectations?

L] You wrap it.

[J What are possible disadvantages of wrapping?

A Wrapped Stack

A wrapper class implements a required interface, by delegating
requests to an instance of the wrapped class:

| nport java.util. Stack;
public class SinpleWappedStack
| npl enents Stacklnterface
{
protected Stack stack ;
public Sinpl eWappedStack() {

stack = new Stack(); [wrapped i nstance
}
publ i c boolean isEmpty() {

return stack .emty(); /| del egation

}

A Wrapped Stack ...

public int size() {
return stack .size();

}
public Cbject top() throws AssertionException {

return stack . peek();

}
public void pop() throws AssertionException {

stack . pop();
}

... Il simlar for push()
}

[J Do you see any flaws with our wrapper class?

A contract mismatch

But running t est St ack(new Si npl eW appedSt ack()) yields:
Testing S mpl eWappedSt ack . ..
java. util.EnmptyStackException

at java.util.Stack. peek(Stack.java: 78)

at java.util.Stack. pop(Stack.|ava: 60)

at Sl npl eWappedSt ack. pop(Si npl eW appedSt ack. | ava:
29)

at Test Stack.testStack(Conpil ed Code)

at Test St ack. mai n(Test St ack. j ava: 13)

at com appl e. nrj.JManager. JVMst at | cMet hodDi spat cher .
run(JIMAWICont ext | npl . | ava: 796)
at java.lang. Thread. run(Thread.|ava: 474)

[J What went wrong?

Fixing the problem ...

Our tester expectsan empty Stack to throw an exception when
it is popped, but java.util.Stack doesn't do this — so our
wrapper should check its preconditions!

public class WappedSt ack extends Sinpl eW appedSt ack
{
public Object top() throws AssertionException {
assert(!this.isemty());
return super.top();
}
public void pop() throws AssertionException {
assert(!this.iskEmty());
super. pop();
| S

Timing benchmarks

Which of the Stack implementations performs better?
tinmer.reset();
for (int 1=0; i<iterations; i++) {
st ack. push(item;
}
el apsed = tiner.tineEl apsed();
Systemout.printlin(elapsed + " mlliseconds for "
+ I terations + " pushes");

0 Complexity aside, how can you tell which implementation
sTraTeqy\Ndlperforn\besf7

[1 Run a benchmark.

Timer

| nport java.util.Date;
public class Tiner { [/ Abstract fromthe

protected Date startTine ; [/ details of timng
public Tiner() {
this.reset();

}

public void reset() {
startTine_ = new Date();

}

public long tineElapsed() {
return new Date().getTi me()
- startTine_.getTine();

Sample benchmarks (milliseconds)

Java VM | Stack Implementation| 100K pushes| 100K pops
LinkStack 2809 100

Apple MRTJ ArrayStack 474 56
WrappedStack 725 293

LinkStack 5151 1236

Metrowerks ArrayStack 1519 681
WrappedStack 8748 8249

LinkStack 3026 189

MW JIT ArrayStack 877 94
WrappedStack 5927 5318

[J Can you explain these results? Are they what you expected?

O O OO0On0

What you should know!

What is a regression test? Why is it important?
When should you (not) use static methods?

What strategies should you apply to design a test?
What are the run-time stack and heap?

How can you adapt client/supplier interfaces that don't
match?

When are benchmarks useful?

O OoOoooOoogo O

Can you answer these questions?

Why can’t you use tests to demonstrate absence of
defects?

How would you implement ArrayStack.grow()?

Why doesn’t Java allocate objects on the run-time stack?
What are the advantages and disadvantages of wrapping?
What is a suitable class invariant for WrappedStack?
How can we learn where each Stack implementation is
spending its time?

How much can the same benchmarks differ if you run them
several times?

4. Iterative Development

Overview
0 Iterative development
[0 Responsibility-Driven Design
0 How to find the objects ...
0 TicTacToe example ...

Sources

0 R. Wirfs-Brock, B. Wilkerson, L. Wiener, Designing
Object-Oriented Software, Prentice Hall, 1990.

[0 Kent Beck, Extreme Programming Explained — Embrace
Change, Addison-Wesley, 1999.

The Classical Software Lifecycle

The classical software lifecycle models

the software development as a step-
by-step "waterfall” between the

various development phases.

Reguiiements|
i\LA nalysis

\

pl emen’ra‘rm
‘\C Testi ng?\i

\LMai n’renan@

The waterfall model is unrealistic for many reasons, especially:
0 requirements must be “frozen" too early in the life-cycle
0 requirements are validated too late

Iterative Development

In practice, development is always iterative, and al/ software
phases progress in parallel.

Collec’rlon

Maintenance through iteration CTesfmgj

Testing throughout
implementation

Implemen‘ra@
C Design M@Sign through refactoring

[1 If the waterfall model is pure fiction, why is it still the
standard software process?

E quirements Tesf/ng based on requirements

AnalyS|S alidation fhrough

£

What is Responsibility-Driven Design?

Responsibility-Driven Design is
[0 a method for deriving a software design in terms of
collaborating objects

[by asking what responsibilities must be fulfilled to meet
the requirements,

0 and assigning them to the appropriate objects (i.e., that
can carry them out).

How to assign responsibility?

Pelrine's Laws:
[0 Which responsibilities should an object accept?
[J "Don’t do anything you can push off to someone else.”

0 How much state should an object expose?
[] "Don't let anyone else play with you.”

RDD leads to fundamentally different designs than those
obtained by functional decomposition or data-driven design.

Class responsibilities tend to be more stable over time than
functionality or representation.

Example: Tic Tac Toe

Requirements:

"A simple game in which one player marks down only
crosses and another only ciphers [zeroes], each
alternating in filling in marks in any of the nine
compartments of a figure formed by two vertical lines
crossed by two horizontal lines, the winner being the
first to fill in three of his marks in any row or
diagonal.”

— Random House Dictionary

We should design a program that implements the rules of Tic
Tac Toe.

Setting Scope

Questions:
[0 Should we support other games?
0 Should there be a graphical UIL?
0 Should games run on a network? Through a browser?
[0 Can games be saved and restored?

A monolithic paper design is bound to be wrong!

Setting Scope ...

An iterative development strategy:

O limit initial scope to the minimal requirements that are
Interesting

0 grow the system by adding features and test cases

0 let the design emerge by refactoring roles and
responsibilities

0 How much functionality should you deliver in the first
version of a system?

[J S/e/ecf the minimal requirements that provide value to the
client.

Tic Tac Toe Objects

Some objects can be identified from the requirements:

Objects Responsibilities
Game Maintain game rules
Player Make moves

Mediate user interaction
Compartment Record marks
Figure (State) | Maintain game state

Entities with clear responsibilities are more likely to end up as
objects in our design.

Tic Tac Toe Objects ...

Others can be eliminated:

Non-Objects Justification
Crosses, ciphers | Same as Marks
Marks Value of Compartment
Vertical lines Display of State
Horizontal lines ditto
Winner State of Player
Row View of State
Diagonal ditto

(0 How can you tell when you have the "right” set of objects?
[J Each object has a clear and natural set of responsibilities.

Missing Objects

Now we check if there are unassigned responsibilities:
0 Who starts the Game?
0 Who is responsible for displaying the Game state?
0 How do Players know when the Game is over?

Let us intfroduce a Driver that supervises the Game.

0 How can you tell if there are objects missing in your design?
[] When there are responsibilities left unassigned.

Scenarios

A scenario describes a typical sequence of interactions:

Driver

Player Y

Game Player X
create
| > Ccreate . create
print - getMove _
done?
|
print - getMove
done? |
int
Pr - getMove
|
done? |
getMove

-

[] Are there other equally valid scenarios for this problem?

Version 1.0 (skeleton)

Our first version does very little!
cl ass GaneDriver {
static public void main(String args[]) {
Ti cTacToe gane = new TicTacToe();
do { Systemout.print(gane); }
whi | e(gane. not Over());
}
public class TicTacToe {
public bool ean notQver() { return false; }
public String toString() { return("TicTacToe\n"); }

}

0 How do you iteratively "grow” a program?

[1 Always have a running version of your program.

Version 1.1 (simple tests)

The state of the game is represented as 3x3 array of chars
marked ', 'X', or 'O’". We index the state using chess notation,
i.e., columnis 'a’ through ‘¢’ and row is ‘1" through '3".

public class TicTacToe {
private char[][] ganmeState_;
public TicTacToe() {
ganeState = new char[3][3];
for (char col="a'; col <='c'; col ++)
for (char row="1"; row="3"; rowt+)
this.set(col,row,' ');

Checking pre-conditions

set() and get() translate from chess notation to array indices.

private void set(char col, char row, char mark) {
assert (i nRange(col, row)); // NB: precondition
ganeState [col-"a'|J[row"'1"] = mark;

}

private char get(char col, char row {
assert (1 nRange(col, row);
return ganeState [col-"a'"J[row'1l"];

}

private bool ean i nRange(char col, char row {
return (('a' <=col) && (col<="c¢")

&& ('1'<=row) && (row="'3"));

Testing the new methods

For now, we just exercise the new set() and get() methods:
public void test() {
Systemerr.println("Started TicTacToe tests");

assert(this.get('a,'1') =="");
assert(this.get('c','3) =="'");
this.set('c',"3,'X);
assert(this.get('c','3") =="'X);
this.set('c','3," ');
assert(this.get('c','3) =="");

assert(!this.inRange('d',"4"'));
Systemerr.println("Passed TicTacToe tests");

Testing the application

If each class provides its own test() method, we can bundle our
unit tests in a single driver class:

class TestDriver {
static public void main(String args[]) {
Ti cTacToe gane = new TicTacToe();
gane.test() ;

J
}

Printing the State

By re-implementing Ti cTacToe. toString(), we can view the
state of the game:

[0 How do you make an object printable?
[J] Override Object.toString()

TicTacToe.toString()

Use a StringBuffer (not a String) to build up the
representation:

public String toString() {
StringBuffer rep = new StringBuffer();
for (char row="3"; row="1"; row-) {
rep. append(row) ;
rep. append(" ");

for (char col="a'; col <='c¢'; col++) { ... }

} .
rep. append(” a b c\n");

return(rep.toString());
}

Refining the interactions

We will want both real Driver Game Player X Player Y
and test Players, so = \
the Driver should create | create " | Ccreate
create them. orint

done?
Updating the Game ; g
and printing it should updafe | move
be separate | Mmove
operations. print._ =

done? _
The Game should ask update
the Player to make a nove
move, and then the L i - L

Player will attempt to
do so.

Tic Tac Toe Contracts

Explicit invariants:
O turn (current player) is either X or O
0 X and O swap turns (turn never equals previous turn)
0 game state is 3x3 array marked X, O or blank
0 winner is X or O iff winner has three in a row
Implicit invariants:
O initially winner is nobody: initially it is the turn of X
[game is over when all squares are occupied, or there is a

winner
0 a player cannot mark a square that is already marked

Contracts:
0 the current player may make a move, if the invariants
are respected

Version 1.2 (functional)

We must intfroduce state variables to implement the contracts

public class TicTacToe {
private char[][] ganeState_;

private Player winner_ = new Player(); // = nobody
private Player[] player_;

private int turn_ = X; [/ initial turn
private i nt squaresLeft = 9;

static final int X = 0; /| constants

static final 1nt O=1;

Supporting test Players

The Game no longer instantiates the Players, but accepts them
as constructor arguments:

public TicTacToe(Pl ayer playerX, Player playerQ
t hrows AssertionException

{1l ...
pl ayer = new Pl ayer[2];
pl ayer [X] = playerX;
player [Q = playerQ

}

Invariants

These conditions may seem obvious, which is exactly why they
should be checked ...

private bool ean invariant() {

return (turn_ == X || turn_ == O

&& (this.notCQOver()

this.wnner() == player [X]
this.wnner() == player [(
this.wnner().isNobody())
&& (squaresLeft < 9 [/ else, initially:

|| turn_ == X && this.w nner().isNobody());

}

Assertions and tests often tell us what methods should be
implemented, and whether they should be public or private.

Delegating Responsibilities

When Driver updates the Game, the Game just asks the Player
to make a move:

public void update() throws | CeException {
player [turn_].nove(this);

}

Note that the Driver may not do this directly!

Delegating Responsibilities ...

The Player, in turn, calls the Game’s move() method:
public void nove(char col, char row, char mark)
t hrows AssertionException
{ assert(notOver());
assert (i nRange(col, row);
assert(get(col, row =="'");
Systemout.printin(mark + " at " + col + row;
this.set(col, row, mark);
this.squaresLeft --;
this.swapTurn();
t hi s. checkWnner();
assert(invariant());

Small Methods

Introduce methods that make the intent of your code clear.

publ i c bool ean not Over () {
return this.wnner().isNobody()
&& this.squaresLeft() > 0;

}

private void swapTurn() {
turn_ = (turn_ = X) ? O: X

}

Well-named variables and methods typically eliminate the need
for explanatory comments!

Accessor Methods

Accessor methods protect clients from changes in
implementation:

public Player w nner() {
return w nner _;

}

public int squaresLeft() {
return this.squaresLeft ;

}

0 When should instance variables be public?
[J Almost never! Declare public accessor methods instead.

Code Smells — TicTacToe.checkWinner()

Check for a winning row, column or diagonal:
private void checkWnner ()
t hrows AssertionException
{
char pl ayer;
for (char row="3"; row="1"; row-) {
player = this.get('a',row;
I f (player == this.get('b',row
&& player == this.get('c',row) {
this.set Wnner (pl ayer);
return;

}
b

Code Smells ...

More of the same ...

for (char col="a'; col <="c'; col ++) {
player = this.get(col,"1");
I f (player == this.get(col,"'2")
&& player == this.get(col,"3")) {
this.set Wnner (pl ayer);
return;

}
}

and yet some more ...

Code Smells ...

pl ayer = this.get('b',"'2");
I f (player == this.get('a,'1")
& player == this.get('c',"'3")) {
thi s. set Wnner (pl ayer);
return;
}
I f (player == this.get('a,'3")
&& player == this.get('c',"'1")) {
this.set Wnner (pl ayer);
return;

}
}

[J Duplicated code stinks! How can we clean it up?

GameDriver

In order to run test games, we separated Player instantiation
from Game playing:
public class GaneDriver {
public static void nain(String args[]) {

try {
Pl ayer X = new Player(' X);
Pl ayer O = new Player('O);

Ti cTacToe game = new TicTacToe(X, O;
pl ayGane(gane) ;
} catch (AssertionkException err) {

.-
}

The Player

We use different constructors to make real or test Players:

public class Player {
private final char mark_;
private final BufferedReader in_;

A real player reads from the standard input stream:
public Player(char mark) {
thi s(mark, new BufferedReader (
new | nput St r eanReader (System i n)

).

}

This constructor just calls another one ...

Player constructors ...

But a Player can be constructed that reads its moves from any
input buffer:

protected Player(char mark, BufferedReader in) {
mark = mark;
In_ =1in;

}

This constructor is not intended to be called directly.

Player constructors ...

A test Player gets its input from a String buffer:
public Player(char mark, String noves) {
thi s(mark, new BufferedReader (
new StringReader (noves)

).

}

The default constructor returns a dummy Player representing
"nobody”

public Plaver() {
this('" ');
}

Defining test cases

The TestDriver builds games using test Players that represent
various test cases:

public class TestDriver {
private static String testXl
private static String testOl
|/ + other test cases ...

"al\ nb2\ nc3\ n":
"b1\ ncl\ n":

public static void main(String args[]) {
test Game(test X1, testQl, "X', 4);

/1
J

Checking test cases

The TestDriver checks if the results are the expected ones.
public static void testGne(String Xnoves,

{

}

String Onoves, String w nner, int squaresLeft)

try {

Pl ayer X = new Player(' X', Xnoves);
Pl ayer O = new Player(' O, Onoves);
Ti cTacToe gane = new TicTacToe(X, O;
GaneDr i ver. pl ayGane(gane) ;
assert(ganme. w nner().nanme().equal s(w nner));
assert(gane. squareslLeft() == squareslLeft);

} catch (AssertionkException err) { ... }

Running the test cases

Started testGne test
3 |

Pl ayer O noves: O at cl
CHE

e E
2 | X |

e B
1 X|] O| O

a b ¢
Pl ayer X noves: X at c3
3 | | X
S E .
2 | X |

e E
1 X| O] O

a b ¢
gane over!

Passed test Gane test

o OO GO O O

What you should know!

What is I'terative Development, and how does it differ from
the Waterfall model?

How can identifying responsibilities help you to design
objects?

Where did the Driver come from, if it wasn't in our
requirements?

Why is Winner not a likely class in our Tic Tac Toe design?
Why should we evaluate assertions if they are all supposed
to be true anyway?

What is the point of having methods that are only one or
two lines long?

[]

oo 0o O

Can you answer these questions?

Why should you expect requirements to change?

In our design, why is it the Game and not the Driver that
prompts a Player to move?

When and where should we evaluate the TicTac Toe
invariant?

What other tests should we put in our TestDriver?

How does the Java compiler know which version of an
overloaded method or constructor should be called?

5. Inheritance and Refactoring

Overview

[]

[]

[]

[]

Uses of inheritance

0 conceptual hierarchy, polymorphism and code reuse
TicTacToe and Gomoku

0 interfaces and abstract classes

Refactoring

0 iterative strategies for improving design

Top-down decomposition

0 decomposing algorithms to reduce complexity

Source

[]

R. Wirfs-Brock, B. Wilkerson, L. Wiener, Designing
Object-Oriented Software, Prentice Hall, 1990.

What is Inheritance?

Inheritance in object-oriented programming languages is a
mechanism to:

0 derive new subclasses from existing classes

[1 where subclasses inherit all the features from their
parent(s)

0 and may selectively override the implementation of some
features.

Inheritance mechanisms

OO languages realize inheritance in dif ferent ways:

self dynamically access subclass methods

super |statically access overridden, inherited methods

multiple |inherit features from multiple superclasses
inheritance

abstract |partially defined classes (to inherit from only)
classes

mixins | build classes from partial sets of features

interfaces | specify method argument and return types

guarantees that subclass instances can be

subtyping substituted for their parents

The Board Game

Tic Tac Toe is a pretty dull game, but there are many other
interesting games that can be played by fwo players with a
board and two colours of markers.

Example: Go-moku

"A Japanese game played on a go board with players
alternating and attempting to be first to place five
counters in a row.”

— Random House

We would like to implement a program that can be used to play
several different kinds of games using the same game-playing
abstractions (starting with TicTacToe and Go-moku).

Uses of Inheritance

Inheritance in object-oriented programming languages can be
used for (at least) three different, but closely related
purposes:

Conceptual hierarchy:

[0 Go-moku is-a kind of Board Game; Tic Tac Toe is-a kind
of Board Game

Polymorphism:
0 Instances of Gonoku and Ti cTacToe can be uniformly

manipulated as instances of Boar dGame by a client
program

Uses of Inheritance ...

Software reuse:

[1 Gomoku and TicTacToe reuse the BoardGame interface

[1 Gomoku and TicTacToe reuse and extend the
BoardGame representation and the implementations of
1ts operations

Conceptual hierarchy is important for analysis; polymorphism
and reuse are more important for design and implementation.

Note that these three kinds of inheritance can also be
exploited separately and independently.

Class Diagrams

The TicTacToe class currently TicTacToe

looks like this: _gameState : char [3][3]

-winner: Player
-turn : Player
-player : Player[2]
-squareslLeft : int

e

K Y +create(Player, Player)

- private feature +update()

protected feature +move(char, char, char)
: +winner() : Player

* pUbh.C feature +nhotOver() : boolean

create() static feature +squaresLeft() : int

checkWinner()| abstract feature -set(char, char, char)

-get(char, char) : char
-swap Turn()

-checkWinner()
-inRange(char col, char row) : boolean

A bad idea ...

Why not simply use inheritance for

° o o o To T T
incremental modification? ictacloe

-gameState : char [3][3]

Exploiting inheritance for code reuse z%

without refactoring tends to lead to:
Gomoku

O duplicated code (similar, but

not reusable methods) -gameState : char [19][19]

0 conceptually unclear design +ereate ()
(arbitrary relationships +checkWinner()
between classes) .

Gomoku is not a kind of TicTacToe

Class Hierarchy

Both Go-moku and Tic Tac Boardéame

Toe are kinds of Board wupdate()

e G Webmle L o
) +winnher . ayer
interface, and factor the | +notover(): boolean
common func’rionaliTy into +squaresLeft() : int

a shared parent class. J
I
/ AbstractBoardGame
Gomoku abstract \ TicTacToe
+create () +create ()

Behaviour that is not shared will be implemented by the
subclasses.

Iterative development strategy

We need to find out which TicTacToe functionality will:
O already work for both TicTacToe and Gomoku
[need to be adapted for Gomoku
[0 can be generalized to work for both

Example: set() and get () will not work for a 19x19 board!

Iterative development strategy ...

Rather than attempting a "big bang” redesign, we will
iteratively redesign our game:

[1 introduce a BoardGame interface that TicTacToe
implements

0 move all TicTacToe implementation to an
AbstractBoardGame parent

O fix, refactor or make abstract the non-generic features

(1 intfroduce Gomoku as a concrete subclass of
AbstractBoardGame

After each iteration we run our regression tests to make sure
nothing is broken!

[0 When should you run your (regression) tests?
[] After every change to the system.

Version 1.3 (add interface)

We specify the interface both subclasses should implement:
public interface BoardGne {
public void update() throws | CException;
public void nove(char col, char row, char mark)
t hrows AssertionExcepti on;
public Player currentPlayer(); // NB: new nethod
public Player wnner();
publ i ¢ bool ean not Over();
public int squareslLeft();
public void test();

}

Initially we focus only on abstracting from the current
TicTacToe implementation

Speaking to an Interface

Clients of TicTacToe and Gomoku should only depend on the
BoardGame interface:

public class GaneDriver {
public static void main(String args[]) {
try {
Pl ayer X = new Player(' X);
Pl ayer O = new Player('O);
Boar dGame game = new TicTacToe(X, O;
pl ayGane(gane) ;

}

public static void playGane(BoardGane gane) { ... }
Speak to an interface, not an implementation.

Quiet Testing

Our current TestDriver prints the state of the game after
each move, making it hard to tell when a test has failed.

Tests should be silent unless an error has occurred!

public static void playGane(BoardGane gane,
bool ean ver bose)

{ ..
I f (verbose) {
Systemout.println();
System out. println(gane);
}

NB: we must shift all responsibility for printing to playGame().

Quiet Testing (2)

A more flexible approach is to let the client supply the
PrintStream:

public static void playGane(BoardGane gane,
Print Stream out)

[

out.println(gane);

}...

The TestDriver can simply send the output to a Null stream:
pl ayGanme(ganme, Systemout); // normal printing
pl ayGame(ganme, new Nul | PrintStream(); // testing

NullPrintStream

A Null Object implements an interface with null methods:
public class Null PrintStream extends PrintStream {
Nul [PrintStrean() { super(Systemout); }
public void print() { }
public void print(Ooject x) { }
public void print(String s) { }
public void printlin() { }
public void println(Coject x) { }
public void printin(String s) { }

}

Null Objects are useful for eliminating flags and switches.

TicTacToe adaptations

In order to pass responsibility for printing to the GameDriver,
a BoardGame must provide a method to export the current
Player:

public class TicTacToe | nplenents BoardGne {

public Player currentPlayer() {
return player [turn];

}

Now we run our regression tests and (after fixing any bugs)
continue.

Version 1.4 (add abstract class)

AbstractBoardGame will provide common variables and
methods for TicTacToe and Gomoku.

public abstract class AbstractBoardGane
| npl ement s Boar dGane
{ protected char[][] gameState ;
protected Player wnner = new Player();
protected Player[] player_;

protected void set(char col, char row, char nark)

[0 When should a class be declared abstract?

[1 Declare a class abstract if it is intended to be subclassed,
but not instantiated.

Refactoring

Refactoring is a process of moving methods and instance
variables from one class to another to improve the design,
specifically to:

O reassign responsibilities
0 eliminate duplicated code
0 reduce coupling: interaction between classes

[1 increase cohesion: interaction within classes

Refactoring strategies

We have adopted one possible refactoring strategy, first
moving everything except the constructor from TicTacToe to
AbstractBoardGame, and changing all private features to
protected:

public class TicTacToe extends AbstractBoardGne {
public TicTacToe(Pl ayer playerX, Player playerQ

We could equally have started with an empty
AbstractBoardGame and gradually moved shared code there.

Version 1.5 (refactor for reusability)

Now we must check which parts of AbstractBoardGame are
generic, which must be repaired, and which must be deferred
to its subclasses:

O the number of rows and columns and the winning score
may vary

[0 introduce instance variables and an init() method

[0 rewrite toString(), invariant(), inRange() and test()
O set() and get() are inappropriate for a 19x19 board

0 index directly by integers

0 fix move() to take String argument (e.g., "f17")

0 add methods to parse String into integer coordinates
O getWinner() must be completely rewritten ...

AbstractBoardGame 1.5

We introduce an init() method for arbitrary sized boards:
public abstract class AbstractBoardGme ... {
protected void init(int rows, int cols, int score,
Pl ayer playerX, Player playerO { ...
}

And call it from the constructors of our subclasses:
public TicTacToe(Pl ayer playerX, Player playerQ {
[/ 3x3 board with winning score = 3
this.init(3,3,3, playerX, playerO;

}

[0 Why not just introduce a constructor for
AbstractBoardGame?

BoardGame 1.5

Most of the changes in AbstractBoardGame are to protected
methods.

The only public (interface) method to change is move():

public interface BoardGne {

public void nove(String coord, char mark)
t hrows AssertionExcepti on;

Player 1.5

The Player's move() method is now radically simplified:
public void nove(BoardGane gane) throws | CException {

String line = in_.readLine();

I f (line == null)
t hrow new | OException("end of 1nput");

try { gane.nove(line, this.mark())); }

catch (AssertionException err) {
Systemerr.printin("Invalid nove ignored ("

tline +")%); }

}

[J How can we make the Player responsible for checking if the
move is valid?

Version 1.6 (Gomoku)

The final steps are:
[0 rewrite checkWinner()

0 introduce Gomoku

0 modify TestDriver to run tests for both TicTacToe
and Gomoku

0 print game state whenever a test fails

0 modify GameDriver to query user for either TicTacToe
or Gomoku

Keeping Score

The Go board is too large to search exhaustively for a winning
Go-moku score.

We know that a winning sequence SIS
must include the last square o ool
marked. So, it suffices to search

in all four directions starting 7 e 5

from that square to see if we find

5inarow.

[1 Whose responsibility is it to search?

A new responsibility ...

Maintaining the state of the board and searching for a winning
run seem to be unrelated responsibilities. So let's introduce a
new object (a Runner) to run and count a Player’s pieces.

protected void checkWnner(int col, int row... {
char player = this.get(col,row;
Runner runner = new Runner(this, col, row;
/] check vertically
I f (runner.run(0,1) >= this.w nningScore_)
{ this.setWnner(player); return; }
/| check horizontally
If (runner.run(1,0) >= this.w nningScore)
{ this.setWnner(player); return; }

The Runner

The Runner must know its game, its home (start) position, and

Its current position:
public class Runner {
Boar dGane gane_;

I nt homeCol , homeRow ; [/ Home col and row
Int col =0, row =0; [/l Current col & row
publ i ¢ Runner (BoardGane gane, int col, int row
{

gane_ = gane;

honmeCol = col;

homeRow_ = row;

}

Top-down decomposition

Implement algorithms abstractly, introducing helper methods
for each abstract step, as you decompose:

public int run(int dcol, Int drow
t hrows AssertionException
{
Int score = 1;
t hi s. goHome() ;
score += this.forwardRun(dcol, drow);
this.goHone();
score += this.reverseRun(dcol, drow);
return score;

}

Well-chosen names eliminate the need for most comments!

Recursion

Many algorithms are more naturally expressed with recursion
than iteration.

Recursively move forward as long as we are in a run. Return the
length of the run:

private int forwardRun(int dcol, int drow)
t hrows AssertionException
{
this. nove(dcol, drow);
I f (this.samePl ayer())
return 1 + this.forwardRun(dcol, drow);
el se
return O;

More helper methods

Helper methods keep the main algorithm clear and uncluttered,
and are mostly trivial to implement.

private int reverseRun(int dcol, int drow) ... {
return this.forwardRun(-dcol, -drow);

}

private void goHone() {
col = homeCol ;
row_ = homeRow ;

}

[1 How would you implement move() and samePlayer()?

BoardGame 1.6

The Runner now needs access to the get() and inRange()
methods so we make them public:

public interface BoardGne {

public char get(int col, int row
t hrows AssertionException;
publ i ¢ bool ean I nRange(int col, int row;

}

0 Which methods should be public?

[J] Only publicize methods that clients will really need, and will
not break encapsulation.

Gomoku

Gomoku is similar to TicTacToe, except it is played on a 19x19
Go board, and the winner must get 5 in a row.

public class Gonoku extends Abstract BoardGane {
publ i ¢ Gonoku(Pl ayer playerX, Player playerQ
{
[/ 19x19 board wth winning score = 5
this.init(19, 19,5, playerX, playerO;
}
}

In the end, Gomoku and TicTacToe could inherit ever?/fhing
(except their constructor) from AbstractGameBoard!

oo 0Om%.

What you should know!

How does polymorphism help in writing generic code?

When should features be declared protected rather than
public or private?

How do abstract classes help to achieve code reuse?
What is refactoring? Why should you do it in small steps?
How do interfaces support polymorphism?

Why should tests be silent?

o 0O O 0O 0O

Can you answer these questions?

What would change if we didn't declare
AbstractBoardGame to be abstract?

How does an interface (in Java) differ from a class whose
methods are all abstract?

Can you write generic toString() and invariant() methods
for AbstractBoardGame?

Is TicTacToe a special case of Gomoku, or the other way
around?

How would you reorganize the class hierarchy so that you
could run Gomoku with boards of different sizes?

6. Programming Tools

Overview

[]

I I R R

[]

Managing dependencies — make and Ant
Version control — RCS and CVS
Debuggers

Profilers

Documentation generation — Javadoc
Integrated Development Environments

Sources

[]
[]

Ant. jakarta.apache.org/ant/
CVS: www.cvshome.org

http://jakarta.apache.org/ant/index.html
http://www.cvshome.org/

Make

Make is a Unix and Windows-based tool for managing
dependencies between files.

You can specify in a "Makefile":
0 Which files various targets depend on
[0 Rules to generate each target
0 Macros used in the dependencies and rules
[0 Generic rules based on filename suffixes

When files are modified, make will apply the minimum set of
rules to bring the targets up-to-date.

A Typical Makefile

. SUFFI XES: .class .java

.java. cl ass # generic rule
javac $<

CLASS = Abstract BoardGne. cl ass Asserti onException.class \
Boar dGane. cl ass GaneDriver. cl ass Gonoku. cl ass Pl ayer.class \
Runner. class TestDriver.class TicTacToe. cl ass

all : TicTacToe.jar Test.jar # default target
Ti cTacToe.jar : manifest-run $(CLASS) # target and dependents
jar cnf manifest-run $@ $(CLASS) # generation rule

Test.jar : manifest-test $(CLASS)
jar cnf manifest-test $@ $(CLASS)
clean :
rm-f *.class *.jar

Running make

% nmake

j avac Abstract BoardGne. | ava

javac GaneDriver.java

javac TestDriver.java

jar cnf manifest-run TicTacToe.|ar AbstractBoardGne.class Asserti onEx-
ception. cl ass BoardGne. cl ass GaneDri ver. cl ass Gonoku. cl ass Pl ayer. cl ass
Runner.class TestDriver.class TicTacToe. cl ass

jar cnf manifest-test Test.]ar AbstractBoardGne.class AssertionExcep-
tion.class BoardGane.class GaneDriver.class Gonoku.class Player.class
Runner.class TestDriver.class TicTacToe. cl ass

% t ouch Runner.java

% make Test.jar

javac Runner.java

jar cnf manifest-test Test.]ar AbstractBoardGane. class Asserti onExcep-
tion.class BoardGane.class GaneDriver.class Gonoku.class Player.class
Runner. class TestDriver.class TicTacToe. cl ass

Ant

Ant is a Java-based make-like utility that uses XML to specify
dependencies and build rules.

You can specify in a "buildfile.xml":

the name of a project

the default target to create

the basedir for the files of the project
dependencies for each target

tasks to execute to create targets

N I I B B

A Typical build.xml

<proj ect name="TicTacToe" default="all" basedir=".">
<!-- set global properties for this build -->
<property name="src" value="."/>
<property name="build" value="build"/>
<property nanme="runjar" value="TicTacToe.jar"/>
<property nanme="testjar" value="Test.jar"/>

<target name="all" depends="${runjar}, ${testjar}"/>
<target name="init">

<!-- Create the tine stanp -->

<t stanp/ >

<nkdir dir="${build}"/>
</target>

<target name="conpile" depends="init">
<I-- Compile the java code from ${src} into ${build} -->
<javac srcdir="${src}" destdir="${build}"/>

</target>

<target name="${runjar}" depends="conpile">
<I-- Conpile the java code from ${src} into ${buil d}
<jar jarfile="${runjar}" manifest="nanifest-run"
basedi r="%{bui l d}"/>
</target>

<target name="${testjar}" depends="conpile">
<jar jarfile="${testjar}" manifest="manifest-test"
basedir="${bui l d}"/>
</target>

<t arget name="cl ean">
<I-- Delete the ${build} directory -->
<delete dir="${build}"/>
</[target>
</ project>

Running Ant

% ant

Buildfile: build. xm

init:

[nkdir] Created dir: /Scratch/ TicTacToe/1.6/build
conpi | e:

[javac] Conpiling 10 source files to /Scratch/TicTacToe/ 1.6/ build
${runjar}:

[jar] Building jar: /Scratch/TicTacToe/ 1.6/ TicTacToe.jar
${testjar}:

[jar] Building jar: /Scratch/TicTacToe/ 1.6/ Test.jar

al |:

BUI LD SUCCESSFUL

Total tine: 2 seconds

Version Control Systems

A version control system keeps track of multiple file revisions:
(0 check-inand check-out of files

logging changes (who, where, when)

merge and comparison of versions

retrieval of arbitrary versions

“freezing" of versions as releases

reduces storage space (manages sources files + multiple
“deltas”)

N I I B B

SCCS and RCS are two popular version control systems for
UNIX. CVS is popular on Mac, Windows and UNIX platforms
(see www.cvshome.org)

http://www.cyclic.com
http://www.cvshome.org

Version Control

Version control enables Kou to make radical changes to a
software system, with the assurance that you can always go
back to the last working version.

[0 When should you use a version control system?

[] Use it whenever you have one available, for even the smallest
project!

Version control is as important as testing in iterative
development!

RCS command overview

ci Check in revisions

co Check out revisions

rcs | Set up or change attributes of RCS files

ident | Extract keyword values from an RCS file

rlog |Display a summary of revisions

merge | Merge changes from two files into a third

rcsdiff |Report differences between revisions

rcsmerge | Merge changes from two RCS files into a third

rcsclean |Remove working files that have not been changed

rcsfreeze | Label the files that make up a configuration

Using RCS

Whenfil e is checked in, an RCS file called fil e, v is created
in the RCS directory:

nkdi r RCS # create subdirectory for RCS files
ci file # put file under control of RCS

Working copies must be checked out and checked in.
co -1 file # check out (and lock) file for editing
ci file # check inanodified file
co file # check out a read-only copy
ci -ufile #checkinfile; |leave a read-only copy
ci -1 file # check in file; |eave a | ocked copy
rcsdiff file # report changes between versions

Additional RCS Features

Keyword substitution
[0 Various keyword variables are maintained by RCS:

$Author$ who checked in revision (username)
$Date$ date and time of check-in
Log description of revision (prompted
during check-in)
Revision numbering:
0 Usually each revision is numbered release.level
O Level is incremented upon each check-in
0 A new release is created explicitly:
ci -r2.0 file

CVS

CVS is comparable to RCS, but is more suitable for large
projects.

0 Understands RCS-style keywords
0 Shared repository for teamwork
[0 Manages hierarchies of files
[0 Manages parallel development branches
[0 Uses optimistic version control
[0 no locking
0 merging on conflict
0 Offers network-based CVS server

Using CVS

nkdir CVS create CVS repository

mkdi r CVS/ CVSROOT

setenv CVSROOT /.../CVS set environnent variable

cd TicTacToe/ 1.0 put project under control of CVS

cvs inport -m"P2 TicTacToe" p2/tictactoe p2 start

L can delete originals
cd wor ki ng checkout wor ki ng copy
cvs checkout p2/tictactoe

cd p2/tictactoe/

. modi fy and add files
cvs add AssertionException.java TestDriver.java

cvs commit commt changes

C time passes ...

cvs update updat e working copy (if necessary)
cvs history report on checked out files

cVsS rel ease rel ease checked out files

Debuggers

A debugger is a tool that allows you to examine the state of a

runhing program:

L]
[]
[]

I I R

step through the program instruction by instruction
view the source code of the executing program
inspect (and modify) values of variables in various

formats

set and unset breakpoints anywhere in your program
execute up to a specified breakpoint
examine the state of an aborted program (in a "core

file")

Using Debuggers

Interactive debuggers are available for most mature
programming languages.

Classical debuggers are line-oriented (e.g., jdb); most modern
ones are graphical.

[When should you use a debugger?

[] When you are unsure why (or where) your program is not
working.

NB: debuggers are object code specific, so can only be used

with programs compiled with compilers generating compatible
object files.

Using jdb

% j ava - Xdebug \

H! Wuld you like to play TicTacToe (t) or Gonoku (g)?: t

- Xrunj dwp: t ransport =dt _socket, addr ess=8000, server =y, suspend=n \
-jar TicTacToe.jar

% jdb -attach 8000

Initializing jdb...

> stop i n Abstract Boar dGane. nove

Set breakpoi nt Abstract Boar dGane. nove

Breakpoint hit: thread="main", AbstractBoardGne.move(), |ine=94, bci=0

94

assert (this.notOver());

mai n[1] where

[1]
[2]
[3]
[4]
[3]
[6]

Abst ract Boar dGane. nove (Abstract BoardGne. | ava: 94)

Pl ayer. nove (Pl ayer.|ava: 68)

Abst r act Boar dGane. updat e (Abstract Boar dGane. j ava: 80)
GanmeDri ver. pl ayGame (GameDriver.java: 54)

GanmeDriver. playGane (GaneDriver.java: 29)
GanmeDriver.main (GanmeDriver.java: 17)

mai n[1] |1 st

91 public void nove(String coord, char mark)

92 throws AssertionException

93 {

94 => assert(this.notOver());

95 i nt col = getCol (coord);

96 I nt row = get Row(coord);

mai n[1] next

mai n[1]

Step conpleted: thread="main", AbstractBoardGne.nove(), |ine=95, bci=8
95 I nt col = getCol (coord);

mai n[1] | ocal s

Met hod ar gunents:
coord = "b2"
mark = X

Local vari abl es:

mai n[1] print this. ganeState[1][1]
this. ganeState[l][1] =

mai n[1] cont

Debugging Strategy

Develop tests as you program

[0 Apply Design by Contract to decorate classes with
invariants and pre- and post-conditions

[0 Develop unit tests to exercise all paths through your
program

[0 use assertions (not print statements) to probe the
program state

0 print the state only when an assertion fails

[0 After every modification, do regression testing!

Debugging Strategy ...

If errors arise during testing or usage
0 Use the test results to track down and fix the bug

O If youcan't tell where the bug is, then
[0 use a debugger to identify the faulty code
O fix the bug
0 identify and add any missing tests!

All software bugs are a matter of false assumptions.

If you make your assumptions explicit, you will find and stamp
out your bugs.

Profilers

A profiler (e.g., java -prof) tells you where a terminated
program has spent its time.

1. your program must first be instrumented by

(i) setting a compiler (or interpreter) option, or

(ii) adding instrumentation code to your source program
2. the program is run, generating a profile data file
3. the profiler is executed with the profile data as input

The profiler can then display the call graph in various formats

Caveat: the technical details vary from compiler to compiler

Using java -Xprof

% java - Xprof -jar TicTacToe.jar

| nterpreted+native

98.
.10% 1 +
.10% 0 +
. 10% 0 +
.10% 1 +

o

=
o

sEeNeNoloNoNoNoNoNoNoN o)

20% 0 +

10% 1 +

.10% 0 +

10%1 +

. 10% 0 +
. 10% 0 +
.10% 0 +
. 10% 0 +
. 10% 0 +
. 00%5 +

69

~
o

6

o

AP RPRPPRPPOFRPOORR

Met hod

java.io. Fil el nput Stream readByt es

java. util.zip. ZipEntry.initFields
java.util.zip.Inflater.inflateBytes
java.io.FileQutputStreamwiteBytes
Abst r act Boar dGane. get

sun. i 0. Char ToByt eSi ngl eByt e. get Nati ve

sun. m sc. Launcher $AppC assLoader . | oadC ass
java.lang. StringBuffer. append

j ava. | ang. Package. get Syst enPackage
java.io. Uni xFi| eSystem normal i ze

GameDr i ver. mai n

com sun. net.ssl.internal.ssl.Provider$1. run
java. util.zip.Z pFile.open

Total interpreted

Using java -Xrunhprof

% java - Xrunhprof:cpu=tines,file=log.txt,depth=10 -jar Test.jar

CPU TIME (ms) BEG N (total = 380) Sat Mar 16 12:12:04 2002
rank self accum count trace net hod

1 5.26% 5.26% 272 18 sun.io. Char ToByt eSi ngl eByte. get Native

2 5.26% 10. 53% 1 24 java.util.Properties.|oad

3 5.26% 15.79% 106 9 java.io.BufferedReader.readLi ne

4 2.63% 18.42% 5 27 TestDriver.testGne

5 2.63% 21. 05% 5 31 java.lang. Throwable.<init>

6 2.63% 23.68% 40 26 Abstract Boar dGne. nove

7 2.63% 26.32% 509 38 java.lang.String.charAt

8 2.63% 28.95% 40 42 java.io.BufferedReader. readLine

9 2.63% 31.58% 128 15 java.lang. StringBuffer.append
10 2.63% 34.21% 361 21 Abstract Boar dGane. set
11 2.63% 36. 84% 1 30 java.lang.d assLoader. defi neC ass
12 2.63% 39.47% 10 13 java.io.BufferedWiter.ensureQpen
13 2.63% 42.11% 1 10 java.lang. String.concat

Using Profilers

[0 When should you use a profiler?

[J Always run a profiler before attempting to tune
performance.

0 How early should you start worrying about performance?

[J Only after you have a clean, running program with poor
performance.

NB: The call graph also tells you which parts of the program
have (not) been tested!

Javadoc

Javadoc generates API documentation in HTML format for
specified Java source files.

Each class, interface and each public or protected method may
be preceded by "javadoc comments” between /** and */.

Comments may contain special tag values (e.g., @author) and
(some) HTML tags.

Javadoc input

| nport java.io.*;
/**
* Manage interaction with user.
* @uthor Oscar.N erstrasz@cmorg
* @ersion 1.5 1999-02-07
*/
public class Player { ...
/**
* Constructor to specify an alternative source
* of noves(e.g., a test case StringReader).
*/
public Player(char nmark, BufferedReader in) { ...

Javadoc
output

View it with
your favourite
web browser!

O

(@ : Class Player

EEEE) Tree Deprecsted Index Help

PREW CLOSS HEXTCLOSS
SUMMARY] IHHER | FIELD | COHSTR | METHOD

FROMES HO FROMES

DETAILI FIELD |COHSTR | METHOD

Class Player

jawa.lang. 0bject
I
+--FPlager

public clacs Player
exteruds janra langz, Object

Mlanaze Iteraction with 1cer,

Versiim:
1.5 1999-02-07
Aarthor:
Qecar Hiersraczf@aon org

Constructor Summary

Plamrer (]
Special constmactor for the Player represent g robody:.

Plamrer (char mark]
The nomhal cordmactor to e

Plarrer (char mark, jawva.io. EufferedBeader in)

Corertnuctor to specify an alterratioe conmce of mmomres (e.g., o test cace SoimgFeader).

Other tools

Be familiar with the programming tools in your environment!

0 memory inspection tools: like ZoneRanger help to detect
?‘rhker' memory management problems, such as "memory
eaks”

0 zip/jar: store and compress files and directories into a

1)

single "“zip file"

0 awk, sed and perl: process text files according to editing
scripts/programs

Integrated Development Environments

An Integrated Development Environment (IDE) provides a
common interface to a suite of programming tools:

project manager
browsers and editors
compilers and linkers
make utility

version control system
interactive debugger
profiler

memory usage monitor

[0 documentation generator

Many of the graphical object-oriented programming tools were
pioneered in Smalltalk.

N T Y N I O I BN

CodeWarrior

CodeWarrior is a popular IDE for multiple languages and

platforms

The Project Browser
organizes the source and
object files belonging to a
project, and lets you
modify the project
settings, edit source files,
and compile and run the
application.

e o6 i1 16.mcp
) 15 Debug - |B| B 5]
s g y
(Files | Design | Link Order | Targets
| File | Code | Data [WEL|WE =
> !_ System Classes 1] o+ =
TicTacToe java 506 o= = =
TestDriver java 2800 o= =« =
Funner.java 1523 o= =« =
Flaver. java 2081 o= = =
Gomoku java 494 o= =« =
GameDriver java 2617 o= = =
AbstractBoardGame java 54951 o= =« =
BoardGame java 5583 o= =« =
AssertionException. java 043 o+ « =
11 files 16K =

CodeWarrior Class Browser

The Class
Browser
provides one
way to navigate
and edit
project files ...

80o

16 Release classes

SIS

==

e

i

%'l.l‘iew az implern entor . D Shoo Inherited

e

E

T

|
i

e

i

¥

T T Tl W e T i W B S T T AR

=

Classes

‘am|

@ tssertionException

& BoardGame

@ java.lang.Exception
)

3

GameDriver

Gormoku

java.langObject

& Player
§ Runner

@ TestDriver

@ TicTacToe

| @ AbstractBoardGame = |

5
E
|
%
i
1
|
|
i
E
|
i
|
::
|
|
3
|
|
|
i
%
?
5
5.
|
z
|
|

el

ST T

Methods *3F | Data Members 3 H

assert{boolean) —gameState

checkwinner(int, int) m b m
currentPlaver{) [| —ools

qgetint, int) || _winningScore

qetCol { java.lang String) | Zwinner e

et Rovw{ java.lang. String) &+ _player o

inRange{int, int) bk _turn ¥

|
1l
4

Bl Source: Data:Users:oscar:Scratch:Course...cToe:1.6:AbstractBoardGame java B

_,-'1'1' m
* AbstractBoardGame implements common methods to

* TicTacToe and Gomoku

* @author Oscar.Nierstrasz@acm.org

* [@version 1.6 1999-02-07

*/

Pubblic abstract class AbstractBoardGame implements BoardGam

protected char[][] _game3tate;

protected int _rows;

protected int _cols;

protected int winningicore; :

8 RIC

l » | AbstractBoardCame <- Dbject, BoardGame G0t o

CodeWarrior Hierarchy Browser

A Hierarchy Browser provides a view of the class hierarchy.

NB: no distinction is
made between
interfaces and
classes. Classes that
implement multiple
interfaces appear
multiple times in the
hierarchy!

800 16 Release hierarchy

I BoardGame ﬂ—li dbstractBoardGame

I java.lang.Exceptinnﬂ—l AESEr‘ti-:-nExcepti-:-nI

—l 1 AbztraciBoardGame J

—l Gamelbriver |

Runner

I java.lang.0bject ﬂ—

You can set
breakpoints by
simply clicking
hext to
selected
statements.

Execution will
be interrupted
every time
breakpoint is
reached,
displaying the
current
program state.

Setting Breakpoints

80O

AppClassesDBG.jar (Thread 1)

_ Stack
GameDriver.main
GameDriver.playGame

& bstractBoardGame. update
Playver.move
AbstractBoardGame. mave

v this

GameDriver.playGame | 2 0
R lg 1
] 2

_Friws

_cols

v

* 5

{}, Line 22 Cal 1

B || evariables:an

¥ _gameState

—winningScore

*f

public woid move (3tring coord, char mark)

{

}

throws AssertionException

assertithis.notlver());
int col = getCol (coord);
int row = getFow(coord);

J4 System. out.println("Move: <" 4+ coord 4+ ">");

assertithis.geti{col, row) == ' '}j;

S System. out.println(mark + " at "

this.=set{col, row, mark);
this. squaresleft--;
this.swapTurn()
this.checkWinner (col,row) ;
assertithis.invariant());

+ coord) ;

v €&

| Source

| Value
O=x0000009E M

Location

Q00000090 M /A

M /A

s M /A
M /A

3 M /A
3 M /A

COoOobo0OoOonb

What you should know!

How do make and Ant support system building?

What functionality does a version control system support?
When should you use a debugger?

What are breakpoints? Where should you set them?

What should you do after you have fixed a bug?

When should you use a profiler?

What is an IDE?

O 0O OO0O0n0

Can you answer these questions?

When should you use Ant rather than make?
When should you use CVS rather than RCS?
How often should you checkpoint a version of your system?

When should you specify a version of your project as a new
"‘release”?

How can you tell when there is a bug in the compiler (rather
than in your program)?

How can you tell if you have tested every part of your
system?

/. A Testing Framework

Overview
[0 What is a framework?

0 JUnit — a simple testing framework
0 Money and MoneyBag — a testing case study
0 Double Dispatch — how to add different types of
objects
[1 Testing practices
Sources

0 JUnit 3.7 documentation (from www.junit.org)

http://www.junit.org/

The Problem

"Testing is not closely integrated with development.
This prevents you from measuring the progress of
development — you can't tell when something starts
working or when something stops working.”

Interactive testing is tedious and seldom exhaustive.
Automated tests are better, but,

O how to introduce tests interactively?

0 how to organize suites of tests?

Testing Practices

During Development

[0 When you need to add new functionality, write the tests
first,

You will be done when the test runs.

[0 When you need to redesign your software to add new
features, refactor in small steps, and run the
(regression) tests after each step.

Fix what's broken before proceeding.

Testing Practices ...

During Debugging
[0 When someone discovers a defect in your code, first
write a test that will succeed if the code is working.

Then debug until the test succeeds.

"Whenever you are tempted to type something into a
print statement or a debugger expression, write it as
a test instead.”

Martin Fowler

JUnit

JUnit is a simple "testing framework” that provides:

[]
[]

[
[]

classes for writing Test Cases and Test Suites

methods for setting up and cleaning up test data
("fixtures")

methods for making assertions
textual and graphical tools for running tests

JUnit distinguishes between failures and errors:

[]

[]

A failure is a failed assertion, i.e., an anticipated
problem that you test.

An error is a condition you didn't check for.

Frameworks vs. Libraries

In traditional application architectures, user code makes use
of /ibrary functionality in the form of procedures or classes:

User Application -
[mai n()) - Library classes

A framework reverses the usual relationship between generic
and application code. Frameworks provide both generic
functionality and application architecture:

Framework Application - User classes
T ' - er classe

Essentially, a framework says: "Don’t call me — I'll call you.”

The JUnit Framework

«utility»

Assert

«interface» A T@Sf can B
* Test run a number
+ count TestCases() : int if c;oncr'efe
+ run(TestResult) est cases
4 Y
/ \
II \
TestSuite TestCase
abstract
+ create() .
+ create(Class) + create(String)
+ addTest(Test) + fail()

A TestSuite
bundles a set
of Tests

+ void runBare()
void runTest()
void setUp()

void tearDown()

+ name() : String

+ assertTrue(boolean)
+ assertEquals(Object, Object)

All errors and failures are
collected into a TestResult.

TestResult

+ create()

| # void run(TestCase)

+ addError(Test, Throwable)
+ addFailure(Test, Throwable)
+ errors() : Enumeration

+ failures() : Enumeration

A Testing Scenario

: TestRunner : TestSuite tc:TestCase tr:TestResult
run(tr)
g run(tr)
run(tc)
4 runBare()

setUp()
runTest()
tearDown()

C P » | addFailure()
- — — — — — — - — - |

The framework calls the test methods that you define for your
test cases.

Testing Style

"The style here is to write a few lines of code, then a
test that should run, or even better, to write a test
that won't run, then write the code that will make it

"

run.

0 write unit tests that thoroughly test a single class
0 write tests as you develop (even before you implement)
O write tests for every new piece of functionality

"Developers should spend 25-507 of their time
developing tests.”

Representing multiple currencies

The problem ...

"The program we write will solve the problem of
representing arithmetic with multiple currencies.
Arithmetic between single currencies is trivial, you
can just add the two amounts. ... Things get more
interesting once multiple currencies are involved.”

Money

We start by designing a simple Money class to handle a single
currency:

. Money
public class Mney { ~fAmount - int
- fCurrency : String

publ i ¢ Money add(Mney m { + create(int, String)

r rn) + amount() : int
etu new Money() + currency() : String
} + add(Money) : Money
+ equals(Object) : boolean

] + toString() : String

NB: The first version does not consider how to add different
currencies!

MoneyTest

To test our Money class, we define a TestCase that exercises
some test data (the fixture):

| mport junit.framework. *;

public class MneyTest extends Test Case {
private Mney f12CHF;
private Mney f14CHF;
publ i c MoneyTest (String nanme) { super(nane); }

protected void setUp() { /| create the test data
f12CHF = new Money(12, "CHF");
f 14CHF = new Money(14, "CHF");

}

Some basic tests

We define methods to test what we expect to be true ...

public void testEquals() {
assert True(!f 12CHF. equal s(nul |));
assert Equal s(f 12CHF, f12CHF);
assert Equal s(t12CHF, new Money(12, "CHF"));
assert True(!f 12CHF. equal s(f 14CHF)) ;

}

public void testSinpl eAdd() {
Money expected = new Money(26, "CHF");
Money result = f12CHF. add(f 14CHF) ;
assert Equal s(expected, result);

}

Building a Test Suite

... and we bundle these tests into a Test Suite:

public static Test suite() {
TestSuite suite = new TestSuite();
sui te. addTest (new MoneyTest ("t est Equal s")) ;

sui te. addTest (new MoneyTest ("test Si npl eAdd")) ;
return suite;
}

A Test Suite:

0 bundles together a bunch of named TestCase instances

0 by convention, is returned by a static method called
suite()

P2 — 52002 220.

The TestRunner

Naa"S"S")8——— IWhit=—"——7—HH

junit.ui.TestRunner is a Erter the name of the Test class.
GUI that we can use to ||[MoneyTest =

instantiate and run the |FEmEEEE Ty

suite:

Runzs: 2 Errors: g Failures: 0

Errors and Failures:

TR AR NELNE m EEEE EELNE AR AR R AR RN R A NELA EE,GR EE %R REEE RE MR AR R0 REAE REAE AR E A0 LN AR N AR R AR AR NN R AR 8RS
e T T e e e e e e T L e e e e e L e e e S ‘ h
E. e e T L A

|Finished:l].534 seconds [Exit |

N

®© O. Nierstrasz — U. Berne A Testing Framework

MoneyBags

To handle multiple currencies, we introduce a MoneyBag class
that can hold several instances of Money:

MoneyBag
- fMonies : HashTable

+ create(Money, Money)
+ create(Money [1)

- appendMoney(Money)
+ toString() : String

MoneyBags ...

cl ass MoneyBag {
private Hashtable fMnies = new Hasht abl e(5) ;
MoneyBag(Money bag[]) {
for (int 1=0; I < bag.length; |++)
appendMoney(bag[i]);

}
private void appendMoney(Money alney) {

Money m= (Money) fMonies. get(aMoney. currency());
If (m!=null) { m= madd(aWney); }
el se { m= aMney; }

f Moni es. put (aMoney. currency(), m;

Testing MoneyBags (T)

To test MoneyBags, we need to extend the fixture ...

public class MneyTest extends TestCase {

protected void setUp() {
f12CHF = new Money(12, "CHF");
f 14CHF = new Money(14, "CHF");
f7USD = new Money(7, "USD'):
f21USD = new Money(21, "USD');
fMB1 = new MoneyBag(f12CHF, f7USD);
f MB2 = new MoneyBag(f14CHF, f21USD);

Testing MoneyBags (IT)

... define some new (obvious) tests ...

public void testBagEqual s() {
assert True(!fMB1. equal s(null));
assert Equal s(f MB1, fMB1);
assert True(! f MB1. equal s(f 12CHF)) ;
assert True(!f 12CHF. equal s(fMB1));
assert True(!f MBl. equal s(fMB2));

J

... add them to the test suite ...

public static Test suite() { ...
sui te. addTest (new MoneyTest ("t est BagEqual s")) ;
return suite;

}

P2 — 52002 225.

Testing MoneyBags (IITI)

Nas"aSmS)8)8)8————————— hit=———HH

Gnd run fhe T@STS. Enter the name of the Test class:
MoneyTest I[— I

T Ju

Runs: 3 Errors: g Failures: 0

Errors and Failures:

W-'---‘-C-'.".'--.'-'.".-.1::-.':- -'.--'-'-'.\,-'-'-'"'.\,-'.--'-'.\,"-\."-\..-.--'-'-\.-\._.-\.-I ‘ | h
Finished: 1.175 seconds i
a2 Exit

4/r] 4

5

®© O. Nierstrasz — U. Berne A Testing Framework

Adding MoneyBags

We would like to freely add together arbitrary Monies and
MoneyBags, and be sure that equals behave as equals:

public void testM xedSi npl eAdd() {
[l [12 CHF] + [7 USD] == {[12 CHF][7 USD }
Money bag[] = { f12CHF, f7USD };
MoneyBag expected = new MoneyBag(bag) ;
assert Equal s(expected, f12CHF. add(f7USD)) ;

}

That implies that Money and MoneyBag should implement a
common interface ...

The IMoney interface (I)

Monies know how to be added to other Monies

«interface»

IMoney
+ add(IMoney) : IMoney
/ \\
/ N\
Money MoneyBag
+ amount() : int - appendMoney(Money)
+ currency() : String - appendBag(MoneyBag)

Do we need anything else in the IMoney interface?

Double Dispatch (I)

How do we implement add() without breaking encapsulation?
cl ass Money | nplenents [Mney { ...
public | Money add(l Mney m {
return m addMoney(this); /] add me as a Money

b

}
cl ass MoneyBag | npl enents | Money { ...

public | Money add(l Money m {
return m addMoneyBag (this); // add as a MoneyBag

b
}

"The idea behind double dispatch is to use an additional call to
discover the kind of argument we are dealing with...”

Double Dispatch (IT)

The rest is then straightforward ...
cl ass Money | nplenents [Mney { ...
public | Money addMoney(Mney m {
If (mcurrency().equal s(currency()))
return new Money(anount () +m anount (),
currency());

el se
return new MoneyBag(this, m;

}
public | Money addMoneyBag(MoneyBag s) {

return s.addMoney(this);
|

and MoneyBag takes care of the rest.

The IMoney interface (IT)

«interface»

IMoney

So, the common

interface has to be: +add(IMoney) : IMoney
+ addMoney(Money) : IMoney

+ addMoneyBag(MoneyBag) : IMoney

public interface | Money {
public | Money add(!|Mney aloney);
| Money addMoney(Money aMbney);
| Money addMbneyBag(MoneyBag aMoneyBag) ;

}

NB: addMoney() and addMoneyBag() are only needed within the
Money package.

A Failed test

This time we are not so lucky ...
OaraD])]——D—m———————————— it —————0 8

Enter the name of the Test clazs:

MoneyTest

_JU

Funzs: 4 Errors: g Failures: |

Errors and Failures:

Failure: testMixedSimpleddd(Money Test) expected: <] FUSD 12CHF }» but was:<] FUSD 12CHF)

Ijunit.framewnrk.ﬁssertiunFaiIe::lErrn:nr: expected:<f TUSD 1 2CHF }» but was:<] FUSD 1 ZCHF }»
at MoneyTest testMixedSimplesddd MoneyTest java)

m I
Finished: 1.034 seconds | Exit |

4

1

The fix ...

It seems we forgot to implement MoneyBag.equals()!

We fix it:

cl ass MoneyBag i npl enents | Money { ...
publ i ¢ bool ean equal s((bj ect an(nj ect) {
I f (anObj ect | nstanceof MneyBag) {

} else {
return fal se;

}
}

.. fest it, and continue developing.

O=——————Jnhhit—=—"—"———0H
Enter the name of the Test class:
|MuneyTes | Run |

I Ju

Runz: 4 Errors: 0 Failures: p

Errors and Failures:

| l_l Run

I F10|

I Ty
|Finished: 1493 seconds | Exit |

7

oo Om%.

What you should know!

How does a framework differ from a library?

Why do TestCase and TestSuite implement the same
interface?

What is a unit test?

What is a test "fixture”?

What should you test in a TestCase?

What is "double dispatch”? What does the name mean?

Can you answer these questions?

[J How does implementing toString() help in debugging?

[1 How does the MoneyTest suite know which test methods to
run?

[1 How does the TestRunner invoke the right suite() method?

[1 Why doesn't the Java compiler complain that
MoneyBag.equals() is used without being declared?

8. Software Components: Collections

Overview

0 Example problem: The Jumble Puzzle
The Java 2 collections framework
Interfaces: Collections, Sets, Lists and Maps
Implementations ...
Algorithms: sorting ...
[1 Iterators

Source

0 "Collections 1.2", by Joshua Bloch, in The Java Tutorial ,
java.sun.com

I I R R

Components

Components are black-box entities that:
00 import required services and
[0 export provided services
[0 must be designed to be composed

EDX provided

required services . services

Comfonen’rs may be fine-grained (classes) or coarse-grained
(applications).

The Jumble Puzzle

The Jumble Puzzle tests your
English vocabulary by presenting

four jumbled, ordinary words.

The circled letters of the
unjumbled words represent the
jumbled answer to a cartoon
puzzle.

Since the jumbled words can be
found in an electronic dictionary,
it should be possible to write a
program to automatically solve
the first part of the puzzle
(unjumbling the four words).

Naive Solution

Generate all rupus For each abacus
permutations urpus pzrm/t:’r?’rlon, abalone
of the jumbled check if it
WOPdS‘J uprus exists in the abase
purus word list:
pruus Zurich
zygote

The obvious, naive solution is extremely inefficient: a word
with ncharacters may have up to nl permutations. A five-letter
word may have 120 permutations and a six-letter word may
have 720 permutations. "rupus” has 60 permutations.

[0 Exactly how many permutations will a given word have?

Rethinking the Jumble Problem

Observation: if a jumbled word (e.g. "rupus”) can be unjumbled
to a real word in the list, then these two words are jumbles of
each other (i.e. they are anagrams).

Is there a fast way to tell if two words are anagrams?

Rethinking the Jumble Problem ...

Two words are anagrams if they are made up of the same set
of characters.

We can assigh each word a unique “key" consisting of its letters
in sorted order. The key for "rupus” is "prsuu”.

Two words are anagrams if they have the same key

We can unjumble “rupus” by simply looking for a word with the
same key.

An Efficient Solution

1. Build an associative array of keys
and words for every word in the
dictionary:

2. Generate the key of a jumbled
word:

key("rupus”) = "prsuu”

3. Look up and return the words with
the same key.

Key Word
aabcsu |abacus
aabelno |abalone
prsuu | usurp
chiruz |zurich
egotyz |zygote

To implement a software solution, we need associative arrays,

lists, sort routines, and possibly other components.

The Collections Framework

The Java Collections framework contains interfaces,
implementations and algorithms for manipulating collections of
elements.

«interface» «interface»

Collection Map
«interface» «interface» «interface»
Set List SortedMap
«,njace» Sets and Lists Maps manage
SortedSet are kinds of mappings from

collections. keys to values.

Collection Interfaces

«interface»
Collection
+ size() : int Lists mayIl
+ isEmpty() : boolean contains
+ contains(Object) : boolean duplicated
+ add(Object): boolean elements.
+ remove(Object) : boolean Sets may
+ iterator() : Iterator not.
+ foArray() : Object[]
«interface» «inte.rface»
Sot List
+ get(int) : Object
+ set(int, Object) : Object
dnterface» + add(int, Object)
SortedSet

+ subSet(Object from, to) : SortedSet

+ first() : Object
+ last() : Object

+ remove(int) : Object

+ indexOf(Object) : int

+ listIterator() : ListIterator
+ subList(int from, to) : List

Implementations

The framework provides at least two implementations of each
interface.

«interface»

Collection
«interface» A «interface»

Set | List
N AbstractCollection 7
\ \ / /
\ /
AbstractSet AbstractlList
/ AbstractSequentiallList
HashSet ArraySet
Arraylist LinkedList

[J Can you guess how the standard implementations work?

Interface and Abstract Classes

Principles at play:
0 Clients depend only on interfaces, not classes

0 Classes may implement multiple interfaces
0 Single inheritance doesn't prohibit multiple subtyping

[0 Abstract classes collect common behaviour shared by
multiple subclasses but cannot be instantiated
themselves, because they are incomplete

Maps

A Map is an object that
manages a set of (key, value)
pairs.

Map is implemented by
HashMap and TreeMap.

A Sorted Map maintains its
entries in ascending order.

«interface»

Map

+ put(Object key, value) : Object

+ get(Object key) : Object

+ remove(Object key) : Object

+ containsKey(Object key) : boolean

+ containsValue(Object value) : boolean
+size() : int

+ isEmpty() : boolean

+ keySet() : Set

+ values() : Collection

+ entrySet() : Set

%

«interface»

SortedMap

+ first() : Object
+ last() : Object

Jumble

We can implement the Jumble dictionary as a kind of HashMap:

public class Junbl e extends HashMap {
public static void main(String args[]) {
I f (args.length ==0) { ... }
Junbl e wordMap = nul | ;
try { wordMap = new Junbl e(args[0]); }
catch (1 Cexception err) {
Systemerr.printin("Can't |oad dictionary");
return;

}
wor dMap. | nput Loop() ;

Jumble constructor

A Jumble dictionary knows the file of words to load ...

private String wordFile_;

Junbl e(String wordFile) throws | OException {
super(); // NB: establish superclass invariant!
wordFile_ = wordFile;
| oadDi ctionary();

}

Before we continue, we need a way to generate a key for each
word ...

Algorithms

The Collections framework
provides various algorithms, . . T
such as sorting and searching, IE;”E? ,r(y,_,ssia';_c,zg'm Object) :int
that work uniformly for all kinds |, \nax(Collection) : Object

Collections

of Collections and Lists. + min(Collection) : Object
(Also any that you define + %((tﬁs;r))

I + shuffle(Lis
yourself!) e

+ sort(List, Comparator)

These algorithms are static
methods of the Collections class.

[1 Asageneral rule, static methods should be avoided inan OO
design. Are there any good reasons here to break this rule?

Array algorithms

There is also a class, Arrays,

consisting of static methods

for searching and sorting that

operate on Java arrays of basic
ata types.

[J Which sort routine should
we use to generate unique
keys for the Jumble puzzle?

Arrays

+ sort(char[])

+ sort(char[], int, int)

+ sort(double[])

+ sort(double[], int, int)

+ sort(float[])

+ sort(float[], int, int)

+ sort(int[])

+ sort(int[], int, int)

+ sort(Object])

+ sort(Object[], Comparator)
+ sort(Object[], int, int)

+ sort(Object[], int, int, Comparator)

Sorting arrays of characters

The easiest solution is to convert the word to an array of
characters, sort that, and convert the result back to a String.

public static String sortKey(String word) {
char [] letters = word.toCharArray();
Arrays.sort(letters);
return new String(letters);

}

[1 What other possibilities do we have?

Loading the dictionary
Reading the dictionary is straightforward ...

private void |oadD ctionary() throws | Oexception {
Buf f eredReader In =
new Buf f eredReader (new Fi | eReader (wordFile));
String word = in.readLine();
while (word !'= null) {
this.addPair(sortKey(word), word);
word = I n.readLine();

J
}

Loading the dictionary ...

.. but there may be a List of words for any given key!

private void addPair(String key, String word) {
Li st wordList = (List) this.get(key);
| f (wordList == null)
wor dLi st = new ArraylList();
wor dLi st. add(word) :
this.put(key, wordList);

}

The input loop

Now the input loop is straightforward ...

public void I nputlLoop() { ...
Systemout.print("Enter a word to unjunble: ");
String word;
while ((word = in.readLine()) !'=null) { ...
Li st wordList =
(List) this.get(sortKey(word));
I f (wordList == null) {
Systemout.printin("Can't unjunble ...";
} else {

System out. println(
word + " unjunbles to: " + wordList);

Running the unjumbler ...

Enter a word to unjunble: rupus
rupus unjunbles to: [usurp]
Enter a word to unjunble: hetab
hetab unjunbles to: [bathe]

next word: please

pl ease unjunbles to: [asleep, el apse, please]
next word: java

Can't unjunble java

next word:

Qit? (y/n): vy

bye!

Searching for anagrams

We would now like to know which word in the list has the

largest number of anagrams — i.e., what is the largest set of
words with the same key.

[0 How do you iterate through a Collection whose elements are

unordered?
[1 Use an iterator.

Iterators

An Iteratoris an object that lets you
walk through an arbitrary collection,
whether it is ordered or not.

Lists additionally provide ListIterators
that allows you to traverse the list in
either direction and modify the list
during iteration.

«interface»

Iterator

+ hasNext() : boolean
+ next() : Object
+ remove()

]

«interface»

ListIterator

+ add(Object)

+ hasPrevious() : boolean
+ nextIndex() : int

+ previous() : Object

+ previousIndex() : int

+ set(Object)

Iterating through the key set

public List nmaxAnagrans() {
Int max = O;
Li st anagranms = nul | ;
|terator keys = this.keySet().iterator();
whi | e (keys. hasNext ()) {
String key = (String) keys.next();
List words = (List) this.get(key);
I f (words.size() > max) {
anagrans = words;
max = words. size();

J
}

return anagr amns;

Running Jumble.maxAnagrams

Printing wordMap.maxAnagrams() yields:

[caret,

carte, cater, crate, trace]

How to use the framework

If you need collections in your application, stick to the
standard interfaces.

Use one of the default implementations, if possible.

If youheeda sEecialized implementation, make sure it is
compatible with the standard ones, so you can mix and
match.

Make your applications depend only on the collections
interfaces, if possible, not the concrete classes.

Always use the least specific interface that does the
job (Collection, if possible).

What you should know!

[1 How are Sets and Lists similar? How do they differ?
[J Why is Collection an interface rather than a class?

[1 Why are the sorting and searching algorithms implemented
as static methods?

[J What is an iterator? What problem does it solve?

Can you answer these questions?

[0 Of what use are the AbstractCollection, AbstractSet and
AbstractList?

[1 Why doesn’t Map extend Collection?
[1 Why does the Jumble constructor call super()?

[J Which implementation of Map will make Jumble run faster?
Why?

9. GUI Construction

Overview
0 Applets
[0 Model-View-Controller
0 AWT Components, Containers and Layout Managers
[0 Events and Listeners
[0 Observers and Observables

Sources

[] 1Dcxvid Flanagan, Java in Nutshell: 3d edition, O'Reilly,
999.

0 Mary Campione and Kathy Walrath, The Java Tutorial ,
The Java Series, Addison-Wesley, 1996

A Graphical TicTacToe?

Our existing TicTacToe implementation is very limited:
0 single-user at a time
0 textual input and display

We would like to migrate it fowards an interactive, network
based game:

0 players on separate machines
0 running the game as an "applet” in a browser
O with graphical display and mouse input

As first step, we will migrate the game to run as an applet

Applets

Applet classes .- A s

cc!?npbe Client Server
downloaded :Applet |- Applet
froman HTTP

server and :AClass |« Otherclasses .. AClass
instantiated Y, .

by a client.
APT Classes

The Applet instance may make (restricted) use of

1. standard API classes
(already accessible to the virtual machine)

2. other Server classes to be downloaded dynamically.

java.applet.Applet extends java.awt.Panel and can be used to
construct a UL ...

The Hello World Applet

The simplest Applet:
| nport | ava. awt. *; /] for Gaphics

| nport | ava. appl et . Appl et ;
public class Hel |l oAppl et extends Applet {

public void init() {
repaint(); /] request a refresh

}

public void paint(Gaphics g) {
g.drawString("Hello World!'", 30, 30);

J
J

The Applet will be initialized and started by the client.

The Hello World Applet

<HTM_>
<HEAD><TI TLE>Hel | 0Appl et </ TI TLE></ HEAD>
<BODY>

<APPLET
CODEBASE = "."
ARCHI VE = "Hell oApplet.jar”
CODE = "Hel | oAppl et . cl ass”
NAVE = "Hel | OAppI et” 0 === HelloApplet =—="HE H
W DTH = 400
HEI G—lT — 300 Hello woarld!
>
< / APPI_ET> Applet Loaded o
</ BODY>

</ HTM.>

Accessing the game as an Applet

The compiled TicTacToe classes will be made available in a
directory "AppletClasses” on our web server.

<title>GneApplet</title>
<appl et
codebase="Appl et asses”
code="ti ctact oe. GaneAppl et . cl ass"
wi dt h=200
hel ght =200>
</ appl et >

GaneAppl et extends j ava. appl et . Appl et .
Itsinit() will instantiate and connect the other game classes

Model-View-Controller

Version 1.6 of our game implements a mode/ of the game,
without a GUI. The GameApplet will implement a graphical view
and a controller for GUI events.

clicks mouse
e
O (XX
Controller T 1%
1: mouseCllcked()’/

:Mouselistener

1.1:move()\~

Views

1.1.2:update()

1.1.1:update()

O

:TicTacToe

:Mouselistener

Model

The MVC paradigm separates an application from its GUI so
that multiple views can be dynamically connected and updated.

AWT Components and Containers

The java.awt package defines GUT components, containers and
their layout managers.

inside a browser.)

A Container is a ™ Component

component that

may contain other Z%

components. Container Button Label

Foox

A Panel is a AN Panel Window A Window
container inside ; is a top-level
another container. container.
(E.g., an Applet Java.applet.Applet

NB: There are also many graphics classes to define colours,

fonts, images etc.

The GameApplet

The GameApplet is a Panel using a BorderLayout (with a centre
and up to four border components), and containing a Button
("North"), a Panel ("Center"”) and a Label ("South").

:6ameApplet

Mew garme !

o x :Button :Panel :Label

b 4

0 plays

:Panel :Panel

The central Panel itself contains a grid of squares (Panels) and
uses a GridlLayout.

Other layout managers are FlowLayout, CardLayout and
GridBaglLayout ...

Laying out the GameApplet

public void init() {
game_ = makeGne() ; [/ instantiate gane
set Layout (new BorderLayout()); // initialize view
set Si ze(M NSI ZE*gane_. col s(),
M NSI ZE*ganme_.rows());
add("North", makeControls());
add("Center", makeGid());

| abel _ = new Label ();
add(" Sout h", |abel);
ganme_. addQoserver(this); [/ connect to nodel
showrFeedBack(game_. current Pl ayer (). mark()
+ " plays"):

Helper methods

As usual, we introduce helper methods to hide the details of
GUI construction ...

private Conponent nakeControls() {
Button again = new Button("New gane");

return again;

}

Events and Listeners (I)

Instead of actively checking for GUTI events, you can define
callback methods that will be invoked when your GUT objects
receive events:

handled b
[AWT Framework arfubggriﬁed Y
Listener
objects

Hardware events ...
(MbuseEvent , KeyEvent, ...)

Callback methods

AWT Components publish events and (possibly multiple)
Listeners subscribe interest in them.

Events and Listeners (II)

Every AWT component publishes a variety of different events
(see java.awt.event) with associated Listener interfaces).

Component Events Listener Interface | Listener methods
Button ActionEvent | ActionListener actionPerformed()
Mousel istener mouseClicked()
mouseEntered()
mouseExited()
MouseEvent mousePressed()
mouseReleased()
Component MouseMotionListener | mouseDragged()
mouseMoved()
KeyListener keyPressed()
KeyEvent keyReleased()

key Typed()

Listening for Button events

When we create the "New game" Button, we attach an
ActionListener with the Button.addActionListener() method:

private Conponent nmakeControls() {
Button again = new Button("New gane");
agal n. addAct i onLi st ener (new ActionLi stener() {
public void actionPerforned(ActionEvent e) {

showFeedBack("starting new gane ...");
newGne(); // NB: has access to nethods
} /| of enclosing class!
b |
return again;

}

We instantiate an anonymous inner class to avoid defining a
named subclass of ActionListener.

Listening for mouse clicks

We also attach a Mouselistener to each Place on the board.
private Conponent makeGid() { ...

Panel grid = new Panel ();

grid.setLayout (new G'i dLayout (rows, cols));

pl ace s = new Pl ace[col s][rows];

for (int rowsrows-1; rows=0; row-) {

for (int col=0; col<cols; col++) {
Place p = new Place(col, row, xInage, ol mge);
p. addMbuselLi st ener (
new Pl aceLi stener(p, this));

return grid;

}

The PlacelListener

MouseAdapter is a convenience class that defines empty
MouselListener methods (1)

public class PlaceListener extends MuseAdapter {
private final Place place_;
private final GanmeAppl et applet ;
public PlaceListener(...) {
pl ace_ = pl ace;
appl et = applet;
}

The PlacelListener ...
We only have to define the mouseClicked() method:

public void moused i cked(MouseEvent e){

if.(ganﬁ.notcwer()) {

try {
((Appl et Pl ayer) gane.currentPl ayer()). nmove(col,row;
appl et . showreedBack(gane. current Player().mark() + " plays");

} catch (AssertionException err) {

appl et _. showFeedBack("Invalid nove ignored ...");
}
i f (!'ganme.notQver()) {
appl et . showreedBack(" Game over -- " + gane.winner() + " wins!");
}
} else {

appl et _. showreedBack(" The game is over!");

}
}

Observers and Observables

A class can implement the
java.util.Observerinterface when
1T wants to be informed of
changes in Observable objects.

An Observable object can have
one or more Observers.

After an observable instance
changes, calling
notifyObservers() causes all
observers to be notified by
means of their update() method.

«interface»

Observer

+ update(Observable, Object)

x

Observable

+ addObserver(Observer)

+ deleteObserver(Observer)
+ notifyObservers()

+ notifyObservers(Object)
+ deleteObservers()

setChanged()

clearChanged()

+ hasChanged() : boolean

+ countObservers() : int

Observing the BoardGame

In our case, the GameApplet represents a View, so plays the
role of an Observer:

public class GaneAppl et
extends Applet inplenents Oobserver

{ ...
public void update(Observable o, Object arg) {

Move nove = (Mve) arg;

showrFeedBack("got an update: " + nove);

pl ace_s[nove. col] [nove. r ow]

. set Move(nove. pl ayer);

Observing the BoardGame ...

The BoardGame represents the Model, so plays the role of an
Observable:

publ i ¢ abstract class AbstractBoardGane
ext ends QObservabl e 1 npl enent s Boar dGane
{ ...
public void nove(int col, int row, Player p)
t hrows AssertionException
{ ...
set Changed() ;
noti fyQoservers(new Muve(col, row, p));
}
}

Communicating changes

A Move instance bundles together information about a change
of state in a BoardGame:
public class Myve {
public final 1nt col, row, // NB: public, but final
public final Player player;
public Mwve(int col, int row, Player player) {
this.col = col; this.row = row,
this.player = player;
}
public String toString() {

return "Mve(" + col +"," + row
+ 1 11 + pI ayer + |I)II;

Setting up the connections

When the GameAf)ple’r is loaded, its init() method is called,
causing the model, view and controller components to be

instantiated.
start 3:addObserver(this)
~ :GameApplet ~| :iTicTacToe
2:new
4:new linew

6:addMouselistener()

H:new

:AppletPlayer

:Place

:PlacelListener

The GameApplet subscribes itself as an Observer to the game,
and subscribes a PlacelListener to MouseEvents for each Place
on the view of the BoardGame.

Playing the game

Mouse clicks are propagated
from a Place (controller) 1.2.1.1:sef()
to fhe Board&ame (model); 1.2.1.2:nofifyObserver's()

.y

:6ameApplet | 1.2.1.2.1:update() :TicTacToe

WC/IC/I.Z.I.Z.I.IZSQTMOVQ() 1.2.1:move()
1.1:currentPlayer()

:Place 1:mouseClicked()

\ / : AppletPlayer

:PlaceListener 1.2:move()

If the corresponding move is valid, the model's state changes,
and the GameApplet updates the Place (view).

Refactoring the BoardGame

Adding a GUT to the game affects many classes. We iteratively
introduce changes, and rerun our tests after every change ...

O Shift responsibilities between BoardGame and Player
(both should be passivel)

[]

[]

[]

[]

introduce Player interface, InactivePlayer and
StreamPlayer classes

move getRow() and getCol() from BoardGame to
Player

move BoardGame.update() fo GameDriver.playGame()

change BoardGame to hold a matrix of Players, not
marks

Refactoring the BoardGame ...

0 Introduce Applet classes (GameApplet, Place,
PlacelListener

0 Introduce AppletPlayer
0 PlaceListener triggers AppletPlayer to move

0 BoardGame must be observable

0 Introduce Move to communicate changes from
BoardGame to Observer

GUTI objects in practice ...

Use Java webstart, not applets

0 avoid browser problems by downloading whole
applications in a secure way

Use Swing, not AWT

] f'avax.swing provides a set of "lightweight” (all-Java
anguage) components that (more or less!) work the same
on all platforms.

Use a GUI builder

0 Interactively build your GUTI rather than programming it
— add the hooks later.

O OCOO0On0

What you should know!

Why doesn’t an Applet need a nei n() method?

What are models, view and controllers?

Why does Container extend Component and not vice versa?
What does a layout manager do?

What are events and listeners? Who publishes and who
subscribes to events?

The TicTac Toe game knows nothing about the GameApplet
or Places. How is this achieved? Why is this a good thing?

Can you answer these questions?

[1 How could you get Applets to download objects instead of
just classes?

[J How could you make the game start up in a new Window?

[1 What is the difference between an event listener and an
observer?

[1 The Move class has public instance variables — isn't this a
bad idea?

[1 What kind of tests would you write for the GUI code?

10. Clients and Servers

Overview
0 RMI — Remote Method Invocation
Remote interfaces
Serializable objects
Synchronization
Threads
0 Compiling and running an RMT application

Sources

[1Dcxvid Flanagan, Java Examples in a Nutshell, O'Reilly,
997

0 "RMI 1.2" by Ann Wollrath and Jim Waldo, in The Java
Tutorial , java.sun.com

I I R R

A Networked TicTacToe?

We now have a usable GUI for our game, but it still supports
only a single user.

We would like to support:
0 players on separate machines
[0 each running the game as an applet in a browser
O with a "game server” managing the state of the game

Client "X"

O TicTacToe Applet =l=]
<> B P O Bl
Back Forward Home Search Reload Sourc

@

URL: @ Ihttp:.-".-"www.iam.unibe.ch.-"“’oscal
S B ww e e B G B

w7

Index of /~oscar /P27

TicTacToe Applet

APT documentation
Jara Bonrce Code
client package
tictactoe package

The concept

Server

Join

starting new garme ..

Z

new

:6ameFactory

join

Client "O”

g

new

new

Y Y

new

Player X

plays

Java dpplet

4

move X:Pl

ayer

O:Player

]

move

y

move

/

:Gomoku

update

update

|

O =

TicTacToe Applet

BB

< @ A 2 O 3

Back Forward Home Search Reload Sourc

URL: @ Ihttp :.-".-"www.iam.unibe.ch.-"“’oscal

@

HiE O BeE e e BE o4 M

HE

Index of /~oscar /P27

TicTacToe Applet

APT documentation
Java Bource Code
client package
tictactoe package

;

]
move

starting new game ... | L
Player 0 B

plays

Java Applet

Z

The problem

Unfortunately Applets alone are not enough to implement this
scenario!

We must answer several questions:
[0 Who creates the GameFactory?
0 How does the Applet connect to the GameFactory?

0 How do the server objects connect to the client
objects?

0 How do we download objects (rather than just classes)?

How do the server objects synchronize concurrent
requests?

[]

Remote Method Invocation

RMT allows an application to register a Java object under a
public name with an RMI registry on the server machine.

registry
A

2a:Naming.bind (name, server)

1b:Naming.lookup(name)

@service()
stub

A client may look up up the service using the public name, and
obtain alocal object (stub) that acts as a proxy for the remote
server object (represented by a skeleton).

main

client

la:new Server()

Y
skeleton |, server

|

Why do we need RMI?

RMI

hides complexity of network protocols

offers a standard rmiregistry implementation
automates marshalling and unmarshalling of objects
automates generation of stubs and skeletons

I I R I R

Developing an RMI application

There are several steps to using RMI:

1. Implement a server

[0 Decide which objects will be remote servers and
specify their interfaces

0 Implement the server objects

2. Implement a client
0 Clients must use the remote interfaces
0 Objects passed as parameters must be serializable

Developing an RMI application ...

3. Compile and install the software

0 Use the rmic compiler to generate stubs and
skeletons for remote objects

4. Run the application
[0 Start the RMI registry
[0 Start and register the servers
0 Start the client

Designing client/server interfaces

Interfaces between clients and servers should be as small as
possible.

Low coupling:
0 simplifies development and debugging
[0 maximizes independence
[0 reduces communication overhead

BoardGame client/server interfaces

We split the game into three packages:

0 client — contains the GUT components (view), the
EventlListeners and the Observer

[1 server — contains the server interfaces and the
communication classes

(] tictactoe — contains the model and the server
implementation classes

NB: The client’s Observer must be updated from the server
side, so is also a "server”!

Identifying remote interfaces

To implement the distributed game, we need three interfaces:

RemoteGameFactory
0 called by the client to join a game
0 implemented by tictactoe.GameFactory

RemoteGame

0 called by the client to query the game state and to
handle moves

0 implemented by tictactoe.Gameproxy

0 we simplify the game interface by hiding Player
Instances

RemoteObserver
0 called by the server to propagate updates
0 implemented by client.GameObserver

Specifying remote interfaces

To define a remote interface:
0 the interface must extend java.rmi.Remote

0 every method must be declared to throw
java.rmi.RemoteException

[every argument and return value must:
0 be a primitive data type (int, etc.), or
0 be declared to implement java.io.Serializable, or
0 implement a Remote interface

RemoteGameFactory

This interface is used by clients to join a game.

If a game already exists, the client joins the existing game.
Else a new game is made.

public interface RenoteGaneFactory extends Renote {
publ i ¢ RenoteGane | ol nGane()
t hrows Renot eExcepti on;

}

The object returned implements the RemoteGame interface.

RMI will automatically create a stub on the client side and
skeleton on the server side for the RemoteGame

RemoteGame

RemoteGame exports only what is needed by the client:

public interface RenoteGane extends Renote {

public
public
public
public
public
public
public
public

public

bool ean ready() throws RenoteException;
char join() ...;

bool ean nove(Move nove) ...;

int cols() ...;

Int rows() ...;

char currentPlayer() ...;

String wnner() ...;

bool ean notQver() ...;

voli d addCoser ver (Renot eCbserver o) ...;

RemoteObserver

This is the only interface the client exports to the server:

public interface RenoteCbserver extends Renote {
publ i c voi d updat e(Move nove)
t hrows Renot eExcepti on;

}

NB: RemoteObserver is not compatible with java.util. Observer,
since update() may throw a RemoteException ...

We will have to bridge the incompatibility on the server side.

Serializable objects

Objects to be passed as values must be declared to implement
jJava.io.Serializable.

public class Mwve inplenents java.io. Serializable {
public final int col;
public final Int row
public final char nark;
public Mwve(int col, int row, char mark) { ... }
public String toString() { ... }

}

Move encapsulates the minimum information to communicate
between client and server.

Implementing Remote objects

Remote objects should extend
java.rmi.server.UnicastRemoteObject:

public class GaneFactory extends Uni cast Renot e(oj ect
| npl ement s Renot eGaneFact ory
{

private RenoteGane gane ;

public static void main(String[] args) { ... }

public GaneFactory() throws RenoteException {
super () ;

}

NB: All constructors for Remote objects must throw
RemoteException!

Implementing Remote objects ...

public synchroni zed RenoteGane | oi nGane()
t hrows Renot eException

{
Renot eGane gane = gane_;
If (game == null) { // first player => new gane
game = new GaneProxy(new Gonoku(...));
game_ = gane;
} else { gane_ = null; }

/| second player => join existing gane
return gane;

J

A simple view of synchronization

A synchronized method obtains a lock for its object before
executing its body.

Concurrent Clients
X:GameApplet O:GameApplet

| r

\

Synchronized Servers :6ameFactory

:GameProxy

-|game : RemoteGame

:Gomoku O:Player

|§ X:Player

Passive Objects

[How can servers protect their state from concurrent
requests?

[] Declare their public methods as synchronized.

Registering a remote object

The server must be started by an ordinary main() method:

public static void main(String[] args) {
I f (System get SecurityManager() == null) {
System set Secur it yManager (
new RM SecurityManager());
Systemout.println("Set new Security manager");

}

There must be a securh;y manager installed so that RMI can
safely download classes

Registering a remote object ...

The main() method must instantiate a GameFactory and
register it with a running RMI registry.

I f (args.length !'=1) { ... }
String nane = "//" + args[0] + "/ GneFactory";
try {

Renot eGaneFactory factory = new GaneFactory();
Nam ng. rebi nd(nane, factory);
} catch (Exceptione) { ... }

J

The argument is the host id and port number of the registry
(e.g., www.iam.unibe.ch:2001)

GameProxy

The GameProxy interprets Moves and protects the client from
any Assertiontxceptions:

public class GaneProxy extends Uni cast Renot e(hj ect
| npl ement s Renot eGane
{

public synchroni zed bool ean nove(Move nove)
t hrows Renot eException

{ Player current = gane_.currentPlayer();

I f (current.mark() != nmove.mark) return fal se;
try {

gane_. nove(nove.col, nove.row, current);
return true; // the nove succeeded
} catch (AssertionException e) { return false; }

b

Using Threads to protect the server

We must prevent the server from being blocked by a call to the
remote client.

WrappedObserver adapts a RemoteObserver to implement
java.util.Observer:

cl ass WappedQoserver inplenments Observer {
private RenoteCbserver renote_;

W appedQoser ver (Renot eQoserver ro) {
renote_ = ro;

}

Using Threads to protect the server ...

public void update(Observable o, Object arg) {
final Mve nove = (Mwve) arg; // for inner class
Thread doUpdate = new Thread() {
public void run() {
try {
renot e_. updat e(nove) ;
} catch(Renot eException err) { }

}
} .

doUpdate.start() ; /| start the Thread
} /] and ignore results

}

Even if the Thread blocks, the server can continue ...

Refactoring the BoardGame ...

Most of the changes were on the GUI side:
[0 defined separate client, server and tictactoe packages

0 no changes to Drivers, Players, Runner, TicTactoe or
Gomoku from 2.0 (except renaming AppletPlayer to
PassivePlayer)

[0 added BoardGame methods player() and addObserver()
[0 added WrappedObserver to adapt RemoteObserver
added remote interfaces and remote objects

changed all client classes

[separated GameApplet from GameView (to allow
multiple views)

[0 view how uses Move and RemoteGame (nhot Player)

1 [

Compiling the code

We compile the source packages as usual, and install the
results in a web-accessible location so that the GameApplet
has access to the client and server .class files.

Generating Stubs and Skeletons

In addition, the client and the server need access to the stub
and skeleton class files.

On Unix, chdir to the directory containing the client and
tictactoe class file hierarchies

rmic -d . tictactoe.GameFactory
rmic -d . tictactoe.GameProxy
rmic -d . client.GameObserver

This will generate stub and skeleton class files for the remote
objects. (I.e., GameFactory_Skel.class etc.)

NB: Move is not a remote object, so we do not need to run rmic
on its class file.

Running the application

We start the RMTI registry on the host (www.iam.unibe.ch):
rmiregistry 2001 &

We start and register the servers:
setenv CLASSPATH ./classes
java -Djava.rmi.server.codebase=http:.../classes/ \
tictactoe.GameFactory \
www.iam.unibe.ch:2001

And start the clients with a browser or an appletviewer ...

NB: the RMI registry needs the codebase so it can instantiate
the stubs and skeletons!

Playing the game

:6ameObserver <— skel - stub

:WrappedObserv

1.1d:update()

1d:update() 1lc:update()

:GameView

1.2.1.1b:upda'f€()T

1.1.1d:setMove()

:Gomoku

click .
. :Place

1.2.1b:move()]

:PassivePlayer

lla:mouseClicked()

:Placelistener stub - skel —

1.2b:move()]

:6ameProxy

1.1a:move() 1b:move()

1.1b:currentPlayer()

Caveat!

This only works with JDK 1.1:
[0 Most web browsers are not Java 1.2 enabled
[0 Applets can only connect to the host of their codebase
0 Security is more complex in Java 1.2
0 clients must specify a policy file

Web browsers, Applets, RMI and Java security don't mix well.

If you plan to use RMI and Java 2, stay away from applets!

Other approaches
CORBA
0 for non-java components

COM (DCOM, Active-X ...)
O for talking to MS applications

Sockets
O for talking other TCP/IP protocols

Software buses
0 for sharing information across multiple applications

O OO OO0

What you should know!

How do you make a remote object available to clients?
How does a client obtain access to a remote object?
What are stubs and skeletons, and where do they come

from?

What requirements must a remote interface fulfil?

What is the difference between a remote object and a
serializable object?

Why do servers often start new threads to handle

requests?

Can you answer these questions?

N

Suppose we modified the view to work with Players instead
of Moves. Should Players then be remote objects or
serializable objects?

Why don't we have to declare the AbstractBoardGame
methods as synchronized?

[]
[J What kinds of tests would you write for the networked
game?

[]

How would you extend the game to notify users when a
second player is connected?

[J What exactly happens when you send an object over the net
via RMI?

11. Guidelines, Idioms and Patterns

Overview

[]
[]
[]

[]

Programming style: Code Talks; Code Smells
Idioms, Patterns and Frameworks

Basic Idioms

0 Delegation, Super, Interface

Basic Patterns

[0 Adapter, Proxy, Template Method, Composite,
Observer

1 [

Sources

Erich Gamma, Richard Helm, Ralph Johnson and John
Vlissides, Design Patterns, Addison Wesley, Reading,
MA, 1995,

Frank Buschmann, et al., Pattern-Oriented Software
Architecture — A System of Patterns, Wiley, 1996

Mark Grand, Patterns in Java, Volume 1, Wiley, 1998

Kent Beck, Smalltalk Best Practice Patterns, Prentice
Hall, 1997

"Code Smells"”, http://c2.com/cgi/wiki?CodeSmells

Style

Code Talks
[0 Do the simplest thing you can think of (KISS)
1 Don't over-design
0 Implement things once and only once

[0 Firstdo it, then do it right, then do it fast
(don't optimize too early)

[0 Make your intention clear
O Write small methods
0 Each method should do one thing only
0 Name methods for what they do, not how they do it
[0 Worite to an interface, not an implementation

Refactoring

Redesign and refactor when the code starts to "smell”

Code Smells
0 Methods too /long or too complex
[0 decompose using helper methods
O Duplicated code

0 factor out the common parts
(e.g., using a Template method)

O Violation of encapsulation
0 redistribute responsibilities
0 Too much communication (high coupling)
0 redistribute responsibilities
Many idioms and patterns can help to improve your design ...

What are Idioms and Patterns?

Idioms are common programming technigues and
conventions. They are often language-specific.

Patterns document common solutions to design
problems. They are language-independent.

Libraries are collections of functions,
Libraries |procedures or other software components that
can be used in many applications.

Frameworks are open libraries that define the

Frameworks| generic architecture of an application, and can
be extended by adding or deriving new classes.

Idioms

Patterns

Frameworks typically make use of common idioms and patterns.

Delegation

[0 How can an object share behaviour without inheritance?
[] Delegate some of its work to another object

Inheritance is a common way to extend the behaviour of a
class, but can be an inappropriate way to combine features.

Delegation reinforces encapsulation by keeping roles and
responsibilities distinct.

Delegation

Example

[0 When a TestSuite is asked to run(), it delegates the
work to each of its TestCases.

Consequences
More flexible, less structured than inheritance.

Delegation is one of the most basic object-oriented idioms, and
is used by almost all design patterns.

Delegation example

public class TestSuite i nplenments Test {

public void run(TestResult result) {
for(Enumeration e = fTests.elenments();
e. hasMor eEl enent s() ;)
{
I f (result.shoul dStop())
br eak;
Test test = (Test) e.nextEl enment();
test.run(result);

J
}

Super

[How do you extend behaviour inherited from a superclass?

[1 Overwrite the inherited method, and send a message to
"super” in the new method.

Sometimes you just want to extendinherited behaviour, rather
than replace it.

Super

Examples

0 WrappedStack.top() extends Stack.top() with a pre-
condition assertion.

0 Constructors for subclasses of Exception invoke their
superclass constructors.

Consequences

Increases coupling between subclass and sur)erclass: if you
change the inheritance structure, super calls may break!

Never use super to invoke a method different than the one
being overwritten — use "this” instead!

Super example

public class WappedSt ack extends Sinpl eWappedSt ack
{

public Qoject top() throws AssertionException {
assert(!this.iskEmpty());
return super.top();

}

public void pop() throws AssertionException {
assert(!this.iskEmpty());
super. pop() ;

}

}

Interface

0 How do you keep a client of a service independent of classes
that provide the service?

[1 Have the client use the service through an interface rather
than a concrete class.

If a client names a concrete class as a service provider, then
only instances of that class or its subclasses can be used in
future.

By naming an interface, an instance of any class that
implements the interface can be used to provide the service.

Interface

Example

0 Any object may be registered with an Observable if it
implements the Observer interface.

Consequences
Interfaces reduce coupling between classes.
They also increase complexity by adding indirection.

Interface example

public class GaneAppl et extends Appl et
| npl ement's Qobserver

{ ...
public void update(Observable o, Object arg) {

Move nove = (Move) arg;

showrFeedBack("got an update: " + nove);

pl aces [nove. col | [nove. r ow]

. set Move(nove. pl ayer);

Adapter

0 How do you use a class that provide the right features but
the wrong interface?

[] Introduce an adapter.

An adapter converts the interface of a class into another
interface clients expect.

Adapter

Examples

0 A WrappedStack adapts java.util.Stack, throwing an
AssertionException when top() or pop() are called on an
empty stack.

[0 An ActionListener converts a call o actionPerformed()
to the desired handler method.

Consequences
The client and the adapted object remain independent.
An adapter adds an extra level of indirection.

Also known as Wrapper

Adapter example

private Conponent nakeControls() {
Button again = new Button("New gane");
agai n. addAct i onLi st ener (new ActionLi stener() {
public void actionPerforned(ActionEvent e) {
showFeedBack("starting new game ...");
newGne() ;

}
1)

return agal n;

Proxy

[How do you hide the complexity of accessing objects that
require pre- or post-processing?

[J Introduce a proxy to control access to the object.

Some services require special pre or post-processing. Examples
include objects that reside on a remote machine, and those
with security restrictions.

A proxy provides the same interface as the object that it
controls access to.

Proxy

Example

0 A Java "stub” for a remote object accessed by Remote
Method Invocation (RMI).

Consequences

A Proxy decouples clients from servers. A Proxy introduces a
level of indirection.

Proxy differs from Adapter in that it does not change the
object’s interface.

P2 — 52002 343.

Proxy example

Machine A Machine B

1.1:doit()

1:doit()

:ServiceStub - :Service

© O. Nierstrasz — U. Berne Guidelines, Idioms and Patterns

Template Method

0 How do you implement a generic algorithm, deferring some

parts to subclasses?

[] Define it as a Template Method.

A Temﬂla‘re Method factors out the common part of similar
algorithms, and delegates the rest to:

[0 hook methods that subclasses may extend, and
O abstract methods that subclasses must implement.

Template Method

Example

[0 TestCase.runBare() is a template method that calls the
hook method setUp().

Consequences

Template methods lead to an inverted control structure since
a parent classes calls the operations of a subclass and not the
other way around.

Template Method is used in most frameworks to allow
?Jop/icaﬁon programmers to easily extend the functionality of
ramework classes.

Template method example

Subclasses of TestCase are expected to override hook method
setUp() and possibly tearDown() and runTest().

publ i c abstract class TestCase I nplenments Test {

public void runBare() throws Throwabl e {
set Up() ;

try { runTest(); }
finally { tearDown(); }

J

protected void setUp() { } // enpty by default
protected void tearDown() { }

protected void runTest() throws Throwable { ... }

Composite

0 How do you manage a part-whole hierarchy of objects ina
consistent way?

[1 Define a common interface that both parts and composites
implement.

Typically composite objects will implement their behaviour by
delegating to their parts.

Composite

Examples

0 A TestSuite is a composite of TestCases and
TestSuites, both of which implement the Test

interface.

0 A Java GUI Container is a composite of GUI
Components, and also extends Component.

Consequences
Clients can uniformly manipulate parts and wholes.

In a complex hierarchy, it may not be easy to define a common
interface that all classes should implement ...

Composite example

A TestSuite is a Test that bundles a set of TestCases and
TestSuites.

«interface»

TestCase Test
abstract =~~~ 7 ;'> :
: + count TestCases() : int
+ create(String) + run(TestResult)
+ assert(boolean) 4
+ assertEquals(Object, Object) ;
+ fail() /
+ void runBare() P
void runTest() TestSuite
void setUp() + create()
void tearDown() + create(Class)
+ name() : String + addTest(Test test)

Observer

0 How can an object inform arbitrary clients when it changes
state?

[J Clients implement a common Observer interface and
register with the "observable” object; the object notifies its

observers when it changes state.

An observable object publishes state change events to its
subscribers, who must implement a common interface for
receiving notification.

Observer

Examples

0 The GameApplet implements java.util.Observable, and
registers with a BoardGame.

0 A Button expects its observers to implement the
ActionListener interface.

(see the Interface and Adapter examples)

Consequences

Notification can be slow if there are many observers for an
observable, or if observers are themselves observablel

What Problems do Design Patterns Solve?

Patterns:
[0 document design experience
[enable widespread reuse of software architecture

O improve communication within and across software
development teams

explicitly capture knowledge that experienced
developers already understand implicitly

arise from practical experience
help ease the transition to object-oriented technology
facilitate training of new developers

help to tfranscend "programming language-centric”
viewpoints

[]

I I R R

Doug Schmidt, CACM Oct 1995

[]

L[]
[]
[]
L[]
L[]

What you should know!

What's wrong with long methods? How long should a method
be?

What's the difference between a pattern and an idiom?
When should you use delegation instead of inheritance?
When should you call "super”?

How does a Proxy differ from an Adapter?

How can a Template Method help to eliminate duplicated
code?

[]

O 0O 0O O

Can you answer these questions?

What idioms do you reqgularly use when you program? What
patterns do you use?

What is the difference between an interface and an
abstract class?

When should you use an Adapter instead of modifying the
interface that doesn’t fit?

Is it good or bad that java.awt.Component is an abstract
class and not an interface?

Why do the Java libraries use different interfaces for the
Observer pattern (java.util. Observer,
java.awt.event.ActionlListener etc.)?

12. Common Errors, a few Puzzles

Overview

[0 Common errors:
[0 Round-off
[0 == vs. equals()
0 Forgetting to clone objects
0 Dangling else
0 Off-by-1..

0 A few Java puzzles ...

Sources

0 Cay Horstmann, Computing Concepts with Java
Essentials, Wiley, 1998

0 The Java Report, April 1999

Round-off errors
What does this print?

doubl e f
doubl e ¢

2e15 + 0.13;
2e15 + 0. 02;

println(100*(f-qg));

When are two

== versus equals() (1)

Strings equal?

String s1 = new String("This is a string");
String s2 = new String("This is a string");
test("String==", sl == s2);

test("String.equals", sl.equals(s2));

static void test(String name, bool ean bool) {

println(name + "

}

" + (bool ?"true":"false"));

== versus equals() (2)

When are two Objects equal?

(bj ect x = new Qbj ect ()

(bject y = new Qbject();
test("object==", x ==vy);
test ("object.equal s", x.equals(y));

== versus equals() (3)

When are two Strings equal?

String s3 ="This is a string";
String s4 = "This is a string";
test("String==", s3 == s4);
test("String.equals", s3.equal s(s4));

Forgetting to clone an object

Is "now” really before "later”?
Date now = new Date();
Date | ater = now
| at er. set Hour s(now. get Hours() + 1);
I f (now. before(later))
println("see you later");
el se
println("see you now');

The dangling else problem.

static void checkEven(int n) {
bool ean result = true:

I f (n>=0)
1f ((n%) == 0)
printin(n +" is even");
el se
println(n + " is negative");

}

What is printed when we run these checks?
checkEven(-1);
checkEven(0);
checkEven(1);

Off-by-1 errors

The binomial coefficient %is ?x Lox Az E+ L
Is this a correct implementation?
static int binomal(int n, int k) {
Int bc = 1,
for (int 1=1; 1<k; 1++)
bc = bc * (n+l-1) [/ 1;
return bc;

}

Avoiding Off-by-1 errors

To avoid off-by-1 errors:
1. Count the iterations — do we always do k multiplications?

(no)

2. Check boundary conditions — do we start with n/1 and
finish with (n-k+1)/k?

(no)

Off-by-1 errors are among the most common mistakes in
implementing algorithms.

Don't use equality tests to terminate loops!

For which values does this function work correctly?
static int brokenFactorial(int n) {
Int result=1;
for (int 1=0; il=n; |++)
result = result*(i+1);
return result;

}

Some other common errors

Magic numbers
0 Never use magic humbers; declare constants instead.

Forgetting to set a variable in some branch

O If you have non-trivial control flow to set a variable,
make sure it starts of f with a reasonable default value.

Underestimating size of data sets
0 Don't write programs with arbitrary built-in limits (like
line-length); they will break when you least expect ift.
Leaking encapsulation

[0 Never returna private instance variable! (return a clone
instead)

Bugs are always matter of invalid assumptions not holding

Puzzle 1

Are private methods inherited?
class A {

public void m() { this.p(); }
private void p() { printin("Ap()"); }

}

class B extends A {
private void p() { printin("B.p()"); }

}
Which is called? A.p() or B.p()?
A b = new B();

b. m();

Static and Dynamic Types

Consider:
A a = new B();
The static type of variable ais A — i.e., the statically declared
class to which it belongs.
The static type never changes.

The dynamic type of ais B — i.e., the class of the object
currently bound to a.

The dynamic type may change throughout the program.

a = new A();
Now the dynamic type is also Al

Puzzle 2

How are overloaded method calls resolved?

class A{ }
class B extends A { }
void n(A al, A a2) { println("nmA,
void m(A al, B bl) { println("n(A,
void m(B bl, Aal) { printin("mB,
void m(B bl, B b2) { printin("mB,
Bb=newB(); Aa=b,

Which is considered: the static or dynamic argument type?

na, a);
ma, b);
b, a);
b, b);

).}
"Yi o}
).}
)}

Puzzle 2 (part IT)

What happens if we comment out:
0 m(A,A)?
0 m(B,B)?

0 m(A,B)?

Will the examples still compile?
If so, which methods are called?

Puzzle 3

How do static and dynamic types interact?
class A {
void mMAa) { printin("AnA"); }
}

class B extends A {

void mMB b) { printin("B.m(B)"); }
}

Bb=newB(); Aa =b;

In which cases will B.m(B) be called?

Puzzle 4 (part I)

How do default values and constructors interact?

class C {
int i =100, j =100, k =init(), | = 0;
q) {i =0 k=0;}
int init() {J] =0; I =100; return 100; }
}
What gets printed? O or 100?
Cc =new (();
printIn("Ci1 =" +c.l);
printin("C.j] =" +c.|);
printin("Ck =" + c.k);
printin("C1l =" +c.l);

Puzzle 4
(part IT)

abstract class A {
int | = 100;
A() { init(100); j = 200; }
abstract void init(int value);

}
class B extends A {
int i =0, j =0;
B() { super(); }
void init(int value) { i = value; }
}
What gets printed? O, 100 or 200?
Bb = newB();
printIn("B.i =" + b.1)
printin("B.] =" + b.j)

Puzzle 5

Does try or finally return?
class A {
int o) {
try { return 1; }
catch (Exception err) { return 2; }
finally { return 3; }

}
}
Prints 1, 2, or 3?
A a = new A();

printin(a.nm));

COoOobo0OoOnb

What you should know!

When can you trust floating-point arithmetic?

To which "if" does an "else” belong in a nested if statement?
How can you avoid of f-by-1 errors?

Why should you never use equality tests to terminate loops?
Are private methods inherited?

What are the static and dynamic types of variables?

How are they used to dispatch overloaded methods?

Can you answer these questions?

[1 When is method dispatching ambiguous?

[1 Is it better to use default values or constructors to
initialize variables?

[1 If both a try clause and its finally clause throw an
exception, which exception is really thrown?

	S7038 Programmierung 2
	Table of Contents
	Patterns, Rules and Guidelines
	1. P2 — Object-Oriented Programming
	Principle Texts:
	Overview
	Goals of this course
	Goals ...
	What is programming?
	Programming and Software Development
	Programming activities
	What is a software system?
	What is good (bad) design?
	A procedural design
	An object-oriented approach
	Object-Oriented Design
	Responsibility-Driven Design
	Responsibility-Driven Design ...
	Refactoring
	What is Software Quality?
	Software Quality ...
	How to achieve software quality
	How to achieve software quality ...
	What is a programming language?
	Communication
	Why use object-oriented programming?
	Why use OOP? ...
	Why Java?
	History
	What you should know!
	Can you answer these questions?

	2. Design by Contract
	Contracts
	Exceptions, failures and defects
	Stacks
	Example: Balancing Parentheses
	A simple algorithm
	Using a Stack to match parentheses
	The ParenMatch class
	A declarative algorithm
	A cluttered algorithm
	Helper methods
	What is Data Abstraction?
	StackInterface
	Interfaces in Java
	Exceptions
	Why are ADTs important?
	Why are ADTs important? ...
	Stacks as Linked Lists
	LinkStack Cells
	Private vs Public instance variables
	Naming instance variables
	LinkStack ADT
	Class Invariants
	LinkStack Class Invariant
	Programming by Contract
	Pre- and Postconditions
	Benefits and Obligations
	Stack pre- and postconditions
	Assertions
	Testing Assertions
	Testing Invariants
	Disciplined Exceptions
	Checking pre-conditions
	Checking post-conditions
	Running parenMatch
	Running parenMatch ...
	What you should know!
	Can you answer these questions?

	3. Testing and Debugging
	Testing
	Regression testing
	Caveat: Testing and Correctness
	Testing a Stack
	Build simple test cases
	Check that failures are caught
	When (not) to use static methods
	When (not) to use static variables
	ArrayStack
	Handling overflow
	Checking pre-conditions
	Testing ArrayStack
	The Run-time Stack
	The run-time stack in action ...
	The Stack and the Heap
	Fixing our mistake
	java.util.Stack
	Wrapping Objects
	A Wrapped Stack
	A Wrapped Stack ...
	A contract mismatch
	Fixing the problem ...
	Timing benchmarks
	Timer
	Sample benchmarks (milliseconds)
	What you should know!
	Can you answer these questions?

	4. Iterative Development
	The Classical Software Lifecycle
	Iterative Development
	What is Responsibility-Driven Design?
	How to assign responsibility?
	Example: Tic Tac Toe
	Setting Scope
	Setting Scope ...
	Tic Tac Toe Objects
	Tic Tac Toe Objects ...
	Missing Objects
	Scenarios
	Version 1.0 (skeleton)
	Version 1.1 (simple tests)
	Checking pre-conditions
	Testing the new methods
	Testing the application
	Printing the State
	TicTacToe.toString()
	Refining the interactions
	Tic Tac Toe Contracts
	Version 1.2 (functional)
	Supporting test Players
	Invariants
	Delegating Responsibilities
	Delegating Responsibilities ...
	Small Methods
	Accessor Methods
	Code Smells — TicTacToe.checkWinner()
	Code Smells ...
	Code Smells ...
	GameDriver
	The Player
	Player constructors ...
	Player constructors ...
	Defining test cases
	Checking test cases
	Running the test cases
	What you should know!
	Can you answer these questions?

	5. Inheritance and Refactoring
	What is Inheritance?
	Inheritance mechanisms
	The Board Game
	Uses of Inheritance
	Uses of Inheritance ...
	Class Diagrams
	A bad idea ...
	Class Hierarchy
	Iterative development strategy
	Iterative development strategy ...
	Version 1.3 (add interface)
	Speaking to an Interface
	Quiet Testing
	Quiet Testing (2)
	NullPrintStream
	TicTacToe adaptations
	Version 1.4 (add abstract class)
	Refactoring
	Refactoring strategies
	Version 1.5 (refactor for reusability)
	AbstractBoardGame 1.5
	BoardGame 1.5
	Player 1.5
	Version 1.6 (Gomoku)
	Keeping Score
	A new responsibility ...
	The Runner
	Top-down decomposition
	Recursion
	More helper methods
	BoardGame 1.6
	Gomoku
	What you should know!
	Can you answer these questions?

	6. Programming Tools
	Make
	A Typical Makefile
	Running make
	Ant
	A Typical build.xml
	...
	Running Ant
	Version Control Systems
	Version Control
	RCS command overview
	Using RCS
	Additional RCS Features
	CVS
	Using CVS
	Debuggers
	Using Debuggers
	Using jdb
	Debugging Strategy
	Debugging Strategy ...
	Profilers
	Using java -Xprof
	Using java -Xrunhprof
	Using Profilers
	Javadoc
	Javadoc input
	Javadoc output
	Other tools
	Integrated Development Environments
	CodeWarrior
	CodeWarrior Class Browser
	CodeWarrior Hierarchy Browser
	Setting Breakpoints
	What you should know!
	Can you answer these questions?

	7. A Testing Framework
	The Problem
	Testing Practices
	Testing Practices ...
	JUnit
	Frameworks vs. Libraries
	The JUnit Framework
	A Testing Scenario
	Testing Style
	Representing multiple currencies
	Money
	MoneyTest
	Some basic tests
	Building a Test Suite
	The TestRunner
	MoneyBags
	MoneyBags ...
	Testing MoneyBags (I)
	Testing MoneyBags (II)
	Testing MoneyBags (III)
	Adding MoneyBags
	The IMoney interface (I)
	Double Dispatch (I)
	Double Dispatch (II)
	The IMoney interface (II)
	A Failed test
	The fix ...
	What you should know!
	Can you answer these questions?

	8. Software Components: Collections
	Components
	The Jumble Puzzle
	Naive Solution
	Rethinking the Jumble Problem
	Rethinking the Jumble Problem ...
	An Efficient Solution
	The Collections Framework
	Collection Interfaces
	Implementations
	Interface and Abstract Classes
	Maps
	Jumble
	Jumble constructor
	Algorithms
	Array algorithms
	Sorting arrays of characters
	Loading the dictionary
	Loading the dictionary ...
	The input loop
	Running the unjumbler ...
	Searching for anagrams
	Iterators
	Iterating through the key set
	Running Jumble.maxAnagrams
	How to use the framework
	What you should know!
	Can you answer these questions?

	9. GUI Construction
	A Graphical TicTacToe?
	Applets
	The Hello World Applet
	The Hello World Applet
	Accessing the game as an Applet
	Model-View-Controller
	AWT Components and Containers
	The GameApplet
	Laying out the GameApplet
	Helper methods
	Events and Listeners (I)
	Events and Listeners (II)
	Listening for Button events
	Listening for mouse clicks
	The PlaceListener
	The PlaceListener ...
	Observers and Observables
	Observing the BoardGame
	Observing the BoardGame ...
	Communicating changes
	Setting up the connections
	Playing the game
	Refactoring the BoardGame
	Refactoring the BoardGame ...
	GUI objects in practice ...
	What you should know!
	Can you answer these questions?

	10. Clients and Servers
	A Networked TicTacToe?
	The concept
	The problem
	Remote Method Invocation
	Why do we need RMI?
	Developing an RMI application
	Developing an RMI application ...
	Designing client/server interfaces
	BoardGame client/server interfaces
	Identifying remote interfaces
	Specifying remote interfaces
	RemoteGameFactory
	RemoteGame
	RemoteObserver
	Serializable objects
	Implementing Remote objects
	Implementing Remote objects ...
	A simple view of synchronization
	Registering a remote object
	Registering a remote object ...
	GameProxy
	Using Threads to protect the server
	Using Threads to protect the server ...
	Refactoring the BoardGame ...
	Compiling the code
	Generating Stubs and Skeletons
	Running the application
	Playing the game
	Caveat!
	Other approaches
	What you should know!
	Can you answer these questions?

	11. Guidelines, Idioms and Patterns
	Sources
	Style
	Refactoring
	What are Idioms and Patterns?
	Delegation
	Delegation
	Delegation example
	Super
	Super
	Super example
	Interface
	Interface
	Interface example
	Adapter
	Adapter
	Adapter example
	Proxy
	Proxy
	Proxy example
	Template Method
	Template Method
	Template method example
	Composite
	Composite
	Composite example
	Observer
	Observer
	What Problems do Design Patterns Solve?
	What you should know!
	Can you answer these questions?

	12. Common Errors, a few Puzzles
	Round-off errors
	== versus equals() (1)
	== versus equals() (2)
	== versus equals() (3)
	Forgetting to clone an object
	The dangling else problem.
	Off-by-1 errors
	Avoiding Off-by-1 errors
	Don’t use equality tests to terminate loops!
	Some other common errors
	Puzzle 1
	Static and Dynamic Types
	Puzzle 2
	Puzzle 2 (part II)
	Puzzle 3
	Puzzle 4 (part I)
	Puzzle 4 (part II)
	Puzzle 5
	What you should know!
	Can you answer these questions?

