
S7038 Programmierung 2

 

Object-Oriented Programming with Java

Prof. O. Nierstrasz

Sommersemester 2002



 

P2 — S2002 i.

 

s

   

t 29

 

30
 and defects 31

32
g Parentheses 33

34
atch parentheses 35
lass 36
rithm 37
m 38

39
action? 40

41
42
43

rtant? 44
rtant? ... 45
ts 46

47
tance variables 48
ariables 49

50
51

ariant 52
ontract 53
itions 54
ations 55
tconditions 56

57
58
ent
 Contrac

s, failures

Balancin
lgorithm

ack to m
Match c
tive algo
d algorith
thods

ata Abstr
rface
 in Java
s
DTs impo
DTs impo

Linked Lis
Cells
 Public ins
stance v
ADT
riants
Class Inv
ing by C
ostcond

nd Oblig
- and pos

sertions
Table of Cont
1. P2 — Object-Oriented Programming 1

Principle Texts: 2

Overview 3

Goals of this course 4

Goals ... 5

What is programming? 6

Programming and Software Development 7

Programming activities 8

What is a software system? 9

What is good (bad) design? 10

A procedural design 11

An object-oriented approach 12

Object-Oriented Design 13

Responsibility-Driven Design 14

Responsibility-Driven Design ... 15

Refactoring 16

What is Software Quality? 17

Software Quality ... 18

How to achieve software quality 19

How to achieve software quality ... 20

What is a programming language? 21

Communication 22

Why use object-oriented programming? 23

Why use OOP? ... 24

Why Java? 25

History 26

What you should know! 27

Can you answer these questions? 28

2. Design by
Contracts
Exception
Stacks
Example: 
A simple a
Using a St
The Paren
A declara
A cluttere
Helper me
What is D
StackInte
Interfaces
Exception
Why are A
Why are A
Stacks as 
LinkStack 
Private vs
Naming in
LinkStack 
Class Inva
LinkStack 
Programm
Pre- and P
Benefits a
Stack pre
Assertions
Testing As



 

P2 — S2002 ii.

   

91
s (milliseconds) 92
ow! 93
se questions? 94

 

ent 95

 

re Lifecycle 96
ent 97
ty-Driven Design? 98
nsibility? 99
e 100

101
102
103

 ... 104
105
106

n) 107
ests) 108
itions 109
thods 110
tion 111

112
113

tions 114
ts 115

nal) 116
ers 117

118
sibilities 119
sibilities ... 120

121
122
Testing Invariants 59
Disciplined Exceptions 60
Checking pre-conditions 61
Checking post-conditions 62
Running parenMatch 63
Running parenMatch ... 64
What you should know! 65
Can you answer these questions? 66

3. Testing and Debugging 67
Testing 68
Regression testing 69
Caveat: Testing and Correctness 70
Testing a Stack 71
Build simple test cases 72
Check that failures are caught 73
When (not) to use static methods 74
When (not) to use static variables 75
ArrayStack 76
Handling overflow 77
Checking pre-conditions 78
Testing ArrayStack 79
The Run-time Stack 80
The run-time stack in action ... 81
The Stack and the Heap 82
Fixing our mistake 83
java.util.Stack 84
Wrapping Objects 85
A Wrapped Stack 86
A Wrapped Stack ... 87
A contract mismatch 88
Fixing the problem ... 89
Timing benchmarks 90

Timer
Sample benchmark
What you should kn
Can you answer the

4. Iterative Developm
The Classical Softwa
Iterative Developm
What is Responsibili
How to assign respo
Example: Tic Tac To
Setting Scope
Setting Scope ...
Tic Tac Toe Objects
Tic Tac Toe Objects
Missing Objects
Scenarios
Version 1.0 (skeleto
Version 1.1 (simple t
Checking pre-cond
Testing the new me
Testing the applica
Printing the State
TicTacToe.toString()
Refining the interac
Tic Tac Toe Contrac
Version 1.2 (functio
Supporting test Play
Invariants
Delegating Respon
Delegating Respon
Small Methods
Accessor Methods



 

P2 — S2002 iii.

   

r for reusability) 155
e 1.5 156

157
158

u) 159
160

 ... 161
162

osition 163
164

ds 165
166
167

ow! 168
se questions? 169

 

170

 

171
172
173
174
175
176
177

ems 178
179

rview 180
181

tures 182
183
184
185
186
Code Smells — TicTacToe.checkWinner() 123
Code Smells ... 124
Code Smells ... 125
GameDriver 126
The Player 127
Player constructors ... 128
Player constructors ... 129
Defining test cases 130
Checking test cases 131
Running the test cases 132
What you should know! 133
Can you answer these questions? 134

5. Inheritance and Refactoring 135
What is Inheritance? 136
Inheritance mechanisms 137
The Board Game 138
Uses of Inheritance 139
Uses of Inheritance ... 140
Class Diagrams 141
A bad idea ... 142
Class Hierarchy 143
Iterative development strategy 144
Iterative development strategy ... 145
Version 1.3 (add interface) 146
Speaking to an Interface 147
Quiet Testing 148
Quiet Testing (2) 149
NullPrintStream 150
TicTacToe adaptations 151
Version 1.4 (add abstract class) 152
Refactoring 153
Refactoring strategies 154

Version 1.5 (refacto
AbstractBoardGam
BoardGame 1.5
Player 1.5
Version 1.6 (Gomok
Keeping Score
A new responsibility
The Runner
Top-down decomp
Recursion
More helper metho
BoardGame 1.6
Gomoku
What you should kn
Can you answer the

6. Programming Tools
Make
A Typical Makefile
Running make
Ant
A Typical build.xml
...
Running Ant
Version Control Syst
Version Control
RCS command ove
Using RCS
Additional RCS Fea
CVS
Using CVS
Debuggers
Using Debuggers



 

P2 — S2002 iv.

   

220
221
222

 (I) 223
 (II) 224
 (III) 225
s 226
e (I) 227

228
) 229
e (II) 230

231
232

ow! 233
se questions? 234

 

nts: Collections 235

 

236
237
238

ble Problem 239
ble Problem ... 240

241
ework 242

s 243
244

act Classes 245
246
247
248
249
250

aracters 251
Using jdb 187
Debugging Strategy 189
Debugging Strategy ... 190
Profilers 191
Using java -Xprof 192
Using java -Xrunhprof 193
Using Profilers 194
Javadoc 195
Javadoc input 196
Javadoc output 197
Other tools 198
Integrated Development Environments 199
CodeWarrior 200
CodeWarrior Class Browser 201
CodeWarrior Hierarchy Browser 202
Setting Breakpoints 203
What you should know! 204
Can you answer these questions? 205

7. A Testing Framework 206
The Problem 207
Testing Practices 208
Testing Practices ... 209
JUnit 210
Frameworks vs. Libraries 211
The JUnit Framework 212
A Testing Scenario 213
Testing Style 214
Representing multiple currencies 215
Money 216
MoneyTest 217
Some basic tests 218
Building a Test Suite 219

The TestRunner
MoneyBags
MoneyBags ...
Testing MoneyBags
Testing MoneyBags
Testing MoneyBags
Adding MoneyBag
The IMoney interfac
Double Dispatch (I)
Double Dispatch (II
The IMoney interfac
A Failed test
The fix ...
What you should kn
Can you answer the

8. Software Compone
Components
The Jumble Puzzle
Naive Solution
Rethinking the Jum
Rethinking the Jum
An Efficient Solution
The Collections Fram
Collection Interface
Implementations
Interface and Abstr
Maps
Jumble
Jumble constructor
Algorithms
Array algorithms
Sorting arrays of ch



 

P2 — S2002 v.

   

ections 284
285

rdGame 286
rdGame ... 287

tice ... 288
ow! 289
se questions? 290

 

s 291

 

Toe? 292
293
294

ocation 295
MI? 296
 application 297
 application ... 298
ver interfaces 299
server interfaces 300
nterfaces 301
nterfaces 302
ry 303

304
305
306

ote objects 307
ote objects ... 308
chronization 309
e object 310
e object ... 311

312
tect the server 313
tect the server ... 314
rdGame ... 315
Loading the dictionary 252
Loading the dictionary ... 253
The input loop 254
Running the unjumbler ... 255
Searching for anagrams 256
Iterators 257
Iterating through the key set 258
Running Jumble.maxAnagrams 259
How to use the framework 260
What you should know! 261
Can you answer these questions? 262

9. GUI Construction 263
A Graphical TicTacToe? 264
Applets 265
The Hello World Applet 266
The Hello World Applet 267
Accessing the game as an Applet 268
Model-View-Controller 269
AWT Components and Containers 270
The GameApplet 271
Laying out the GameApplet 272
Helper methods 273
Events and Listeners (I) 274
Events and Listeners (II) 275
Listening for Button events 276
Listening for mouse clicks 277
The PlaceListener 278
The PlaceListener ... 279
Observers and Observables 280
Observing the BoardGame 281
Observing the BoardGame ... 282
Communicating changes 283

Setting up the conn
Playing the game
Refactoring the Boa
Refactoring the Boa
GUI objects in prac
What you should kn
Can you answer the

10. Clients and Server
A Networked TicTac
The concept
The problem
Remote Method Inv
Why do we need R
Developing an RMI
Developing an RMI
Designing client/ser
BoardGame client/
Identifying remote i
Specifying remote i
RemoteGameFacto
RemoteGame
RemoteObserver
Serializable objects
Implementing Rem
Implementing Rem
A simple view of syn
Registering a remot
Registering a remot
GameProxy
Using Threads to pro
Using Threads to pro
Refactoring the Boa



 

P2 — S2002 vi.

   

348

e 349

350

351

Design Patterns Solve? 352

ow! 353

se questions? 354

 

few Puzzles 355

 

356

1) 357

2) 358

3) 359

 an object 360

roblem. 361

362

rrors 363

ests to terminate loops! 364

n errors 365

366

 Types 367

368

369

370

371

372

373

ow! 374

se questions? 375
Compiling the code 316
Generating Stubs and Skeletons 317
Running the application 318
Playing the game 319
Caveat! 320
Other approaches 321
What you should know! 322
Can you answer these questions? 323

11. Guidelines, Idioms and Patterns 324
Sources 325
Style 326
Refactoring 327
What are Idioms and Patterns? 328
Delegation 329
Delegation 330
Delegation example 331
Super 332
Super 333
Super example 334
Interface 335
Interface 336
Interface example 337
Adapter 338
Adapter 339
Adapter example 340
Proxy 341
Proxy 342
Proxy example 343
Template Method 344
Template Method 345
Template method example 346
Composite 347

Composite

Composite exampl

Observer

Observer

What Problems do 

What you should kn

Can you answer the

12. Common Errors, a 

Round-off errors

== versus equals() (

== versus equals() (

== versus equals() (

Forgetting to clone

The dangling else p

Off-by-1 errors

Avoiding Off-by-1 e

Don’t use equality t

Some other commo

Puzzle 1

Static and Dynamic

Puzzle 2

Puzzle 2 (part II)

Puzzle 3

Puzzle 4 (part I)

Puzzle 4 (part II)

Puzzle 5

What you should kn

Can you answer the



 

P2 — S2002 vii.

 

idelines

 

  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -1

 -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 29

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

 

-  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 67

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
© O. Nierstrasz — U. Berne

Patterns, Rules and Gu
1. P2 — Object-Oriented Programming  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -

2. Design by Contract  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

How can clients accept multiple implementations of an ADT?. . . . . . . . . . . . . . . . . . . 
Make them depend only on an interface or an abstract class. . . . . . . . . . . . . . . . . . 

When should instance variables be public? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Always make instance variables private or protected. . . . . . . . . . . . . . . . . . . . . . . . 

How should you name a private or protected instance variable?. . . . . . . . . . . . . . . . . 
Pick a name that reflects the role of the variable.. . . . . . . . . . . . . . . . . . . . . . . . . . . 

Tag the name with an underscore (_). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

What should an object do if an assertion does not hold?. . . . . . . . . . . . . . . . . . . . . . . 
Throw an exception. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

When should an object throw an exception? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
If and only if an assertion is violated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

When should you check pre-conditions to methods?. . . . . . . . . . . . . . . . . . . . . . . . . . 
Always check pre-conditions, raising exceptions if they fail.  . . . . . . . . . . . . . . . . . . 

When should you check post-conditions? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Check them whenever the implementation is non-trivial. . . . . . . . . . . . . . . . . . . . . . 

3. Testing and Debugging  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  

What do you do with an object whose interface doesn’t fit your expectations? . . . . . . 
You wrap it.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Complexity aside, how can you tell which implementation strategy will perform best? 
Run a benchmark.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



 

P2 — S2002 viii.

 

 -  -  -  -   -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 95

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

 

-  -  -  -  -   -  -  -  -  -  -  -  -  -  -  -  -  -  -  135

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

 

n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

 

-  -  -  -   -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  170

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
© O. Nierstrasz — U. Berne

4. Iterative Development -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

Which responsibilities should an object accept? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
“Don't do anything you can push off to someone else.” . . . . . . . . . . . . . . . . . . . . . . 

How much state should an object expose? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
“Don't let anyone else play with you.” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

How much functionality should you deliver in the first version of a system? . . . . . . . . 
Select the minimal requirements that provide value to the client.. . . . . . . . . . . . . . . 

How can you tell when you have the “right” set of objects? . . . . . . . . . . . . . . . . . . . . . 
Each object has a clear and natural set of responsibilities.  . . . . . . . . . . . . . . . . . . . 

How can you tell if there are objects missing in your design? . . . . . . . . . . . . . . . . . . . 
When there are responsibilities left unassigned.  . . . . . . . . . . . . . . . . . . . . . . . . . . . 

How do you iteratively “grow” a program? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Always have a running version of your program. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

How do you make an object printable?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Override Object.toString(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

When should instance variables be public? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Almost never! Declare public accessor methods instead.  . . . . . . . . . . . . . . . . . . . . 

5. Inheritance and Refactoring-  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  

When should you run your (regression) tests?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
After every change to the system.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

When should a class be declared abstract?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Declare a class abstract if it is intended to be subclassed, but not instantiated.  . . . 

Which methods should be public? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Only publicize methods that clients will really need, and will not break encapsulatio

6. Programming Tools -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  

When should you use a version control system?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Use it whenever you have one available, for even the smallest project!  . . . . . . . . . 



 

P2 — S2002 ix.

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

 

-  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  206
  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  235

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

 

 -  -  -   -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  263
 -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  291

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

 

  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  324

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

 

? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

 

sing? . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
© O. Nierstrasz — U. Berne

When should you use a debugger? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
When you are unsure why (or where) your program is not working.  . . . . . . . . . . . . 

When should you use a profiler? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Always run a profiler before attempting to tune performance.  . . . . . . . . . . . . . . . . . 

How early should you start worrying about performance? . . . . . . . . . . . . . . . . . . . . . . 
Only after you have a clean, running program with poor performance. . . . . . . . . . . 

7. A Testing Framework  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  
8. Software Components: Collections -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -

How do you iterate through a Collection whose elements are unordered? . . . . . . . . . 
Use an iterator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9. GUI Construction  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 
10. Clients and Servers   -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

How can servers protect their state from concurrent requests?. . . . . . . . . . . . . . . . . . 
Declare their public methods as synchronized.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11. Guidelines, Idioms and Patterns -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -

How can an object share behaviour without inheritance? . . . . . . . . . . . . . . . . . . . . . . 
Delegate some of its work to another object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

How do you extend behaviour inherited from a superclass? . . . . . . . . . . . . . . . . . . . . 
Overwrite the inherited method, and send a message to “super” in the new method

How do you keep a client of a service independent of classes that provide the service
Have the client use the service through an interface rather than a concrete class. . 

How do you use a class that provide the right features but the wrong interface? . . . . 
Introduce an adapter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

How do you hide the complexity of accessing objects that require pre- or post-proces
Introduce a proxy to control access to the object.  . . . . . . . . . . . . . . . . . . . . . . . . . . 

How do you implement a generic algorithm, deferring some parts to subclasses? . . . 
Define it as a Template Method.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



 

P2 — S2002 x.

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

 

object; the object notifies its observers when 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

 

-  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  355
© O. Nierstrasz — U. Berne

How do you manage a part-whole hierarchy of objects in a consistent way? . . . . . . . 
Define a common interface that both parts and composites implement.  . . . . . . . . . 

How can an object inform arbitrary clients when it changes state? . . . . . . . . . . . . . . . 
Clients  implement a common Observer interface and register with the “observable” 

it changes state.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12. Common Errors, a few Puzzles   -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  



 

P2 — S2002 1.

P2 — Object-Oriented Programming

 

iented 

      

e.ch

  

chli, Marc Hugi, 
llimann

  

ching/P2/ 
© O. Nierstrasz — U. Berne

1. P2 — Object-Or
Programming

Lecturer: Prof. Oscar Nierstrasz
Schützenmattstr. 14/103

Tel: 631.4618
Email: Oscar.Nierstrasz@iam.unib

Assistants: Alexandre Bergel, Frank Bu
Joël Marbach, Andreas Wu

WWW: www.iam.unibe.ch/~scg/Tea
(includes full examples)

http://www.iam.unibe.ch/~scg/Teaching/P2/


 

P2 — S2002 2.

P2 — Object-Oriented Programming

    

 edition

 

, O’Reilly, 

  

rady Booch, 

 

The 
ce Manual,

 

 Addison-

   

Software 

   

son, Lauren Wiener, 

 

re

 

, Prentice Hall, 
© O. Nierstrasz — U. Berne

Principle Texts:
❑ David Flanagan, Java in Nutshell: 3d

1999.
❑ James Rumbaugh, Ivar Jacobson, G

Unified Modeling Language Referen
Wesley, 1999

❑ Bertrand Meyer, Object-Oriented 
Construction, Prentice Hall, 1997.

❑ Rebecca Wirfs-Brock, Brian Wilker
Designing Object-Oriented Softwa
1990.



 

P2 — S2002 3.

P2 — Object-Oriented Programming

    

ing
ent
factoring

rk

and Patterns
ew Puzzles

 

© O. Nierstrasz — U. Berne

Overview
03 - 29 Good Friday

1. 04 - 05 Introduction
2. 04 - 12 Design by Contract
3. 04 - 19 Testing and Debugg
4. 04 - 26 Iterative Developm
5. 05 - 03 Inheritance and Re
6. 05 - 10 Programming Tools
7. 05 - 17 A Testing Framewo
8. 05 - 24 Collections
9. 05 - 31 GUI Construction
10. 06 - 07 Clients and Servers
11. 06 - 14 Guidelines, Idioms 
12. 06 - 21 Common Errors, a f

06 - 28 Final Exam



 

P2 — S2002 4.

P2 — Object-Oriented Programming

 

se

    

sign

 

 to split systems 

  

systems 

 

generic

 

 and 

     

s to arrive at simple, 

   

evelop robust 
© O. Nierstrasz — U. Berne

Goals of this cour
Object-Oriented Design

❑ How to use responsibility-driven de
into objects

❑ How to exploit inheritance to make 
flexible

❑ How to iteratively refactor system
clean designs

Software Quality
❑ How to use design by contract to d

software
❑ How to test and validate software

...



P2 — S2002 5.

P2 — Object-Oriented Programming

possible
nicates its design

rol systems, 

are components and 

erns, guidelines and 
© O. Nierstrasz — U. Berne

Goals ...
Communication

❑ How to keep software as simple as 
❑ How to write software that commu
❑ How to document a design

Skills, Techniques and Tools
❑ How to use debuggers, version cont

profilers and other tools
❑ How and when to use standard softw

architectures
❑ How and when to apply common patt

rules of thumb



P2 — S2002 6.

P2 — Object-Oriented Programming

ng?

algorithms?

ents?
© O. Nierstrasz — U. Berne

What is programmi

❑ Implementing data structures and 
❑ Writing instructions for machines?
❑ Implementing client specifications?
❑ Coding and debugging?
❑ Plugging together software compon
❑ Specification? Design?
❑ Testing?
❑ Maintenance?

Which of these are “not programming”?



P2 — S2002 7.

P2 — Object-Oriented Programming

evelopment

ted requirements 

 give each 

re architecture?

ion is “correct”?

n requirements?

 development”?
© O. Nierstrasz — U. Berne

Programming and Software D
❑ How do you get your requirements?
❑ How do you know that the documen

reflect the user’s needs?
❑ How do you decide what priority to

requirement?
❑ How do you select a suitable softwa
❑ How do you do detailed design?
❑ How do you know your implementat
❑ How, when and what do you test?
❑ How do you accommodate changes i
❑ How do you know when you’re done?

Is “programming” distinct from “software



P2 — S2002 8.

P2 — Object-Oriented Programming

ies
© O. Nierstrasz — U. Berne

Programming activit
❑ Documentation
❑ Prototyping
❑ Interface specification
❑ Integration
❑ Reviewing
❑ Refactoring
❑ Testing
❑ Debugging
❑ Profiling
❑ ...

What do these activities have in common?



P2 — S2002 9.

P2 — Object-Oriented Programming

stem?
 solves a single task:
ined

s.

r modules
tions

 development by 
© O. Nierstrasz — U. Berne

What is a software sy
A computer program is an application that

❑ requirements are typically well-def
❑ often single-user at a time
❑ little or no configuration required

A software system supports multiple task
❑ open requirements
❑ multiple users
❑ implemented by a set of programs o
❑ multiple installations and configura
❑ long-lived (never “finished”)

Programming techniques address systems
reducing complexity.



P2 — S2002 10.

P2 — Object-Oriented Programming

sign?

aviour. 

 the other badly-
© O. Nierstrasz — U. Berne

What is good (bad) de

Consider two programs with identical beh

❑ Could the one be well-designed and
designed?

❑ What would this mean?



P2 — S2002 11.

P2 — Object-Oriented Programming

n
 of geometric shapes

a class constant
© O. Nierstrasz — U. Berne

A procedural desig
Problem: compute the total area of a set

public static long sumShapes(Shape shapes[]) {
long sum = 0;
for (int i=0; i<shapes.length; i++) {

switch (shapes[i].kind()) {
// 

case Shape.CIRCLE:
sum += shapes[i].circleArea();
break;

... // more cases
}

}
return sum;

}

case Shape.RECTANGLE:
sum += shapes[i].rectangleArea();
break;



P2 — S2002 12.

P2 — Object-Oriented Programming

proach

 shapes[]) {

++) {

es of the two 
© O. Nierstrasz — U. Berne

An object-oriented ap
A typical object-oriented solution:

public static long sumShapes(Shape
long sum = 0;
for (int i=0; i<shapes.length; i

}
return sum;

}

What are the advantages and disadvantag
solutions?

sum += shapes[i].area();



P2 — S2002 13.

P2 — Object-Oriented Programming

sign

od which bases 
tem on the 
he” function it is 

sk what it does 

— Meyer, OOSC 
© O. Nierstrasz — U. Berne

Object-Oriented De

OO vs. functional design ...

Object-oriented [design] is the meth
the architecture of any software sys
objects it manipulates (rather than “t
meant to ensure).

Ask not first what the system does: a
it to!



P2 — S2002 14.

P2 — Object-Oriented Programming

esign
ts with well-defined 

 information and 

d to responsible 

ct what you cannot 

data within classes
 subsystems
© O. Nierstrasz — U. Berne

Responsibility-Driven D
RDD factors a software system into objec
responsibilities:

❑ Objects are responsible to maintain
provide services:
☞ Operations are always associate

objects
☞ Always delegate to another obje

do yourself

❑ A good design exhibits:
☞ high cohesion of operations and 
☞ low coupling between classes and

...



P2 — S2002 15.

P2 — Object-Oriented Programming

sign ...

well-defined task:
e complexity
 to an interface, not 

s

© O. Nierstrasz — U. Berne

Responsibility-Driven De

❑ Every method should perform one, 
☞ Separation of concerns — reduc
☞ High level of abstraction — write

an implementation

❑ Iterative Development
☞ Refactor the design as it evolve



P2 — S2002 16.

P2 — Object-Oriented Programming

tarts to hurt:
o read
ibilities

mplate methods etc.)

jects (high coupling)

es
s
 

© O. Nierstrasz — U. Berne

Refactoring
Refactor your design whenever the code s

❑ methods that are too long or hard t
☞ decompose and delegate respons

❑ duplicated code
☞ factor out the common parts (te

❑ violation of encapsulation, or
❑ too much communication between ob

☞ reassign responsibilities
❑ big case statements

☞ introduce subclass responsibiliti
❑ hard to adapt to different context

☞ separate mechanism from policy
...



P2 — S2002 17.

P2 — Object-Oriented Programming

ality?
roducts to perform 
ed by their 

ystems to react 
onditions

tware products to 

lements to serve 
ny different 
© O. Nierstrasz — U. Berne

What is Software Qu

...

Correctness is the ability of software p
their exact tasks, as defin
specifications

Robustness is the ability of software s
appropriately to abnormal c

Extendibility is the ease of adapting sof
changes of specification

Reusability is the ability of software e
for the construction of ma
applications



P2 — S2002 18.

P2 — Object-Oriented Programming

...

yer, OOSC, ch. 1

ftware elements 

 system to place as 
 hardware 

 software products 
ftware 

le of various 
ions can learn to use 
© O. Nierstrasz — U. Berne

Software Quality 

— Me

Compatibility is the ease of combining so
with others

Efficiency is the ability of a software
few demands as possible on
resources

Portability is the ease of transferring
to various hardware and so
environments

Ease of use is the ease with which peop
backgrounds and qualificat
software products



P2 — S2002 19.

P2 — Object-Oriented Programming

 quality

s, class invariants)

ameworks with 

terns
© O. Nierstrasz — U. Berne

How to achieve software

Design by Contract
❑ Assertions (pre- and post-condition
❑ Disciplined exceptions

Standards
❑ Protocols, components, libraries, fr

standard interfaces
❑ Software architectures, design pat

...



P2 — S2002 20.

P2 — Object-Oriented Programming

quality ...

erformance 
here is a 
© O. Nierstrasz — U. Berne

How to achieve software 

Testing and Debugging
❑ Unit tests, system tests ...
❑ Repeatable regression tests

Do it, do it right, do it fast
❑ Aim for simplicity and clarity, not p
❑ Fine-tune performance only when t

demonstrated need!



P2 — S2002 21.

P2 — Object-Oriented Programming

anguage?

ter
orithms
programmer
ious levels of 

re components

unication!
© O. Nierstrasz — U. Berne

What is a programming l

A programming language is a tool for:

❑ specifying instructions for a compu
❑ expressing data structures and alg
❑ communicating a design to another 
❑ describing software systems at var

abstraction
❑ specifying configurations of softwa

A programming language is a tool for comm



P2 — S2002 22.

P2 — Object-Oriented Programming

 its design?

 of (KISS)

once

lf-documenting

w to do it

ople’s code
© O. Nierstrasz — U. Berne

Communication
How do you write code that communicates

❑ Do the simplest thing you can think
☞ Don't over-design
☞ Implement things once and only 

❑ Program so your code is (largely) se
☞ Write small methods
☞ Say what you want to do, not ho

❑ Practice reading and using other pe
☞ Subject your code to reviews



P2 — S2002 23.

P2 — Object-Oriented Programming

ogramming?

ecomposed into 

ns in implementation

g-compatible objects
© O. Nierstrasz — U. Berne

Why use object-oriented pr

Modelling
❑ complex systems can be naturally d

software objects

Data abstraction
❑ Clients are protected from variatio

Polymorphism
❑ clients can uniformly manipulate plu

...



P2 — S2002 24.

P2 — Object-Oriented Programming

.

de explicit, 

pact of changes
© O. Nierstrasz — U. Berne

Why use OOP? ..

Component reuse 
❑ client/supplier contracts can be ma

simplifying reuse

Evolution 
❑ classes and inheritance limit the im



P2 — S2002 25.

P2 — Object-Oriented Programming

y 

ng 

ple and usable.
© O. Nierstrasz — U. Berne

Why Java?
Special characteristics

❑ Resembles C++ minus the complexit
❑ Clean integration of many features
❑ Dynamically loaded classes
❑ Large, standard class library

Simple Object Model
❑ “Almost everything is an object” 
❑ No pointers
❑ Garbage collection
❑ Single inheritance; multiple subtypi
❑ Static and dynamic type-checking

Few innovations, but reasonably clean, sim



P2 — S2002 26.

P2 — Object-Oriented Programming

BOL

a

Lisp

Prolog

Modula-2

Modula-3

Oberon

a 95
© O. Nierstrasz — U. Berne

History

1960

1970

1980

1990

FORTRAN
Algol 60 CO

PL/1Simula 67

Smalltalk 72

Smalltalk 80

Objective C

C

C++ Ad

Pascal

ANSI C++

Squeak

Eiffel

Algol 68

Clu

Ad

Self

Java



P2 — S2002 27.

P2 — Object-Oriented Programming

ow!
puter program and a 

design?
tored? Why?

 software quality?
© O. Nierstrasz — U. Berne

What you should kn
✎ What is the difference between a com

software system?
✎ What defines a good object-oriented 
✎ When does software need to be refac
✎ What is “software quality”?
✎ How does OOP attempt to ensure high



P2 — S2002 28.

P2 — Object-Oriented Programming

estions?
lation”? Why is that 

oftware to be 

te code?
ll be “reusable”? Are 

cedural design or an 
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ What does it mean to “violate encapsu

bad?
✎ Why shouldn’t you try to design your s

efficient from the start?
✎ Why (when) are case statements bad?
✎ When might it be “all right” to duplica
✎ How do you program classes so they wi

you sure?
✎ Which is easier to understand — a pro

object-oriented one?



P2 — S2002 29.

Design by Contract

ract

Abstraction

 post-conditions
ns

Software 
© O. Nierstrasz — U. Berne

2. Design by Cont

Overview
❑ Declarative programming and Data 
❑ Abstract Data Types
❑ Class Invariants
❑ Programming by Contract: pre- and
❑ Assertions and Disciplined Exceptio

Source
❑ Bertrand Meyer, Object-Oriented 

Construction, Prentice Hall, 1997.



P2 — S2002 30.

Design by Contract

e Contract:

econdition fulfilled

stcondition guaranteed

r client or server 
t (or cannot) 
 the contract, 
is signalled.
© O. Nierstrasz — U. Berne

Contracts

SupplierClient

Servic
if

pr
then

po

request(okArgs)

result

request(badArgs)

failure If eithe
does no
respect
failure 



P2 — S2002 31.

Design by Contract

 defects

mal condition during 

ment to satisfy its 

e software of some 

he client or server 
 exception.
© O. Nierstrasz — U. Berne

Exceptions, failures and

An exception is the occurrence of an abnor
the execution of a software element.

A failure is the inability of a software ele
purpose.

A defect (AKA “bug”) is the presence in th
element not satisfying its specification.

Contracts may fail due due to defects in t
code. Failure should signalled by raising an



P2 — S2002 32.

Design by Contract

h many applications 

sh and pop.

size() top()
0 (error)
1 6
2 7
3 3
2 7
3 2
2 7
© O. Nierstrasz — U. Berne

Stacks
A Stack is a classical data abstraction wit
in computer programming.

Stacks support two mutating methods: pu

Operation Stack isEmpty()
true

push(6) 6 false
push(7) 6 7 false
push(3) 6 7 3 false
pop() 6 7 false
push(2) 6 7 2 false
pop() 6 7 false



P2 — S2002 33.

Design by Contract

ntheses

n containing 
 braces { } is 

].e(); }
(); }
© O. Nierstrasz — U. Berne

Example: Balancing Pare

Problem:
☞ Determine whether an expressio

parentheses ( ), brackets [ ] and
correctly balanced.

Examples:

balanced if (a.b()) { c[d
else { f[g][h].i

not balanced. ((a+b())



P2 — S2002 34.

Design by Contract

ush the matching 

compare it to the 

nue
n is not balanced

 whole expression is 
© O. Nierstrasz — U. Berne

A simple algorithm
Approach: 

❑ when you read a left parenthesis, p
parenthesis on a stack

❑ when you read a right parenthesis, 
value on top of the stack
☞ if they match, you pop and conti
☞ if they mismatch, the expressio

❑ if the stack is empty at the end, the
balanced, otherwise not



P2 — S2002 35.

Design by Contract

rentheses

Stack
)
) ]
) ] }
) ]
)
)

© O. Nierstrasz — U. Berne

Using a Stack to match pa

Sample input: “( [ { } ] ]”

Input Case Op
( left push )
[ left push ]
{ left push }
} match pop
] match pop
] mismatch ^false



P2 — S2002 36.

Design by Contract

ass
k if parentheses in a 

) stack
© O. Nierstrasz — U. Berne

The ParenMatch cl
A ParenMatch object uses a stack to chec
text String are balanced:

public class ParenMatch {
String line_;
StackInterface stack_;

public ParenMatch (String line,

{
line_ = line;
stack_ = stack;

}

StackInterface



P2 — S2002 37.

Design by Contract

thm
l of abstraction:

i++) { ...
t match later

;

uld equal top
urn false; }

 {

} }
nced if empty

Paren(c)))

 Character(c)))
© O. Nierstrasz — U. Berne

A declarative algori
We implement our algorithm at a high leve
public boolean parenMatch() ... {
for (int i=0; i<line_.length(); 

 { // expec

} else {
 { // sho

 { ret

;
} else { return false; } } 

; // bala
}

if (isLeftParen(c))
stack_.push(...(matchingRight

if (isRightParen(c))
if (stack_.isEmpty())
if (stack_.top().equals(new
stack_.pop()

return stack_.isEmpty()



P2 — S2002 38.

Design by Contract

hm
ption {

 break;
 break;
 break;

) == c) {
© O. Nierstrasz — U. Berne

A cluttered algorit
public boolean parenMatch() throws AssertionExce

for (int i=0; i<line_.length(); i++) {
char c = line_.charAt(i);
switch (c) {
case '{' : stack_.push(new Character('}'));
case '(' : stack_.push(new Character(')'));
case '[' : stack_.push(new Character(']'));
case ']' : case ')' : case '}' :

if (stack_.isEmpty()) { return false; }
if (((Character) stack_.top()).charValue(

stack_.pop();
} else { return false; }
break;

default : break;
}

}
return stack_.isEmpty();

}



P2 — S2002 39.

Design by Contract

nt, and their details 

 c) {
 || (c == '{');

r c) {
 || (c == '}');
© O. Nierstrasz — U. Berne

Helper methods
The helper methods are trivial to impleme
only get in the way of the main algorithm.

private boolean isLeftParen(char
return (c == '(') || (c == '[')

}

private boolean isRightParen(cha
return (c == ')') || (c == ']')

}

...



P2 — S2002 40.

Design by Contract

tion?

tate of the stack
 modify the stack

lated entities.

tract interface and 

nd 
well-defined 
© O. Nierstrasz — U. Berne

What is Data Abstrac
An implementation of a stack consists of:

❑ a data structure to represent the s
❑ a set of operations that access and

Encapsulation means bundling together re

Information hiding means exposing an abs
hiding the rest.

An Abstract Data Type (ADT):
❑ encapsulates data and operations, a
❑ hides the implementation behind a 

interface.



P2 — S2002 41.

Design by Contract

 implementations:

;
ertionException;
ertionException;

ntations of an ADT?
 or an abstract class.

ertionException
© O. Nierstrasz — U. Berne

StackInterface
Interfaces let us abstract from concrete

public  StackInterface {
public boolean isEmpty();
public int size();
public void push(Object item)

public Object top() throws Ass
public void pop() throws Ass

}

➤ How can clients accept multiple impleme
✔ Make them depend only on an interface

interface

throws Ass



P2 — S2002 42.

Design by Contract

a
cts and their clients:

rfaces
t class

ce, not an 

 to extend a specific 

 have more than one 
© O. Nierstrasz — U. Berne

Interfaces in Jav
Interfaces reduce coupling between obje

❑ A class can implement multiple inte
☞ ... but can only extend one paren

❑ Clients should depend on an interfa
implementation
☞ ... so implementations don’t need

class

Define an interface for any ADT that will
implementation



P2 — S2002 43.

Design by Contract

uish your exceptions 

tends Exception {
}

; }

constructor, and a 
tring as an argument.
hat the instance is 

uper(s)
© O. Nierstrasz — U. Berne

Exceptions
All Exception classes look like this!
Define your own exception class to disting
from any other kind.

public class AssertionException ex
AssertionException() { ; 
AssertionException(String s) { 

}

The implementation consists of a default 
constructor that takes a simple message s
Both constructors call super() to ensure t
properly initialized.

super()
s



P2 — S2002 44.

Design by Contract

tant?

 to know, and nothing 

at you want to do, 

ur problem domain 
 computer to do so.
© O. Nierstrasz — U. Berne

Why are ADTs impor
Communication

❑ An ADT exports what a client needs
more!

❑ By using ADTs, you communicate wh
not how to do it!

❑ ADTs allow you to directly model yo
rather than how you will use to the

...



P2 — S2002 45.

Design by Contract

nt? ...

into manageable 
ely implemented and 

 in implementation.
tracts 
d without affecting 

be transparently 
© O. Nierstrasz — U. Berne

Why are ADTs importa
Software Quality and Evolution

❑ ADTs help to decompose a system 
parts, each of which can be separat
validated.

❑ ADTs protect clients from changes
❑ ADTs encapsulate client/server con
❑ Interfaces to ADTs can be extende

clients.
❑ New implementations of ADTs can 

added to a system.



P2 — S2002 46.

Design by Contract

sts
nked data structure:

stack.pop()
© O. Nierstrasz — U. Berne

Stacks as Linked Li
A Stack can easily be implemented by a li

size = 3

6 7 3

top =

size = 2

6 7

top =

stack.push(3)



P2 — S2002 47.

Design by Contract

 as an inner class 

StackInterface {

 

next) {
© O. Nierstrasz — U. Berne

LinkStack Cells
We can define the Cells of the linked list
within LinkStack:
public class LinkStack implements 
private Cell top_;

...
}

public class Cell {
public Object item;
public Cell next;
public Cell(Object item, Cell 
this.item = item;
this.next = next;

}
}



P2 — S2002 48.

Design by Contract

 variables

ic?

or protected.

stances are strictly 
© O. Nierstrasz — U. Berne

Private vs Public instance

➤ When should instance variables be publ

✔ Always make instance variables private 

The Cell class is a special case, since its in
private to LinkStack!



P2 — S2002 49.

Design by Contract

ables

cted instance 

e variable.

ss what the purpose 

 variable represents 
© O. Nierstrasz — U. Berne

Naming instance vari

➤ How should you name a private or prote
variable?

✔ Pick a name that reflects the role of th
✔ Tag the name with an underscore (_).

Role-based names tell the reader of a cla
of the variables is.

A tagged name reminds the reader that a
hidden state.



P2 — S2002 50.

Design by Contract

itial state:

StackInterface {
© O. Nierstrasz — U. Berne

LinkStack ADT
The constructor must construct a valid in

public class LinkStack implements 
...
private int size_;
public LinkStack() {
// Establishes the invariant.
top_ = null;
size_ = 0;

}
...



P2 — S2002 51.

Design by Contract

resses the valid 

structor

ethod starts
shes

g invariant:
© O. Nierstrasz — U. Berne

Class Invariants
A class invariant is any condition that exp
states for objects of that class:

❑ it must be established by every con

❑ every public method
☞ may assume it holds when the m
☞ must re-establish it when it fini

Stack instances must satisfy the followin
❑ size ≥ 0

...



P2 — S2002 52.

Design by Contract

riant

ze_, and a top_ that 
that:

where (== null)

ell containing the 
© O. Nierstrasz — U. Berne

LinkStack Class Inva

A valid LinkStack instance has a integer si
points to a sequence of linked Cells, such 

❑ size_ is always ≥ 0

❑ When size_ is zero, top_ points no

❑ When size_ > 0, top_ points to a C
top item



P2 — S2002 53.

Design by Contract

ract
ervices given certain 

ents by associated a 
 operation O, which 

he ADT is not 

recondition 
 to deliver a 
on is 
© O. Nierstrasz — U. Berne

Programming by Cont
Every ADT is designed to provide certain s
assumptions hold.
An ADT establishes a contract with its cli
precondition and a postcondition to every
states:

Consequence:
❑ if the precondition does not hold, t

required to provide anything!

“If you promise to call O with the p
satisfied, then I, in return, promise
final state in which the postconditi
satisfied.”



P2 — S2002 54.

Design by Contract

ions

or a call to the 

ments.

pplier: 
DT ensures on 

nal states, the 
© O. Nierstrasz — U. Berne

Pre- and Postcondit
The precondition binds clients: 

❑ it defines what the ADT requires f
operation to be legitimate.

❑ it may involve initial state and argu

The postcondition, in return, binds the su
❑ it defines the conditions that the A

return.
❑ it may only involve the initial and fi

arguments and the result



P2 — S2002 55.

Design by Contract

ions
ons for both clients 

Benefits
 size decreases by 1.
ement is removed.
ed to handle case 
tack is empty!
© O. Nierstrasz — U. Berne

Benefits and Obligat
A contract provides benefits and obligati
and suppliers:

Obligations

Client Only call pop() on a non-
empty stack!

Stack
Top el

Supplier Decrement the size. 
Remove the top element.

No ne
when s



P2 — S2002 56.

Design by Contract

ditions
ontract:

Ensures
 state change
 state change
t empty, 
e == old size + 1,
 == item

 state change
e == old size -1
© O. Nierstrasz — U. Berne

Stack pre- and postcon
Our Stacks should deliver the following c

Operation Requires
isEmpty() - no
size() - no

push(Object item) item != null
no
siz
top

top() not empty no
pop() not empty siz



P2 — S2002 57.

Design by Contract

expect to be true at 

s:

and post-conditions

e
at run-time
© O. Nierstrasz — U. Berne

Assertions
An assertion is any boolean expression we 
some point :
Assertions have four principle application

1. Help in writing correct software
☞ formalizing invariants, and pre- 

2. Documentation aid
☞ specifying contracts

3. Debugging tool
☞ testing assertions at run-time

4. Support for software fault toleranc
☞ detecting and handling failures 



P2 — S2002 58.

Design by Contract

s
a class:

ion) 

n does not hold?

k");
© O. Nierstrasz — U. Berne

Testing Assertion
It is easy to add an assertion-checker to 

private void assert(boolean assert
throws AssertionException {

}

➤ What should an object do if an assertio
✔ Throw an exception.

if (!assertion) {
throw new AssertionException(
"Assertion failed in LinkStac

}



P2 — S2002 59.

Design by Contract

s

ull)
ull));
© O. Nierstrasz — U. Berne

Testing Invariant
Every class has its own invariant:

private boolean invariant() {
return (size_ >= 0) &&
( (size_ == 0 && this.top_ == n
|| (size_ > 0 && this.top_ != n

}



P2 — S2002 60.

Design by Contract

ons
act to an exception:
 failure to the client 

at led to failure and 

he client without 

ion?

ithout raising an 
tion-handling 
© O. Nierstrasz — U. Berne

Disciplined Excepti
There are only two reasonable ways to re

1. clean up the environment and report
(“organized panic”)

2. attempt to change the conditions th
retry

It is not acceptable to return control to t
special notification.

➤ When should an object throw an except
✔ If and only if an assertion is violated

If it is not possible to run your program w
exception, then you are abusing the excep
mechanism!



P2 — S2002 61.

Design by Contract

ions
hen they violate the 

onException {
condition

o methods?
ceptions if they fail.
© O. Nierstrasz — U. Berne

Checking pre-condit
Assert pre-conditions to inform clients w
contract. 

public Object top() throws Asserti
 // pre-

return top_.item;
}

➤ When should you check pre-conditions t
✔ Always check pre-conditions, raising ex

assert(!this.isEmpty());



P2 — S2002 62.

Design by Contract

ions
form yourself when 

/ post-condition
/ post-condition

?
on is non-trivial.
© O. Nierstrasz — U. Berne

Checking post-condit
Assert post-conditions and invariants to in
you violate the contract.

public void push(Object item)
throws AssertionException {

top_ = new Cell(item, top_);
size_++;

/
/

}

➤ When should you check post-conditions
✔ Check them whenever the implementati

assert(item != null);

assert(!this.isEmpty());
assert(this.top() == item);
assert(invariant());



P2 — S2002 63.

Design by Contract

h
 stack) {

;

xpression");

);

stem.in))

stack).reportMatch()
© O. Nierstrasz — U. Berne

Running parenMatc
public static void parenMatchLoop(

BufferedReader in = 

String line;
try {

System.out.println("Enter a parenthesized e
System.out.println("(empty line to stop)");
do {

line = ;
System.out.println(

} while(line != null && line.length() > 0);
System.out.println("bye!");

} catch (IOException err) {
} catch (AssertionException err) {

;
}

}

StackInterface

new BufferedReader(new InputStreamReader(Sy

in.readLine()
new ParenMatch(line, 

err.printStackTrace()



P2 — S2002 64.

Design by Contract

 ...

t balanced
© O. Nierstrasz — U. Berne

Running parenMatch
java -cp stack.jar TestStack
Please enter parenthesized expressions to test
(empty line to stop)
(hello) (world)
"(hello) (world)" is balanced
()
"()" is balanced
static public void main(String args[]) {
"static public void main(String args[]) {" is no
()

}
"}" is balanced

"" is balanced
bye!

✎ Which contract is being violated?

"()" is not balanced



P2 — S2002 65.

Design by Contract

ow!
mentation more 

sulation and 

and post-conditions?
t be specified?

e program 

n to be raised?
© O. Nierstrasz — U. Berne

What you should kn
✎ How can helper methods make an imple

declarative?
✎ What is the difference between encap

information hiding?
✎ What is an assertion?
✎ How are contracts formalized by pre- 
✎ What is a class invariant and how can i
✎ What are assertions useful for?
✎ How can exceptions be used to improv

robustness?
✎ What situations may cause an exceptio



P2 — S2002 66.

Design by Contract

estions?
 and suppliers a bad 

ructor?

 method that works 

y java.util.Stack? Is 

formance?
ck methods?
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ Why is strong coupling between clients

thing?
✎ When should you call super() in a const
✎ When should you use an inner class?
✎ How would you write a general assert()

for any class?
✎ What happens when you pop() an empt

this good or bad?
✎ What impact do assertions have on per
✎ Can you implement the missing LinkSta



P2 — S2002 67.

Testing and Debugging

ugging

ons
nd heap

rategy

ng,Addison-Wesley, 
© O. Nierstrasz — U. Berne

3. Testing and Deb

Overview
❑ Testing — definitions
❑ Testing various Stack implementati
❑ Understanding the run-time stack a
❑ Wrapping — a simple integration st
❑ Timing benchmarks

Source
❑ I. Sommerville, Software Engineeri

Fifth Edn., 1996.



P2 — S2002 68.

Testing and Debugging

d-alone) components
related components 

erface mismatches
 between sub-

mplete systems 
d non-functional 

al rather than 
© O. Nierstrasz — U. Berne

Testing

Testing is always iterative! 

Unit testing: test individual (stan

Module testing: test a collection of 
(a module)

Sub-system testing: test sub-system int

System testing:

(i) test interactions
systems, and
(ii) test that the co
fulfils functional an
requirements

Acceptance testing 
(alpha/beta testing):

test system with re
simulated data.



P2 — S2002 69.

Testing and Debugging

g
rything that used to 
o the system!

peatable

 go wrong!

nt, but they pay off 
© O. Nierstrasz — U. Berne

Regression testin
Regression testing means testing that eve
work still works after changes are made t

❑ tests must be deterministic and re
❑ should test “all” functionality

☞ every interface
☞ all boundary situations
☞ every feature
☞ every line of code
☞ everything that can conceivably

It costs extra work to define tests up fro
in debugging & maintenance!



P2 — S2002 70.

Testing and Debugging

rectness

esence 
e!
© O. Nierstrasz — U. Berne

Caveat: Testing and Cor

Testing can only reveal the pr
of defects, not their absenc



P2 — S2002 71.

Testing and Debugging

xercises all 
boundary situations:
Interface stack) {

) + " ... ");

tests!");
 any kind!
© O. Nierstrasz — U. Berne

Testing a Stack
We define a simple regression test that e
StackInterface methods and checks the 
static public void testStack(Stack
try {
System.out.print("Testing "

+ stack.getClass().getName(
;

... // more tests here ...
System.out.println("passed all 

} catch (Exception err) { // NB:
err.printStackTrace();

} 
}

assert(stack.isEmpty())



P2 — S2002 72.

Testing and Debugging

ses
us conditions:

Value() == 10);

ully exercise a Stack 
© O. Nierstrasz — U. Berne

Build simple test ca
Construct a test case and check the obvio

for (int i=1; i<=10; i++) {
stack.push(new Integer(i));

}
assert(!stack.isEmpty());

;
assert(((Integer) stack.top()).int

✎ What other test cases do you need to f
implementation?

assert(stack.size() == 10)



P2 — S2002 73.

Testing and Debugging

 caught
hen it should?

xception

be true
© O. Nierstrasz — U. Berne

Check that failures are
How do we check that an assertion fails w
...

; // 
boolean ;
try {
// we expect pop() to raise an e

;
} catch(AssertionException err) {
// we should get here!

;
}

; // should 

assert(stack.isEmpty())
emptyPopCaught = false

stack.pop()

emptyPopCaught = true

assert(emptyPopCaught)



P2 — S2002 74.

Testing and Debugging

 methods
 object.

ut instantiating an 

rogram
actory methods

s!

a.lang.Math)
© O. Nierstrasz — U. Berne

When (not) to use static
A static method belongs to a class, not an

❑ Static methods can be called witho
object
—necessary for starting the main p
—necessary for constructors and f
—useful for test methods

❑ Static methods are just procedure
☞ avoid them in OO designs!
☞ (counter-)example: utilities (jav

...



P2 — S2002 75.

Testing and Debugging

variables
 class, not an object.

essed without 

ed by all instances 

s!
© O. Nierstrasz — U. Berne

When (not) to use static 
A static instance variable also belongs to a

❑ Static instance variables can be acc
instantiating an object
—useful for representing data shar

of a class

❑ Static variables are global variable
☞ avoid them in OO designs!



P2 — S2002 76.

Testing and Debugging

sing a (fixed-length) 

 StackInterface {
lt value
nt size of store
r of used slots

t for ArrayStack?
© O. Nierstrasz — U. Berne

ArrayStack
We can also implement a (variable) Stack u
array to store its elements:

public class ArrayStack implements
;// defau

int capacity_ = 0; // curre
int size_ = 0; // numbe

...

✎ What would be a suitable class invarian

Object store_ [] = null



P2 — S2002 77.

Testing and Debugging

e Stack “grows” by 
ents to the new 

Exception

 subtle error!

ethod?
© O. Nierstrasz — U. Berne

Handling overflow
Whenever the array runs out of space, th
allocating a larger array, and copying elem
array.
public void push(Object item) 

throws Assertion
{

// NB:
}

✎ How would you implement the grow() m

if (size_ == capacity_) {
grow(); 

}
store_[++size_] = item;



P2 — S2002 78.

Testing and Debugging

ions
size_ == 0; }
}

onException {

Exception {

ersion!
ts too small?
© O. Nierstrasz — U. Berne

Checking pre-condit
public boolean isEmpty() { return 
public int size() { return size_; 

public Object top() throws Asserti
assert(!this.isEmpty());
return store_[size_-1];

}
public void pop() throws Assertion
assert(!this.isEmpty());
size_--;

}

NB: we only check pre-conditions in this v
✎ Should we also shrink() is the Stack ge



P2 — S2002 79.

Testing and Debugging

k
urprise:

Code)
:12)
icMethodDispatcher
96)
ava:474)

tly where the 

eption: 2
va:28)
© O. Nierstrasz — U. Berne

Testing ArrayStac
When we test our ArrayStack, we get a s

Testing ArrayStack ... 

at 
at TestStack.testStack(Compiled 
at TestStack.main(TestStack.java
at com.apple.mrj.JManager.JMStat

.run(JM-AWTContextImpl.java:7
at java.lang.Thread.run(Thread.j

Exception.printStackTrace() tells us exac
exception occurred ...

java.lang.ArrayIndexOutOfBoundsExc
ArrayStack.push(ArrayStack.ja



P2 — S2002 80.

Testing and Debugging

ck
 structure used to 
ill be returned to at 
tack frame”) stores 
cal variables.

a run-time stack:
rgs[]) {
" + fact(3));
© O. Nierstrasz — U. Berne

The Run-time Sta
The run-time stack is a fundamental data
record the context of a procedure that w
a later point in time. This context (AKA “s
the arguments to the procedure and its lo

Practically all programming languages use 
public static void main(String a
System.out.println( "fact(3) = 

}
public static int  {
if (n<=0) { return 1; } 
else { return n*  ; }

}

fact(int n)

fact(n-1)



P2 — S2002 81.

Testing and Debugging

ction ...
ure call ...

t(1) ...

t(0)=? n=0;fact(0) ...

t(0)=? return 1

1

© O. Nierstrasz — U. Berne

The run-time stack in a
A stack frame is pushed with each proced

... and popped with each return.

main ...

fact(3)=? n=3; ...

fact(3)=? n=3;fact(2)=? n=2;fact(2) ...

fact(3)=? n=3;fact(2)=? n=2;fact(1)=? n=1;fac

fact(3)=? n=3;fact(2)=? n=2;fact(1)=? n=1;fac

fact(3)=? n=3;fact(2)=? n=2;fact(1)=? n=1;fac

fact(3)=? n=3;fact(2)=? n=2;fact(1)=? return 

fact(3)=? n=3;fact(2)=? return 2

fact(3)=? return 6

fact(3)=6



P2 — S2002 82.

Testing and Debugging

eap

RunTimeHeap

: Integ er

: Object [ ]

Arra yStac k

city_ : integer
_ : integer
_ : Object [ ]

: String [ ]
© O. Nierstrasz — U. Berne

The Stack and the H

and shrinks 
when Objects 
are garbage-
collected.

RunTimeStac k

Arra yStac k.push

item_ : Object

TestStac k.testStac k

stack : StackInterface
i : integer

TestStac k.main

args : String [ ]

com.apple .mrj...run 

...

java.lang.Thread.ja va 

...

: 

capa
size
store

The Heap grows 
with each new 
Object created,



P2 — S2002 83.

Testing and Debugging

e
 as an index into the 

{
; }
ize = new size-1
© O. Nierstrasz — U. Berne

Fixing our mistak
We erroneously used the incremented size
store, instead of the new size - 1:

public void push(Object item) ... 
if (size_ == capacity_) { grow()

; // old s
assert(this.top() == item);
assert(invariant());

}

NB: perhaps it would be clearer to write:
store_[this.topIndex()] = item;

store_[size_++] = item



P2 — S2002 84.

Testing and Debugging

, but it is not 

{

;
);

bject o);

he Java Stack, we 
implementations ...
© O. Nierstrasz — U. Berne

java.util.Stack
Java also provides a Stack implementation
compatible with our interface:
public class Stack extends Vector 
public Stack();
public Object push(Object item);
public synchronized Object pop()
public synchronized Object peek(
public boolean empty();
public synchronized int search(O

}

If we change our programs to work with t
won’t be able to work with our own Stack 



P2 — S2002 85.

Testing and Debugging

s
chnique for systems 

terface doesn’t fit 

apping?
© O. Nierstrasz — U. Berne

Wrapping Object
Wrapping is a fundamental programming te
integration.

➤ What do you do with an object whose in
your expectations?

✔ You wrap it.

✎ What are possible disadvantages of wr



P2 — S2002 86.

Testing and Debugging

k
rface, by delegating 
ass:

/ wrapped instance 

delegation
© O. Nierstrasz — U. Berne

A Wrapped Stac
A wrapper class implements a required inte
requests to an instance of the wrapped cl
import java.util.Stack;
public class SimpleWrappedStack

implements StackInterface 
{
protected Stack stack_;
public SimpleWrappedStack() { 

; /
}
public boolean isEmpty() { 
return ; // 

}
...

stack_ = new Stack()

stack_.empty()



P2 — S2002 87.

Testing and Debugging

...

tionException {

 {

 class?

onException
© O. Nierstrasz — U. Berne

A Wrapped Stack 
public int size() {
return stack_.size();

}
public Object top() throws Asser
return stack_.peek(); 

}
public void pop() 
stack_.pop();

}
... // similar for push()

}

✎ Do you see any flaws with our wrapper

throws Asserti



P2 — S2002 88.

Testing and Debugging

ch
dStack()) yields:

a:60)
WrappedStack.java:

Code)
:13)
cMethodDispatcher.
)
ava:474)

va:78)
© O. Nierstrasz — U. Berne

A contract mismat
But running testStack(new SimpleWrappe
Testing SimpleWrappedStack ... 

at 
at java.util.Stack.pop(Stack.jav
at SimpleWrappedStack.pop(Simple

29)
at TestStack.testStack(Compiled 
at TestStack.main(TestStack.java

 at com.apple.mrj.JManager.JMStati
run(JMAWTContextImpl.java:796

at java.lang.Thread.run(Thread.j

✎ What went wrong?

java.util.EmptyStackException
java.util.Stack.peek(Stack.ja



P2 — S2002 89.

Testing and Debugging

...
w an exception when 
 this — so our 

SimpleWrappedStack

tionException {

onException {
© O. Nierstrasz — U. Berne

Fixing the problem 
Our tester expects an empty Stack to thro
it is popped, but java.util.Stack doesn’t do
wrapper should check its preconditions!
public class WrappedStack extends 
{
public Object top() throws Asser
assert(!this.isEmpty());
return super.top();

}
public void pop() throws Asserti

;
super.pop();

} ...

assert(!this.isEmpty())



P2 — S2002 90.

Testing and Debugging

s
orms better?

liseconds for "

 implementation 
© O. Nierstrasz — U. Berne

Timing benchmark
Which of the Stack implementations perf

;
for (int i=0; i<iterations; i++) {
stack.push(item);

}
elapsed = ;
System.out.println(elapsed + " mil

+ iterations + " pushes");
...

➤ Complexity aside, how can you tell which
strategy will perform best?

✔ Run a benchmark.

timer.reset()

timer.timeElapsed()



P2 — S2002 91.

Testing and Debugging

stract from the 
etails of timing
© O. Nierstrasz — U. Berne

Timer
import java.util.Date;
public class Timer {
protected Date startTime_;
public Timer() { 
this.reset(); 

}
public void reset() { 
startTime_ = new Date();

}
public long timeElapsed() {
return 

}
}

// Ab
// d

new Date().getTime() 
- startTime_.getTime();



P2 — S2002 92.

Testing and Debugging

iseconds)

 what you expected?

K pushes 100K pops
2809 100

474 56
725 293
5151 1236
1519 681

8748 8249
3026 189

877 94
5927 5318
© O. Nierstrasz — U. Berne

Sample benchmarks (mill

✎ Can you explain these results? Are they

Java VM Stack Implementation 100

Apple MRJ
LinkStack

ArrayStack
WrappedStack

Metrowerks
LinkStack

ArrayStack
WrappedStack

MW JIT
LinkStack

ArrayStack
WrappedStack



P2 — S2002 93.

Testing and Debugging

ow!
portant?

ods?
esign a test?
?
rfaces that don’t 
© O. Nierstrasz — U. Berne

What you should kn
✎ What is a regression test? Why is it im
✎ When should you (not) use static meth
✎ What strategies should you apply to d
✎ What are the run-time stack and heap
✎ How can you adapt client/supplier inte

match?
✎ When are benchmarks useful?



P2 — S2002 94.

Testing and Debugging

estions?
e absence of 

grow()?
he run-time stack?
tages of wrapping?
rappedStack?

plementation is 

ffer if you run them 
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ Why can’t you use tests to demonstrat

defects?
✎ How would you implement ArrayStack.
✎ Why doesn’t Java allocate objects on t
✎ What are the advantages and disadvan
✎ What is a suitable class invariant for W
✎ How can we learn where each Stack im

spending its time?
✎ How much can the same benchmarks di

several times?



P2 — S2002 95.

Iterative Development

pment

iener, Designing 
e Hall, 1990.
xplained — Embrace 
© O. Nierstrasz — U. Berne

4. Iterative Develo

Overview
❑ Iterative development
❑ Responsibility-Driven Design

☞ How to find the objects ...
☞ TicTacToe example ...

Sources
❑ R. Wirfs-Brock, B. Wilkerson, L. W

Object-Oriented Software, Prentic
❑ Kent Beck, Extreme Programming E

Change, Addison-Wesley, 1999.



P2 — S2002 96.

Iterative Development

ifecycle

y reasons, especially:
arly in the life-cycle

re lifecycle models 
lopment as a step-
ll” between the 
ment phases.

esting
Maintenance
© O. Nierstrasz — U. Berne

The Classical Software L

The waterfall model is unrealistic for man
❑ requirements must be “frozen” too e
❑ requirements are validated too late

The classical softwa
the software deve

by-step “waterfa
various develop

Design

Implementation

T

Analysis

Requirements
Collection



P2 — S2002 97.

Iterative Development

ent
ve, and all software 

why is it still the 

based on requirements

ing throughout

hrough refactoring

plementation

tion
© O. Nierstrasz — U. Berne

Iterative Developm
In practice, development is always iterati
phases progress in parallel.

✎ If the waterfall model is pure fiction, 
standard software process?

Validation through

Testing 

Test

Maintenance through iteration

Design t

prototyping
im

Requirements
Collection

Testing

Implementa

Analysis

Design



P2 — S2002 98.

Iterative Development

en Design?

esign in terms of 

 be fulfilled to meet 

te objects (i.e., that 
© O. Nierstrasz — U. Berne

What is Responsibility-Driv

Responsibility-Driven Design is
❑ a method for deriving a software d

collaborating objects

❑ by asking what responsibilities must
the requirements,

❑ and assigning them to the appropria
can carry them out).



P2 — S2002 99.

Iterative Development

bility?

 accept?
someone else.”

e?

igns than those 
ata-driven design.
ble over time than 
© O. Nierstrasz — U. Berne

How to assign responsi
Pelrine’s Laws:
➤ Which responsibilities should an object
✔ “Don't do anything you can push off to 

➤ How much state should an object expos
✔ “Don't let anyone else play with you.”

RDD leads to fundamentally different des
obtained by functional decomposition or d
Class responsibilities tend to be more sta
functionality or representation.



P2 — S2002 100.

Iterative Development

oe

rks down only 
oes], each 
 the nine 
wo vertical lines 
inner being the 
y row or 

ouse Dictionary

nts the rules of Tic 
© O. Nierstrasz — U. Berne

Example: Tic Tac T
Requirements:

“A simple game in which one player ma
crosses and another only ciphers [zer
alternating in filling in marks in any of
compartments of a figure formed by t
crossed by two horizontal lines, the w
first to fill in three of his marks in an
diagonal.” 

— Random H

We should design a program that impleme
Tac Toe.



P2 — S2002 101.

Iterative Development

rough a browser?

rong!
© O. Nierstrasz — U. Berne

Setting Scope

Questions:
❑ Should we support other games?
❑ Should there be a graphical UI?
❑ Should games run on a network? Th
❑ Can games be saved and restored?

A monolithic paper design is bound to be w

...



P2 — S2002 102.

Iterative Development

.

uirements that are 

s and test cases
ng roles and 

er in the first 

rovide value to the 
© O. Nierstrasz — U. Berne

Setting Scope ..
An iterative development strategy:

❑ limit initial scope to the minimal req
interesting

❑ grow the system by adding feature
❑ let the design emerge by refactori

responsibilities

➤ How much functionality should you deliv
version of a system?

✔ Select the minimal requirements that p
client.



P2 — S2002 103.

Iterative Development

ts
requirements:

re likely to end up as 

ilities
ules

teraction

tate
© O. Nierstrasz — U. Berne

Tic Tac Toe Objec
Some objects can be identified from the 

Entities with clear responsibilities are mo
objects in our design.
...

Objects Responsib
Game Maintain game r
Player Make moves

Mediate user in
Compartment Record marks
Figure (State) Maintain game s



P2 — S2002 104.

Iterative Development

 ...

ht” set of objects?
 of responsibilities.

cation
s

partment
ate

er
© O. Nierstrasz — U. Berne

Tic Tac Toe Objects
Others can be eliminated:

➤ How can you tell when you have the “rig
✔ Each object has a clear and natural set

Non-Objects Justifi
Crosses, ciphers Same as Mark
Marks Value of Com
Vertical lines Display of St
Horizontal lines ditto
Winner State of Play
Row View of State
Diagonal ditto



P2 — S2002 105.

Iterative Development

ponsibilities:

he Game state?

e is over?

 the Game.

issing in your design?
assigned.
© O. Nierstrasz — U. Berne

Missing Objects
Now we check if there are unassigned res

❑ Who starts the Game?

❑ Who is responsible for displaying t

❑ How do Players know when the Gam

Let us introduce a Driver that supervises

➤ How can you tell if there are objects m
✔ When there are responsibilities left un



P2 — S2002 106.

Iterative Development

f interactions:

 for this problem?

create

 X Player Y
© O. Nierstrasz — U. Berne

Scenarios
A scenario describes a typical sequence o

✎ Are there other equally valid scenarios

create create
print getMove
done?

print getMove
done?
print getMove
done?

getMove

Driver Game Player



P2 — S2002 107.

Iterative Development

on)

rgs[]) {
);

 }
 }

?
rogram.

n false;
("TicTacToe\n");
© O. Nierstrasz — U. Berne

Version 1.0 (skelet
Our first version does very little!
class GameDriver {
static public void main(String a
TicTacToe game = new TicTacToe(

}
public class TicTacToe {
 public boolean notOver() { 
public String toString() { 

}

➤ How do you iteratively “grow” a program
✔ Always have a running version of your p

do { System.out.print(game); }
while(game.notOver());

retur
return



P2 — S2002 108.

Iterative Development

ests)
3x3 array of chars 
sing chess notation, 
' through '3'.

col++)
row++)
© O. Nierstrasz — U. Berne

Version 1.1 (simple t
The state of the game is represented as 
marked ‘ ’, ‘X’, or ‘O’. We index the state u
i.e., column is 'a' through 'c' and row is '1

public class TicTacToe {
private char[][] gameState_;
public TicTacToe() {
gameState_ = new char[3][3];

}
...

for (char col='a'; col <='c'; 
for (char row='1'; row<='3'; 
this.set(col,row,' ');



P2 — S2002 109.

Iterative Development

ions
ion to array indices.
w, char mark) {
: precondition
ark;

w) {

1'];

char row) {
© O. Nierstrasz — U. Berne

Checking pre-condit
set() and get() translate from chess notat
private void set(char col, char ro

 // NB
gameState_[col-'a'][row-'1'] = m

}
private char get(char col, char ro
assert(inRange(col, row));
return gameState_[col-'a'][row-'

}
private boolean inRange(char col, 
return (('a'<=col) && (col<='c')
&& ('1'<=row) && (row<='3'));

}

assert(inRange(col, row));



P2 — S2002 110.

Iterative Development

hods
nd get() methods:

acToe tests");
;

;

cToe tests");

;

;

© O. Nierstrasz — U. Berne

Testing the new met
For now, we just exercise the new set() a
public void test() {
System.err.println("Started TicT
assert(this.get('a','1') == ' ')

this.set('c','3',' ');
assert(this.get('c','3') == ' ')
assert(!this.inRange('d','4'));
System.err.println("Passed TicTa

}

assert(this.get('c','3') == ' ')
this.set('c','3','X');
assert(this.get('c','3') == 'X')



P2 — S2002 111.

Iterative Development

ion

d, we can bundle our 

rgs[]) {
);
© O. Nierstrasz — U. Berne

Testing the applicat

If each class provides its own test() metho
unit tests in a single driver class:

class TestDriver {
static public void main(String a
TicTacToe game = new TicTacToe(

 ;
}

}

game.test()



P2 — S2002 112.

Iterative Development

e
), we can view the 
© O. Nierstrasz — U. Berne

Printing the Stat
By re-implementing TicTacToe.toString(
state of the game:

3    |   |  
  ---+---+---
2    |   |  
  ---+---+---
1    |   |  
   a   b   c

➤ How do you make an object printable?
✔ Override Object.toString()



P2 — S2002 113.

Iterative Development

g()
 up the 

;
--) {

ol++) { ... }

fer()
© O. Nierstrasz — U. Berne

TicTacToe.toStrin
Use a StringBuffer (not a String) to build
representation:
public String toString() {
StringBuffer 
for (char row='3'; row>='1'; row
rep.append(row);
rep.append("   ");
for (char col='a'; col <='c'; c
...

}
rep.append("   a   b   c\n");
return( );

}

rep = new StringBuf

rep.toString()



P2 — S2002 114.

Iterative Development

ions

ate create

ve

ve

ve
move

Player X Player Y
© O. Nierstrasz — U. Berne

Refining the interact
We will want both real 
and test Players, so 
the Driver should 
create them. 

Updating the Game 
and printing it should 
be separate 
operations.

The Game should ask 
the Player to make a 
move, and then the 
Player will attempt to 
do so.

create cre
print

mo

done?

moupdate

print

done?

update mo

Driver Game



P2 — S2002 115.

Iterative Development

cts

 O
als previous turn)
O or blank
e in a row

 is the turn of X
cupied, or there is a 

is already marked

e, if the invariants 
© O. Nierstrasz — U. Berne

Tic Tac Toe Contra
Explicit invariants:

❑ turn (current player) is either X or
❑ X and O swap turns (turn never equ
❑ game state is 3×3 array marked X, 
❑ winner is X or O iff winner has thre

Implicit invariants: 
❑ initially winner is nobody; initially it
❑ game is over when all squares are oc

winner
❑ a player cannot mark a square that 

Contracts:
❑ the current player may make a mov

are respected



P2 — S2002 116.

Iterative Development

nal)
lement the contracts

; // = nobody

// initial turn

// constants

yer()
© O. Nierstrasz — U. Berne

Version 1.2 (functio
We must introduce state variables to imp

public class TicTacToe {
private char[][] gameState_;
private Player 
private Player[] player_;
private int ;
private int ;
static final int X = 0;
static final int O = 1;

...

winner_ = new Pla

turn_ = X
squaresLeft_ = 9



P2 — S2002 117.

Iterative Development

ers
rs, but accepts them 

 Player playerO)
© O. Nierstrasz — U. Berne

Supporting test Play
The Game no longer instantiates the Playe
as constructor arguments:

public TicTacToe(Player playerX,
throws AssertionException

{ // ...
player_ = new Player[2];
player_[X] = playerX;
player_[O] = playerO;

}



P2 — S2002 118.

Iterative Development

 is exactly why they 

)

]
]

e, initially:
);

ethods should be 
 public or private.

).isNobody()
© O. Nierstrasz — U. Berne

Invariants
These conditions may seem obvious, which
should be checked ...
private boolean invariant() {
return (
&& ( this.notOver() 
|| this.winner() == player_[X
|| this.winner() == player_[O
|| this.winner().isNobody())

&& ( // els
|| 

}

Assertions and tests often tell us what m
implemented, and whether they should be

turn_ == X || turn_ == O

squaresLeft_ < 9
turn_ == X && this.winner(



P2 — S2002 119.

Iterative Development

lities
 just asks the Player 

ception {

ctly!
© O. Nierstrasz — U. Berne

Delegating Responsibi
When Driver updates the Game, the Game
to make a move:

public void update() throws IOEx
player_[turn_].move(this);

}

Note that the Driver may not do this dire

...



P2 — S2002 120.

Iterative Development

ies ...
() method:
row, char mark)
tionException

" + col + row);
© O. Nierstrasz — U. Berne

Delegating Responsibilit
The Player, in turn, calls the Game’s move

public void move(char col, char 
throws Asser

{ assert(notOver());
assert(inRange(col, row));
assert(get(col, row) == ' ');
System.out.println(mark + " at 

assert(invariant());
}

this.set(col, row, mark);
this.squaresLeft_--;
this.swapTurn();
this.checkWinner();



P2 — S2002 121.

Iterative Development

of your code clear.

;

ly eliminate the need 
© O. Nierstrasz — U. Berne

Small Methods
Introduce methods that make the intent 

public boolean notOver() {
return this.winner().isNobody()

&& this.squaresLeft() > 0
}
private void swapTurn() {

;
}

Well-named variables and methods typical
for explanatory comments!

turn_ = (turn_ == X) ? O : X



P2 — S2002 122.

Iterative Development

s
hanges in 

ic?
ethods instead.
© O. Nierstrasz — U. Berne

Accessor Method
Accessor methods protect clients from c
implementation:

public Player winner() {
return winner_;

}
public int squaresLeft() {
return this.squaresLeft_;

}

➤ When should instance variables be publ
✔ Almost never! Declare public accessor m



P2 — S2002 123.

Iterative Development

eckWinner()
al:

--) {

)) {
© O. Nierstrasz — U. Berne

Code Smells — TicTacToe.ch
Check for a winning row, column or diagon
private void checkWinner()
throws AssertionException

{
char player;
for (char row='3'; row>='1'; row
player = this.get('a',row);
if (player == this.get('b',row)
&& player == this.get('c',row
this.setWinner(player);
return;

}
} ...



P2 — S2002 124.

Iterative Development

l++) {

)) {
© O. Nierstrasz — U. Berne

Code Smells ...
More of the same ...
...
for (char col='a'; col <='c'; co
player = this.get(col,'1');
if (player == this.get(col,'2')
&& player == this.get(col,'3'
this.setWinner(player);
return;

}
}

...

and yet some more ...



P2 — S2002 125.

Iterative Development

 {

 {

an it up?
© O. Nierstrasz — U. Berne

Code Smells ...
player = this.get('b','2');
if (player == this.get('a','1')
&& player == this.get('c','3'))
this.setWinner(player);
return;

}
if (player == this.get('a','3')
&& player == this.get('c','1'))
this.setWinner(player);
return;

}
}

✎ Duplicated code stinks! How can we cle



P2 — S2002 126.

Iterative Development

 Player instantiation 

rgs[]) {

) {

e(X, O);
© O. Nierstrasz — U. Berne

GameDriver
In order to run test games, we separated
from Game playing:
public class GameDriver {
public static void main(String a
try {
Player X = new Player('X');
Player O = new Player('O');

playGame(game);
} catch (AssertionException err
...

}
}

TicTacToe game = new TicTacTo



P2 — S2002 127.

Iterative Development

eal or test Players:

;

ut stream:

ader(System.in)
© O. Nierstrasz — U. Berne

The Player
We use different constructors to make r

public class Player {
private final char mark_;
private final BufferedReader in_

A real player reads from the standard inp
public Player(char mark) {
this(mark, new BufferedReader(

));
}

This constructor just calls another one ...
...

new InputStreamRe



P2 — S2002 128.

Iterative Development

 ...
s its moves from any 

eredReader in) {

led directly.
© O. Nierstrasz — U. Berne

Player constructors
But a Player can be constructed that read
input buffer:

protected Player(char mark, Buff
mark_ = mark;
in_ = in;

}

This constructor is not intended to be cal
...



P2 — S2002 129.

Iterative Development

 ...
 buffer:
moves) {

 Player representing 

moves)
© O. Nierstrasz — U. Berne

Player constructors
A test Player gets its input from a String

public Player(char mark, String 
this(mark, new BufferedReader(

));
}

The default constructor returns a dummy
“nobody”

public Player() {
this(' ');

}

new StringReader(



P2 — S2002 130.

Iterative Development

s
yers that represent 

;
b1\nc1\n";

rgs[]) {
);

a1\nb2\nc3\n"
© O. Nierstrasz — U. Berne

Defining test case
The TestDriver builds games using test Pla
various test cases:

public class TestDriver {
private static String 
private static String testO1 = "
// + other test cases ...

public static void main(String a
testGame(testX1, testO1, "X", 4
// ...

}
...

testX1 = "



P2 — S2002 131.

Iterative Development

es
the expected ones.
 Xmoves,
nt squaresLeft) 

;
es);
X, O);

 { ... }

ves)

uals(winner));
quaresLeft);
© O. Nierstrasz — U. Berne

Checking test cas
The TestDriver checks if the results are 
public static void testGame(String

String Omoves, String winner, i
{
try {

Player O = new Player('O', Omov
TicTacToe game = new TicTacToe(
GameDriver.playGame(game);

} catch (AssertionException err)
}

Player X = new Player('X', Xmo

assert(game.winner().name().eq
assert(game.squaresLeft() == s



P2 — S2002 132.

Iterative Development

ses
ves: O at c1
 
--
 
--
O
c
ves: X at c3
X
--
 
--
O
c

Game test
© O. Nierstrasz — U. Berne

Running the test ca
Started testGame test
3    |   |  
  ---+---+---
2    |   |  
  ---+---+---
1    |   |  
   a   b   c
Player X moves: X at a1
3    |   |  
  ---+---+---
2    |   |  
  ---+---+---
1  X |   |  
   a   b   c
...

Player O mo
3    |   | 
  ---+---+-
2    | X | 
  ---+---+-
1  X | O | 
   a   b   
Player X mo
3    |   | 
  ---+---+-
2    | X | 
  ---+---+-
1  X | O | 
   a   b   
game over!
Passed test



P2 — S2002 133.

Iterative Development

ow!
w does it differ from 

lp you to design 

 wasn’t in our 

 TicTacToe design?
hey are all supposed 

hat are only one or 
© O. Nierstrasz — U. Berne

What you should kn
✎ What is Iterative Development, and ho

the Waterfall model?
✎ How can identifying responsibilities he

objects?
✎ Where did the Driver come from, if it

requirements?
✎ Why is Winner not a likely class in our
✎ Why should we evaluate assertions if t

to be true anyway?
✎ What is the point of having methods t

two lines long?



P2 — S2002 134.

Iterative Development

estions?
o change?
ot the Driver that 

e TicTacToe 

 TestDriver?
h version of an 
uld be called?
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ Why should you expect requirements t
✎ In our design, why is it the Game and n

prompts a Player to move?
✎ When and where should we evaluate th

invariant?
✎ What other tests should we put in our
✎ How does the Java compiler know whic

overloaded method or constructor sho



P2 — S2002 135.

Inheritance and Refactoring

factoring

ism and code reuse

g design

ce complexity

iener, Designing 
e Hall, 1990.
© O. Nierstrasz — U. Berne

5. Inheritance and Re

Overview 
❑ Uses of inheritance

☞ conceptual hierarchy, polymorph
❑ TicTacToe and Gomoku

☞ interfaces and abstract classes
❑ Refactoring

☞ iterative strategies for improvin
❑ Top-down decomposition

☞ decomposing algorithms to redu
Source

❑ R. Wirfs-Brock, B. Wilkerson, L. W
Object-Oriented Software, Prentic



P2 — S2002 136.

Inheritance and Refactoring

e?

ing languages is a 

g classes

tures from their 

lementation of some 
© O. Nierstrasz — U. Berne

What is Inheritanc

Inheritance in object-oriented programm
mechanism to:

❑ derive new subclasses from existin

❑ where subclasses inherit all the fea
parent(s)

❑ and may selectively override the imp
features.



P2 — S2002 137.

Inheritance and Refactoring

sms
rent ways:
methods
 inherited methods
le superclasses

inherit from only)

ts of features
d return types
tances can be 
s

© O. Nierstrasz — U. Berne

Inheritance mechani
OO languages realize inheritance in diffe

self dynamically access subclass 
super statically access overridden,

multiple 
inheritance 

inherit features from multip

abstract 
classes 

partially defined classes (to 

mixins build classes from partial se
interfaces specify method argument an

subtyping guarantees that subclass ins
substituted for their parent



P2 — S2002 138.

Inheritance and Refactoring

re are many other 
wo players with a 

d with players 
t to place five 

 Random House

t can be used to play 
e same game-playing 
 Go-moku).
© O. Nierstrasz — U. Berne

The Board Game
Tic Tac Toe is a pretty dull game, but the
interesting games that can be played by t
board and two colours of markers.

Example: Go-moku 
“A Japanese game played on a go boar
alternating and attempting to be firs
counters in a row.”

—

We would like to implement a program tha
several different kinds of games using th
abstractions (starting with TicTacToe and



P2 — S2002 139.

Inheritance and Refactoring

ce
ing languages can be 
losely related 

ic Tac Toe is-a kind 

 can be uniformly 
ame by a client 
© O. Nierstrasz — U. Berne

Uses of Inheritan
Inheritance in object-oriented programm
used for (at least) three different, but c
purposes:

Conceptual hierarchy:
❑ Go-moku is-a kind of Board Game; T

of Board Game

Polymorphism: 
❑ Instances of Gomoku and TicTacToe

manipulated as instances of BoardG
program

...



P2 — S2002 140.

Inheritance and Refactoring

 ...

oardGame interface
xtend the 
 implementations of 

lysis; polymorphism 
and implementation.

e can also be 
© O. Nierstrasz — U. Berne

Uses of Inheritance
Software reuse: 

❑ Gomoku and TicTacToe reuse the B
❑ Gomoku and TicTacToe reuse and e

BoardGame representation and the
its operations

Conceptual hierarchy is important for ana
and reuse are more important for design 

Note that these three kinds of inheritanc
exploited separately and independently.



P2 — S2002 141.

Inheritance and Refactoring

TicTacToe
: char [3][3]
er
r
er[2]

t : int
er, Player)

char, char)
layer

: boolean
t( ) : int
ar, char)
ar) : char

r( )
r col, char row) : boolean
© O. Nierstrasz — U. Berne

Class Diagrams
The TicTacToe class currently 
looks like this: -gameState 

-winner: Play
-turn : Playe
-player : Play
-squaresLef
+create(Play
+update( )
+move(char, 
+winner( ) : P
+notOver( ) 
+squaresLef
-set(char, ch
-get(char, ch
-swapTurn( )
-checkWinne
-inRange(cha

Key
- private feature
# protected feature
+ public feature
create( ) static feature
checkWinner( ) abstract feature



P2 — S2002 142.

Inheritance and Refactoring

TicTacToe
-gameState : char [3][3]
...
...

Gomoku
meState : char [19][19]

reate ( )
heckWinner( )
© O. Nierstrasz — U. Berne

A bad idea ...
Why not simply use inheritance for 
incremental modification?

Exploiting inheritance for code reuse 
without refactoring tends to lead to:

❑ duplicated code (similar, but 
not reusable methods)

❑ conceptually unclear design 
(arbitrary relationships 
between classes)

Gomoku is not a kind of TicTacToe

-ga
...
+c
+c
...



P2 — S2002 143.

Inheritance and Refactoring

mented by the 

TicTacToe
...
+create ( )
...

Game
abstract

e

r, char)
er
olean
: int
© O. Nierstrasz — U. Berne

Class Hierarchy

Behaviour that is not shared will be imple
subclasses.

Gomoku
...
+create ( )
...

AbstractBoard

«interface»

BoardGam
+update( )
+move(char, cha
+winner( ) : Play
+notOver( ) : bo
+squaresLeft( ) 

Both Go-moku and Tic Tac 
Toe are kinds of Board 
games (IS-A). We would 
like to define a common 
interface, and factor the 
common functionality into 
a shared parent class.



P2 — S2002 144.

Inheritance and Refactoring

trategy

ctionality will:
nd Gomoku

for a 19×19 board!
© O. Nierstrasz — U. Berne

Iterative development s

We need to find out which TicTacToe fun
❑ already work for both TicTacToe a
❑ need to be adapted for Gomoku
❑ can be generalized to work for both

Example: set() and get() will not work 

...



P2 — S2002 145.

Inheritance and Refactoring

ategy ...
sign, we will 

hat TicTacToe 

 to an 

non-generic features
class of 

n tests to make sure 

tests?
© O. Nierstrasz — U. Berne

Iterative development str
Rather than attempting a “big bang” rede
iteratively redesign our game:

❑ introduce a BoardGame interface t
implements

❑ move all TicTacToe implementation
AbstractBoardGame parent

❑ fix, refactor or make abstract the 
❑ introduce Gomoku as a concrete sub

AbstractBoardGame
After each iteration we run our regressio
nothing is broken!

➤ When should you run your (regression) 
✔ After every change to the system.



P2 — S2002 146.

Inheritance and Refactoring

face)
 should implement:

ception;
row, char mark)

/ NB: new method

 the current 
© O. Nierstrasz — U. Berne

Version 1.3 (add inter
We specify the interface both subclasses
public interface BoardGame {
public void update() throws IOEx
public void move(char col, char 
throws AssertionException;

public Player currentPlayer(); /
public Player winner();
public boolean notOver();
public int squaresLeft();
public void test();

}

Initially we focus only on abstracting from
TicTacToe implementation



P2 — S2002 147.

Inheritance and Refactoring

face
nly depend on the 

rgs[]) {

;

) { ... }

ion.

oe(X, O)

Game game
© O. Nierstrasz — U. Berne

Speaking to an Inter
Clients of TicTacToe and Gomoku should o
BoardGame interface:
public class GameDriver {
public static void main(String a
try {
Player X = new Player('X');
Player O = new Player('O');

 game = 
playGame(game);
...

}
public static void playGame(

Speak to an interface, not an implementat

BoardGame new TicTacT

Board



P2 — S2002 148.

Inheritance and Refactoring

f the game after 
est has failed.

 occurred!
ame game,

)

inting to playGame().

n verbose
© O. Nierstrasz — U. Berne

Quiet Testing
Our current TestDriver prints the state o
each move, making it hard to tell when a t

Tests should be silent unless an error has
public static void playGame(BoardG

{ ...
 {

System.out.println();
System.out.println(game);

...
}

NB: we must shift all responsibility for pr

boolea

if (verbose)



P2 — S2002 149.

Inheritance and Refactoring

)
nt supply the 

ame game,
)

t to a Null stream:
mal printing

; // testing

tream out

()
© O. Nierstrasz — U. Berne

Quiet Testing (2
A more flexible approach is to let the clie
PrintStream:
public static void playGame(BoardG

{ ...
;

...
}

The TestDriver can simply send the outpu
playGame(game, System.out); // nor
playGame(game, 

PrintS

out.println(game)

new NullPrintStream



P2 — S2002 150.

Inheritance and Refactoring

th null methods:
ds PrintStream {
.out); }

}
}

gs and switches.
© O. Nierstrasz — U. Berne

NullPrintStream
A Null Object implements an interface wi
public class NullPrintStream exten
NullPrintStream() { super(System
public void print() { }
public void print(Object x) { }
public void print(String s) { }
public void println() { }
public void println(Object x) { 
public void println(String s) { 
...

}

Null Objects are useful for eliminating fla



P2 — S2002 151.

Inheritance and Refactoring

ons
 to the GameDriver, 
port the current 

BoardGame {

er fixing any bugs) 
© O. Nierstrasz — U. Berne

TicTacToe adaptati
In order to pass responsibility for printing
a BoardGame must provide a method to ex
Player:

public class TicTacToe implements 
...
public Player currentPlayer() {
return player_[turn_];

}

Now we run our regression tests and (aft
continue.



P2 — S2002 152.

Inheritance and Refactoring

ct class)
variables and 

dGame
 BoardGame

layer();

r row, char mark)

ct?
d to be subclassed, 
© O. Nierstrasz — U. Berne

Version 1.4 (add abstra
AbstractBoardGame will provide common 
methods for TicTacToe and Gomoku.
public  AbstractBoar

implements
{ protected char[][] gameState_;
protected Player winner_ = new P
protected Player[] player_;
...

protected void set(char col, cha
...

➤ When should a class be declared abstra
✔ Declare a class abstract if it is intende

but not instantiated.

abstract class



P2 — S2002 153.

Inheritance and Refactoring

ds and instance 
rove the design, 

n classes

in classes
© O. Nierstrasz — U. Berne

Refactoring
Refactoring is a process of moving metho
variables from one class to another to imp
specifically to:

❑ reassign responsibilities

❑ eliminate duplicated code

❑ reduce coupling: interaction betwee

❑ increase cohesion: interaction with



P2 — S2002 154.

Inheritance and Refactoring

ies
 strategy, first 
 from TicTacToe to 
ate features to 

tractBoardGame {
 Player playerO)

pty 
shared code there.
© O. Nierstrasz — U. Berne

Refactoring strateg
We have adopted one possible refactoring
moving everything except the constructor
AbstractBoardGame, and changing all priv
protected:

public class TicTacToe extends Abs
public TicTacToe(Player playerX,
...

We could equally have started with an em
AbstractBoardGame and gradually moved 



P2 — S2002 155.

Inheritance and Refactoring

eusability)
actBoardGame are 
h must be deferred 

d the winning score 

 an init() method
nRange() and test()
r a 19×19 board

ent (e.g., “f17”)
 integer coordinates

written ...
© O. Nierstrasz — U. Berne

Version 1.5 (refactor for r
Now we must check which parts of Abstr
generic, which must be repaired, and whic
to its subclasses:

❑ the number of rows and columns an
may vary
☞ introduce instance variables and
☞ rewrite toString(), invariant(), i

❑ set() and get() are inappropriate fo
☞ index directly by integers
☞ fix move() to take String argum
☞ add methods to parse String into

❑ getWinner() must be completely re



P2 — S2002 156.

Inheritance and Refactoring

 1.5
ry sized boards:
dGame ... {

r playerO) { ... 

ubclasses:
layer playerO) {
 = 3
rO);

for 

t cols, int score,
© O. Nierstrasz — U. Berne

AbstractBoardGame
We introduce an init() method for arbitra
public abstract class AbstractBoar
protected void init(

Player playerX, Playe
}

And call it from the constructors of our s
public TicTacToe(Player playerX, P

// 3x3 board with winning score
playerX, playe

}

✎ Why not just introduce a constructor 
AbstractBoardGame?

int rows, in

this.init(3,3,3,



P2 — S2002 157.

Inheritance and Refactoring

e are to protected 

nge is move():

har mark)
© O. Nierstrasz — U. Berne

BoardGame 1.5
Most of the changes in AbstractBoardGam
methods. 

The only public (interface) method to cha

public interface BoardGame {
...
public void move( , c
throws AssertionException;

...
}

String coord



P2 — S2002 158.

Inheritance and Refactoring

ly simplified:
rows IOException {

nput");
); }

e ignored ("
)"); }

e for checking if the 

))
© O. Nierstrasz — U. Berne

Player 1.5
The Player’s move() method is now radical
public void move(BoardGame game) th
String ;
if (line == null)
throw new IOException("end of i

try { 
catch (AssertionException err) {
System.err.println("Invalid mov

+ line + "
}

✎ How can we make the Player responsibl
move is valid?

line = in_.readLine()

game.move(line, this.mark(



P2 — S2002 159.

Inheritance and Refactoring

u)

for both TicTacToe 

t fails

or either TicTacToe 
© O. Nierstrasz — U. Berne

Version 1.6 (Gomok
The final steps are:

❑ rewrite checkWinner() 

❑ introduce Gomoku
☞ modify TestDriver to run tests 

and Gomoku
☞ print game state whenever a tes

❑ modify GameDriver to query user f
or Gomoku



P2 — S2002 160.

Inheritance and Refactoring

stively for a winning 
© O. Nierstrasz — U. Berne

Keeping Score
The Go board is too large to search exhau
Go-moku score.

We know that a winning sequence 
must include the last square 
marked. So, it suffices to search 
in all four directions starting 
from that square to see if we find 
5 in a row.

✎ Whose responsibility is it to search?



P2 — S2002 161.

Inheritance and Refactoring

 ...
rching for a winning 

 So let’s introduce a 
layer’s pieces.
, int row)... {

;

)
n; }

ingScore_)
n; }

 col, row)

ingScore_
© O. Nierstrasz — U. Berne

A new responsibility
Maintaining the state of the board and sea
run seem to be unrelated responsibilities.
new object (a Runner) to run and count a P
protected void checkWinner(int col
char player = this.get(col,row);
Runner runner = 
// check vertically
if (
{ this.setWinner(player); retur

// check horizontally
if (runner.run(1,0) >= this.winn
{ this.setWinner(player); retur

...
}

new Runner(this,

runner.run(0,1) >= this.winn



P2 — S2002 162.

Inheritance and Refactoring

(start) position, and 

e col and row
rent col & row

t col, int row)
© O. Nierstrasz — U. Berne

The Runner
The Runner must know its game, its home 
its current position:
public class Runner {
BoardGame game_;
int homeCol_, homeRow_; // Hom
int col_=0, row_=0; // Cur

public Runner(BoardGame game, in
{
game_ = game;
homeCol_ = col;
homeRow_ = row;

}
...



P2 — S2002 163.

Inheritance and Refactoring

ition
cing helper methods 
:

;

;

 most comments!

row)

row)
© O. Nierstrasz — U. Berne

Top-down decompos
Implement algorithms abstractly, introdu
for each abstract step, as you decompose
public int run(int dcol, int drow)
throws AssertionException

{
int score = 1;

 ;
score += 
this.goHome();
score += 
return score;

}

Well-chosen names eliminate the need for

this.goHome()
this.forwardRun(dcol, d

this.reverseRun(dcol, d



P2 — S2002 164.

Inheritance and Refactoring

ssed with recursion 

 in a run. Return the 

nt drow)

;l, drow)
© O. Nierstrasz — U. Berne

Recursion
Many algorithms are more naturally expre
than iteration.

Recursively move forward as long as we are
length of the run:
private int forwardRun(int dcol, i
throws AssertionException

{
this.move(dcol, drow);
if (this.samePlayer())

else
return 0;

}

return 1 + this.forwardRun(dco



P2 — S2002 165.

Inheritance and Refactoring

ds
lear and uncluttered, 

nt drow) ... {
;

amePlayer()?

row)
© O. Nierstrasz — U. Berne

More helper metho
Helper methods keep the main algorithm c
and are mostly trivial to implement.

private int reverseRun(int dcol, i
return 

}

private void goHome() {
col_= homeCol_;
row_ = homeRow_;

}

✎ How would you implement move() and s

this.forwardRun(-dcol, -d



P2 — S2002 166.

Inheritance and Refactoring

 and inRange() 

)

int row);

 really need, and will 
© O. Nierstrasz — U. Berne

BoardGame 1.6
The Runner now needs access to the get()
methods so we make them public:
public interface BoardGame {
...

 char get(int col, int row
throws AssertionException;

 boolean inRange(int col, 
...

}

➤ Which methods should be public?
✔ Only publicize methods that clients will

not break encapsulation.

public

public



P2 — S2002 167.

Inheritance and Refactoring

 is played on a 19x19 
ow.

ctBoardGame {
ayer playerO)

re = 5
;

inherit everything 
GameBoard!

yerO)
© O. Nierstrasz — U. Berne

Gomoku
Gomoku is similar to TicTacToe, except it
Go board, and the winner must get 5 in a r

public class Gomoku extends Abstra
public Gomoku(Player playerX, Pl
{
// 19x19 board with winning sco

}
}

In the end, Gomoku and TicTacToe could 
(except their constructor) from Abstract

this.init(19,19,5,playerX, pla



P2 — S2002 168.

Inheritance and Refactoring

ow!
 generic code?
tected rather than 

e code reuse?
do it in small steps?
sm?
© O. Nierstrasz — U. Berne

What you should kn
✎ How does polymorphism help in writing
✎ When should features be declared pro

public or private?
✎ How do abstract classes help to achiev
✎ What is refactoring? Why should you 
✎ How do interfaces support polymorphi
✎ Why should tests be silent?



P2 — S2002 169.

Inheritance and Refactoring

estions?
e 

 from a class whose 

variant() methods 

, or the other way 

rarchy so that you 
rent sizes?
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ What would change if we didn’t declar

AbstractBoardGame to be abstract?
✎ How does an interface (in Java) differ

methods are all abstract?
✎ Can you write generic toString() and in

for AbstractBoardGame?
✎ Is TicTacToe a special case of Gomoku

around?
✎ How would you reorganize the class hie

could run Gomoku with boards of diffe



P2 — S2002 170.

Programming Tools

ools

 Ant

oc
nts
© O. Nierstrasz — U. Berne

6. Programming T

Overview
❑ Managing dependencies — make and
❑ Version control — RCS and CVS
❑ Debuggers
❑ Profilers
❑ Documentation generation — Javad
❑ Integrated Development Environme

Sources
❑ Ant: jakarta.apache.org/ant/
❑ CVS: www.cvshome.org

http://jakarta.apache.org/ant/index.html
http://www.cvshome.org/


P2 — S2002 171.

Programming Tools

r managing 

 on

d rules
fixes

he minimum set of 
© O. Nierstrasz — U. Berne

Make
Make is a Unix and Windows-based tool fo
dependencies between files.

You can specify in a “Makefile”:
❑ Which files various targets depend
❑ Rules to generate each target
❑ Macros used in the dependencies an
❑ Generic rules based on filename suf

When files are modified, make will apply t
rules to bring the targets up-to-date.



P2 — S2002 172.

Programming Tools

e

 generic rule

on.class \
 Player.class \

 default target

 target and dependents
 generation rule
© O. Nierstrasz — U. Berne

A Typical Makefil
.SUFFIXES: .class .java

.java.class : #
javac $<

CLASS = AbstractBoardGame.class AssertionExcepti
BoardGame.class GameDriver.class Gomoku.class
Runner.class TestDriver.class TicTacToe.class

all : TicTacToe.jar Test.jar #

#
#

Test.jar : manifest-test $(CLASS)
jar cmf manifest-test $@ $(CLASS)

clean :
rm -f *.class *.jar

TicTacToe.jar : manifest-run $(CLASS)
jar cmf manifest-run $@ $(CLASS)



P2 — S2002 173.

Programming Tools

dGame.class AssertionEx-
omoku.class Player.class

e.class AssertionExcep-
moku.class Player.class

e.class AssertionExcep-
moku.class Player.class
© O. Nierstrasz — U. Berne

Running make
% make
javac AbstractBoardGame.java
javac GameDriver.java
javac TestDriver.java
jar cmf manifest-run TicTacToe.jar AbstractBoar
ception.class BoardGame.class GameDriver.class G
Runner.class TestDriver.class TicTacToe.class
jar cmf manifest-test Test.jar AbstractBoardGam
tion.class BoardGame.class GameDriver.class Go
Runner.class TestDriver.class TicTacToe.class

% touch Runner.java
% make Test.jar 
javac Runner.java
jar cmf manifest-test Test.jar AbstractBoardGam
tion.class BoardGame.class GameDriver.class Go
Runner.class TestDriver.class TicTacToe.class



P2 — S2002 174.

Programming Tools

uses XML to specify 

ject
© O. Nierstrasz — U. Berne

Ant
Ant is a Java-based make-like utility that 
dependencies and build rules.

You can specify in a “buildfile.xml”:
❑ the name of a project
❑ the default target to create
❑ the basedir for the files of the pro
❑ dependencies for each target
❑ tasks to execute to create targets



P2 — S2002 175.

Programming Tools

l
".">

/>

/>

 ${build} -->

ar}"
© O. Nierstrasz — U. Berne

A Typical build.xm
<project name="TicTacToe" default="all" basedir=

<!-- set global properties for this build -->
<property name="src" value="."/>
<property name="build" value="build"/>
<property name="runjar" value="TicTacToe.jar"
<property name="testjar" value="Test.jar"/>

<target name="all" 
<target name="init">

<!-- Create the time stamp -->
<tstamp/>
<mkdir dir="${build}"/>

</target>

<target name="compile" depends="init">
<!-- Compile the java code from ${src} into

</target>

depends="${runjar},${testj

<javac srcdir="${src}" destdir="${build}"/>



P2 — S2002 176.

Programming Tools

 ${build} -->
-run" 

t-test"
© O. Nierstrasz — U. Berne

...
<target name="${runjar}" depends="compile">

<!-- Compile the java code from ${src} into
<jar jarfile="${runjar}" manifest="manifest

basedir="${build}"/>
</target>

<target name="${testjar}" depends="compile">
<jar jarfile="${testjar}" manifest="manifes

basedir="${build}"/>
</target>

<target name="clean">
<!-- Delete the ${build} directory -->
<delete dir="${build}"/>

</target>
</project>



P2 — S2002 177.

Programming Tools

d

cTacToe/1.6/build

cToe.jar

jar
© O. Nierstrasz — U. Berne

Running Ant
% ant
Buildfile: build.xml
init:
[mkdir] Created dir: /Scratch/TicTacToe/1.6/buil
compile:
[javac] Compiling 10 source files to /Scratch/Ti
${runjar}:
[jar] Building jar: /Scratch/TicTacToe/1.6/TicTa
${testjar}:
[jar] Building jar: /Scratch/TicTacToe/1.6/Test.
all:
BUILD SUCCESSFUL
Total time: 2 seconds



P2 — S2002 178.

Programming Tools

ems
ultiple file revisions:

rces files + multiple 

ntrol systems for 
d UNIX platforms 
© O. Nierstrasz — U. Berne

Version Control Syst
A version control system keeps track of m

❑ check-in and check-out of files
❑ logging changes (who, where, when)
❑ merge and comparison of versions
❑ retrieval of arbitrary versions
❑ “freezing” of versions as releases
❑ reduces storage space (manages sou

“deltas”)

SCCS and RCS are two popular version co
UNIX. CVS is popular on Mac, Windows an
(see www.cvshome.org)

http://www.cyclic.com
http://www.cvshome.org


P2 — S2002 179.

Programming Tools

al changes to a 
 you can always go 

ystem?
or even the smallest 

 in iterative 
© O. Nierstrasz — U. Berne

Version Control 
Version control enables you to make radic
software system, with the assurance that
back to the last working version.

➤ When should you use a version control s
✔ Use it whenever you have one available, f

project!

Version control is as important as testing
development!



P2 — S2002 180.

Programming Tools

iew

f RCS files
an RCS file
s
 into a third
evisions
 files into a third
e not been changed
 configuration
© O. Nierstrasz — U. Berne

RCS command overv
ci Check in revisions
co Check out revisions
rcs Set up or change attributes o

ident Extract keyword values from 
rlog Display a summary of revision

merge Merge changes from two files
rcsdiff Report differences between r

rcsmerge Merge changes from two RCS
rcsclean Remove working files that hav

rcsfreeze Label the files that make up a



P2 — S2002 181.

Programming Tools

d file,v is created 

 for RCS files
rol of RCS

checked in.
) file for editing
 file
ly copy 
 a read-only copy 
e a locked copy 
een versions
© O. Nierstrasz — U. Berne

Using RCS
When file is checked in, an RCS file calle
in the RCS directory:
mkdir RCS # create subdirectory
ci file # put file under cont

Working copies must be checked out and 
co -l file # check out (and lock
ci file # check in a modified
co file # check out a read-on
ci -u file # check in file; leave
ci -l file # check in file; leav
rcsdiff file # report changes betw



P2 — S2002 182.

Programming Tools

ures

tained by RCS:

elease.level
ck-in

on (username)
ck-in
n (prompted 
© O. Nierstrasz — U. Berne

Additional RCS Feat
Keyword substitution

❑ Various keyword variables are main

Revision numbering:
❑ Usually each revision is numbered r
❑ Level is incremented upon each che
❑ A new release is created explicitly:

ci -r2.0 file

$Author$ who checked in revisi
$Date$ date and time of che
$Log$ description of revisio

during check-in)



P2 — S2002 183.

Programming Tools

itable for large 

ranches
© O. Nierstrasz — U. Berne

CVS
CVS is comparable to RCS, but is more su
projects. 

❑ Understands RCS-style keywords
❑ Shared repository for teamwork

☞ Manages hierarchies of files
☞ Manages parallel development b

❑ Uses optimistic version control
☞ no locking
☞ merging on conflict

❑ Offers network-based CVS server



P2 — S2002 184.

Programming Tools

itory

variable

r control of CVS
rt
nals
 copy

iles

opy (if necessary)
d out files
out files
© O. Nierstrasz — U. Berne

Using CVS
mkdir CVS create CVS repos
mkdir CVS/CVSROOT
setenv CVSROOT /.../CVS set environment 

cd TicTacToe/1.0 put project unde
cvs import -m "P2 TicTacToe" p2/tictactoe p2 sta
... can delete origi
cd working checkout working

 
cd p2/tictactoe/
... modify and add f

 AssertionException.java TestDriver.java
 commit changes

... time passes ...
 update working c

cvs history report on checke
cvs release release checked 

cvs checkout p2/tictactoe

cvs add
cvs commit

cvs update



P2 — S2002 185.

Programming Tools

amine the state of a 

on by instruction
ing program
bles in various 

e in your program
t
ogram (in a “core 
© O. Nierstrasz — U. Berne

Debuggers
A debugger is a tool that allows you to ex
running program:

❑ step through the program instructi
❑ view the source code of the execut
❑ inspect (and modify) values of varia

formats
❑ set and unset breakpoints anywher
❑ execute up to a specified breakpoin
❑ examine the state of an aborted pr

file”)



P2 — S2002 186.

Programming Tools

ost mature 

., jdb); most modern 

ur program is not 

o can only be used 
nerating compatible 
© O. Nierstrasz — U. Berne

Using Debuggers
Interactive debuggers are available for m
programming languages.

Classical debuggers are line-oriented (e.g
ones are graphical.

➤ When should you use a debugger?
✔ When you are unsure why (or where) yo

working.

NB: debuggers are object code specific, s
with programs compiled with compilers ge
object files.



P2 — S2002 187.

Programming Tools

.move(), line=94, bci=0

.java:94)

me.java:80)

server=y,suspend=n \

omoku (g)?: t
© O. Nierstrasz — U. Berne

Using jdb

% jdb -attach 8000
Initializing jdb...
> stop in AbstractBoardGame.move
Set breakpoint AbstractBoardGame.move
Breakpoint hit: thread="main", AbstractBoardGame

94 assert(this.notOver());
main[1] where

[1] AbstractBoardGame.move (AbstractBoardGame
[2] Player.move (Player.java:68)
[3] AbstractBoardGame.update (AbstractBoardGa
[4] GameDriver.playGame (GameDriver.java:54)
[5] GameDriver.playGame (GameDriver.java:29)
[6] GameDriver.main (GameDriver.java:17)

% java -Xdebug \
-Xrunjdwp:transport=dt_socket,address=8000,
-jar TicTacToe.jar

Hi! Would you like to play TicTacToe (t) or G
...



P2 — S2002 188.

Programming Tools

ar mark)

.move(), line=95, bci=8
© O. Nierstrasz — U. Berne

main[1] list
91 public void move(String coord, ch
92 throws AssertionException
93 {
94 => assert(this.notOver());
95 int col = getCol(coord);
96 int row = getRow(coord);
main[1] next
main[1] 
Step completed: thread="main", AbstractBoardGame

95 int col = getCol(coord);
main[1] locals
Method arguments:

coord = "b2"
mark = X

Local variables:
main[1] print this._gameState[1][1]

this._gameState[1][1] = 
main[1] cont
...



P2 — S2002 189.

Programming Tools

y

te classes with 
ions

aths through your 

ents) to probe the 

ertion fails

ssion testing!
© O. Nierstrasz — U. Berne

Debugging Strateg
Develop tests as you program

❑ Apply Design by Contract to decora
invariants and pre- and post-condit

❑ Develop unit tests to exercise all p
program
☞ use assertions (not print statem

program state 
☞ print the state only when an ass

❑ After every modification, do regre

...



P2 — S2002 190.

Programming Tools

 ...

 and fix the bug

hen
aulty code

ts!

ssumptions.

u will find and stamp 
© O. Nierstrasz — U. Berne

Debugging Strategy
If errors arise during testing or usage

❑ Use the test results to track down

❑ If you can’t tell where the bug is, t
☞ use a debugger to identify the f
☞ fix the bug
☞ identify and add any missing tes

All software bugs are a matter of false a

If you make your assumptions explicit, yo
out your bugs.



P2 — S2002 191.

Programming Tools

e a terminated 

nted by
) option, or
our source program
file data file
ofile data as input

h in various formats 

mpiler to compiler
© O. Nierstrasz — U. Berne

Profilers
A profiler (e.g., java -prof) tells you wher
program has spent its time.

1. your program must first be instrume
(i) setting a compiler (or interpreter
(ii) adding instrumentation code to y

2. the program is run, generating a pro
3. the profiler is executed with the pr

The profiler can then display the call grap

Caveat: the technical details vary from co
...



P2 — S2002 192.

Programming Tools

f

.readBytes
initFields
inflateBytes
m.writeBytes

Byte.getNative
assLoader.loadClass
append
stemPackage
normalize

l.ssl.Provider$1.run
pen
© O. Nierstrasz — U. Berne

Using java -Xpro
% java -Xprof -jar TicTacToe.jar
...

Interpreted + native Method
98.20% 0 + 696 java.io.FileInputStream
0.10% 1 + 0 java.util.zip.ZipEntry.
0.10% 0 + 1 java.util.zip.Inflater.
0.10% 0 + 1 java.io.FileOutputStrea
0.10% 1 + 0 AbstractBoardGame.get
0.10% 1 + 0 sun.io.CharToByteSingle
0.10% 0 + 1  sun.misc.Launcher$AppCl
0.10% 1 + 0 java.lang.StringBuffer.
0.10% 0 + 1 java.lang.Package.getSy
0.10% 0 + 1 java.io.UnixFileSystem.
0.10% 0 + 1 GameDriver.main
0.10% 0 + 1 com.sun.net.ssl.interna
0.10% 0 + 1 java.util.zip.ZipFile.o

100.00% 5 + 704 Total interpreted



P2 — S2002 193.

Programming Tools

rof
10 -jar Test.jar

:12:04 2002

teSingleByte.getNative
rties.load
dReader.readLine
Game
able.<init>
me.move
g.charAt
dReader.readLine
gBuffer.append
me.set
Loader.defineClass
dWriter.ensureOpen
g.concat
© O. Nierstrasz — U. Berne

Using java -Xrunhp
% java -Xrunhprof:cpu=times,file=log.txt,depth=

CPU TIME (ms) BEGIN (total = 380) Sat Mar 16 12
rank self accum count trace method

1 5.26% 5.26% 272 18 sun.io.CharToBy
2 5.26% 10.53% 1 24 java.util.Prope
3 5.26% 15.79% 106 9 java.io.Buffere
4 2.63% 18.42% 5 27 TestDriver.test
5 2.63% 21.05% 5 31 java.lang.Throw
6 2.63% 23.68% 40 26 AbstractBoardGa
7 2.63% 26.32% 509 38 java.lang.Strin
8 2.63% 28.95% 40 42 java.io.Buffere
9 2.63% 31.58% 128 15 java.lang.Strin
10 2.63% 34.21% 361 21 AbstractBoardGa
11 2.63% 36.84% 1 30 java.lang.Class
12 2.63% 39.47% 10 13 java.io.Buffere
13 2.63% 42.11% 1 10 java.lang.Strin
...



P2 — S2002 194.

Programming Tools

 to tune 

out performance?
gram with poor 

rts of the program 
© O. Nierstrasz — U. Berne

Using Profilers

➤ When should you use a profiler?
✔ Always run a profiler before attempting

performance.

➤ How early should you start worrying ab
✔ Only after you have a clean, running pro

performance.

NB: The call graph also tells you which pa
have (not) been tested!



P2 — S2002 195.

Programming Tools

HTML format for 

otected method may 
een /** and */.
e.g., @author) and 
© O. Nierstrasz — U. Berne

Javadoc
Javadoc generates API documentation in 
specified Java source files.

Each class, interface and each public or pr
be preceded by “javadoc comments” betw
Comments may contain special tag values (
(some) HTML tags.



P2 — S2002 196.

Programming Tools

g

ernative source
ringReader).

dReader in) { ...
© O. Nierstrasz — U. Berne

Javadoc input
import java.io.*;
/**
 * Manage interaction with user.
 * @author Oscar.Nierstrasz@acm.or
 * @version 1.5 1999-02-07
 */
public class Player { ...
/**
 * Constructor to specify an alt
 * of moves(e.g., a test case St
 */
public Player(char mark, Buffere



P2 — S2002 197.

Programming Tools
© O. Nierstrasz — U. Berne

Javadoc 
output

View it with 
your favourite 
web browser!



P2 — S2002 198.

Programming Tools

 your environment!

anger help to detect 
s, such as “memory 

d directories into a 

 according to editing 
© O. Nierstrasz — U. Berne

Other tools
Be familiar with the programming tools in

❑ memory inspection tools: like ZoneR
other memory management problem
leaks”

❑ zip/jar: store and compress files an
single “zip file”

❑ awk, sed and perl: process text files
scripts/programs



P2 — S2002 199.

Programming Tools

vironments
(IDE) provides a 
ing tools:

gramming tools were 
© O. Nierstrasz — U. Berne

Integrated Development En
An Integrated Development Environment 
common interface to a suite of programm

❑ project manager
❑ browsers and editors
❑ compilers and linkers
❑ make utility
❑ version control system
❑ interactive debugger
❑ profiler
❑ memory usage monitor
❑ documentation generator

Many of the graphical object-oriented pro
pioneered in Smalltalk.



P2 — S2002 200.

Programming Tools

 languages and 
© O. Nierstrasz — U. Berne

CodeWarrior
CodeWarrior is a popular IDE for multiple
platforms

The Project Browser 
organizes the source and 
object files belonging to a 
project, and lets you 
modify the project 
settings, edit source files, 
and compile and run the 
application.



P2 — S2002 201.

Programming Tools

owser
© O. Nierstrasz — U. Berne

CodeWarrior Class Br
The Class 
Browser 
provides one 
way to navigate 
and edit 
project files ...



P2 — S2002 202.

Programming Tools

Browser
he class hierarchy.
© O. Nierstrasz — U. Berne

CodeWarrior Hierarchy 
A Hierarchy Browser provides a view of t

NB: no distinction is 
made between 
interfaces and 
classes. Classes that 
implement multiple 
interfaces appear 
multiple times in the 
hierarchy!



P2 — S2002 203.

Programming Tools

ts
© O. Nierstrasz — U. Berne

Setting Breakpoin
You can set 
breakpoints by 
simply clicking 
next to 
selected 
statements.

Execution will 
be interrupted 
every time 
breakpoint is 
reached, 
displaying the 
current 
program state.



P2 — S2002 204.

Programming Tools

ow!
building?
rol system support?

you set them?
ed a bug?
© O. Nierstrasz — U. Berne

What you should kn
✎ How do make and Ant support system 
✎ What functionality does a version cont
✎ When should you use a debugger?
✎ What are breakpoints? Where should 
✎ What should you do after you have fix
✎ When should you use a profiler?
✎ What is an IDE?



P2 — S2002 205.

Programming Tools

estions?
make?
RCS?
sion of your system?
our project as a new 

the compiler (rather 

ry part of your 
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ When should you use Ant rather than 
✎ When should you use CVS rather than 
✎ How often should you checkpoint a ver
✎ When should you specify a version of y

“release”?
✎ How can you tell when there is a bug in 

than in your program)?
✎ How can you tell if you have tested eve

system?



P2 — S2002 206.

A Testing Framework

ework

k
ase study
erent types of 

.junit.org)
© O. Nierstrasz — U. Berne

7. A Testing Fram

Overview
❑ What is a framework?
❑ JUnit — a simple testing framewor
❑ Money and MoneyBag — a testing c
❑ Double Dispatch — how to add diff

objects
❑ Testing practices

Sources
❑ JUnit 3.7 documentation (from www

http://www.junit.org/


P2 — S2002 207.

A Testing Framework

h development. 
 progress of 

mething starts 
king.”

 exhaustive.

y?
© O. Nierstrasz — U. Berne

The Problem

“Testing is not closely integrated wit
This prevents you from measuring the
development — you can't tell when so
working or when something stops wor

Interactive testing is tedious and seldom
Automated tests are better, but, 

❑ how to introduce tests interactivel
❑ how to organize suites of tests?



P2 — S2002 208.

A Testing Framework

ality, write the tests 

.

ftware to add new 
nd run the 

g.
© O. Nierstrasz — U. Berne

Testing Practices
During Development

❑ When you need to add new function
first.
You will be done when the test runs

❑ When you need to redesign your so
features, refactor in small steps, a
(regression) tests after each step.
Fix what’s broken before proceedin

...



P2 — S2002 209.

A Testing Framework

...

in your code, first 
 code is working.
.

omething into a 
ssion, write it as 

Martin Fowler
© O. Nierstrasz — U. Berne

Testing Practices 
During Debugging

❑ When someone discovers a defect 
write a test that will succeed if the
Then debug until the test succeeds

“Whenever you are tempted to type s
print statement or a debugger expre
a test instead.”



P2 — S2002 210.

A Testing Framework

t provides:
Test Suites
 up test data 

ing tests

errors:
n anticipated 

eck for.
© O. Nierstrasz — U. Berne

JUnit
JUnit is a simple “testing framework” tha

❑ classes for writing Test Cases and 
❑ methods for setting up and cleaning

(“fixtures”)
❑ methods for making assertions 
❑ textual and graphical tools for runn

JUnit distinguishes between failures and 
❑ A failure is a failed assertion, i.e., a

problem that you test.
❑ An error is a condition you didn’t ch



P2 — S2002 211.

A Testing Framework

aries
ser code makes use 
cedures or classes:

hip between generic 
 both generic 
:

me — I’ll call you.”

ibrary classes

User classes
© O. Nierstrasz — U. Berne

Frameworks vs. Libr
In traditional application architectures, u
of library functionality in the form of pro

A framework reverses the usual relations
and application code. Frameworks provide
functionality and application architecture

Essentially, a framework says: “Don’t call 

User Application
L

main()

Framework Application
main()



P2 — S2002 212.

A Testing Framework

rk
«utility»

Assert

rtTrue(boolean) 
rtEquals(Object, Object)

TestResult 

ate() 
id run(TestCase) 
Error(Test, Throwable)
Failure(Test, Throwable)
ors() : Enumeration
lures() : Enumeration

errors and failures are 
ected into a TestResult.
© O. Nierstrasz — U. Berne

The JUnit Framewo
«interface»

Test
+ countTestCases() : int
+ run(TestResult)

TestCase
abstract

+ create(String)
+ fail() 
+ void runBare() 
# void runTest()
# void setUp() 
# void tearDown()
+ name() : String

TestSuite 

+ create() 
+ create(Class)
+ addTest(Test)

*
+ asse
+ asse
...

+ cre
# vo
+ add
+ add
+ err
+ fai

A Test can 
run a number 
of concrete 
test cases

All 
coll

A TestSuite 
bundles a set 
of Tests



P2 — S2002 213.

A Testing Framework

io

t you define for your 

n(tc)

are()

addFailure()

tr:TestResult
© O. Nierstrasz — U. Berne

A Testing Scenar

The framework calls the test methods tha
test cases.

run(tr)
run(tr)

ru

runB
setUp()

runTest()

tearDown()

:TestRunner :TestSuite tc:TestCase



P2 — S2002 214.

A Testing Framework

 of code, then a 
to write a test 
hat will make it 

st a single class
fore you implement)
functionality

their time 
© O. Nierstrasz — U. Berne

Testing Style

“The style here is to write a few lines
test that should run, or even better, 
that won't run, then write the code t
run.”

❑ write unit tests that thoroughly te
❑ write tests as you develop (even be
❑ write tests for every new piece of 

“Developers should spend 25-50% of 
developing tests.”



P2 — S2002 215.

A Testing Framework

rrencies

problem of 
 currencies. 
 is trivial, you 
gs get more 
re involved.”
© O. Nierstrasz — U. Berne

Representing multiple cu

The problem ...

“The program we write will solve the 
representing arithmetic with multiple
Arithmetic between single currencies
can just add the two amounts. ... Thin
interesting once multiple currencies a



P2 — S2002 216.

A Testing Framework

ss to handle a single 

ow to add different 

Money
fAmount : int
fCurrency : String
create(int, String)
amount() : int
currency() : String
add(Money) : Money
equals( Object) : boolean
toString() : String
© O. Nierstrasz — U. Berne

Money
We start by designing a simple Money cla
currency:

public class Money {
...
public Money add(Money m) {
return ;

}
...

}

NB: The first version does not consider h
currencies!

- 
- 
+ 
+ 
+ 
+ 
+ 
+ 

new Money(...)



P2 — S2002 217.

A Testing Framework

Case that exercises 

 {

super(name); }

eate the test data

tCase
© O. Nierstrasz — U. Berne

MoneyTest
To test our Money class, we define a Test
some test data (the fixture):

public class MoneyTest 
private Money f12CHF;
private Money f14CHF;
public MoneyTest(String name) { 

protected void  { // cr

f14CHF = new Money(14, "CHF");
}
...

}

import junit.framework.*;
extends Tes

setUp()
f12CHF = new Money(12, "CHF");



P2 — S2002 218.

A Testing Framework

ct to be true ...

);

;
F));

"CHF");
F);

)

(12, "CHF"))
© O. Nierstrasz — U. Berne

Some basic tests
We define methods to test what we expe

public void testEquals() {
assertTrue(
assertEquals(f12CHF, f12CHF);
assert
assertTrue(!f12CHF.equals(f14CH

}
public void testSimpleAdd() {
Money expected = new Money(26, 
Money result = f12CHF.add(f14CH
assertEquals(expected, result);

}

!f12CHF.equals(null

Equals(f12CHF, new Money



P2 — S2002 219.

A Testing Framework

ite
uite:

;
;

stSimpleAdd"));

 TestCase instances
ic method called 

e()
estEquals"))
© O. Nierstrasz — U. Berne

Building a Test Su
... and we bundle these tests into a Test S

 {
TestSuite suite = 

suite.addTest(new MoneyTest("te
;

}

A Test Suite:
❑ bundles together a bunch of named
❑ by convention, is returned by a stat

suite()

public static Test suite()
new TestSuit

suite.addTest(new MoneyTest("t

return suite



P2 — S2002 220.

A Testing Framework
© O. Nierstrasz — U. Berne

The TestRunner

junit.ui.TestRunner is a 
GUI that we can use to 
instantiate and run the 
suite:



P2 — S2002 221.

A Testing Framework

ce a MoneyBag class 
© O. Nierstrasz — U. Berne

MoneyBags
To handle multiple currencies, we introdu
that can hold several instances of Money:

...

MoneyBag
- fMonies : HashTable
+ create(Money, Money)
+ create(Money [ ])
- appendMoney(Money)
+ toString() : String



P2 — S2002 222.

A Testing Framework

;

i++)

Money) {
Money.currency());
oney); }
}

;

Hashtable(5)

 m)
© O. Nierstrasz — U. Berne

MoneyBags ...
class MoneyBag {
private Hashtable 
MoneyBag(Money bag[]) {
for (int i= 0; i < bag.length; 

;
}
private void appendMoney(Money a
Money m = (Money) fMonies.get(a
if (m != null) { m = m.add(aM
else { m = aMoney; 

}
}

fMonies = new 

appendMoney(bag[i])

fMonies.put(aMoney.currency(),



P2 — S2002 223.

A Testing Framework

 (I)
e fixture ...

tCase {

;
USD);
USD)
© O. Nierstrasz — U. Berne

Testing MoneyBags
To test MoneyBags, we need to extend th

public class MoneyTest extends Tes
...
protected void setUp() {
f12CHF = new Money(12, "CHF");
f14CHF = new Money(14, "CHF");

;
f21USD = new Money(21, "USD");

fMB2 = new MoneyBag(f14CHF, f21
}

f7USD = new Money( 7, "USD")

fMB1 = new MoneyBag(f12CHF, f7



P2 — S2002 224.

A Testing Framework

(II)

;

);
);

;estBagEquals"))
© O. Nierstrasz — U. Berne

Testing MoneyBags 
... define some new (obvious) tests ...

public void testBagEquals() {
assertTrue( )
assert ;
assertTrue(!fMB1.equals(f12CHF)
assertTrue(!f12CHF.equals(fMB1)
assertTrue(!fMB1.equals(fMB2));

}

... add them to the test suite ...
public static Test suite() { ...

return suite;
}

!fMB1.equals(null)
Equals(fMB1, fMB1)

suite.addTest(new MoneyTest("t



P2 — S2002 225.

A Testing Framework

III)
© O. Nierstrasz — U. Berne

Testing MoneyBags (

and run the tests.



P2 — S2002 226.

A Testing Framework

s
itrary Monies and 
e as equals:

 {
HF][7 USD]}
;
g(bag);

;

ould implement a 

}

add(f7USD))
© O. Nierstrasz — U. Berne

Adding MoneyBag
We would like to freely add together arb
MoneyBags, and be sure that equals behav

public void testMixedSimpleAdd()
// [12 CHF] + [7 USD] == {[12 C
Money bag[] = 
MoneyBag expected = new MoneyBa
assertEquals(expected, 

}

That implies that Money and MoneyBag sh
common interface ...

{ f12CHF, f7USD 

f12CHF.



P2 — S2002 227.

A Testing Framework

e (I)
nies

terface?

MoneyBag

endMoney(Money) 
endBag(MoneyBag) 
© O. Nierstrasz — U. Berne

The IMoney interfac
Monies know how to be added to other Mo

Do we need anything else in the IMoney in

Money

+ amount() : int
+ currency() : String

«interface» 

IMoney
+ add(IMoney) : IMoney

- app
- app



P2 — S2002 228.

A Testing Framework

I)
ing encapsulation?
.

add me as a Money

 ...

 add as a MoneyBag

 an additional call to 
ling with...”
© O. Nierstrasz — U. Berne

Double Dispatch (
How do we implement add() without break
class Money implements IMoney { ..
public IMoney add(IMoney m) {
return m. (this); // 

} ...
}
class MoneyBag implements IMoney {
public IMoney add(IMoney m) {
return m.  (this); //

} ...
}

“The idea behind double dispatch is to use
discover the kind of argument we are dea

addMoney

addMoneyBag



P2 — S2002 229.

A Testing Framework

I)

.
{
y()))
mount(), 
);

ag s) {
© O. Nierstrasz — U. Berne

Double Dispatch (I
The rest is then straightforward ...
class Money implements IMoney { ..
public IMoney addMoney(Money m) 
if (m.currency().equals(currenc
return new Money(amount()+m.a

currency()
else
return new MoneyBag(this, m);

}
public IMoney addMoneyBag(MoneyB
return s.addMoney(this);

} ...

and MoneyBag takes care of the rest.



P2 — S2002 230.

A Testing Framework

 (II)

;

eyBag);

ly needed within the 

«interface» 

IMoney
ney) : IMoney
y(Money) : IMoney
yBag(MoneyBag) : IMoney
© O. Nierstrasz — U. Berne

The IMoney interface

So, the common 
interface has to be:

public interface IMoney {
public IMoney add(IMoney aMoney)
IMoney addMoney(Money aMoney);
IMoney addMoneyBag(MoneyBag aMon

}

NB: addMoney() and addMoneyBag() are on
Money package.

+ add(IMo
+ addMone
+ addMone



P2 — S2002 231.

A Testing Framework
© O. Nierstrasz — U. Berne

A Failed test
This time we are not so lucky ...



P2 — S2002 232.

A Testing Framework

ag.equals()!

 ... 
bject) {
g) {
© O. Nierstrasz — U. Berne

The fix ...
It seems we forgot to implement MoneyB

We fix it:
class MoneyBag implements IMoney {
public boolean equals(Object anO
if (anObject instanceof MoneyBa
...

} else {
return false;

}
}

... test it, and continue developing.



P2 — S2002 233.

A Testing Framework

ow!
ibrary?
ment the same 

 the name mean?
© O. Nierstrasz — U. Berne

What you should kn
✎ How does a framework differ from a l
✎ Why do TestCase and TestSuite imple

interface?
✎ What is a unit test?
✎ What is a test “fixture”?
✎ What should you test in a TestCase?
✎ What is “double dispatch”? What does



P2 — S2002 234.

A Testing Framework

estions?
 in debugging?
ich test methods to 

ight suite() method?
in that 
g declared?
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ How does implementing toString() help
✎ How does the MoneyTest suite know wh

run?
✎ How does the TestRunner invoke the r
✎ Why doesn’t the Java compiler compla

MoneyBag.equals() is used without bein



P2 — S2002 235.

Software Components: Collections

 Collections

le

 and Maps

 The Java Tutorial , 
© O. Nierstrasz — U. Berne

8. Software Components:

Overview
❑ Example problem: The Jumble Puzz
❑ The Java 2 collections framework
❑ Interfaces: Collections, Sets, Lists
❑ Implementations ...
❑ Algorithms: sorting ...
❑ Iterators

Source
❑ “Collections 1.2”, by Joshua Bloch, in

java.sun.com



P2 — S2002 236.

Software Components: Collections

 or coarse-grained 

provided
services
© O. Nierstrasz — U. Berne

Components
Components are black-box entities that:

❑ import required services and
❑ export provided services
❑ must be designed to be composed 

Components may be fine-grained (classes)
(applications).

required services



P2 — S2002 237.

Software Components: Collections
© O. Nierstrasz — U. Berne

The Jumble Puzzle
The Jumble Puzzle tests your 
English vocabulary by presenting 
four jumbled, ordinary words.
The circled letters of the 
unjumbled words represent the 
jumbled answer to a cartoon 
puzzle.

Since the jumbled words can be 
found in an electronic dictionary, 
it should be possible to write a 
program to automatically solve 
the first part of the puzzle 
(unjumbling the four words).



P2 — S2002 238.

Software Components: Collections

efficient: a word 
ations. A five-letter 
-letter word may 
rmutations.

iven word have?

abacus
abalone
abase
...
Zurich
zygote

n, 

e 
© O. Nierstrasz — U. Berne

Naive Solution

The obvious, naive solution is extremely in
with n characters may have up to n! permut
word may have 120 permutations and a six
have 720 permutations. “rupus” has 60 pe

✎ Exactly how many permutations will a g

rupus
urpus
uprus
purus
pruus

...

Generate all 
permutations 
of the jumbled 
words:

For each 
permutatio
check if it 
exists in th
word list:



P2 — S2002 239.

Software Components: Collections

roblem

s”) can be unjumbled 
ords are jumbles of 

e anagrams?
© O. Nierstrasz — U. Berne

Rethinking the Jumble P

Observation: if a jumbled word (e.g. “rupu
to a real word in the list, then these two w
each other (i.e. they are anagrams).

Is there a fast way to tell if two words ar

...



P2 — S2002 240.

Software Components: Collections

oblem ...
 up of the same set 

sisting of its letters 
suu”.

 same key

 for a word with the 
© O. Nierstrasz — U. Berne

Rethinking the Jumble Pr
Two words are anagrams if they are made
of characters. 

We can assign each word a unique “key” con
in sorted order. The key for “rupus” is “pr

Two words are anagrams if they have the

We can unjumble “rupus” by simply looking
same key.



P2 — S2002 241.

Software Components: Collections

ion

 associative arrays, 
ponents.

Key Word
aabcsu abacus
aabelno abalone
... ...
prsuu usurp
... ...
chiruz zurich
egotyz zygote
© O. Nierstrasz — U. Berne

An Efficient Solut
1. Build an associative array of keys 

and words for every word in the 
dictionary:

2. Generate the key of a jumbled 
word:
key(“rupus”) = “prsuu”

3. Look up and return the words with 
the same key.

To implement a software solution, we need
lists, sort routines, and possibly other com



P2 — S2002 242.

Software Components: Collections

work
interfaces, 
lating collections of 

«interface»

Map

«interface»

SortedMap

Maps manage 
mappings from 
keys to values.
© O. Nierstrasz — U. Berne

The Collections Frame
The Java Collections framework contains 
implementations and algorithms for manipu
elements.

«interface»

Collection

«interface»

SortedSet

«interface»

Set
«interface»

List

Sets and Lists 
are kinds of 
collections.



P2 — S2002 243.

Software Components: Collections

es

«interface»

List
(int) : Object
(int, Object) : Object
(int, Object) 
ove(int) : Object
xOf(Object) : int

Iterator() : ListIterator
List(int from, to) : List

Lists may 
contains 
duplicated 
elements. 
Sets may 
not.
© O. Nierstrasz — U. Berne

Collection Interfac

«interface»

Set

«interface»

Collection
+ size() : int
+ isEmpty() : boolean
+ contains(Object) : boolean
+ add(Object): boolean 
+ remove(Object) : boolean 
+ iterator() : Iterator
+ toArray() : Object[] 

+ get
+ set
+ add
+ rem
+ inde
+ list
+ sub

«interface»

SortedSet
+ subSet(Object from, to) : SortedSet
+ first() : Object
+ last() : Object



P2 — S2002 244.

Software Components: Collections

ementations of each 

entations work?

AbstractList

AbstractSequentialList

LinkedList

«interface»

List
© O. Nierstrasz — U. Berne

Implementations
The framework provides at least two impl
interface.

✎ Can you guess how the standard implem

AbstractCollection

AbstractSet

HashSet ArraySet

«interface»

Collection
«interface»

Set

ArrayList



P2 — S2002 245.

Software Components: Collections

 Classes

ot classes

rfaces

multiple subtyping

haviour shared by 
stantiated 
plete
© O. Nierstrasz — U. Berne

Interface and Abstract
Principles at play:

❑ Clients depend only on interfaces, n

❑ Classes may implement multiple inte

❑ Single inheritance doesn’t prohibit 

❑ Abstract classes collect common be
multiple subclasses but cannot be in
themselves, because they are incom



P2 — S2002 246.

Software Components: Collections

«interface»

Map
y, value) : Object

ey) : Object
ct key) : Object

bject key) : boolean
(Object value) : boolean

olean
t
ection
et

«interface»

ortedMap
st() : Object
t() : Object
© O. Nierstrasz — U. Berne

Maps

A Map is an object that 
manages a set of (key, value) 
pairs.

Map is implemented by 
HashMap and TreeMap.

A Sorted Map maintains its 
entries in ascending order.

+ put(Object ke
+ get(Object k
+ remove(Obje
+ containsKey(O
+ containsValue
+ size() : int
+ isEmpty() : bo
+ keySet() : Se
+ values() : Coll
+ entrySet() : S

S
+ fir
+ las



P2 — S2002 247.

Software Components: Collections

s a kind of HashMap:
 {

rgs[]) {

 } 

d dictionary");

p

s[0]);
© O. Nierstrasz — U. Berne

Jumble
We can implement the Jumble dictionary a
public class Jumble 
public static void main(String a
if (args.length == 0) { ... }
Jumble wordMap = null;
try { 
catch (IOException err) {
System.err.println("Can't loa
return;

}

} 
...

extends HashMa

wordMap = new Jumble(arg

wordMap.inputLoop();



P2 — S2002 248.

Software Components: Collections

r
ds to load ...

OException {
class invariant!

erate a key for each 
© O. Nierstrasz — U. Berne

Jumble constructo
A Jumble dictionary knows the file of wor

private String wordFile_;

Jumble(String wordFile) throws I
super(); // NB: establish super
wordFile_ = wordFile;
loadDictionary();

}

Before we continue, we need a way to gen
word ...



P2 — S2002 249.

Software Components: Collections

 be avoided in an OO 
e to break this rule?

Collections
Search(List, Object) : int
ist, List) 
ollection) : Object
ollection) : Object
se(List) 
le(List) 
ist) 
ist, Comparator) 
© O. Nierstrasz — U. Berne

Algorithms
The Collections framework 
provides various algorithms, 
such as sorting and searching, 
that work uniformly for all kinds 
of Collections and Lists.
(Also any that you define 
yourself!)

These algorithms are static 
methods of the Collections class.

✎ As a general rule, static methods should
design. Are there any good reasons her

+ binary
+ copy(L
+ max(C
+ min(C
+ rever
+ shuff
+ sort(L
+ sort(L
...



P2 — S2002 250.

Software Components: Collections

Arrays

[]) 
[], int, int) 
le[]) 
le[], int, int) 
[]) 
[], int, int) 
) 
, int, int) 
ct[]) 
ct[], Comparator) 
ct[], int, int) 
ct[], int, int, Comparator) 
© O. Nierstrasz — U. Berne

Array algorithms

There is also a class, Arrays, 
consisting of static methods 
for searching and sorting that 
operate on Java arrays of basic 
data types.

✎ Which sort routine should 
we use to generate unique 
keys for the Jumble puzzle?

...
+ sort(char
+ sort(char
+ sort(doub
+ sort(doub
+ sort(float
+ sort(float
+ sort(int[]
+ sort(int[]
+ sort(Obje
+ sort(Obje
+ sort(Obje
+ sort(Obje
...



P2 — S2002 251.

Software Components: Collections

acters

d to an array of 
ult back to a String.

g word) {
;ay()
© O. Nierstrasz — U. Berne

Sorting arrays of char

The easiest solution is to convert the wor
characters, sort that, and convert the res

public static String sortKey(Strin
char [] 

;
return ;

}

✎ What other possibilities do we have?

letters = word.toCharArr
Arrays.sort(letters)

new String(letters)



P2 — S2002 252.

Software Components: Collections

ary
 ...

rows IOException {

ader(wordFile_));

;ord)
© O. Nierstrasz — U. Berne

Loading the diction
Reading the dictionary is straightforward

private void loadDictionary() th
BufferedReader in = 
new BufferedReader(new FileRe

String ;
while (word != null) {

word = in.readLine();
}

}
...

word = in.readLine()

this.addPair(sortKey(word), w



P2 — S2002 253.

Software Components: Collections

y ...
y given key!

 String word) {
;t(key)
© O. Nierstrasz — U. Berne

Loading the dictionar
... but there may be a List of words for an

private void addPair(String key,
List 
if (wordList == null)
wordList = new ArrayList();

;
this.put(key, wordList);

}

wordList = (List) this.ge

wordList.add(word)



P2 — S2002 254.

Software Components: Collections

to unjumble: ");

!= null) { ...

;

 unjumble ...”;

: " + wordList);

ord))
© O. Nierstrasz — U. Berne

The input loop
Now the input loop is straightforward ...
public void inputLoop() { ...

System.out.print("Enter a word 
String word;
while (( ) 

List wordList =
(List) 

if (wordList == null) {
System.out.println("Can't

} else {
System.out.println(

word + " unjumbles to
} ...

word = in.readLine()

this.get(sortKey(w



P2 — S2002 255.

Software Components: Collections

r ...

se, please]
© O. Nierstrasz — U. Berne

Running the unjumble
Enter a word to unjumble: rupus
rupus unjumbles to: [usurp]
Enter a word to unjumble: hetab
hetab unjumbles to: [bathe]
next word: please
please unjumbles to: [asleep, elap
next word: java
Can't unjumble java
next word: 
Quit? (y/n): y
bye!



P2 — S2002 256.

Software Components: Collections

ams

the list has the 
s the largest set of 

 whose elements are 
© O. Nierstrasz — U. Berne

Searching for anagr

We would now like to know which word in 
largest number of anagrams — i.e., what i
words with the same key.

➤ How do you iterate through a Collection
unordered?

✔ Use an iterator.



P2 — S2002 257.

Software Components: Collections

«interface»

Iterator
+ hasNext() : boolean
+ next() : Object
+ remove()

«interface»

ListIterator
+ add(Object) 
+ hasPrevious() : boolean
+ nextIndex() : int 
+ previous() : Object
+ previousIndex() : int
+ set(Object) 
© O. Nierstrasz — U. Berne

Iterators

An Iterator is an object that lets you 
walk through an arbitrary collection, 
whether it is ordered or not.

Lists additionally provide ListIterators 
that allows you to traverse the list in 
either direction and modify the list 
during iteration. 



P2 — S2002 258.

Software Components: Collections

ey set

;

;
y);

erator()

t()
© O. Nierstrasz — U. Berne

Iterating through the k
public List maxAnagrams() {
int max = 0;
List anagrams = null;
Iterator 

 {
String 
List words = (List) this.get(ke
if (words.size() > max) {
anagrams = words;
max = words.size();

}
}
return anagrams;

}

keys = this.keySet().it
while (keys.hasNext())

key = (String) keys.nex



P2 — S2002 259.

Software Components: Collections

agrams

]

© O. Nierstrasz — U. Berne

Running Jumble.maxAn
Printing wordMap.maxAnagrams() yields:

[caret, carte, cater, crate, trace



P2 — S2002 260.

Software Components: Collections

work
ication, stick to the 

ions, if possible.

ation, make sure it is 
 so you can mix and 

 on the collections 
rete classes.

ace that does the 
© O. Nierstrasz — U. Berne

How to use the frame
❑ If you need collections in your appl

standard interfaces.

❑ Use one of the default implementat

❑ If you need a specialized implement
compatible with the standard ones,
match.

❑ Make your applications depend only
interfaces, if possible, not the conc

❑ Always use the least specific interf
job (Collection, if possible).



P2 — S2002 261.

Software Components: Collections

ow!
o they differ?
than a class?
rithms implemented 

es it solve?
© O. Nierstrasz — U. Berne

What you should kn
✎ How are Sets and Lists similar? How d
✎ Why is Collection an interface rather 
✎ Why are the sorting and searching algo

as static methods?
✎ What is an iterator? What problem do



P2 — S2002 262.

Software Components: Collections

estions?
n, AbstractSet and 

 super()?
 Jumble run faster? 
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ Of what use are the AbstractCollectio

AbstractList?
✎ Why doesn’t Map extend Collection?
✎ Why does the Jumble constructor call
✎ Which implementation of Map will make

Why?



P2 — S2002 263.

GUI Construction

ion

ayout Managers

 edition, O’Reilly, 

 The Java Tutorial , 
1996
© O. Nierstrasz — U. Berne

9. GUI Construct

Overview 
❑ Applets
❑ Model-View-Controller
❑ AWT Components, Containers and L
❑ Events and Listeners
❑ Observers and Observables

Sources
❑ David Flanagan, Java in Nutshell: 3d

1999.
❑ Mary Campione and Kathy Walrath,

The Java Series, Addison-Wesley, 



P2 — S2002 264.

GUI Construction

oe?

 very limited:

eractive, network 

 browser
put

 run as an applet
© O. Nierstrasz — U. Berne

A Graphical TicTacT

Our existing TicTacToe implementation is
❑ single-user at a time
❑ textual input and display

We would like to migrate it towards an int
based game:

❑ players on separate machines
❑ running the game as an “applet” in a
❑ with graphical display and mouse in

As first step, we will migrate the game to



P2 — S2002 265.

GUI Construction

) use of 

chine) 
ed dynamically.
and can be used to 

Server
Applet

asses ... AClass
© O. Nierstrasz — U. Berne

Applets
Applet classes 
can be 
downloaded 
from an HTTP 
server and 
instantiated 
by a client.

The Applet instance may make (restricted
1. standard API classes 

(already accessible to the virtual ma
2. other Server classes to be download

java.applet.Applet extends java.awt.Panel 
construct a UI ...

Client

other cl

:Applet

API Classes

:AClass



P2 — S2002 266.

GUI Construction

plet

for Graphics

 {

request a refresh

{
0, 30 );

by the client.

pplet
© O. Nierstrasz — U. Berne

The Hello World Ap
The simplest Applet:
import java.awt.*; // 

;
public class HelloApplet 

// 

public void paint( Graphics g ) 
g. , 3

}
}

The Applet will be initialized and started 

import java.applet.Applet
extends A

public void init() {
repaint();

}

drawString("Hello World!"



P2 — S2002 267.

GUI Construction

plet

HEAD>
© O. Nierstrasz — U. Berne

The Hello World Ap
<HTML>
<HEAD><TITLE>HelloApplet</TITLE></
<BODY>

</BODY>
</HTML>

<APPLET
CODEBASE = "."
ARCHIVE = "HelloApplet.jar"
CODE = "HelloApplet.class"
NAME = "HelloApplet"
WIDTH = 400
HEIGHT = 300

>
</APPLET>



P2 — S2002 268.

GUI Construction

n Applet
ade available in a 
er. 

.
e other game classes

"

© O. Nierstrasz — U. Berne

Accessing the game as a
The compiled TicTacToe classes will be m
directory “AppletClasses” on our web serv

<title>GameApplet</title>
<applet

width=200
height=200>

</applet>

GameApplet extends java.applet.Applet
Its init() will instantiate and connect th

codebase="AppletClasses"
code="tictactoe.GameApplet.class



P2 — S2002 269.

GUI Construction

ller
el of the game, 
ent a graphical view 

n from its GUI so 
nected and updated.

()

Model

:MouseListener
© O. Nierstrasz — U. Berne

Model-View-Contro
Version 1.6 of our game implements a mod
without a GUI. The GameApplet will implem
and a controller for GUI events.

The MVC paradigm separates an applicatio
that multiple views can be dynamically con

clicks mouse

1:mouseClicked()

1.1:move()

1.1.1:update()

1.1.2:update

Views
Controller

:MouseListener

:TicTacToe



P2 — S2002 270.

GUI Construction

ntainers
ents, containers and 

 to define colours, 

tton Label

ponent

A Window 
is a top-level 
container.
© O. Nierstrasz — U. Berne

AWT Components and Co
The java.awt package defines GUI compon
their layout managers.

NB: There are also many graphics classes
fonts, images etc.

Panel Window

BuContainer

Com

java.applet.Applet

A Container is a 
component that 
may contain other 
components.

A Panel is a 
container inside 
another container. 
(E.g., an Applet 
inside a browser.)



P2 — S2002 271.

GUI Construction

ayout (with a centre 
ontaining a Button 
“South”).

squares (Panels) and 

rdLayout and 

Applet

anel :Label

:Panel..
© O. Nierstrasz — U. Berne

The GameApplet
The GameApplet is a Panel using a BorderL
and up to four border components), and c
(“North”), a Panel (“Center”) and a Label (

The central Panel itself contains a grid of 
uses a GridLayout.
Other layout managers are FlowLayout, Ca
GridBagLayout ...

:Game

:P:Button

:Panel .



P2 — S2002 272.

GUI Construction

pplet

/ instantiate game
/ initialize view

/ connect to model
().mark() 
© O. Nierstrasz — U. Berne

Laying out the GameA
public void init() {
game_ = ; /

; /
setSize(MINSIZE*game_.cols(),

MINSIZE*game_.rows());
;

add("Center", makeGrid());
label_ = new Label();
add("South", label_);

; /
showFeedBack(game_.currentPlayer

+ " plays");
}

makeGame()
setLayout(new BorderLayout())

add("North", makeControls())

game_.addObserver(this)



P2 — S2002 273.

GUI Construction

 hide the details of 

ame");
© O. Nierstrasz — U. Berne

Helper methods
As usual, we introduce helper methods to
GUI construction ...

private Component makeControls() {
Button again = new Button("New g
...
return again;

}



P2 — S2002 274.

GUI Construction

 (I)
nts, you can define 
n your GUI objects 

sibly multiple) 

back methods

e handled by 
subscribed 

Listener 
objects
© O. Nierstrasz — U. Berne

Events and Listeners
Instead of actively checking for GUI eve
callback methods that will be invoked whe
receive events:

AWT Components publish events and (pos
Listeners subscribe interest in them.

AWT Framework

Call

... ar

Hardware events ...
(MouseEvent, KeyEvent, ...)



P2 — S2002 275.

GUI Construction

 (II)
 of different events 
ner interfaces).

Listener methods
actionPerformed()

mouseClicked()
mouseEntered()
mouseExited()
mousePressed()
mouseReleased()
mouseDragged()
mouseMoved()
keyPressed()
keyReleased()
keyTyped()
© O. Nierstrasz — U. Berne

Events and Listeners
Every AWT component publishes a variety
(see java.awt.event) with associated Liste

Component Events Listener Interface
Button ActionEvent ActionListener

Component

MouseEvent

MouseListener

MouseMotionListener

KeyEvent
KeyListener

 ...



P2 — S2002 276.

GUI Construction

vents
we attach an 
Listener() method:

ame");

o avoid defining a 

onListener() {
tionEvent e) {
me ...");
s to methods
class!
© O. Nierstrasz — U. Berne

Listening for Button e
When we create the “New game” Button, 
ActionListener with the Button.addAction
private Component makeControls() {
Button again = new Button("New g

return again;
}

We instantiate an anonymous inner class t
named subclass of ActionListener.

again.addActionListener(new Acti
public void actionPerformed(Ac
showFeedBack("starting new ga
newGame(); // NB: has acces

} // of enclosing 
});



P2 — S2002 277.

GUI Construction

licks
lace on the board.

ws, cols));

--) {
) { 
 xImage, oImage);

;

© O. Nierstrasz — U. Berne

Listening for mouse c
We also attach a MouseListener to each P
private Component makeGrid() { ...
Panel grid = new Panel();
grid.setLayout(new GridLayout(ro
place_s = new Place[cols][rows];
for (int row=rows-1; row>=0; row
for (int col=0; col<cols; col++
Place p = new Place(col, row,

...
return grid;

}

p.addMouseListener(
new PlaceListener(p, this))



P2 — S2002 278.

GUI Construction

r
 defines empty 

 MouseAdapter {

;

© O. Nierstrasz — U. Berne

The PlaceListene
MouseAdapter is a convenience class that
MouseListener methods (!)

public class PlaceListener extends
private final Place place_;
private final GameApplet applet_
public PlaceListener(...) {
place_ = place;
applet_ = applet;

}
...



P2 — S2002 279.

GUI Construction

...
) method:

.mark() + " plays");

d ...");

me.winner() + " wins!");

ve(col,row);
© O. Nierstrasz — U. Berne

The PlaceListener 
We only have to define the mouseClicked(

{
...
if (game.notOver()) {

try {

applet_.showFeedBack(game.currentPlayer()
} catch (AssertionException err) {

applet_.showFeedBack("Invalid move ignore
}
if (!game.notOver()) {

applet_.showFeedBack("Game over -- " + ga
}

} else {
applet_.showFeedBack("The game is over!");

}
}

public void mouseClicked(MouseEvent e)

((AppletPlayer) game.currentPlayer()).mo



P2 — S2002 280.

GUI Construction

ables
«interface»

Observer
date(Observable, Object ) 

Observable

ddObserver(Observer) 
eleteObserver(Observer) 
otifyObservers() 
otifyObservers(Object) 
eleteObservers() 
etChanged() 
learChanged()
asChanged() : boolean
ountObservers() : int

*

© O. Nierstrasz — U. Berne

Observers and Observ
A class can implement the 
java.util.Observer interface when 
it wants to be informed of 
changes in Observable objects. 

An Observable object can have 
one or more Observers.

After an observable instance 
changes, calling 
notifyObservers() causes all 
observers to be notified by 
means of their update() method.

+ up

+ a
+ d
+ n
+ n
+ d
# s
# c
+ h
+ c



P2 — S2002 281.

GUI Construction

ame
 View, so plays the 

 {

+ move);

ents Observer

 Object arg)
© O. Nierstrasz — U. Berne

Observing the BoardG
In our case, the GameApplet represents a
role of an Observer:
public class GameApplet

extends Applet 
{ ...

Move move = (Move) arg;
showFeedBack("got an update: " 

}
}
...

implem

public void update(Observable o,

place_s[move.col][move.row]
.setMove(move.player);



P2 — S2002 282.

GUI Construction

me ...
 plays the role of an 

dGame
plements BoardGame

w, Player p)

ow, p));
© O. Nierstrasz — U. Berne

Observing the BoardGa
The BoardGame represents the Model, so
Observable:
public abstract class AbstractBoar

 im
{ ...
public void move(int col, int ro
throws AssertionException

{ ...

}
}

extends Observable

setChanged();
notifyObservers(new Move(col, r



P2 — S2002 283.

GUI Construction

ges
ation about a change 

 public, but final

ayer player) {

w
)";
© O. Nierstrasz — U. Berne

Communicating chan
A Move instance bundles together inform
of state in a BoardGame:
public class Move {

 int col, row; // NB:
public final Player player;
public Move(int col, int row, Pl
this.col = col; this.row = row;
this.player = player;

}
public String toString() {
return "Move(" + col + "," + ro

+ "," + player + "
}

}

public final



P2 — S2002 284.

GUI Construction

tions
 method is called, 
ponents to be 

bserver to the game, 
vents for each Place 

:AppletPlayer

:TicTacToe
his)
© O. Nierstrasz — U. Berne

Setting up the connec
When the GameApplet is loaded, its init()
causing the model, view and controller com
instantiated.

The GameApplet subscribes itself as an O
and subscribes a PlaceListener to MouseE
on the view of the BoardGame.

:PlaceListener

:Place

:GameApplet

5:new

1:new

3:addObserver(t

2:new

4:new
6:addMouseListener()

start



P2 — S2002 285.

GUI Construction

del’s state changes, 
ew).

tPlayer()

ve()

1.2.1:move()

1.2.1.2:notifyObservers()

)

1.2.1.1:set()

:AppletPlayer

:TicTacToe
© O. Nierstrasz — U. Berne

Playing the game

If the corresponding move is valid, the mo
and the GameApplet updates the Place (vi

click

1:mouseClicked()
1.1:curren

1.2:mo

1.2.1.2.1:update(

1.2.1.2.1.1:setMove()

:PlaceListener

:Place

:GameApplet

Mouse clicks are propagated 
from a Place (controller)
to the BoardGame (model):



P2 — S2002 286.

GUI Construction

Game
sses. We iteratively 
ter every change ...

dGame and Player 

tivePlayer and 

 BoardGame to 

eDriver.playGame() 
trix of Players, not 
© O. Nierstrasz — U. Berne

Refactoring the Board
Adding a GUI to the game affects many cla
introduce changes, and rerun our tests af

❑ Shift responsibilities between Boar
(both should be passive!)
☞ introduce Player interface, Inac

StreamPlayer classes
☞ move getRow() and getCol() from

Player
☞ move BoardGame.update() to Gam
☞ change BoardGame to hold a ma

marks
...



P2 — S2002 287.

GUI Construction

ame ...
let, Place, 

yer to move

 changes from 
© O. Nierstrasz — U. Berne

Refactoring the BoardG
❑ Introduce Applet classes (GameApp

PlaceListener)
☞ Introduce AppletPlayer
☞ PlaceListener triggers AppletPla

❑ BoardGame must be observable
☞ Introduce Move to communicate

BoardGame to Observer



P2 — S2002 288.

GUI Construction

ce ...

ding whole 

weight” (all-Java 
 less!) work the same 

 than programming it 
© O. Nierstrasz — U. Berne

GUI objects in practi
Use Java webstart, not applets

❑ avoid browser problems by downloa
applications in a secure way

Use Swing, not AWT 
❑ javax.swing provides a set of “light

language) components that (more or
on all platforms. 

Use a GUI builder
❑ Interactively build your GUI rather

— add the hooks later.



P2 — S2002 289.

GUI Construction

ow!
ethod?

?
t and not vice versa?

ublishes and who 

out the GameApplet 
s this a good thing?
© O. Nierstrasz — U. Berne

What you should kn
✎ Why doesn’t an Applet need a main() m
✎ What are models, view and controllers
✎ Why does Container extend Componen
✎ What does a layout manager do?
✎ What are events and listeners? Who p

subscribes to events?
✎ The TicTacToe game knows nothing ab

or Places. How is this achieved? Why i



P2 — S2002 290.

GUI Construction

estions?
 objects instead of 

 in a new Window?
ent listener and an 

iables — isn’t this a 

r the GUI code?
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ How could you get Applets to download

just classes?
✎ How could you make the game start up
✎ What is the difference between an ev

observer?
✎ The Move class has public instance var

bad idea?
✎ What kind of tests would you write fo



P2 — S2002 291.

Clients and Servers

rvers

ation

 Nutshell, O’Reilly, 

 Waldo, in The Java 
© O. Nierstrasz — U. Berne

10. Clients and Se

Overview 
❑ RMI — Remote Method Invocation
❑ Remote interfaces
❑ Serializable objects
❑ Synchronization
❑ Threads
❑ Compiling and running an RMI applic

Sources
❑ David Flanagan, Java Examples in a

1997
❑ “RMI 1.2”, by Ann Wollrath and Jim

Tutorial , java.sun.com



P2 — S2002 292.

Clients and Servers

Toe?

but it still supports 

 in a browser
state of the game
© O. Nierstrasz — U. Berne

A Networked TicTac

We now have a usable GUI for our game, 
only a single user.

We would like to support:
❑ players on separate machines
❑ each running the game as an applet
❑ with a “game server” managing the 



P2 — S2002 293.

Clients and Servers

Client “O”

join

move

new
© O. Nierstrasz — U. Berne

The concept

:GameFactory

Client “X”

Server

:Gomoku

X:Player O:Player

join

new

move

new new

move move

updateupdate

new



P2 — S2002 294.

Clients and Servers

gh to implement this 

e GameFactory?
 to the client 

r than just classes)?
nize concurrent 
© O. Nierstrasz — U. Berne

The problem

Unfortunately Applets alone are not enou
scenario!

We must answer several questions:
❑ Who creates the GameFactory?
❑ How does the Applet connect to th
❑ How do the server objects connect

objects?
❑ How do we download objects (rathe
❑ How do the server objects synchro

requests?



P2 — S2002 295.

Clients and Servers

ation
va object under a 
erver machine.

he public name, and 
roxy for the remote 
).

registry

main

server

 Server()

ming.bind (name, server)
© O. Nierstrasz — U. Berne

Remote Method Invoc
RMI allows an application to register a Ja
public name with an RMI registry on the s

A client may look up up the service using t
obtain a local object (stub) that acts as a p
server object (represented by a skeleton

client

1a:new

1b:Naming.lookup(name)
2a:Na

skeletonstub

2b:server.service()



P2 — S2002 296.

Clients and Servers

I?

ols
mentation
alling of objects
skeletons
© O. Nierstrasz — U. Berne

Why do we need RM
RMI

❑ hides complexity of network protoc
❑ offers a standard rmiregistry imple
❑ automates marshalling and unmarsh
❑ automates generation of stubs and 



P2 — S2002 297.

Clients and Servers

lication

ote servers and 

erfaces
ust be serializable
© O. Nierstrasz — U. Berne

Developing an RMI app
There are several steps to using RMI:

1. Implement a server
☞ Decide which objects will be rem

specify their interfaces
☞ Implement the server objects

2. Implement a client
☞ Clients must use the remote int
☞ Objects passed as parameters m

...



P2 — S2002 298.

Clients and Servers

ation ...

te stubs and 
© O. Nierstrasz — U. Berne

Developing an RMI applic

3. Compile and install the software
☞ Use the rmic compiler to genera

skeletons for remote objects

4. Run the application
☞ Start the RMI registry
☞ Start and register the servers
☞ Start the client



P2 — S2002 299.

Clients and Servers

terfaces
hould be as small as 

ng
© O. Nierstrasz — U. Berne

Designing client/server in
Interfaces between clients and servers s
possible. 

Low coupling:
❑ simplifies development and debuggi
❑ maximizes independence
❑ reduces communication overhead



P2 — S2002 300.

Clients and Servers

nterfaces

nts (view), the 

faces and the 

 the server 

d from the server 
© O. Nierstrasz — U. Berne

BoardGame client/server i
We split the game into three packages:

❑ client — contains the GUI compone
EventListeners and the Observer

❑ server — contains the server inter
communication classes

❑ tictactoe — contains the model and
implementation classes

NB: The client’s Observer must be update
side, so is also a “server”!



P2 — S2002 301.

Clients and Servers

rfaces
ed three interfaces:

tory

me state and to 

xy
by hiding Player 

pdates
er
© O. Nierstrasz — U. Berne

Identifying remote inte
To implement the distributed game, we ne
RemoteGameFactory

❑ called by the client to join a game
❑ implemented by tictactoe.GameFac

RemoteGame 
❑ called by the client to query the ga

handle moves
❑ implemented by tictactoe.Gamepro

☞ we simplify the game interface 
instances

RemoteObserver
❑ called by the server to propagate u
❑ implemented by client.GameObserv



P2 — S2002 302.

Clients and Servers

rfaces

.Remote

throw 

ust:
.), or
.Serializable, or
© O. Nierstrasz — U. Berne

Specifying remote inte
To define a remote interface:

❑ the interface must extend java.rmi

❑ every method must be declared to 
java.rmi.RemoteException

❑ every argument and return value m
☞ be a primitive data type (int, etc
☞ be declared to implement java.io
☞ implement a Remote interface



P2 — S2002 303.

Clients and Servers

ry
game.
the existing game. 

 extends Remote {

xception;

oteGame interface.

e client side and 
eGame
© O. Nierstrasz — U. Berne

RemoteGameFacto
This interface is used by clients to join a 
If a game already exists, the client joins 
Else a new game is made.

public interface RemoteGameFactory
public RemoteGame joinGame() 

throws RemoteE
}

The object returned implements the Rem

RMI will automatically create a stub on th
skeleton on the server side for the Remot



P2 — S2002 304.

Clients and Servers

 by the client:

s Remote {
;

..;

 ...;

moteException

server o)
© O. Nierstrasz — U. Berne

RemoteGame
RemoteGame exports only what is needed

public interface RemoteGame extend
public boolean ready() 
public char join() ...;
public boolean  .
public int cols() ...;
public int rows() ...;
public char currentPlayer() ...;
public String winner() ...;
public boolean notOver() ...;
public void 

}

throws Re

move(Move move)

addObserver(RemoteOb



P2 — S2002 305.

Clients and Servers

ts to the server:

tends Remote {

ion;

h java.util.Observer, 
ion ...
 on the server side.
© O. Nierstrasz — U. Berne

RemoteObserver

This is the only interface the client expor

public interface RemoteObserver ex
public void update(Move move)

throws RemoteExcept
}

NB: RemoteObserver is not compatible wit
since update() may throw a RemoteExcept
We will have to bridge the incompatibility



P2 — S2002 306.

Clients and Servers

ts
clared to implement 

 {

ar mark) { ... }

on to communicate 

io.Serializable
© O. Nierstrasz — U. Berne

Serializable objec
Objects to be passed as values must be de
java.io.Serializable.

public class Move 
public final int col;
public final int row;
public final char mark;
public Move(int col, int row, ch
public String toString() { ... }

}

Move encapsulates the minimum informati
between client and server.

implements java.



P2 — S2002 307.

Clients and Servers

bjects

 RemoteGameFactory

 args) { ... }
 {

must throw 

nicastRemoteObject

teException
© O. Nierstrasz — U. Berne

Implementing Remote o
Remote objects should extend 
java.rmi.server.UnicastRemoteObject:
public class GameFactory 

implements
{
private RemoteGame game_;
public static void main(String[]
public GameFactory() 
super();

}
...

NB: All constructors for Remote objects 
RemoteException!

extends U

throws Remo



P2 — S2002 308.

Clients and Servers

jects ...

oinGame()
eException

ayer => new game
ku( ...));

ng game
© O. Nierstrasz — U. Berne

Implementing Remote ob
...
public  RemoteGame j

throws Remot
{
RemoteGame game = game_;
if (game == null) { // first pl
game = new GameProxy(new Gomo
game_ = game;

} else { game_ = null; }
// second player => join existi
return game;

}
}

synchronized



P2 — S2002 309.

Clients and Servers

nization
 its object before 

om concurrent 

onized.

:GameProxy

meApplet

O:Player
© O. Nierstrasz — U. Berne

A simple view of synchro
A synchronized method obtains a lock for
executing its body.

➤ How can servers protect their state fr
requests?

✔ Declare their public methods as synchr

Concurrent Clients

Synchronized Servers

Passive Objects

:GameFactory
- game : RemoteGame

X:GameApplet O:Ga

X:Player
:Gomoku



P2 — S2002 310.

Clients and Servers

object
y main() method:

rgs) {

d so that RMI can 

== null) {

ityManager());
urity manager");
© O. Nierstrasz — U. Berne

Registering a remote 
The server must be started by an ordinar

public static void main(String[] a

...

There must be a security manager installe
safely download classes!

if (System.getSecurityManager() 
System.setSecurityManager(

new RMISecur
System.out.println("Set new Sec

}



P2 — S2002 311.

Clients and Servers

ject ...
eFactory and 

/GameFactory";

ber of the registry 

w GameFactory();
© O. Nierstrasz — U. Berne

Registering a remote ob
The main() method must instantiate a Gam
register it with a running RMI registry.

...

if (args.length != 1) { ... }
String name = "//" + args[0] + "
try {

} catch (Exception e) { ... }
}

The argument is the host id and port num
(e.g., www.iam.unibe.ch:2001)

RemoteGameFactory factory = ne
Naming.rebind(name, factory);



P2 — S2002 312.

Clients and Servers

ects the client from 

castRemoteObject
 RemoteGame

(Move move)

layer();
;

, current);
eeded

k) return false

 { return false; }
© O. Nierstrasz — U. Berne

GameProxy
The GameProxy interprets Moves and prot
any AssertionExceptions:
public class GameProxy extends Uni

implements
{ ...
public  boolean move
throws RemoteException

{ Player current = game_.currentP

try {
game_.move(move.col, move.row
return true; // the move succ

} 
} ...

synchronized

if (current.mark() != move.mar

catch (AssertionException e)



P2 — S2002 313.

Clients and Servers

the server
ocked by a call to the 

ver to implement 

bserver {

o) {
© O. Nierstrasz — U. Berne

Using Threads to protect 
We must prevent the server from being bl
remote client.

WrappedObserver adapts a RemoteObser
java.util.Observer:

class WrappedObserver implements O
private RemoteObserver remote_;

WrappedObserver(RemoteObserver r
remote_ = ro;

}

...



P2 — S2002 314.

Clients and Servers

e server ...
 Object arg) {
// for inner class
 {

 the Thread
gnore results

 continue ...

) { }
© O. Nierstrasz — U. Berne

Using Threads to protect th
public void update(Observable o,

 Move move = (Move) arg; 
Thread doUpdate = 

};
 ; // start

} // and i
}

Even if the Thread blocks, the server can

final
new Thread()

public void run() {
try {
remote_.update(move);

} catch(RemoteException err
}

doUpdate.start()



P2 — S2002 315.

Clients and Servers

ame ...
e:
 tictactoe packages
ner, TicTactoe or 
 AppletPlayer to 

 and addObserver()
pt RemoteObserver
te objects

eView (to allow 

Game (not Player)
© O. Nierstrasz — U. Berne

Refactoring the BoardG
Most of the changes were on the GUI sid

❑ defined separate client, server and
❑ no changes to Drivers, Players, Run

Gomoku from 2.0 (except renaming
PassivePlayer)

❑ added BoardGame methods player()
☞ added WrappedObserver to ada

❑ added remote interfaces and remo
❑ changed all client classes

☞ separated GameApplet from Gam
multiple views)

☞ view now uses Move and Remote



P2 — S2002 316.

Clients and Servers

e
 and install the 
t the GameApplet 
files.
© O. Nierstrasz — U. Berne

Compiling the cod
We compile the source packages as usual,
results in a web-accessible location so tha
has access to the client and server .class 



P2 — S2002 317.

Clients and Servers

keletons
d access to the stub 

 the client and 

files for the remote 
c.)

 not need to run rmic 
© O. Nierstrasz — U. Berne

Generating Stubs and S
In addition, the client and the server nee
and skeleton class files.
On Unix, chdir to the directory containing
tictactoe class file hierarchies

rmic -d . tictactoe.GameFactory
rmic -d . tictactoe.GameProxy
rmic -d . client.GameObserver

This will generate stub and skeleton class 
objects. (I.e., GameFactory_Skel.class et

NB: Move is not a remote object, so we do
on its class file.



P2 — S2002 318.

Clients and Servers

ion
ww.iam.unibe.ch):

tp:.../classes/ \

n appletviewer ...
 so it can instantiate 
© O. Nierstrasz — U. Berne

Running the applicat
We start the RMI registry on the host (w

rmiregistry 2001 &

We start and register the servers:
setenv CLASSPATH ./classes
java -Djava.rmi.server.codebase=ht

tictactoe.GameFactory \
www.iam.unibe.ch:2001

And start the clients with a browser or a
NB: the RMI registry needs the codebase
the stubs and skeletons!



P2 — S2002 319.

Clients and Servers

:PassivePlayer

:Gomoku

:GameProxy

:WrappedObserv

1.
1b

:c
ur

re
nt

Pl
ay

er
()

b:move()

b:move()

update()

:PassivePlayer
© O. Nierstrasz — U. Berne

Playing the game

:PlaceListener

:GameView

:GameObserver

:Placeclick

1a:mouseClicked()

1.1a:move()

1.2

1.2.1

1.2.1.1b:

1c:update()1.1d:update()

1b:move()

1d:update()

1.1.1d:setMove()

stub skel

skel stub



P2 — S2002 320.

Clients and Servers

2 enabled
t of their codebase
2

curity don’t mix well.

way from applets!
© O. Nierstrasz — U. Berne

Caveat!
This only works with JDK 1.1:

❑ Most web browsers are not Java 1.
❑ Applets can only connect to the hos
❑ Security is more complex in Java 1.

☞ clients must specify a policy file

Web browsers, Applets, RMI and Java se

If you plan to use RMI and Java 2, stay a



P2 — S2002 321.

Clients and Servers

s

iple applications
© O. Nierstrasz — U. Berne

Other approache
CORBA

❑ for non-java components

COM (DCOM, Active-X ...)
❑ for talking to MS applications

Sockets
❑ for talking other TCP/IP protocols

Software buses
❑ for sharing information across mult



P2 — S2002 322.

Clients and Servers

ow!
lable to clients?
mote object?
re do they come 

rface fulfil?
ote object and a 

ds to handle 
© O. Nierstrasz — U. Berne

What you should kn
✎ How do you make a remote object avai
✎ How does a client obtain access to a re
✎ What are stubs and skeletons, and whe

from?
✎ What requirements must a remote inte
✎ What is the difference between a rem

serializable object?
✎ Why do servers often start new threa

requests?



P2 — S2002 323.

Clients and Servers

estions?
with Players instead 
te objects or 

tractBoardGame 

or the networked 

ify users when a 

 object over the net 
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ Suppose we modified the view to work 

of Moves. Should Players then be remo
serializable objects?

✎ Why don’t we have to declare the Abs
methods as synchronized?

✎ What kinds of tests would you write f
game?

✎ How would you extend the game to not
second player is connected?

✎ What exactly happens when you send an
via RMI?



P2 — S2002 324.

Guidelines, Idioms and Patterns

nd Patterns

e Smells

od, Composite, 
© O. Nierstrasz — U. Berne

11. Guidelines, Idioms a

Overview
❑ Programming style: Code Talks; Cod
❑ Idioms, Patterns and Frameworks
❑ Basic Idioms

☞ Delegation, Super, Interface
❑ Basic Patterns

☞ Adapter, Proxy, Template Meth
Observer



P2 — S2002 325.

Guidelines, Idioms and Patterns

Johnson and John 
 Wesley, Reading, 

riented Software 
rns, Wiley, 1996
me 1, Wiley, 1998
Patterns, Prentice 

iki?CodeSmells
© O. Nierstrasz — U. Berne

Sources
❑ Erich Gamma, Richard Helm, Ralph 

Vlissides, Design Patterns, Addison
MA, 1995. 

❑ Frank Buschmann, et al., Pattern-O
Architecture — A System of Patte

❑ Mark Grand, Patterns in Java, Volu
❑ Kent Beck, Smalltalk Best Practice 

Hall, 1997
❑ “Code Smells”, http://c2.com/cgi/w



P2 — S2002 326.

Guidelines, Idioms and Patterns

 of (KISS)

once
n do it fast

g only
, not how they do it
plementation
© O. Nierstrasz — U. Berne

Style
Code Talks

❑ Do the simplest thing you can think
☞ Don't over-design
☞ Implement things once and only 
☞ First do it, then do it right, the

(don’t optimize too early)

❑ Make your intention clear
☞ Write small methods
☞ Each method should do one thin
☞ Name methods for what they do
☞ Write to an interface, not an im



P2 — S2002 327.

Guidelines, Idioms and Patterns

ts to “smell”

s

ling)

rove your design ...
© O. Nierstrasz — U. Berne

Refactoring
Redesign and refactor when the code star
Code Smells

❑ Methods too long or too complex
☞ decompose using helper method

❑ Duplicated code
☞ factor out the common parts

(e.g., using a Template method)
❑ Violation of encapsulation

☞ redistribute responsibilities
❑ Too much communication (high coup

☞ redistribute responsibilities
Many idioms and patterns can help to imp



P2 — S2002 328.

Guidelines, Idioms and Patterns

tterns?

 idioms and patterns.

ming techniques and 
 language-specific.
solutions to design 
-independent.
functions, 
re components that 
ions.
ies that define the 
pplication, and can 
riving new classes.
© O. Nierstrasz — U. Berne

What are Idioms and Pa

Frameworks typically make use of common

Idioms Idioms are common program
conventions. They are often

Patterns Patterns document common 
problems. They are language

Libraries
Libraries are collections of 
procedures or other softwa
can be used in many applicat

Frameworks
Frameworks are open librar
generic architecture of an a
be extended by adding or de



P2 — S2002 329.

Guidelines, Idioms and Patterns

out inheritance?

bject

e behaviour of a 
ombine features.
eping roles and 
© O. Nierstrasz — U. Berne

Delegation
➤ How can an object share behaviour with

✔ Delegate some of its work to another o

Inheritance is a common way to extend th
class, but can be an inappropriate way to c
Delegation reinforces encapsulation by ke
responsibilities distinct.



P2 — S2002 330.

Guidelines, Idioms and Patterns

, it delegates the 

itance.

oriented idioms, and 
© O. Nierstrasz — U. Berne

Delegation
Example

❑ When a TestSuite is asked to run()
work to each of its TestCases.

Consequences
More flexible, less structured than inher

Delegation is one of the most basic object-
is used by almost all design patterns.



P2 — S2002 331.

Guidelines, Idioms and Patterns

le
Test {

t) {
ents(); 

ent();
© O. Nierstrasz — U. Berne

Delegation examp
public class TestSuite implements 
...
public void run(TestResult resul
for(Enumeration e = fTests.elem

e.hasMoreElements();) 
{
if (result.shouldStop())

 break;
Test test = (Test) e.nextElem

;
}

}
}

test.run(result)



P2 — S2002 332.

Guidelines, Idioms and Patterns

 from a superclass?

nd a message to 

ed behaviour, rather 
© O. Nierstrasz — U. Berne

Super
➤ How do you extend behaviour inherited

✔ Overwrite the inherited method, and se
“super” in the new method.

Sometimes you just want to extend inherit
than replace it.



P2 — S2002 333.

Guidelines, Idioms and Patterns

.top() with a pre-

eption invoke their 

superclass: if you 
alls may break!

rent than the one 
© O. Nierstrasz — U. Berne

Super
Examples

❑ WrappedStack.top() extends Stack
condition assertion.

❑ Constructors for subclasses of Exc
superclass constructors.

Consequences
Increases coupling between subclass and 
change the inheritance structure, super c

Never use super to invoke a method diffe
being overwritten — use “this” instead!



P2 — S2002 334.

Guidelines, Idioms and Patterns

SimpleWrappedStack

tionException {

onException {
© O. Nierstrasz — U. Berne

Super example
public class WrappedStack extends 
{
...
public Object top() throws Asser
assert(!this.isEmpty());
return ;

}
public void pop() throws Asserti
assert(!this.isEmpty());

;
}

}

super.top()

super.pop()



P2 — S2002 335.

Guidelines, Idioms and Patterns

ependent of classes 

 an interface rather 

vice provider, then 
ses can be used in 

 class that 
rovide the service.
© O. Nierstrasz — U. Berne

Interface
➤ How do you keep a client of a service ind

that provide the service?

✔ Have the client use the service through
than a concrete class.

If a client names a concrete class as a ser
only instances of that class or its subclas
future.
By naming an interface, an instance of any
implements the interface can be used to p



P2 — S2002 336.

Guidelines, Idioms and Patterns

 an Observable if it 
.

es.
ndirection.
© O. Nierstrasz — U. Berne

Interface
Example

❑ Any object may be registered with
implements the Observer interface

Consequences
Interfaces reduce coupling between class
They also increase complexity by adding i



P2 — S2002 337.

Guidelines, Idioms and Patterns

e
plet

 {

+ move);

 Observer

 Object arg)
© O. Nierstrasz — U. Berne

Interface exampl
public class GameApplet extends Ap

{ ...

Move move = (Move) arg;
showFeedBack("got an update: " 
places_[move.col][move.row]

.setMove(move.player);
}

}

implements

public void update(Observable o,



P2 — S2002 338.

Guidelines, Idioms and Patterns

 right features but 

ass into another 
© O. Nierstrasz — U. Berne

Adapter
➤ How do you use a class that provide the

the wrong interface?

✔ Introduce an adapter.

An adapter converts the interface of a cl
interface clients expect. 



P2 — S2002 339.

Guidelines, Idioms and Patterns

tack, throwing an 
op() are called on an 

o actionPerformed() 

 independent.
ion.
© O. Nierstrasz — U. Berne

Adapter
Examples

❑ A WrappedStack adapts java.util.S
AssertionException when top() or p
empty stack.

❑ An ActionListener converts a call t
to the desired handler method.

Consequences
The client and the adapted object remain
An adapter adds an extra level of indirect

Also known as Wrapper



P2 — S2002 340.

Guidelines, Idioms and Patterns

 {
game");
tionListener() {
ctionEvent e) {
game ...");
© O. Nierstrasz — U. Berne

Adapter example
private Component makeControls()
Button again = new Button("New 

return again;
}

again.addActionListener(new Ac
public void actionPerformed(A
showFeedBack("starting new 
newGame();

}
});



P2 — S2002 341.

Guidelines, Idioms and Patterns

ssing objects that 

the object.

rocessing. Examples 
achine, and those 

e object that it 
© O. Nierstrasz — U. Berne

Proxy
➤ How do you hide the complexity of acce

require pre- or post-processing?

✔ Introduce a proxy to control access to 

Some services require special pre or post-p
include objects that reside on a remote m
with security restrictions. 
A proxy provides the same interface as th
controls access to.



P2 — S2002 342.

Guidelines, Idioms and Patterns

accessed by Remote 

 Proxy introduces a 

s not change the 
© O. Nierstrasz — U. Berne

Proxy
Example

❑ A Java “stub” for a remote object 
Method Invocation (RMI).

Consequences
A Proxy decouples clients from servers. A
level of indirection.

Proxy differs from Adapter in that it doe
object’s interface.



P2 — S2002 343.

Guidelines, Idioms and Patterns

:Service

Machine B
© O. Nierstrasz — U. Berne

Proxy example

:ServiceStub
1.1:doit()1:doit()

Machine A



P2 — S2002 344.

Guidelines, Idioms and Patterns

hm, deferring some 

on part of similar 

extend, and
ust implement.
© O. Nierstrasz — U. Berne

Template Method
➤ How do you implement a generic algorit

parts to subclasses?

✔ Define it as a Template Method.

A Template Method factors out the comm
algorithms, and delegates the rest to:

❑ hook methods that subclasses may 
❑ abstract methods that subclasses m



P2 — S2002 345.

Guidelines, Idioms and Patterns

ethod that calls the 

trol structure since 
subclass and not the 

orks to allow 
the functionality of 
© O. Nierstrasz — U. Berne

Template Method
Example

❑ TestCase.runBare() is a template m
hook method setUp().

Consequences
Template methods lead to an inverted con
a parent classes calls the operations of a 
other way around.

Template Method is used in most framew
application programmers to easily extend 
framework classes.



P2 — S2002 346.

Guidelines, Idioms and Patterns

mple
verride hook method 
est().
lements Test {

owable {

pty by default

Throwable { ... }
© O. Nierstrasz — U. Berne

Template method exa
Subclasses of TestCase are expected to o
setUp() and possibly tearDown() and runT
public abstract class TestCase imp
...
public void runBare() throws Thr

}
protected void setUp() { } // em
protected void tearDown() { }
protected void runTest() throws 

}

setUp();
try { runTest(); } 
finally { tearDown(); }



P2 — S2002 347.

Guidelines, Idioms and Patterns

chy of objects in a 

arts and composites 

t their behaviour by 
© O. Nierstrasz — U. Berne

Composite
➤ How do you manage a part-whole hierar

consistent way?

✔ Define a common interface that both p
implement.

Typically composite objects will implemen
delegating to their parts.



P2 — S2002 348.

Guidelines, Idioms and Patterns

Cases and 
nt the Test 

e of GUI 
onent.

 wholes. 
 to define a common 
t ...
© O. Nierstrasz — U. Berne

Composite
Examples

❑ A TestSuite is a composite of Test
TestSuites, both of which impleme
interface.

❑ A Java GUI Container is a composit
Components, and also extends Comp

Consequences
Clients can uniformly manipulate parts and
In a complex hierarchy, it may not be easy
interface that all classes should implemen



P2 — S2002 349.

Guidelines, Idioms and Patterns

e
f TestCases and 

«interface»

Test
untTestCases() : int
n(TestResult)

ite 

s)
st test)
© O. Nierstrasz — U. Berne

Composite exampl
A TestSuite is a Test that bundles a set o
TestSuites.

+ co
+ ru

*
TestCase

abstract

+ create(String)
+ assert(boolean) 
+ assertEquals(Object, Object)
+ fail() 
+ void runBare() 
# void runTest()
# void setUp() 
# void tearDown()
+ name() : String

TestSu

+ create() 
+ create(Clas
+ addTest(Te



P2 — S2002 350.

Guidelines, Idioms and Patterns

nts when it changes 

interface and 
e object notifies its 

nge events to its 
n interface for 
© O. Nierstrasz — U. Berne

Observer
➤ How can an object inform arbitrary clie

state?

✔ Clients  implement a common Observer 
register with the “observable” object; th
observers when it changes state.

An observable object publishes state cha
subscribers, who must implement a commo
receiving notification.



P2 — S2002 351.

Guidelines, Idioms and Patterns

til.Observable, and 

implement the 

amples)

y observers for an 
s observable!
© O. Nierstrasz — U. Berne

Observer
Examples

❑ The GameApplet implements java.u
registers with a BoardGame.

❑ A Button expects its observers to 
ActionListener interface.
(see the Interface and Adapter ex

Consequences
Notification can be slow if there are man
observable, or if observers are themselve



P2 — S2002 352.

Guidelines, Idioms and Patterns

terns Solve?

re architecture
cross software 

xperienced 
icitly

riented technology
s
guage-centric” 

 CACM Oct 1995
© O. Nierstrasz — U. Berne

What Problems do Design Pat
Patterns:

❑ document design experience
❑ enable widespread reuse of softwa
❑ improve communication within and a

development teams
❑ explicitly capture knowledge that e

developers already understand impl
❑ arise from practical experience
❑ help ease the transition to object-o
❑ facilitate training of new developer
❑ help to transcend “programming lan

viewpoints
Doug Schmidt,



P2 — S2002 353.

Guidelines, Idioms and Patterns

ow!
long should a method 

ern and an idiom?
d of inheritance?

ter?
iminate duplicated 
© O. Nierstrasz — U. Berne

What you should kn
✎ What’s wrong with long methods? How 

be?
✎ What’s the difference between a patt
✎ When should you use delegation instea
✎ When should you call “super”?
✎ How does a Proxy differ from an Adap
✎ How can a Template Method help to el

code?



P2 — S2002 354.

Guidelines, Idioms and Patterns

estions?
 you program? What 

erface and an 

ad of modifying the 

ent is an abstract 

t interfaces for the 
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ What idioms do you regularly use when

patterns do you use?
✎ What is the difference between an int

abstract class?
✎ When should you use an Adapter inste

interface that doesn’t fit?
✎ Is it good or bad that java.awt.Compon

class and not an interface?
✎ Why do the Java libraries use differen

Observer pattern (java.util.Observer, 
java.awt.event.ActionListener etc.)?



P2 — S2002 355.

Common Errors, a few Puzzles

ew Puzzles

s with Java 
© O. Nierstrasz — U. Berne

12. Common Errors, a f

Overview 
❑ Common errors:

☞ Round-off 
☞ == vs. equals()
☞ Forgetting to clone objects
☞ Dangling else
☞ Off-by-1 ...

❑ A few Java puzzles ...
Sources

❑ Cay Horstmann, Computing Concept
Essentials, Wiley, 1998

❑ The Java Report, April 1999



P2 — S2002 356.

Common Errors, a few Puzzles
© O. Nierstrasz — U. Berne

Round-off errors
What does this print?

double f = 2e15 + 0.13;
double g = 2e15 + 0.02;

println(100*(f-g));



P2 — S2002 357.

Common Errors, a few Puzzles

(1)

string");
string");

));
© O. Nierstrasz — U. Berne

== versus equals() 
When are two Strings equal?

String s1 = new String("This is a 
String s2 = new String("This is a 
test("String==", s1 == s2);
test("String.equals", s1.equals(s2

static void test(String name, boolean bool) {
println(name + ": " + (bool?"true":"false"));

}



P2 — S2002 358.

Common Errors, a few Puzzles

(2)

;

© O. Nierstrasz — U. Berne

== versus equals() 
When are two Objects equal?

Object x = new Object();
Object y = new Object();
test("object==", x == y);
test("object.equals", x.equals(y))



P2 — S2002 359.

Common Errors, a few Puzzles

(3)

));
© O. Nierstrasz — U. Berne

== versus equals() 
When are two Strings equal?

String s3 = "This is a string";
String s4 = "This is a string";
test("String==", s3 == s4);
test("String.equals", s3.equals(s4



P2 — S2002 360.

Common Errors, a few Puzzles

object

;

© O. Nierstrasz — U. Berne

Forgetting to clone an 
Is “now” really before “later”?
Date now = new Date();
Date later = now;
later.setHours(now.getHours() + 1)
if (now.before(later))
println("see you later");

else
println("see you now");



P2 — S2002 361.

Common Errors, a few Puzzles

blem.

cks?
© O. Nierstrasz — U. Berne

The dangling else pro
static void checkEven(int n) {
boolean result = true;

}

What is printed when we run these che
checkEven(-1);
checkEven(0);
checkEven(1);

if (n>=0)
if ((n%2) == 0)
println(n + " is even");

else
println(n + " is negative");



P2 — S2002 362.

Common Errors, a few Puzzles

. 

k) {

k 1+
k
-------------
© O. Nierstrasz — U. Berne

Off-by-1 errors

The binomial coefficient is 

Is this a correct implementation?
 static int binomial(int n, int 
int bc = 1;
for (int )
bc = bc * (n+1-i) / i;

return bc;
}

n
k 

  n
1
--- …× n –--------×

i=1; i<k; i++



P2 — S2002 363.

Common Errors, a few Puzzles

rrors

 do k multiplications?

start with n/1 and 

on mistakes in 
© O. Nierstrasz — U. Berne

Avoiding Off-by-1 e
To avoid off-by-1 errors:

1. Count the iterations — do we always
(no)

2. Check boundary conditions — do we 
finish with (n-k+1)/k?
(no)

Off-by-1 errors are among the most comm
implementing algorithms.



P2 — S2002 364.

Common Errors, a few Puzzles

rminate loops!
k correctly?
{

© O. Nierstrasz — U. Berne

Don’t use equality tests to te
For which values does this function wor
static int brokenFactorial(int n) 
int result=1;
for (int )
result = result*(i+1);

return result;
}

i=0; i!=n; i++



P2 — S2002 365.

Common Errors, a few Puzzles

rrors

constants instead.
nch

 to set a variable, 
onable default value.

y built-in limits (like 
ou least expect it.

iable! (return a clone 

ions not holding
© O. Nierstrasz — U. Berne

Some other common e
Magic numbers

❑ Never use magic numbers; declare 
Forgetting to set a variable in some bra

❑ If you have non-trivial control flow
make sure it starts off with a reas

Underestimating size of data sets
❑ Don’t write programs with arbitrar

line-length); they will break when y
Leaking encapsulation

❑ Never return a private instance var
instead)

Bugs are always matter of invalid assumpt



P2 — S2002 366.

Common Errors, a few Puzzles

)"); }

)"); }
© O. Nierstrasz — U. Berne

Puzzle 1
Are private methods inherited? 
class A {
public void m() { this.p(); }

 { println("A.p(
}
class B extends A {

 { println("B.p(
}

Which is called? A.p() or B.p()?
A b = new B();
b.m();

private void p()

private void p()



P2 — S2002 367.

Common Errors, a few Puzzles

ypes

e statically declared 

s of the object 

 the program.
© O. Nierstrasz — U. Berne

Static and Dynamic T
Consider:
A a = new B();

The static type of variable a is A — i.e., th
class to which it belongs.
The static type never changes.

The dynamic type of a is B — i.e., the clas
currently bound to a.
The dynamic type may change throughout

a = new A();

Now the dynamic type is also A!



P2 — S2002 368.

Common Errors, a few Puzzles

ed?

A)"); };
B)"); };
A)"); };
B)"); };

c argument type?
© O. Nierstrasz — U. Berne

Puzzle 2
How are overloaded method calls resolv
class A { }
class B extends A { }
void  { println("m(A,
void  { println("m(A,
void m(B b1, A a1) { println("m(B,
void m(B b1, B b2) { println("m(B,

Which is considered: the static or dynami
m(a, a);
m(a, b);
m(b, a);
m(b, b);

m(A a1, A a2)
m(A a1, B b1)

B b = new B(); A a = b;



P2 — S2002 369.

Common Errors, a few Puzzles

)

© O. Nierstrasz — U. Berne

Puzzle 2 (part II
What happens if we comment out:

❑ m(A,A)?

❑ m(B,B)?

❑ m(A,B)?

Will the examples still compile?
If so, which methods are called?



P2 — S2002 370.

Common Errors, a few Puzzles

ct?

 } 

 } 
© O. Nierstrasz — U. Berne

Puzzle 3
How do static and dynamic types intera
class A {
void  { println("A.m(A)");

}
class B extends A {
void  { println("B.m(B)");

}

In which cases will B.m(B) be called?
a.m(a);
a.m(b);
b.m(a);
b.m(b);

m(A a)

m(B b)

B b = new B(); A a = b;



P2 — S2002 371.

Common Errors, a few Puzzles

 interact?

, l = 0;

urn 100; }
© O. Nierstrasz — U. Berne

Puzzle 4 (part I)
How do default values and constructors
class C {
int i = 100, j = 100, 
C() { i = 0; ; }
int init() { j = 0; l = 100; ret

}

What gets printed? 0 or 100?
C c = new C();
println("C.i = " + c.i);
println("C.j = " + c.j);
println("C.k = " + c.k);
println("C.l = " + c.l);

k = init()
k = 0



P2 — S2002 372.

Common Errors, a few Puzzles

; }
(int value);

) { i = value; }

 = 200
© O. Nierstrasz — U. Berne

Puzzle 4 
(part II)

What gets printed? 0, 100 or 200?
B b = new B();
println("B.i = " + b.i);
println("B.j = " + b.j);

abstract class A {
int ;
A() { init(100); 
abstract void init

}
class B extends A {
int i = 0, ;
B() { super(); }
void init(int value

}

j = 100
j

j = 0



P2 — S2002 373.

Common Errors, a few Puzzles

2; }
© O. Nierstrasz — U. Berne

Puzzle 5
Does try or finally return?
class A {
int m() {

catch (Exception err) { return 
 

}
}

Prints 1, 2, or 3?
A a = new A();
println(a.m());

try { return 1; }

finally { return 3; }



P2 — S2002 374.

Common Errors, a few Puzzles

ow!
hmetic?
nested if statement?

s to terminate loops?

 of variables? 
ded methods?
© O. Nierstrasz — U. Berne

What you should kn
✎ When can you trust floating-point arit
✎ To which “if” does an “else” belong in a 
✎ How can you avoid off-by-1 errors?
✎ Why should you never use equality test
✎ Are private methods inherited?
✎ What are the static and dynamic types
✎ How are they used to dispatch overloa



P2 — S2002 375.

Common Errors, a few Puzzles

estions?
s?
nstructors to 

se throw an 
rown?
© O. Nierstrasz — U. Berne

Can you answer these qu
✎ When is method dispatching ambiguou
✎ Is it better to use default values or co

initialize variables?
✎ If both a try clause and its finally clau

exception, which exception is really th


	S7038 Programmierung 2
	Table of Contents
	Patterns, Rules and Guidelines
	1. P2 — Object-Oriented Programming
	Principle Texts:
	Overview
	Goals of this course
	Goals ...
	What is programming?
	Programming and Software Development
	Programming activities
	What is a software system?
	What is good (bad) design?
	A procedural design
	An object-oriented approach
	Object-Oriented Design
	Responsibility-Driven Design
	Responsibility-Driven Design ...
	Refactoring
	What is Software Quality?
	Software Quality ...
	How to achieve software quality
	How to achieve software quality ...
	What is a programming language?
	Communication
	Why use object-oriented programming?
	Why use OOP? ...
	Why Java?
	History
	What you should know!
	Can you answer these questions?

	2. Design by Contract
	Contracts
	Exceptions, failures and defects
	Stacks
	Example: Balancing Parentheses
	A simple algorithm
	Using a Stack to match parentheses
	The ParenMatch class
	A declarative algorithm
	A cluttered algorithm
	Helper methods
	What is Data Abstraction?
	StackInterface
	Interfaces in Java
	Exceptions
	Why are ADTs important?
	Why are ADTs important? ...
	Stacks as Linked Lists
	LinkStack Cells
	Private vs Public instance variables
	Naming instance variables
	LinkStack ADT
	Class Invariants
	LinkStack Class Invariant
	Programming by Contract
	Pre- and Postconditions
	Benefits and Obligations
	Stack pre- and postconditions
	Assertions
	Testing Assertions
	Testing Invariants
	Disciplined Exceptions
	Checking pre-conditions
	Checking post-conditions
	Running parenMatch
	Running parenMatch ...
	What you should know!
	Can you answer these questions?

	3. Testing and Debugging
	Testing
	Regression testing
	Caveat: Testing and Correctness
	Testing a Stack
	Build simple test cases
	Check that failures are caught
	When (not) to use static methods
	When (not) to use static variables
	ArrayStack
	Handling overflow
	Checking pre-conditions
	Testing ArrayStack
	The Run-time Stack
	The run-time stack in action ...
	The Stack and the Heap
	Fixing our mistake
	java.util.Stack
	Wrapping Objects
	A Wrapped Stack
	A Wrapped Stack ...
	A contract mismatch
	Fixing the problem ...
	Timing benchmarks
	Timer
	Sample benchmarks (milliseconds)
	What you should know!
	Can you answer these questions?

	4. Iterative Development
	The Classical Software Lifecycle
	Iterative Development
	What is Responsibility-Driven Design?
	How to assign responsibility?
	Example: Tic Tac Toe
	Setting Scope
	Setting Scope ...
	Tic Tac Toe Objects
	Tic Tac Toe Objects ...
	Missing Objects
	Scenarios
	Version 1.0 (skeleton)
	Version 1.1 (simple tests)
	Checking pre-conditions
	Testing the new methods
	Testing the application
	Printing the State
	TicTacToe.toString()
	Refining the interactions
	Tic Tac Toe Contracts
	Version 1.2 (functional)
	Supporting test Players
	Invariants
	Delegating Responsibilities
	Delegating Responsibilities ...
	Small Methods
	Accessor Methods
	Code Smells — TicTacToe.checkWinner()
	Code Smells ...
	Code Smells ...
	GameDriver
	The Player
	Player constructors ...
	Player constructors ...
	Defining test cases
	Checking test cases
	Running the test cases
	What you should know!
	Can you answer these questions?

	5. Inheritance and Refactoring
	What is Inheritance?
	Inheritance mechanisms
	The Board Game
	Uses of Inheritance
	Uses of Inheritance ...
	Class Diagrams
	A bad idea ...
	Class Hierarchy
	Iterative development strategy
	Iterative development strategy ...
	Version 1.3 (add interface)
	Speaking to an Interface
	Quiet Testing
	Quiet Testing (2)
	NullPrintStream
	TicTacToe adaptations
	Version 1.4 (add abstract class)
	Refactoring
	Refactoring strategies
	Version 1.5 (refactor for reusability)
	AbstractBoardGame 1.5
	BoardGame 1.5
	Player 1.5
	Version 1.6 (Gomoku)
	Keeping Score
	A new responsibility ...
	The Runner
	Top-down decomposition
	Recursion
	More helper methods
	BoardGame 1.6
	Gomoku
	What you should know!
	Can you answer these questions?

	6. Programming Tools
	Make
	A Typical Makefile
	Running make
	Ant
	A Typical build.xml
	...
	Running Ant
	Version Control Systems
	Version Control
	RCS command overview
	Using RCS
	Additional RCS Features
	CVS
	Using CVS
	Debuggers
	Using Debuggers
	Using jdb
	Debugging Strategy
	Debugging Strategy ...
	Profilers
	Using java -Xprof
	Using java -Xrunhprof
	Using Profilers
	Javadoc
	Javadoc input
	Javadoc output
	Other tools
	Integrated Development Environments
	CodeWarrior
	CodeWarrior Class Browser
	CodeWarrior Hierarchy Browser
	Setting Breakpoints
	What you should know!
	Can you answer these questions?

	7. A Testing Framework
	The Problem
	Testing Practices
	Testing Practices ...
	JUnit
	Frameworks vs. Libraries
	The JUnit Framework
	A Testing Scenario
	Testing Style
	Representing multiple currencies
	Money
	MoneyTest
	Some basic tests
	Building a Test Suite
	The TestRunner
	MoneyBags
	MoneyBags ...
	Testing MoneyBags (I)
	Testing MoneyBags (II)
	Testing MoneyBags (III)
	Adding MoneyBags
	The IMoney interface (I)
	Double Dispatch (I)
	Double Dispatch (II)
	The IMoney interface (II)
	A Failed test
	The fix ...
	What you should know!
	Can you answer these questions?

	8. Software Components: Collections
	Components
	The Jumble Puzzle
	Naive Solution
	Rethinking the Jumble Problem
	Rethinking the Jumble Problem ...
	An Efficient Solution
	The Collections Framework
	Collection Interfaces
	Implementations
	Interface and Abstract Classes
	Maps
	Jumble
	Jumble constructor
	Algorithms
	Array algorithms
	Sorting arrays of characters
	Loading the dictionary
	Loading the dictionary ...
	The input loop
	Running the unjumbler ...
	Searching for anagrams
	Iterators
	Iterating through the key set
	Running Jumble.maxAnagrams
	How to use the framework
	What you should know!
	Can you answer these questions?

	9. GUI Construction
	A Graphical TicTacToe?
	Applets
	The Hello World Applet
	The Hello World Applet
	Accessing the game as an Applet
	Model-View-Controller
	AWT Components and Containers
	The GameApplet
	Laying out the GameApplet
	Helper methods
	Events and Listeners (I)
	Events and Listeners (II)
	Listening for Button events
	Listening for mouse clicks
	The PlaceListener
	The PlaceListener ...
	Observers and Observables
	Observing the BoardGame
	Observing the BoardGame ...
	Communicating changes
	Setting up the connections
	Playing the game
	Refactoring the BoardGame
	Refactoring the BoardGame ...
	GUI objects in practice ...
	What you should know!
	Can you answer these questions?

	10. Clients and Servers
	A Networked TicTacToe?
	The concept
	The problem
	Remote Method Invocation
	Why do we need RMI?
	Developing an RMI application
	Developing an RMI application ...
	Designing client/server interfaces
	BoardGame client/server interfaces
	Identifying remote interfaces
	Specifying remote interfaces
	RemoteGameFactory
	RemoteGame
	RemoteObserver
	Serializable objects
	Implementing Remote objects
	Implementing Remote objects ...
	A simple view of synchronization
	Registering a remote object
	Registering a remote object ...
	GameProxy
	Using Threads to protect the server
	Using Threads to protect the server ...
	Refactoring the BoardGame ...
	Compiling the code
	Generating Stubs and Skeletons
	Running the application
	Playing the game
	Caveat!
	Other approaches
	What you should know!
	Can you answer these questions?

	11. Guidelines, Idioms and Patterns
	Sources
	Style
	Refactoring
	What are Idioms and Patterns?
	Delegation
	Delegation
	Delegation example
	Super
	Super
	Super example
	Interface
	Interface
	Interface example
	Adapter
	Adapter
	Adapter example
	Proxy
	Proxy
	Proxy example
	Template Method
	Template Method
	Template method example
	Composite
	Composite
	Composite example
	Observer
	Observer
	What Problems do Design Patterns Solve?
	What you should know!
	Can you answer these questions?

	12. Common Errors, a few Puzzles
	Round-off errors
	== versus equals() (1)
	== versus equals() (2)
	== versus equals() (3)
	Forgetting to clone an object
	The dangling else problem.
	Off-by-1 errors
	Avoiding Off-by-1 errors
	Don’t use equality tests to terminate loops!
	Some other common errors
	Puzzle 1
	Static and Dynamic Types
	Puzzle 2
	Puzzle 2 (part II)
	Puzzle 3
	Puzzle 4 (part I)
	Puzzle 4 (part II)
	Puzzle 5
	What you should know!
	Can you answer these questions?



