
7032 Programmierung 2
Object-Oriented Programming with Java

Part I

Prof. O. Nierstrasz

Sommersemester 1999

Ta ii.

T
P

1. P
O
G
W
P
P
W
W
A
A
O
R
R
W
H
W
C
W
W
H
S

2. D
S
E
U
W
W
P
P
S

Fixing the problem ... 64
Timing benchmarks 65
Timer 66
Sample benchmarks 67
Summary 68

4. Iterative Development 69
The Classical Software Lifecycle 70
Iterative Development 71
What is Responsibility-Driven Design? 72
Example: Tic Tac Toe 73
Limiting Scope 74
Tic Tac Toe Objects 75
Missing Objects 76
Scenarios 77
A Skeleton Implementation 78
Representing the Game State 79
Testing the new methods 80
Testing the application 81
Printing the State 82
Refining the interactions 83
Tic Tac Toe Contracts 84
Representing the Game State 85
Invariants 86
Delegating Responsibilities 87
Small Methods 88
GameDriver 89
The Player 90
Defining test cases 91
Running the test cases 92
Summary 93

5. Inheritance and Refactoring 94
What is Inheritance? 95
ble of C

able of C
atterns, R

2 — Obje
verview
oals of t
hat is pr

rogramm
rogramm
hat is a
hat is go
 proced
n object
bject-O
esponsib
efactorin
hat is So
ow to ac
hat is a
ommun
hy use o
hy Java
istory
ummary

esign by
tacks
xample:
sing a St
hat is Da
hy are A

rogramm
re- and P
tack pre
ontents

April 20, 1999

Table of Contents
ontents ii
ules and Guidelines v

ct-Oriented Programming 1
2

his course 3
ogramming? 4
ing and Software Development 5
ing activities 6

software system? 7
od (bad) design? 8

ural design 9
-oriented design 10
riented Design 11
ility-Driven Design 12
g 13
ftware Quality? 14
hieve software quality 15

programming language? 16
ication 17
bject-oriented programming? 18
? 19

20
21

 Contract 22
23

Balancing Parentheses 24
ack to match parentheses 25

ta Abstraction? 26
DTs important? 27
ing by Contract 28
ostconditions 29

- and postconditions 30

Class Invariants 31
Assertions 32
Disciplined Exceptions 33
Stacks as Linked Lists 34
StackInterface 35
Exceptions 36
LinkStack ADT 37
LinkStack Class Invariant 38
LinkClass Cells 39
LinkStack methods 40
Testing Assertions 41
Push and Pop 42
The ParenMatch class 43
A cluttered algorithm ... 44
A declarative algorithm 45
Helper methods 46
Summary 47

3. Testing and Debugging 48
Testing 49
Regression testing 50
Stack test case 51
Testing special cases 52
TestStack 53
ArrayStack 54
ArrayStack methods 55
Testing ArrayStack 56
The Run-time Stack 57
The run-time stack in action ... 58
The Stack and the Heap 59
Fixing our mistake 60
Wrapping Objects 61
A Wrapped Stack 62
A contract mismatch 63

Ta iii.

T
U
C
A
C
It
V
S
Q
T
V
R
V
A
B
P
V
K
A
T
T
R
B
G
S

6. P
In
C
C
C
S
S
S
S
S

Double Dispatch (I) 166
The IMoney interface (II) 167
A Failed test 168
Diagnostics 169
The fix ... 170
Testing Practices 171
Summary 172

8. GUI Construction 173
A Graphical TicTacToe? 174
Applets 175
The Hello World Applet 176
Accessing the game as an Applet 177
Model-View-Controller 178
AWT Components and Containers 179
The GameApplet 180
Laying out the GameApplet 181
Events and Listeners (I) 182
Events and Listeners (II) 183
Listening for Button events 184
Listening for mouse clicks 185
The PlaceListener 186
Observers and Observables 187
Observing the BoardGame 188
Communicating changes 189
Setting up the connections 190
Playing the game 191
Refactoring the BoardGame 192
GUI objects in practice ... 193
Summary 194

9. Guidelines, Idioms and Patterns 195
Style 196
Refactoring 197
What are Idioms and Patterns? 198
Delegation 199
Delegation example 200
ble of Contents

April 20, 1999

he Board Game 96
ses of Inheritance 97
lass Diagrams 98
 bad idea ... 99
lass Hierarchy 100
erative development strategy 101
ersion 1.3 102
peaking to an Interface 103
uiet Testing 104

icTacToe adaptations 105
ersion 1.4 106
efactoring 107
ersion 1.5 108
bstractBoardGame 1.5 109
oardGame 1.5 110
layer 1.5 111
ersion 1.6 112
eeping Score 113
 new responsibility ... 114

he Runner 115
op-down decomposition 116
ecursion 117
oardGame 1.6 118
omoku 119

ummary 120

rogramming Tools 121
tegrated Development Environments 122
odeWarrior 123
odeWarrior Class Browser 124
odeWarrior Hierarchy Browser 125

NiFF+ 126
NiFF+ Project Editor 127
NiFF+ Source Editor 128
NiFF+ Hierarchy Browser 129
NiFF+ Class Browser 130

Debuggers 131
Setting Breakpoints 132
Debugging 133
Debugging Strategy 134
Version Control 135
RCS 136
Using RCS 137
Additional RCS Features 138
Profilers 139
Profiling with CodeWarrior 140
Profile Data 141
Javadoc 142
Javadoc output 143
Other tools 144
Summary 145

7. A Testing Framework 146
The Problem 147
JUnit 148
Frameworks vs. Libraries 149
The JUnit Framework 150
A Testing Scenario 151
Testing Style 152
Representing multiple currencies 153
Money 154
MoneyTest 155
Some basic tests 156
Building a Test Suite 157
The TestRunner 158
MoneyBags 159
Testing MoneyBags (I) 160
Testing MoneyBags (II) 161
Testing MoneyBags (III) 162
Adding MoneyBags 163
The IMoney interface (I) 164
Double Dispatch (I) 165

Ta iv.

S
S
In
In
A
A
P
P
T
T
C
C
O
W
S

10.
A
T
T
R
D
D
Id
S
R
R
R
S
Im
A
R
G
U
R
C

Static and Dynamic Types 271
Puzzle 2 272
Puzzle 2 (part II) 273
Puzzle 3 274
Puzzle 4 275
Puzzle 4 (part II) 276
Puzzle 5 277
Summary 278
ble of Contents

April 20, 1999

uper 201
uper example 202
terface 203
terface example 204
dapter 205
dapter example 206
roxy 207
roxy example 208
emplate Method 209
emplate method example 210
omposite 211
omposite example 212
bserver 213
hat Problems do Design Patterns Solve? 214

ummary 215

Clients and Servers 216
 Networked TicTacToe? 217

he concept 218
he problem 219
emote Method Invocation 220
eveloping an RMI application 221
esigning client/server interfaces 222
entifying remote interfaces 223

pecifying remote interfaces 224
emoteGameFactory 225
emoteGame 226
emoteObserver 227
erializable Objects 228

plementing Remote objects 229
 simple view of synchronization 230
egistering a remote object 231
ameProxy 232
sing Threads to protect the server 233
efactoring the BoardGame ... 234
ompiling the code 235

Running the application 236
Playing the game 237
Other approaches 238
Summary 239

11. Collections 240
The Jumble Puzzle 241
Naive Solution 242
Rethinking the Jumble Problem 243
An Efficient Solution 244
The Collections Framework 245
Collection Interfaces 246
Implementations 247
Maps 248
Jumble 249
Jumble constructor 250
Algorithms 251
Array algorithms 252
Sorting characters 253
Loading the dictionary 254
The input loop 255
Running the unjumbler ... 256
Iterators 257
Iterating through the key set 258
How to use the framework 259
Summary 260

12. Common Errors, a few Puzzles 261
Round-off errors 262
== versus equals() 263
Literal Strings 264
Forgetting to clone an object 265
The dangling else problem. 266
Off-by-1 errors 267
Don’t use equality tests to terminate loops! 268
Some other common errors 269
Puzzle 1 270

P2 — OOP v.

U

 - 1
 - 22
 . 32
 . 32
 . 33
 . 33
 . 35
 . 35
 . 37
 . 37
 . 37
 . 39
 . 39
 . 40
 . 40
 . 40

 - 48
 . 61
 . 61
 . 65
 . 65

 - 69
 . 72
 . 72
 . 72
 . 72
 . 74
 . 74
 . 75
 . 75
 . 76
 . 76
 . 82
 . 82
niversität Bern

Patterns, Rules and Guidelines
1. P2 — Object-Oriented Programming - -
2. Design by Contract -

What should an object do if an assertion does not hold? .
Throw an exception. .

When should an object throw an exception? .
If and only if an assertion is violated .

How do you let clients respond to multiple implementations of an ADT? .
Specify an interface or an abstract class. .

How should you name a private or protected instance variable? .
Pick a name that reflects the role of the variable. .
Tag the name with an underscore (_). .

When should instance variables be public?. .
Always make instance variables private or protected. .

Which assertions should you check?. .
Always check pre-conditions to methods. .
Check post-conditions and invariants if the implementation is non-trivial. .

3. Testing and Debugging - - - - -
What do you do with an object whose interface doesn’t fit your expectations?. .

You wrap it. .
Complexity aside, how can you tell which implementation strategy will perform best? .

Run a benchmark.. .

4. Iterative Development -
How do you decide what responsibilities to assign to an object? .

“Don't do anything you can push off to someone else.” .
When should you let an object export its state? .

“Don't let anyone else play with you.” .
How much functionality should you deliver in the first version of a system? .

Select the minimal requirements that provide value to the client. .
How can you tell when you have the “right” set of objects?. .

Each object has a clear and natural set of responsibilities. .
How can you tell when there are objects missing in your design?. .

When there are responsibilities that cannot be assigned to some object. .
How do you make an object printable? .

Override Object.toString() .

P2 — OOP vi.

U

 . 88
 . 88

 - 94
 . 101
 . 101
 . 106
 . 106
 . 118
 . 118

 - -121
 . 131
 . 131
 . 135
 . 135
 . 139
 . 139
 . 139
 . 139

 - -146
 - -173
 - -195
 . 199
 . 199
 . 201
 . 201
 . 203
 . 203
 . 205
 . 205
 . 207
 . 207
 . 209
 . 209
 . 211
 . 211
 . 213
 observers when it changes state. 213
niversität Bern

When should instance variables be public?. .
Almost never! Declare public accessor methods instead.. .

5. Inheritance and Refactoring -
When should you run your (regression) tests? .

After every change to the system.. .
When should a class be declared abstract? .

Declare a class abstract if it is intended to be subclassed, but not instantiated. .
Which methods should be public? .

Only publicize methods that clients will really need, and will not break encapsulation. .

6. Programming Tools- -
When should you use a debugger? .

When you are unsure why (or where) your program is not working.. .
What kind of projects can benefit from versioning? .

Use a version control system to keep track of all your projects! .
When should you use a profiler? .

Always run a profiler before attempting to tune performance. .
How early should you start worrying about performance?. .

Only after you have a clean, running program with poor performance. .

7. A Testing Framework -
8. GUI Construction -
9. Guidelines, Idioms and Patterns -

How does an object share behaviour without inheritance? .
Delegate some of its work to another object .

How do you extend behaviour inherited from a superclass? .
Overwrite the inherited method, and send a message to “super” in the new method. .

How do you keep a client of a service independent of classes that provide the service? .
Have the client use the service through an interface rather than a concrete class. .

How do you use a class that provide the right features but the wrong interface? .
Introduce an adapter. .

How do you hide the complexity of accessing objects that require pre- or post-processing?
Introduce a proxy to control access to the object.. .

How do you implement a generic algorithm, deferring some parts to subclasses? .
Define it as a Template Method. .

How do you manage a part-whole hierarchy of objects in a consistent way? .
Define a common interface that both parts and composites implement. .

How can an object inform arbitrary clients when it changes state? .
Clients implement a common Observer interface and register with the “observable” object; the object notifies its

P2 — OOP vii.

U

 - -216
 . 230
 . 230

 - -240
 . 257
 . 257

 - -261
niversität Bern

10. Clients and Servers - - - - - -
How can servers protect their state from concurrent requests? .

Declare their public methods as synchronized.. .

11. Collections -
How do you iterate through a Collection whose elements are unordered? .

Use an iterator. .

12. Common Errors, a few Puzzles - - -

P2 — OOP 1.

U P2 — Object-Oriented Programming

mming

Email: oscar@iam.unibe.ch

l Tschan

2/

ns, Addison-Wesley, 1998
eilly, 1997.

uction, Prentice Hall, 1997.
ener, Designing Object-
niversität Bern

1. P2 — Object-Oriented Progra

Lecturer: Prof. Oscar Nierstrasz
Schützenmattstr. 14/103, Tel: 631.4618,

Secretary: Frau I. Huber, Tel. 631.4692

Assistants: Sander Tichelaar, Thomas Studer, Danie

WWW: http://www.iam.unibe.ch/~scg/Teaching/P
(includes full examples)

Principle Texts:
❑ John Lewis, William Loftus, Java Software Solutio
❑ David Flanagan, Java in Nutshell: 2nd edition, O’R
❑ Bertrand Meyer, Object-Oriented Software Constr
❑ Rebecca Wirfs-Brock, Brian Wilkerson, Lauren Wi

Oriented Software, Prentice Hall, 1990.

P2 — OOP 2.

U P2 — Object-Oriented Programming
niversität Bern

Overview

1. 26.03 Introduction
02.04 Good Friday

2. 09.04 Design by Contract
3. 16.04 Testing and Debugging
4. 23.04 Iterative Development
5. 30.04 Inheritance and Refactoring
6. 07.05 Programming Tools
7. 14.05 A Testing Framework
8. 21.05 GUI Construction
9. 28.05 Guidelines, Idioms and Patterns
10. 04.06 Clients and Servers
11. 11.06 Collections
12. 18.06 Common Errors, a few Puzzles

25.06 Final Exam

P2 — OOP 3.

U P2 — Object-Oriented Programming

tems into objects
ic and flexible
r design

oftware

n

rofilers and other tools
nts and architectures
es and rules of thumb
niversität Bern

Goals of this course

Object-Oriented Design
❑ How to use responsibility-driven design to split sys
❑ How to exploit inheritance to make systems gener
❑ How and when to refactor systems to simplify thei

Software Quality
❑ How to use design by contract to develop robust s
❑ How to test and validate software

Communication
❑ How to keep software as simple as possible
❑ How to write software that communicates its desig
❑ How to document a design

Skills, Techniques and Tools
❑ How to use debuggers, version control systems, p
❑ How and when to use standard software compone
❑ How and when to apply common patterns, guidelin

P2 — OOP 4.

U P2 — Object-Oriented Programming
niversität Bern

What is programming?

❑ Implementing data structures and algorithms?
❑ Writing instructions for machines?
❑ Implementing client specifications?
❑ Coding and debugging?
❑ Plugging together software components?
❑ Specification? Design?
❑ Testing?
❑ Maintenance?

Which of these are “not programming”?

P2 — OOP 5.

U P2 — Object-Oriented Programming

velopment

nts reflect the user’s needs?
irement?
?

?

ts?
niversität Bern

Programming and Software De

❑ How do you get your requirements?
❑ How do you know that the documented requireme
❑ How do you decide what priority to give each requ
❑ How do you select a suitable software architecture
❑ How do you do detailed design?
❑ How do you know your implementation is “correct”
❑ How, when and what do you test?
❑ How do you accommodate changes in requiremen
❑ How do you know when you’re done?

Is “programming” distinct from “software development”?

P2 — OOP 6.

U P2 — Object-Oriented Programming
niversität Bern

Programming activities

❑ Documentation
❑ Prototyping
❑ Interface specification
❑ Integration
❑ Reviewing
❑ Refactoring
❑ Testing
❑ Debugging
❑ Profiling
❑ ...

What do these activities have in common?

P2 — OOP 7.

U P2 — Object-Oriented Programming

ask:

asks.

mple programs.
reducing complexity.
niversität Bern

What is a software system?

A computer program is an application that solves a single t
❑ requirements are typically well-defined
❑ often single-user at a time
❑ little or no configuration required

A software system is an application that supports multiple t
❑ open requirements
❑ multiple users
❑ implemented by a set of programs or modules
❑ multiple installations and configurations
❑ long-lived (never “finished”)

Software systems are fundamentally more complex than si
Programming techniques address systems development by

P2 — OOP 8.

U P2 — Object-Oriented Programming

ly-designed?
niversität Bern

What is good (bad) design?

Consider two programs with identical behaviour.

❑ Could the one be well-designed and the other bad

❑ What would this mean?

P2 — OOP 9.

U P2 — Object-Oriented Programming

apes?

 {

 a class constant
niversität Bern

A procedural design
How can we compute the total area of a set of geometric sh

A typical, procedural solution:
public static long sumShapes1(Shape shapes[])

long sum = 0;
for (int i=0; i<shapes.length; i++) {

switch (shapes[i].kind()) {
case Shape.RECTANGLE: //

sum += shapes[i].rectangleArea();
break;

case Shape.CIRCLE:
sum += shapes[i].circleArea();
break;

... // more cases
}

}
return sum;

}

P2 — OOP 10.

U P2 — Object-Oriented Programming

 {

utions?
niversität Bern

An object-oriented design

A typical object-oriented solution:
public static long sumShapes2(Shape shapes[])

long sum = 0;
for (int i=0; i<shapes.length; i++) {

sum += shapes[i].area();
}
return sum;

}

What are the advantages and disadvantages of the two sol

P2 — OOP 11.

U P2 — Object-Oriented Programming

he architecture of any
than “the” function it is

t to!

— Meyer, OOSC
niversität Bern

Object-Oriented Design

OO vs. functional design ...

Object-oriented [design] is the method which bases t
software system on the objects it manipulates (rather
meant to ensure).

Ask not first what the system does: ask what it does i

P2 — OOP 12.

U P2 — Object-Oriented Programming

d responsibilities:
d provide services:

ible objects
annot do yourself

lasses
s

sk:

ce, not an implementation
niversität Bern

Responsibility-Driven Design

RDD factors a software system into objects with well-define
❑ Objects are responsible to maintain information an

☞ Operations are always associated to respons
☞ Always delegate to another object what you c

❑ A good design exhibits:
☞ high cohesion of operations and data within c
☞ low coupling between classes and subsystem

❑ Every method should perform one, well-defined ta
☞ Separation of concerns — reduce complexity
☞ High level of abstraction — write to an interfa

❑ Iterative Development
☞ Refactor the design as it evolves

P2 — OOP 13.

U P2 — Object-Oriented Programming

ds etc.)

oupling)
niversität Bern

Refactoring

Refactor your design whenever the code starts to hurt:
❑ methods that are too long or hard to read

☞ decompose and delegate responsibilities
❑ duplicated code

☞ factor out the common parts (template metho
❑ violation of encapsulation, or
❑ too much communication between objects (high c

☞ reassign responsibilities
❑ big case statements

☞ introduce subclass responsibilities
❑ hard to adapt to different contexts

☞ separate mechanism from policy
...

P2 — OOP 14.

U P2 — Object-Oriented Programming

 Meyer, OOSC, ch. 1

 their exact tasks, as

propriately to abnormal

 changes of specification
r the construction of many

 with others
few demands as possible

 to various hardware and

ckgrounds and
ucts
niversität Bern

What is Software Quality?

—

Correctness is the ability of software products to perform
defined by their specifications

Robustness is the ability of software systems to react ap
conditions

Extendibility is the ease of adapting software products to
Reusability is the ability of software elements to serve fo

different applications
Compatibility is the ease of combining software elements
Efficiency is the ability of a software system to place as

on hardware resources
Portability is the ease of transferring software products

software environments
Ease of use is the ease with which people of various ba

qualifications can learn to use software prod

P2 — OOP 15.

U P2 — Object-Oriented Programming

y

works

nstrated need!
niversität Bern

How to achieve software qualit

Design by Contract
❑ Pre- and post-conditions, Class invariants
❑ Disciplined exceptions

Standards
❑ Protocols, interfaces, components, libraries, frame
❑ Software architectures, design patterns

Testing and Debugging
❑ Unit tests, system tests ...
❑ Repeatable regression tests

Do it, do it right, do it fast
❑ Aim for simplicity and clarity, not performance
❑ Fine-tune performance only when there is a demo

P2 — OOP 16.

U P2 — Object-Oriented Programming

ge?

bstraction
niversität Bern

What is a programming langua

A programming language is a tool for:

❑ specifying instructions for a computer
❑ expressing data structures and algorithms
❑ communicating a design to another programmer
❑ describing software systems at various levels of a
❑ specifying configurations of software components

A programming language is a tool for communication!

P2 — OOP 17.

U P2 — Object-Oriented Programming

g

niversität Bern

Communication

How do you write code that communicates its design?

❑ Do the simplest thing you can think of (KISS)
☞ Don't over-design
☞ Implement things once and only once

❑ Program so your code is (largely) self-documentin
☞ Write small methods
☞ Say what you want to do, not how to do it

❑ Practice reading and using other people’s code
☞ Subject your code to reviews

P2 — OOP 18.

U P2 — Object-Oriented Programming

amming?

ed into software objects

entation

ible objects

 simplifying reuse

nges
niversität Bern

Why use object-oriented progr

❑ Modelling
☞ complex systems can be naturally decompos

❑ Data abstraction
☞ clients are protected from variations in implem

❑ Polymorphism
☞ clients can uniformly manipulate plug-compat

❑ Component reuse
☞ client/supplier contracts can be made explicit,

❑ Evolution
☞ classes and inheritance limit the impact of cha

P2 — OOP 19.

U P2 — Object-Oriented Programming
niversität Bern

Why Java?

Special characteristics
❑ Resembles C++ minus the complexity
❑ Clean integration of many features
❑ Dynamically loaded classes
❑ Large, standard class library

Simple Object Model
❑ “Almost everything is an object”
❑ No pointers
❑ Garbage collection
❑ Single inheritance
❑ Multiple subtyping
❑ Static and dynamic type-checking

Few innovations, but reasonably clean, simple and usable.

P2 — OOP 20.

U P2 — Object-Oriented Programming

BOL

a

Lisp

Prolog

Modula-2

Modula-3

Oberon

a 95
niversität Bern

History

1960

1970

1980

1990

FORTRAN
Algol 60

CO

PL/1
Simula 67

Smalltalk 72

Smalltalk 80

Objective C

C

C++ Ad

Pascal

ANSI C++

Self
Eiffel

Algol 68

Clu

Java Ad

P2 — OOP 21.

U P2 — Object-Oriented Programming

m and a software system?

uality?

hat bad?
icient from the start?

”? Are you sure?
niversität Bern

Summary

You should know the answers to these questions:
❑ What is the difference between a computer progra
❑ What defines a good object-oriented design?
❑ When does software need to be refactored? Why?
❑ What is “software quality”?
❑ How does OOP attempt to ensure high software q

Can you answer the following questions?
✎ What does it mean to “violate encapsulation”? Why is t
✎ Why shouldn’t you try to design your software to be eff
✎ When might it be “all right” to duplicate code?
✎ How do you program classes so they will be “reusable

P2 — OOP 22.

U Design by Contract

 Contract

uction, Prentice Hall, 1997.
niversität Bern

2. Design by Contract

Overview
❑ Stacks as Abstract Data Types
❑ Programming by Contract
❑ Assertions:

☞ pre- and post-conditions
☞ class invariants

❑ Disciplined Exceptions
❑ Linked List Stack implementation using Design by

Source
❑ Bertrand Meyer, Object-Oriented Software Constr

P2 — OOP 23.

U Design by Contract

s in computer programming.
and pop) and one querying

y() size() top()

0 (error)

1 6

2 7

3 3

2 7

3 2

2 7
niversität Bern

Stacks
A Stack is a classical data abstraction with many application
A Stack supports (at least) two mutating operations (push
operation (top).

Operation Stack isEmpt

true

push(6) 6 false

push(7) 6 7 false

push(3) 6 7 3 false

pop() 6 7 false

push(2) 6 7 2 false

pop() 6 7 false

P2 — OOP 24.

U Design by Contract

s

), brackets [] and braces { }

” is balanced,

ng parenthesis on a stack
he value on top of the stack

ed
on is balanced, otherwise not
niversität Bern

Example: Balancing Parenthese

Problem:
Determine whether an expression containing parentheses (
is correctly balanced.

Examples:
“if (a.b()) { c[d].e(); } else { f[g][h].i(); }
“((a+b()) ” is not balanced.

Approach:
❑ when you read a left parenthesis, push the matchi
❑ when you read a right parenthesis, compare it to t

☞ if they match, you pop and continue
☞ if they mismatch, the expression is not balanc

❑ if the stack is empty at the end, the whole expressi

P2 — OOP 25.

U Design by Contract

eses

Stack

]

] }

]

niversität Bern

Using a Stack to match parenth

Sample input: “([{ }]]”

Input Case Op

(left push))

[left push])

{ left push })

} match pop)

] match pop)

] mismatch ^false)

P2 — OOP 26.

U Design by Contract

ck

d hiding the rest.

terface.
niversität Bern

What is Data Abstraction?

An implementation of a stack consists of:
❑ a data structure to represent the state of the stack
❑ a set of operations that access and modify the sta

Encapsulation means bundling together related entities.
Information hiding means exposing an abstract interface an

An Abstract Data Type (ADT):
❑ encapsulates data and operations, and
❑ hides the implementation behind a well-defined in

P2 — OOP 27.

U Design by Contract

nothing more!
to do, not how to do it!

ain rather than how you will

le parts, each of which can

ion.

ing clients.
ly added to a system.
niversität Bern

Why are ADTs important?

Communication
❑ An ADT exports what a client needs to know, and
❑ By using ADTs, you communicate what you want
❑ ADTs allow you to directly model your problem dom

use to the computer to do so.

Software Quality and Evolution
❑ ADTs help to decompose a system into manageab

be separately implemented and validated.
❑ ADTs protect clients from changes in implementat
❑ ADTs encapsulate client/server contracts
❑ Interfaces to ADTs can be extended without affect
❑ New implementations of ADTs can be transparent

P2 — OOP 28.

U Design by Contract

rtain assumptions hold.

 a precondition and a

quired to provide anything!

ied, then I, in return,
ndition is satisfied.”
niversität Bern

Programming by Contract

Every ADT is designed to provide certain services given ce

An ADT establishes a contract with its clients by associated
postcondition to every operation O, which states:

Consequence:
❑ if the precondition does not hold, the ADT is not re

“If you promise to call O with the precondition satisf
promise to deliver a final state in which the postco

P2 — OOP 29.

U Design by Contract

peration to be legitimate.

eturn.
rguments and the result

Benefits

reases by 1.
removed.

dle case when stack is empty.
niversität Bern

Pre- and Postconditions

The precondition binds clients:
❑ it defines what the ADT requires for a call to the o
❑ it may involve initial state and arguments.

The postcondition, in return, binds the supplier:
❑ it defines the conditions that the ADT ensures on r
❑ it may only involve the initial and final states, the a

Obligations

Client
Only callpop() on a
non-empty stack

Stacksize dec
Top element is

Supplier
Decrement thesize .
Remove the top element.

No need to han

P2 — OOP 30.

U Design by Contract

ge

ge

top == item

ge
niversität Bern

Stack pre- and postconditions

isEmpty()
❑ requires: - always valid
❑ ensures: - no state chan

size()
❑ requires: - always valid
❑ ensures: - no state chan

push(Object item)
❑ requires: - always valid
❑ ensures: not empty, size == old size + 1,

top()
❑ requires: not empty
❑ ensures: - no state chan

pop()
❑ requires: not empty
❑ ensures: size == old size -1

P2 — OOP 31.

U Design by Contract

ates for objects of that class:
niversität Bern

Class Invariants

A class invariant is any condition that expresses the valid st

❑ it must be established by every constructor

❑ every public method
☞ may assume it holds when the method starts
☞ must re-establish it when it finishes

Stack instances must satisfy the following invariant:
❑ size ≥ 0

P2 — OOP 32.

U Design by Contract

e at some point :

itions
niversität Bern

Assertions

An assertion is any boolean expression we expect to be tru

Assertions have four principle applications:
1. Help in writing correct software

☞ formalizing invariants, and pre- and post-cond
2. Documentation aid

☞ specifying contracts
3. Debugging tool

☞ testing assertions at run-time
4. Support for software fault tolerance

☞ detecting and handling failures at run-time

➤ What should an object do if an assertion does not hold?
✔ Throw an exception.

P2 — OOP 33.

U Design by Contract

ring the execution of a

urpose.
ot satisfying its specification.

n:
lient (“organized panic”)
nd retry

cial notification.

eption, then you are abusing
niversität Bern

Disciplined Exceptions

An exception is the occurrence of an abnormal condition du
software element.
A failure is the inability of a software element to satisfy its p
An error is the presence in the software of some element n

There are only two reasonable ways to react to an exceptio
1. clean up the environment and report failure to the c
2. attempt to change the conditions that led to failure a

It is not acceptable to return control to the client without spe

➤ When should an object throw an exception?
✔ If and only if an assertion is violated

If it is not possible to run your program without raising an exc
the exception-handling mechanism!

P2 — OOP 34.

U Design by Contract

cture:

stack.pop()
niversität Bern

Stacks as Linked Lists

A Stack can easily be implemented using a linked data stru

size = 3

6 7 3

top =

size = 2

6 7

top =

stack.push(3)

P2 — OOP 35.

U Design by Contract

ify an interface:

tion;

tionException.

ns of an ADT?
niversität Bern

StackInterface

There are many ways to implement stacks. Let us first spec

public interface StackInterface {
public boolean isEmpty();
public int size();
public void push(Object item) throws AssertionExcep
public Object top() throws AssertionException;
public void pop() throws AssertionException;

}

The methods that might fail are declared to throw an Asser

➤ How do you let clients respond to multiple implementatio
✔ Specify an interface or an abstract class.

P2 — OOP 36.

U Design by Contract

eptions from any other kind.
 constructor that takes a
all super() to ensure that the

eption {

 }
niversität Bern

Exceptions

All Exception classes look like this!
You define your own exception class to distinguish your exc
The implementation consists of a default constructor, and a
simple message string as an argument. Both constructors c
instance is properly initialized.

public class AssertionException extends Exc
AssertionException() { super(); }
AssertionException(String s) { super(s);

}

P2 — OOP 37.

U Design by Contract

riable?

se of the variables is.
ts hidden state.
niversität Bern

LinkStack ADT

public class LinkStack implements StackInterface {
private Cell _top;
private int _size;

public LinkStack() {
// Establishes the invariant.
_top = null;
_size = 0;

}

➤ How should you name a private or protected instance va
✔ Pick a name that reflects the role of the variable.
✔ Tag the name with an underscore (_).

Role-based names tell the reader of a class what the purpo
A tagged name reminds the reader that a variable represen

P2 — OOP 38.

U Design by Contract

 that points to a sequence

ll)

ing the top item
niversität Bern

LinkStack Class Invariant

A valid LinkStack instance has a integer _size , and a _top
of linked Cells, such that:

❑ _size is always ≥ 0

❑ When _size is zero, _top points nowhere (== nu

❑ When _size > 0 , _top points to a Cell contain

P2 — OOP 39.

U Design by Contract

ithin LinkStack:

ctly private to LinkStack.
niversität Bern

LinkClass Cells

We can define the Cells of the linked list as an inner class w

public class Cell {
public Object item;
public Cell next;
public Cell(Object item, Cell next) {

this.item = item;
this.next = next;

}
}

➤ When should instance variables be public?
✔ Always make instance variables private or protected.

The Cell class is a special case, since its instances are stri

P2 — OOP 40.

U Design by Contract

; }

on is non-trivial.

iolate the contract.
n you violate the contract.
niversität Bern

LinkStack methods

public boolean isEmpty() { return this.size() == 0
public int size() { return _size; }

public Object top() throws AssertionException {
assert(!this.isEmpty()); // pre-condition
return _top.item;

}

➤ Which assertions should you check?
✔ Always check pre-conditions to methods.
✔ Check post-conditions and invariants if the implementati

Asserting pre-conditions lets you inform clients when they v
Asserting post-conditions and invariants lets you know whe

P2 — OOP 41.

U Design by Contract

t)
niversität Bern

Testing Assertions
It is easy to add an assertion-checker to a class:
(unfortunately this method is not defined in java.lang.Objec

private void assert(boolean assertion)
throws AssertionException

{
if (!assertion) {

throw new AssertionException(
"Assertion failed in LinkStack");

}
}

Every class will have its own invariant:
private boolean invariant() {

return (_size >= 0) &&
((_size == 0 && this._top == null)
|| (_size > 0 && this._top != null));

}

P2 — OOP 42.

U Design by Contract

xception {

ug the implementation.
niversität Bern

Push and Pop

public void push(Object item) throws AssertionE
_top = new Cell(item, _top);
_size++;
assert(!this.isEmpty()); // post-condition
assert(this.top() == item); // post-condition
assert(invariant());

}

public void pop() throws AssertionException {
assert(!this.isEmpty()); // pre-condition
_top = _top.next;
_size--;
assert(invariant());

}

Explicit post-conditions and invariants make it easier to deb

P2 — OOP 43.

U Design by Contract

in a text String are balanced:

k) {

ception {
niversität Bern

The ParenMatch class

A ParenMatch object uses a stack to check if parentheses

public class ParenMatch {
String _line;
StackInterface _stack;
public ParenMatch(String line, StackInterface stac

_line = line; _stack = stack;
}
public String reportMatch() throws AssertionEx

if (_line == null) { return ""; }
return "\"" + _line + "\" is"

+ (this.parenMatch() ? " " : " not ")
+ "balanced";

}
...

}

P2 — OOP 44.

U Design by Contract

xception {

;
;
;

 c) {
niversität Bern

A cluttered algorithm ...
public boolean parenMatch() throws AssertionE

for (int i=0; i<_line.length(); i++) {
char c = _line.charAt(i);
switch (c) {
case '{' : _stack.push(new Character('}')); break
case '(' : _stack.push(new Character(')')); break
case '[' : _stack.push(new Character(']')); break
case ']' : case ')' : case '}' :

if (_stack.isEmpty()) { return false; }
if (((Character) _stack.top()).charValue() ==

_stack.pop();
} else { return false; }
break;

default : break;
}

}
return _stack.isEmpty();

}

P2 — OOP 45.

U Design by Contract

per methods ...
xception {

ren later
RightParen (c)));

on top of stack!
lse ; }
racter(c))) {

k

ht parens?
niversität Bern

A declarative algorithm
We can remove conceptual clutter by introducing a few hel

public boolean parenMatch() throws AssertionE
for (int i=0; i<_line.length(); i++) {

char c = _line.charAt(i);
if (isLeftParen (c)) { // expect right pa

_stack.push (new Character(matching
} else {

if (isRightParen (c)) { // should be
if (_ stack.isEmpty ()) { return fa
if (_ stack.top (). equals (new Cha

_stack.pop (); // ok, so continue
} else { return false ; } // not o

}
}

}
return _stack.isEmpty (); // no missing rig

}

P2 — OOP 46.

U Design by Contract

ils only get in the way of the
niversität Bern

Helper methods
The helper methods are trivial to implement, and their deta
main algorithm.

private boolean isLeftParen(char c) {
return (c == '(') || (c == '[') || (c == '{');

}

private boolean isRightParen(char c) {
return (c == ')') || (c == ']') || (c == '}');

}

private char matchingRightParen(char c) {
switch (c) {

case '(' : return ')';
case '[' : return ']';
case '{' : return '}';

}
return c;

}

P2 — OOP 47.

U Design by Contract

ditions?
ed?

robustness?
ed?

k? Is this good or bad?
niversität Bern

Summary

You should know the answers to these questions:
❑ What is an assertion?
❑ How are contracts formalized by pre- and post-con
❑ What is a class invariant and how can it be specifi
❑ What are assertions useful for?
❑ How can exceptions be used to improve program
❑ What situations may cause an exception to be rais

Can you answer the following questions?
✎ What happens when you pop() an empty java.util.Stac
✎ What impact do assertions have on performance?

P2 — OOP 48.

U Testing and Debugging

sley, Fifth Edn., 1996.
niversität Bern

3. Testing and Debugging

Overview
❑ Testing — definitions
❑ Testing various Stack implementations
❑ Understanding the run-time stack and heap
❑ Wrapping — a simple integration strategy
❑ Timing benchmarks

Source
❑ I. Sommerville, Software Engineering,Addison-We

P2 — OOP 49.

U Testing and Debugging

dule)

ional and non-functional

ta.
niversität Bern

Testing

1. Unit testing:
☞ test individual (stand-alone) components

2. Module testing:
☞ test a collection of related components (a mo

3. Sub-system testing:
☞ test sub-system interface mismatches

4. System testing:
☞ (i) test interactions between sub-systems, and

(ii) test that the complete systems fulfils funct
requirements

5. Acceptance testing (alpha/beta testing):
☞ test system with real rather than simulated da

Testing is iterative!

P2 — OOP 50.

U Testing and Debugging

 to work still works after

n debugging & maintenance!

eir absence!
niversität Bern

Regression testing

Regression testing means testing that everything that used
changes are made to the system!

❑ tests must be deterministic and repeatable

❑ should test “all” functionality
☞ every interface
☞ all boundary situations
☞ every feature
☞ every line of code
☞ everything that can conceivably go wrong!

It costs extra work to define tests up front, but they pay off i

NB: Testing can only reveal the presence of defects, not th

P2 — OOP 51.

U Testing and Debugging

terface methods and checks

// pop 10 .. 2
niversität Bern

Stack test case

We define a simple regression test that exercises all StackIn
the boundary situations:

assert(stack.isEmpty());

for (int i=1; i<=10; i++) { stack.push(new Integer(i)); }
assert(!stack.isEmpty());
assert(stack.size() == 10);
assert(((Integer) stack.top()).intValue() == 10);

for (int i=10; i>1; i--) { stack.pop(); }
assert(!stack.isEmpty());
assert(stack.size() == 1);
assert(((Integer) stack.top()).intValue() == 1);

stack.pop();
assert(stack.isEmpty());

P2 — OOP 52.

U Testing and Debugging

 pre-conditions!
niversität Bern

Testing special cases

We would also like to know that our Stack checks for failed

boolean emptyPopCaught = false;
try {

// we expect pop() to raise an exception
stack.pop();

} catch(AssertionException err) {
// we should get here!
emptyPopCaught = true;

}
assert(emptyPopCaught); // should be true

P2 — OOP 53.

U Testing and Debugging

 of StackInterface:
) {

// NB: any kind!
niversität Bern

TestStack

We define a method that will test any given implementation
static public void testStack(StackInterface stack

try {
System.out.print("Testing "

+ stack.getClass().getName() + " ... ");

// the tests go here ...

System.out.println("passed all tests!");
} catch (Exception err) {

err.printStackTrace();
}

}

Running the test yields:
Testing LinkStack ... passed all tests!

P2 — OOP 54.

U Testing and Debugging

ngth) array.

cating a larger array, and

 {

e

niversität Bern

ArrayStack
A very different way to implement a Stack is with a (fixed-le

When the array runs out of space, the Stack “grows” by allo
copying elements to the new array

public class ArrayStack implements StackInterface
Object _store [];
int _capacity;
int _size;

public ArrayStack() {
_store = null; // default valu
_capacity = 0;
_size = 0;

}
...

}

P2 — OOP 55.

U Testing and Debugging

ption {

 NB: subtle error!
niversität Bern

ArrayStack methods
public boolean isEmpty() { return _size == 0; }
public int size() { return _size; }

public void push(Object item) throws AssertionExce
if (_size == _capacity) { grow(); }
_store[++_size] = item; //

}

public Object top() throws AssertionException {
assert(!this.isEmpty());
return _store[_size-1];

}

public void pop() throws AssertionException {
assert(!this.isEmpty());
_size--;

}

NB: we only check pre-conditions in this version!

P2 — OOP 56.

U Testing and Debugging

oundsExcep-

tcher.run(JM-

ption occurred ...
niversität Bern

Testing ArrayStack

Testing ArrayStack ... java.lang.ArrayIndexOutOfB
tion: 2

at ArrayStack.push(ArrayStack.java:28)
at TestStack.testStack(Compiled Code)
at TestStack.main(TestStack.java:12)
at com.apple.mrj.JManager.JMStaticMethodDispa

AWTContextImpl.java:796)
at java.lang.Thread.run(Thread.java:474)

Exception.printStackTrace() tells us exactly where the exce

P2 — OOP 57.

U Testing and Debugging

record a context of a
context (AKA “stack frame”)
s.

:

niversität Bern

The Run-time Stack

The run-time stack is a fundamental data structure used to
procedure that will be returned to at a later point in time. This
stores the arguments to the procedure and its local variable

Practically all programming languages use a run-time stack

public static void main(String args[]) {
System.out.println("fact(3) = " + fact(3));

}

public static int fact(int n) {
if (n<=0) {

return 1;
} else {

return n*fact(n-1);
}

}

P2 — OOP 58.

U Testing and Debugging

..

fact(0) ...

fact(0);return 1

eturn 1
niversität Bern

The run-time stack in action ...
The stack grows with each procedure call ...

... and shrinks with each return.

main ...

main;fact(3)=? fact(3) ...

main;fact(3)=? fact(3);fact(2)=? fact(2) ...

main;fact(3)=? fact(3);fact(2)=? fact(2);fact(1)=? fact(1) .

main;fact(3)=? fact(3);fact(2)=? fact(2);fact(1)=? fact(1);fact(0)=?

main;fact(3)=? fact(3);fact(2)=? fact(2);fact(1)=? fact(1);fact(0)=?

main;fact(3)=? fact(3);fact(2)=? fact(2);fact(1)=? fact(1);r

main;fact(3)=? fact(3);fact(2)=? fact(2);return 2

main;fact(3)=? fact(3);return 6

main;fact(3)=6

P2 — OOP 59.

U Testing and Debugging

RunTimeHeap

: Integ er

: Object []

rra yStac k

acity : integer
 : integer
e : Object []

 String []
niversität Bern

The Stack and the Heap

The Heap grows with
each new Object
created, and shrinks
when Objects are
garbage-collected.

RunTimeStac k

Arra yStac k.push

_item : Object

TestStac k.testStac k

stack : StackInterface
i : integer

TestStac k.main

args : String []

com.apple .mrj...run

...

java.lang.Thread.ja va

...

: A

_cap
_size
_stor

:

The Stack grows
with each method
call and shrinks with
each return.

P2 — OOP 60.

U Testing and Debugging

to the _store, instead of the

 {
niversität Bern

Fixing our mistake

We erroneously used the incremented _size as an index in
new size - 1:

public void push(Object item) throws AssertionException
if (_size == _capacity) { grow(); }
// NB: top index is the *old* value of _size
_store[_size++] = item;
assert(this.top() == item);
assert(invariant());

}

Perhaps it would be clearer to write:
_store[this.topIndex()] = item;

or even:
this.setTop(item)

P2 — OOP 61.

U Testing and Debugging

patible with our interface:

 won’t be able to work with

fit your expectations?
niversität Bern

Wrapping Objects

Java also provides a Stack implementation, but it is not com

public class Stack extends Vector {
public Stack();
public Object push(Object item);
public synchronized Object pop();
public synchronized Object peek();
public boolean empty();
public synchronized int search(Object o);

}

If we change our programs to work with the Java Stack, we
our own Stack implementations ...

➤ What do you do with an object whose interface doesn’t
✔ You wrap it.

P2 — OOP 62.

U Testing and Debugging

tems integration.

ckInterface {

k(); }
); }

xception {
niversität Bern

A Wrapped Stack
Wrapping is a fundamental programming technique for sys

import java.util.Stack;
public class SimpleWrappedStack implements Sta

Stack _stack;
public SimpleWrappedStack() { _stack = new Stac
public boolean isEmpty() { return _stack.empty(
public int size() { return _stack.size(); }
public void push(Object item) throws AssertionE

_stack.push(item);
}
public Object top() throws AssertionException {

return _stack.peek();
}
public void pop() throws AssertionException {

_stack.pop();
}

}

✎ What are possible disadvantages of wrapping?

P2 — OOP 63.

U Testing and Debugging

 yields:

ception

va:29)
niversität Bern

A contract mismatch

But running testStack(new SimpleWrappedStack())

Testing SimpleWrappedStack ... java.util.EmptyStackEx
at java.util.Stack.peek(Stack.java:78)
at java.util.Stack.pop(Stack.java:60)
at SimpleWrappedStack.pop(SimpleWrappedStack.ja
at TestStack.testStack(Compiled Code)
at TestStack.main(TestStack.java:13)
at com.apple.mrj.JManager.JMStaticMethod-

Dispatcher.run(JMAWTContextImpl.java:796)
at java.lang.Thread.run(Thread.java:474)

P2 — OOP 64.

U Testing and Debugging

hen it is popped, but
ck its preconditions!

dStack {
niversität Bern

Fixing the problem ...

Our tester expects an empty Stack to throw an exception w
java.util.Stack doesn’t do this — so our wrapper should che

public class WrappedStack extends SimpleWrappe
public Object top() throws AssertionException {

assert(!this.isEmpty());
return super.top();

}
public void pop() throws AssertionException {

assert(!this.isEmpty());
super.pop();

}
private void assert(boolean assertion)

throws AssertionException { ... }
}

P2 — OOP 65.

U Testing and Debugging

n strategy will perform best?
niversität Bern

Timing benchmarks

Which of the Stack implementations performs better?

timer.reset();
for (int i=0; i<iterations; i++) {

stack.push(item);
}
elapsed = timer.timeElapsed();
System.out.println(elapsed + " milliseconds for "

+ iterations + " pushes");
...

➤ Complexity aside, how can you tell which implementatio
✔ Run a benchmark.

P2 — OOP 66.

U Testing and Debugging

s:

ing the Timer abstraction?
niversität Bern

Timer
We can abstract from the details of how to obtain the timing

import java.util.Date;
public class Timer {

long _startTime;
public Timer() { this.reset(); }
public void reset() {

_startTime = this.timeNow();
}
public long timeElapsed() {

return this.timeNow() - _startTime;
}
protected long timeNow() {

return new Date().getTime();
}

}

✎ What would the benchmark routine look like without us

P2 — OOP 67.

U Testing and Debugging

cted?

00K pushes 100K pops

2809 100

474 56

725 293

5151 1236

1519 681

8748 8249

3026 189

877 94

5927 5318
niversität Bern

Sample benchmarks

Times are in milliseconds ...

✎ Can you explain these results? Are they what you expe
✎ What happens if you run these tests several times?

Java VM Stack Implementation 1

Apple MRJ

LinkStack

ArrayStack

WrappedStack

Metrowerks

LinkStack

ArrayStack

WrappedStack

Metrowerks JIT

LinkStack

ArrayStack

WrappedStack

P2 — OOP 68.

U Testing and Debugging

on’t match?

ing?

 spending its time?
them several times?
niversität Bern

Summary

You should know the answers to these questions:
❑ What is a regression test? Why is it important?
❑ What strategies should you apply to design a test?
❑ What are the run-time stack and heap?
❑ How can you adapt client/supplier interfaces that d
❑ When are benchmarks useful?

Can you answer the following questions?
✎ How would you implement ArrayStack.grow()?
✎ What are the advantages and disadvantages of wrapp
✎ What is a suitable class invariant for WrappedStack?
✎ How can we learn where each Stack implementation is
✎ How much can the same benchmarks differ if you run

P2 — OOP 69.

U Iterative Development

g Object-Oriented Software,

ing Explained, draft
niversität Bern

4. Iterative Development

Overview
❑ Iterative development
❑ Responsibility-Driven Design

☞ How to find the objects ...
☞ TicTacToe example ...

Sources
❑ R. Wirfs-Brock, B. Wilkerson, L. Wiener, Designin

Prentice Hall, 1990.
❑ Kent Beck, Embrace Change: Extreme Programm

manuscript, 1999.

P2 — OOP 70.

U Iterative Development

ally:
cycle

oftware lifecycle
tware development as
“waterfall” between the
pment phases.

esting

Maintenance
niversität Bern

The Classical Software Lifecycle

The waterfall model is unrealistic for many reasons, especi
❑ requirements must be “frozen” too early in the life-
❑ requirements are validated too late

The classical s
models the sof
a step-by-step
various develo

Requirements
Collection

Analysis

Design

Implementation

T

P2 — OOP 71.

U Iterative Development

phases progress in parallel.

andard software process?

on requirements

oughout implementation

refactoring
niversität Bern

Iterative Development

In practice, development is always iterative, and all software

✎ If the waterfall model is pure fiction, why is it still the st

Requirements
Collection

Testing

Design

Analysis

Implementation

Validation through prototyping

Testing based

Testing thr

Maintenance through iteration

Design through

P2 — OOP 72.

U Iterative Development

sign?

f collaborating objects
meet the requirements,
., that can carry them out).

object?

tained by functional

ver time than functionality or
niversität Bern

What is Responsibility-Driven De

Responsibility-Driven Design is
❑ a method for deriving a software design in terms o
❑ by asking what responsibilities must be fulfilled to
❑ and assigning them to the appropriate objects (i.e

Pelrine’s Laws
➤ How do you decide what responsibilities to assign to an
✔ “Don't do anything you can push off to someone else.”
➤ When should you let an object export its state?
✔ “Don't let anyone else play with you.”

RDD leads to fundamentally different designs than those ob
decomposition or data-driven design.

☞ class responsibilities tend to be more stable o
representation

P2 — OOP 73.

U Iterative Development

anguage]

 crosses and another
ks in any of the nine
 crossed by two
e of his marks in any

ic Tac Toe.
niversität Bern

Example: Tic Tac Toe

Requirements: [Random House Dictionary of the English L

“A simple game in which one player marks down only
only ciphers [zeroes], each alternating in filling in mar
compartments of a figure formed by two vertical lines
horizontal lines, the winner being the first to fill in thre
row or diagonal.”

We should design a program that implements the rules of T

P2 — OOP 74.

U Iterative Development

ser?

 interesting
s
ponsibilities

rsion of a system?
e client.
niversität Bern

Limiting Scope

Questions:
❑ Should we support other games?
❑ Should there be a graphical UI?
❑ Should games run on a network? Through a brow
❑ Can games be saved and restored?

A monolithic paper design is bound to be wrong!

An iterative development strategy:
❑ reduce scope to the minimal requirements that are
❑ grow the system by adding features and test case
❑ let the design emerge by refactoring roles and res

➤ How much functionality should you deliver in the first ve
✔ Select the minimal requirements that provide value to th

P2 — OOP 75.

U Iterative Development

quirements:

as objects in our design.

s?
s.

cts Justification

iphers Same as Marks

Value of Compartment

Display of State

lines ditto

State of Player

View of State

ditto
niversität Bern

Tic Tac Toe Objects

We (may) first try to identify likely objects occurring in the re

Entities with clear responsibilities are more likely to end up

➤ How can you tell when you have the “right” set of object
✔ Each object has a clear and natural set of responsibilitie

Objects Responsibilities Non-Obje

Game Maintain game rules Crosses, c

Player Make moves
Mediate user interaction

Marks

Vertical lines

Compartment Record marks Horizontal

Figure (State) Maintain game state Winner

Row

Diagonal

P2 — OOP 76.

U Iterative Development

ities:

 design?
 to some object.
niversität Bern

Missing Objects

At this point we can ask if there are unassigned responsibil

❑ Who starts the Game?

❑ Who is responsible for displaying the Game state?

❑ How do Players know when the Game is over?

Let us introduce a Driver that supervises the Game.

➤ How can you tell when there are objects missing in your
✔ When there are responsibilities that cannot be assigned

P2 — OOP 77.

U Iterative Development

ween objects:

same problem?

Player Y

e

niversität Bern

Scenarios
A scenario describes a typical sequence of interactions bet

✎ Can you imagine other, equally valid scenarios for the

Driver Game Player X
create create

creat
print getMove

done?

print getMove

done?

print
getMove

done?
getMove

P2 — OOP 78.

U Iterative Development

 }
niversität Bern

A Skeleton Implementation

Our first version does very little!

class GameDriver {
static public void main(String args[]) {

TicTacToe game = new TicTacToe();
do {

System.out.print(game);
} while(game.notOver());

}
public class TicTacToe {

public boolean notOver() { return false; }
public String toString() { return("TicTacToe\n");

}

P2 — OOP 79.

U Iterative Development

arked ‘ ’, ‘X’, or ‘O’. We index
 and row is '1' through '3'.
niversität Bern

Representing the Game State
The state of the game is represented as 3x3 array of chars m
the state using chess notation, i.e., column is 'a' through 'c'

public class TicTacToe {
private char[][] _gameState;

public TicTacToe() {
_gameState = new char[3][3];
for (char col='a'; col <='c'; col++)

for (char row='1'; row<='3'; row++)
this.set(col,row,' ');

}
private void set(char col, char row, char mark) {

assert(inRange(col, row)); // NB: precondition
_gameState[col-'a'][row-'1'] = mark;

}
private char get(char col, char row) { ... }

... }

P2 — OOP 80.

U Iterative Development

 methods:
niversität Bern

Testing the new methods

For now, our tests can just exercise the new set() and get()

public void test() {
System.err.println("Started TicTacToe tests");
assert(this.get('a','1') == ' ');
assert(this.get('c','3') == ' ');
this.set('c','3','X');
assert(this.get('c','3') == 'X');
this.set('c','3',' ');
assert(this.get('c','3') == ' ');
assert(!this.inRange('d','4'));
System.err.println("Passed TicTacToe tests");

}
}

P2 — OOP 81.

U Iterative Development

ur unit tests in a single driver
niversität Bern

Testing the application

If each class provides its own test() method, we can bundle o
class:

class TestDriver {
static public void main(String args[]) {

TicTacToe game = new TicTacToe();
game.test();

}
}

P2 — OOP 82.

U Iterative Development

w the state of the game:
niversität Bern

Printing the State

By re-implementing TicTacToe.toString() , we can vie

3 | |
---+---+---

2 | |
---+---+---

1 | |
a b c

➤ How do you make an object printable?
✔ Override Object.toString()

P2 — OOP 83.

U Iterative Development

be separate operations:

yer will attempt to do so ...

Player Y

e

niversität Bern

Refining the interactions
We see now that updating the Game and printing it should

The Game can ask the Player to make a move, and the Pla

Driver Game Player X
create create

creat
print

move

done?

moveupdate

print

done?

update
move

move

P2 — OOP 84.

U Iterative Development

ts in a game ...

us turn)

of X
or there is a winner
 marked

variants are respected
niversität Bern

Tic Tac Toe Contracts

Consider all the assertions that should hold at various poin

Explicit invariants:
☞ turn (current player) is either X or O
☞ X and O swap turns (turn never equals previo
☞ game state is 3×3 array marked X, O or blank
☞ winner is X or O iff winner has three in a row

Implicit invariants:
☞ initially winner is nobody; initially it is the turn
☞ game is over when all squares are occupied,
☞ a player cannot mark a square that is already

Contracts:
☞ the current player may make a move, if the in

P2 — OOP 85.

U Iterative Development

ts

// represents nobody
niversität Bern

Representing the Game State
We must introduce state variables to implement the contrac

public class TicTacToe {
// ...
private Player _winner = new Player();
private Player[] _player;
private int _turn = X; // initial turn
private int _squaresLeft = 9;
static final int X = 0;
static final int O = 1;

public TicTacToe(Player playerX, Player playerO)
throws AssertionException

{ // ...
_player = new Player[2];
_player[X] = playerX;
_player[O] = playerO;

}

P2 — OOP 86.

U Iterative Development

n be useful to define a

should be checked ...

mplemented, and whether
niversität Bern

Invariants

Since invariants must hold at the end of each method, it ca
separate method.

These conditions seem obvious, which is exactly why they
private boolean invariant() {

return (_turn == X || _turn == O)
&& (this.notOver()

|| this.winner() == _player[X]
|| this.winner() == _player[O]
|| this.winner().isNobody())

&& (_squaresLeft < 9
// else, initially:
|| _turn == X && this.winner().isNobody());

}

Assertions and tests often tell us what methods should be i
they should be public or private.

P2 — OOP 87.

U Iterative Development

ayer to make a move:

er makes its move:
niversität Bern

Delegating Responsibilities
When Driver updates the Game, the Game just asks the Pl

public void update() throws IOException {
_player[_turn].move(this);

}

The Game also has a move() method, called when the Play
public void move(char col, char row, char mark)

throws AssertionException
{

assert(this.notOver());
assert(inRange(col, row));
assert(this.get(col, row) == ' ');
System.out.println(mark + " at " + col + row);
this.set(col, row, mark);
this._squaresLeft--;
this.swapTurn();
this.checkWinner();
assert(this.invariant());

}

P2 — OOP 88.

U Iterative Development

eed for explanatory

 O : X; }

ft; }

.

niversität Bern

Small Methods

Well-named variables and methods typically eliminate the n
comments!

Introduce methods that make the intent of your code clear.
public boolean notOver() {

return this.winner().isNobody()
&& this.squaresLeft() > 0;

}
private void swapTurn() { _turn = (_turn == X) ?

public Player winner() { return _winner; }
public int squaresLeft() { return this._squaresLe

➤ When should instance variables be public?
✔ Almost never! Declare public accessor methods instead

P2 — OOP 89.

U Iterative Development

tiation from Game playing:
niversität Bern

GameDriver

In order to run test games, we must separate Player instan

public class GameDriver {
public static void main(String args[]) {

try {
Player X = new Player('X');
Player O = new Player('O');
TicTacToe game = new TicTacToe(X, O);
playGame(game);

} catch (AssertionException err) {
...

}
}

P2 — OOP 90.

U Iterative Development

ual Players:

// internal

structor

System.in)));

// for testing
(moves)));

r “nobody”
niversität Bern

The Player
Multiple constructors are needed to distinguish real and virt

public class Player {
private final char _mark;
private final BufferedReader _in;

public Player(char mark, BufferedReader in) {
_mark = mark;
_in = in;

}
public Player(char mark) { // the normal con

this(mark,
new BufferedReader(new InputStreamReader(

}
public Player(char mark, String moves) {

this(mark, new BufferedReader(new StringReader
}
public Player() { this(' '); } // for Playe

P2 — OOP 91.

U Iterative Development

tring Omoves,
niversität Bern

Defining test cases
public class TestDriver {

private static String testX1 = "a1\nb2\nc3\n";
private static String testO1 = "b1\nc1\n";
// + other test cases ...
public static void main(String args[]) {

testGame(testX1, testO1, "X", 4); // ...
}
public static void testGame(String Xmoves, S

String winner, int squaresLeft) {
try {

Player X = new Player('X', Xmoves);
Player O = new Player('O', Omoves);
TicTacToe game = new TicTacToe(X, O);
GameDriver.playGame(game);
assert(game.winner().name().equals(winner));
assert(game.squaresLeft() == squaresLeft);

} catch (AssertionException err) { ... }
}

P2 — OOP 92.

U Iterative Development

X at b2

: O at c1

X at c3

test
niversität Bern

Running the test cases
Started testGame test
3 | |

---+---+---
2 | |

---+---+---
1 | |

a b c
Player X moves: X at a1
3 | |

---+---+---
2 | |

---+---+---
1 X | |

a b c
Player O moves: O at b1
3 | |

---+---+---
2 | |

---+---+---
1 X | O |

a b c

Player X moves:
3 | |

---+---+---
2 | X |

---+---+---
1 X | O |

a b c
Player O moves
3 | |

---+---+---
2 | X |

---+---+---
1 X | O | O

a b c
Player X moves:
3 | | X

---+---+---
2 | X |

---+---+---
1 X | O | O

a b c
game over!
Passed testGame

P2 — OOP 93.

U Iterative Development

fer from the Waterfall model?
sign objects?
 requirements?
design?
upposed to be true anyway?
one or two lines long?

t prompts a Player to move?
variant?

 overloaded method or
niversität Bern

Summary

You should know the answers to these questions:
❑ What is Iterative Development, and how does it dif
❑ How can identifying responsibilities help you to de
❑ Where did the Driver come from, if it wasn’t in our
❑ Why is Winner not a likely class in our TicTacToe
❑ Why should we evaluate assertions if they are all s
❑ What is the point of having methods that are only

Can you answer the following questions?
✎ Why should you expect requirements to change?
✎ In our design, why is it the Game and not the Driver tha
✎ When and where should we evaluate the TicTacToe in
✎ What other tests should we put in our TestDriver?
✎ How does the Java compiler know which version of an

constructor should be called?

P2 — OOP 94.

U Inheritance and Refactoring

 reuse

 reduce complexity

g Object-Oriented Software,
niversität Bern

5. Inheritance and Refactoring

Overview
❑ Uses of inheritance

☞ conceptual hierarchy, polymorphism and code
❑ TicTacToe and Gomoku

☞ which inherits from which?!
☞ interfaces and abstract classes

❑ Refactoring
☞ iterative strategies for improving design

❑ Top-down decomposition
☞ decompose algorithms into high-level steps to
☞ use recursion when it can simplify your design

Source
❑ R. Wirfs-Brock, B. Wilkerson, L. Wiener, Designin

Prentice Hall, 1990.

P2 — OOP 95.

U Inheritance and Refactoring

mechanism to:

r parent(s)
f some features.

e current instance
erited methods

 multiple classes
erit from only)
f features

nd return types only
an be substituted for their
niversität Bern

What is Inheritance?

Inheritance in object-oriented programming languages is a
❑ derive new subclasses from existing classes
❑ where subclasses inherit all the features from thei
❑ and may selectively override the implementation o

Various OOPLs may additionally provide:
❑ self — a way to dynamically access methods of th
❑ super — a way to statically access overridden, inh
❑ multiple inheritance — a way to inherit features of
❑ abstract classes — partially defined classes (to inh
❑ mixins — a way to build classes from partial sets o
❑ interfaces — specifications of method argument a
❑ subtyping — guarantees that subclass instances c

parents
❑ ...

P2 — OOP 96.

U Inheritance and Refactoring

 interesting games that can
arkers.

sh Language]

 alternating and

n be used to play several
e-playing abstractions
niversität Bern

The Board Game

Tic Tac Toe is a pretty dull game, but there are many other
be played by two players with a board and two colours of m

Example: Go-moku [Random House Dictionary of the Engli

“A Japanese game played on a go board with players
attempting to be first to place five counters in a row.”

☞ We would like to implement a program that ca
different kinds of games using the same gam
(starting with TicTacToe and Go-moku).

P2 — OOP 97.

U Inheritance and Refactoring

be used for (at least) three

-a kind of Board Game

ormly manipulated as

terface
rdGame representation and
niversität Bern

Uses of Inheritance

Inheritance in object-oriented programming languages can
different, but closely related purposes:

Conceptual hierarchy:
❑ Go-moku is-a kind of Board Game; Tic Tac Toe is

Polymorphism:
❑ Instances of Gomoku and TicTacToe can be unif

instances of BoardGame by a client program

Software reuse:
❑ Gomoku and TicTacToe reuse the BoardGame in
❑ Gomokuand TicTacToe reuse and extend the Boa

the implementations of its operations

P2 — OOP 98.

U Inheritance and Refactoring

TicTacToe

e : char [3][3]
layer
er

layer[2]
ft : int

ayer, Player)

r, char, char)
: Player
) : boolean
eft() : int
har, char)

char) : char
()
ner()
har col, char row) : boolean
niversität Bern

Class Diagrams
At this stage the key classes look like this:

-gameStat
-winner: P
-turn : Play
-player : P
-squaresLe

+create(Pl
+update()
+move(cha
+winner()
+notOver(
+squaresL
-set(char, c
-get(char,
-swapTurn
-checkWin
-inRange(c

Player

-mark : char
-in : BufferedReader

+create(char, BufferedReader)
+mark() : char
+name() : String
+isNobody() : boolean
+move(TicTacToe)

Key

- private feature

protected feature

+ public feature

create() static feature

checkWinner() abstract feature

P2 — OOP 99.

U Inheritance and Refactoring

?

ds to lead to:
)

s between classes)
niversität Bern

A bad idea ...
Why not simply use inheritance for incremental modification

Exploiting inheritance for code reuse without refactoring ten
❑ duplicated code (similar, but not reusable methods
❑ conceptually unclear design (arbitrary relationship

Gomoku is not a kind of TicTacToe

TicTacToe

-gameState : char [3][3]
...

...

Gomoku

-gameState : char [19][19]
...

+create ()
+checkWinner()
...

P2 — OOP 100.

U Inheritance and Refactoring

S-A). We would like to define
to a shared parent class.

classes.

TicTacToe

...

+create ()
...
niversität Bern

Class Hierarchy

Both Go-moku and Tic Tac Toe are kinds of Board games (I
a common interface, and factor the common functionality in

Behaviour that is not shared will be implemented by the sub

Gomoku

...

+create ()
...

AbstractBoardGame
abstract

«interface»

BoardGame

+update()
+move(char, char, char)
+winner() : Player
+notOver() : boolean
+squaresLeft() : int

P2 — OOP 101.

U Inheritance and Refactoring

rd!

ively redesign our game:
implements
tBoardGame parent
res

ractBoardGame
re nothing is broken!
niversität Bern

Iterative development strategy

We need to find out which TicTacToe functionality will:
❑ already work for both TicTacToe and Gomoku
❑ need to be adapted for Gomoku
❑ can be generalized to work for both

Example: set() and get() will not work for a 19×19 boa

Rather than attempting a “big bang” redesign, we will iterat
❑ introduce a BoardGame interface that TicTacToe
❑ move all TicTacToe implementation to an Abstrac
❑ fix, refactor or make abstract the non-generic featu
❑ introduce Gomoku as a concrete subclass of Abst

After each iteration we run our regression tests to make su

➤ When should you run your (regression) tests?
✔ After every change to the system.

P2 — OOP 102.

U Inheritance and Refactoring

TicTacToe and Gomoku

 method needed

cToe implementation
niversität Bern

Version 1.3

The BoardGame interface specifies the methods that both
should implement:

public interface BoardGame {
public void update() throws IOException;
public void move(char col, char row, char mark)

throws AssertionException;
public Player currentPlayer(); // NB: new
public Player winner();
public boolean notOver();
public int squaresLeft();
public void test();

}

Initially we focus only on abstracting from the current TicTa

P2 — OOP 103.

U Inheritance and Refactoring

 BoardGame interface:

e) {

entation.
niversität Bern

Speaking to an Interface

Clients of TicTacToe and Gomoku should only speak to the

public class GameDriver {
public static void main(String args[]) {

try {
Player X = new Player('X');
Player O = new Player('O');
TicTacToe game = new TicTacToe(X, O);
playGame(game);
...

}
public static void playGame(BoardGame gam

...
}

In general, you should speak to an interface, not an implem

P2 — OOP 104.

U Inheritance and Refactoring

which prints out the state of
t has failed.

 {

 boolean verbose) {

: ");

().
niversität Bern

Quiet Testing

Our current TestDriver uses the GameDriver’s playGame(),
the game after each move, making it hard to tell when a tes
Tests should be silent unless an error has occurred!

public static void playGame(BoardGame game)
playGame(game, true);

}
public static void playGame(BoardGame game,

...
if (verbose) {

System.out.println();
System.out.println(game);
System.out.print("Player "

+ game.currentPlayer().mark() + " moves
...

}

NB: we must shift all responsibility for printing to playGame

P2 — OOP 105.

U Inheritance and Refactoring

r, TicTacToe must provide a

 continue.
niversität Bern

TicTacToe adaptations

In order to pass responsibility for printing to the GameDrive
method to export the current Player:

public class TicTacToe implements BoardGame {

...

public Player currentPlayer() {
return _player[_turn];

}

Now we run our regression tests and (after fixing any bugs)

P2 — OOP 106.

U Inheritance and Refactoring

 TicTacToe and Gomoku.

ments BoardGame {

// nobody

// initial turn

)

d, but not instantiated.

emented by subclasses ...
niversität Bern

Version 1.4
AbstractBoardGame will hold provide common methods for

public abstract class AbstractBoardGame imple
protected char[][] _gameState;
protected Player _winner = new Player();
protected Player[] _player;
protected int _turn = X;
protected int _squaresLeft = 9;

...
protected void set(char col, char row, char mark

...
protected char get(char col, char row)

...

➤ When should a class be declared abstract?
✔ Declare a class abstract if it is intended to be subclasse

An abstract class may declare abstract methods to be impl

P2 — OOP 107.

U Inheritance and Refactoring

ariables from one class to

ving everything except the
anging all private features to

e {

dGame ...
niversität Bern

Refactoring

Refactoring is a process of moving methods and instance v
another to improve the design, specifically to:

❑ reassign responsibilities
❑ eliminate duplicated code
❑ reduce coupling

☞ interaction between classes
❑ increase cohesion

☞ interaction within classes

We have adopted one possible refactoring strategy, first mo
constructor from TicTacToe to AbstractBoardGame, and ch
protected:

public class TicTacToe extends AbstractBoardGam
public TicTacToe(Player playerX, Player playerO)

...

We could equally have started with an empty AbstractBoar

P2 — OOP 108.

U Inheritance and Refactoring

 generic, which must be

score may vary
hod
st()

)
dinates
niversität Bern

Version 1.5

Now we must check which parts of AbstractBoardGame are
repaired, and which must be deferred to its subclasses:

❑ the number of rows and columns and the winning
☞ introduce instance variables and an init() met
☞ rewrite toString(), invariant(), inRange() and te

❑ set() and get() are inappropriate for a 19×19 board
☞ index directly by integers
☞ fix move() to take String argument (e.g., “f17”
☞ add methods to parse String into integer coor

❑ getWinner() must be completely rewritten ...

P2 — OOP 109.

U Inheritance and Refactoring

ments BoardGame {

e {

Game?
niversität Bern

AbstractBoardGame 1.5

We introduce an init() method for arbitrary sized boards:
public abstract class AbstractBoardGame imple

protected void init(int rows, int cols, int score,
Player playerX, Player playerO)

{ ... }

And call it from the constructors of our subclasses:
public class TicTacToe extends AbstractBoardGam

public TicTacToe(Player playerX, Player playerO)
{

// 3x3 board with winning score = 3
this.init(3,3,3,playerX, playerO);

}
}

✎ Why not just introduce a constructor for AbstractBoard

P2 — OOP 110.

U Inheritance and Refactoring

d methods.
niversität Bern

BoardGame 1.5

Most of the changes in AbstractBoardGame are to protecte

The only public (interface) method to change is move():

public interface BoardGame {
...
public void move(String coord, char mark)

throws AssertionException;
...

}

P2 — OOP 111.

U Inheritance and Refactoring

tion {

 if the move is valid?
niversität Bern

Player 1.5
The Player class is now radically simplified:

public class Player {
...
public void move(BoardGame game) throws IOExcep

String line = _in.readLine();
if (line == null)

throw new IOException("end of input");
try {

game.move(line, this.mark());
} catch (AssertionException err) {

System.err.println("Invalid move ignored ("
+ line + ")");

}
}

}

✎ How can we make the Player responsible for checking

P2 — OOP 112.

U Inheritance and Refactoring

Toe and Gomoku

Toe or Gomoku
niversität Bern

Version 1.6

The final steps are:

❑ rewrite checkWinner()

❑ introduce Gomoku
☞ modify TestDriver to run tests for both TicTac
☞ print game state whenever a test fails

❑ modify GameDriver to query user for either TicTac

P2 — OOP 113.

U Inheritance and Refactoring

ning Go-moku score.
quare marked, so we should
 find 5 in a row:
niversität Bern

Keeping Score
The Go board is too large to search it exhaustively for a win
Instead, we know a winning sequence must include the last s
search in all directions starting from that square to see if we

We must do the same thing in all four directions.

✎ Whose responsibility is it to search?

P2 — OOP 114.

U Inheritance and Refactoring

ng run seem to be unrelated
lled a Runner), whose job it
layer’s pieces:

// NB: new args
niversität Bern

A new responsibility ...

Maintaining the state of the board and searching for a winni
responsibilities. Let’s introduce a separate object whose (ca
is to run across the board in a given direction and count a P

protected void checkWinner(int col, int row)
throws AssertionException

{
char player = this.get(col,row);
Runner runner = new Runner(this, col, row);
// check vertically
if (runner.run(0,1) >= this._winningScore)

{ this.setWinner(player); return; }
// check horizontally
if (runner.run(1,0) >= this._winningScore)

{ this.setWinner(player); return; }
...

}

P2 — OOP 115.

U Inheritance and Refactoring

and its current position:
niversität Bern

The Runner
The Runner must know its game, its home (start) position,

public class Runner {
BoardGame _game;
// Home col and row:
int _homeCol;
int _homeRow;
// Current col & row:
int _col=0;
int _row=0;

public Runner(BoardGame game, int col, int row)
{

_game = game;
_homeCol = col;
_homeRow = row;

}
...

P2 — OOP 116.

U Inheritance and Refactoring

 the most abstract terms
ntil you are done:

ns backwards in some
e same kind:

Exception

= _homeRow; }
niversität Bern

Top-down decomposition
A good way of implementing an algorithm is to describe it in
possible, introducing new methods for each abstract step, u

A runner starts at some home position, runs forward and ru
direction (delta col and row), adding up a run of tokens of th

public int run(int dcol, int drow) throws Assertion
{

int score = 1;
this.goHome();
score += this.forwardRun(dcol, drow);
this.goHome();
dcol = -dcol; // reverse direction
drow = -drow;
score += this.forwardRun(dcol, drow);
return score;

}
private void goHome() { _col= _homeCol; _row

P2 — OOP 117.

U Inheritance and Refactoring

on than iteration.

rn the length of the run:
niversität Bern

Recursion

Many algorithms are more naturally expressed with recursi

Recursively move forward as long as we are in a run. Retu

private int forwardRun(int dcol, int drow)
throws AssertionException

{
this.move(dcol, drow);
if (this.samePlayer())

return 1 + this.forwardRun(dcol, drow);
else

return 0;
}

✎ How would you implement move() and samePlayer()?

P2 — OOP 118.

U Inheritance and Refactoring

ethods so we make them

will not break encapsulation.

re is something wrong with
niversität Bern

BoardGame 1.6

The Runner now needs access to the get() and inRange() m
public:

public interface BoardGame {
...
public char get(int col, int row)

throws AssertionException;
public boolean inRange(int col, int row);
...

}

➤ Which methods should be public?
✔ Only publicize methods that clients will really need, and

If a client needs to be able to modify your internal state, the
your design! (Strong coupling)

P2 — OOP 119.

U Inheritance and Refactoring

19 Go board, and the winner

 {

it everything except their
y really not be so abstract.
niversität Bern

Gomoku

Gomoku is similar to TicTacToe, except it is played on a 19x
must get 5 in a row.

public class Gomoku extends AbstractBoardGame
public Gomoku(Player playerX, Player playerO)
{

// 19x19 board with winning score = 5
this.init(19,19,5,playerX, playerO);

}
}

In the end, both Gomoku and TicTacToe were able to inher
constructor from AbstractGameBoard, which suggest it ma

P2 — OOP 120.

U Inheritance and Refactoring

de?
r than public or private?
se?
l steps?

Game to be abstract?
se methods are all abstract?
s for AbstractBoardGame?

n flag) to make printing

ay around?
you could run Gomoku with
niversität Bern

Summary
You should know the answers to these questions:

❑ How does polymorphism help in writing generic co
❑ When should features be declared protected rathe
❑ How do abstract classes help to achieve code reu
❑ What is refactoring? Why should you do it in smal
❑ How do interfaces support polymorphism?

Can you answer the following questions?
✎ What would change if we didn’t declare AbstractBoard
✎ How does an interface (in Java) differ from a class who
✎ Can you write generic toString() and invariant() method
✎ How could you use polymorphism (instead of a boolea

optional in playGame()? Does this improve the design?
✎ Is TicTacToe a special case of Gomoku, or the other w
✎ How would you reorganize the class hierarchy so that

boards of different sizes?

P2 — OOP 121.

U Programming Tools

arrior, SNiFF ...
niversität Bern

6. Programming Tools

Overview
❑ Integrated Development Environments — CodeW
❑ Debuggers
❑ Version control — RCS, CVS
❑ Profilers
❑ Documentation generation — Javadoc

Sources
❑ CodeWarrior: www.metrowerks.com
❑ SNiFF+: www.takefive.com

P2 — OOP 122.

U Programming Tools

nments

ommon interface to a suite

ere pioneered in Smalltalk.
niversität Bern

Integrated Development Enviro

An Integrated Development Environment (IDE) provides a c
of programming tools:

❑ project manager
❑ browsers and editors
❑ compilers and linkers
❑ make utility
❑ version control system
❑ interactive debugger
❑ profiler
❑ memory usage monitor
❑ documentation generator

Many of the graphical object-oriented programming tools w

P2 — OOP 123.

U Programming Tools

available for MacOS,
niversität Bern

CodeWarrior

CodeWarrior is a popular IDE for C, C++, Pascal and Java
Windows and Solaris.

The Project Browser organizes the
source and object files belonging
to a project, and lets you modify
the project settings, edit source
files, and compile and run the
application.

P2 — OOP 124.

U Programming Tools
niversität Bern

CodeWarrior Class Browser

The Class Browser
provides one way to
navigate and edit
project files ...

P2 — OOP 125.

U Programming Tools

r

.

niversität Bern

CodeWarrior Hierarchy Browse

A Hierarchy Browser provides a view of the class hierarchy

NB: no distinction is made
between interfaces and
classes. Classes that
implement multiple interfaces
appear multiple times in the
hierarchy!

P2 — OOP 126.

U Programming Tools

ava, Python and many other

gers, etc. to be plugged in.
niversität Bern

SNiFF+

SNiFF+ is an integrated development environment for C++, J
languages, running on Unix. It provides:

❑ project management
❑ hierarchy browser
❑ class browser
❑ symbol browser
❑ cross referencer
❑ source code editor (either built-in or external)
❑ version control (using RCS)
❑ compiler error parsing
❑ integrated make facility (using Unix make)

SNiFF+ is an open IDE, allowing different compilers, debug

P2 — OOP 127.

U Programming Tools

ay be private, or shared.
niversität Bern

SNiFF+ Project Editor

SNiFF+ supports project development by teams: projects m

P2 — OOP 128.

U Programming Tools

hidden text
niversität Bern

SNiFF+ Source Editor

P2 — OOP 129.

U Programming Tools

hidden text
niversität Bern

SNiFF+ Hierarchy Browser

P2 — OOP 130.

U Programming Tools
niversität Bern

SNiFF+ Class Browser

The SNiFF+ class browser shows (by the
colours) which features are public,
protected or private and (by the icons)
which are inherited or overridden.

You can select which features you want to
view (using menus, checkboxes and
filters).

P2 — OOP 131.

U Programming Tools

f a running program:

 formats
am

re file”)

t working.

mming languages.
ern ones are graphical.

d with programs compiled
niversität Bern

Debuggers

A debugger is a tool that allows you to examine the state o
❑ step through the program instruction by instruction
❑ view the source code of the executing program
❑ inspect (and modify) values of variables in various
❑ set and unset breakpoints anywhere in your progr
❑ execute up to a specified breakpoint
❑ examine the state of an aborted program (in a “co

➤ When should you use a debugger?
✔ When you are unsure why (or where) your program is no

Interactive debuggers are available for most mature progra
Classical debuggers are line-oriented (e.g., jdb); most mod

NB: debuggers are object code specific, so can only be use
with compilers generating compatible object files.

P2 — OOP 132.

U Programming Tools
niversität Bern

Setting Breakpoints

The CodeWarrior
IDE lets you set
breakpoints by
simply clicking next
to the statements
where execution
should be
interrupted.

P2 — OOP 133.

U Programming Tools
niversität Bern

Debugging

Execution will be
interrupted every time
breakpoint is reached,
displaying the current
program state.

P2 — OOP 134.

U Programming Tools

invariants and pre- and post-

ur program
 the program state
niversität Bern

Debugging Strategy

Develop tests as you program
❑ Apply Design by Contract to decorate classes with

conditions
❑ Develop unit tests to exercise all paths through yo

☞ use assertions (not print statements) to proble
☞ print the state only when an assertion fails

❑ After every modification, do regression testing!

If errors arise during testing or usage
❑ Use the test results to track down and fix the bug
❑ If you can’t tell where the bug is, then

☞ use a debugger to identify the faulty code
☞ fix the bug
☞ identify and add any missing tests!

P2 — OOP 135.

U Programming Tools

s:

ultiple “deltas”)

r UNIX.
 www.cyclic.com)

ojects!

pment!
niversität Bern

Version Control

A version control system keeps track of multiple file revision
❑ check-in and check-out of files
❑ logging changes (who, where, when)
❑ merge and comparison of versions
❑ retrieval of arbitrary versions
❑ “freezing” of versions as releases
❑ reduces storage space (manages sources files + m

SCCS and RCS are two popular version control systems fo
CVS is popular on Mac, Windows and UNIX platforms (see

➤ What kind of projects can benefit from versioning?
✔ Use a version control system to keep track of all your pr

Version control is as important as testing in iterative develo

P2 — OOP 136.

U Programming Tools

CS files
 RCS file

les into a third
isions
CS files into a third

 not been changed
nfiguration
niversität Bern

RCS

Overview of RCS commands:
❑ ci Check in revisions
❑ co Check out revisions
❑ rcs Set up or change attributes of R
❑ ident Extract keyword values from an
❑ rlog Display a summary of revisions
❑ merge Incorporate changes from two fi
❑ rcsdiff Report differences between rev
❑ rcsmerge Incorporate changes from two R
❑ rcsclean Remove working files that have
❑ rcsfreeze Label the files that make up a co

P2 — OOP 137.

U Programming Tools

ated in the RCS directory:

ng

ly copy
s

niversität Bern

Using RCS

When file is checked in, an RCS file called file,v is cre

mkdir RCS # create subdirectory for RCS files
ci file # put file under control of RCS

Working copies must be checked out and checked in.

co -l file # check out (and lock) file for editi
ci file # check in a modified file
co file # check out a read-only copy
ci -u file # check in file, but leave a read-on
rcsdiff file # report changes between version

P2 — OOP 138.

U Programming Tools

:
me)

d during check-in)
niversität Bern

Additional RCS Features

Keyword substitution
❑ Various keyword variables are maintained by RCS

$Author$ who checked in revision (userna
$Date$ date and time of check-in
Log description of revision (prompte
and several others ...

Revision numbering:
❑ Usually each revision is numbered release.level
❑ Level is incremented upon each check-in
❑ A new release is created explicitly:

ci -r2.0 file

P2 — OOP 139.

U Programming Tools

ram has spent its time
g a compiler (or interpreter)
urce program

ts ...

nce.

performance.

 have (not) been tested!
niversität Bern

Profilers

A profiler (e.g., java -prof) tells you where an executed prog
1. your program must first be instrumented by (i) settin

option, or (ii) adding instrumentation code to your so
2. the program is run, generating a profile data file
3. the profiler is executed with the profile data as input

The profiler can then display the call graph in various forma

➤ When should you use a profiler?
✔ Always run a profiler before attempting to tune performa

➤ How early should you start worrying about performance?
✔ Only after you have a clean, running program with poor

NB: The call graph also tells you which parts of the program

P2 — OOP 140.

U Programming Tools
niversität Bern

Profiling with CodeWarrior
Instrument the code:

import com.mw.Profiler.Profiler;
public class TestDriver {

public static void main(String args[]) {
Profiler.Init(500, 20); // #methods; stack depth
Profiler.StartProfiling();
doTicTacToeTests();
doGomokuTests();
Profiler.StopProfiling();
Profiler.Dump("TicTacToe Profile");
Profiler.Terminate();

} ...

and turn on profiling:

P2 — OOP 141.

U Programming Tools
niversität Bern

Profile Data
Call graphs can typically be displayed hierarchically:

or sorted by timings, number of calls etc.:

P2 — OOP 142.

U Programming Tools

specified Java source files.

ay be preceded by “javadoc
special tag values (e.g., ...)

es
niversität Bern

Javadoc
Javadoc generates API documentation in HTML format for

Each class, interface and each public or protected method m
comments” between /** and */ . Comments may contain
and (some) HTML tags.

import java.io.*;
/**

* Manage interaction with user.
* @author Oscar.Nierstrasz@acm.org
* @version 1.5 1999-02-07
*/

public class Player { ...
/**
 * Constructor to specify an alternative source of mov
 * (e.g., a test case StringReader).
 */
public Player(char mark, BufferedReader in) { ...

P2 — OOP 143.

U Programming Tools
niversität Bern

Javadoc output

View it with your
favourite web
browser!

P2 — OOP 144.

U Programming Tools

!

to a single “zip file”
Purify, help to detect other
 leaks”

epend on are modified
erate/apply deltas
 editing scripts/programs
lysers and parsers from

cification files
ssible errors in C programs

al data from object files
niversität Bern

Other tools

Be familiar with the programming tools in your environment

Multi-platform tools:
❑ zip/jar: store and compress files and directories in
❑ memory inspection tools: like ZoneRanger and

memory management problems, such as “memory
Unix tools:

❑ make : regenerate (compile) files when files they d
❑ diff and patch : compare versions of files, and gen
❑ awk , sed and perl : process text files according to
❑ lex and yacc [flex and bison]: generate lexical ana

regular expression and context-free grammar spe
❑ lint : detect bugs, portability problems and other po
❑ strip : remove symbol table and other non-essenti

Many tools have their equivalents on other platforms ...

P2 — OOP 145.

U Programming Tools

?

upport?

ather than in your program)?
tem?
 new “release”?
ystem
niversität Bern

Summary

You should know the answers to these questions:
❑ When should you use a debugger?
❑ What are breakpoints? Where should you set them
❑ What should you do after you have fixed a bug?
❑ What functionality does a version control system s
❑ When should you use a profiler?

Can you answer the following questions?
✎ How can you tell when there is a bug in the compiler (r
✎ How often should you checkpoint a version of your sys
✎ When should you specify a version of your project as a
✎ How can you tell if you have tested every part of your s

P2 — OOP 146.

U A Testing Framework

bjects

 Kent Beck, Erich Gamma
ck
niversität Bern

7. A Testing Framework

Overview
❑ What is a framework?
❑ JUnit — a simple testing framework
❑ Money and MoneyBag — a testing case study
❑ Double Dispatch — how to add different types of o
❑ Testing practices

Sources
❑ JUnit 2.1
❑ “Test Infected: Programmers Love Writing Tests,”
❑ “Simple Smalltalk Testing: With Patterns”, Kent Be

All available from: ftp://www.armaties.com/

P2 — OOP 147.

U A Testing Framework

his prevents you from
tell when something
niversität Bern

The Problem

“Testing is not closely integrated with development. T
measuring the progress of development — you can't
starts working or when something stops working.”

Interactive testing is tedious and seldom exhaustive.
Automated tests are better, but,

❑ how to introduce tests interactively?
❑ how to organize suites of tests?

P2 — OOP 148.

U A Testing Framework

“fixtures”)

roblem that you test.
niversität Bern

JUnit

JUnit is a simple “testing framework” that provides:
❑ classes for writing Test Cases and Test Suites
❑ methods for setting up and cleaning up test data (
❑ methods for making assertions
❑ textual and graphical tools for running tests

JUnit distinguishes between failures and errors:
❑ A failure is a failed assertion, i.e., an anticipated p
❑ An error is a condition you didn’t check for.

NB: this is not the same distinction made by Meyer!

P2 — OOP 149.

U A Testing Framework

ke use of library functionality

ric and application code.
ion architecture:

.”

Library classes

User classes
niversität Bern

Frameworks vs. Libraries

In traditional application architectures, user applications ma
in the form of procedures or classes:

A framework reverses the usual relationship between gene
Frameworks provide both generic functionality and applicat

Essentially, a framework says: “Don’t call me — I’ll call you

User Application

main()

Framework Application

main()

P2 — OOP 150.

U A Testing Framework

TestResult

+ create()
void run (TestCase test)
+ addError (Test, Throwable)
+ addFailure (Test, Throwable)
+ errors() : Enumeration
+ failures() : Enumeration

est can be run.
estSuite bundles a set of
tCases and TestSuites.
rrors and failures are
cted into a TestResult.
niversität Bern

The JUnit Framework
These are the most important classes of the framework ...

«interface»

Test

+ countTestCases() : int
+ run (TestResult)

TestCase
abstract

+ create(String)
+ assert (boolean)
+ assertEquals(Object, Object)
+ fail()
+ void runBare ()
void runTest ()
void setUp ()
void tearDown ()
+ name() : String

TestSuite

+ create()
+ create(Class)
+ addTest (Test test)

A T
A T
Tes
All e
colle

*

P2 — OOP 151.

U A Testing Framework

ur test cases.

(tc)

are()

addFailure()

tr:TestResult
niversität Bern

A Testing Scenario

The framework calls the test methods that you define for yo

run(tr)
run(tr)

run

runB

setUp()

runTest()

tearDown()

:TestRunner :TestSuite tc :TestCase

P2 — OOP 152.

U A Testing Framework

est that should run, or
e code that will make

ment)

loping tests.”
niversität Bern

Testing Style

“The style here is to write a few lines of code, then a t
even better, to write a test that won't run, then write th
it run.”

❑ write unit tests that thoroughly test a single class
❑ write tests as you develop (even before you imple
❑ write tests for every new piece of functionality

“Developers should spend 25-50% of their time deve

P2 — OOP 153.

U A Testing Framework

es

senting arithmetic with
cies is trivial, you can
ting once multiple
niversität Bern

Representing multiple currenci

The problem ...

“The program we write will solve the problem of repre
multiple currencies. Arithmetic between single curren
just add the two amounts. ... Things get more interes
currencies are involved.”

P2 — OOP 154.

U A Testing Framework

gle currency:

t currencies!

(Money m) {
(

.amount(),
niversität Bern

Money

We start by designing a simple Money class to handle a sin

NB: The first version does not consider how to add differen

class Money {
...
public Money add

return new Money
amount()+m
currency());

}
...

}

Money

- fAmount : int
- fCurrency : String

+ amount() : int
+ currency() : String
+ add(Money) : Money
+ equals(Object) : boolean

P2 — OOP 155.

U A Testing Framework

es some test data:

est data
niversität Bern

MoneyTest

To test our Money class, we define a TestCase that exercis

import junit.framework.* ;

public class MoneyTest extends TestCase {
private Money f12CHF;
private Money f14CHF;

public MoneyTest(String name) { super(name); }

protected void setUp () {
f12CHF = new Money(12, "CHF") ; // some t
f14CHF = new Money(14, "CHF");

}
...

}

P2 — OOP 156.

U A Testing Framework

 to hold ...

;

;

niversität Bern

Some basic tests

We define methods to test the most basic things we expect

public void testEquals() {
assert(!f12CHF.equals(null));
assert Equals(f12CHF, f12CHF) ;
assert Equals(f12CHF, new Money(12, "CHF"))
assert(!f12CHF.equals(f14CHF));

}

public void testSimpleAdd() {
Money expected = new Money(26, "CHF")
Money result = f12CHF.add(f14CHF) ;
assert(expected.equals(result));

}

P2 — OOP 157.

U A Testing Framework

;

ances
d suite()
niversität Bern

Building a Test Suite

... and we bundle these tests into a Test Suite:

public static Test suite() {
TestSuite suite = new TestSuite() ;
suite.addTest(new MoneyTest("testEquals"))
suite.addTest(new MoneyTest("testSimpleAdd"));
return suite ;

}

A Test Suite:
❑ bundles together a bunch of named TestCase inst
❑ by convention, is returned by a static method calle

P2 — OOP 158.

U A Testing Framework

nd run the suite:
niversität Bern

The TestRunner
junit.ui.TestRunner is a GUI that we can use to instantiate a

P2 — OOP 159.

U A Testing Framework

ss that can hold two or more

MoneyBag

- fMonies : HashTable

+ create(Money, Money)
+ create(Money [])
- appendMoney(Money)
+ equals(Object) : boolean
niversität Bern

MoneyBags
To handle multiple currencies, we introduce a MoneyBag cla
instances of Money:

class MoneyBag {

...
MoneyBag(Money bag[]) {

for (int i= 0; i < bag.length; i++)
appendMoney (bag[i]);

}
private void appendMoney(Money aMoney) {

Money m = (Money)
fMonies.get(aMoney.currency());

if (m != null)
m = m.add(aMoney);

else
m = aMoney;

fMonies.put(aMoney.currency(), m);
}

}

P2 — OOP 160.

U A Testing Framework
niversität Bern

Testing MoneyBags (I)

To test MoneyBags, we need to extend the fixture ...

public class MoneyTest extends TestCase {
...
protected void setUp() {

f12CHF = new Money(12, "CHF");
f14CHF = new Money(14, "CHF");
f7USD = new Money(7, "USD") ;
f21USD = new Money(21, "USD");
fMB1 = new MoneyBag(f12CHF, f7USD) ;
fMB2 = new MoneyBag(f14CHF, f21USD);

}

P2 — OOP 161.

U A Testing Framework

;

niversität Bern

Testing MoneyBags (II)

... define some new (obvious) tests ...

public void testBagEquals() {
assert(!fMB1.equals(null));
assert Equals(fMB1, fMB1) ;
assert(!fMB1.equals(f12CHF));
assert(!f12CHF.equals(fMB1));
assert(!fMB1.equals(fMB2));

}

... add them to the test suite ...

public static Test suite() {
...
suite.addTest(new MoneyTest("testBagEquals"))
return suite;

}

P2 — OOP 162.

U A Testing Framework
niversität Bern

Testing MoneyBags (III)
and run the tests.

P2 — OOP 163.

U A Testing Framework

oneyBags, and be sure that

a common interface ...
niversität Bern

Adding MoneyBags

We would like to freely add together arbitrary Monies and M
equals behave as equals:

public void testMixedSimpleAdd() {
// [12 CHF] + [7 USD] == {[12 CHF][7 USD]}
Money bag[] = { f12CHF, f7USD };
MoneyBag expected = new MoneyBag(bag);
assertEquals(expected, f12CHF.add(f7USD));

}

That implies that Money and MoneyBag should implement

P2 — OOP 164.

U A Testing Framework

MoneyBag

dMoney(Money)
dBag(MoneyBag)
niversität Bern

The IMoney interface (I)

Monies know how to be added to other Monies

Do we need anything else in the IMoney interface?

Money

+ amount() : int
+ currency() : String

«interface»

IMoney

+ add(IMoney) : IMoney

- appen
- appen

P2 — OOP 165.

U A Testing Framework

n?

nal call to discover the

s a Money

s a MoneyBag
niversität Bern

Double Dispatch (I)

How do we implement add() without breaking encapsulatio

“The idea behind double dispatch is to use an additio
kind of argument we are dealing with...”

class Money implements IMoney { ...
public IMoney add(IMoney m) {

return m.addMoney(this) ; // add me a
} ...

}

class MoneyBag implements IMoney { ...
public IMoney add(IMoney m) {

return m.addMoneyBag(this) ; // add me a
} ...

}

P2 — OOP 166.

U A Testing Framework

urrency());
niversität Bern

Double Dispatch (I)

The rest is then straightforward ...

class Money implements IMoney { ...
public IMoney addMoney(Money m) {

if (m.currency().equals(currency()))
return new Money (amount()+m.amount(), c

return new MoneyBag (this, m);
}

public IMoney addMoneyBag(MoneyBag s) {
return s.addMoney(this) ;

} ...

and MoneyBag takes care of the rest.

P2 — OOP 167.

U A Testing Framework

in the Money package.

«interface»

IMoney

d(IMoney) : IMoney
dMoney(Money) : IMoney
dMoneyBag(MoneyBag) : IMoney
niversität Bern

The IMoney interface (II)

So, the common interface is:

public interface IMoney {
public IMoney add(IMoney aMoney);

IMoney addMoney(Money aMoney);
IMoney addMoneyBag(MoneyBag aMoneyBag);

}

NB: addMoney() and addMoneyBag() are only needed with

+ ad
+ ad
+ ad

P2 — OOP 168.

U A Testing Framework
niversität Bern

A Failed test
This time we are not so lucky ...

P2 — OOP 169.

U A Testing Framework

.equals()!

ime error?
niversität Bern

Diagnostics

We quickly discover that we forgot to implement MoneyBag

✎ Why was this a run-time failure rather than a compile-t

P2 — OOP 170.

U A Testing Framework
niversität Bern

The fix ...

We fix it ...

class MoneyBag implements IMoney { ...
public boolean equals(Object anObject) {

if (anObject instanceof MoneyBag) {
...

} else {
return false;

}
}

... test it, and continue developing.

P2 — OOP 171.

U A Testing Framework

 tests first.

w features, refactor in steps,
what’s broken before

irst write a test that will
he test succeeds.

 print statement or a

Martin Fowler
niversität Bern

Testing Practices

During Development
❑ When you need to add new functionality, write the

You will be done when the test runs.

❑ When you need to redesign your software to add ne
and run the (regression) tests after each step. Fix
proceeding.

During Debugging
❑ When someone discovers a defect in your code, f

succeed if the code is working. Then debug until t

“Whenever you are tempted to type something into a
debugger expression, write it as a test instead.”

P2 — OOP 172.

U A Testing Framework

me interface?

ean?

ds to run?
od?
g.equals() is used without
niversität Bern

Summary

You should know the answers to these questions:
❑ How does a framework differ from a library?
❑ Why do TestCase and TestSuite implement the sa
❑ What is a unit test?
❑ What is a test “fixture”?
❑ What should you test in a TestCase?
❑ What is “double dispatch”? What does the name m

Can you answer the following questions?
✎ How does the MoneyTest suite know which test metho
✎ How does the TestRunner invoke the right suite() meth
✎ Why doesn’t the Java compiler complain that MoneyBa

being declared?

P2 — OOP 173.

U GUI Construction

ers

orial , The Java Series,
niversität Bern

8. GUI Construction

Overview
❑ Applets and frameworks
❑ Model-View-Controller
❑ AWT Components, Containers and Layout Manag
❑ Events and Listeners
❑ Observers and Observables

Sources
❑ David Flanagan, Java in a Nutshell, O’Reilly, 1996
❑ Mary Campione and Kathy Walrath, The Java Tut

Addison-Wesley, 1996

P2 — OOP 174.

U GUI Construction

based game:
niversität Bern

A Graphical TicTacToe?

Our existing TicTacToe implementation is very limited:
❑ single-user at a time
❑ textual input and display

We would like to migrate it towards an interactive, network
❑ players on separate machines
❑ running the game as an “applet” in a browser
❑ with graphical display and mouse input

As first step, we will migrate the game to run as an applet

P2 — OOP 175.

U GUI Construction

d instantiated by a client.
ed by the client.

 to construct a UI ...

Server

stricted) use of

virtual machine)
downloaded dynamically.

Applet
niversität Bern

Applets

Applet classes can be downloaded from an HTTP server an
When instantiated, the Applet will be init ialized and start

java.applet.Applet extends java.awt.Panel and can be used

Client

API Classes

:Applet

other classes ...

The Applet instance may make (re
1. standard API classes

(already accessible to the
2. other Server classes to be

P2 — OOP 176.

U GUI Construction

 for Graphics

 request a refresh
niversität Bern

The Hello World Applet
The simplest Applet:

import java.awt.*; //
import java.applet.Applet;
public class HelloApplet extends Applet {

public void init() { repaint(); } //
public void paint(Graphics g) {

g.drawString("Hello World!", 30, 30);
}

} // NB: there is no main() method!

HTML applet inclusion:
<title>TrivialApplet</title>
<hr>
<applet archive="AppletClasses.jar"
code="HelloApplet.class" width=200 height=200>
</applet>
<hr>

P2 — OOP 177.

U GUI Construction

let

a directory “AppletClasses”

ses ...
niversität Bern

Accessing the game as an App

The compiled TicTacToe classes will be made available in
on our web server.

<title>GameApplet</title>
<hr>
<applet

codebase="AppletClasses"
code="tictactoe.GameApplet.class"
width=200
height=200>

</applet>
<hr>

GameApplet extends java.applet.Applet .
Its init() will instantiate and connect the other game clas

P2 — OOP 178.

U GUI Construction

without a GUI.
troller for GUI events.

o that multiple views can be

Model

:MouseListener
niversität Bern

Model-View-Controller

Version 1.6 of our game implements a model of the game,
The GameApplet will implement a graphical view and a con

The MVC paradigm separates an application from its GUI s
dynamically connected and updated.

clicks mouse

1:mouseClicked()

1.1:move()

1.1.1:update()

1.1.2:update()

Views

Controller

:MouseListener

:TicTacToe

P2 — OOP 179.

U GUI Construction

ers
 and their layout managers.

ents.
pplet inside a browser.)

s, fonts, images etc.

Label

re just some of the
t components ...
niversität Bern

AWT Components and Contain
The java.awt package defines GUI components, containers

A Container is a component that may contain other compon
A Panel is a container inside another container. (E.g., an A
A Window is a top-level container.

NB: There are also many graphics classes to define colour

Panel Window

ButtonContainer

Component

java.applet.Applet

These a
java.aw

P2 — OOP 180.

U GUI Construction

entre and up to four border
enter”) and a Label (“South”).

 and uses a GridLayout.
ridBagLayout ...

Applet

nel :Label

:Panel.
niversität Bern

The GameApplet

The GameApplet is a Panel using a BorderLayout (with a c
components), and containing a Button (“North”), a Panel (“C

The central Panel itself contains a grid of squares (Panels)
Other layout managers are FlowLayout, CardLayout and G

:Game

:Pa:Button

:Panel ..

P2 — OOP 181.

U GUI Construction

w to the model ...

rows()) ;

plays");
niversität Bern

Laying out the GameApplet
Instantiate the game, initialize the view, and connect the vie

public void init() {
_game = ...
setLayout(new BorderLayout()) ;
setSize(MINSIZE*_game.cols(),MINSIZE*_game.
add("North", makeControls()) ;
add("Center", makeGrid());
_label = new Label();
add("South", _label);
showFeedBack(_game.currentPlayer().mark() + "

}

private Component makeControls() {
Button again = new Button("New game");
...
return again;

}

P2 — OOP 182.

U GUI Construction

callback methods that will be

interest in them.

Callback methods

... are handled by
Listener objects
niversität Bern

Events and Listeners (I)

Instead of actively checking for GUI events, you can define
invoked when your GUI objects receive events:

AWT Components publish events and Listeners subscribe

AWT Framework

Hardware events ...
(MouseEvent ,
KeyEvent , ...)

P2 — OOP 183.

U GUI Construction

s (defined in java.awt.event).

Listener methods

actionPerformed()

mouseClicked()
mouseEntered()
mouseExited()
mousePressed()
mouseReleased()

mouseDragged()
mouseMoved()

keyPressed()
keyReleased()
keyTyped()
niversität Bern

Events and Listeners (II)
Every AWT component publishes a variety of different event

Each event class has its associated listener interfaces.

Component Events Listener Interface

Button ActionEvent ActionListener

Component MouseEvent MouseListener

MouseMotionListener

KeyEvent KeyListener

 ...

P2 — OOP 184.

U GUI Construction

onListener with the

a new game

stener, we can instantiate a
uired interface using
niversität Bern

Listening for Button events

When we create the “New game” Button, we attach an Acti
Button.addActionListener() method:

private Component makeControls() {
Button again = new Button("New game");
again.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
showFeedBack("starting new game ...");
newGame(); // clear the board and bind to

}
}) ;
return again;

}

Instead of creating a separate, named subclass of ActionLi
so-called anonymous inner class, which implements the req
methods of the enclosing class.

P2 — OOP 185.

U GUI Construction

 the board.

; ...

ge);
his)) ;

e events ...
niversität Bern

Listening for mouse clicks

We must similarly attach a MouseListener to each Place on
private Component makeGrid()
{ ...

Panel grid = new Panel() ;
grid.setLayout(new GridLayout(rows, cols))
for (int row=rows-1; row>=0; row--) {

for (int col=0; col<cols; col++) {
Place p = new Place(col, row, xImage, oIma
p.addMouseListener(new PlaceListener(p, t
p.setBackground(Color.white);
grid.add(p);
_places[col][row] = p;

}
}
return grid;

}

NB: we could have multiple Listeners subscribe to the sam

P2 — OOP 186.

U GUI Construction

ouseListener methods.

pter { ...
 ...

(col,row) ;

d (" ...);

!"); }
niversität Bern

The PlaceListener
MouseAdapter is a convenience class that defines empty M
We only have to define the mouseClicked() method:

public class PlaceListener extends MouseAda
public void mouseClicked(MouseEvent e) {

if (game.notOver()) {
try {

((AppletPlayer) game.currentPlayer()).move
} catch (AssertionException err) {

_applet.showFeedBack("Invalid move ignore
}
if (!game.notOver()) {

_applet.showFeedBack("Game over -- "
+ game.winner() + " wins!");

}
} else { _applet.showFeedBack("The game is over

}
}

P2 — OOP 187.

U GUI Construction

n it wants to be informed of

ers() causes all observers to

Observable

bserver(Observer)
Observer(Observer)
bservers()
bservers(Object)

Observers()
anged()
hanged()
anged() : boolean

Observers() : int
niversität Bern

Observers and Observables
A class can implement the java.util.Observer interface whe
changes in Observable objects.

An Observable object can have one or more Observers.
After an observable instance changes, calling notifyObserv
be notified by means of their update() method.

«interface»

Observer

+ update(Observable, Object)

+ addO
+ delete
+ notifyO
+ notifyO
+ delete
setCh
clearC
+ hasCh
+ count

*

P2 — OOP 188.

U GUI Construction

lements Observer

 {

r);

;

niversität Bern

Observing the BoardGame
public class GameApplet extends Applet imp
{ ...

public void update(Observable o, Object arg)
Move move = (Move) arg;
showFeedBack("got an update: " + move);
_places[move.col][move.row].setMove(move.playe

}
}
public abstract class AbstractBoardGame

extends Observable implements BoardGame
{ ...

public void move(int col, int row, Player p)
throws AssertionException

{ ...
setChanged() ;
notifyObservers(new Move(col, row, p))

}
}

P2 — OOP 189.

U GUI Construction

ge of state in a BoardGame.
niversität Bern

Communicating changes

A Move instance bundles together information about a chan
Sent by a BoardGame to its Observers:

public class Move {
public final int col;
public final int row;
public final Player player;
public Move(int col, int row, Player player) {

this.col = col;
this.row = row;
this.player = player;

}
public String toString() {

return "Move(" + col + "," + row + "," + player + ")";
}

}

P2 — OOP 190.

U GUI Construction

causing the model, view and

me, and subscribes a
f the BoardGame.

:AppletPla yer

:TicTacToe

)

niversität Bern

Setting up the connections

When the GameApplet is loaded, its init() method is called,
controller components to be instantiated.

The GameApplet subscribes itself as an Observer to the ga
PlaceListener to MouseEvents for each Place on the view o

:PlaceListener

:Place

:GameApplet

5:new

1:new

3:addObserver(this

2:new4:new

6:addMouseListener()

start

P2 — OOP 191.

U GUI Construction

e BoardGame (model):

es, and the GameApplet

tPlayer()

ve()

1.2.1:move()

1.2.1.2:notifyObservers()

)

1.2.1.1:set()

:AppletPla yer

:TicTacToe
niversität Bern

Playing the game
Mouse clicks are propagated from a Place (controller) to th

If the corresponding move is valid, the model’s state chang
updates the Place (view).

click

1:mouseClicked()

1.1:curren

1.2:mo

1.2.1.2.1:update(

1.2.1.2.1.1:setMove()

:PlaceListener

:Place

:GameApplet

P2 — OOP 192.

U GUI Construction

vely introduce changes, and

yer (both should be passive!)
 StreamPlayer classes
e to Player
ayGame()
rs, not marks
ceListener)

 BoardGame to Observer
niversität Bern

Refactoring the BoardGame

Adding a GUI to the game affects many classes. We iterati
rerun our tests after every change ...

❑ Shift responsibilities between BoardGame and Pla
☞ introduce Player interface, InactivePlayer and
☞ move getRow() and getCol() from BoardGam
☞ move BoardGame.update() to GameDriver.pl
☞ change BoardGame to hold a matrix of Playe

❑ Introduce Applet classes (GameApplet, Place, Pla
☞ Introduce AppletPlayer
☞ PlaceListener triggers AppletPlayer to move

❑ BoardGame must be observable
☞ Introduce Move to communicate changes from

P2 — OOP 193.

U GUI Construction

language) components that

ing it — add the hooks later.
niversität Bern

GUI objects in practice ...

Use Swing, not AWT
❑ javax.swing provides a set of “lightweight” (all-Java

(more or less!) work the same on all platforms.

Use a GUI builder
❑ Interactively build your GUI rather than programm

P2 — OOP 194.

U GUI Construction

ice versa?

d who subscribes to events?
meApplet or Places.

d of just classes?
ow?
n observer?
his a bad idea?
niversität Bern

Summary

You should know the answers to these questions:
❑ Why doesn’t an Applet need a main() method?
❑ What are models, view and controllers?
❑ Why does Container extend Component and not v
❑ What does a layout manager do?
❑ What are events and listeners? Who publishes an
❑ The TicTacToe game knows nothing about the Ga

How is this achieved? Why is this a good thing?

Can you answer the following questions?
✎ How could you get Applets to download objects instea
✎ How could you make the game start up in a new Wind
✎ What is the difference between an event listener and a
✎ The Move class has public instance variables — isn’t t
✎ What kind of tests would you write for the GUI code?

P2 — OOP 195.

U Guidelines, Idioms and Patterns

rns

, Observer

 John Vlissides, Design

re Architecture — A System

998
tice Hall, 1997
niversität Bern

9. Guidelines, Idioms and Patte

Overview
❑ Programming style: Code Talks; Code Smells
❑ Idioms, Patterns and Frameworks
❑ Basic Idioms

☞ Delegation, Super, Interface
❑ Basic Patterns

☞ Adapter, Proxy, Template Method, Composite

Sources
❑ Erich Gamma, Richard Helm, Ralph Johnson and

Patterns, Addison Wesley, Reading, MA, 1995.
❑ Frank Buschmann, et al., Pattern-Oriented Softwa

of Patterns, Wiley, 1996
❑ Mark Grand, Patterns in Java, Volume 1, Wiley, 1
❑ Kent Beck, Smalltalk Best Practice Patterns, Pren
❑ “Code Smells”, http://c2.com/cgi/wiki?CodeSmells

P2 — OOP 196.

U Guidelines, Idioms and Patterns

y do it
niversität Bern

Style

Code Talks

❑ Do the simplest thing you can think of (KISS)
☞ Don't over-design
☞ Implement things once and only once
☞ First do it, then do it right, then do it fast

(don’t optimize too early)

❑ Make your intention clear
☞ Write small methods
☞ Each method should do one thing only
☞ Name methods for what they do, not how the
☞ Write to an interface, not an implementation

P2 — OOP 197.

U Guidelines, Idioms and Patterns

mplate method)

oupling)

our design ...
niversität Bern

Refactoring

Redesign and refactor when the code starts to “smell”

Code Smells

❑ Methods too long or too complex
☞ decompose using helper methods

❑ Duplicated code
☞ factor out the common parts (e.g., using a Te

❑ Violation of encapsulation
☞ redistribute responsibilities

❑ Too much communication between objects (high c
☞ redistribute responsibilities

Various common idioms and patterns can help to improve y

P2 — OOP 198.

U Guidelines, Idioms and Patterns

 and conventions.

gn problems.
nguage independent.

res or other software
 be used in many

 generic architecture of an
r deriving new classes.

nd design patterns.
niversität Bern

What are Idioms and Patterns?

❑ Idioms
☞ Idioms are common programming techniques
☞ Idioms may or may not be language-specific.

❑ Patterns
☞ Patterns document common solutions to desi
☞ Patterns are (intended to be) programming la

❑ Libraries
☞ Libraries are collections of functions, procedu

components (classes, templates etc.) that can
applications.

❑ Frameworks
☞ Frameworks are open libraries that define the

application, and can be extended by adding o

Frameworks typically make use of many common idioms a

P2 — OOP 199.

U Guidelines, Idioms and Patterns

?

class, but can be an
s encapsulation by keeping

 each of its TestCases.

 and is used by almost all
niversität Bern

Delegation

➤ How does an object share behaviour without inheritance
✔ Delegate some of its work to another object

Inheritance is a common way to extend the behaviour of a
inappropriate way to combine features. Delegation reinforce
roles and responsibilities distinct.

Example
When a TestSuite is asked to run(), it delegates the work to

Consequences
More flexible, less structured than inheritance.

Delegation is one of the most basic object-oriented idioms,
design patterns.

P2 — OOP 200.

U Guidelines, Idioms and Patterns

sult.
niversität Bern

Delegation example

public class TestSuite implements Test {
...
/**
 * Runs the tests and collects their result in a TestRe
 */
public void run (TestResult result) {

for(Enumeration e = fTests.elements();
e.hasMoreElements();)

{
if (result.shouldStop())

break;
Test test= (Test) e.nextElement();
test.run(result) ;

}
}

}

P2 — OOP 201.

U Guidelines, Idioms and Patterns

s?
 “super” in the new method.

her than replace it.

n assertion.
rclass constructors.

u change the inheritance

being overwritten!
s” instead
niversität Bern

Super

➤ How do you extend behaviour inherited from a superclas
✔ Overwrite the inherited method, and send a message to

Sometimes you just want to extend inherited behaviour, rat

Examples
WrappedStack.top() extends Stack.top() with a pre-conditio
Constructors for subclasses of Exception invoke their supe

Consequences
Increases coupling between subclass and superclass: if yo
structure, super calls may break!

Never use super to invoke a method different than the one
☞ Unnecessarily complex and fragile — use “thi

P2 — OOP 202.

U Guidelines, Idioms and Patterns

dStack {

 {
niversität Bern

Super example

public class WrappedStack extends SimpleWrappe
...
public Object top() throws AssertionException

assert(!this.isEmpty());
return super.top() ;

}
public void pop() throws AssertionException {

assert(!this.isEmpty());
super.pop() ;

}
}

P2 — OOP 203.

U Guidelines, Idioms and Patterns

ses that provide the service?
er than a concrete class.

only instances of that class

ments the interface can be

ents the Observer interface.
niversität Bern

Interface

➤ How do you keep a client of a service independent of clas
✔ Have the client use the service through an interface rath

If a client names a concrete class as a service provider, then
or its subclasses can be used in future.
By naming an interface, an instance of any class that imple
used to provide the service.

Example
Any object may be registered with an Observable if it implem

Consequences
Interfaces reduce coupling between classes.
They also increase complexity by adding indirection.

P2 — OOP 204.

U Guidelines, Idioms and Patterns

lements Observer

 {

r);
niversität Bern

Interface example

public class GameApplet extends Applet imp
{ ...

public void update(Observable o, Object arg)
Move move = (Move) arg;
showFeedBack("got an update: " + move);
_places[move.col][move.row].setMove(move.playe

}
}

P2 — OOP 205.

U Guidelines, Idioms and Patterns

ut the wrong interface?

erface clients expect.

ionException when top() or

e desired handler method.
niversität Bern

Adapter

➤ How do you use a class that provide the right features b
✔ Introduce an adapter.

An adapter converts the interface of a class into another int

Examples
A WrappedStack adapts java.util.Stack, throwing an Assert
pop() are called on an empty stack.
An ActionListener converts a call to actionPerformed() to th

Consequences
The client and the adapted object remain independent.
An adapter adds an extra level of indirection.

Also known as Wrapper

P2 — OOP 206.

U Guidelines, Idioms and Patterns

a new game
niversität Bern

Adapter example

private Component makeControls() {
Button again = new Button("New game");
again.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
showFeedBack("starting new game ...");
newGame(); // clear the board and bind to

}
}) ;
return again;

}

P2 — OOP 207.

U Guidelines, Idioms and Patterns

t require pre- or post-

ples include objects that
tions.
ntrols access to.

hod Invocation (RMI).

 a level of indirection.

ject’s interface.
niversität Bern

Proxy

➤ How do you hide the complexity of accessing objects tha
processing?

✔ Introduce a proxy to control access to the object.

Some services require special pre or post-processing. Exam
reside on a remote machine, and those with security restric
A proxy provides the same interface as the object that it co

Example
A Java “stub” for a remote object accessed by Remote Met

Consequences
A Proxy decouples clients from servers. A Proxy introduces

Proxy differs from Adapter in that it does not change the ob

P2 — OOP 208.

U Guidelines, Idioms and Patterns

:Service

Machine B
niversität Bern

Proxy example

:ServiceStub
1.1:doit()1:doit()

Machine A

P2 — OOP 209.

U Guidelines, Idioms and Patterns

me parts to subclasses?

lgorithms, and delegate the
act methods that subclasses

k method setUp().

e a parent classes calls the

ation programmers to easily
niversität Bern

Template Method

➤ How do you implement a generic algorithm, deferring so
✔ Define it as a Template Method.

A Template Method factors out the common part of similar a
rest to hook methods that subclasses may extend, and abstr
must implement.

Example
TestCase.runBare() is a template method that calls the hoo

Consequences
Template methods lead to an inverted control structure sinc
operations of a subclass and not the other way around.

Template Method is used in most frameworks to allow applic
extend the functionality of framework classes.

P2 — OOP 210.

U Guidelines, Idioms and Patterns

thod setUp() and possibly

t {

 by default
niversität Bern

Template method example

Subclasses of TestCase are expected to override hook me
tearDown() and runTest().

public abstract class TestCase implements Tes
...
public void runBare () throws Throwable {

setUp() ;
try {

runTest() ; // by default, look up name
} // and run as method
finally {

tearDown() ;
}

}
protected void setUp () { } // empty
protected void tearDown () { }

}

P2 — OOP 211.

U Guidelines, Idioms and Patterns

 a consistent way?
tes implement.

by delegating to their parts.

oth of which implement the

nd also extends Component.

on interface that all classes
niversität Bern

Composite

➤ How do you manage a part-whole hierarchy of objects in
✔ Define a common interface that both parts and composi

Typically composite objects will implement their behaviour

Examples
A TestSuite is a composite of TestCases and TestSuites, b
Test interface.
A Java GUI Container is a composite of GUI Components, a

Consequences
Clients can uniformly manipulate parts and wholes.
In a complex hierarchy, it may not be easy to define a comm
should implement ...

P2 — OOP 212.

U Guidelines, Idioms and Patterns

estSuites.

Suite

lass)
(Test test)

*

niversität Bern

Composite example
A TestSuite is a Test that bundles a set of TestCases and T

«interface»

Test

+ countTestCases() : int
+ run(TestResult)

TestCase
abstract

+ create(String)
+ assert(boolean)
+ assertEquals(Object, Object)
+ fail()
+ void runBare()
void runTest()
void setUp()
void tearDown()
+ name() : String

Test

+ create()
+ create(C
+ addTest

P2 — OOP 213.

U Guidelines, Idioms and Patterns

es state?
gister with the “observable”
state.

ubscribers, who must

isters with a BoardGame.
ner interface.

observable, or if observers
niversität Bern

Observer

➤ How can an object inform arbitrary clients when it chang
✔ Clients implement a common Observer interface and re

object; the object notifies its observers when it changes

An observable object publishes state change events to its s
implement a common interface for receiving notification.

Examples
The GameApplet implements java.util.Observable, and reg
A Button expects its observers to implement the ActionListe
(see the Interface and Adapter examples)

Consequences
Notification can be slow if there are many observers for an
are themselves observable!

P2 — OOP 214.

U Guidelines, Idioms and Patterns

rns Solve?

hitecture
s software development

nced developers already

 technology

e-centric” viewpoints

midt, CACM Oct 1995
niversität Bern

What Problems do Design Patte

Patterns document design experience:

❑ Patterns enable widespread reuse of software arc
❑ Patterns improve communication within and acros

teams
❑ Patterns explicitly capture knowledge that experie

understand implicitly
❑ Useful patterns arise from practical experience
❑ Patterns help ease the transition to object-oriented
❑ Patterns facilitate training of new developers
❑ Patterns help to transcend “programming languag

Doug Sch

P2 — OOP 215.

U Guidelines, Idioms and Patterns

d a method be?
iom?
ance?

licated code?

 What patterns do you use?
stract class?
the interface that doesn’t fit?
t class and not an interface?
e Observer pattern

?

niversität Bern

Summary

You should know the answers to these questions:
❑ What’s wrong with long methods? How long shoul
❑ What’s the difference between a pattern and an id
❑ When should you use delegation instead of inherit
❑ When should you call “super”?
❑ How does a Proxy differ from an Adapter?
❑ How can a Template Method help to eliminate dup

Can you answer the following questions?
✎ What idioms do you regularly use when you program?
✎ What is the difference between an interface and an ab
✎ When should you use an Adapter instead of modifying
✎ Is it good or bad that java.awt.Component is an abstrac
✎ Why do the Java libraries use different interfaces for th

(java.util.Observer, java.awt.event.ActionListener etc.)

P2 — OOP 216.

U Clients and Servers

eilly, 1997
Java Tutorial , java.sun.com
niversität Bern

10. Clients and Servers

Overview
❑ RMI — Remote Method Invocation
❑ Remote interfaces
❑ Serializable objects
❑ Synchronization
❑ Threads
❑ Compiling and running an RMI application

Sources
❑ David Flanagan, Java Examples in a Nutshell, O’R
❑ “RMI 1.2”, by Ann Wollrath and Jim Waldo, in The

P2 — OOP 217.

U Clients and Servers

ts only a single user.

me
niversität Bern

A Networked TicTacToe?

We now have a usable GUI for our game, but it still suppor

We would like to support:
❑ players on separate machines
❑ each running the game as an applet in a browser
❑ with a “game server” managing the state of the ga

P2 — OOP 218.

U Clients and Servers

Client “O”

join

move

ate

new
niversität Bern

The concept

:GameFactor y

Client “X”

Server

:Gomoku

X:Player O:Player

join

new

move

new new

move move

updupdate

new

P2 — OOP 219.

U Clients and Servers

is scenario!

?
jects?
ses)?

t requests?
niversität Bern

The problem

Unfortunately Applets alone are not enough to implement th

We must answer several questions:
❑ Who creates the GameFactory?
❑ How does the Applet connect to the GameFactory
❑ How do the server objects connect to the client ob
❑ How do we download objects (rather than just clas
❑ How do the server objects synchronize concurren

P2 — OOP 220.

U Clients and Servers

 public name with an RMI

nd obtain a local object that

nd a remote skeleton.

registr y

main

server

1a:new Server()

ming.bind (name, server)
niversität Bern

Remote Method Invocation

RMI allows an application to register a Java object under a
registry on the server machine.

A client may look up up the service using the public name, a
acts as a proxy for the remote server object.
Remote method invocations are managed by a local stub a

client

1b:Naming.lookup(name)
2a:Na

skeletonstub

2b:server.service()

P2 — OOP 221.

U Clients and Servers

nd specify their interfaces

izable

skeletons for remote objects
niversität Bern

Developing an RMI application

There are several steps to using RMI:
1. Implement a server

☞ Decide which objects will be remote servers a
☞ Implement the server objects

2. Implement a client
☞ Clients must use the remote interfaces
☞ Objects passed as parameters must be serial

3. Compile and install the software
☞ Use the rmic compiler to generate stubs and

4. Run the application
☞ Start the RMI registry
☞ Start and register the servers
☞ Start the client

P2 — OOP 222.

U Clients and Servers

es

as possible.

Listeners and the Observer
ommunication classes
plementation classes

 side, so is also a “server”!
niversität Bern

Designing client/server interfac

Interfaces between clients and servers should be as small

Low coupling:
❑ simplifies development and debugging
❑ maximizes independence
❑ reduces communication overhead

We split the game into three packages:
❑ client — contains the GUI components, the Event
❑ server — contains the server interfaces and the c
❑ tictactoe — contains the model and the server im

NB: The client’s Observer must be updated from the server

P2 — OOP 223.

U Clients and Servers

s:

handle moves

er instances
niversität Bern

Identifying remote interfaces

To implement the distributed game, we need three interface

RemoteGameFactory
❑ called by the client to join a game
❑ implemented by tictactoe.GameFactory

RemoteGame
❑ called by the client to query the game state and to
❑ implemented by tictactoe.Gameproxy

☞ we simplify the game interface by hiding Play

RemoteObserver
❑ called by the server to propagate updates
❑ implemented by client.GameObserver

P2 — OOP 224.

U Clients and Servers

RemoteException

 or
niversität Bern

Specifying remote interfaces

To define a remote interface:

❑ the interface must extend java.rmi.Remote

❑ every method must be declared to throw java.rmi.

❑ every argument and return value must:
☞ be a primitive data type (int, etc.), or
☞ be declared to implement java.io.Serializable,
☞ implement a Remote interface

P2 — OOP 225.

U Clients and Servers

 Else a new game is made.

Remote {
xception ;

.

eleton on the server side for
niversität Bern

RemoteGameFactory

This is the interface used by clients to join a game.
If a game already exists, the client joins the existing game.

public interface RemoteGameFactory extends
public RemoteGame joinGame() throws RemoteE

}

The object returned implements the RemoteGame interface

RMI will automatically create a stub on the client side and sk
the RemoteGame

P2 — OOP 226.

U Clients and Servers

s and Players.

 {
tion ;

oteException;

tion;
;
ion;

Player interface.
niversität Bern

RemoteGame

The RemoteGame interface hides all details of BoardGame
It exports only what is needed to implement the client:

public interface RemoteGame extends Remote
public boolean ready() throws RemoteExcep
public char join() throws RemoteException;
public boolean move(Move move) throws Rem
public int cols() throws RemoteException;
public int rows() throws RemoteException;
public char currentPlayer() throws RemoteExcep
public String winner() throws RemoteException
public boolean notOver() throws RemoteExcept
public void addObserver(RemoteObserver o)

throws RemoteException;
}

NB: To keep things simple, we avoid introducing a Remote

P2 — OOP 227.

U Clients and Servers

ote {
oteException ;

er, since update() may throw
ibility on the server side.
niversität Bern

RemoteObserver

This is the only interface the client exports to the server:

public interface RemoteObserver extends Rem
public void update(Move move) throws Rem

}

NB: RemoteObserver is not compatible with java.util.Observ
a RemoteException ... We will have to bridge the incompat

P2 — OOP 228.

U Clients and Servers

ent java.io.Serializable.

 {

te between client and server.
niversität Bern

Serializable Objects

Objects to be passed as values must be declared to implem

public class Move implements java.io.Serializable
public final int col;
public final int row;
public final char mark;
public Move(int col, int row, char mark) {

this.col = col;
this.row = row;
this.mark = mark;

}
public String toString() {

return "Move(" + col + "," + row + "," + mark + ")";
}

}

Move encapsulates the minimum information to communica

P2 — OOP 229.

U Clients and Servers

oteObject:

teObject

 { super(); }
)

new game

 => join game

teException!
niversität Bern

Implementing Remote objects
Remote objects should extend java.rmi.server.UnicastRem

public class GameFactory extends UnicastRemo
implements RemoteGameFactory

{ private RemoteGame _game;
public static void main(String[] args) { ... }
public GameFactory() throws RemoteException
public synchronized RemoteGame joinGame(

throws RemoteException
{ RemoteGame game = _game;

if (game == null) { // first player => return
game = new GameProxy(new Gomoku(...));
_game = game;

} else { _game = null; } // second player
return game;

}
}

NB: All constructors for Remote objects must throws Remo

P2 — OOP 230.

U Clients and Servers

n

executing its body.

ests?

or you may get a deadlock!

Passive Objects

O:Player

X:Player

:Gomoku
niversität Bern

A simple view of synchronizatio

A synchronized method obtains a lock for its object before

➤ How can servers protect their state from concurrent requ
✔ Declare their public methods as synchronized.

Make sure that synchronized objects don’t call each other,

Concurrent Clients Synchronized Servers

:GameFactor y

- game : RemoteGame

:GamePr oxy

X:GameApplet

O:GameApplet

P2 — OOP 231.

U Clients and Servers

ntiates a GameFactory and

n safely download classes!

anager()) ;
);

ory() ;

(e.g., asterix.unibe.ch:2001)
niversität Bern

Registering a remote object
To bootstrap the server, we need a main() method that insta
registers it with a running RMI registry.
There must be a security manager installed so that RMI ca

public static void main(String[] args) {
if (System.getSecurityManager() == null) {

System.setSecurityManager(new RMISecurityM
System.out.println("Set new Security manager"

}
if (args.length != 1) { ... }
String name = "//" + args[0] + "/GameFactory";
try {

RemoteGameFactory factory = new GameFact
Naming.rebind(name, factory) ;

} catch (Exception e) { ... }
}

The argument is the host id and port number of the registry

P2 — OOP 232.

U Clients and Servers

m any AssertionExceptions:

bject

ve)

;

alse; }
niversität Bern

GameProxy

The GameProxy interprets Moves and protects the client fro

public class GameProxy extends UnicastRemoteO
implements RemoteGame

{ ...
public synchronized boolean move(Move mo

throws RemoteException
{ Player current = _game.currentPlayer();

if (current.mark() != move.mark) return false
try {

_game.move(move.col, move.row, current);
return true; // the move succeeded

} catch (AssertionException e) { return f
} ...

}

P2 — OOP 233.

U Clients and Servers

rver
t java.util.Observer:

 {

ote = ro; }

 inner class

 results

 use a new Thread!
niversität Bern

Using Threads to protect the se
WrappedObserver adapts a RemoteObserver to implemen

class WrappedObserver implements Observer
private RemoteObserver _remote;
WrappedObserver(RemoteObserver ro) { _rem
public void update(Observable o, Object arg) {

final Move move = (Move) arg; // final for
Thread doUpdate = new Thread() {

public void run() {
try {

_remote.update(move) ;
} catch(RemoteException err) { }

}
};
doUpdate.start() ; // start the Thread; ignore

}
}

The server must not block trying to update the client, so we

P2 — OOP 234.

U Clients and Servers

ges

 or Gomoku from 2.0
er (used only on server side)

erver()
server

llow multiple views)
 instead of Player
niversität Bern

Refactoring the BoardGame ...

Most of the changes were on the GUI side:

❑ defined separate client, server and tictactoe packa

❑ no changes to Drivers, Players, Runner, TicTactoe
☞ except renaming AppletPlayer to PassivePlay

❑ added BoardGame methods player() and addObs
☞ added WrappedObserver to adapt RemoteOb

❑ added remote interfaces and remote objects

❑ changed all client classes
☞ separated GameApplet from GameView (to a
☞ modified view to use Move and RemoteGame

P2 — OOP 235.

U Clients and Servers

esults in a web-accessible
d server .class files.

b and skeleton class files.

ctoe class file hierarchies

te objects.

rmic on its class file.
niversität Bern

Compiling the code

We compile the source packages as usual, and install the r
location so that the GameApplet has access to the client an

In addition, the client and the server need access to the stu

On Unix, chdir to the directory containing the client and ticta
rmic -d . tictactoe.GameFactory
rmic -d . tictactoe.GameProxy
rmic -d . client.GameObserver

This will generate stub and skeleton class files for the remo
(I.e., GameFactory_Skel.class etc.)

NB: Move is not a remote object, so we do not need to run

P2 — OOP 236.

U Clients and Servers

nibe.ch/.../classes/ \
001

te the stubs and skeletons!
niversität Bern

Running the application

We simply start the RMI registry on the host (asterix):

rmiregistry 2001 &

Start and register the servers:

setenv CLASSPATH ./classes
java -Djava.rmi.server.codebase=http://www.iam.u

tictactoe.GameFactory asterix.unibe.ch:2

And start the clients with a browser or an appletviewer ...

NB: the RMI registry needs the codebase so it can instantia

P2 — OOP 237.

U Clients and Servers

:PassivePla yer

:Gomoku

:GamePr oxy

:WrappedObser ver

1.
1b

:c
ur

re
nt

P
la

ye
r(

)

:move()

:move()

update()

:PassivePla yer
niversität Bern

Playing the game

:PlaceListener

:GameVie w

:GameObser ver

:Placeclick

1a:mouseClicked()

1.1a:move()

1.2b

1.2.1b

1.2.1.1b:

1c:update()1.1d:update()

1b:move()

1d:update()

1.1.1d:setMove()

stub skel

skel stub

P2 — OOP 238.

U Clients and Servers

s

niversität Bern

Other approaches

CORBA
❑ for non-java components

COM (DCOM, Active-X ...)
❑ for talking to MS applications

Sockets
❑ for talking other TCP/IP protocols

Software buses
❑ for sharing information across multiple application

P2 — OOP 239.

U Clients and Servers

nts?
t?

 come from?

d a serializable object?
requests?

tead of Moves.
objects?
 methods as synchronized?
game?
second player is connected?
niversität Bern

Summary

You should know the answers to these questions:
❑ How do you make a remote object available to clie
❑ How does a client obtain access to a remote objec
❑ What are stubs and skeletons, and where do they
❑ What requirements must a remote interface fulfil?
❑ What is the difference between a remote object an
❑ Why do servers often start new threads to handle

Can you answer the following questions?
✎ Suppose we modified the view to work with Players ins

Should Players then be remote objects or serializable
✎ Why don’t we have to declare the AbstractBoardGame
✎ What kinds of tests would you write for the networked
✎ How would you extend the game to notify users when a

P2 — OOP 240.

U Collections

torial , java.sun.com
niversität Bern

11. Collections

Overview
❑ Example problem: The Jumble Puzzle
❑ The Java 2 collections framework
❑ Interfaces: Collections, Sets, Lists and Maps
❑ Implementations ...
❑ Algorithms: sorting ...
❑ Iterators

Source
❑ “Collections 1.2”, by Joshua Bloch, in The Java Tu

P2 — OOP 241.

U Collections
niversität Bern

The Jumble Puzzle

The Jumble Puzzle tests your English vocabulary
by presenting four jumbled, ordinary words.
The circled letters of the unjumbled words
represent the jumbled answer to a cartoon puzzle.

Since the jumbled words can be found in an
electronic dictionary, it should be possible to write
a program to automatically solve the first part of
the puzzle (unjumbling the four words).

P2 — OOP 242.

U Collections

with n characters may have
utations and a six-letter word

?

abacus

abalone

abase

abash

...

zounds

zucchini

Zurich

zygote
niversität Bern

Naive Solution

The obvious, naive solution is extremely inefficient: a word
up to n! permutations. A five-letter word may have 120 perm
may have 720 permutations. “rupus” has 60 permutations.

✎ Exactly how many permutations will a given word have

rupus

urpus

uprus

purus

pruus

rpuus

ruups

urups

...

Generate all
permutations
of the jumbled
words:

For each
permutation,
check if it
exists in the
word list:

P2 — OOP 243.

U Collections

led to a real word in the list,
re anagrams).

grams?

set of characters.

 letters in sorted order

e key

e key.
niversität Bern

Rethinking the Jumble Problem

Observation: if a jumbled word (e.g. “rupus”) can be unjumb
then these two words are jumbles of each other (i.e. they a

☞ Is there a fast way to tell if two words are ana

Two words are anagrams if they are made up of the same

☞ Each word has a unique “key” consisting of its

The key for “rupus” is “prsuu”.

☞ Two words are anagrams if they have the sam

We can unjumble “rupus” by looking for a word with the sam

P2 — OOP 244.

U Collections

ys, lists, sort routines, and

Key Word

aabcsu abacus

aabelno abalone

aabes abase

aabhs abash

... ...

dnosuz zounds

cchiinuz zucchini

chiruz zurich

egotyz zygote
niversität Bern

An Efficient Solution

1. Build an associative array of keys and words for
every word in the dictionary:

2. Generate the key of a jumbled word:
key(“rupus”) = “prsuu”

3. Look up and return the words with the same key.

To implement a software solution, we need associative arra
possibly other components.

P2 — OOP 245.

U Collections

entations and algorithms for

«interface»

Map

«interface»

SortedMap
niversität Bern

The Collections Framework
The Java Collections framework contains interfaces, implem
manipulating collections of elements.

Sets and Lists are kinds of collections.
Maps manage mappings from keys to values

«interface»

Collection

«interface»

Set
«interface»

List

«interface»

SortedSet

P2 — OOP 246.

U Collections

«interface»

List

+ get(int) : Object
+ set(int, Object) : Object
+ add(int, Object)
+ remove(int) : Object
+ indexOf(Object) : int
+ listIterator() : ListIterator
+ subList(int from, int to) : List
niversität Bern

Collection Interfaces

Lists may contains duplicated elements. Sets may not.

«interface»

Collection

+ size() : int
+ isEmpty() : boolean
+ contains(Object) : boolean
+ add(Object): boolean
+ remove(Object) : boolean
+ iterator() : Iterator
+ toArray() : Object[]

«interface»

SortedSet

+ subSet(Object from, Object to) : SortedSet
+ first() : Object
+ last() : Object

«interface»

Set

P2 — OOP 247.

U Collections

ch interface.

k?

AbstractList

AbstractSequentialList

LinkedList

«interface»

List
niversität Bern

Implementations
The framework provides at least two implementations of ea

✎ Can you guess how the standard implementations wor

AbstractCollection

AbstractSet

HashSet ArraySet

ArrayList

«interface»

Collection

«interface»

Set

P2 — OOP 248.

U Collections

«interface»

Map

ct key, Object value) : Object
ct key) : Object

bject key) : Object
Key(Object key) : boolean
Value(Object value) : boolean
t
) : boolean
: Set
: Collection
() : Set

«interface»

SortedMap

+ first() : Object
+ last() : Object
niversität Bern

Maps

A Map is an object that manages a set of (key,
value) pairs.
A Sorted Map maintains its entries in ascending
order.

Map is implemented by HashMap and TreeMap.

+ put(Obje
+ get(Obje
+ remove(O
+ contains
+ contains
+ size() : in
+ isEmpty(
+ keySet()
+ values()
+ entrySet

P2 — OOP 249.

U Collections

Map:

 <wordfile>");

s[0]);
niversität Bern

Jumble
We can implement the Jumble dictionary as a kind of Hash

public class Jumble extends HashMap {
public static void main(String args[]) {

if (args.length == 0) {
System.err.println("Usage: java Jumble
return;

}
Jumble wordMap = null;
try {

wordMap = new Jumble(args[0]) ;
} catch (IOException err) {

System.err.println("Can't load dictionary " + arg
return;

}
wordMap.inputLoop() ;

} ...
}

P2 — OOP 250.

U Collections

load ...

ach word ...
niversität Bern

Jumble constructor

A Jumble dictionary knows the file containing the words to

private String _wordFile;

Jumble(String wordFile) throws IOException {
super();
_wordFile = wordFile;
loadDictionary();

}

Before we continue, we need a way to generate a key for e

P2 — OOP 251.

U Collections

Collections

+ binarySearch(List, Object) : int
+ copy(List, List)
+ max(Collection) : Object
+ min(Collection) : Object
+ reverse(List)
+ shuffle(List)
+ sort(List)
+ sort(List, Comparator)
...
niversität Bern

Algorithms

The Collections framework provides various algorithms,
such as sorting and searching, that work uniformly for all
kinds of Collections and Lists.

These algorithms are static methods of the Collections
class.

P2 — OOP 252.

U Collections

Arrays

ort(char[])
ort(char[], int, int)
ort(double[])
ort(double[], int, int)
ort(float[])
ort(float[], int, int)
ort(int[])
ort(int[], int, int)
ort(Object[])
ort(Object[], Comparator)
ort(Object[], int, int)
ort(Object[], int, int, Comparator)
niversität Bern

Array algorithms

There is also a class, Arrays, consisting of static
methods for searching and sorting that operate on Java
arrays of basic data types.

✎ Which sort routine should we use to generate
unique keys for the Jumble puzzle?

...
+ s
+ s
+ s
+ s
+ s
+ s
+ s
+ s
+ s
+ s
+ s
+ s
...

P2 — OOP 253.

U Collections

acters, sort that, and convert
niversität Bern

Sorting characters

The easiest solution is to convert the word to an array of char
the result back to a String.

public static String sortKey(String word) {
char [] letters = word.toCharArray() ;
Arrays.sort(letters) ;
return new String(letters) ;

}

✎ What other possibilities do we have?

P2 — OOP 254.

U Collections

 {

e));
niversität Bern

Loading the dictionary
Reading the dictionary is straightforward ...

private void loadDictionary() throws IOException
BufferedReader in =

new BufferedReader(new FileReader(_wordFil
String word = in.readLine() ;
while (word != null) {

this.addPair(sortKey(word), word) ;
word = in.readLine();

}
}

... but there may be a List of words for any given key!
private void addPair(String key, String word) {

List wordList = (List) this.get(key) ;
if (wordList == null)

wordList = new ArrayList() ;
wordList.add(word) ;
this.put(key, wordList) ;

}

P2 — OOP 255.

U Collections

le: ");

{

rtKey(word)) ;

 word);

ist);
niversität Bern

The input loop
does the obvious ...

public void inputLoop() { ...
System.out.print("Enter a word to unjumb
String word;
while ((word = in.readLine()) != null)

...
List wordList = (List) this.get(so
if (wordList == null) {

System.out.println("Can't unjumble " +
} else {

System.out.println(
word + " unjumbles to: " + wordL

} ...
System.out.print("next word: ");

} ...
}

P2 — OOP 256.

U Collections
niversität Bern

Running the unjumbler ...

Enter a word to unjumble: rupus
rupus unjumbles to: [usurp]
Enter a word to unjumble: hetab
hetab unjumbles to: [bathe]
next word: please
please unjumbles to: [asleep, elapse, please]
next word: java
Can't unjumble java
next word:
Quit? (y/n): y
bye!

P2 — OOP 257.

U Collections

 are unordered?

ry

erse
.

«interface»

Iterator

+ hasNext() : boolean
+ next() : Object
+ remove()

«interface»

ListIterator

+ add(Object)
+ hasPrevious() : boolean
+ nextIndex() : int
+ previous() : Object
+ previousIndex() : int
+ set(Object)
niversität Bern

Iterators

➤ How do you iterate through a Collection whose elements
✔ Use an iterator.

An Iterator is an object that lets you walk through an arbitra
collection, whether it is ordered or not.

Lists additionally provide ListIterators that allows you to trav
the list in either direction and modify the list during iteration

P2 — OOP 258.

U Collections

ssociated anagrams:

;

r, crate, trace]
niversität Bern

Iterating through the key set

We can use iterators to find the key with the largest set of a
public List maxAnagrams() {

int max = 0;
List anagrams = null;
Iterator keys = this.keySet().iterator()
while (keys.hasNext()) {

String key = (String) keys.next() ;
List words = (List) this.get(key) ;
if (words.size() > max) {

anagrams = words;
max = words.size();

}
}
return anagrams;

}

Printing wordMap.maxAnagrams() yields: [caret, carte, cate

P2 — OOP 259.

U Collections

 the standard interfaces.

re it is compatible with the

ions interfaces, if possible,

e job (Collection, if possible)
niversität Bern

How to use the framework

❑ If you need collections in your application, stick to

❑ Use one of the default implementations, if possible

❑ If you need a specialized implementation, make su
standard ones, so you can mix and match

❑ Make your applications depend only on the collect
not the concrete classes

❑ Always use the least specific interface that does th

P2 — OOP 260.

U Collections

r?

lemented as static methods?

d AbstractList?

ster? Why?
niversität Bern

Summary

You should know the answers to these questions:
❑ How are Sets and Lists similar? How do they diffe
❑ Why is Collection an interface rather than a class?
❑ Why are the sorting and searching algorithms imp
❑ What is an iterator? What problem does it solve?

Can you answer the following questions?
✎ Of what use are the AbstractCollection, AbstractSet an
✎ Why doesn’t Map extend Collection?
✎ Why does the Jumble constructor call super()?
✎ Which implementation of Map will make Jumble run fa

P2 — OOP 261.

U Common Errors, a few Puzzles

es

ssentials, Wiley, 1998
niversität Bern

12. Common Errors, a few Puzzl

Overview
❑ Common errors:

☞ Round-off
☞ == vs. equals()
☞ Forgetting to clone objects
☞ Dangling else
☞ Off-by-1
☞ Terminating loops with an equality test

❑ A few Java puzzles ...

Sources
❑ Cay Horstmann, Computing Concepts with Java E
❑ The Java Report, April 1999

and other miscellaneous sources ...

P2 — OOP 262.

U Common Errors, a few Puzzles

 11?

ntations of mathematical
niversität Bern

Round-off errors

What does this print?

double f = 2e15 + 0.13 ;
double g = 2e15 + 0.02 ;

System.err.println(100*(f-g)); // prints

Don’t assume that floating point numbers are exact represe
values!

P2 — OOP 263.

U Common Errors, a few Puzzles

written!
niversität Bern

== versus equals()

When are two objects equal?

Object x = new Object();
Object y = new Object();
x == y // true or false?
x.equals(y) // true or false?

String s1 = new String(“This is a string”);
String s2 = new String(“This is a string”);
s1 == s2 // true or false?
s1.equals(s2) // true or false?

int i = 1; int j = 1;
i == j // true or false?

== denotes object equality (but not for primitive types)
equals() denotes object equality by default, but can be over

P2 — OOP 264.

U Common Errors, a few Puzzles

trings?

ct!
niversität Bern

Literal Strings

But ... what happens when we compare the two following s

String s1 = “This is a string” ;
String s2 = “This is a string” ;
s1 == s2 // true or false?
s1.equals(s2) // true or false?

Literal strings with the same content refer to the same obje

Always use equals() or compareTo() to compare strings!

P2 — OOP 265.

U Common Errors, a few Puzzles

cts themselves!

reate it:
niversität Bern

Forgetting to clone an object

Is “now” really before “later”?

Date now = new Date() ;
Date later = now ;
later.setHours(now.getHours() + 1) ;

if (now.before(later))
System.out.println("see you later");

else
System.out.println("see you now");

Object variables contain references to objects, not the obje

If you need a copy of an object, then you should explicitly c
Date later = new Date(now.getTime()) ;

P2 — OOP 266.

U Common Errors, a few Puzzles

!

niversität Bern

The dangling else problem.

public static void checkEven(int n) {
boolean result = true;
if (n>=0)

if ((n%2) == 0)
System.out.println(n + " is even");

else
System.out.println(n + " is negative");

}

What is printed when we run these checks?
checkEven(-1);
checkEven(0);
checkEven(1);

Always use braces to group nested if { } else { } statements

P2 — OOP 267.

U Common Errors, a few Puzzles

orrect implementation?

tions? (no)
nd finish with (n-k+1)/k? (no)

plementing algorithms.
niversität Bern

Off-by-1 errors

The binomial coefficient is . Is this a c

public static int binomial(int n, int k) {
int bc = 1;
for (int i=1; i<k; i++)

bc = bc * (n+1-i) / i;
return bc;

}

To avoid off-by-1 errors
1. Count the iterations — do we always do k multiplica
2. Check boundary conditions — do we start with n/1 a

Off-by-1 errors are among the most common mistakes in im

n
k 

  n
1
--- …× n k– 1+

k
----------------------×

P2 — OOP 268.

U Common Errors, a few Puzzles

inate loops!

n won't work for -1 or 0.5!
niversität Bern

Don’t use equality tests to term

Don't use =! to test the end of a range. This factorial functio

public static int brokenFactorial(int n) {
int result=1;
for (int i=0; i!=n; i++)

result = result*i;
return result;

}

Always use an inequality test to terminate a loop.

P2 — OOP 269.

U Common Errors, a few Puzzles

 instead.

iable, make sure it starts off

its (like line-length); they will

rn e.g., a clone instead)
niversität Bern

Some other common errors

❑ Magic numbers
☞ Never use magic numbers; declare constants

❑ Forgetting to set a variable in some branch
☞ If you have non-trivial control flow to set a var

with a reasonable default value.

❑ Underestimating size of data sets
☞ Don’t write programs with arbitrary built-in lim

break when you least expect it.

❑ Leaking encapsulation
☞ Never return a private instance variable! (retu

P2 — OOP 270.

U Common Errors, a few Puzzles

lass overrides inherited
niversität Bern

Puzzle 1

Are private methods inherited? What happens when a subc
private methods used by other, inherited public methods?

public class A {
public void m() { this.p(); }
private void p() { }

}

public class B extends A {
private void p() { }

}

Which is called? A.p() or B.p()?
A b = new B();
b.m();

P2 — OOP 271.

U Common Errors, a few Puzzles

ed class to which it belongs.

rrently bound to a.
niversität Bern

Static and Dynamic Types

Consider:

A a = new B();

The static type of variable a is A — i.e., the statically declar

The static type never changes.

The dynamic type of a is B — i.e., the class of the object cu

The dynamic type may change throughout the program.

a = new A();

Now the dynamic type is also A!

P2 — OOP 272.

U Common Errors, a few Puzzles

en the argument types
 type of the arguments?

thods will actually be called?

run() {
w B();

;
;
;
;

niversität Bern

Puzzle 2

How does Java decide which overloaded method to call wh
overlap? Does Java consider the static type or the dynamic

The argument objects are the same in each call! Which me

public class Puzzle2 {

class A { }
class B extends A { }

void m(A a1, A a2) { };
void m(A a1, B b1) { };
void m(B b1, A a1) { };
void m(B b1, B b2) { };

public void
B b = ne
A a = b;
m(a,a)
m(a,b)
m(b,a)
m(b,b)

}
}

P2 — OOP 273.

U Common Errors, a few Puzzles

?

niversität Bern

Puzzle 2 (part II)

What happens if we comment out m(A,A)? m(B,B)? m(A,B)

In which cases will the example still compile?

Where it does compile, which methods will be called?

P2 — OOP 274.

U Common Errors, a few Puzzles

 the receiver when deciding

m(B b) { } }
niversität Bern

Puzzle 3

How does Java use the static type and the dynamic type of
which method to invoke?

public class Puzzle3 {
public class A { public void m(A a) { } }
public class B extends A { public void
public void run() {

B b = new B();
A a = b;
a.m(a) ;
a.m(b) ;
b.m(a) ;
b.m(b) ;

}
}

In which cases will B.m(B) be called?

P2 — OOP 275.

U Common Errors, a few Puzzles

ialization?

eturn 100 ; }

/ 0 or 100?
/ 0 or 100?
/ 0 or 100?
/ 0 or 100?
niversität Bern

Puzzle 4
Which takes precedence? Default values or constructor init

public class Puzzle4 {
class C {

public int i = 100 ;
public int j = 100 ;
public int k = init() ;
public int l = 0 ;
C() { i = 0 ; k = 0 ; }
private int init() { j = 0 ; l = 100 ; r

} ...
public void run() {

C c = new C();
System.out.println("C.i = " + c.i); /
System.out.println("C.j = " + c.j); /
System.out.println("C.k = " + c.k); /
System.out.println("C.l = " + c.l); /

}
}

P2 — OOP 276.

U Common Errors, a few Puzzles

tion?

/ 0 or 100?
/ 0, 100 or 200?
niversität Bern

Puzzle 4 (part II)
Which takes precedence? Superclass or subclass initializa

public class Puzzle4 { ...
abstract class A {

public int j = 100 ;
A() { init(100); j = 200 ; }
abstract public void init(int value);

}
class B extends A {

public int i = 0 ;
public int j = 0 ;
public void init(int value) { i = value; }

}
public void run() { ...

B b = new B();
System.out.println("B.i = " + b.i); /
System.out.println("B.j = " + b.j); /

}
}

P2 — OOP 277.

U Common Errors, a few Puzzles

o return a value?
niversität Bern

Puzzle 5
What happens when both the try and the finally clause try t
Which takes precedence?

public class Puzzle5 {
class A {

public int m() {
try { return 1 ; }
catch (Exception err) { return 2 ; }
finally { return 3 ; }

}
}
public void run() {

A a = new A();
System.out.println(a.m());

}
}

What is printed? 1, 2 or 3?

P2 — OOP 278.

U Common Errors, a few Puzzles

tatement?

ate loops?

?
s?

lize variables?
ion, which exception is really
niversität Bern

Summary

You should know the answers to these questions:
❑ When can you trust floating-point arithmetic?
❑ To which “if” does an “else” belong in a nested if s
❑ How can you avoid off-by-1 errors?
❑ Why should you never use equality tests to termin
❑ Are private methods inherited?
❑ What are the static and dynamic types of variables
❑ How are they used to dispatch overloaded method

Can you answer the following questions?
✎ When is method dispatching ambiguous?
✎ Is it better to use default values or constructors to initia
✎ If both a try clause and its finally clause throw an except

thrown?

	7032 Programmierung 2
	Table of Contents
	Patterns, Rules and Guidelines
	1. P2 — Object-Oriented Programming
	Overview
	Goals of this course
	What is programming?
	Programming and Software Development
	Programming activities
	What is a software system?
	What is good (bad) design?
	A procedural design
	An object-oriented design
	Object-Oriented Design
	Responsibility-Driven Design
	Refactoring
	What is Software Quality?
	How to achieve software quality
	What is a programming language?
	Communication
	Why use object-oriented programming?
	Why Java?
	History
	Summary

	2. Design by Contract
	Stacks
	Example: Balancing Parentheses
	Using a Stack to match parentheses
	What is Data Abstraction?
	Why are ADTs important?
	Programming by Contract
	Pre- and Postconditions
	Stack pre- and postconditions
	Class Invariants
	Assertions
	Disciplined Exceptions
	Stacks as Linked Lists
	StackInterface
	Exceptions
	LinkStack ADT
	LinkStack Class Invariant
	LinkClass Cells
	LinkStack methods
	Testing Assertions
	Push and Pop
	The ParenMatch class
	A cluttered algorithm ...
	A declarative algorithm
	Helper methods
	Summary

	3. Testing and Debugging
	Testing
	Regression testing
	Stack test case
	Testing special cases
	TestStack
	ArrayStack
	ArrayStack methods
	Testing ArrayStack
	The Run-time Stack
	The run-time stack in action ...
	The Stack and the Heap
	Fixing our mistake
	Wrapping Objects
	A Wrapped Stack
	A contract mismatch
	Fixing the problem ...
	Timing benchmarks
	Timer
	Sample benchmarks
	Summary

	4. Iterative Development
	The Classical Software Lifecycle
	Iterative Development
	What is Responsibility-Driven Design?
	Example: Tic Tac Toe
	Limiting Scope
	Tic Tac Toe Objects
	Missing Objects
	Scenarios
	A Skeleton Implementation
	Representing the Game State
	Testing the new methods
	Testing the application
	Printing the State
	Refining the interactions
	Tic Tac Toe Contracts
	Representing the Game State
	Invariants
	Delegating Responsibilities
	Small Methods
	GameDriver
	The Player
	Defining test cases
	Running the test cases
	Summary

	5. Inheritance and Refactoring
	What is Inheritance?
	The Board Game
	Uses of Inheritance
	Class Diagrams
	A bad idea ...
	Class Hierarchy
	Iterative development strategy
	Version 1.3
	Speaking to an Interface
	Quiet Testing
	TicTacToe adaptations
	Version 1.4
	Refactoring
	Version 1.5
	AbstractBoardGame 1.5
	BoardGame 1.5
	Player 1.5
	Version 1.6
	Keeping Score
	A new responsibility ...
	The Runner
	Top-down decomposition
	Recursion
	BoardGame 1.6
	Gomoku
	Summary

	6. Programming Tools
	Integrated Development Environments
	CodeWarrior
	CodeWarrior Class Browser
	CodeWarrior Hierarchy Browser
	SNiFF+
	SNiFF+ Project Editor
	SNiFF+ Source Editor
	SNiFF+ Hierarchy Browser
	SNiFF+ Class Browser
	Debuggers
	Setting Breakpoints
	Debugging
	Debugging Strategy
	Version Control
	RCS
	Using RCS
	Additional RCS Features
	Profilers
	Profiling with CodeWarrior
	Profile Data
	Javadoc
	Javadoc output
	Other tools
	Summary

	7. A Testing Framework
	The Problem
	JUnit
	Frameworks vs. Libraries
	The JUnit Framework
	A Testing Scenario
	Testing Style
	Representing multiple currencies
	Money
	MoneyTest
	Some basic tests
	Building a Test Suite
	The TestRunner
	MoneyBags
	Testing MoneyBags (I)
	Testing MoneyBags (II)
	Testing MoneyBags (III)
	Adding MoneyBags
	The IMoney interface (I)
	Double Dispatch (I)
	Double Dispatch (I)
	The IMoney interface (II)
	A Failed test
	Diagnostics
	The fix ...
	Testing Practices
	Summary

	8. GUI Construction
	A Graphical TicTacToe?
	Applets
	The Hello World Applet
	Accessing the game as an Applet
	Model-View-Controller
	AWT Components and Containers
	The GameApplet
	Laying out the GameApplet
	Events and Listeners (I)
	Events and Listeners (II)
	Listening for Button events
	Listening for mouse clicks
	The PlaceListener
	Observers and Observables
	Observing the BoardGame
	Communicating changes
	Setting up the connections
	Playing the game
	Refactoring the BoardGame
	GUI objects in practice ...
	Summary

	9. Guidelines, Idioms and Patterns
	Style
	Refactoring
	What are Idioms and Patterns?
	Delegation
	Delegation example
	Super
	Super example
	Interface
	Interface example
	Adapter
	Adapter example
	Proxy
	Proxy example
	Template Method
	Template method example
	Composite
	Composite example
	Observer
	What Problems do Design Patterns Solve?
	Summary

	10. Clients and Servers
	A Networked TicTacToe?
	The concept
	The problem
	Remote Method Invocation
	Developing an RMI application
	Designing client/server interfaces
	Identifying remote interfaces
	Specifying remote interfaces
	RemoteGameFactory
	RemoteGame
	RemoteObserver
	Serializable Objects
	Implementing Remote objects
	A simple view of synchronization
	Registering a remote object
	GameProxy
	Using Threads to protect the server
	Refactoring the BoardGame ...
	Compiling the code
	Running the application
	Playing the game
	Other approaches
	Summary

	11. Collections
	The Jumble Puzzle
	Naive Solution
	Rethinking the Jumble Problem
	An Efficient Solution
	The Collections Framework
	Collection Interfaces
	Implementations
	Maps
	Jumble
	Jumble constructor
	Algorithms
	Array algorithms
	Sorting characters
	Loading the dictionary
	The input loop
	Running the unjumbler ...
	Iterators
	Iterating through the key set
	How to use the framework
	Summary

	12. Common Errors, a few Puzzles
	Round-off errors
	== versus equals()
	Literal Strings
	Forgetting to clone an object
	The dangling else problem.
	Off-by-1 errors
	Don’t use equality tests to terminate loops!
	Some other common errors
	Puzzle 1
	Static and Dynamic Types
	Puzzle 2
	Puzzle 2 (part II)
	Puzzle 3
	Puzzle 4
	Puzzle 4 (part II)
	Puzzle 5
	Summary

