/032 Programmierung 2

Object-Oriented Programming with Java

Part |

Prof. O. Nierstrasz

Sommersemester 1999

Table of Contents

Table of Contents
Patterns, Rules and Guidelines

1. P2 — Object-Oriented Programming

Overview

Goals of this course

What is programming?

Programming and Software Development
Programming activities

What is a software system?

What is good (bad) design?

A procedural design

An object-oriented design
Object-Oriented Design
Responsibility-Driven Design

Refactoring

What is Software Quality?

How to achieve software quality

What is a programming language?
Communication

Why use object-oriented programming?
Why Java?

History

Summary

. Design by Contract

Stacks

Example: Balancing Parentheses
Using a Stack to match parentheses
What is Data Abstraction?

Why are ADTs important?
Programming by Contract

Pre- and Postconditions

Stack pre- and postconditions

© 0 NO O WN R <

NDNRER RPRRPRERRRRRR R
B O ©oWw~NOOUMNWNDNIERERO

W N DNDNDNDNDNDDNNDN
O ©W 0 NO U1 A WN

Table of Contents

Class Invariants
Assertions

Disciplined Exceptions

Stacks as Linked Lists
Stackinterface

Exceptions

LinkStack ADT

LinkStack Class Invariant
LinkClass Cells

LinkStack methods

Testing Assertions

Push and Pop

The ParenMatch class
A cluttered algorithm ...
A declarative algorithm

Helper methods

Summary

. Testing and Debugging
Testing

Regression testing

Stack test case

Testing special cases
TestStack

ArrayStack

ArrayStack methods

Testing ArrayStack

The Run-time Stack

The run-time stack in action ...
The Stack and the Heap

Fixing our mistake

Wrapping Objects
A Wrapped Stack
A contract mismatch

April 20, 1999

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

Fixing the problem ...
Timing benchmarks
Timer

Sample benchmarks
Summary

. Iterative Development

The Classical Software Lifecycle
Iterative Development

What is Responsibility-Driven Design?
Example: Tic Tac Toe

Limiting Scope

Tic Tac Toe Objects

Missing Objects

Scenarios

A Skeleton Implementation
Representing the Game State
Testing the new methods
Testing the application
Printing the State

Refining the interactions

Tic Tac Toe Contracts
Representing the Game State
Invariants

Delegating Responsibilities
Small Methods

GamebDiriver

The Player

Defining test cases

Running the test cases
Summary

. Inheritance and Refactoring

What is Inheritance?

Ii.

64
65
66
67
68

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

94
95

Table of Contents

The Board Game

Uses of Inheritance

Class Diagrams

A badidea ...

Class Hierarchy

Iterative development strategy
Version 1.3

Speaking to an Interface
Quiet Testing

TicTacToe adaptations
Version 1.4

Refactoring

Version 1.5
AbstractBoardGame 1.5
BoardGame 1.5

Player 1.5

Version 1.6

Keeping Score

A new responsibility ...
The Runner

Top-down decomposition
Recursion

BoardGame 1.6
Gomoku

Summary

6. Programming Tools

Integrated Development Environments
CodeWarrior

CodeWarrior Class Browser
CodeWarrior Hierarchy Browser

SNiFF+

SNiFF+ Project Editor

SNiFF+ Source Editor

SNiFF+ Hierarchy Browser

SNiFF+ Class Browser

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

121
122
123
124
125
126
127
128
129
130

Debuggers

Setting Breakpoints
Debugging

Debugging Strategy
Version Control

RCS

Using RCS

Additional RCS Features
Profilers

Profiling with CodeWatrrior
Profile Data

Javadoc

Javadoc output

Other tools

Summary

7. A Testing Framework
The Problem
JUnit
Frameworks vs. Libraries
The JUnit Framework
A Testing Scenario
Testing Style
Representing multiple currencies
Money
MoneyTest
Some basic tests
Building a Test Suite
The TestRunner
MoneyBags
Testing MoneyBags (1)
Testing MoneyBags (Il)
Testing MoneyBags (lll)
Adding MoneyBags
The IMoney interface (I)
Double Dispatch (1)

April 20, 1999

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

Double Dispatch (1)

The IMoney interface (ll)
A Failed test
Diagnostics

The fix ...

Testing Practices
Summary

. GUI Construction

A Graphical TicTacToe?
Applets

The Hello World Applet
Accessing the game as an Applet
Model-View-Controller

AWT Components and Containers
The GameApplet

Laying out the GameApplet
Events and Listeners (1)
Events and Listeners (II)
Listening for Button events
Listening for mouse clicks
The Placelistener

Observers and Observables
Observing the BoardGame
Communicating changes
Setting up the connections
Playing the game
Refactoring the BoardGame
GUI objects in practice ...
Summary

. Guidelines, Idioms and Patterns

Style

Refactoring

What are Idioms and Patterns?
Delegation

Delegation example

fil.
166
167
168
169
170
171
172

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

195
196
197
198
199
200

Table of Contents Iv.

Super 201 Running the application 236 Static and Dynamic Types 271
Super example 202 Playing the game 237 Puzzle 2 272
Interface 203 Other approaches 238 Puzzle 2 (part) 273
Interface example 204 Summary 239 Puzzle 3 274
Adapter 205 11. Collections 240 Puzzle 4 275
Adapter example 206 The Jumble Puzzle 241 Puzzle 4 (partll) 276
Proxy 207 Naive Solution 242 Puzzle 5 277
Proxy example 208 Rethinking the Jumble Problem 243 Summary 278
Template Method 209 An Efficient Solution 244
Template method example 210 The Collections Framework 245
Composite 211 Collection Interfaces 246
Composite example 212 Implementations 247
Observer 213 Maps 248
What Problems do Design Patterns Solve? 214 Jumble 249
Summary 215 Jumble constructor 250
10. Clients and Servers 216 Algorithms 251
A Networked TicTacToe? 217 Array algorithms 252
The concept 218 Sorting characters 253
The problem 219 Loading the dictionary 254
Remote Method Invocation 220 The input loop 255
Developing an RMI application 221 Running the unjumbler ... 256
Designing client/server interfaces 222 lterators 257
Identifying remote interfaces 223 lterating through the key set 258
Specifying remote interfaces 224 How to use the framework 259
RemoteGameFactory 225 Summary 260
RemoteGame 226 12. Common Errors, a few Puzzles 261
RemoteObserver 227 Round-off errors 262
Serializable Objects 228 == versus equals() 263
Implementing Remote objects 229 Literal Strings 264
A simple view of synchronization 230 Forgetting to clone an object 265
Registering a remote object 231 The dangling else problem. 266
GameProxy 232 Off-by-1 errors 267
Using Threads to protect the server 233 Don’t use equality tests to terminate loops! 268
Refactoring the BoardGame ... 234 Some other common errors 269
Compiling the code 235 Puzzle 1 270

April 20, 1999

P2 — OOP

Patterns, Rules and Guidelines

1. P2 — Object-Oriented Programming - - - - - - - = - = = = = = = = = = = = = = o o - .- oo o oo oo oo oo - - oo oo oo - 1
2.Design by Contract - - - - - - - - - - - - - - - - - o o o oo o oo oo oo oo o o oo oo oo oo - - oo oo oo oo - - oo - 22
What should an object do if an assertion does NOt NOIA? L. 32
TRIOW @N @XCEPLION. o o e e e e e e e e e e e e e e e e 32
When should an object throw @an eXCePtION?o i e e e e e e e 33
Ifand only if @n @sSertion iS VIOIALEd e e 33

How do you let clients respond to multiple implementations of @n AD T 2 e 35
Specify an interface or an @bSITaCt CIASS. o e e 35

How should you name a private or protected inStance variable? 37
Pick a name that reflects the role of the variable. e 37

Tag the name With @n UNErsCore (). et e e e e e e e e e e e e e e e e e 37
When should instance variables be pUDIC?. e 39
Always make instance variables private Or ProteCted. 39
Which assertions should YOoU CheCK e e 40
Always check pre-conditions t0 MEthOdS. e e 40
Check post-conditions and invariants if the implementation is NON-triVial. e e e 40

3. Testing and Debugging- - - - - - = = = = = = = - - - - - - - o - - oo oo oo oo oo oo - oo oo oo oo oo oo - oo 48
What do you do with an object whose interface doesn’t fit yoUr eXpeCtatioNS 2. e 61
YOU WIAP L. . o o e e e e e e e 61
Complexity aside, how can you tell which implementation strategy will perform Dest? e 65
RUN @ DENCAMArK.. . . . o e e e e 65

4. Iterative Development - - - - - - - - - - - - - - - o o o oo oo o oo oo oo oo o oo - - o oo oo oo oo oo - 69
How do you decide what responsibilities to aSSign 10 an 00 e Ct? 72
“Don't do anything you can push Off t0 SOMEONE €ISE.” e e e e e e e 72
When should you let an 0bJECT @XPOIt itS STAIE? ottt et e e e e e e e 72
“Don'tlet anyone else play With YOU.” e e e e e e e e e 72

How much functionality should you deliver in the first Version of @ SYStem 2 e e e 74
Select the minimal requirements that provide value to the CHIENL. e e e e e e e e e e 74

How can you tell when you have the “right” Set Of 0D EC S 2. o e e e e e e e 75
Each object has a clear and natural set of responsibIlItIes. e 75

How can you tell when there are objects MiSSING IN YOUN AESIGN 2. ottt e e e e e e e e e e e e e e e e 76
When there are responsibilities that cannot be assigned to SOME ODJECL. e e e e 76

How do you make an ObjeCt Printable?o 82
Override OBJECLIOSIIING() o oot e e e e e e e e e e e e e e 82

Universitédt Bern

P2 — OOP Vi

When should instance variables be pUDIC?. e e e 88
Almost never! Declare public accessor methods INSIEAU.. e e e 88

5. Inheritance and Refactoring - oo oo o oo oo oo oo oo oo oo oo oo oo oo - - - - 94
When should YouU run YoUr (FE0rESSION) 1ESES 2ttt ettt et e e e e e e e e e e e e e e e e e 101
After every Change t0 the SYSIEM.. e e e e e e e e e 101
When should a class be declared abstract? 106
Declare a class abstract if it is intended to be subclassed, but notinstantiated. 106
Which methods should be pUDIIC? oo e e e 118
Only publicize methods that clients will really need, and will not break encapsulation. e e e 118

6. Programming TOOIS- - - - - - - = = = - = - - - - - o o o - - - oo oo o oo oo oo oo o oo oo oo oo oo oo oo - - oo 121
When Should YOU USE @ 0BDUGGEI 2 . . . o o e e e e e e e e e e e e e 131
When you are unsure why (or where) your program is NOt WOIKING.. o o e 131

What kind of projects can benefit from VerSIONING ?o 135
Use a version control system to keep track of all youUr Projects! 135
When Should YOU USE @ PrOfiler? . . o o e e e e e 139
Always run a profiler before attempting to tune PerformancCe. e e 139

How early should you start worrying about PErfOrmMaNCE?.o e e e e e e e e e e 139
Only after you have a clean, running program with pOOr PErfOrmancCe. e e e e e e e e e e e e 139

7. A Testing Framework- - - - - - - - - = = - - = - - - - - - - - - - o oo oo oo oo o oo oo oo oo oo oo oo oo oo oo oo oo 146
8. GUI Construction - - - - - - = = = = = = = = = = = - - - - - oo oo oo oo oo oo o oo oo oo - - o oo oo oo oo oo oo 173
9. Guidelines, Idioms and Patterns - - - - - - - - - = - - - - - - - - - - - - - oo oo oo oo oo oo oo oo oo oo oo oo - oo - - 195
How does an object share behaviour WithoUt INNEITANCE?o e e e e e e e e e 199
Delegate some of its WOrk to @nOtRer ODJECL. e e e e 199

How do you extend behaviour inherited from @ SUPEICIASS? oot e e e e e e e e e 201
Overwrite the inherited method, and send a message to “super” in the new method. e 201

How do you keep a client of a service independent of classes that provide the ServiCe? e e 203
Have the client use the service through an interface rather than a CONCrete CIass. e e e e e e e e e 203

How do you use a class that provide the right features but the wrong Interface? e 205
INtrodUce an @AAPLEL. e 205

How do you hide the complexity of accessing objects that require pre- Or POSt-PrOCESSING? v vt vttt et e e e e e e e et e e 207
Introduce a proxy to control acCess t0 the ODJECL. e e 207

How do you implement a generic algorithm, deferring some parts t0 SUDCIaSSES oo e e e 209
Define it as a Template MEthOd. e e 209

How do you manage a part-whole hierarchy of obJects in @ CONSISIENT WAY?ot e e e e e e e e 211
Define a common interface that both parts and composites IMPIEMENL. e e e e e e 211

How can an object inform arbitrary clients When it Changes Stale e e e e 213
Clients implement a common Observer interface and register with the “observable” object; the object notifies its observers when it changes state.. 213

Universitédt Bern

P2 — OOP V.

10. Clients and Servers - - - - - - - - = = = - - - - - - o - - - - - - o oo oo oo oo o oo o oo oo s - oo oo oo oo oo - oo 216
How can servers protect their state from CONCUITENE FEOUESIS? o ottt e et et e e e e e e e e e e e e e e e e 230
Declare their public methods as SynChronized.. e e e e 230

11. ColleCtions - - - - - = = = = = - - . - - - o o o o oo e e - - e o o o oo oo oo e o oo oo o oo e - - oo oo oo oo - - 240
How do you iterate through a Collection whose elements are UNOIdered?ottt e e e e e e e e e e e e e 257
USE AN TLEIALOL. o o o e e e e e e 257

12. Common Errors, afew Puzzles - oo oo oo oo oo oo oo oo oo oo oo - oo - - 261

Universitédt Bern

P2 — OOP 1.

1. P2 — Object-Oriented Programming

Lecturer: Prof. Oscar Nierstrasz
Schiutzenmattstr. 14/103, Tel: 631.4618, Email: oscar@iam.unibe.ch

Secretary: Frau |. Huber, Tel. 631.4692
Assistants: Sander Tichelaar, Thomas Studer, Daniel Tschan
WWW: http://www.iam.unibe.ch/~scg/Teaching/P2/

(includes full examples)

Principle Texts:
[0 John Lewis, William Loftus, Java Software Solutions, Addison-Wesley, 1998
[1 David Flanagan, Java in Nutshell: 2nd edition, O'Reilly, 1997.
[0 Bertrand Meyer, Object-Oriented Software Construction, Prentice Hall, 1997.
[]

Rebecca Wirfs-Brock, Brian Wilkerson, Lauren Wiener, Designing Object-
Oriented Software, Prentice Hall, 1990.

Universitéat Bern P2 — Object-Oriented Programming

P2 — OOP

Overview

1. 26.03 Introduction
02.04 Good Friday

2. 09.04 Design by Contract

3. 16.04 Testing and Debugging

4. 23.04 Iterative Development

5. 30.04 Inheritance and Refactoring

6. 07.05 Programming Tools

7. 14.05 A Testing Framework

8. 21.05 GUI Construction

9. 28.05 Guidelines, Idioms and Patterns

10. 04.06 Clients and Servers

11. 11.06 Collections

12. 18.06 Common Errors, a few Puzzles
25.06 Final Exam

Universitédt Bern

P2 — Object-Oriented Programming

P2 — OOP 3.

Goals of this course

Object-Oriented Design
[0 How to use responsibility-driven design to split systems into objects
[0 How to exploit inheritance to make systems generic and flexible
[0 How and when to refactor systems to simplify their design
Software Quality
[0 How to use design by contract to develop robust software
[How to test and validate software
Communication
[0 How to keep software as simple as possible
[0 How to write software that communicates its design
[How to document a design
Skills, Techniques and Tools
[How to use debuggers, version control systems, profilers and other tools
[0 How and when to use standard software components and architectures
[How and when to apply common patterns, guidelines and rules of thumb

Universitéat Bern P2 — Object-Oriented Programming

P2 — OOP 4.

What is programming?

Implementing data structures and algorithms?
Writing instructions for machines?
Implementing client specifications?

Coding and debugging?

Plugging together software components?
Specification? Design?

Testing?

Maintenance?

O 000ododdd

Which of these are “not programming”?

Universitéat Bern P2 — Object-Oriented Programming

P2 — OOP 5.

Programming and Software Development

How do you get your requirements?

How do you know that the documented requirements reflect the user’'s needs?
How do you decide what priority to give each requirement?

How do you select a suitable software architecture?

How do you do detailed design?

How do you know your implementation is “correct™?

How, when and what do you test?

How do you accommodate changes in requirements?

How do you know when you’re done?

N B

Is “programming” distinct from “software development”?

Universitéat Bern P2 — Object-Oriented Programming

P2 — OOP 6.

Programming activities

Documentation
Prototyping

Interface specification
Integration

Reviewing
Refactoring

Testing

Debugging

Profiling

N I I O I O I

What do these activities have in common?

Universitéat Bern P2 — Object-Oriented Programming

P2 — OOP /.

What is a software system?

A computer program is an application that solves a single task:
[0 requirements are typically well-defined
[0 often single-user at a time
[little or no configuration required

A software system is an application that supports multiple tasks.
[0 open requirements

multiple users

implemented by a set of programs or modules

multiple installations and configurations

long-lived (never “finished”)

N O O

Software systems are fundamentally more complex than simple programs.
Programming techniques address systems development by reducing complexity.

Universitéat Bern P2 — Object-Oriented Programming

P2 — OOP 8.

What is good (bad) design?

Consider two programs with identical behaviour.
[0 Could the one be well-designed and the other badly-designed?

[1 What would this mean?

Universitéat Bern P2 — Object-Oriented Programming

P2 — OOP 9.

A procedural design

How can we compute the total area of a set of geometric shapes?

A typical, procedural solution:
public static long sumShapes1(Shape shapes|]) {
long sum = 0;
for (int i=0; i<shapes.length; i++) {
switch (shapesJi].kind()) {
case Shape.RECTANGLE: // a class constant
sum += shapesi].rectangleArea();
break;
case Shape.CIRCLE:
sum += shapesli].circleArea();
break;
// more cases

}

return sum;

}

Universitéat Bern P2 — Object-Oriented Programming

P2 — OOP 10.

An object-oriented design

A typical object-oriented solution:
public static long sumShapes2(Shape shapes|]) {
long sum = 0;
for (int i=0; i<shapes.length; i++) {
sum += shapes[i].area();

}

return sum;

What are the advantages and disadvantages of the two solutions?

Universitéat Bern P2 — Object-Oriented Programming

P2 — OOP 11.

Object-Oriented Design

OO vs. functional design ...

Object-oriented [design] is the method which bases the architecture of any
software system on the objects it manipulates (rather than “the” function it is

meant to ensure).

Ask not first what the system does: ask what it does it to!
— Meyer, OOSC

Universitéat Bern P2 — Object-Oriented Programming

P2 — OOP 12.

Responsibility-Driven Design

RDD factors a software system into objects with well-defined responsibilities.
[J Objects are responsible to maintain information and provide services:
[J Operations are always associated to responsible objects
[0 Always delegate to another object what you cannot do yourself

[0 A good design exhibits:
[0 high cohesion of operations and data within classes
0 low coupling between classes and subsystems

[0 Every method should perform one, well-defined task:
[0 Separation of concerns — reduce complexity
[0 High level of abstraction — write to an interface, not an implementation

[Iterative Development
[0 Refactor the design as it evolves

Universitéat Bern P2 — Object-Oriented Programming

P2 — OOP 13.

Refactoring

Refactor your design whenever the code starts to hurt:

[0 methods that are too long or hard to read

[0 decompose and delegate responsibilities

[0 duplicated code
[0 factor out the common parts (template methods etc.)
violation of encapsulation, or
too much communication between objects (high coupling)
[0 reassign responsibilities
[0 big case statements

[0 introduce subclass responsibilities
[0 hard to adapt to different contexts

[1 separate mechanism from policy

1 O

Universitéat Bern P2 — Object-Oriented Programming

P2 — OOP

14.

What is Software Quality?

Correctness
Robustness

Extendibility
Reusability

Compatibility
Efficiency

Portability

Ease of use

Universitédt Bern

Is the ability of software products to perform their exact tasks, as
defined by their specifications

Is the ability of software systems to react appropriately to abnormal
conditions

Is the ease of adapting software products to changes of specification

Is the ability of software elements to serve for the construction of many
different applications

Is the ease of combining software elements with others

Is the ability of a software system to place as few demands as possible
on hardware resources

Is the ease of transferring software products to various hardware and
software environments

Is the ease with which people of various backgrounds and
gualifications can learn to use software products

— Meyer, OOSC, ch. 1

P2 — Object-Oriented Programming

P2 — OOP 15.

How to achieve software quality

Design by Contract
[0 Pre- and post-conditions, Class invariants

[0 Disciplined exceptions

Standards
1 Protocols, interfaces, components, libraries, frameworks

[1 Software architectures, design patterns

Testing and Debugging
[0 Unit tests, system tests ...
[1 Repeatable regression tests

Do it, do it right, do it fast
O Aim for simplicity and clarity, not performance
[0 Fine-tune performance only when there is a demonstrated need!

Universitéat Bern P2 — Object-Oriented Programming

P2 — OOP 16.

What is a programming language?

A programming language is a tool for:

specifying instructions for a computer

expressing data structures and algorithms

communicating a design to another programmer

describing software systems at various levels of abstraction
specifying configurations of software components

N O O B

A programming language is a tool for communication!

Universitéat Bern P2 — Object-Oriented Programming

P2 — OOP 17.

Communication

How do you write code that communicates its design?

[0 Do the simplest thing you can think of (KISS)
[0 Don't over-design
[0 Implement things once and only once

[0 Program so your code is (largely) self-documenting
[0 Write small methods
[0 Say what you want to do, not how to do it

[0 Practice reading and using other people’s code
[J Subject your code to reviews

Universitéat Bern P2 — Object-Oriented Programming

P2 — OOP

18.

Why use object-oriented programming?

[

Modelling
[0 complex systems can be naturally decomposed into software objects

Data abstraction
[1 clients are protected from variations in implementation

Polymorphism
[0 clients can uniformly manipulate plug-compatible objects

Component reuse
[0 client/supplier contracts can be made explicit, simplifying reuse

Evolution
[0 classes and inheritance limit the impact of changes

Universitéat Bern P2 — Object-Oriented Programming

P2 — OOP

Why Java?

Special characteristics
[0 Resembles C++ minus the complexity
[0 Clean integration of many features
0 Dynamically loaded classes
[0 Large, standard class library

Simple Object Model
0 “Almost everything is an object”
No pointers
Garbage collection
Single inheritance
Multiple subtyping
Static and dynamic type-checking

N O O O B

Few innovations, but reasonably clean, simple and usable.

Universitédt Bern

19.

P2 — Object-Oriented Programming

P2 — OOP

20.

History
FORTRAN
Algol 60 _
1960 ——~——~—~ =11 -—-—-----{ COBOL |- Lisp |--
Simula 67 ~ #
Algol 68
0 smaitaik 72] “ "~ [c¢c [v+—u—— Prolog
Pascal ;
Clu Modula-2
1980 |Smalltalk 80 % — — — — /— > - — _X_ ______ S~
++
Objective C ¢ Ada Oberon
Self Slic Modula-3
1990 ——" """\ """ """~~~ T T T T T T T T T T T T T
ANSI| C++
Java Ada 95

Universitédt Bern

P2 — Object-Oriented Programming

P2 — OOP

21.

summary

You should know the answers to these questions:

[

I O O

What is the difference between a computer program and a software system?
What defines a good object-oriented design?

When does software need to be refactored? Why?

What is “software quality”?

How does OOP attempt to ensure high software quality?

Can you answer the following questions?

What does it mean to “violate encapsulation”? Why is that bad?

Why shouldn’t you try to design your software to be efficient from the start?
When might it be “all right” to duplicate code?

How do you program classes so they will be “reusable”? Are you sure?

[

[I

Universitéat Bern P2 — Object-Oriented Programming

P2 — OOP 22.

2. Design by Contract

Overview
[J Stacks as Abstract Data Types
[0 Programming by Contract
[0 Assertions:
[0 pre- and post-conditions
[0 class invariants

[1 Disciplined Exceptions
0 Linked List Stack implementation using Design by Contract
Source

[0 Bertrand Meyer, Object-Oriented Software Construction, Prentice Hall, 1997.

Universitét Bern Design by Contract

P2 — OOP 23.

Stacks

A Stack is a classical data abstraction with many applications in computer programming.

A Stack supports (at least) two mutating operations (push and pop) and one querying
operation (top).

Operation Stack iSEmpty() size() top()
I: true 0 (error)
push(6) [6 | false 1 6
push(7) [6| 7] false 2 7
push(3) | 6| 7| 3| fase 3 3
pop() [6 | 7 | false 2 7
push(2) [6| 7] 2 | false 3 2
pop() | 6 | 7 | false 2 7

Universitét Bern Design by Contract

P2 — OOP 24.

Example: Balancing Parentheses

Problem:

Determine whether an expression containing parentheses (), brackets [] and braces { }
Is correctly balanced.

Examples:

“if (a.b()) { c[d].e(); } else { flg]h].i(); } " is balanced,
“((a+b()) ”is not balanced.

Approach:

[0 when you read a left parenthesis, push the matching parenthesis on a stack

[0 when you read a right parenthesis, compare it to the value on top of the stack
0 if they match, you pop and continue
[if they mismatch, the expression is not balanced

[0 if the stack is empty at the end, the whole expression is balanced, otherwise not

Universitét Bern Design by Contract

P2 — OOP

Using a Stack to match parentheses

Sample input: “([{}]1]”

Input Case Op
(left push)
[left push]
{ left push }
} match pop
] match pop
] mismatch “false

Universitédt Bern

Design by Contract

P2 — OOP 26.

What is Data Abstraction?

An implementation of a stack consists of:

[0 a data structure to represent the state of the stack
[0 a set of operations that access and modify the stack

Encapsulation means bundling together related entities.
Information hiding means exposing an abstract interface and hiding the rest.

An Abstract Data Type (ADT):
[0 encapsulates data and operations, and
[0 hides the implementation behind a well-defined interface.

Universitét Bern Design by Contract

P2 — OOP 27.

Why are ADTs important?

Communication
[0 An ADT exports what a client needs to know, and nothing more!
[0 By using ADTs, you communicate what you want to do, not how to do it!

[0 ADTs allow you to directly model your problem domain rather than how you will
use to the computer to do so.

Software Quality and Evolution

[0 ADTSs help to decompose a system into manageable parts, each of which can
be separately implemented and validated.

ADTSs protect clients from changes in implementation.

ADTs encapsulate client/server contracts

Interfaces to ADTs can be extended without affecting clients.

New implementations of ADTs can be transparently added to a system.

N O N B

Universitét Bern Design by Contract

P2 — OOP 28.

Programming by Contract

Every ADT is designed to provide certain services given certain assumptions hold.

An ADT establishes a contract with its clients by associated a precondition and a
postcondition to every operation O, which states:

“If you promise to call O with the precondition satisfied, then I, in return,
promise to deliver a final state in which the postcondition is satisfied.”

Consequence:
0 if the precondition does not hold, the ADT is not required to provide anything!

Universitét Bern Design by Contract

P2 — OOP

29.
Pre- and Postconditions
The precondition binds clients:
[0 it defines what the ADT requires for a call to the operation to be legitimate.
[it may involve initial state and arguments.
The postcondition, in return, binds the supplier:
[1 it defines the conditions that the ADT ensures on return.
[0 it may only involve the initial and final states, the arguments and the result
Obligations Benefits
: Only callpop() on a Stacksize decreases by 1.
Client .
non-empty stack Top element is removed.
. Decrement thsize . No need to handle case when stack is emp{y.
Supplier
Remove the top element.

Universitét Bern Design by Contract

P2 — OOP

Stack pre- and postconditions

ISEmpty()
[0 requires:
[ensures:
size()
0 requires:
[ensures:
push(Object item)
[0 requires:
[0 ensures:
top()
[0 requires:
[0 ensures:
pop()
[0 requires:
[l ensures:

Universitédt Bern

not empty, size == old size + 1, top == item

not empty

not empty
size == old size -1

always valid
no state change

always valid
no state change

always valid

no state change

30.

Design by Contract

P2 — OOP 31.

Class Invariants

A class invariant is any condition that expresses the valid states for objects of that class:

[it must be established by every constructor

[0 every public method
0 may assume it holds when the method starts
[0 must re-establish it when it finishes

Stack instances must satisfy the following invariant:
[0 size=0

Universitét Bern Design by Contract

P2 — OOP 32.

Assertions

An assertion is any boolean expression we expect to be true at some point :

Assertions have four principle applications:
1. Help in writing correct software
[0 formalizing invariants, and pre- and post-conditions
2. Documentation aid
[0 specifying contracts
3. Debugging tool
[testing assertions at run-time
4. Support for software fault tolerance
[0 detecting and handling failures at run-time

[0 What should an object do if an assertion does not hold?
[0 Throw an exception.

Universitét Bern Design by Contract

P2 — OOP 33.

Disciplined Exceptions

An exception is the occurrence of an abnormal condition during the execution of a
software element.

A failure is the inability of a software element to satisfy its purpose.
An error is the presence in the software of some element not satisfying its specification.

There are only two reasonable ways to react to an exception:
1. clean up the environment and report failure to the client (*organized panic”)
2. attempt to change the conditions that led to failure and retry

It is not acceptable to return control to the client without special notification.

[0 When should an object throw an exception?
[If and only if an assertion is violated

If it Is not possible to run your program without raising an exception, then you are abusing
the exception-handling mechanism!

Universitét Bern Design by Contract

P2 — OOP

Stacks as Linked Lists

34.

A Stack can easily be implemented using a linked data structure:

size=2 | top= ?
<@ | 6 -—@ | 7
stack.push(3)
size = 3 top = ?
<@ | 6@ | 7 -—@ | 3

Universitédt Bern

stack.pop()

Design by Contract

P2 — OOP 35.

Stacklinterface

There are many ways to implement stacks. Let us first specify an interface:

public interface Stackinterface {
public boolean isEmpty();
public int size();
public void push(Object item) throws AssertionException;
public Object top() throws AssertionException;
public void pop() throws AssertionException;

The methods that might fail are declared to throw an AssertionException.

[1 How do you let clients respond to multiple implementations of an ADT?
[Specify an interface or an abstract class.

Universitét Bern Design by Contract

P2 — OOP 36.

Exceptions

All Exception classes look like this!

You define your own exception class to distinguish your exceptions from any other kind.

The implementation consists of a default constructor, and a constructor that takes a

simple message string as an argument. Both constructors call super() to ensure that the
instance is properly initialized.

public class AssertionException extends Exception {
AssertionException() { super(); }
AssertionException(String s) { super(s); }

}

Universitét Bern Design by Contract

P2 — OOP 37.

LinkStack ADT

public class LinkStack implements Stackinterface {
private Cell _top;
private int _size;

public LinkStack() {
// Establishes the invariant.
_top = null;
_Size =0;

}

[1 How should you name a private or protected instance variable?
[0 Pick a name that reflects the role of the variable.
[1 Tag the name with an underscore ().

Role-based names tell the reader of a class what the purpose of the variables is.
A tagged name reminds the reader that a variable represents hidden state.

Universitét Bern Design by Contract

P2 — OOP 38.

LinkStack Class Invariant

A valid LinkStack instance has a integer _size , and a _top that points to a sequence
of linked Cells, such that:

0 _size isalways=0
[0 When _size is zero, top points nowhere (==null)

[0 When size>0 , top pointsto a Cell containing the top item

Universitét Bern Design by Contract

P2 — OOP 39.

LinkClass Cells

We can define the Cells of the linked list as an inner class within LinkStack:

public class Cell {
public Object item;
public Cell next;
public Cell(Object item, Cell next) {
this.item = item;
this.next = next;

[J When should instance variables be public?
[Always make instance variables private or protected.

The Cell class is a special case, since its instances are strictly private to LinkStack.

Universitét Bern Design by Contract

40.

P2 — OOP
LinkStack methods
public boolean ISEmpty() { return this.size() == 0; }

public int size() { return _size; }

public Object top() throws AssertionException {
assert(!this.isEmpty()),; // pre-condition
return _top.item;

[0 Which assertions should you check?
[0 Always check pre-conditions to methods.
[0 Check post-conditions and invariants if the implementation is non-trivial,

Asserting pre-conditions lets you inform clients when they violate the contract.
Asserting post-conditions and invariants lets you know when you violate the contract.

Universitét Bern Design by Contract

P2 — OOP

Testing Assertions

It is easy to add an assertion-checker to a class:
(unfortunately this method is not defined in java.lang.Object)

private void assert(boolean assertion)
throws AssertionException
{

iIf ('assertion) {
throw new AssertionException(
"Assertion failed in LinkStack");

Every class will have its own invariant:
private boolean invariant() {
return (_size >=0) &&
((_size == 0 && this._top == null)
|| (_size > 0 && this._top != null));

Universitédt Bern

41.

Design by Contract

P2 — OOP 42.

Push and Pop

public void push(Object item) throws AssertionException {
_top = new Cell(item, _top);
_Size++;
assert(!this.isempty()), // post-condition
assert(this.top() == item); // post-condition
assert(invariant()),

}

public void pop() throws AssertionException {
assert(!this.isempty()), // pre-condition
_top = _top.next;
_size--;
assert(invariant());

}

Explicit post-conditions and invariants make it easier to debug the implementation.

Universitét Bern Design by Contract

P2 — OOP 43.

The ParenMatch class

A ParenMatch object uses a stack to check if parentheses in a text String are balanced:

public class ParenMatch {
String _line;
Stackinterface _stack;
public ParenMatch(String line, Stackinterface stack) {
_line = line; _stack = stack;

}

public String reportMatch() throws AssertionException {
iIf (_line == null) { return "™"; }
return "\"" + line + "\" is"
+ (this.parenMatch() ? " " : " not ")
+ "pbalanced";

Universitét Bern Design by Contract

P2 — OOP 44,

A cluttered algorithm ...

public boolean parenMatch() throws AssertionException {
for (int i=0; i<_line.length(); i++) {
char c = _line.charAt(i);
switch (c) {
case {' . _stack.push(new Character('}")); break;
case '(': _stack.push(new Character(')"); break;
case [' . _stack.push(new Character(']")); break;
case']': case')' : case '} :
if (_stack.isEmpty()) { return false; }
if (((Character) _stack.top()).charValue() == ¢) {
_stack.pop();
} else { return false; }
break;
default : break;

}

}

return _stack.isEmpty():

}

Universitét Bern Design by Contract

P2 — OOP 45.

A declarative algorithm

We can remove conceptual clutter by introducing a few helper methods ...
public boolean parenMatch() throws AssertionException {
for (int i=0; i<_line.length(); i++) {
char c = _line.charAt(i);
if (isLeftParen (c)){ // expect right paren later
_stack.push (new Character(matchingRightParen (c)));

} else {
if (isRightParen (c)){ // should be on top of stack!
if (_ stack.isEmpty () { return false) }

if (_ stack.top (). equals (new Character(c))){
_stack.pop (); // ok, so continue
} else { return false .} // not ok

}
}
}

return _stack.isEmpty (); // no missing right parens?

}

Universitét Bern Design by Contract

P2 — OOP 46.

Helper methods

The helper methods are trivial to implement, and their details only get in the way of the
main algorithm.

private boolean isLeftParen(char c) {

return (¢ =="() || (¢ =="TT) || (c ==*);

}
private boolean iIsRightParen(char c) {
return (¢ ==7)) || (c==T) [| (c==);
}
private char matchingRightParen(char c) {
switch (c) {
case '(' : return')’;
case [: return'’;
case { : return'};
}
return c;
}

Universitét Bern Design by Contract

P2 — OOP 47.

summary

You should know the answers to these questions:

[0 What is an assertion?
How are contracts formalized by pre- and post-conditions?
What is a class invariant and how can it be specified?
What are assertions useful for?
How can exceptions be used to improve program robustness?
What situations may cause an exception to be raised?

N O O O B

Can you answer the following questions?
0 What happens when you pop() an empty java.util. Stack? Is this good or bad?
[0 What impact do assertions have on performance?

Universitét Bern Design by Contract

P2 — OOP

3. Testing and Debugging

Overview
[0 Testing — definitions
[0 Testing various Stack implementations
[0 Understanding the run-time stack and heap
0 Wrapping — a simple integration strategy
[0 Timing benchmarks

Source
[]

48.

|. Sommerville, Software Engineering,Addison-Wesley, Fifth Edn., 1996.

Universitédt Bern

Testing and Debugging

P2 — OOP 49.

Testing

1. Unit testing:
[testindividual (stand-alone) components
2. Module testing:
[J test a collection of related components (a module)
3. Sub-system testing:
[test sub-system interface mismatches
4. System testing:

[0 (i) test interactions between sub-systems, and
(ii) test that the complete systems fulfils functional and non-functional

requirements
5. Acceptance testing (alpha/beta testing):
[0 test system with real rather than simulated data.

Testing is iterative!

Universitéat Bern Testing and Debugging

P2 — OOP 50.

Regression testing

Regression testing means testing that everything that used to work still works after
changes are made to the system!

[tests must be deterministic and repeatable

[0 should test “all” functionality

every interface

all boundary situations

every feature

every line of code

everything that can conceivably go wrong!

N O O O B

It costs extra work to define tests up front, but they pay off in debugging & maintenance!

NB: Testing can only reveal the presence of defects, not their absence!

Universitéat Bern Testing and Debugging

P2 — OOP 51.

Stack test case

We define a simple regression test that exercises all Stackinterface methods and checks
the boundary situations:

assert(stack.isEmpty()),

for (int i=1,; i<=10; i++) { stack.push(new Integer(i)); }
assert(!stack.isempty());

assert(stack.size() == 10),

assert(((Integer) stack.top()).intValue() == 10),

for (inti=10; i>1; i--) { stack.pop(); } // pop 10.. 2
assert(!stack.isempty());

assert(stack.size() == 1),

assert(((Integer) stack.top()).intValue() == 1),

stack.pop();
assert(stack.isEmpty());

Universitéat Bern Testing and Debugging

P2 — OOP 52.

Testing special cases

We would also like to know that our Stack checks for failed pre-conditions!

boolean emptyPopCaught = false;

try {
// we expect pop() to raise an exception
stack.pop();

} catch(AssertionException err) {
// we should get here!
emptyPopCaught = true;

}
assert(emptyPopCaught); // should be true

Universitéat Bern Testing and Debugging

P2 — OOP 53.

TestStack
We define a method that will test any given implementation of Stackinterface:
static public void testStack(Stacklinterface stack) {
try {

System.out.print("Testing "
+ stack.getClass().getName() + " ... ");

// the tests go here ...

System.out.printin("passed all tests!");
} catch (Exception err) { // NB: any kind!
err.printStackTrace();

}
}

Running the test yields:
Testing LinkStack ... passed all tests!

Universitéat Bern Testing and Debugging

P2 — OOP 54.

ArrayStack

A very different way to implement a Stack is with a (fixed-length) array.

When the array runs out of space, the Stack “grows” by allocating a larger array, and
copying elements to the new array

public class ArrayStack implements Stacklinterface {
Object _store [];
Int _capacity;
int _size;

public ArrayStack() {
_store = null; // default value
__capacity = 0;
_Size = 0;

}

Universitéat Bern Testing and Debugging

P2 — OOP 55.

ArrayStack methods

public boolean ISEmpty() { return _size ==0; }
public int size() { return _size; }

public void push(Object item) throws AssertionException {
if (_size == _capacity) { grow(); }
_store[++_size] = item; // NB: subtle error!

}

public Object top() throws AssertionException {
assert(!this.isempty()),
return _store[size-1];

}

public void pop() throws AssertionException {
assert('this.isEmpty()),
_Size--;

}

NB: we only check pre-conditions in this version!

Universitéat Bern Testing and Debugging

P2 — OOP 56.

Testing ArrayStack
Testing ArrayStack ... java.lang.ArraylndexOutOfBoundsExcep-
tion: 2

at ArrayStack.push(ArrayStack.java:28)

at TestStack.testStack(Compiled Code)

at TestStack.main(TestStack.java:12)

at com.apple.mrj.JManager.JMStaticMethodDispatcher.run(JM-
AWTContextimpl.java:796)

at java.lang.Thread.run(Thread.java:474)

Exception.printStackTrace() tells us exactly where the exception occurred ...

Universitéat Bern Testing and Debugging

P2 — OOP 57.

The Run-time Stack

The run-time stack is a fundamental data structure used to record a context of a

procedure that will be returned to at a later point in time. This context (AKA “stack frame”)
stores the arguments to the procedure and its local variables.

Practically all programming languages use a run-time stack:

public static void main(String argsl]) {
System.out.printin("fact(3) =" + fact(3));
}
public static int fact(int n) {
if (n<=0) {
return 1;
} else {
return n*fact(n-1);
}
}

Universitéat Bern Testing and Debugging

P2 — OOP

The run-time stack in action ...

The stack grows with each procedure call ...

main ...

main;fact(3)="?

fact(3) ...

main;fact(3)="?

fact]

3);fact(2)="?

fact(2) ...

main;fact(3)="?

fact]

3);fact(2)="?

fact(2);fact(

1)="

fact(l) ...

58.

main;fact(3)="?

fact]

3);fact(2)="?

fact(2);fact(

1)=? fact(1);fact(0)="?

fact(0) ...

main;fact(3)="?

fact]

3);fact(2)="?

fact(2);fact(

1)=? fact(1);fact(0)="

fact(0);return 1

main;fact(3)="?

fact]

3);fact(2)="?

fact(2);fact(

1)="

fact(1);return 1

main;fact(3)="?

fact]

(
(
(
(
(
(

3);fact(2)="?

fact(2);return 2

main;fact(3)="?

fact(3);return 6

main;fact(3)=6

... and shrinks with each return.

Universitédt Bern

Testing and Debugging

P2 — OOP 59.

The Stack and the Heap

The Stack grows _
with each method RunTimeHeap
call and shrinks with

ArrayStack.push each return.
- . Integ er

RunTimeStac k

_item : Object

TestStac k.testStac k

: Object []

stack : Stackinterface
| : integer

: ArrayStack

TestStac k.main

/

_capacity : integer
_size : integer
com.apple .mrj...run _store : Object []

args : String []

The Heap grows
each new Object = String []
created, and shrinks
when Objects are
garbage-collected.

java.lang.Thread.ja va

Universitéat Bern Testing and Debugging

P2 — OOP 60.

Fixing our mistake

We erroneously used the incremented _size as an index into the _store, instead of the
new size - 1.

public void push(Object item) throws AssertionException {
if (_size == _capacity) { grow(); }
// NB: top index Is the *old* value of _size
_store[_size++] = item;
assert(this.top() == item);,
assert(invariant());

Perhaps it would be clearer to write:
_store[this.topindex()] = item;

or even:
this.setTop(item)

Universitéat Bern Testing and Debugging

P2 — OOP 61.

Wrapping Objects

Java also provides a Stack implementation, but it is not compatible with our interface:

public class Stack extends Vector {
public Stack();
public Object push(Object item);
public synchronized Object pop();
public synchronized Object peek();
public boolean empty();
public synchronized int search(Object 0);

}

If we change our programs to work with the Java Stack, we won't be able to work with
our own Stack implementations ...

[0 What do you do with an object whose interface doesn't fit your expectations?
0 You wrap it.

Universitéat Bern Testing and Debugging

P2 — OOP

A Wrapped Stack

62.

Wrapping is a fundamental programming technique for systems integration.

import java.util.Stack;

public class SimpleWrappedStack implements Stackinterface {

Stack _stack;

public SimpleWrappedStack() { stack = new Stack(); }
public boolean ISEmpty() { return _stack.empty(); }

public int size() { return _stack.size(); }

public void push(Object item) throws AssertionException {

_stack.push(item);

}

public Object top() throws AssertionException {

return _stack.peek();

}

public void pop() throws AssertionException {

_stack.pop();

}
}

0 What are possible disadvantages of wrapping?

Universitédt Bern

Testing and Debugging

P2 — OOP 63.

A contract mismatch

But running testStack(new SimpleWrappedStack()) yields:

Testing SimpleWrappedStack ... java.util. EmptyStackException
at java.util.Stack.peek(Stack.java:78)
at java.util.Stack.pop(Stack.java:60)
at SimpleWrappedStack.pop(SimpleWrappedStack.java:29)
at TestStack.testStack(Compiled Code)
at TestStack.main(TestStack.java:13)
at com.apple.mrj.JManager.JMStaticMethod-
Dispatcher.run(JMAWTContextimpl.java:796)
at java.lang.Thread.run(Thread.java:474)

Universitéat Bern Testing and Debugging

P2 — OOP 64.

Fixing the problem ...

Our tester expects an empty Stack to throw an exception when it is popped, but
java.util.Stack doesn’t do this — so our wrapper should check its preconditions!

public class WrappedStack extends SimpleWrappedStack {
public Object top() throws AssertionException {
assert(!this.isempty()),
return super.top();

}

public void pop() throws AssertionException {
assert(!this.isEmpty()),
super.pop();

}

private void assert(boolean assertion)
throws AssertionException { ... }

Universitéat Bern Testing and Debugging

P2 — OOP 65.

Timing benchmarks

Which of the Stack implementations performs better?

timer.reset();
for (int i=0; i<iterations; i++) {
stack.push(item);
}
elapsed = timer.timeElapsed();
System.out.printin(elapsed + " milliseconds for "
+ iterations + " pushes");

[0 Complexity aside, how can you tell which implementation strategy will perform best?
[0 Run a benchmark.

Universitéat Bern Testing and Debugging

P2 — OOP 66.

rimer

We can abstract from the details of how to obtain the timings:

import java.util.Date;

public class Timer {
long _startTime;

public ~ Timer() { this.reset(); }
public void reset() {

_startTime = this.timeNow();
}

public long timeElapsed() {
return this.timeNow() - _startTime;

}

protected long timeNow() {
return new Date().getTime();

}
}

0 What would the benchmark routine look like without using the Timer abstraction?

Universitéat Bern Testing and Debugging

P2 — OOP

Sample benchmarks

Times are in milliseconds ...

67.

Java VM Stack Implementation 100K pushes 100K plops

LinkStack 2809 100

Apple MRJ ArrayStack 474 56|
WrappedStack 725 298

LinkStack 5151 1234

Metrowerks ArrayStack 1519 681
WrappedStack 8748 824p

LinkStack 3026 189

Metrowerks JIT ArrayStack 877 94
WrappedStack 5927 531B

[0 Can you explain these results? Are they what you expected?

[0 What happens if you run these tests several times?

Universitédt Bern

Testing and Debugging

P2 — OOP 68.

summary

You should know the answers to these questions:
[0 What is a regression test? Why is it important?
What strategies should you apply to design a test?
What are the run-time stack and heap?
How can you adapt client/supplier interfaces that don’t match?
When are benchmarks useful?

I O O

Can you answer the following questions?

How would you implement ArrayStack.grow()?

What are the advantages and disadvantages of wrapping?

What is a suitable class invariant for WrappedStack?

How can we learn where each Stack implementation is spending its time?
How much can the same benchmarks differ if you run them several times?

N O O O B

Universitéat Bern Testing and Debugging

P2 — OOP 69.

4. Iterative Development

Overview
[0 Iterative development
[0 Responsibility-Driven Design
[0 How to find the objects ...
[0 TicTacToe example ...

Sources

0 R. Wirfs-Brock, B. Wilkerson, L. Wiener, Designing Object-Oriented Software,
Prentice Hall, 1990.

[0 Kent Beck, Embrace Change: Extreme Programming Explained, draft
manuscript, 1999.

Universitét Bern Iterative Development

P2 — OOP

‘ The Classical Software Lifecycle

The classical software lifecycle
models the software development as
a step-by-step “waterfall” between the
various development phases.

Requirementsj\‘
Collection
. .
;\LAnaly&s
—

Implementation

- .
;\L Testing

K— | j
;\ualntenance

The waterfall model is unrealistic for many reasons, especially:
I requirements must be “frozen” too early in the life-cycle
[0 requirements are validated too late

/0.

Universitédt Bern

Iterative Development

P2 — OOP /1.

[terative Development

In practice, development is always iterative, and all software phases progress in parallel.

Requirements Testing based on requirements
Collection
Maintenanceé through iteration C Testing D

Analysis Testing throughout implementation
Validation through prototyping

Implementati(D

Design <’J4
Design through refactoring

0 If the waterfall model is pure fiction, why is it still the standard software process?

Universitét Bern Iterative Development

P2 — OOP 72.

What is Responsibility-Driven Design?

Responsibility-Driven Design is
[0 a method for deriving a software design in terms of collaborating objects
[0 by asking what responsibilities must be fulfilled to meet the requirements,
[0 and assigning them to the appropriate objects (i.e., that can carry them out).

Pelrine’s Laws

[J How do you decide what responsibilities to assign to an object?
0 “Don't do anything you can push off to someone else.”

[0 When should you let an object export its state?

1 “Don't let anyone else play with you.”

RDD leads to fundamentally different designs than those obtained by functional
decomposition or data-driven design.

[1 class responsibilities tend to be more stable over time than functionality or
representation

Universitét Bern Iterative Development

P2 — OOP 73.

Example: Tic Tac Toe

Requirements: [Random House Dictionary of the English Language]

“A simple game in which one player marks down only crosses and another
only ciphers [zeroes], each alternating in filling in marks in any of the nine
compartments of a figure formed by two vertical lines crossed by two
horizontal lines, the winner being the first to fill in three of his marks in any

row or diagonal.”

We should design a program that implements the rules of Tic Tac Toe.

Universitét Bern Iterative Development

P2 — OOP 74.

Limiting Scope

Questions:
[0 Should we support other games?
Should there be a graphical UI?
Should games run on a network? Through a browser?
Can games be saved and restored?

[

A monolithic paper design is bound to be wrong!

An iterative development strategy:
[0 reduce scope to the minimal requirements that are interesting
[0 grow the system by adding features and test cases
[0 let the design emerge by refactoring roles and responsibilities

[0 How much functionality should you deliver in the first version of a system?
[0 Select the minimal requirements that provide value to the client.

Universitét Bern Iterative Development

P2 — OOP 75.

lic Tac Toe Objects

We (may) first try to identify likely objects occurring in the requirements:

Objects Responsibilities Non-Objects Justification
Game Maintain game rules Crosses, ciphers Same as Marks
Player Make moves Marks Value of Compartment

Mediate user interaction| \iertical lines | Display of State
Compartment| Record marks Horizontal lines ditto
Figure (State)| Maintain game state Winner State of Player
Row View of State
Diagonal ditto

Entities with clear responsibilities are more likely to end up as objects in our design.

[J How can you tell when you have the “right” set of objects?
[1 Each object has a clear and natural set of responsibilities.

Universitét Bern Iterative Development

P2 — OOP /6.

Missing Objects

At this point we can ask if there are unassigned responsibilities:
[Who starts the Game?
[0 Who is responsible for displaying the Game state?
[0 How do Players know when the Game is over?

Let us introduce a Driver that supervises the Game.

[0 How can you tell when there are objects missing in your design?
[0 When there are responsibilities that cannot be assigned to some object.

Universitét Bern Iterative Development

P2 — OOP /7.

Scenarios
A scenario describes a typical sequence of interactions between objects:
DriLver Game Player X Player Y
creale | create J
_ > create
print__, getMove _
done?
-
print _ | getMove
-
done? _
rint
P » getMove
-
done? _
getMove
-
. T I |

[0 Can you imagine other, equally valid scenarios for the same problem?

Universitét Bern Iterative Development

P2 — OOP /8.

A Skeleton Implementation

Our first version does very little!

class GameDriver {

static public void main(String argsl]) {
TicTacToe game = new TicTacToe();
do {

System.out.print(game);
} while(game.notOver());

}
public class TicTacToe {
public boolean notOver() { return false; }
public String toString() { return("TicTacToe\n"); }

}

Universitét Bern Iterative Development

P2 — OOP 79.

Representing the Game State

The state of the game is represented as 3x3 array of chars marked *’, *X’, or ‘O’. We index
the state using chess notation, i.e., column is 'a' through 'c' and row is '1' through '3'.

public class TicTacToe {
private char[][] _gameState;

public TicTacToe() {
__gameState = new char[3][3];
for (char col="a’; col <='c'; col++)
for (char row="'1"; row<='3"; row++)
this.set(col,row," ');

}
private void set(char col, char row, char mark) {
assert(inRange(col, row)); // NB: precondition
__gamesState[col-'a’l[row-"1"] = mark;
}
private char get(char col, charrow) { ... }
.}

Universitét Bern Iterative Development

P2 — OOP

Testing the nhew methods

For now, our tests can just exercise the new set() and get() methods:

public void test() {

System.err.printin("Started TicTacToe tests");

assert(this.get('a’,'1) =="");
assert(this.get('c','3' ="
this.set('c','3',"X";
assert(this.get('c','3") == 'X’);
this.set('c','3',");
assert(this.get('c','3') =="");
assert(!this.inRange('d','4’));

System.err.printin("Passed TicTacToe tests"),

Universitédt Bern

80.

Iterative Development

P2 — OOP 81.

Testing the application

If each class provides its own test() method, we can bundle our unit tests in a single driver
class:

class TestDriver {
static public void main(String argsl]) {
TicTacToe game = new TicTacToe();
game.test();

}
}

Universitét Bern Iterative Development

P2 — OOP

Printing the State

By re-implementing TicTacToe.toString()

3 |

RS Sy S

2 |

SN O S

1 |
a b C

[How do you make an object printable?

[0 Override Object.toString()

Universitédt Bern

82.

, we can view the state of the game:

Iterative Development

P2 — OOP 83.

Refining the interactions

We see now that updating the Game and printing it should be separate operations:

Driver Game Player X Player Y
1
create | J
create
g >l create
. -
print
done?
-
update - move
-
: move
print -
-
done?
-
update
- move
|
move
g

The Game can ask the Player to make a move, and the Player will attempt to do so ...

Universitét Bern Iterative Development

P2 — OOP 84.

Tic Tac Toe Contracts

Consider all the assertions that should hold at various points in a game ...

Explicit invariants:
[0 turn (current player) is either X or O
[0 X and O swap turns (turn never equals previous turn)
[0 game state is 3x3 array marked X, O or blank
[0 winneris X or O iff winner has three in a row
Implicit invariants:
0 initially winner is nobody; initially it is the turn of X
[0 game is over when all squares are occupied, or there is a winner
[1 a player cannot mark a square that is already marked
Contracts:
[1 the current player may make a move, if the invariants are respected

Universitét Bern Iterative Development

P2 — OOP 85.

Representing the Game State

We must introduce state variables to implement the contracts

public class TicTacToe {
/...
private Player _winner = new Player(); // represents nobody
private Player[] _player;
private int _turn = X; // initial turn

private int _squaresLeft = 9;
static final int X = O;
static final int O = 1;

public TicTacToe(Player playerX, Player playerO)
throws AssertionException
{ /..
_player = new Player[2];
_player[X] = playerX;
_player[O] = playerO;

Universitét Bern Iterative Development

P2 — OOP 86.

Invariants

Since invariants must hold at the end of each method, it can be useful to define a
separate method.

These conditions seem obvious, which is exactly why they should be checked ...

private boolean invariant() {
return (_turn == X || _turn == O)

&& (this.notOver()
|| this.winner() == _player[X]
|| this.winner() == _player[O]
|| this.winner().iIsNobody())

&& (_squaresLeft <9
// else, initially:
|| _turn == X && this.winner().isNobody());

Assertions and tests often tell us what methods should be implemented, and whether
they should be public or private.

Universitét Bern Iterative Development

P2 — OOP 87.

Delegating Responsibilities

When Driver updates the Game, the Game just asks the Player to make a move:
public void update() throws IOException {
_player[_turn].move(this);
}

The Game also has a move() method, called when the Player makes its move:

public void move(char col, char row, char mark)
throws AssertionException

{
assert(this.notOver()),
assert(inRange(col, row)),
assert(this.get(col, row) =="");
System.out.printin(mark + " at " + col + row);
this.set(col, row, mark);
this._squaresLeft--;
this.swapTurn();
this.checkWinner();
assert(this.invariant());

Universitét Bern Iterative Development

P2 — OOP 88.

Small Methods

Well-named variables and methods typically eliminate the need for explanatory
comments!

Introduce methods that make the intent of your code clear.
public boolean notOver() {
return this.winner().isNobody()
&& this.squaresLeft() > 0;

}
private void swapTurn(){ turn=(turn==X)? 0 : X;}

public Player winner() { return _winner; }
public int squaresLeft() { return this._squaresLeft; }

[0 When should instance variables be public?
[0 Almost never! Declare public accessor methods instead.

Universitét Bern Iterative Development

P2 — OOP 89.

GameDriver

In order to run test games, we must separate Player instantiation from Game playing:

public class GameDiriver {
public static void main(String argsl]) {
try {

Player X = new Player('X");
Player O = new Player('O’);
TicTacToe game = new TicTacToe(X, O);
playGame(game);
} catch (AssertionException err) {

}
}

Universitét Bern Iterative Development

P2 — OOP 90.

The Player

Multiple constructors are needed to distinguish real and virtual Players:

public class Player {
private final char _mark;

private final BufferedReader _in;

public Player(char mark, BufferedReader in) { // internal
_mark = mark;
_in=1in;

}

public Player(char mark) { // the normal constructor
this(mark,

new BufferedReader(new InputStreamReader(System.in)));

}

public Player(char mark, String moves) { // for testing
this(mark, new BufferedReader(new StringReader(moves)));

}

public Player() { this(' "); } // for Player “nobody”

Universitét Bern Iterative Development

P2 — OOP 91.

Defining test cases

public class TestDriver {
private static String testX1 = "al\nb2\nc3\n";
private static String testO1 = "b1\nc1\n";
// + other test cases ...

public static void main(String argsl]) {
testGame(testX1, testO1, "X", 4); /...
}
public static void testGame(String Xmoves, String Omoves,
String winner, int squaresLeft) {
try {

Player X = new Player('X', Xmoves);
Player O = new Player('O’, Omoves);
TicTacToe game = new TicTacToe(X, O);
GameDriver.playGame(game);
assert(game.winner().name().equals(winner));
assert(game.squaresLeft() == squaresLeft);

} catch (AssertionException err) { ... }

}

Universitét Bern Iterative Development

P2 — OOP

Running the test cases

Started testGame test

3 |
RS S S
2 |
RS S
1 |
a b C
Player X moves: X at al
3 |
VS S B
2 |
RIS SO E,
1 X | |
a b C
Player O moves: O at bl
3 |
RS S
2 |
RS SO E,
1 X | O|
a b C

Universitédt Bern

92.

Player X moves: X at b2

3 |
SRS S S
2 | X |
S S S
1 X | O]

a b C
Player O moves: O at cl
3 |

SN S S
2 | X |
R S S,
1 X]0]O
a b C
Player X moves: X at c3
3 | | X
S S S

2 | X |
RS S S,

1 X]0O0]O

a b C
game over!

Passed testGame test

Iterative Development

P2 — OOP 93.

summary

You should know the answers to these questions:

[0 Whatis Iterative Development, and how does it differ from the Waterfall model?
How can identifying responsibilities help you to design objects?
Where did the Driver come from, if it wasn’t in our requirements?
Why is Winner not a likely class in our TicTacToe design?
Why should we evaluate assertions if they are all supposed to be true anyway?
What is the point of having methods that are only one or two lines long?

N O O O B

Can you answer the following questions?

Why should you expect requirements to change?

In our design, why is it the Game and not the Driver that prompts a Player to move?
When and where should we evaluate the TicTacToe invariant?

What other tests should we put in our TestDriver?

How does the Java compiler know which version of an overloaded method or
constructor should be called?

N O O O B

Universitét Bern Iterative Development

P2 — OOP 94.

5. Inheritance and Refactoring

Overview
[0 Uses of inheritance
[0 conceptual hierarchy, polymorphism and code reuse
[0 TicTacToe and Gomoku
0 which inherits from which?!
[interfaces and abstract classes
[0 Refactoring
[iterative strategies for improving design
[0 Top-down decomposition
[0 decompose algorithms into high-level steps to reduce complexity
[0 use recursion when it can simplify your design

Source

0 R. Wirfs-Brock, B. Wilkerson, L. Wiener, Designing Object-Oriented Software,
Prentice Hall, 1990.

Universitéat Bern Inheritance and Refactoring

P2 — OOP 95.

What is Inheritance?

Inheritance in object-oriented programming languages is a mechanism to:
[0 derive new subclasses from existing classes
[0 where subclasses inherit all the features from their parent(s)
[0 and may selectively override the implementation of some features.

Various OOPLs may additionally provide:

0 self— a way to dynamically access methods of the current instance
super — a way to statically access overridden, inherited methods
multiple inheritance — a way to inherit features of multiple classes
abstract classes — partially defined classes (to inherit from only)
mixins — a way to build classes from partial sets of features
interfaces — specifications of method argument and return types only

subtyping — guarantees that subclass instances can be substituted for their
parents

N O O O I B

]

Universitéat Bern Inheritance and Refactoring

P2 — OOP 96.

The Board Game

Tic Tac Toe is a pretty dull game, but there are many other interesting games that can
be played by two players with a board and two colours of markers.

Example: Go-moku [Random House Dictionary of the English Language]

“A Japanese game played on a go board with players alternating and
attempting to be first to place five counters in a row.”

[0 We would like to implement a program that can be used to play several
different kinds of games using the same game-playing abstractions
(starting with TicTacToe and Go-moku).

Universitéat Bern Inheritance and Refactoring

P2 — OOP 97.

Uses of Inheritance

Inheritance in object-oriented programming languages can be used for (at least) three
different, but closely related purposes:

Conceptual hierarchy:
[1 Go-moku is-a kind of Board Game: Tic Tac Toe is-a kind of Board Game

Polymorphism:

[0 Instances of Gomokuand TicTacToe can be uniformly manipulated as
instances of BoardGame by a client program

Software reuse:
[1 Gomokuand TicTacToe reuse the BoardGame interface

[0 Gomokuand TicTacToe reuse and extendthe BoardGame representation and
the implementations of its operations

Universitéat Bern Inheritance and Refactoring

P2 — OOP

Class Diagrams

At this stage the key classes look like this:

Key

private feature

protected feature
+ public feature
create() static feature
checkWinner() | abstract feature

Universitédt Bern

98.

TicTacToe

-gameState : char [3][3]
-winner: Player

-turn : Player

-player : Player[2]
-squaresLeft : int

Player

-mark : char
-in : BufferedReader

+create(char, BufferedReader)
+mark() : char

+name() : String
+isNobody() : boolean
+move(TicTacToe)

+create(Player, Player)
+update()

+move(char, char, char)
+winner() : Player
+notOver() : boolean
+squaresLeft() : int
-set(char, char, char)
-get(char, char) : char
-swapTurn()
-checkWinner()
-inRange(char col, char row) : boolean

Inheritance and Refactoring

P2 — OOP 99.

A bad idea ...

Why not simply use inheritance for incremental modification?

TicTacToe

-gameState : char [3][3]

!

Gomoku

-gameState : char [19][19]

+create ()
+checkWinner()

Exploiting inheritance for code reuse without refactoring tends to lead to:
[J duplicated code (similar, but not reusable methods)
[0 conceptually unclear design (arbitrary relationships between classes)

Gomoku is not a kind of TicTacToe

Universitéat Bern Inheritance and Refactoring

P2 — OOP

Class Hierarchy

Both Go-moku and Tic Tac Toe are kinds of Board games (I1S-A). We would like to define
a common interface, and factor the common functionality into a shared parent class.

«interface»
BoardGame

+update()

+move(char, char, char)
+winner() : Player
+notOver() : boolean
+squaresLeft() : int

&

Gomoku

AbstractBoardGame
abstract

-

+create ()

"\

TicTacToe

+create ()

Behaviour that is not shared will be implemented by the subclasses.

Universitédt Bern

Inheritance and Refactoring

P2 — OOP 101.

[terative development strategy

We need to find out which TicTacToe functionality will:
[0 already work for both TicTacToe and Gomoku
0 need to be adapted for Gomoku
[0 can be generalized to work for both

Example: set() andget() will notwork fora 19x%19 board!

Rather than attempting a “big bang” redesign, we will iteratively redesign our game:
[0 introduce a BoardGame interface that TicTacToe implements
[0 move all TicTacToe implementation to an AbstractBoardGame parent
[fix, refactor or make abstract the non-generic features
[0 introduce Gomoku as a concrete subclass of AbstractBoardGame
After each iteration we run our regression tests to make sure nothing is broken!

[0 When should you run your (regression) tests?
[After every change to the system.

Universitéat Bern Inheritance and Refactoring

P2 — OOP 102.

Version 1.3

The BoardGame interface specifies the methods that both TicTacToe and Gomoku
should implement:

public interface BoardGame {
public void update() throws IOException;
public void move(char col, char row, char mark)
throws AssertionException;
public Player currentPlayer(); // NB: new method needed
public Player winner();
public boolean notOver();
public int squareslL eft();
public void test();
}

Initially we focus only on abstracting from the current TicTacToe implementation

Universitéat Bern Inheritance and Refactoring

P2 — OOP 103.

Speaking to an Interface

Clients of TicTacToe and Gomoku should only speak to the BoardGame interface:

public class GameDriver {
public static void main(String argsl]) {
try {

Player X = new Player('X");

Player O = new Player('O");

TicTacToe game = new TicTacToe(X, O);
playGame(game);

}

public static void playGame(BoardGame game) {

}

In general, you should speak to an interface, not an implementation.

Universitéat Bern Inheritance and Refactoring

P2 — OOP 104.

Quiet Testing

Our current TestDriver uses the GameDriver’'s playGame(), which prints out the state of
the game after each move, making it hard to tell when a test has failed.

Tests should be silent unless an error has occurred!

public static void playGame(BoardGame game) {
playGame(game, true);
}
public static void playGame(BoardGame game, boolean verbose) {

iIf (verbose) {
System.out.printin();
System.out.printin(game);
System.out.print("Player "
+ game.currentPlayer().mark() + " moves: ");

}
NB: we must shift all responsibility for printing to playGame().

Universitéat Bern Inheritance and Refactoring

P2 — OOP 105.

licTacloe adaptations

In order to pass responsibility for printing to the GameDriver, TicTacToe must provide a
method to export the current Player:

public class TicTacToe implements BoardGame {

public Player currentPlayer() {
return _player[turn];

}

Now we run our regression tests and (after fixing any bugs) continue.

Universitéat Bern Inheritance and Refactoring

P2 — OOP 106.

Version 1.4

AbstractBoardGame will hold provide common methods for TicTacToe and Gomoku.

public abstract class AbstractBoardGame implements BoardGame {
protected char[][] _gameState;
protected Player _winner = new Player(); // nobody
protected Player[] _player;
protected int _turn = X; // initial turn

protected int _squaresLeft = 9;

protected void set(char col, char row, char mark)
protected char get(char col, char row)

[1 When should a class be declared abstract?
[1 Declare a class abstract if it is intended to be subclassed, but not instantiated.

An abstract class may declare abstract methods to be implemented by subclasses ...

Universitéat Bern Inheritance and Refactoring

P2 — OOP 10v.

Refactoring

Refactoring is a process of moving methods and instance variables from one class to
another to improve the design, specifically to:

[0 reassign responsibilities
1 eliminate duplicated code
[0 reduce coupling
[0 interaction between classes
[0 increase cohesion
[0 interaction within classes

We have adopted one possible refactoring strategy, first moving everything except the
constructor from TicTacToe to AbstractBoardGame, and changing all private features to
protected:

public class TicTacToe extends AbstractBoardGame {
public TicTacToe(Player playerX, Player playerO)

We could equally have started with an empty AbstractBoardGame ...

Universitéat Bern Inheritance and Refactoring

P2 — OOP 108.

Version 1.5

Now we must check which parts of AbstractBoardGame are generic, which must be
repaired, and which must be deferred to its subclasses:

[0 the number of rows and columns and the winning score may vary
[0 introduce instance variables and an init() method
O rewrite toString(), invariant(), inRange() and test()

0 set() and get() are inappropriate for a 19x19 board
[0 index directly by integers
0 fix move() to take String argument (e.g., “f17”)
[0 add methods to parse String into integer coordinates

0 getWinner() must be completely rewritten ...

Universitéat Bern Inheritance and Refactoring

P2 — OOP 109.

AbstractBoardGame 1.5

We introduce an init() method for arbitrary sized boards:
public abstract class AbstractBoardGame implements BoardGame {
protected void init(int rows, int cols, int score,
Player playerX, Player playerO)
{..}

And call it from the constructors of our subclasses:

public class TicTacToe extends AbstractBoardGame {
public TicTacToe(Player playerX, Player playerO)

{

// 3x3 board with winning score = 3
this.init(3,3,3,playerX, playerO);
}
}

[0 Why not just introduce a constructor for AbstractBoardGame?

Universitéat Bern Inheritance and Refactoring

P2 — OOP 110.

BoardGame 1.5

Most of the changes in AbstractBoardGame are to protected methods.
The only public (interface) method to change is move():

public interface BoardGame {

public void move(String coord, char mark)
throws AssertionException;

Universitéat Bern Inheritance and Refactoring

P2 — OOP 111.

Player 1.5

The Player class is now radically simplified:

public class Player {

public void move(BoardGame game) throws IOException {
String line = _in.readLine();
iIf (line == null)
throw new IOException("end of input");
try {
game.move(line, this.mark());
} catch (AssertionException err) {
System.err.printin("Invalid move ignored ("
+line +")");
}
}
}

[0 How can we make the Player responsible for checking if the move is valid?

Universitéat Bern Inheritance and Refactoring

P2 — OOP 112.

Version 1.6

The final steps are:
0 rewrite checkWinner()
[0 introduce Gomoku
[0 modify TestDriver to run tests for both TicTacToe and Gomoku

[0 print game state whenever a test fails

[0 modify GameDriver to query user for either TicTacToe or Gomoku

Universitéat Bern Inheritance and Refactoring

P2 — OOP 113.

Keeping Score

The Go board is too large to search it exhaustively for a winning Go-moku score.

Instead, we know a winning sequence mustinclude the last square marked, so we should
search in all directions starting from that square to see if we find 5 in a row:

We must do the same thing in all four directions.

0 Whose responsibility is it to search?

Universitéat Bern Inheritance and Refactoring

P2 — OOP 114.

A new responsibility ...

Maintaining the state of the board and searching for a winning run seem to be unrelated
responsibilities. Let’s introduce a separate object whose (called a Runner), whose job it
IS to run across the board in a given direction and count a Player’s pieces:

protected void checkWinner(int col, int row) // NB: new args
throws AssertionException
{

char player = this.get(col,row);
Runner runner = new Runner(this, col, row);
// check vertically
if (runner.run(0,1) >= this._winningScore)
{ this.setWinner(player); return; }
// check horizontally
if (runner.run(1,0) >= this._winningScore)
{ this.setWinner(player); return; }

Universitéat Bern Inheritance and Refactoring

P2 — OOP 115.

The Runner

The Runner must know its game, its home (start) position, and its current position:

public class Runner {
BoardGame _game;
// Home col and row:
int _homecCaol;
int _homeRow;
// Current col & row:
int _col=0;
int _row=0;

public Runner(BoardGame game, int col, int row)

{
__game = game;
_homeCol =col;
_homeRow = row;
}

Universitéat Bern Inheritance and Refactoring

P2 — OOP 116.

Top-down decomposition

A good way of implementing an algorithm is to describe it in the most abstract terms
possible, introducing new methods for each abstract step, until you are done:

A runner starts at some home position, runs forward and runs backwards in some
direction (delta col and row), adding up a run of tokens of the same kind:

public int run(int dcol, int drow) throws AssertionException
{
int score = 1;
this.goHome();
score += this.forwardRun(dcol, drow);
this.goHome();
dcol = -dcol; // reverse direction
drow = -drow;
score += this.forwardRun(dcol, drow);
return score;
}

private void goHome() { col=_homeCol; row = _homeRow; }

Universitéat Bern Inheritance and Refactoring

P2 — OOP 117.

Recursion

Many algorithms are more naturally expressed with recursion than iteration.
Recursively move forward as long as we are in a run. Return the length of the run:

private int forwardRun(int dcol, int drow)
throws AssertionException
{
this.move(dcol, drow);
if (this.samePlayer())
return 1 + this.forwardRun(dcol, drow);
else
return O;

0 How would you implement move() and samePlayer()?

Universitéat Bern Inheritance and Refactoring

P2 — OOP 118.

BoardGame 1.6

The Runner now needs access to the get() and inRange() methods so we make them
public:

public interface BoardGame {

public char get(int col, int row)
throws AssertionException;
public boolean inRange(int col, int row);

[0 Which methods should be public?
[0 Only publicize methods that clients will really need, and will not break encapsulation.

If a client needs to be able to modify your internal state, there is something wrong with
your design! (Strong coupling)

Universitéat Bern Inheritance and Refactoring

P2 — OOP 1109.

Gomoku

Gomoku is similar to TicTacToe, exceptitis played on a 19x19 Go board, and the winner
must get 5in a row.

public class Gomoku extends AbstractBoardGame {
public Gomoku(Player playerX, Player playerO)
{

// 19x19 board with winning score = 5
this.init(19,19,5,playerX, playerO);
}
}

In the end, both Gomoku and TicTacToe were able to inherit everything except their
constructor from AbstractGameBoard, which suggest it may really not be so abstract.

Universitéat Bern Inheritance and Refactoring

P2 — OOP 120.

summary

You should know the answers to these questions:

[0 How does polymorphism help in writing generic code?

When should features be declared protected rather than public or private?
How do abstract classes help to achieve code reuse?

What is refactoring? Why should you do it in small steps?

How do interfaces support polymorphism?

N O O

Can you answer the following questions?

[

[

1 [

What would change if we didn’t declare AbstractBoardGame to be abstract?
How does an interface (in Java) differ from a class whose methods are all abstract?
Can you write generic toString() and invariant() methods for AbstractBoardGame?

How could you use polymorphism (instead of a boolean flag) to make printing
optional in playGame()? Does this improve the design?

Is TicTacToe a special case of Gomoku, or the other way around?

How would you reorganize the class hierarchy so that you could run Gomoku with
boards of different sizes?

Universitéat Bern Inheritance and Refactoring

P2 — OOP 121.

6. Programming Tools

Overview
[0 Integrated Development Environments — CodeWarrior, SNiFF ...
[0 Debuggers
[0 Version control — RCS, CVS
O Profilers
[0 Documentation generation — Javadoc

Sources
[1 CodeWarrior: www.metrowerks.com
[1 SNiFF+: www.takefive.com

Universitét Bern Programming Tools

P2 — OOP 122.

Integrated Development Environments

An Integrated Development Environment (IDE) provides a common interface to a suite
of programming tools:

project manager
browsers and editors
compilers and linkers
make utility

version control system
interactive debugger
profiler

memory usage monitor
documentation generator

N O I B

Many of the graphical object-oriented programming tools were pioneered in Smalltalk.

Universitét Bern Programming Tools

P2 — OOP

CodeWarrior

CodeWarrior is a popular IDE for C, C++, Pascal and Java available for MacOS,

Windows and Solaris.

The Project Browser organizes the
source and object files belonging
to a project, and lets you modify
the project settings, edit source
files, and compile and run the

application.

Universitédt Bern

123.
I 1.6.0W H
Link Ordetr
ﬂ. Java spplication - ﬂ
M File Code | Data | i
= [, Sources 25K 0 + (=)=
ﬂ dzzertionException. java 1054 0+ [=
Bl GameDriver. java 3547 a = [=
Bl TestDriver.java 774 a o« [=
Bl Player java ITIZ 0 = =
Bl BoardGame.java 631 a = [=
Bl AbstractBoardGame. java 2968 a o« [=
Bl TicTacToe java a7 0 = =
Bl Gomoku.java a74 a = [=
Bl Runner.java 2524 a o« [=
== [Classes 0 1] =
Bl Classes zip 0] = |
Bl Frofiler zip 0 0 =~
11 files 25K o e

Programming Tools

P2 — OOP

124.
CodeWarrior Class Browser
[0 ==————)ava Application classes ==
The Class Browser alo [ElalElE]
provides one way to
navigate and edrt EE'HEEEE E IEHemher Functions EII Eﬂata Members El
; ; Abstract BoardGame init{int, int, int, Player, Pla.. | =~ —gameState -
project files ... AssertionException - invarianti) —Fows =
BoardGame = rromed, java lang Stri ng, cheat) —cals
java.lang.Exceplion — notdvers) —winningScore
GameDriver setlint, int, char) —winner
Gormoku £ setWinner{char) —plaver £
iava.lang.Obiect ol anuaresl gt turn bl

Universitédt Bern

Eﬁnurce: Macintash HD Users :0scar :0scar's Desktop o...les :TicTacToe 1 & AbstractBoardGame . java El

public wvoid mowvedString coord, char mark 2

throms AssertionExzception
{

assertithis. notOuer(a3,

int cal = getlColdcoorda;

int row = getRowdcoord?;

5 System. out printlnd"MHowe: <"
aszser-tithis. getical, rowy == ' 'J;
S Bystem.out printlnimark + " gt "
thi=s.=zetlcol, row, markl;

thi=. =squaresleft——;
this.swapTurnt a;

this. checkHinnericol, rowy;
asser-tithis. inwar-iant 2o

+ coord + YFU;

4

+ coord?;

K

il
el

ED[o' [bstractBoardiame java | 4 [101]

| 4|l

| b

Programming Tools

P2 — OOP 125.

CodeWarrior Hierarchy Browser

A Hierarchy Browser provides a view of the class hierarchy.

[=——— lava Application hierarchy =—"——H0 8
NB: no distinction is made B
; Gornok
between Interfaces and | BoardGarne I_Fl—ld AbstractBoardGanne I_F}—i
classes. Classes that
|mp|ement mU|t|p_|e |nte_rfaces | Java.lang Exception I_F|—| AzsertionException |
appear multiple times in the o]
hieral‘Chy! —|1 dbstractBoardGanme W}—[m
TicTacTae
- Gameoriver]
Jawva lang.Ob ject I_FI—
- Fier]
- Foer]
- Testoriver]
=c[<] Z

Universitét Bern Programming Tools

P2 — OOP 126.

SNIFF+

SNiFF+ is an integrated development environment for C++, Java, Python and many other
languages, running on Unix. It provides:

project management

hierarchy browser

class browser

symbol browser

cross referencer

source code editor (either built-in or external)
version control (using RCS)

compiler error parsing

integrated make facility (using Unix make)

N O I B

SNiFF+ is an open IDE, allowing different compilers, debuggers, etc. to be plugged in.

Universitét Bern Programming Tools

P2 — OOP 127.

SNIFF+ Project Editor

= _
= "@ File Project Target Info File Types Custom
4F Projoct Windows Source Files of 1.6.shared
Loaded Projects all | 7 Private I writable
¢ 1 6. shared - PWE:Java Mew Proje Filter I | sharee) 1 frzad g
Open Proj |] 1.6.shared 1.6. shared
- @ AbstractBoardGame . java 1. 6. shared
Clese Pl @ AssertionException.java 1. 6. shared
Mew: Wwaorking Eny @ BoardGame . j ava 1.6, shared
@ GameDriver.java 1. 6. shared
@ Gomolar.] ava 1. 6. shared
@ Makefile 1. 6. shared
@ Player.java 1. 6. shared
J @ Bunner . java 1. 6. shared
@ TestDriver.java 1. 6. shared
@ TicTacToe.]ava 1. 6. shared
Llpdatel
| yo—
_| Frozen | Lockers _| History

SNiFF+ supports project development by teams: projects may be private, or shared.

Universitét Bern Programming Tools

P2 — OOP

SNIFF+ Source Editor

128.

Source Editor: 1.6shared - AbstractBoardGamejava q

I‘@ File Edit Positioning Target Infoe Class Debug History

* Look up whichh plaver i1s the winner, and sel _winner
* gocordingly. Hw. Maybe we should store Players
* instead of chars in our arrayv!
e
protected void setWimmerchar player) |
if (player == ° ")
retwrn;
if (player == player[X].mark())
_winner = _player[X];
else
_winner = _player[0];

}

x"ﬂ-:&
* A plain ascii representation of the gane,
* mainly for defugoing purposes.

all Classes _||

AhstractBoardGame (cl)
assert (m1) AbstractBoardGame
checkiymmer (mi) AbstractBoardGame
currentPlayer (mi) AbstractBoardGa
get (mi) AbstractBoardGame

getCol (mi) AbstractBoardGame
getRow (mi) AbstractBoardGame

init (mi) AbstractBoardGame
inRange (mil) AbstractBoardGame
invariant (mi) AbstractBoardGame
mowe (mi) AbhstractBoardGame
notver (mi) AbstractBoardGame

set (mi)] AbstractBoardGame
setWimmer (mi) AbstractBoardGame

* squaresLeft (m1) AbstractBoardGame T
] JII =
I Frozen Line: 184 File: abstractBoardCame.java — fhomefoscarflava/P2/TicTacTee /1.6

Universitédt Bern

Programming Tools

P2 — OOP 129.

SNIFF+ Hierarchy Browser

Hierarchy Erowser: 1.6.shared

AssertionException

Gomokn

BoardGame (I1f)——ahstractBoardGame <

TicTacToe
GameDriver

Player

Rurnner

TestOriwver

Universitéat Bern Programming Tools

P2 — OOP

SNIFF+ Class Browser

The SNiFF+ class browser shows (by the
colours) which features are public,
protected or private and (by the icons)
which are inherited or overridden.

You can select which features you want to
view (using menus, checkboxes and
filters).

Universitédt Bern

Info Class History

Members of Gomoku

Language lava — complete inheritance —
|Gc-mc:-l-:u class =
all = method
Filter | 7 Overridden
F7 get BoardGame A
&# getlol dhstractBoardGame
&? getRow AbstractBoardGame J
[] Gomoku Gomoku
& init abstractBoardGame
g4 inRange dhstractBoardGame
F? inRange BoardGame
£ move dhstractBoardGame .
"
Inheritance
Gomoka
AbstractBoardGame
BoardGame {interface)
-_I Frozen _I Signature I Sorted |

130.

Programming Tools

P2 — OOP 131.

Debuggers

A debugger is a tool that allows you to examine the state of a running program:
[step through the program instruction by instruction

view the source code of the executing program

inspect (and modify) values of variables in various formats

set and unset breakpoints anywhere in your program

execute up to a specified breakpoint

examine the state of an aborted program (in a “core file”)

N O O O B

[0 When should you use a debugger?
[0 When you are unsure why (or where) your program is not working.

Interactive debuggers are available for most mature programming languages.
Classical debuggers are line-oriented (e.g., jdb); most modern ones are graphical.

NB: debuggers are object code specific, so can only be used with programs compiled
with compilers generating compatible object files.

Universitét Bern Programming Tools

P2 — OOP

Setting Breakpoints

The CodeWarrior
IDE lets you set
breakpoints by
simply clicking next
to the statements
where execution
should be
interrupted.

Universitédt Bern

132.

O

Class: AbstractBoardGame

glo &

=] =) =4

Bases: | Ob ject, BoardGarne

Show: [] Inherited [w] Public [Protected [Private

[Show Declaration] [Show Hier archy]

EHemher Functions EII Eﬂata HMembers £l
FIIEL T T, THL, FIYET , FIaweET [} . _gameStatE -
invariant() F B
movel, java.lang.String, char) :,3.;.|3 =
nntﬂyer{} = _winningScore
set{int, int, char) winmer
setwinner{char) ~ |]|
sauaracl aftl) hud —PravEr

IH Source : Macintosh HD :Uzers 0scar :0=scar's Desktop P mples :TicTacTee 11 .6 :AbstractBoardGare. java

foaystem. out printlnimark + °

at n

DE

+ coord);

this set{col, row, mark);
this. squaresLeff——;

this. swapTurn() ;

this. checkWirmer(col,row) ;
assert{this. invariant());

B o' [testractBoardsame java | 4 1]

] K11

Programming Tools

P2 — OOP 133.
O I Metrowerks lava (Thread Dx6B) =
Hi! HWould you like to play || & | & - I ¥ I =
3 ____!____.!____ Stack Fl E"u’ariahles EII
2 I I Exec::run (= | | [= this Ox02D030D0ES -
: "'T"'T"' GameDriver.main P _gameState Ox02DEDETO
a b o GarmeDriver.playGame —Fows 3
GameDriver.plavGame —cals 3
Flayer X moves: b2 #ibstractBoardGame.update —winningScore 3
Player. move l+ _winner Ox020abh90
[&bstractBoardGame. move [+ _player 0x0ZDEDECD
—turn 0
—squaresleft 9
cal 1
cal 1
I+ coord "hz"
mark OE
bt 1
[| Fow 1 —
~
- ” IH Source : Macintosh HD Uzers 0zcar Ozcar's Deskto. ez TicTacToe 1 6 AbstractBoardGarme . java F]
EXGCU'[IOFI will be . & this. set{col, row, mark); -
interrupted every time ||| this. squaresLeft——; =
breakpoint is reached, ||| thiz. swapTurng), -
displaying the current W[Uine: 101 | Gource] 41} 12|

program state.

Universitédt Bern

Programming Tools

P2 — OOP 134.

Debugging Strategy

Develop tests as you program

[0 Apply Design by Contract to decorate classes with invariants and pre- and post-
conditions

[0 Develop unit tests to exercise all paths through your program

[0 use assertions (not print statements) to proble the program state
[0 print the state only when an assertion fails
[0 After every modification, do regression testing!

If errors arise during testing or usage
1 Use the test results to track down and fix the bug
[1 If you can't tell where the bug is, then

[0 use a debugger to identify the faulty code
0 fix the bug

[identify and add any missing tests!

Universitét Bern Programming Tools

P2 — OOP 135.

Version Control

A version control system keeps track of multiple file revisions:
[0 check-in and check-out of files
logging changes (who, where, when)
merge and comparison of versions
retrieval of arbitrary versions
“freezing” of versions as releases
reduces storage space (manages sources files + multiple “deltas”)

N O O B

SCCS and RCS are two popular version control systems for UNIX.
CVS is popular on Mac, Windows and UNIX platforms (see www.cyclic.com)

[0 What kind of projects can benefit from versioning?
[Use a version control system to keep track of all your projects!

Version control is as important as testing in iterative development!

Universitét Bern Programming Tools

P2 — OOP 136.

RCS

Overview of RCS commands:

0 i Check in revisions

[0 co Check out revisions

O rcs Set up or change attributes of RCS files

O ident Extract keyword values from an RCS file

O rlog Display a summary of revisions

[0 merge Incorporate changes from two files into a third

O rcsdiff Report differences between revisions

[0 rcsmerge Incorporate changes from two RCS files into a third
[J rcsclean Remove working files that have not been changed
[0 rcsfreeze Label the files that make up a configuration

Universitét Bern Programming Tools

P2 — OOP 137.

Using RCS

When file is checked in, an RCS file called file,v IS created in the RCS directory:

mkdir RCS # create subdirectory for RCS files
ci file # put file under control of RCS

Working copies must be checked out and checked in.

co -l file # check out (and lock) file for editing

ci file # check in a modified file

co file # check out a read-only copy

ci -u file # check in file, but leave a read-only copy
rcsdiff file # report changes between versions

Universitét Bern Programming Tools

P2 — OOP 138.

Additional RCS Features

Keyword substitution
[0 Various keyword variables are maintained by RCS.:

$Author$ who checked in revision (username)
$Date$ date and time of check-in
Log description of revision (prompted during check-in)

and several others ...

Revision numbering:
[0 Usually each revision is numbered release.level
[1 Level is incremented upon each check-in
[0 A new release is created explicitly:
ci -r2.0 file

Universitét Bern Programming Tools

P2 — OOP 139.

Profilers

A profiler (e.g., java -prof) tells you where an executed program has spent its time

1. your program must first be instrumented by (i) setting a compiler (or interpreter)
option, or (ii) adding instrumentation code to your source program

2. the program is run, generating a profile data file
3. the profileris executed with the profile data as input

The profiler can then display the call graph in various formats ...

[0 When should you use a profiler?
0 Always run a profiler before attempting to tune performance.

[J How early should you start worrying about performance?
[Only after you have a clean, running program with poor performance.

NB: The call graph also tells you which parts of the program have (not) been tested!

Universitét Bern Programming Tools

P2 — OOP 140.

Profiling with CodeWarrior

Instrument the code:

import com.mw.Profiler.Profiler,
public class TestDriver {
public static void main(String argsl]) {
Profiler.Init(500, 20), // #methods; stack depth
Profiler.StartProfiling(),
doTicTacToeTests();
doGomokuTests();
Profiler.StopProfiling();
Profiler.Dump("TicTacToe Profile");
Profiler. Terminate(),

and turn on profiling:
N8 lava Application Settings =-———————— B

Target Settings Panels Jara Language

Target -
Target Settings [+ Generate Profiler Information
Access Paths] Emit Dependency Map
Build Extras
File Mappings] Inlining Enabled

Universitét Bern Programming Tools

P2 — OOP

Profile Data

Call graphs can typically be displayed hierarchically:

1

N

1.

or sorted by timings, number of calls etc.:

O TicTacToe Profile ==
FMethod : Detailed Timebase: PowerPC Saved at: 1754 13 1999-02-23 Overhead: 12115

Function Marme Count O by % +Children % dwverage Maximur Minirourm Stack Space
7 woid TestDriver doGamokuTestsl) 1 55077 47144795 124 55077 55077 55077]
void AbstractBoardGarme. <init>() 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0]
= woid Gormoku. <init =P laver , Flayer) 1 0039 0.0 TEIE:D 07 0039 0039 0039]
= void AbstractBoardGame.initint, int, int, Plaver, PL.. 1 1.774 0.z To39: 06 1.774 1.774 1.774]
= void AbztractBoardGame . zetlint, int, char) 1Y 3536 0.3 S.765: 05 .00 0.2¢ 0.00%]
boolean AbstractBoardGame.inRangelint, int) 1Y 1.325 0.1 1.325: 041 0.004 0.005 0.004]

Universitédt Bern

O TicTacToe Profile ==

FMethod : Detailed Timebase: PowerPC Saved at: 1754 13 1999-02-23 Overhead: 12115

Function Mame Count O by % +Children % dwverage Maximur Minirourm Stack Space
void AbstractBoardGame assert(boolean) 14691 45265 4.0 45.203: 4.0 0.032 41.870 0.000]
boolean AbstractBoardGame.inRangelint, int) 1402 S.029 0.4 S.029: 04 0.004 0.036 0.000]
char AbztractBoardGame . getlint, int) Q2 5475 0.3 2773 07 .00 0.241 0.00s8]
void AbztractBoardGame . zetlint, int, char) 458 42815 0.4 Tely: 07 0.011 0372 0.00%]
boolean Runner .zameP laver() 346 .79 0&: 14.875 1.3 0.0z20 0.495 0.00s8]
int Runner forwardRuniint, int) ZdE 3516 03: 23327 20 o.aio 0339 0.aos]

Programming Tools

P2 — OOP 142.

Javadoc

Javadoc generates APl documentation in HTML format for specified Java source files.

Each class, interface and each public or protected method may be preceded by “javadoc
comments” between /** and */ . Comments may contain special tag values (e.qg., ...)
and (some) HTML tags.

import java.io.*;
/**
* Manage interaction with user.
* @author Oscar.Nierstrasz@acm.org
* @version 1.5 1999-02-07
*
public class Player { ...
/**
* Constructor to specify an alternative source of moves
* (e.q., a test case StringReader).
*
public Player(char mark, BufferedReader in) { ...

Universitét Bern Programming Tools

P2 — OOP

Javadoc output

View it with your
favourite web
browser!

Universitédt Bern

143.

Class Player

java.lang.O0bject
I

+————Flayer

putlic class Player
extends java.lang Object

Manage interaction with user,
Yersion:
1.%1999-02-07

Author:
Dscar Miershrasz @acm.ong

CONSFTHEFOr Index

. Player)

apecial constructor for the Player representing nobxody.

- Player{char)
The nommal conbructor b use:

- Playerichar, BufferedBeadsr)

Constructor ko specify an alternative source of moves (&g, a est case sringReader).

- Player{char, Siring]

N N y | [PR Sy = - RN | S | N = S

= N Ry

Fo Tl

Programming Tools

P2 — OOP 144,

Other tools

Be familiar with the programming tools in your environment!

Multi-platform tools:
[0 zip/jar. store and compress files and directories into a single “zip file”

[0 memory inspection tools: like ZoneRanger and Purify, help to detect other
memory management problems, such as “memory leaks”

Unix tools:

[make: regenerate (compile) files when files they depend on are modified
diff and patch : compare versions of files, and generate/apply deltas
awk, sed and perl: process text files according to editing scripts/programs

lex and yacc [flex and bison]: generate lexical analysers and parsers from
regular expression and context-free grammar specification files

lint : detect bugs, portability problems and other possible errors in C programs
strip : remove symbol table and other non-essential data from object files

[I

1 [

Many tools have their equivalents on other platforms ...

Universitét Bern Programming Tools

P2 — OOP 145.

summary

You should know the answers to these questions:

[0 When should you use a debugger?
What are breakpoints? Where should you set them?
What should you do after you have fixed a bug?
What functionality does a version control system support?
When should you use a profiler?

I O O

Can you answer the following questions?

[0 How can you tell when there is a bug in the compiler (rather than in your program)?
How often should you checkpoint a version of your system?

When should you specify a version of your project as a new ‘“release”?

How can you tell if you have tested every part of your system

[I

Universitét Bern Programming Tools

P2 — OOP 146.

/. A Testing Framework

Overview
[Whatis a framework?

[0 JUnit — a simple testing framework
[0 Money and MoneyBag — a testing case study
[0 Double Dispatch — how to add different types of objects
[0 Testing practices
sources
0 JUnit 2.1

[1 “Test Infected: Programmers Love Writing Tests,” Kent Beck, Erich Gamma
[“Simple Smalltalk Testing: With Patterns”, Kent Beck

All available from: ftp://www.armaties.com/

Universitét Bern A Testing Framework

P2 — OOP 147.

The Problem

“Testing is not closely integrated with development. This prevents you from
measuring the progress of development — you can't tell when something
starts working or when something stops working.”

Interactive testing is tedious and seldom exhaustive.
Automated tests are better, but,

[1 how to introduce tests interactively?

[0 how to organize suites of tests?

Universitét Bern A Testing Framework

P2 — OOP 148.

JUnit

JUnit is a simple “testing framework” that provides:
[0 classes for writing Test Cases and Test Suites
methods for setting up and cleaning up test data (“fixtures”)
methods for making assertions
textual and graphical tools for running tests

[I

JUnit distinguishes between failures and errors:
[0 A failure is a failed assertion, i.e., an anticipated problem that you test.
[0 An erroris a condition you didn’t check for.

NB: this is not the same distinction made by Meyer!

Universitét Bern A Testing Framework

P2 — OOP 149.

Frameworks vs. Libraries

In traditional application architectures, user applications make use of library functionality
in the form of procedures or classes:

\
User Application > |
_ > Library classes
main() -
/

A framework reverses the usual relationship between generic and application code.
Frameworks provide both generic functionality and application architecture:

\
Framework Application >
_ - User classes
main() .
J

Essentially, a framework says: “Don’t call me — I'll call you.”

Universitét Bern A Testing Framework

P2 — OOP

The JUnit Framework

150.

These are the most important classes of the framework ...

«interface»

Test

+ countTestCases() : int *
+ run (TestResult)

/4 “\
/ \
V4 \
TestCase TestSuite
abstract
+ create()
+ create(String) + create(Class)
+ assert (boolean) + addTest (Test test)
+ assertEquals(Object, Object)

+ fail()

A Test can be run.

A TestSuite bundles a set of
TestCases and TestSuites.

All errors and failures are
collected into a TestResult.

TestResult

+ create()

void run (TestCase test)

+ addError (Test, Throwable)
+ addFailure (Test, Throwable)
+ errors() : Enumeration

+ void runBare ()
void runTest ()

void setUp ()

void tearDown ()
+ name() : String

Universitédt Bern

+ failures() : Enumeration

A Testing Framework

P2 — OOP

A Testing Scenario

‘ 4* ******* ‘ 4 ******

151.

T T T T T |

L)

:TestRunner :TestSuite tc :TestCase tr:-T estResult
run(tr)
run(tr)
run(tc) o
runBare()
setUp() C
runTest()
tearDown()
g Lo - addFailure()

The framework calls the test methods that you define for your test cases.

Universitédt Bern

A Testing Framework

P2 — OOP 152.

Testing Style

“The style here is to write a few lines of code, then a test that should run, or
even better, to write a test that won't run, then write the code that will make
it run.”

[0 write unit tests that thoroughly test a single class
[1 write tests as you develop (even before you implement)
[write tests for every new piece of functionality

“Developers should spend 25-50% of their time developing tests.”

Universitét Bern A Testing Framework

P2 — OOP 153.

Representing multiple currencies

The problem ...

“The program we write will solve the problem of representing arithmetic with
multiple currencies. Arithmetic between single currencies Is trivial, you can
just add the two amounts. ... Things get more interesting once multiple
currencies are involved.”

Universitét Bern A Testing Framework

P2 — OOP 154.

Money

We start by designing a simple Money class to handle a single currency:

Money class Money {
- fAmount : int S
- fCurrency : String public Money add (Money m) {
+ amount() : int return new Money (
+ currency() : String amount()+m.amount(),
+ add(Money) : Money .
+ equals(Object) : boolean Currency())’

NB: The first version does not consider how to add different currencies!

Universitét Bern A Testing Framework

P2 — OOP 155.

MoneyTlest

To test our Money class, we define a TestCase that exercises some test data:

import junit.framework.* ;

public class MoneyTest extends TestCase {
private Money f12CHF;
private Money f14CHF;

public MoneyTest(String name) { super(name); }

protected void setUp () {
f12CHF = new Money(12, "CHF") , // some test data
f14CHF = new Money(14, "CHF");

}

Universitét Bern A Testing Framework

P2 — OOP 156.

Some basic tests

We define methods to test the most basic things we expect to hold ...

public void testEquals() {
assert('f12CHF.equals(null));
assert Equals(f12CHF, f12CHF) ,
assert Equals(f12CHF, new Money(12, "CHF")) ;
assert(!f12CHF.equals(f14CHF));

}

public void testSimpleAdd() {
Money expected = new Money(26, "CHF") ;
Money result = f12CHF.add(f14CHF) ;
assert(expected.equals(result));

}

Universitét Bern A Testing Framework

P2 — OOP 157.

Building a Test Suite

... and we bundle these tests into a Test Suite:

public static Test suite() {
TestSuite suite = new TestSuite() ,

suite.addTest(new MoneyTest("testEquals"))
suite.addTest(new MoneyTest("testSimpleAdd"));
return suite :

A Test Suite:

[0 bundles together a bunch of named TestCase instances
[0 by convention, is returned by a static method called suite()

Universitét Bern A Testing Framework

P2 — OOP 158.

The TestRunner

junit.ui. TestRunner is a GUI that we can use to instantiate and run the suite:

[=——-—————Run Test Slitr ac0QF"8""————— B

Enter the name of the TestCase class:

|MuneyTE5t |.3uite{}

Frogress:

N Ju

Runs: 2 Errors: @I Failures: Q1

Errors and Failures;

Finished: 0.77 seconds
[

Universitét Bern A Testing Framework

P2 — OOP 159.

MoneyBags

To handle multiple currencies, we introduce a MoneyBag class that can hold two or more
instances of Money:

class MoneyBag { MoneyBag
- fMonies : HashTable
MoneyBag(Money bag[]) { + create(Money, Money)
for (int i= 0; i < bag.length; i++) + create(Money [])
1\ - - appendMoney(Money)
} appendMoney (bag[l])’ + equals(Object) : boolean

private void appendMoney(Money aMoney) {
Money m = (Money)
fMonies.get(aMoney.currency());

if (m = null)

m = m.add(aMoney);
else

m = aMoney;
fMonies.put(aMoney.currency(), m);

}
}

Universitét Bern A Testing Framework

P2 — OOP 160.

Testing MoneyBags (1)

To test MoneyBags, we need to extend the fixture ...

public class MoneyTest extends TestCase {

protected void setUp() {
f12CHF = new Money(12, "CHF");
f14CHF = new Money(14, "CHF");
f7USD = new Money(7, "USD") ;
f21USD = new Money(21, "USD");
fMB1 = new MoneyBag(f12CHF, f7USD) ,
fMB2 = new MoneyBag(f14CHF, f21USD);

Universitét Bern A Testing Framework

P2 — OOP

Testing MoneyBags (ll)

... define some new (obvious) tests ...

public void testBagEquals() {
assert('fMB1.equals(null))
assert Equals(fMB1, fMB1) ;
assert(/fMB1.equals(f12CHF));
assert(If12CHF.equals(fMB1));
assert(!fMB1l.equals(fMB2));

... add them to the test suite ...

public static Test suite() {

suite.addTest(new MoneyTest("testBagEquals"))
return suite;

}

Universitédt Bern

161.

A Testing Framework

P2 — OOP 162.

Testing MoneyBags (lll)

and run the tests.

E ————— RBun Test SUiter DC————— E
Enter the name of the TestCase class:
|MuneyTest suitel)
Progress:

T Ju

Runs: 3 Errors: @ Failures:

Errors and Failures:

IFinishE[I:l].IS'EI seconds || Exit |

Universitét Bern A Testing Framework

P2 — OOP 163.

Adding MoneyBags

We would like to freely add together arbitrary Monies and MoneyBags, and be sure that
equals behave as equals:

public void testMixedSimpleAdd() {

// [12 CHF] + [7 USD] == {[12 CHF][7 USD]}
Money bag[] = { f12CHF, f7USD },

MoneyBag expected = new MoneyBag(bag);
asserteEquals(expected, f12CHF.add(f7USD));

}

That implies that Money and MoneyBag should implement a common interface ...

Universitét Bern A Testing Framework

P2 — OOP 164.

The IMoney interface (1)

Monies know how to be added to other Monies

«interface»

IMoney
+ add(IMoney) : IMoney
/4 N
/ N
Money MoneyBag
+ amount() : int - appendMoney(Money)
+ currency() : String - appendBag(MoneyBag)

Do we need anything else in the IMoney interface?

Universitét Bern A Testing Framework

P2 — OOP 165.

Double Dispatch (1)

How do we implement add() without breaking encapsulation?

“The idea behind double dispatch is to use an additional call to discover the
kind of argument we are dealing with...”

class Money implements IMoney { ...
public IMoney add(IMoney m) {
return m.addMoney(this) , // add me as a Money

b
}

class MoneyBag implements IMoney { ...
public IMoney add(IMoney m) {
return m.addMoneyBag(this) , //add me as a MoneyBag

b

}

Universitét Bern A Testing Framework

P2 — OOP 166.

Double Dispatch (1)

The rest is then straightforward ...

class Money implements IMoney { ...
public IMoney addMoney(Money m) {
if (m.currency().equals(currency()))
return new Money (amount()+m.amount(), currency());
return new MoneyBag (this, m);

}

public IMoney addMoneyBag(MoneyBag s) {
return s.addMoney(this) ,

b

and MoneyBag takes care of the rest.

Universitét Bern A Testing Framework

P2 — OOP 167.

The IMoney interface (I1)

So, the common interface is: rortcen
IMoney
public interface IMoney { + add(IMoney) : IMoney
public IMoney add(IMoney aMoney); + addMoney(Money) : IMoney
+ addMoneyBag(MoneyBag) : IMoney

IMoney addMoney(Money aMoney);
IMoney addMoneyBag(MoneyBag aMoneyBag);

}

NB: addMoney() and addMoneyBag() are only needed within the Money package.

Universitét Bern A Testing Framework

P2 — OOP 168.

A Falled test

This time we are not so lucky ...

[=———————Run Testllitr —D0"F8F"—8————— B

Enter the name of the TestCase class:

|MuneyTE5t suited)

Frogress:

I Ju

Runs: 4 Errors: @I Failures: g

Errors and Failures:

Failure: MonewTest testMixedSimpledddexpected: <MoneyBag@ 421 Sef -

|Fini5hed:l].3l]2 seconds || Exit |

Universitét Bern A Testing Framework

P2 — OOP

Diagnostics

169.

O

Stack Trace

junit framework AssertionFailedError: expected: <MoneyBage 421 5ecr but was: <MoneyBaged215e 7>
at junit.framework. TestCase fail{ TestCaze, java:233)
at junit. framework TestCase failMotEquals(TestCase java: 239
at junit.framework. TestCase assertEqualsi TestCase. java:162)
at junit.framewor k. TestCase assertEquals(TestCaze java:128)
at MoneyTest testMixedSimpleAdd ! MoneyTest java:50)
at junit framework TestCase runTest(TestCase java:321)
at junit.framework.TestCase.runBare! TestCase. java:299)
at junit.framework TestResult.runt TestResult. java:66)
at junit.framework. TestCase.runt TestCase. java:259)
at junit.framework TestSuite.run{Compiled Code)
at junit.ui TestRunner$12. run{TestRunner. java: 424}

Kim|

We quickl

0 Why

y discover that we forgot to implement MoneyBag.equals()!

was this a run-time failure rather than a compile-time error?

Universitédt Bern

A Testing Framework

P2 — OOP 170.

The fix ...

We fix it ...

class MoneyBag implements IMoney { ...
public boolean equals(Object anObject) {
if (anObject instanceof MoneyBag) {

5] Bun Tt huite H |
t rul:lrlﬂ'lrlt |lli'.¢|l':l| [TTH|
} else { —
return false:)
... test it, and continue developing. o =)

Universitét Bern A Testing Framework

P2 — OOP 171.

Testing Practices

During Development

[0 When you need to add new functionality, write the tests first.
You will be done when the test runs.

[0 When you need to redesign your software to add new features, refactor in steps,

and run the (regression) tests after each step. Fix what's broken before
proceeding.

During Debugging

[0 When someone discovers a defect in your code, first write a test that will
succeed if the code is working. Then debug until the test succeeds.

“Whenever you are tempted to type something into a print statement or a
debugger expression, write it as a test instead.”

Martin Fowler

Universitét Bern A Testing Framework

P2 — OOP 172.
summary
You should know the answers to these questions:
[0 How does a framework differ from a library?
0 Why do TestCase and TestSuite implement the same interface?
[0 Whatis a unit test?
[0 Whatis a test “fixture™?
[0 What should you test in a TestCase?
[0 What is “double dispatch”? What does the name mean?

Can you answer the following questions?
[0 How does the MoneyTest suite know which test methods to run?
[0 How does the TestRunner invoke the right suite() method?

0 Why doesn’t the Java compiler complain that MoneyBag.equals() is used without
being declared?

Universitét Bern A Testing Framework

P2 — OOP 173.

8. GUI Construction

Overview
[0 Applets and frameworks

[1 Model-View-Controller
0 AWT Components, Containers and Layout Managers
[1 Events and Listeners
[1 Observers and Observables
Sources

[1 David Flanagan, Java in a Nutshell, O’'Reilly, 1996

1 Mary Campione and Kathy Walrath, The Java Tutorial , The Java Series,
Addison-Wesley, 1996

Universitét Bern GUI Construction

P2 — OOP 174.

A Graphical TicTacloe?

Our existing TicTacToe implementation is very limited:
[0 single-user at a time
[0 textual input and display

We would like to migrate it towards an interactive, network based game:
[0 players on separate machines
[0 running the game as an “applet” in a browser
[0 with graphical display and mouse input

As first step, we will migrate the game to run as an applet

Universitét Bern GUI Construction

P2 — OOP 175.

Applets

Applet classes can be downloaded from an HTTP server and instantiated by a client.
When instantiated, the Applet will be init ialized and start ed by the client.

4 Client) Server)
:Applet | Applet
other classes ...
N / yh N Y,

The Applet instance may make (restricted) use of

1. standard API classes
(already accessible to the virtual machine)

other Server classes to be downloaded dynamically.

API| Classes 2

java.applet.Applet extends java.awt.Panel and can be used to construct a Ul ...

Universitét Bern GUI Construction

P2 — OOP 176.

The Hello World Applet

The simplest Applet:

import java.awt.*; // for Graphics
import java.applet.Applet;
public class HelloApplet extends Applet {

public void init() { repaint(); } // request a refresh

public void paint(Graphics g) {
g.drawString("Hello World!", 30, 30);

}
} // NB: there is no main() method!

HTML applet inclusion:
<title>TrivialApplet</title>
<hr>
<applet archive="AppletClasses.jar"
code="HelloApplet.class" width=200 height=200>
</applet>
<hr>

Universitét Bern GUI Construction

P2 — OOP 177.

Accessing the game as an Applet

The compiled TicTacToe classes will be made available in a directory “AppletClasses”
on our web server.

<titte>GameApplet</title>

<hr>

<applet
codebase="AppletClasses"
code="tictactoe.GameApplet.class"
width=200
height=200>

</applet>

<hr>

GameApplet extends java.applet.Applet
Its init() will instantiate and connect the other game classes ...

Universitét Bern GUI Construction

P2 — OOP 178.

Model-View-Controller

Version 1.6 of our game implements a model of the game, without a GUI.
The GameApplet will implement a graphical view and a controller for GUI events.

clicks mouse = e
= Views
O O
b4 b4
Controller | st
1:mouseClicked() / 1.1.2:update()

1.1.1:update()

:MouseListener

1.1:move()\\ .TicTacToe

:MouseListener

Model

The MVC paradigm separates an application from its GUI so that multiple views can be
dynamically connected and updated.

Universitét Bern GUI Construction

P2 — OOP 179.

AWT Components and Containers

The java.awt package defines GUI components, containers and their layout managers.

Component
Container Button Label
Panel Window _
These are just some of the
Z} java.awt components ...
java.applet.Applet

A Container is a component that may contain other components.
A Panel is a container inside another container. (E.g., an Applet inside a browser.)
A Window is a top-level container.

NB: There are also many graphics classes to define colours, fonts, images etc.

Universitét Bern GUI Construction

P2 — OOP 180.

The GameApplet

The GameApplet is a Panel using a BorderLayout (with a centre and up to four border
components), and containing a Button (“North”), a Panel (“Center”) and a Label (“South”).

. :GameApplet
Mew game]

o x :Button :Panel :Label
b_4

0 plays

:Panel :Panel

The central Panel itself contains a grid of squares (Panels) and uses a GridLayout.
Other layout managers are FlowLayout, CardLayout and GridBagLayout ...

Universitét Bern GUI Construction

P2 — OOP 181.

Laying out the GameApplet

Instantiate the game, initialize the view, and connect the view to the model ...
public void init() {
_game = ...
setLayout(new BorderLayout()) ;
setSize(MINSIZE* _game.cols(),MINSIZE* game.rows())
add("North", makeControls()) ,
add("Center", makeGrid());
_label = new Label();
add("South", label);
showFeedBack(_game.currentPlayer().mark() + " plays");

}

private Component makeControls() {
Button again = new Button("New game");

return again;

}

Universitét Bern GUI Construction

P2 — OOP 182.

Events and Listeners (1)

Instead of actively checking for GUI events, you can define callback methods that will be
invoked when your GUI objects receive events:

... are handled by
Listener objects

AWT Framework

Hardware events ...

MouseEvent ,
f(eyEvent) Callback methods

AWT Components publish events and Listeners subscribe interest in them.

Universitét Bern GUI Construction

P2 — OOP 183.

Events and Listeners (l1)

Every AWT component publishes a variety of different events (defined in java.awt.event).

Component Events Listener Interface Listener methods

Button ActionEvent ActionListener actionPerformed()

Component | MouseEvent MouseListener mouseClicked()
mouseEntered()
mouseExited()
mousePressed()
mouseReleased()

MouseMotionListener mouseDragged()
mouseMoved()

KeyEvent KeyListener keyPressed()
keyReleased()

keyTyped()

Each event class has its associated listener interfaces.

Universitét Bern GUI Construction

P2 — OOP 184.

Listening for Button events

When we create the “New game” Button, we attach an ActionListener with the
Button.addActionListener() method:

private Component makeControls() {
Button again = new Button("New game");
again.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
showFeedBack("starting new game ...");
newGame(); // clear the board and bind to a new game

}
D

return again;

}

Instead of creating a separate, named subclass of ActionListener, we can instantiate a
so-called anonymous inner class, which implements the required interface using
methods of the enclosing class.

Universitét Bern GUI Construction

P2 — OOP

Listening for mouse clicks

We must similarly attach a MouseListener to each Place on the board.

private Component makeGrid()
{ ..
Panel grid = new Panel() :
grid.setLayout(new GridLayout(rows, cols)) .
for (int row=rows-1; row>=0; row--) {
for (int col=0; col<cols; col++) {
Place p = new Place(col, row, xImage, olmage);
p.addMouseListener(new PlacelListener(p, this))
p.setBackground(Color.white);
grid.add(p);
_placesjcol][row] = p;

}
}

return grid;

}

NB: we could have multiple Listeners subscribe to the same events ...

185.

Universitédt Bern

GUI Construction

P2 — OOP 186.

The Placelistener

MouseAdapter is a convenience class that defines empty MouselListener methods.
We only have to define the mouseClicked() method:

public class PlaceListener extends MouseAdapter {..
public void mouseClicked(MouseEvent e) {..
if (game.notOver()) {
try {

((AppletPlayer) game.currentPlayer()).move(col,row) ,
} catch (AssertionException err) {
_applet.showFeedBack("Invalid move ignored (" ...);
}
if ('game.notOver()) {
_applet.showFeedBack("Game over -- "
+ game.winner() + " wins!");
}
} else { _applet.showFeedBack("The game is over!); }
}
}

Universitét Bern GUI Construction

P2 — OOP 18v7.

Observers and Observables

A class can implement the java.util. Observer interface when it wants to be informed of
changes in Observable objects.

Observable
O«itr;terface» * + addObserver(Observer)
server + deleteObserver(Observer)
+ update(Observable, Object) + notifyObservers()

+ notifyObservers(Object)
+ deleteObservers()

setChanged()

clearChanged()

+ hasChanged() : boolean
+ countObservers() : int

An Observable object can have one or more Observers.

After an observable instance changes, calling notifyObservers() causes all observers to
be notified by means of their update() method.

Universitét Bern GUI Construction

P2 — OOP 188.

Observing the BoardGame

public class GameApplet extends Applet implements Observer
{ ..
public void update(Observable o, Object arg) {

Move move = (Move) arg;
showFeedBack("got an update: " + move);
_places[move.col][move.row].setMove(move.player);

}
}

public abstract class AbstractBoardGame
extends Observable iImplements BoardGame

{

public void move(int col, int row, Player p)
throws AssertionException

{ ..

setChanged() ;

notifyObservers(new Move(col, row, p)) :

}
}

Universitét Bern GUI Construction

P2 — OOP 189.

Communicating changes

A Move instance bundles together information about a change of state in a BoardGame.
Sent by a BoardGame to its Observers:

public class Move {
public final int col;
public final int row;
public final Player player;
public Move(int col, int row, Player player) {
this.col = col;

this.row = row;
this.player = player,
}
public String toString() {

return "Move(" + col +"," + row + "," + player +")";

}

Universitét Bern GUI Construction

P2 — OOP 190.

Setting up the connections

When the GameApplet is loaded, its init() method is called, causing the model, view and
controller components to be instantiated.

start 3: addObserver(thls)
:GameApplet :TicTacToe
-
4-new 2:new
6:addMouseListener()

1:new
:Place

5:new

:AppletPla yer

:PlacelListener

The GameApplet subscribes itself as an Observer to the game, and subscribes a
PlaceListener to MouseEvents for each Place on the view of the BoardGame.

Universitét Bern GUI Construction

P2 — OOP 191.

Playing the game

Mouse clicks are propagated from a Place (controller) to the BoardGame (model):

1.2.1.1:set()
1.2.1.2:notifyObservers()

.y

:TicTacToe

:GameApplet

1.2.1.2.1:update()
g

A
1.2.1.2.1.1:setMove
T‘ clicl;/ 0
1.2.1:move()

‘Place 1.1:currentPlayer()

wsedicked() / R
:AppletPla yer

:PlaceListener
1.2:move()

If the corresponding move is valid, the model’s state changes, and the GameApplet
updates the Place (view).

Universitét Bern GUI Construction

P2 — OOP 192.

Refactoring the BoardGame

Adding a GUI to the game affects many classes. We iteratively introduce changes, and
rerun our tests after every change ...

[0 Shift responsibilities between BoardGame and Player (both should be passive!)
[0 introduce Player interface, InactivePlayer and StreamPlayer classes
[0 move getRow() and getCol() from BoardGame to Player
[0 move BoardGame.update() to GameDriver.playGame()
[0 change BoardGame to hold a matrix of Players, not marks
[0 Introduce Applet classes (GameApplet, Place, PlaceListener)
[0 Introduce AppletPlayer
[0 PlacelListener triggers AppletPlayer to move
[0 BoardGame must be observable
[0 Introduce Move to communicate changes from BoardGame to Observer

Universitét Bern GUI Construction

P2 — OOP 193.

GUI objects in practice ...

Use Swing, not AWT

[J javax.swing provides a set of “lightweight” (all-Java language) components that
(more or less!) work the same on all platforms.

Use a GUI builder
[0 Interactively build your GUI rather than programming it — add the hooks later.

Universitét Bern GUI Construction

P2 — OOP 194.

summary

You should know the answers to these questions:
[0 Why doesn’t an Applet need a main() method?
What are models, view and controllers?
Why does Container extend Component and not vice versa?
What does a layout manager do?
What are events and listeners? Who publishes and who subscribes to events?

The TicTacToe game knows nothing about the GameApplet or Places.
How is this achieved? Why is this a good thing?

N O O O B

Can you answer the following questions?

How could you get Applets to download objects instead of just classes?
How could you make the game start up in a new Window?

What is the difference between an event listener and an observer?

The Move class has public instance variables — isn'’t this a bad idea?
What kind of tests would you write for the GUI code?

N O O O B

Universitét Bern GUI Construction

P2 — OOP 195.

9. Guidelines, Idioms and Patterns

Overview
[0 Programming style: Code Talks; Code Smells
0 Idioms, Patterns and Frameworks
[0 Basic Idioms
[0 Delegation, Super, Interface
[0 Basic Patterns
[0 Adapter, Proxy, Template Method, Composite, Observer

Sources

[0 Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Design
Patterns, Addison Wesley, Reading, MA, 1995.

[0 Frank Buschmann, et al., Pattern-Oriented Software Architecture — A System
of Patterns, Wiley, 1996

0 Mark Grand, Patterns in Java, Volume 1, Wiley, 1998
0 Kent Beck, Smalltalk Best Practice Patterns, Prentice Hall, 1997
0 “Code Smells”, http://c2.com/cgi/wiki?CodeSmells

Universitét Bern Guidelines, Idioms and Patterns

P2 — OOP 196.

Style

Code Talks

[0 Do the simplest thing you can think of (KISS)
[0 Don't over-design
[0 Implement things once and only once

[0 First do it, then do it right, then do it fast
(don’t optimize too early)

[0 Make your intention clear
0 Write small methods
Each method should do one thing only
Name methods for what they do, not how they do it
Write to an interface, not an implementation

[I

Universitét Bern Guidelines, Idioms and Patterns

P2 — OOP 197.

Refactoring

Redesign and refactor when the code starts to “smell”
Code Smells

[0 Methods too long or too complex
[0 decompose using helper methods
[0 Duplicated code
[0 factor out the common parts (e.g., using a Template method)
[J Violation of encapsulation
[redistribute responsibilities
[0 Too much communication between objects (high coupling)
[redistribute responsibilities

Various common idioms and patterns can help to improve your design ...

Universitét Bern Guidelines, Idioms and Patterns

P2 — OOP 198.

What are Idioms and Patterns?

I Idioms

[0 Idioms are common programming techniques and conventions.

[0 Idioms may or may not be language-specific.
[l Patterns

[Patterns document common solutions to design problems.

[0 Patterns are (intended to be) programming language independent.
[0 Libraries

[0 Libraries are collections of functions, procedures or other software
components (classes, templates etc.) that can be used in many
applications.

[1 Frameworks

[0 Frameworks are open libraries that define the generic architecture of an
application, and can be extended by adding or deriving new classes.

Frameworks typically make use of many common idioms and design patterns.

Universitét Bern Guidelines, Idioms and Patterns

P2 — OOP 199.

Delegation

[How does an object share behaviour without inheritance?
[0 Delegate some of its work to another object

Inheritance is a common way to extend the behaviour of a class, but can be an
inappropriate way to combine features. Delegation reinforces encapsulation by keeping
roles and responsibilities distinct.

Example
When a TestSuite is asked to run(), it delegates the work to each of its TestCases.

Conseqguences
More flexible, less structured than inheritance.

Delegation is one of the most basic object-oriented idioms, and is used by almost all
design patterns.

Universitét Bern Guidelines, Idioms and Patterns

P2 — OOP 200.

Delegation example

public class TestSuite implements Test {
.
* Runs the tests and collects their result in a TestResult.
*
public void run (TestResult result) {

for(Enumeration e = fTests.elements();
e.hasMoreElements();)
{
iIf (result.shouldStop())
break;
Test test= (Test) e.nextElement();
test.run(result) ;

}
}
}

Universitét Bern Guidelines, Idioms and Patterns

P2 — OOP 201.

super

[How do you extend behaviour inherited from a superclass?
I Overwrite the inherited method, and send a message to “super” in the new method.

Sometimes you just want to extend inherited behaviour, rather than replace it.

Examples
WrappedStack.top() extends Stack.top() with a pre-condition assertion.
Constructors for subclasses of Exception invoke their superclass constructors.

Conseguences

Increases coupling between subclass and superclass: if you change the inheritance
structure, super calls may break!

Never use super to invoke a method different than the one being overwritten!
[0 Unnecessarily complex and fragile — use “this” instead

Universitét Bern Guidelines, Idioms and Patterns

P2 — OOP 202.

Super example

public class WrappedStack extends SimpleWrappedStack {

public Object top() throws AssertionException {
assert(!this.isempty()),
return super.top() ;

}

public void pop() throws AssertionException {
assert(!this.isempty()),
super.pop() ;

}

}

Universitét Bern Guidelines, Idioms and Patterns

P2 — OOP 203.

Interface

[J How do you keep a client of a service independent of classes that provide the service?
[1 Have the client use the service through an interface rather than a concrete class.

If a client names a concrete class as a service provider, then only instances of that class
or its subclasses can be used in future.

By naming an interface, an instance of any class that implements the interface can be
used to provide the service.

Example
Any object may be registered with an Observable if it implements the Observer interface.

Consequences
Interfaces reduce coupling between classes.
They also increase complexity by adding indirection.

Universitét Bern Guidelines, Idioms and Patterns

P2 — OOP 204.

Interface example

public class GameApplet extends Applet implements Observer
{ ..
public void update(Observable o, Object arg) {

Move move = (Move) arg;
showFeedBack("got an update: " + move);
_places[move.col][move.row].setMove(move.player);

}
}

Universitét Bern Guidelines, Idioms and Patterns

P2 — OOP 205.

Adapter

[How do you use a class that provide the right features but the wrong interface?
[Introduce an adapter.

An adapter converts the interface of a class into another interface clients expect.

Examples

A WrappedStack adapts java.util.Stack, throwing an AssertionException when top() or
pop() are called on an empty stack.

An ActionListener converts a call to actionPerformed() to the desired handler method.

Consequences
The client and the adapted object remain independent.
An adapter adds an extra level of indirection.

Also known as Wrapper

Universitét Bern Guidelines, Idioms and Patterns

P2 — OOP 206.

Adapter example

private Component makeControls() {
Button again = new Button("New game");
again.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
showFeedBack("starting new game ...");
newGame(); // clear the board and bind to a new game

}
HIE

return again;

Universitét Bern Guidelines, Idioms and Patterns

P2 — OOP 207.

Proxy

[How do you hide the complexity of accessing objects that require pre- or post-
processing?
[Introduce a proxy to control access to the object.

Some services require special pre or post-processing. Examples include objects that
reside on a remote machine, and those with security restrictions.

A proxy provides the same interface as the object that it controls access to.

Example
A Java “stub” for a remote object accessed by Remote Method Invocation (RMI).

Consequences
A Proxy decouples clients from servers. A Proxy introduces a level of indirection,

Proxy differs from Adapter in that it does not change the object’s interface.

Universitét Bern Guidelines, Idioms and Patterns

P2 — OOP

Proxy example

1:doit()

Universitédt Bern

Machine A

:ServiceStub

1.1:doit()

208.

Machine B

:Service

Guidelines, Idioms and Patterns

P2 — OOP 2009.

Template Method

[How do you implement a generic algorithm, deferring some parts to subclasses?
[0 Define it as a Template Method.

A Template Method factors out the common part of similar algorithms, and delegate the
rest to hook methods that subclasses may extend, and abstract methods that subclasses
must implement.

Example
TestCase.runBare() is a template method that calls the hook method setUp().

Consequences

Template methods lead to an inverted control structure since a parent classes calls the
operations of a subclass and not the other way around.

Template Method is used in most frameworks to allow application programmers to easily
extend the functionality of framework classes.

Universitét Bern Guidelines, Idioms and Patterns

P2 — OOP 210.

Template method example

Subclasses of TestCase are expected to override hook method setUp() and possibly
tearDown() and runTest().

public abstract class TestCase implements Test {

public void runBare () throws Throwable {

setUp() ;
try {
runTest() ; // by default, look up name
} // and run as method
finally {
tearDown() ;
}
}
protected void setUp () {} // empty by default

protected void tearDown () {}

}

Universitét Bern Guidelines, Idioms and Patterns

P2 — OOP 211.

Composite

[J How do you manage a part-whole hierarchy of objects in a consistent way?
[0 Define a common interface that both parts and composites implement.

Typically composite objects will implement their behaviour by delegating to their parts.

Examples

A TestSuite is a composite of TestCases and TestSuites, both of which implement the
Test interface.

A Java GUI Container is a composite of GUI Components, and also extends Component.

Consequences
Clients can uniformly manipulate parts and wholes.

In a complex hierarchy, it may not be easy to define a common interface that all classes
should implement ...

Universitét Bern Guidelines, Idioms and Patterns

P2 — OOP 212.

Composite example

A TestSuite is a Test that bundles a set of TestCases and TestSuites.

«interface»

Test

+ countTestCases() : int
+ run(TestResult)

’ \
/ \
V4 AY
TestCase TestSuite
abstract
+ create()
+ create(String) + create(Class)
+ assert(boolean) + addTest(Test test)
+ assertEquals(Object, Object)

+ fail()

+ void runBare()
void runTest()

void setUp()

void tearDown()
+ name() : String

Universitét Bern Guidelines, Idioms and Patterns

P2 — OOP 213.

Observer

[J How can an object inform arbitrary clients when it changes state?

0 Clients implement a common Observer interface and register with the “observable”
object; the object notifies its observers when it changes state.

An observable object publishes state change events to its subscribers, who must
implement a common interface for receiving notification.

Examples

The GameApplet implements java.util.Observable, and registers with a BoardGame.
A Button expects its observers to implement the ActionListener interface.

(see the Interface and Adapter examples)

Conseqguences

Notification can be slow if there are many observers for an observable, or if observers
are themselves observable!

Universitét Bern Guidelines, Idioms and Patterns

P2 — OOP 214.

What Problems do Design Patterns Solve?

Patterns document design experience:

[1 Patterns enable widespread reuse of software architecture

[0 Patterns improve communication within and across software development
teams

Patterns explicitly capture knowledge that experienced developers already
understand implicitly

Useful patterns arise from practical experience

Patterns help ease the transition to object-oriented technology
Patterns facilitate training of new developers

Patterns help to transcend “programming language-centric” viewpoints

Doug Schmidt, CACM Oct 1995

]

N O O B

Universitét Bern Guidelines, Idioms and Patterns

P2 — OOP 215.

summary

You should know the answers to these questions:
[0 What's wrong with long methods? How long should a method be?
What's the difference between a pattern and an idiom?
When should you use delegation instead of inheritance?
When should you call “super™?
How does a Proxy differ from an Adapter?
How can a Template Method help to eliminate duplicated code?

N O O O B

Can you answer the following questions?

What idioms do you regularly use when you program? What patterns do you use?
What is the difference between an interface and an abstract class?

When should you use an Adapter instead of modifying the interface that doesn'’t fit?
Is it good or bad that java.awt.Component is an abstract class and not an interface?

Why do the Java libraries use different interfaces for the Observer pattern
(Java.util. Observer, java.awt.event.ActionListener etc.)?

N O O O B

Universitét Bern Guidelines, Idioms and Patterns

P2 — OOP 216.

10. Clients and Servers

Overview
0 RMI— Remote Method Invocation
[0 Remote interfaces
[0 Serializable objects
[0 Synchronization
0 Threads
[0 Compiling and running an RMI application

sources
[0 David Flanagan, Java Examples in a Nutshell, O'Reilly, 1997
O “RMI 1.2", by Ann Wollrath and Jim Waldo, in The Java Tutorial , java.sun.com

Universitédt Bern Clients and Servers

P2 — OOP 217.

A Networked TicTacloe?

We now have a usable GUI for our game, but it still supports only a single user.

We would like to support:
[0 players on separate machines
[0 each running the game as an applet in a browser
[with a “game server’ managing the state of the game

Universitédt Bern Clients and Servers

P2 — OOP

218.

The concept

Client “X” Client “O”
O TurTacTor Applet HE| O TicTacToe Applet HE|
2= k00 BES Server L
Uf. m g .I'l..l'l.h-J'.l"lll. ﬂ o i .l'l..l'l.h-J'.l"lll. ﬂ
]1".”::“’1.. == .. L.]‘M-rr:n-l'ﬂ-' s
TicTacToe Applet join JOIN || TicTacToe Applet
> :GameFactor y -
[g | (o g |
T T
new new
St g v e = new St g ror o e I
new new
O Flayer X BE . ; O Flayer 0 BE
T move , XPlayer O:Player & MOVE —T
move move
» o
3 Y M
o < - Q
5 I :Gomoku —
update update e
piaa Flay
drew A pp lak |+ JrewApplak [z
Universitéat Bern

Clients and Servers

P2 — OOP 219.

The problem

Unfortunately Applets alone are not enough to implement this scenario!

We must answer several questions:

[0 Who creates the GameFactory?
How does the Applet connect to the GameFactory?
How do the server objects connect to the client objects?
How do we download objects (rather than just classes)?
How do the server objects synchronize concurrent requests?

N O O

Universitédt Bern Clients and Servers

P2 — OOP 220.

Remote Method Invocation

RMI allows an application to register a Java object under a public name with an RMI
registry on the server machine.

reqistr y
1b:Naming.lookup(name) /

2a:Naming.bindI(name, server)

client main

_ la:new Server()
2b:server.service()

stub skeleton server

A client may look up up the service using the public name, and obtain a local object that
acts as a proxy for the remote server object.

Remote method invocations are managed by a local stub and a remote skeleton.

Universitédt Bern Clients and Servers

P2 — OOP 221.

Developing an RMI application

There are several steps to using RMI:
1. Implement a server
[0 Decide which objects will be remote servers and specify their interfaces
[0 Implement the server objects
2. Implement a client
[1 Clients must use the remote interfaces
[1 Objects passed as parameters must be serializable
3. Compile and install the software
[0 Use the rmic compiler to generate stubs and skeletons for remote objects
4. Run the application
[0 Start the RMI registry
[J Start and register the servers
[1 Start the client

Universitédt Bern Clients and Servers

P2 — OOP 222.

Designing client/server interfaces

Interfaces between clients and servers should be as small as possible.

Low coupling:
0 simplifies development and debugging
[maximizes independence
[1 reduces communication overhead

We split the game into three packages:
[0 client — contains the GUI components, the EventListeners and the Observer
[1 server — contains the server interfaces and the communication classes
[tictactoe — contains the model and the server implementation classes

NB: The client’'s Observer must be updated from the server side, so is also a “server”!

Universitédt Bern Clients and Servers

P2 — OOP 223.

Identifying remote interfaces

To implement the distributed game, we need three interfaces:

RemoteGameFactory
[0 called by the client to join a game
[0 implemented by tictactoe.GameFactory

RemoteGame
[0 called by the client to query the game state and to handle moves
[0 implemented by tictactoe.Gameproxy
[0 we simplify the game interface by hiding Player instances

RemoteObserver
[1 called by the server to propagate updates
I implemented by client. GameObserver

Universitédt Bern Clients and Servers

P2 — OOP 224.

Specifying remote interfaces

To define a remote interface:
[the interface must extend java.rmi.Remote

[0 every method must be declared to throw java.rmi.RemoteException

[0 every argument and return value must:
[0 be a primitive data type (int, etc.), or
[0 be declared to implement java.io.Serializable, or
[0 implement a Remote interface

Universitédt Bern Clients and Servers

P2 — OOP 225.

RemoteGamefactory

This is the interface used by clients to join a game.
If a game already exists, the client joins the existing game. Else a new game is made.

public interface RemoteGameFactory extends Remote {
public RemoteGame joinGame() throws RemoteException

}

The object returned implements the RemoteGame interface.

RMI will automatically create a stub on the client side and skeleton on the server side for
the RemoteGame

Universitédt Bern Clients and Servers

P2 — OOP 226.

RemoteGame

The RemoteGame interface hides all details of BoardGames and Players.
It exports only what is needed to implement the client:

public interface RemoteGame extends Remote {
public boolean ready() throws RemoteException :

public char join() throws RemoteException;
public boolean move(Move move) throws RemoteException;

public int cols() throws RemoteException;

public int rows() throws RemoteException;

public char currentPlayer() throws RemoteException;
public String winner() throws RemoteException;
public boolean notOver() throws RemoteException;
public void addObserver(RemoteObserver o)

throws RemoteException;

NB: To keep things simple, we avoid introducing a RemotePlayer interface.

Universitédt Bern Clients and Servers

P2 — OOP 227.

RemoteObserver

This is the only interface the client exports to the server:

public interface RemoteObserver extends Remote {
public void update(_ Move move) throws RemoteException ,

}

NB: RemoteObserver is not compatible with java.util. Observer, since update() may throw
a RemoteException ... We will have to bridge the incompatibility on the server side.

Universitédt Bern Clients and Servers

P2 — OOP 228.

Serializable Objects

Objects to be passed as values must be declared to implement java.io.Serializable.

public class Move implements java.io.Serializable {
public final int col;
public final int row;
public final char mark;
public Move(int col, int row, char mark) {
this.col = col;

this.row = row;
this.mark = mark;

}
public String toString() {

return "Move(" + col +"," + row + "," + mark + ")";

}
}

Move encapsulates the minimum information to communicate between client and server.

Universitédt Bern Clients and Servers

P2 — OOP 229.

Implementing Remote objects

Remote objects should extend java.rmi.server.UnicastRemoteObject:

public class GameFactory extends UnicastRemoteObject
iImplements RemoteGameFactory
{ private RemoteGame _game;

public static void main(String[] args) { ... }
public GameFactory() throws RemoteException { super(); }

public synchronized RemoteGame joinGame()
throws RemoteException
{ RemoteGame game = game,;
if (game == null) { // first player => return new game
game = new GameProxy(new Gomoku(...));
__game = game;
} else { _game =null; } // second player => join game
return game;

}
}

NB: All constructors for Remote objects must throws RemoteException!

Universitédt Bern Clients and Servers

P2 — OOP

A simple view of synchronization

230.

A synchronized method obtains a lock for its object before executing its body.

Concurrent Clients

X:GameApplet

Synchronized Servers

O:GameApplet

[How can servers protect their state from concurrent requests?

> :GameFactor y

E

- game : RemoteGame

:GamePr oxy

Passive Objects

:Gomoku

X:Player

O:Player

1 Declare their public methods as synchronized.

Make sure that synchronized objects don'’t call each other, or you may get a deadlock!

Universitédt Bern

Clients and Servers

P2 — OOP 231.

Regqgistering a remote object

To bootstrap the server, we need a main() method that instantiates a GameFactory and
registers it with a running RMI reqistry.

There must be a security manager installed so that RMI can safely download classes!

public static void main(String[] args) {

if (System.getSecurityManager() == null) {
System.setSecurityManager(new RMISecurityManager()) ,
System.out.printin("Set new Security manager");

}

If (args.lengthI=1){... }

String name ="//[" + args[0] + "/GameFactory";

try {
RemoteGameFactory factory = new GameFactory() :
Naming.rebind(name, factory) ;

} catch (Exceptione) { ... }

}

The argument is the host id and port number of the registry (e.g., asterix.unibe.ch:2001)

Universitédt Bern Clients and Servers

P2 — OOP 232.

GameProxy

The GameProxy interprets Moves and protects the client from any AssertionExceptions:

public class GameProxy extends UnicastRemoteObject
Implements RemoteGame

{

public synchronized boolean move(Move move)
throws RemoteException
{ Player current = game.currentPlayer();
if (current.mark() '= move.mark) return false ;
try {
__game.move(move.col, move.row, current);
return true; // the move succeeded
} catch (AssertionException e) { return false; }

b
}

Universitédt Bern Clients and Servers

P2 — OOP 233.

Using Threads to protect the server

WrappedObserver adapts a RemoteObserver to implement java.util.Observer:

class WrappedObserver implements Observer {
private RemoteObserver _remote;
WrappedObserver(_ RemoteObserverro) { _remote =ro; }
public void update(Observable o, Object arg) {

final Move move = (Move) arg; // final for inner class
Thread doUpdate = new Thread() {
public void run() {
try {
_remote.update(move) ;
} catch(RemoteException err) {}
}
3
doUpdate.start() , // start the Thread; ignore results

}
}

The server must not block trying to update the client, so we use a new Thread!

Universitédt Bern Clients and Servers

P2 — OOP 234.

Refactoring the BoardGame ...

Most of the changes were on the GUI side:
[0 defined separate client, server and tictactoe packages

[0 no changes to Drivers, Players, Runner, TicTactoe or Gomoku from 2.0
[0 except renaming AppletPlayer to PassivePlayer (used only on server side)

[added BoardGame methods player() and addObserver()
[0 added WrappedObserver to adapt RemoteObserver

[added remote interfaces and remote objects
[0 changed all client classes

[0 separated GameApplet from GameView (to allow multiple views)
[0 modified view to use Move and RemoteGame instead of Player

Universitédt Bern Clients and Servers

P2 — OOP 235.

Compiling the code

We compile the source packages as usual, and install the results in a web-accessible
location so that the GameApplet has access to the client and server .class files.

In addition, the client and the server need access to the stub and skeleton class files.

On Unix, chdir to the directory containing the client and tictactoe class file hierarchies
rmic -d . tictactoe.GameFactory

rmic -d . tictactoe.GameProxy
rmic -d . client. GameQObserver

This will generate stub and skeleton class files for the remote objects.
(l.e., GameFactory Skel.class etc.)

NB: Move is not a remote object, so we do not need to run rmic on its class file.

Universitédt Bern Clients and Servers

P2 — OOP 236.

Running the application

We simply start the RMI registry on the host (asterix):
rmiregistry 2001 &
Start and register the servers:
setenv CLASSPATH ./classes
java -Djava.rmi.server.codebase=http://www.iam.unibe.ch/.../classes/ \
tictactoe.GameFactory asterix.unibe.ch:2001

And start the clients with a browser or an appletviewer ...

NB: the RMI registry needs the codebase so it can instantiate the stubs and skeletons!

Universitédt Bern Clients and Servers

P2 — OOP 237.

Playing the game

:GameObser ver <« skel || stub ‘WrappedObser ver
1.1d:update() 1d:update() 1c:update()
1.2.1.1b:update()
:GameView :Gomoku
1.1.1d:setMove() ‘q;’
1.2.1b:move() g
click ‘Place :PassivePla yer %
= =
>
8]
=
—
—

lla:mouseClicked()

1.2b:move() I J
:PlaceListener stub - . :GamePr oxy

1.1a:move() 1b:move()

n
@

Universitédt Bern Clients and Servers

P2 — OOP 238.

Other approaches

CORBA
[for non-java components

COM (DCOM, Active-X ...
[for talking to MS applications

Sockets
[1 for talking other TCP/IP protocols

Software buses
[0 for sharing information across multiple applications

Universitédt Bern Clients and Servers

P2 — OOP 239.

summary

You should know the answers to these questions:
[0 How do you make a remote object available to clients?
How does a client obtain access to a remote object?
What are stubs and skeletons, and where do they come from?
What requirements must a remote interface fulfil?
What is the difference between a remote object and a serializable object?
Why do servers often start new threads to handle requests?

N O O O B

Can you answer the following questions?

0 Suppose we modified the view to work with Players instead of Moves.
Should Players then be remote objects or serializable objects?

[0 Why don’t we have to declare the AbstractBoardGame methods as synchronized?
[0 What kinds of tests would you write for the networked game?
[0 How would you extend the game to notify users when a second player is connected?

Universitédt Bern Clients and Servers

P2 — OOP 240.

11. Collections

Overview
[0 Example problem: The Jumble Puzzle

[0 The Java 2 collections framework
[0 Interfaces: Collections, Sets, Lists and Maps
[0 Implementations ...
[0 Algorithms: sorting ...
[l Iterators
Source

[1 “Collections 1.2", by Joshua Bloch, in The Java Tutorial , java.sun.com

Universitét Bern Collections

P2 — OOP 241.

The Jumble Puzzle

The Jumble Puzzle tests your English vocabulary — oJ I RYRIBTRAIE . ™t vere krscans e
by presenting four jumbled, ordinary words. Unecramile these tour Jumbles,

ohe letter to aach square, lo form
The circled letters of the unjumbled words

four ordinary words,

represent the jumbled answer to a cartoon puzzle. [RUPUS
ommmmmu}n.'
Since the jumbled words can be found in an I————""’”"“’
electronic dictionary, it should be possible to write HET,AB <t
a program to automatically solve the first part of (X X)
the puzzle (unjumbling the four words). TRUJIS
VY Y #
A AN 4 WHAT A BOO
SERVER CAN DO. J
YABSUW
oNe form the sorprise anawo, a s
__/ A N A gested by ihe above canoon,
- QLTI0Y (X0 “CI)"

[Answars 1nmarrow)

mmm#% Jurmmbles: AUMMY MANLY OUTLAW UNIQUE
Answar. Word that they'te biting cen do this to a busy
exacutive — LLIRE HIM AWAY

JUMBLE GLABMC SEFHES NO. 4 < To onder, mad $0.45 (el postge wd bendwig) o PO. |
Box 4330, Chricago, L BOBBO-4330. inclite PO NN, Biosl S 25 Gode Al ks oheck
piynble 1o Tribune Madis Servioas, Ino.

Universitét Bern Collections

P2 — OOP 242.

Naive Solution

rupus abacus
Generate all urpus For each abalone
peulatonsy upus DETUAIONabase
words: purus exists in the abash
pruus word list:
rpuus zounds
ruups zucchini
urups Zurich
zygote

The obvious, naive solution is extremely inefficient: a word with n characters may have
up to n! permutations. A five-letter word may have 120 permutations and a six-letter word
may have 720 permutations. “rupus” has 60 permutations.

[0 Exactly how many permutations will a given word have?

Universitét Bern Collections

P2 — OOP 243.

Rethinking the Jumble Problem

Observation: if a jumbled word (e.g. “rupus”) can be unjumbled to a real word in the list,
then these two words are jumbles of each other (i.e. they are anagrams).

[0 Is there a fast way to tell if two words are anagrams?
Two words are anagrams if they are made up of the same set of characters.

[0 Each word has a unique “key” consisting of its letters in sorted order
The key for “rupus” is “prsuu”.

[0 Two words are anagrams if they have the same key

We can unjumble “rupus” by looking for a word with the same key.

Universitét Bern Collections

P2 — OOP

An Efficient Solution

Build an associative array of keys and words for
every word in the dictionary:

Generate the key of a jumbled word:
key(“rupus”) = “prsuu”

Look up and return the words with the same key.

Key Word
aabcsu abacus
aabelno abalone
aabes abase
aabhs abash
dnosuz zounds
cchiinuz zucchini
chiruz zurich
egotyz zygote

244.

To implement a software solution, we need associative arrays, lists, sort routines, and
possibly other components.

Universitét

Bern

Collections

P2 — OOP

The Collections Framework

245.

The Java Collections framework contains interfaces, implementations and algorithms for
manipulating collections of elements.

«interface»
Collection

Ve

«interface»

Set

|

«interface»

SortedSet

N

«interface»

Map

«interface»

List

|

Sets and Lists are kinds of collections.

Maps manage mappings from keys to values

Universitédt Bern

«interface»

SortedMap

Collections

P2 — OOP

Collection Interfaces

«interface»
Collection

+ size() : int

+ iIsEmpty() : boolean

+ contains(Object) : boolean
+ add(Object): boolean

+ remove(Object) : boolean
+ iterator() : Iterator

+ toArray() : Object|]

«interface»

Set

|

«interface»

SortedSet

+ first() : Object
+ last() : Object

+ subSet(Object from, Object to) : SortedSet

Lists may contains duplicated elements. Sets may not.

Universitédt Bern

246.

«interface»

List

+ get(int) : Object

+ set(int, Object) : Object
+ add(int, Object)

+ remove(int) : Object

+ indexOf(Object) : int

+ listlterator() : Listlterator
+ subList(int from, int to) :

List

Collections

P2 — OOP 247.

Implementations

The framework provides at least two implementations of each interface.

«interface»

Collection
«interface» A «interface»

Set List

N AbstractCollection o

\ /
\ /
\ /

\ /

AbstractSet AbstractList

AbstractSequentialList

HashSet ArraySet

ArrayList LinkedList

[0 Can you guess how the standard implementations work?

Universitét Bern Collections

P2 — OOP 248.

Maps
A Map is an object that manages a set of (key, <intorfacen
value) pairs. Map
A Sorted Map maintains its entries in ascending |+ put(Object key, Object value) : Object
order. + get(Object key) : Object

+ remove(Object key) : Object

.. + containsKey(Object key) : boolean
Map is implemented by HashMap and TreeMap. |, Contains\,a?{,(e(c;bject \y;,ue) - boolean
+ size() :int

+ isEmpty() : boolean

+ keySet() : Set

+ values() : Collection

+ entrySet() : Set

Z%

«interface»

SortedMap

+ first() : Object
+ last() : Object

Universitét Bern Collections

P2 — OOP 249.
Jumble
We can implement the Jumble dictionary as a kind of HashMap:
public class Jumble extends HashMap {
public static void main(String argsl]) {
if (args.length == 0) {
System.err.printin("Usage: java Jumble <wordfile>");
return;
}
Jumble wordMap = null;
try {
wordMap = new Jumble(args|[0]) ;
} catch (IOException err) {
System.err.printin("Can't load dictionary " + args[0]);
return;
}
wordMap.inputLoop() ,
b
}
Universitéat Bern Collections

P2 — OOP 250.

Jumble constructor

A Jumble dictionary knows the file containing the words to load ...

private String _wordFile;

Jumble(String wordFile) throws IOException {
super();
_wordFile = wordFile;
loadDictionary();

}

Before we continue, we need a way to generate a key for each word ...

Universitét Bern Collections

P2 — OOP 251.

Algorithms

The Collections framework provides various algorithms,
such as sorting and searching, that work uniformly for all

kinds of Collections and Lists. + binarySearch(List, Object) : int
+ copy(List, List)

+ max(Collection) : Object
These algorithms are static methods of the Collections + min(Collection) : Object
class. + reverse(List)

+ shuffle(List)

+ sort(List)

+ sort(List, Comparator)

Collections

Universitét Bern Collections

P2 — OOP 252.

Array algorithms

Arrays

There is also a class, Arrays, consisting of static
methods for searching and sorting that operate on Java

arrays of basic data types. + sort(charf])

+ sort(charf], int, int)
+ sort(doublel])

O Which sort routine should we use to generate + sort(doublef], int, int)

unique keys for the Jumble puzzle? jiﬁglgiﬁ) int, int)

+ sort(int])

+ sort(int[], int, int)

+ sort(Object[])

+ sort(Object[], Comparator)

+ sort(Object][], int, int)

+ sort(Object][], int, int, Comparator)

Universitét Bern Collections

P2 — OOP 253.

Sorting characters

The easiest solution is to convert the word to an array of characters, sort that, and convert
the result back to a String.

public static String sortKey(String word) {
char[] letters = word.toCharArray() :
Arrays.sort(letters) ;
return new String(letters) ;

[0 What other possibilities do we have?

Universitét Bern Collections

P2 — OOP 254.

Loading the dictionary

Reading the dictionary is straightforward ...
private void loadDictionary() throws IOException {

BufferedReader in =
new BufferedReader(new FileReader(_wordFile));

String word = in.readLine() ;

while (word != null) {
this.addPair(sortkKey(word), word) ;
word = in.readLine();

}
}
... but there may be a List of words for any given key!
private void addPair(String key, String word) {

List wordList= (List) this.get(key) ,
if (wordList == null)

wordList = new ArrayList() :
wordList.add(word) ;
this.put(key, wordList) ;

}

Universitét Bern Collections

P2 — OOP 255.

The input loop

does the obvious ...

public void inputLoop() { ...
System.out.print("Enter a word to unjumble: ");
String word,;
while ((word = in.readLine()) 1= null) {

List wordList= (List) this.get(sortkKey(word)) ;
if (wordList == null) {
System.out.printin("Can't unjumble " + word);

} else {
System.out.printin(
word + " unjumbles to: " + wordList);
}...
System.out.print("next word: ");

b

Universitét Bern Collections

P2 — OOP 256.

Running the unjumbler ...

Enter a word to unjumble: rupus
rupus unjumbles to: [usurp]

Enter a word to unjumble: hetab
hetab unjumbles to: [bathe]

next word: please

please unjumbles to: [asleep, elapse, please]
next word: java

Can't unjumble java

next word:

Quit? (y/n): y

bye!

Universitét Bern Collections

P2 — OOP 257.

Iterators

[J How do you iterate through a Collection whose elements are unordered?
[1 Use an iterator.

«interface»
Iterator
An [terator is an object that lets you walk through an arbitrary + hasNext() : boolean
collection, whether it is ordered or not. + next() : Object
+ remove()
Lists additionally provide Listlterators that allows you to traverse «interface»

Listlterator

+ add(Obiject)

+ hasPrevious() : boolean
+ nextindex() : int

+ previous() : Object

+ previousindex() : int

+ set(Object)

the list in either direction and modify the list during iteration.

Universitét Bern Collections

P2 — OOP 258.

[terating through the key set

We can use iterators to find the key with the largest set of associated anagrams:

public List maxAnagrams() {
int max = 0;
List anagrams = null;
lterator keys = this.keySet().iterator() ;
while (keys.hasNext()) {
String key = (String) keys.next() ;
List words = (List) this.get(key) ;
If (words.size() > max) {
anagrams = words;
max = words.size();

}

}

return anagrams;

}

Printing wordMap.maxAnagrams() yields: [caret, carte, cater, crate, trace]

Universitét Bern Collections

P2 — OOP 2509.

How to use the framework

[0 If you need collections in your application, stick to the standard interfaces.

[0 Use one of the default implementations, if possible

[0 If you need a specialized implementation, make sure it is compatible with the
standard ones, so you can mix and match

[0 Make your applications depend only on the collections interfaces, if possible,
not the concrete classes

[0 Always use the least specific interface that does the job (Collection, if possible)

Universitét Bern Collections

P2 — OOP 260.

summary

You should know the answers to these questions:

[0 How are Sets and Lists similar? How do they differ?

[0 Why is Collection an interface rather than a class?

[0 Why are the sorting and searching algorithms implemented as static methods?
[0 Whatis an iterator? What problem does it solve?

Can you answer the following questions?

[

[]
[]
[]

Of what use are the AbstractCollection, AbstractSet and AbstractList?
Why doesn’t Map extend Collection?

Why does the Jumble constructor call super()?

Which implementation of Map will make Jumble run faster? Why?

Universitét Bern Collections

P2 — OOP 261.

12. Common Errors, a few Puzzles

Overview
[] Common errors:
[1 Round-off

0 ==vs. equals()
[0 Forgetting to clone objects
[0 Dangling else
0 Off-by-1
[1 Terminating loops with an equality test
0 Afew Java puzzles ...
sources
[0 Cay Horstmann, Computing Concepts with Java Essentials, Wiley, 1998
[0 The Java Report, April 1999

and other miscellaneous sources ...

Universitédt Bern Common Errors, a few Puzzles

P2 — OOP 262.

Round-off errors

What does this print?

double f = 2el15+0.13 ;
double g = 2el15+0.02 ;
System.err.printin(100*(f-g)); // prints 117

Don’t assume that floating point numbers are exact representations of mathematical
values!

Universitédt Bern Common Errors, a few Puzzles

P2 — OOP 263.

== versus equals()

When are two objects equal?

Object x = new Object();
Object y = new Object();
X == // true or false?
x.equals(y) // true or false?

String s1 = new String(“This is a string”);
String s2 = new String(“This is a string™);
sl ==s2 // true or false?
sl.equals(s2) // true or false?

inti=1; intj=1;
| == | // true or false?

== denotes object equality (but not for primitive types)
equals() denotes object equality by default, but can be overwritten!

Universitédt Bern Common Errors, a few Puzzles

P2 — OOP 264.

Literal Strings

But ... what happens when we compare the two following strings?
String sl =*“This is a string” ;
String s2 =“This is a string” ;

sl ==s2 // true or false?
sl.equals(s2) // true or false?

Literal strings with the same content refer to the same object!

Always use equals() or compareTo() to compare strings!

Universitédt Bern Common Errors, a few Puzzles

P2 — OOP 265.

Forgetting to clone an object

Is “now” really before “later”?

Date now = new Date() ;
Date later=now ;
later.setHours(now.getHours() + 1) ;

if (now.before(later))
System.out.printin("see you later");
else
System.out.printin("see you now");

Object variables contain references to objects, not the objects themselves!

If you need a copy of an object, then you should explicitly create it:
Date later = new Date(now.getTime()) ;

Universitédt Bern Common Errors, a few Puzzles

P2 — OOP

The dangling else problem.

public static void checkEven(int n) {
boolean result = true;
if (n>=0)
if ((nN%2) == 0)
System.out.printin(n + " is even");

else
System.out.printin(n + " is negative");

}

What is printed when we run these checks?

checkEven(-1);
checkEven(0);
checkEven(1);

Always use braces to group nested if { } else { } statements!

Universitédt Bern

266.

Common Errors, a few Puzzles

P2 — OOP 267.

Off-by-1 errors

The binomial coefficient E’kﬁis gx e X B——_—ili—t——l Is this a correct implementation?
public static int binomial(int n, int k) {
int bc = 1;
for (int 1=1; i<k; i++)
bc =bc* (n+1-i) /1
return bc;
}

To avoid off-by-1 errors
1. Count the iterations — do we always do k multiplications? (no)
2. Check boundary conditions — do we start with n/1 and finish with (n-k+1)/k? (no)

Off-by-1 errors are among the most common mistakes in implementing algorithms.

Universitédt Bern Common Errors, a few Puzzles

P2 — OOP 268.

Don’t use equality tests to terminate loops!

Don't use =! to test the end of a range. This factorial function won't work for -1 or 0.5!

public static int brokenFactorial(int n) {
int result=1,;
for (int 1=0; il=n; I++)

result = result*i;
return result;

Always use an inequality test to terminate a loop.

Universitédt Bern Common Errors, a few Puzzles

P2 — OOP 2609.

Some other common errors

[Magic numbers
[0 Never use magic numbers; declare constants instead.

[0 Forgetting to set a variable in some branch

[If you have non-trivial control flow to set a variable, make sure it starts off
with a reasonable default value.

[0 Underestimating size of data sets

[0 Don’t write programs with arbitrary built-in limits (like line-length); they will
break when you least expect it.

[J Leaking encapsulation
[0 Never return a private instance variable! (return e.g., a clone instead)

Universitédt Bern Common Errors, a few Puzzles

P2 — OOP 270.

Puzzle 1

Are private methods inherited? What happens when a subclass overrides inherited
private methods used by other, inherited public methods?

public class A{
public void m() { this.p(); }
private void p() {}

}
public class B extends A {
private void p() {}
}
Which is called? A.p() or B.p()?
A b = new B();
b.m();

Universitédt Bern Common Errors, a few Puzzles

P2 — OOP 271.

Static and Dynamic Types

Consider:
A a = new B();
The static type of variable a is A — i.e., the statically declared class to which it belongs.
The static type never changes.
The dynamic type of a is B — i.e., the class of the object currently bound to a.
The dynamic type may change throughout the program.
a = new A();

Now the dynamic type is also Al

Universitédt Bern Common Errors, a few Puzzles

P2 — OOP 272.

Puzzle 2

How does Java decide which overloaded method to call when the argument types
overlap? Does Java consider the static type or the dynamic type of the arguments?

public class Puzzle2 { public void run() {
B b = new B();
class A{} Aa=Db;
class BextendsA {} m(a,a) ;
m(a,b) ;

void m(Aal, Aa2) {}; m(b,a) ;
void m(Aal, Bbl) {}; m(b,b) ;
void m(Bbl, Aal) {}; }

void m(Bbl, Bb2) {}; }

The argument objects are the same in each call! Which methods will actually be called?

Universitédt Bern Common Errors, a few Puzzles

P2 — OOP 273.

Puzzle 2 (part 1l)

What happens if we comment out m(A,A)? m(B,B)? m(A,B)?
In which cases will the example still compile?

Where it does compile, which methods will be called?

Universitédt Bern Common Errors, a few Puzzles

P2 — OOP 274.

Puzzle 3

How does Java use the static type and the dynamic type of the receiver when deciding
which method to invoke?

public class Puzzle3 {
public class A { public void m(Aa) {}}
public class B extends A { public void mBb) {}}
public void run() {
B b =new B();
A a=b;
am@ ;
a.m(b) ;
b.m(@) ;
b.m(b) ;
}
}

In which cases will B.m(B) be called?

Universitédt Bern Common Errors, a few Puzzles

275.

; return 100; }

P2 — OOP
Puzzle 4
Which takes precedence? Default values or constructor initialization?
public class Puzzle4 {
class C{
public int =100 ;
public int j=100 ;
public int K = init() :
public int =0 ;
CO{ i=0 ; k=0 ;}
private int init() { j=0 ; 1=100
b
public void run() {
C ¢ = new C();

System.out.printin("C.i =" + c.i);
System.out.printin("C.j =" + c.));
System.out.printin("C.k =" + c.k);
System.out.printin("C.l =" + c.l);

Universitédt Bern

// 0 or 100?
// 0 or 100?
// 0 or 1007
// 0 or 100?

Common Errors, a few Puzzles

P2 — OOP

Puzzile 4 (part 1l)

276.

Which takes precedence? Superclass or subclass initialization?

public class Puzzle4 { ...
abstract class A{
public int j=100 ;
A() { init(100); j=200 ;}
abstract public void init(int value);
}
class B extends A {
public int =0
public int j=0
public void init(int value) { i = value; }
}

public void run() { ...
B b = new B();

System.out.printin("B.i =" + b.i);
System.out.printin("B.j =" + b.));

}

}

Universitédt Bern

// 0 or 100?
// 0, 100 or 200?

Common Errors, a few Puzzles

P2 — OOP 277.

Puzzle 5

What happens when both the try and the finally clause try to return a value?
Which takes precedence?

public class Puzzle5 {
class A{
public int m() {
try { returnl ;}
catch (Exception err) { return2 ;}
finally { return3 ;}

}

}

public void run() {
A a =new A();

System.out.printin(a.m());

}
}

What is printed? 1, 2 or 3?

Universitédt Bern Common Errors, a few Puzzles

P2 — OOP 278.

summary

You should know the answers to these questions:
[0 When can you trust floating-point arithmetic?
To which “if” does an “else” belong in a nested if statement?
How can you avoid off-by-1 errors?
Why should you never use equality tests to terminate loops?
Are private methods inherited?
What are the static and dynamic types of variables?
How are they used to dispatch overloaded methods?

N O O B

Can you answer the following questions?
0 When is method dispatching ambiguous?
[1 Is it better to use default values or constructors to initialize variables?

0 Ifboth a try clause and its finally clause throw an exception, which exception is really
thrown?

Universitédt Bern Common Errors, a few Puzzles

	7032 Programmierung 2
	Table of Contents
	Patterns, Rules and Guidelines
	1. P2 — Object-Oriented Programming
	Overview
	Goals of this course
	What is programming?
	Programming and Software Development
	Programming activities
	What is a software system?
	What is good (bad) design?
	A procedural design
	An object-oriented design
	Object-Oriented Design
	Responsibility-Driven Design
	Refactoring
	What is Software Quality?
	How to achieve software quality
	What is a programming language?
	Communication
	Why use object-oriented programming?
	Why Java?
	History
	Summary

	2. Design by Contract
	Stacks
	Example: Balancing Parentheses
	Using a Stack to match parentheses
	What is Data Abstraction?
	Why are ADTs important?
	Programming by Contract
	Pre- and Postconditions
	Stack pre- and postconditions
	Class Invariants
	Assertions
	Disciplined Exceptions
	Stacks as Linked Lists
	StackInterface
	Exceptions
	LinkStack ADT
	LinkStack Class Invariant
	LinkClass Cells
	LinkStack methods
	Testing Assertions
	Push and Pop
	The ParenMatch class
	A cluttered algorithm ...
	A declarative algorithm
	Helper methods
	Summary

	3. Testing and Debugging
	Testing
	Regression testing
	Stack test case
	Testing special cases
	TestStack
	ArrayStack
	ArrayStack methods
	Testing ArrayStack
	The Run-time Stack
	The run-time stack in action ...
	The Stack and the Heap
	Fixing our mistake
	Wrapping Objects
	A Wrapped Stack
	A contract mismatch
	Fixing the problem ...
	Timing benchmarks
	Timer
	Sample benchmarks
	Summary

	4. Iterative Development
	The Classical Software Lifecycle
	Iterative Development
	What is Responsibility-Driven Design?
	Example: Tic Tac Toe
	Limiting Scope
	Tic Tac Toe Objects
	Missing Objects
	Scenarios
	A Skeleton Implementation
	Representing the Game State
	Testing the new methods
	Testing the application
	Printing the State
	Refining the interactions
	Tic Tac Toe Contracts
	Representing the Game State
	Invariants
	Delegating Responsibilities
	Small Methods
	GameDriver
	The Player
	Defining test cases
	Running the test cases
	Summary

	5. Inheritance and Refactoring
	What is Inheritance?
	The Board Game
	Uses of Inheritance
	Class Diagrams
	A bad idea ...
	Class Hierarchy
	Iterative development strategy
	Version 1.3
	Speaking to an Interface
	Quiet Testing
	TicTacToe adaptations
	Version 1.4
	Refactoring
	Version 1.5
	AbstractBoardGame 1.5
	BoardGame 1.5
	Player 1.5
	Version 1.6
	Keeping Score
	A new responsibility ...
	The Runner
	Top-down decomposition
	Recursion
	BoardGame 1.6
	Gomoku
	Summary

	6. Programming Tools
	Integrated Development Environments
	CodeWarrior
	CodeWarrior Class Browser
	CodeWarrior Hierarchy Browser
	SNiFF+
	SNiFF+ Project Editor
	SNiFF+ Source Editor
	SNiFF+ Hierarchy Browser
	SNiFF+ Class Browser
	Debuggers
	Setting Breakpoints
	Debugging
	Debugging Strategy
	Version Control
	RCS
	Using RCS
	Additional RCS Features
	Profilers
	Profiling with CodeWarrior
	Profile Data
	Javadoc
	Javadoc output
	Other tools
	Summary

	7. A Testing Framework
	The Problem
	JUnit
	Frameworks vs. Libraries
	The JUnit Framework
	A Testing Scenario
	Testing Style
	Representing multiple currencies
	Money
	MoneyTest
	Some basic tests
	Building a Test Suite
	The TestRunner
	MoneyBags
	Testing MoneyBags (I)
	Testing MoneyBags (II)
	Testing MoneyBags (III)
	Adding MoneyBags
	The IMoney interface (I)
	Double Dispatch (I)
	Double Dispatch (I)
	The IMoney interface (II)
	A Failed test
	Diagnostics
	The fix ...
	Testing Practices
	Summary

	8. GUI Construction
	A Graphical TicTacToe?
	Applets
	The Hello World Applet
	Accessing the game as an Applet
	Model-View-Controller
	AWT Components and Containers
	The GameApplet
	Laying out the GameApplet
	Events and Listeners (I)
	Events and Listeners (II)
	Listening for Button events
	Listening for mouse clicks
	The PlaceListener
	Observers and Observables
	Observing the BoardGame
	Communicating changes
	Setting up the connections
	Playing the game
	Refactoring the BoardGame
	GUI objects in practice ...
	Summary

	9. Guidelines, Idioms and Patterns
	Style
	Refactoring
	What are Idioms and Patterns?
	Delegation
	Delegation example
	Super
	Super example
	Interface
	Interface example
	Adapter
	Adapter example
	Proxy
	Proxy example
	Template Method
	Template method example
	Composite
	Composite example
	Observer
	What Problems do Design Patterns Solve?
	Summary

	10. Clients and Servers
	A Networked TicTacToe?
	The concept
	The problem
	Remote Method Invocation
	Developing an RMI application
	Designing client/server interfaces
	Identifying remote interfaces
	Specifying remote interfaces
	RemoteGameFactory
	RemoteGame
	RemoteObserver
	Serializable Objects
	Implementing Remote objects
	A simple view of synchronization
	Registering a remote object
	GameProxy
	Using Threads to protect the server
	Refactoring the BoardGame ...
	Compiling the code
	Running the application
	Playing the game
	Other approaches
	Summary

	11. Collections
	The Jumble Puzzle
	Naive Solution
	Rethinking the Jumble Problem
	An Efficient Solution
	The Collections Framework
	Collection Interfaces
	Implementations
	Maps
	Jumble
	Jumble constructor
	Algorithms
	Array algorithms
	Sorting characters
	Loading the dictionary
	The input loop
	Running the unjumbler ...
	Iterators
	Iterating through the key set
	How to use the framework
	Summary

	12. Common Errors, a few Puzzles
	Round-off errors
	== versus equals()
	Literal Strings
	Forgetting to clone an object
	The dangling else problem.
	Off-by-1 errors
	Don’t use equality tests to terminate loops!
	Some other common errors
	Puzzle 1
	Static and Dynamic Types
	Puzzle 2
	Puzzle 2 (part II)
	Puzzle 3
	Puzzle 4
	Puzzle 4 (part II)
	Puzzle 5
	Summary

