The Hundred-Year Language

THE HUNDRED-YEAR LANGUAGE

April 2003

(This essay is derived from a keynote talk at
PyCon 2003.)

HEEERGEAEEARERRE

It's hard to predict what life will be like in a
hundred years. There are only a few things we
can say with certainty. We know that everyone
will drive flying cars, that zoning laws will be
relaxed to allow buildings hundreds of stories tall,
that it will be dark most of the time, and that
women will all be trained in the martial arts. Here
I want to zoom in on one detail of this picture.
What kind of programming language will they use
to write the software controlling those flying
cars?

This is worth thinking about not so much because
we'll actually get to use these languages as
because, if we're lucky, we'll use languages on
the path from this point to that.

I think that, like species, languages will form
evolutionary trees, with dead-ends branching off
all over. We can see this happening already.
Cobol, for all its sometime popularity, does not
seem to have any intellectual descendants. It is
an evolutionary dead-end-- a Neanderthal
language.

I predict a similar fate for Java. People
sometimes send me mail saying, "How can you
say that Java won't turn out to be a successful

http://www.paulgraham.com/hundred.html|

2/15/08 6:04 PM

Page 1 of 16

The Hundred-Year Language

language? It's already a successful language.”
And I admit that it is, if you measure success by
shelf space taken up by books on it (particularly
individual books on it), or by the number of
undergrads who believe they have to learn it to
get a job. When I say Java won't turn out to be a
successful language, I mean something more
specific: that Java will turn out to be an
evolutionary dead-end, like Cobol.

This is just a guess. I may be wrong. My point
here is not to dis Java, but to raise the issue of
evolutionary trees and get people asking, where
on the tree is language X? The reason to ask this
question isn't just so that our ghosts can say, in
a hundred years, I told you so. It's because
staying close to the main branches is a useful
heuristic for finding languages that will be good
to program in now.

At any given time, you're probably happiest on
the main branches of an evolutionary tree. Even
when there were still plenty of Neanderthals, it
must have sucked to be one. The Cro-Magnons
would have been constantly coming over and
beating you up and stealing your food.

The reason I want to know what languages will
be like in a hundred years is so that I know what
branch of the tree to bet on now.

The evolution of languages differs from the
evolution of species because branches can
converge. The Fortran branch, for example,
seems to be merging with the descendants of
Algol. In theory this is possible for species too,
but it's not likely to have happened to any bigger
than a cell.

Convergence is more likely for languages partly
because the space of possibilities is smaller, and
partly because mutations are not random.
Language designers deliberately incorporate ideas
from other languages.

It's especially useful for language designers to

http://www.paulgraham.com/hundred.html

2/15/08 6:04 PM

Page 2 of 16



The Hundred-Year Language

think about where the evolution of programming
languages is likely to lead, because they can
steer accordingly. In that case, "stay on a main
branch" becomes more than a way to choose a
good language. It becomes a heuristic for making
the right decisions about language design.

Any programming language can be divided into
two parts: some set of fundamental operators
that play the role of axioms, and the rest of the
language, which could in principle be written in
terms of these fundamental operators.

I think the fundamental operators are the most
important factor in a language's long term
survival. The rest you can change. It's like the
rule that in buying a house you should consider
location first of all. Everything else you can fix
later, but you can't fix the location.

I think it's important not just that the axioms be
well chosen, but that there be few of them.
Mathematicians have always felt this way about
axioms-- the fewer, the better-- and I think
they're onto something.

At the very least, it has to be a useful exercise to
look closely at the core of a language to see if
there are any axioms that could be weeded out.
I've found in my long career as a slob that cruft
breeds cruft, and I've seen this happen in
software as well as under beds and in the corners
of rooms.

I have a hunch that the main branches of the
evolutionary tree pass through the languages
that have the smallest, cleanest cores. The more
of a language you can write in itself, the better.

Of course, I'm making a big assumption in even
asking what programming languages will be like
in a hundred years. Will we even be writing
programs in a hundred years? Won't we just tell
computers what we want them to do?

http://www.paulgraham.com/hundred.html|

2/15/08 6:04 PM

Page 3 of 16

The Hundred-Year Language

There hasn't been a lot of progress in that
department so far. My guess is that a hundred
years from now people will still tell computers
what to do using programs we would recognize
as such. There may be tasks that we solve now
by writing programs and which in a hundred
years you won't have to write programs to solve,
but I think there will still be a good deal of
programming of the type that we do today.

It may seem presumptuous to think anyone can
predict what any technology will look like in a
hundred years. But remember that we already
have almost fifty years of history behind us.
Looking forward a hundred years is a graspable
idea when we consider how slowly languages
have evolved in the past fifty.

Languages evolve slowly because they're not
really technologies. Languages are notation. A
program is a formal description of the problem
you want a computer to solve for you. So the
rate of evolution in programming languages is
more like the rate of evolution in mathematical
notation than, say, transportation or
communications. Mathematical notation does
evolve, but not with the giant leaps you see in
technology.

Whatever computers are made of in a hundred
years, it seems safe to predict they will be much
faster than they are now. If Moore's Law
continues to put out, they will be 74 quintillion
(73,786,976,294,838,206,464) times faster.
That's kind of hard to imagine. And indeed, the
most likely prediction in the speed department
may be that Moore's Law will stop working.
Anything that is supposed to double every
eighteen months seems likely to run up against
some kind of fundamental limit eventually. But I
have no trouble believing that computers will be
very much faster. Even if they only end up being
a paltry million times faster, that should change
the ground rules for programming languages
substantially. Among other things, there will be

http://www.paulgraham.com/hundred.html

2/15/08 6:04 PM

Page 4 of 16



The Hundred-Year Language

more room for what would now be considered
slow languages, meaning languages that don't
yield very efficient code.

And yet some applications will still demand
speed. Some of the problems we want to solve
with computers are created by computers; for
example, the rate at which you have to process
video images depends on the rate at which
another computer can generate them. And there
is another class of problems which inherently
have an unlimited capacity to soak up cycles:
image rendering, cryptography, simulations.

If some applications can be increasingly
inefficient while others continue to demand all the
speed the hardware can deliver, faster computers
will mean that languages have to cover an ever
wider range of efficiencies. We've seen this
happening already. Current implementations of
some popular new languages are shockingly
wasteful by the standards of previous decades.

This isn't just something that happens with
programming languages. It's a general historical
trend. As technologies improve, each generation
can do things that the previous generation would
have considered wasteful. People thirty years ago
would be astonished at how casually we make
long distance phone calls. People a hundred years
ago would be even more astonished that a
package would one day travel from Boston to
New York via Memphis.

I can already tell you what's going to happen to
all those extra cycles that faster hardware is
going to give us in the next hundred years.
They're nearly all going to be wasted.

I learned to program when computer power was
scarce. I can remember taking all the spaces out
of my Basic programs so they would fit into the
memory of a 4K TRS-80. The thought of all this
stupendously inefficient software burning up
cycles doing the same thing over and over seems
kind of gross to me. But I think my intuitions

http://www.paulgraham.com/hundred.html|

2/15/08 6:04 PM

Page 5 of 16

The Hundred-Year Language 2/15/08 6:04 PM

here are wrong. I'm like someone who grew up
poor, and can't bear to spend money even for
something important, like going to the doctor.

Some kinds of waste really are disgusting. SUVs,
for example, would arguably be gross even if
they ran on a fuel which would never run out and
generated no pollution. SUVs are gross because
they're the solution to a gross problem. (How to
make minivans look more masculine.) But not all
waste is bad. Now that we have the infrastructure
to support it, counting the minutes of your long-
distance calls starts to seem niggling. If you have
the resources, it's more elegant to think of all
phone calls as one kind of thing, no matter where
the other person is.

There's good waste, and bad waste. I'm
interested in good waste-- the kind where, by
spending more, we can get simpler designs. How
will we take advantage of the opportunities to
waste cycles that we'll get from new, faster
hardware?

The desire for speed is so deeply engrained in us,
with our puny computers, that it will take a
conscious effort to overcome it. In language
design, we should be consciously seeking out
situations where we can trade efficiency for even
the smallest increase in convenience.

Most data structures exist because of speed. For
example, many languages today have both
strings and lists. Semantically, strings are more
or less a subset of lists in which the elements are
characters. So why do you need a separate data
type? You don't, really. Strings only exist for
efficiency. But it's lame to clutter up the
semantics of the language with hacks to make
programs run faster. Having strings in a language
seems to be a case of premature optimization.

If we think of the core of a language as a set of
axioms, surely it's gross to have additional

axioms that add no expressive power, simply for
the sake of efficiency. Efficiency is important, but

http://www.paulgraham.com/hundred.html Page 6 of 16



The Hundred-Year Language

I don't think that's the right way to get it.

The right way to solve that problem, I think, is to
separate the meaning of a program from the
implementation details. Instead of having both
lists and strings, have just lists, with some way
to give the compiler optimization advice that will
allow it to lay out strings as contiguous bytes if
necessary.

Since speed doesn't matter in most of a program,
you won't ordinarily need to bother with this sort
of micromanagement. This will be more and more
true as computers get faster.

Saying less about implementation should also
make programs more flexible. Specifications
change while a program is being written, and this
is not only inevitable, but desirable.

The word "essay" comes from the French verb
"essayer", which means "to try". An essay, in the
original sense, is something you write to try to
figure something out. This happens in software
too. I think some of the best programs were
essays, in the sense that the authors didn't know
when they started exactly what they were trying
to write.

Lisp hackers already know about the value of
being flexible with data structures. We tend to
write the first version of a program so that it
does everything with lists. These initial versions
can be so shockingly inefficient that it takes a
conscious effort not to think about what they're
doing, just as, for me at least, eating a steak
requires a conscious effort not to think where it
came from.

What programmers in a hundred years will be
looking for, most of all, is a language where you
can throw together an unbelievably inefficient
version 1 of a program with the least possible
effort. At least, that's how we'd describe it in
present-day terms. What they'll say is that they
want a language that's easy to program in.

http://www.paulgraham.com/hundred.html|

2/15/08 6:04 PM

Page 7 of 16

The Hundred-Year Language

Inefficient software isn't gross. What's gross is a
language that makes programmers do needless
work. Wasting programmer time is the true
inefficiency, not wasting machine time. This will
become ever more clear as computers get faster.

I think getting rid of strings is already something
we could bear to think about. We did it in Arc,
and it seems to be a win; some operations that
would be awkward to describe as regular
expressions can be described easily as recursive
functions.

How far will this flattening of data structures go?
I can think of possibilities that shock even me,
with my conscientiously broadened mind. Will we
get rid of arrays, for example? After all, they're
just a subset of hash tables where the keys are
vectors of integers. Will we replace hash tables
themselves with lists?

There are more shocking prospects even than
that. The Lisp that McCarthy described in 1960,
for example, didn't have numbers. Logically, you
don't need to have a separate notion of numbers,
because you can represent them as lists: the
integer n could be represented as a list of n
elements. You can do math this way. It's just
unbearably inefficient.

No one actually proposed implementing numbers
as lists in practice. In fact, McCarthy's 1960
paper was not, at the time, intended to be
implemented at all. It was a theoretical exercise,
an attempt to create a more elegant alternative
to the Turing Machine. When someone did,
unexpectedly, take this paper and translate it into
a working Lisp interpreter, numbers certainly
weren't represented as lists; they were
represented in binary, as in every other
language.

Could a programming language go so far as to
get rid of numbers as a fundamental data type? I
ask this not so much as a serious question as as

http://www.paulgraham.com/hundred.html

2/15/08 6:04 PM

Page 8 of 16



The Hundred-Year Language

a way to play chicken with the future. It's like the
hypothetical case of an irresistible force meeting
an immovable object-- here, an unimaginably
inefficient implementation meeting unimaginably
great resources. I don't see why not. The future
is pretty long. If there's something we can do to
decrease the number of axioms in the core
language, that would seem to be the side to bet
on as t approaches infinity. If the idea still seems
unbearable in a hundred years, maybe it won't in
a thousand.

Just to be clear about this, I'm not proposing
that all numerical calculations would actually be
carried out using lists. I'm proposing that the
core language, prior to any additional notations
about implementation, be defined this way. In
practice any program that wanted to do any
amount of math would probably represent
numbers in binary, but this would be an
optimization, not part of the core language
semantics.

Another way to burn up cycles is to have many
layers of software between the application and
the hardware. This too is a trend we see
happening already: many recent languages are
compiled into byte code. Bill Woods once told me
that, as a rule of thumb, each layer of
interpretation costs a factor of 10 in speed. This
extra cost buys you flexibility.

The very first version of Arc was an extreme case
of this sort of multi-level slowness, with
corresponding benefits. It was a classic
"metacircular” interpreter written on top of
Common Lisp, with a definite family resemblance
to the eval function defined in McCarthy's original
Lisp paper. The whole thing was only a couple
hundred lines of code, so it was very easy to
understand and change. The Common Lisp we
used, CLisp, itself runs on top of a byte code
interpreter. So here we had two levels of
interpretation, one of them (the top one)
shockingly inefficient, and the language was
usable. Barely usable, I admit, but usable.

http://www.paulgraham.com/hundred.html|

The Hundred-Year Language 2/15/08 6:04 PM

Writing software as multiple layers is a powerful
technique even within applications. Bottom-up
programming means writing a program as a
series of layers, each of which serves as a
language for the one above. This approach tends
to yield smaller, more flexible programs. It's also
the best route to that holy grail, reusability. A
language is by definition reusable. The more of
your application you can push down into a
language for writing that type of application, the
more of your software will be reusable.

Somehow the idea of reusability got attached to
object-oriented programming in the 1980s, and
no amount of evidence to the contrary seems to
be able to shake it free. But although some
object-oriented software is reusable, what makes
it reusable is its bottom-upness, not its object-
orientedness. Consider libraries: they're reusable
because they're language, whether they're
written in an object-oriented style or not.

I don't predict the demise of object-oriented
programming, by the way. Though I don't think it
has much to offer good programmers, except in
certain specialized domains, it is irresistible to
large organizations. Object-oriented programming
offers a sustainable way to write spaghetti code.
It lets you accrete programs as a series of
patches. Large organizations always tend to
develop software this way, and I expect this to
be as true in a hundred years as it is today.

As long as we're talking about the future, we had
better talk about parallel computation, because
that's where this idea seems to live. That is, no
matter when you're talking, parallel computation
seems to be something that is going to happen
in the future.

Will the future ever catch up with it? People have
been talking about parallel computation as
something imminent for at least 20 years, and it
hasn't affected programming practice much so
far. Or hasn't it? Already chip designers have to

http://www.paulgraham.com/hundred.html Page 10 of 16



The Hundred-Year Language

think about it, and so must people trying to write
systems software on multi-cpu computers.

The real question is, how far up the ladder of
abstraction will parallelism go? In a hundred
years will it affect even application programmers?
Or will it be something that compiler writers think
about, but which is usually invisible in the source
code of applications?

One thing that does seem likely is that most
opportunities for parallelism will be wasted. This
is a special case of my more general prediction
that most of the extra computer power we're
given will go to waste. I expect that, as with the
stupendous speed of the underlying hardware,
parallelism will be something that is available if
you ask for it explicitly, but ordinarily not used.
This implies that the kind of parallelism we have
in a hundred years will not, except in special
applications, be massive parallelism. I expect for
ordinary programmers it will be more like being
able to fork off processes that all end up running
in parallel.

And this will, like asking for specific
implementations of data structures, be something
that you do fairly late in the life of a program,
when you try to optimize it. Version 1s will
ordinarily ignore any advantages to be got from
parallel computation, just as they will ignore
advantages to be got from specific
representations of data.

Except in special kinds of applications, parallelism
won't pervade the programs that are written in a
hundred years. It would be premature
optimization if it did.

How many programming languages will there be
in a hundred years? There seem to be a huge
number of new programming languages lately.
Part of the reason is that faster hardware has
allowed programmers to make different tradeoffs
between speed and convenience, depending on
the application. If this is a real trend, the

http://www.paulgraham.com/hundred.html|

2/15/08 6:04 PM

Page 11 of 16

The Hundred-Year Language

hardware we'll have in a hundred years should
only increase it.

And yet there may be only a few widely-used
languages in a hundred years. Part of the reason
I say this is optimism: it seems that, if you did a
really good job, you could make a language that
was ideal for writing a slow version 1, and yet
with the right optimization advice to the compiler,
would also yield very fast code when necessary.
So, since I'm optimistic, I'm going to predict that
despite the huge gap they'll have between
acceptable and maximal efficiency, programmers
in a hundred years will have languages that can
span most of it.

As this gap widens, profilers will become
increasingly important. Little attention is paid to
profiling now. Many people still seem to believe
that the way to get fast applications is to write
compilers that generate fast code. As the gap
between acceptable and maximal performance
widens, it will become increasingly clear that the
way to get fast applications is to have a good
guide from one to the other.

When I say there may only be a few languages,
I'm not including domain-specific "little
languages". I think such embedded languages are
a great idea, and I expect them to proliferate.
But I expect them to be written as thin enough
skins that users can see the general-purpose
language underneath.

Who will design the languages of the future? One
of the most exciting trends in the last ten years
has been the rise of open-source languages like
Perl, Python, and Ruby. Language design is being
taken over by hackers. The results so far are
messy, but encouraging. There are some
stunningly novel ideas in Perl, for example. Many
are stunningly bad, but that's always true of
ambitious efforts. At its current rate of mutation,
God knows what Perl might evolve into in a
hundred years.

http://www.paulgraham.com/hundred.html

2/15/08 6:04 PM

Page 12 of 16



The Hundred-Year Language

It's not true that those who can't do, teach
(some of the best hackers I know are
professors), but it is true that there are a lot of
things that those who teach can't do. Research
imposes constraining caste restrictions. In any
academic field there are topics that are ok to
work on and others that aren't. Unfortunately the
distinction between acceptable and forbidden
topics is usually based on how intellectual the
work sounds when described in research papers,
rather than how important it is for getting good
results. The extreme case is probably literature;
people studying literature rarely say anything
that would be of the slightest use to those
producing it.

Though the situation is better in the sciences, the
overlap between the kind of work you're allowed
to do and the kind of work that yields good
languages is distressingly small. (Olin Shivers has
grumbled eloquently about this.) For example,
types seem to be an inexhaustible source of
research papers, despite the fact that static
typing seems to preclude true macros-- without
which, in my opinion, no language is worth using.

The trend is not merely toward languages being
developed as open-source projects rather than
"research", but toward languages being designed
by the application programmers who need to use
them, rather than by compiler writers. This
seems a good trend and I expect it to continue.

Unlike physics in a hundred years, which is
almost necessarily impossible to predict, I think it
may be possible in principle to design a language
now that would appeal to users in a hundred
years.

One way to design a language is to just write
down the program you'd like to be able to write,
regardless of whether there is a compiler that
can translate it or hardware that can run it.
When you do this you can assume unlimited
resources. It seems like we ought to be able to
imagine unlimited resources as well today as in a

http://www.paulgraham.com/hundred.html|

2/15/08 6:04 PM

Page 13 of 16

The Hundred-Year Language
hundred years.

What program would one like to write? Whatever
is least work. Except not quite: whatever would
be least work if your ideas about programming
weren't already influenced by the languages
you're currently used to. Such influence can be
so pervasive that it takes a great effort to
overcome it. You'd think it would be obvious to
creatures as lazy as us how to express a program
with the least effort. In fact, our ideas about
what's possible tend to be so limited by whatever
language we think in that easier formulations of
programs seem very surprising. They're
something you have to discover, not something
you naturally sink into.

One helpful trick here is to use the length of the
program as an approximation for how much work
it is to write. Not the length in characters, of
course, but the length in distinct syntactic
elements-- basically, the size of the parse tree. It
may not be quite true that the shortest program
is the least work to write, but it's close enough
that you're better off aiming for the solid target
of brevity than the fuzzy, nearby one of least
work. Then the algorithm for language design
becomes: look at a program and ask, is there
any way to write this that's shorter?

In practice, writing programs in an imaginary
hundred-year language will work to varying
degrees depending on how close you are to the
core. Sort routines you can write now. But it
would be hard to predict now what kinds of
libraries might be needed in a hundred years.
Presumably many libraries will be for domains
that don't even exist yet. If SETI@home works,
for example, we'll need libraries for
communicating with aliens. Unless of course they
are sufficiently advanced that they already
communicate in XML.

At the other extreme, I think you might be able
to design the core language today. In fact, some
might argue that it was already mostly designed
in 1958.

http://www.paulgraham.com/hundred.html

2/15/08 6:04 PM

Page 14 of 16



The Hundred-Year Language

If the hundred year language were available
today, would we want to program in it? One way
to answer this question is to look back. If
present-day programming languages had been
available in 1960, would anyone have wanted to
use them?

In some ways, the answer is no. Languages
today assume infrastructure that didn't exist in
1960. For example, a language in which
indentation is significant, like Python, would not
work very well on printer terminals. But putting
such problems aside-- assuming, for example,
that programs were all just written on paper--
would programmers of the 1960s have liked
writing programs in the languages we use now?

I think so. Some of the less imaginative ones,
who had artifacts of early languages built into
their ideas of what a program was, might have
had trouble. (How can you manipulate data
without doing pointer arithmetic? How can you
implement flow charts without gotos?) But I think
the smartest programmers would have had no
trouble making the most of present-day
languages, if they'd had them.

If we had the hundred-year language now, it
would at least make a great pseudocode. What
about using it to write software? Since the
hundred-year language will need to generate fast
code for some applications, presumably it could
generate code efficient enough to run acceptably
well on our hardware. We might have to give
more optimization advice than users in a hundred
years, but it still might be a net win.

Now we have two ideas that, if you combine
them, suggest interesting possibilities: (1) the
hundred-year language could, in principle, be
designed today, and (2) such a language, if it
existed, might be good to program in today.
When you see these ideas laid out like that, it's
hard not to think, why not try writing the

http://www.paulgraham.com/hundred.html|

2/15/08 6:04 PM

Page 15 of 16

The Hundred-Year Language
hundred-year language now?

When you're working on language design, I think
it is good to have such a target and to keep it
consciously in mind. When you learn to drive,
one of the principles they teach you is to align
the car not by lining up the hood with the stripes
painted on the road, but by aiming at some point
in the distance. Even if all you care about is what
happens in the next ten feet, this is the right
answer. I think we can and should do the same
thing with programming languages.

Notes

I believe Lisp Machine Lisp was the first language
to embody the principle that declarations (except
those of dynamic variables) were merely
optimization advice, and would not change the
meaning of a correct program. Common Lisp
seems to have been the first to state this
explicitly.

Thanks to Trevor Blackwell, Robert Morris, and
Dan Giffin for reading drafts of this, and to Guido
van Rossum, Jeremy Hylton, and the rest of the
Python crew for inviting me to speak at PyCon.

* Japanese Translation

You'll find this essay and 14 others in Hackers
& Painters.

http://www.paulgraham.com/hundred.html

2/15/08 6:04 PM

Page 16 of 16



