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1. Programming Languages

Lecturer: Prof. O. Nierstrasz
Schützenmattstr. 14/103; Tel. 631.4618; 

Secr.: Frau I. Huber, Tel. 631.4692
Assistants: F. Achermann, S. Kneubühl
WWW: http://www.iam.unibe.ch/~scg/Lectures/

Text:
❑ Kenneth C. Louden, Programming Languages: Pr

Publishing (Boston), 1993.
Other Sources:

❑ PostScript Language Tutorial and Cookbook, Ad
Addison-Wesley, 1985

❑ Paul Hudak, “Conception, Evolution, and Applicati
Programming Languages,” ACM Computing Surve

❑ Clocksin and Mellish, Programming in Prolog, Spr
❑ Guido van Rossum, Python Reference Manual, St

Centrum, Amsterdam, 1996.
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— Postscript
— Haskell
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— Prolog

— Python ...
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Schedule

❑ 03.25 1. Introduction
❑ 04.01 2. Stack-based Programming
❑ 04.08 3. Functional Programming
❑ 04.15 4. Type systems
❑ 04.22 5. An application of Functional Programm
❑ 04.29 6. Lambda Calculus
❑ 05.06 7. Fixed Points; Other Calculi
❑ 05.13 8. Programming language semantics
❑ 05.20 9. Logic Programming
❑ 05.27 10. Applications of Logic Programming
❑ 06.03 11. Symbolic Interpretation
❑ 06.10 12. Scripting Languages
❑ 06.17 13. Summary, Trends, Research ...
❑ 06.24 Final exam
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Themes Addressed in this Cour

Paradigms:
❑ What computational paradigms are supported by m

programming languages?
❑ How well do these paradigms match classes of pr

Abstraction
❑ How do different languages abstract away from th

underlying hardware implementation?
❑ How do different languages support the specificat

needed for a specific task?
Types

❑ How do type systems help in the construction of fl
Semantics

❑ How can one formalize the meaning of a program
❑ How can semantics aid in the implementation of a
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What is a Programming Langua

☞ A formal language for describing computation
☞ A “user interface” to a computer
☞ “Turing tar pit” — equivalent computational po
☞ Programming paradigms — different express
☞ Syntax + semantics
☞ Compiler, or interpreter, or translator
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How do Programming Languag

Generations (increasing abstraction; imperative → decl
❑ 1GL: machine codes
❑ 2GL: symbolic assemblers
❑ 3GL: (machine independent) imperative language
❑ 4GL: domain specific application generators

Common Constructs:
☞ basic data types (numbers, etc.); variables; e

keywords; control constructs; procedures; com
Uncommon Constructs:

☞ type declarations; special types (strings, array
execution; concurrency constructs; packages
functions; generics; modifiable state; ...



Programmiersprachen 6.

U Programming Languages

onstraints, lists, ...
niversität Bern

Programming Paradigms

A programming language is a problem-solving tool.

Imperative style:
☞ program = algorithms + data

Functional style:
☞ program = functions  functions

Logic programming style:
☞ program = facts + rules

Object-oriented style:
☞ program = objects + messages

Other styles and paradigms: blackboard, pipes and filters, c
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Compilers and Interpreters
Compilers and interpreters have similar front-ends, but hav

Details will differ, but the general scheme remains the sam

Pre-processor Parser Code Generator

Interpreter

Translator

Parse tree Assem
code

Byte co

Program

Code Gener

Program

...
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A Brief Chronology
Early 1950s  “order codes” (primitive assemblers)
1957 FORTRAN the first high-level prog
1958 ALGOL the first modern, imper
1960 LISP, COBOL
1962 APL, SIMULA the birth of OOP (SIMU
1964 BASIC, PL/I
1966 ISWIM first modern functional 
1970 Prolog logic programming is b
1972 C the systems programm
1975 Pascal, Scheme
1978 CSP
1978 FP
1980 dBASE II
1983 Smalltalk-80, Ada OOP is reinvented
1984 Standard ML FP becomes mainstrea
1986 C++, Eiffel OOP is reinvented (ag
1988 CLOS, Mathematica, Oberon
1990 Haskell FP is reinvented
1995 Java OOP is reinvented for 
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Fortran
History:

❑ John Backus (1953) sought to write programs in c
notation, and generate code comparable to good a
☞ No language design effort (made it up as they
☞ Most effort spent on code generation and opt
☞ FORTRAN I released April 1957; working by 
☞ Current standards are FORTRAN 77 and FOR

Innovations:
❑ comments
❑ assignments to variables of complex expressions
❑ DO loops
❑ Symbolic notation for subroutines and functions
❑ Input/output formats
❑ machine-independence

Successes:
❑ Easy to learn; high level
❑ Promoted by IBM; addressed large user base (sci
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ALGOL 60

History:
❑ Committee of PL experts formed in 1955 to design

independent, algorithmic language
❑ First version (ALGOL 58) never implemented; criti

Innovations:
❑ BNF (Backus-Naur Form) introduced to define syn

compilers)
❑ First block-structured language; variables with loc
❑ Variable size arrays
❑ Structured control statements
❑ Recursive procedures

Successes:
❑ Never displaced FORTRAN, but highly influenced
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COBOL

History:
❑ designed by committee of US computer manufact
❑ targeted business applications
❑ intended to be readable by managers

Innovations:
❑ separate descriptions of environment, data, and p

Successes:
❑ Adopted as de facto standard by US DOD
❑ Stable standard for 25 years
❑ Still the most widely used PL for business applicat
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4GLs

“Problem-oriented” languages
❑ PLs for “non-programmers”
❑ Very High Level (VHL) languages for specific prob

Classes of 4GLs (no clear boundaries):
❑ Report Program Generator (RPG)
❑ Application generators
❑ Query languages
❑ Decision-support languages

Successes:
❑ highly popular, but generally ad hoc
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PL/I

History:
❑ designed by committee of IBM and users (early 19
❑ intended as (large) general-purpose language for

Innovations:
❑ Support for concurrency (but not synchronization)
❑ exception-handling by on  conditions

Successes:
❑ achieved both run-time efficiency and flexibility (at
❑ first “complete” general purpose language
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Interactive Languages

Made possible by advent of time-sharing systems (early 19

BASIC:
❑ developed at Dartmouth College in mid 1960s
❑ minimal; easy to learn
❑ incorporated basic O/S commands (NEW, LIST, D

APL:
❑ developed by Ken Iverson for concise description 
❑ large, non-standard alphabet (52 characters in ad
❑ primitive objects are arrays (lists, tables or matrice
❑ operator-driven (power comes from composing ar
❑ no operator precedence (statements parsed right 
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Special-Purpose Languages

SNOBOL:
❑ first successful string manipulation language
❑ influenced design of text editors more than other P
❑ string operations: pattern-matching and substitutio
❑ arrays and associative arrays (tables)
❑ variable-length strings

Lisp:
❑ performs computations on symbolic expressions
❑ symbolic expressions are represented as lists
❑ small set of constructor/selector operations to crea
❑ recursive rather than iterative control
❑ no distinction between data and programs
❑ first PL to implement storage management by gar
❑ affinity with lambda calculus
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Functional Languages

ISWIM (If you See What I Mean):
❑ Peter Landin (1966) — paper proposal

FP:
❑ John Backus (1978) — Turing award lecture

ML:
❑ Edinburgh
❑ initially designed as meta-language for theorem pr
❑ Hindley-Milner type inference
❑ “non-pure” functional language (with assignments

Miranda, Haskell:
❑ “pure” functional languages with “lazy evaluation”
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Prolog

History:
❑ originated at U. Marseilles (early 1970s), and comp

and Edinburgh (mid to late 1970s)

Innovations:
❑ theorem proving paradigm
❑ programs as sets of clauses: facts, rules and ques
❑ computation by “unification”

Successes:
❑ prototypical logic programming language
❑ used in Japanese Fifth Generation Initiative
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Object-Oriented Languages

History:
❑ Simula was developed by Nygaard and Dahl (earl

language for simulation programming, by adding c
ALGOL 60

❑ Smalltalk was developed by Xerox PARC (early 1
workstations

Innovations:
❑ encapsulation of data and operations (contrast AD
❑ inheritance to share behaviour and interfaces

Successes:
❑ Smalltalk project pioneered OO user interfaces  ...
❑ Large commercial impact since mid 1980s
❑ Countless new languages: C++, Objective C, Eiffe

Python, Java, Ada 95 ...
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Scripting Languages

History:
❑ Countless “shell languages” and “command langu

and configurable applications
❑ Unix shell (ca. 1971) developed as user shell and 
❑ HyperTalk (1987) was developed at Apples to scri
❑ TCL (1990) developed as embedding language an

windows applications (via Tk)

Innovations:
❑ Pipes and filters (Unix shell)
❑ Generalized embedding/command languages (TC

Successes:
❑ Unix Shell, awk, emacs, HyperTalk, AppleTalk, TC
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Summary

You should know the answers to these questions:
❑ What, exactly, is a programming language?
❑ How do compilers and interpreters differ?
❑ Why was FORTRAN developed?
❑ What were the main achievements of ALGOL 60?
❑ Why do we call Pascal a “Third Generation Langu
❑ What is a “Fourth Generation Language”?

Can you answer the following questions?
✎ Why are there so many programming languages?
✎ Why are FORTRAN and COBOL still important progra
✎ What language would you use to implement a spelling

upper-to-lower case? A theorem prover? An address d
A game server for initiating chess games on the intern
network chess client?
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2. Stack-based Programming

Overview
❑ PostScript objects, types and stacks
❑ Arithmetic operators
❑ Graphics operators
❑ Procedures and variables
❑ Arrays and dictionaries

References:

❑ PostScript Language Tutorial and Cookbook, Ad
Addison-Wesley, 1985

❑ PostScript Language Reference Manual, Adobe 
second edition, Addison-Wesley, 1990
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PostScript

PostScript “is a simple interpretive programming language ..
of text, graphical shapes, and sampled images on printed o

❑ introduced in 1985 by Adobe
❑ display standard now supported by all major printe
❑ simple, stack-based programming language
❑ minimal syntax
❑ large set of built-in operators
❑ PostScript programs are usually generated from a

rather than hand-coded
❑ three language variants:

– Level 1: the original 1985 PostScript

– Level 2: additional support for dictionaries, mem

– Display PostScript: special support for screen d
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Syntax

❑ Comments: from “%” to next newline or formfeed
% This is a comment

❑ Numbers: signed integers, reals and radix number
123 -98 0 +17 -.002 34.5 123.6e10 1E-5 8#1777 16#FFE 2#

❑ Strings: text in parentheses or hexadecimal in ang
(Special characters are escaped: \n \t \( \) \\ ...)

❑ Names: tokens that consist of “regular characters”
abc Offset $$ 23A 13-456 a.b $MyDict @pattern

❑ Literal names: start with slash
/buffer /proc

❑ Arrays: enclosed in square brackets
[ 123 /abc (hello) ]

❑ Procedures: enclosed in curly brackets
{ add 2 div } % add top two stack elements and divide
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Semantics

The PostScript interpreter manages four stacks representin
PostScript program:

❑ Operand stack:
☞ holds (arbitrary) operands and results of Post

❑ Dictionary stack:
☞ holds only dictionaries where keys and values

❑ Execution stack:
☞ holds executable objects (e.g. procedures) in

❑ Graphics state stack:
☞ keeps track of current coordinates etc.

A PostScript program is a sequence of tokens, representing
interpreted to manipulate the four stacks and the display.
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ctionary context)

 ...
niversität Bern

Object types

Every object is either literal or executable:

❑ Literal objects are pushed on the operand stack:
☞ integers, reals, string constants, literal names

❑ Executable objects are interpreted:
☞ built-in operators
☞ names bound to procedures (in the current di

Simple Object Types: are copied by value
❑ boolean, fontID, integer, name, null, operator, real

Composite Object Types: are copied by reference
❑ array, dictionary, string ...
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.

2

100 50
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The operand stack

Compute the average of 40 and 60:

40 60 add  2 div

At the end, the result is left on the top of the operand stack

60

40 40 100
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Stack and arithmetic operators

Other arithmetic operators: abs, neg, ceiling, floor, round, tru
log, rand, srand, rrand

num1 num2 add sum num1 +

num1 num2 sub difference num1 -

num1 num2 mul product num1 *

num1 num2 div quotient num1 /

int1 int2 idiv quotient intege

int1 int2 mod remainder int1 mo

num den atan angle arctan

any pop - discard

any1 any2 exch any2 any1 exchan

any dup any any duplic

any1 ... anyn n copy any1 ... anyn any1 ... anyn duplica

anyn ... any0 n index anyn ... any0 anyn duplica
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Drawing a Box

“A path is a set of straight lines and curves that define a reg
that is to be drawn on the current page.”

newpath % clear the current drawing path
100 100 moveto % move to (x,y) coordinate (100,100)
100 200 lineto % draw a line to coordinate (100,200)
200 200 lineto
200 100 lineto
100 100 lineto
10 setlinewidth % set the width for drawing lines
stroke % draw along the current path
showpage % and display the current page
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rdinates
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ith current colour

rrent path

urrent page
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Path construction operators
- newpath - initialize current p

- currentpoint x y return current coo

x y moveto - set current point t

dx dy rmoveto - relative moveto

x y lineto - append straight li

dx dy rlineto - relative lineto

x y r ang1 ang2 arc - append countercl

- closepath - connect subpath 

- fill - fill current path w

- stroke - draw line along cu

- showpage - output and reset c
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7 cm = 840 points

5, 840)
niversität Bern

Coordinates

Coordinates are measured in points:
☞ 72 points = 1 inch = 2.54 cm.

21 cm = 595 points

29.
A4 paper

(0,0)

(59
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Hello World

Before you can print text, you must (1) look up the desired fo
size, and (3) set it to be the current font.

/Times-Roman findfont % look up the Times Roman 
18 scalefont % scale it to 18 points
setfont % set this to be the current fo

100 500 moveto % go to coordinate (100, 500
(Hello world) show % draw the string “Hello worl
showpage % render the current page

Hello world
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ent font
niversität Bern

Character and font operators

key findfont font return font dict ident

font scale scalefont font’ scalefont by scale to p

font setfont - set font dictionary

- currentfont font return current font

string show - print string

string stringwidth wx wy width of string in curr
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 literal or executable objects.

 “{ add 2 div }”

value in current dictionary

0 2

40 100 100 50
niversität Bern

Procedures and Variables

Variables and procedures are defined by binding names to

Define a general procedure to compute averages:

/average { add 2 div } def % bind the name “average” to

40 60 average

key value def - associatekey and

{ add 2 div } 6

/average /average 40
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A Box procedure
Most PostScript programs are separated into a prologue an

% Prologue -- application specific procedures

/box { % grey x y -> __
newpath
moveto % x y -> __
0 150 rlineto % relative lineto
150 0 rlineto
0 -150 rlineto
closepath % cleanly close path!
setgray % grey -> __
fill % colour in region

} def

% Script -- usually generated

0 100 100 box
0.4 200 200 box
0.6 300 300 box
0 setgray

showpage
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 operators
dth

 to gray value from 0
 1 (white)

 space bysx andsy

r space byangle degrees

ser space by (tx, ty)

ntity matrix

with CTM

TM bymatrix

hics state

aphics state
niversität Bern

Graphics state and coordinate
num setlinewidth - set line wi

num setgray - set colour
(black) to

sx sy scale - scale use

angle rotate - rotate use

tx ty translate - translate u

- matrix matrix create ide

matrix currentmatrix matrix fill matrix 

matrix setmatrix - replace C

- gsave - save grap

- grestore - restore gr
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A Fibonacci Graph
/fibInc { % m n -> n (m+n)

exch % m n -> n m
1 index % n m -> n m n
add

} def

/x 0 def
/y 0 def
/dx 10 def

newpath
100 100 translate % make (100, 100) the origin
x y moveto % i.e., relative to (100, 100)
0 1
25 {

/x x dx add def % increment x
dup /y exch 100 idiv  def % set y to 1/100 last fib value
x y lineto % draw segment
fibInc

} repeat

2 setlinewidth
stroke

showpage
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Factorial
Numbers and other objects must be converted to strings be

/LM 100 def % left margin
/FS 18 def % font size
/sBuf 20 string  def % string buffer of length 20

/fact { % n -> n!
dup 1 lt % -> n bool
{ pop  1 } % 0 -> 1
{

dup % n -> n n
1 % -> n n 1
sub % -> n (n-1)
fact % -> n (n-1)! NB: recursive look
mul % n!

}
ifelse

} def

/showInt { % n -> __
sBuf cvs  show % convert an integer to a string and s

} def

int string string create string of cap

any string cvs substring convert to string
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0! = 1
1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 3628800
11! = 39916800
12! = 479001600
13! = 6.22702e+09
14! = 8.71783e+10
15! = 1.30767e+12
16! = 2.09228e+13
17! = 3.55687e+14
18! = 6.40237e+15
19! = 1.21645e+17
20! = 2.4329e+18
niversität Bern

/showFact { % n -> __
dup showInt % show n
(! = ) show % ! =
fact showInt % show n!

} def

/newline { % __ -> __
currentpoint  exch pop % get current y
FS 2 add sub % subtract offset
LM exch moveto % move to new x y

} def

/Times-Roman findfont FS scalefont setfont
LM 600 moveto

0 1 20 { showFact newline } for % do from 0 to 20

showpage
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rators

e

 true

 true elseproc2

esinit to limit by steps ofincr

instring

onindex

ositionindex

 element ofstring
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Boolean, control and string ope
any1 any2 eq bool test equal

any1 any2 ne bool test not equal

any1 any2 ge bool test greater or equal

- true true push boolean valuetru

- false bool test equal

bool proc if - executeproc if bool is

bool proc1 proc2 ifelse - executeproc1 if bool is

init incr limit proc for - executeproc with valu

int proc repeat - executeproc int times

string length int number of elements 

string index get int get element at positi

string index int put - put int into string at p

string proc forall - executeproc for each
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Now is the time for 
all good men to 
come to the aid of 
the party. 

s
 RM

_

niversität Bern

A simple formatter
/LM 100 def % left margin
/RM 250 def % right margin
/FS 18 def % font size

/showStr { % string -> __
dup stringwidth  pop % get (just) string’s width
currentpoint pop % current x position
add % where printing would bring u
RM gt  { newline } if % newline if this would overflow
show

} def

/newline { % __ -> __
currentpoint exch pop % get current y
FS 2 add sub % subtract offset
LM exch moveto % move to new x y

} def

/format { { showStr ( ) show } forall  } def % array -> _

/Times-Roman findfont FS scalefont setfont
LM 600 moveto

[ (Now) (is) (the) (time) (for) (all) (good) (men) (to)
(come) (to) (the) (aid) (of) (the) (party.) ] format

showpage
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Array and dictionary operators
- [ mark start array cons

mark obj0 ... objn-1 ] array end array const

int array array create array of 

array length int number of elem

array index get any get element atind

array index any put - put element atind

array proc forall - executeproc for e

int dict dict create dictionar

dict length int number of key-v

dict maxlength int capacity

dict begin - pushdict on dict 

- end - pop dict stack
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Arrowheads
/arrowdict 14 dict def % make a new di

arrowdict begin
/mtrx matrix  def % allocate space

end

/arrow {
arrowdict begin % open the d

/headlength exch def % pick up the
/halfheadthickness exch 2 div def
/halfthickness exch 2 div def
/tipy exch def
/tipx exch def
/taily exch def
/tailx exch def

/dx tipx tailx sub def
/dy tipy taily sub def
/arrowlength dx dx mul dy dy mul add sqrt  def
/angle dy dx atan  def
/base arrowlength headlength sub def

/savematrix mtrx currentmatrix  def % save the co

tailx taily translate % translate to
angle rotate % rotate coor
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0 halfthickness neg  moveto % draw a
base halfthickness neg lineto
base halfheadthickness neg lineto
arrowlength 0 lineto
base halfheadthickness lineto
base halfthickness lineto
0 halfthickness lineto
closepath

savematrix setmatrix % restore
end

} def

h

headthickness

thickness

(tipx, tipy)

(tailx, taily)
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Instantiating Arrows

newpath
318 340 72 340 10 30 72 arrow

fill

newpath
382 400 542 560 72 232 116 arrow

3 setlinewidth stroke

newpath
400 300 400 90 90 200 200 3 sqrt mul 2 div arrow

.65 setgray fill

showpage
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Encapsulated PostScript

EPSF is a standard format for importing and exporting Pos
applications.

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 90 490 200 520
/Times-Roman findfont
        18 scalefont
        setfont
100 500 moveto
(Hello world) show
showpage

Hello world

(90, 490)

(200, 520
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Summary

You should know the answers to these questions:
❑ What kinds of stacks does PostScript manage?
❑ When does PostScript push values on the operan
❑ What is a path, and how can it be displayed?
❑ How do you manipulate the coordinate system?
❑ Why would you define your own dictionaries?
❑ How do you compute a bounding box for your Pos

Can you answer the following questions?

✎ How would you program this graphic?

✎ When should you use translate  instead of moveto ?
✎ How could you use dictionaries to simulate object-orien

zapzapzapzapzapzapzapzapzapzapzapzapzapzapzapzapzapzapzapzapzap
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3. Functional Programming

Overview
❑ Functional vs. Imperative Programming
❑ Referential Transparency
❑ Recursion
❑ Pattern Matching
❑ Higher Order Functions
❑ Lazy Lists

References:
❑ Paul Hudak, “Conception, Evolution, and Applicati

Programming Languages,” ACM Computing Surve
❑ Paul Hudak and Joseph H. Fasel, “A Gentle Introd

SIGPLAN Notices, vol. 27, no. 5, May 1992, pp. T
❑ J. Peterson and K. Hammond (editors). Report on

Haskell, A Non-strict Purely Functional Language (V
Feb. 1997
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A Bit of History

Lambda Calculus (Church, 1932-33):
☞ formal model of computation

Lisp (McCarthy, 1960):
☞ symbolic computations with lists

APL (Iverson, 1962):
☞ algebraic programming with arrays

ISWIM (Landin, 1966):
☞ let and where clauses
☞ equational reasoning; birth of “pure” functiona

ML (Edinburgh, 1979):
☞ originally meta language for theorem proving

SASL, KRC, Miranda (Turner, 1976-85):
☞ lazy evaluation

Haskell (Hudak, Wadler, et al., 1988):
☞ “Grand Unification” of functional languages ...
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Programming without State

Programs in pure functional languages have no explicit sta
Programs are constructed entirely by composing expressio

Imperative style:
n := x;
a := 1;
while  n>0 do
begin  a:= a*n;

n := n-1;
end ;

Declarative (fu
fac n = if

the
els
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Pure Functional Programming L

What is a Program?
A program (computation) is a transformation from input dat

Imperative Programming:
☞ Program = Algorithms + Data

Functional Programming:
☞ Program = Functions  Functions

Key features of pure functional languages:
1. All programs and procedures are functions
2. There are no variables or assignments — only inpu
3. There are no loops — only recursive functions
4. The value of a function depends only on the values
5. Functions are first-class values
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Haskell

Haskell is a general purpose, purely functional progra
incorporating many recent innovations in programmin
Haskell provides higher-order functions, non-strict se
polymorphic typing, user-defined algebraic datatypes
comprehensions, a module system, a monadic I/O sy
primitive datatypes, including lists, arrays, arbitrary a
integers, and floating-point numbers. Haskell is both 
solidification of many years of research on lazy functi

— The Has
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Referential Transparency

A function has the property of referential transparency if its
values of its parameters.

✎ Does f(x)+f(x) equal 2*f(x) ? In C? In Haskell?

Referential transparency means that “equals can be replac

In a pure functional language, all functions are referentially
always yield the same result no matter how often they are c
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Evaluation of Expressions

Expressions can be (formally) evaluated by substituting argu
in function bodies:

fac 4 ➪ if 4 == 0 then 1 else 4 * fac (4-1)

➪ 4 * fac (4-1)

➪ 4 * (if (4-1) == 0 then 1 else (4-1) * fac (4-1-1))

➪ 4 * (if 3 == 0 then 1 else (4-1) * fac (4-1-1))

➪ 4 * ((4-1) * fac (4-1-1))

➪ 4 * ((4-1) * (if (4-1-1) == 0 then 1 else (4-1-1) * fac (4-1-1

➪ ...

➪ 4 * ((4-1) * ((4-1-1) * ((4-1-1-1) * 1)))

➪ ...

➪ 24

Of course, real functional languages are not implemented b
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Tail Recursion
Recursive functions can be less efficient than loops becaus
procedure calls on most hardware.

☞ A tail recursive function calls itself only as its la
call can be optimized away by a modern com

A recursive function can be converted to a tail-recursive on
computations as explicit function parameters:

sfac s n = if n == 0
then s
else sfac (s*n) (n-1)

sfac 1 4 ➪ sfac (1*4) (4-1)

➪ sfac 4 3

➪ sfac (4*3) (3-1)

➪ sfac 12 2

➪ sfac (12*2) (2-1)

➪ sfac 24 1

➪ ... ➪ 24
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Equational Reasoning
Theorem:

For all n >= 0, fac n  = sfac 1 n

Proof of theorem:
n = 0: fac 0  = sfac 1 0  = 1

n > 0: Suppose fac (n-1)  = sfac 1 (n-1)

fac n = n * fac (n-1)
= n * sfac 1 (n-1)
= sfac n (n-1) — by
= sfac 1 n

Lemma:
For all n >= 0, sfac s n  = s * sfac 1 n

Proof of lemma:
n = 0: sfac s 0  = s  = s * sfac 1 0

n > 0: Suppose sfac s (n-1)  = s * sfac 1 (n-

sfac s n = sfac (s*n) (n-1)
= s * n * sfac 1 (n-1)
= s * sfac n (n-1)
= s * sfac 1 n



Programmiersprachen 56.

U Functional Programming

ifying which expressions

) = (n+1) * fac’ n
niversität Bern

Pattern Matching

Languages like Haskell support a number of styles for spec
should be evaluated for different cases of arguments:

Patterns:
fac' 0 = 1
fac' n = n * fac' (n-1) -- or:  fac’ (n+1

Guards:
fac'' n | n == 0 = 1

| n >= 1 = n * fac'' (n-1)
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Lists

Lists are pairs of elements and lists of elements:
❑ [ ] stands for the empty list
❑ x:xs stands for the list with x  as the head and
❑ [1,2,3] is syntactic sugar for 1:2:3:[ ]

❑ [1..n] stands for [1,2,3, ... n]

Lists can be deconstructed using patterns:
head (x:_) = x

len [ ] = 0
len (x:xs) = 1 + len xs

prod [ ] = 1
prod (x:xs) = x * prod xs

fac''' n = prod [1..n]
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Higher Order Functions

Higher-order functions treat other functions as first-class va
to produce new functions.

map f [ ] = [ ]
map f (x:xs) = f x : map f xs

map fac [1..5]

➪ [1, 2, 6, 24, 120]

Anonymous functions can be written as “lambda abstractio

map (\x -> x * x) [1..10]

➪ [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

NB: map fac  is a new function that can be applied to lists
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Curried functions

A Curried function takes its arguments one at a time, allowin
order function.

plus x y = x + y -- curried addition

plus 1 2 ➪ 3

inc = plus 1 -- bind first argumen

inc 2 ➪ 3

fac = sfac 1 -- factorial binds firs
where sfac s n -- a curried factorial

| n == 0 = s
| n >= 1= sfac (s*n) (n-1)

Curried functions are named after the logician H.B. Curry, w
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Currying

The following higher-order function takes a binary function 
into a curried function:

curry f a b = f (a, b) -- take a binary 

plus(x,y) = x + y -- not a curried 

inc = curry plus 1 -- bind first argu

sfac (s, n) = if n == 0 -- not a curried 
then s
else sfac (s*n, n-1)

fac = (curry sfac) 1 -- bind first argu
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Multiple Recursion

Naive recursion may result in unnecessary recalculations:
fib 1 = 1
fib 2 = 1

fib (n+2) = fib n + fib (n+1)

Efficiency can be regained by explicitly passing calculated 
fib' 1 = 1
fib' n = a where (a,_) = fibPair n

fibPair 1 = (1,1)
fibPair (n+2) = (a+b,a) where (a,b) = fibPair (n+1)

✎ How would you write a tail-recursive Fibonacci function
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Lazy Evaluation

“Lazy”, or “normal-order” evaluation only evaluates express
needed. Clever implementation techniques (Wadsworth, 19
expressions to be shared, and thus avoid needless recalcu
So:

sqr n = n * n

sqr (2+5) ➪ (2+5) * (2+5) ➪ 7 * 7 ➪ 49

Lazy evaluation allows some functions to be evaluated even
or non-terminating arguments:

ifTrue True x y = x
ifTrue False x y = y

ifTrue True 1 (5/0)

➪ 1
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Lazy Lists
Lazy lists are infinite data structures whose values are gen

from n = n : from (n+1)

take 0 _ = [ ]
take _ [ ] = [ ]
take (n+1) (x:xs) = x : take n xs

take 5 (from 10)

➪ [10, 11, 12, 13, 14]

NB: The lazy list (from n) has the special syntax: [n..]
fibs = 1 : 1 : fibgen 1 1

where fibgen a b = (a+b) : fibgen b (a+b)

take 10 fibs

➪ [ 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 ]

✎ How would you re-write fibs so that (a+b) only appears
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Functional Programming Style
Functional programs can often be derived in a top-down fas

primes = 2 : primesFrom 3 -- or jus

primesFrom n = p : primesFrom (p+1)
where p = nextPrime n

nextPrime n
| isPrime n = n
| otherwise = nextPrime (n+1)

isPrime 2 = True
isPrime n = notdiv primes n

notdiv (k:ps) n
| (k*k) > n = True
| (mod n k) == 0 = False
| otherwise = notdiv ps n

take 100 primes ➪ [ 2, 3, 5, 7, 11, 13, ... 523, 541 ]
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Summary

You should know the answers to these questions:
❑ What is referential transparency? Why is it importa
❑ When is a function tail recursive? Why is this usef
❑ What is a higher-order function? An anonymous fu
❑ What are curried functions? Why are they useful?
❑ How can you avoid recalculating values in a multip
❑ What is lazy evaluation?
❑ What are lazy lists?

Can you answer the following questions?
✎ Why don’t pure functional languages provide loop cons
✎ When would you use patterns rather than guards to sp
✎ Can you build a list that contains both numbers and fun
✎ How would you simplify fibs  so that (a+b)  is only ca
✎ What kinds of applications are well-suited to functional
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4. Type Systems

Overview
❑ What is a Type?
❑ Static vs. Dynamic Typing
❑ Kinds of Types
❑ Polymorphic Types
❑ Overloading
❑ User Data Types

References:
❑ Paul Hudak, “Conception, Evolution, and Applicati

Programming Languages,” ACM Computing Surve
411.

❑ L. Cardelli and P. Wegner, “On Understanding Typ
Polymorphism,’“ACM Computing Surveys, 17/4, D

❑ D. Watt, Programming Language Concepts and Pa
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What is a Type?
Type errors:

? 5 + [ ]
ERROR: Type error in application
*** expression : 5 + [ ]
*** term : 5
*** type : Int
*** does not match : [a]

A type is a set of values:
❑ int  = { ... -2, -1, 0, 1, 2, 3, ... }
❑ bool  = { True , False  }
❑ Point  = { [x=0,y=0] , [x=1,y=0] , [x=0,y=1]

A type is a partial specification of behaviour:
❑ n,m:int ⇒ n+m is valid, but not(n)  is an error
❑ n:int ⇒ n := 1 is valid, but n := “hello world”

What kinds of specifications are interesting? Useful?



Programmiersprachen 68.

U Type Systems

age.
 by the values they assume

rmine the (static) type of an

very expression is type

e. Variables and parameters
ed immediately before they

checking, (ii) type inference,
niversität Bern

Static and Dynamic Typing

Values have static types defined by the programming langu
Variables and expressions have dynamic types determined
at run-time.

A language is statically typed if it is always possible to dete
expression based on the program text alone.

A language is strongly typed if it is possible to ensure that e
consistent based on the program text alone.

A language is dynamically typed if only values have fixed typ
may take on different types at run-time, and must be check
are used.

Type consistency may be assured by (i) compile-time type-
or (iii) dynamic type-checking.
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Kinds of Types

All programming languages provide some set of built-in typ

Most strongly-typed modern languages provide for addition
❑ Primitive types:  booleans, integers, floats, chars 
❑ Composite types:  functions, lists, tuples ...
❑ User-defined types:  enumerations, recursive typ

The Type Completeness Principle (Watt):

No operation should be arbitrarily restricted in the typ

First-class values can be evaluated, passed as arguments 
composite values. Functional languages attempt to make no
imperative languages typically treat functions (at best) as s
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Function Types

Function types allow one to deduce the types of expressions
them:

fact :: Int -> Int

42 :: Int ⇒ fact 42 :: Int

Curried types:
t1 -> t2 -> ... -> tn ≡ t1 -> (t2 -> ( ... -> tn) ...)

and
f x1 x2 ... xm ≡ ( ... ((f x1) x2) ... xm).

so:
(+) :: Int -> Int -> Int ⇒ (+) 5 :: Int -> Int
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List and Tuple Types

List Types
A list of values of type a has the type [a] :

[ 1 ] :: [ Int ]

NB: All of the elements in a list must be of the same type!
['a', 2, False] --  this is illegal! can’t be typed!

Tuple Types
If the expressions x1 , x2 , ..., xn  have types t1 , t2 , ..., tn  
then the tuple (x1, x2, ..., xn) has the type (t1, t2, ..

(1, [2], 3) :: (Int, [Int], Int)

('a', False) :: (Char, Bool)

((1,2),(3,4)) :: ((Int, Int), (Int, Int))

The unit type is written ()  and has a single element which 
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Polymorphism

Languages like Pascal have monomorphic type systems: e
parameter and function result has a unique type.

☞ good for type-checking
☞ bad for writing generic code

A polymorphic function accepts arguments of different type
length :: [a] -> Int
length [ ] = 0
length (x:xs) = 1 + length xs

map :: (a -> b) -> [a] -> [b]
map f [ ] = [ ]
map f (x:xs) = f x : map f xs

(.) :: (b -> c) -> (a -> b) -> (a -> c)
(f . g) x = f (g x)
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Composing polymorphic types

We can deduce the types of expressions using polymorphic
type variables to concrete types.

Consider:
length :: [a] -> Int
map :: (a -> b) -> [a] -> [b]

Then:
map length :: [[a]] -> [Int]

[ “Hello”, “World” ] :: [[Char]]

map length [ “Hello”, “World” ] :: [Int]



Programmiersprachen 74.

U Type Systems

m for automatically
onding type system is used
skell.
niversität Bern

Polymorphic Type Inference

Hindley-Milner Type Inference provides an effective algorith
determining the types of polymorphic functions. The corresp
in many modern functional languages, including ML and Ha

map f [ ] = [ ]

map f (x:xs) = f x : map f xs

map :: X -> Y -> Z

map :: (a -> b) -> [ c ] -> [ d ]

map :: (a -> b) -> [ a ] -> [ b ]
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Type Specialization

A polymorphic function may be explicitly assigned a more s

idInt :: Int -> Int
idInt x = x

Note that the :t command can be used to find the type of a 
inferred by Haskell:

? :t \x -> [x]
\x -> [x] :: a -> [a]

? :t (\x -> [x]) :: Char -> String
\x -> [x] :: Char -> String
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Kinds of Polymorphism

Polymorphism:
❑ Universal:

– Parametric: polymorphic map function in Haske
Pascal

– Inclusion: subtyping — graphic objects

❑ Ad Hoc:

– Overloading: + applies to both integers and rea

– Coercion: integer values can be used where re

Coercion or overloading — how does one distinguish?
3 + 4

3.0 + 4

3 + 4.0
3.0 + 4.0
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Overloading
Overloaded operators are introduced by means of type clas

class  Eq a where
(==), (/=) :: a -> a -> Bool

x /= y = not (x == y)

For each overloaded instance a separate definition must be
instance  Eq Int where  (==) = primEqInt

instance  Eq Bool where
True == True = True
False == False = True
_ == _ = False

instance  Eq Char where  c == d = ord c == ord d

instance  (Eq a, Eq b) => Eq (a,b) where
(x,y) == (u,v) = x==u && y==v

instance  Eq a => Eq [a] where
[ ] == [ ] = True
[ ] == (y:ys) = False
(x:xs) == [ ] = False
(x:xs) == (y:ys) = x==y && xs==ys
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User Data Types

New data types can be introduced by specifying (i) a dataty
parameter types, and (iii) a set of constructors for elements

data  DatatypeName a1 ... an = constr1 | ... | constrm

where the constructors may be:

1. Named constructors:
Name type1 ... typek

introduces Name as a new constructor of type:
type1 -> ...-> typek -> DatatypeName a1 ... an

2. Binary constructors (i.e., starting with “:”):
type1 CONOP type2

introduces (CONOP) as a new constructor of type:
type1 -> type2 -> DatatypeName a1 ... an
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Examples of User Data Types

Enumeration types:

data  Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

whatShallIDo Sun = “relax”
whatShallIDo Sat = “go shopping”
whatShallIDo _ = “looks like I'll have to go to wor

Union types:

data  Temp = Centigrade Float | Fahrenheit Float

freezing :: Temp -> Bool
freezing (Centigrade temp) = temp <= 0.0
freezing (Fahrenheit temp) = temp <= 32.0
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Recursive Data Types
data  Tree a = Lf a | Tree a :^: Tree a

mytree = (Lf 12 :^: (Lf 23 :^: Lf 13)) :^: Lf 10

? :t mytree

➪ mytree :: Tree Int

leaves, leaves' :: Tree a -> [a]
leaves (Lf l) = [l]
leaves (l :^: r) = leaves l ++ leaves r

leaves' t = leavesAcc t [ ]

where leavesAcc (Lf l) = (l:)
leavesAcc (l :^: r) = leavesAcc l . leavesAcc r

✎ What do these functions do? Which function should be

Lf 12

Lf 23 Lf 13

:^:

:^:

:^:

mytree =
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Equality for Data Types and Fun

Why not automatically provide equality for all types of value
Syntactic equality does not necessarily entail semantic equ

User data types:
data  Set a = Set [a]

instance  Eq a => Eq (Set a) where
Set xs == Set ys = xs `subset` ys && ys `subset` xs

where  xs `subset` ys = all (`elem` ys) xs

Functions:
? (1==) == (\x->1==x)
ERROR: Cannot derive instance in expression
*** Expression        : (==) d148 ((==) {dict} 1) (\x->(==) {dict} 1 x)
*** Required instance : Eq (Int -> Bool)
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Summary

You should know the answers to these questions:
❑ How are the types of functions, lists and tuples sp
❑ How can the type of an expression be inferred wit
❑ What is a polymorphic function?
❑ How can the type of a polymorphic function be infe
❑ How does overloading differ from parametric polym
❑ How would you define == for tuples of length 3?
❑ How can you define your own data types?
❑ Why isn’t == pre-defined for all types?

Can you answer the following questions?
✎ Can any set of values be considered a type?
✎ Why does Haskell sometimes fail to infer the type of an
✎ What is the type of the predefined function all ? How 
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5. An application of Functional

➪ Students please: review these notes in 
Overview

❑ Huffmann encoding
☞ variable length encoding based on character 
☞ optimal encoding generation algorithm

❑ Architecture of a functional Huffmann encoder
❑ How to use recursion correctly ☞ ensuring termina
❑ Representing and manipulating trees
❑ Encoding trees as text; parsing stored trees
❑ Continuation-style IO
❑ “It doesn’t always pay to be lazy!” — forcing eager

References:
❑ H. Abelson, G. Sussman and J.Sussman, Structur

Computer Programs, MIT electrical engineering an
McGraw-Hill, 1991.
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Encoding ASCII

"I am what I am."

Naive encoding requires at least 4 bits to encode 9 differen

16 characters x 4 bits/character = 64 bits
0000 0001 0010 0011 0100 0010 0101 0110 0011 0111 0010 0001 001

" 0000

I 0001

(blank) 0010

a 0011

m 0100

w 0101

h 0110

t 0111

. 1000
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Huffmann encoding

Huffmann encoding assigns fewer bits to more frequently u

4×2 + 9×3 + 4×4 = 51 bits
011 100 00 010 101 00 1100 1101 010 1110 00 100 00 010 101 011

char frequency enco

(blank) 4 00

a 3 010

" 2 011

I 2 100

m 2 101

w 1 110

h 1 110

t 1 111

. 1 111



Programmiersprachen 86.

U application of Functional Programming

 to walk down the encoding

t .

0

1

1

niversität Bern An 

Huffmann decoding

A Huffmann encoded text can be decoded by using the bits
tree and outputting the characters at the leaves:

(blank)

a "

w

m

h

I

0

0

0 0 0

0

1

1

1 1

1

1 0
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Generating optimal trees

Huffmann’s algorithm generates the optimal encoding/deco
merging the two “smallest” (by weight) subtrees:

➪ blank4 a3 I2 m2 w1 h1 t1 .1
➪ blank4 a3 I2 m2 w1 h1 (t .)2
➪ blank4 a3 I2 m2 (w h)2 (t .)2
➪ blank4 a3 I2 m2 ((w h) (t .))4
➪ blank4 a3 (I m)4 ((w h) (t .))4
➪ (blank a)7 (I m)4 ((w h) (t .))4
➪ (blank a)7 ((I m) ((w h) (t .)))8
➪ ((blank a) ((I m) ((w h) (t .))))15

✎ Write a program to Huffmann encode and decode text 
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Architecture

Plain text file

Cipher text file

Huffmann tree file

Ch
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Frequency Counting
We can represent frequency counts as lists of pairs of Cha

-- Each Char appears Int (>0) times in some text
type CharCount = (Char,Int)

-- Compute a [CharCount] for a given String
freqCount :: String -> [CharCount]
freqCount "" = []
freqCount (c:s) = incCount c (freqCount s)

-- Increment the [CharCount] for a given Char
incCount :: Char -> [CharCount] -> [CharCount]
incCount c [] = [(c,1)]
incCount c ((c1,n):ccList)

| c == c1 = (c1,n+1):ccList
| otherwise = (c1,n):(incCount c ccList)

So:
iam = "\"I am what I am.\""

freqCount iam ➪ [('"',2), ('.',1), ('m',2), ('a',3), (' ',4),
('I',2), ('t',1), ('h',1), ('w',1)]
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How to use recursion correctly!

In order to ensure that a recursive function will terminate:

1. Carefully establish the base cases:

freqCount "" = []

☞ base case is an empty string

2. Ensure that every recursive invocation reduces som
therefore will eventually reach a base case

freqCount (c:s) = incCount c (freqCount s)

☞ recursive call reduces length of argument stri
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Trees

We can represent a Huffmann tree as a user data type:

data Tree a = Leaf a
| Tree a :^: Tree a

-- Weigh a Tree
weight :: Tree CharCount -> Int
weight (Leaf (ch,n)) = n
weight (tree1 :^: tree2) = (weight tree1) + (weight tree2)

Constructors are functions too:
map Leaf (freqCount iam) ➪ [ Leaf ('"',2), Leaf ('.',1), Leaf ('m

Leaf ('a',3), Leaf (' ',4), Leaf (
Leaf ('t',1), Leaf ('h',1), Leaf (

map weight (map Leaf (freqCount iam))

➪ [ 2, 1, 2, 3, 4, 2, 1, 1, 1 ]
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Merging trees

We can decompose tree merging by means of a helper fun
-- Recursively merge smallest trees together till a single tree results
mergeTrees :: [Tree CharCount] -> Tree CharCount
mergeTrees [tree] = tree -- base case: al
mergeTrees (tree1:tree2:treeList) -- otherwise

| w1 < w2 = mt treeList tree1 tree2 []
| otherwise = mt treeList tree2 tree1 []

where { w1 = (weight tree1); w2 = (weight tree2) }

-- Usage: mt untested tr1 tr2 tested, where weight(tr1) < weight(tr2) an
-- tested is a list of trees with weights bigger than either tr1 or tr2

mt [] tr1 tr2 [] = tr1 :^: tr2
mt [] tr1 tr2 tested = mergeTrees ((tr1 :^: tr2):tested)
mt (tr3:untested) tr1 tr2 tested

| w3 < w1 = mt untested tr3 tr1 (tr2:tested)
| w3 < w2 = mt untested tr1 tr3 (tr2:tested)
| otherwise = mt untested tr1 tr2 (tr3:tested)

where { w1 = (weight tr1); w2 = (weight tr2); w3 = (weight tr3

✎ Is there a more efficient way to merge trees?
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Tree merging ...

mergeTrees (map Leaf (freqCount iam))

➪ ( ( Leaf ('m',2)
:^:
( Leaf ('w',1) :^: Leaf ('h',1) )

)
:^:
( ( Leaf ('.',1) :^: Leaf ('t',1) )

:^:
Leaf ('"',2)

)
)
:^:
( Leaf (' ',4)

:^:
( Leaf ('I',2) :^: Leaf ('a',3) )

)
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Extracting the Huffmann tree

We remove the character counts to leave the Huffmann tre
-- Strip out the character counts from a Tree of CharCounts
charTree :: Tree CharCount -> Tree Char
charTree (Leaf (ch,n)) = Leaf ch
charTree (tr1 :^: tr2) = (charTree tr1) :^: (charTree tr2)

-- Generate an optimal Huffmann encoding tree for a piece of text
huf :: String -> Tree Char
huf text = charTree (mergeTrees (map Leaf (freqCount text)))

huf iam ➪ ( ( Leaf 'm'
:^: ( Leaf 'w' :^: Leaf 'h'))

:^: (( Leaf '.' :^: Leaf 't')
:^: Leaf '"' ) )

:^: ( Leaf ' '
:^:
( Leaf 'I' :^: Leaf 'a'))

NB: The resulting tree is not necessarily unique.
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Extracting the encoding map

To encode text, we need to store the path to each Char in t

-- From a Huffmann tree, generate the encoding map
mkEncode :: String -> (Tree Char) -> [(Char, String)]
-- remember the path to this char
mkEncode prefix (Leaf ch) = [(ch, prefix)]

-- walk the tree, remembering which path is taken
mkEncode prefix (tr1 :^: tr2) = (mkEncode (prefix ++ "0") tr1) ++

(mkEncode (prefix ++

mkEncode "" (huf iam)

➪ [('m',"000"), ('w',"0010"), ('h',"0011"), ('.',"0100"), ('t',"0101"),
('"',"011"), (' ',"10"), ('I',"110"), ('a',"111")]
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Applying the encoding map

To encode text, we just look up characters in the encoding 

-- lookup a char in an encoding map
encChar :: [(Char, String)] -> Char -> String
encChar [] _ = undefined -- shoul
encChar ((ch,str):table) c

| c == ch = str
| otherwise = encChar table c

encode :: Tree Char -> String -> String
encode tree text = foldr (++) "" (map (encChar (mkEncode "" tree)) text

encode (huf iam) iam ➪ 01111010111000100010001111101011

NB: foldr  is defined in the standard prelude:
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)
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Decoding by walking the tree

To decode text, we just walk the tree, keeping a copy of the
over from the root each time we reach a leaf:

decode :: Tree Char -> String -> String
decode tree = walk tree tree -- NB: highe

walk :: Tree Char -> Tree Char -> String -> String
walk tree (tr1 :^: tr2) ('0':rest) = walk tree tr1 rest
walk tree (tr1 :^: tr2) ('1':rest) = walk tree tr2 rest
walk tree (Leaf ch) rest = [ch] ++ walk tree tree rest
walk tree nav [] = []

decode (huf iam) (encode (huf iam) iam) ➪ "\"I am what I 
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Representing trees as text

We need a way to store Huffmann trees as plain text.
We represent leaves by their character values, and intermed
expressions, but we must take care to encode parentheses

-- Show a Tree Char as a Lisp-style parenthesized string
showTree :: Tree Char -> String
showTree (Leaf ch)

| ch == '(' = "\\("
| ch == ')' = "\\)"
| ch == '\\' = "\\\\"
| ch == '\n' = "\\n"
| otherwise = [ch]

showTree (tr1 :^: tr2) = "(" ++ (showTree tr1) ++ (showTree tr2) ++ 

showTree (huf iam) ➪ (((m(wh))((.t)"))( (Ia)))

showTree (huf "()\\\n") ➪ "((\\\\\\n)(\\(\\)))"

putStr (showTree (huf "()\\\n")) ➪ ((\\\n)(\(\)))
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Using a stack to parse stored tr

Naturally, we need a way to parse and reconstruct the store
A standard solution is to push the leaves on a stack of trees,
every time a right parenthesis is encountered:

Example:
((ab)(cd))

If the parentheses are balanced, a single tree will be left on

d

b c c c^d

a a a^b a^b a^b a^b
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Parsing stored trees
-- Parse a Lisp-style parenthesized string, generating a Tree Char
parseTree :: String -> Tree Char
parseTree = pt []

pt :: [Tree Char] -> String -> Tree Char
pt [tree] [] = tree
pt stack (ch:str)

| ch == '(' = pt stack str
| ch == ')' = pt (join stack) str
| ch == '\\' = pt (Leaf (unescape (head str)):stack) (tail str)
| otherwise = pt (Leaf ch:stack) str

-- join the top two trees of the stack into one
join :: [Tree a] -> [Tree a]
join (tr1:tr2:stack) = (tr2:^:tr1):stack

-- unescape the character following a backslash
unescape :: Char -> Char
unescape '(' = '('
unescape ')' = ')'
unescape '\\' = '\\'
unescape 'n' = '\n'

parseTree (showTree (huf "()\\\n"))

➪ (Leaf '\' :^: Leaf '\n') :^: (Leaf '(' :^: Leaf ')')
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Reading and Writing Files

Now we just need some functions to read the input file and

-- reads a plain text file and generates the cipher and tree files
enc :: FilePath -> IO ()
-- reads the cipher and tree files and regenerates the plain text file
dec :: FilePath -> IO()

There are standard libraries for dealing with user and file I/O

✎ How can you make sense of I/O in a purely functional w

See chapter 7 of “A Gentle Introduction to Haskell” for the c
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Testing the program

From shell:
echo '"I am what I am."' > iam

From Haskell:
enc "iam"

From shell:
% cat iam.huf

➪ ((((\n.)(wh)) )((mI)((t")a)))

% cat iam.enc

➪ 110110101111100010010001111111000110101111100000111010

From Haskell:
enc "huf"

➪ (5339 reductions, 16064 cells)
ERROR: Control stack overflow
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Tracing our program

Because Haskell is a "lazy" language, no expression is eva
needed:

freqCount "abc"
>>>> freqCount "abc"
===> incCount 'a' (freqCount "bc")
===> incCount 'a' (incCount 'b' (freqCount "c"))
===> incCount 'a' (incCount 'b' (incCount 'c' (freqCount "")))
===> incCount 'a' (incCount 'b' (incCount 'c' []))
===> incCount 'a' (incCount 'b' (('c',1) : []))
===> incCount 'a' (('c',1) : incCount 'b' [])
===> ('c',1) : incCount 'a' (incCount 'b' [])
===> ('c',1) : incCount 'a' (('b',1) : [])
===> ('c',1) : ('b',1) : incCount 'a' []
===> ('c',1) : ('b',1) : ('a',1) : []
(26 reductions, 97 cells)

Although the frequency count list will have a maximum size
nothing will be evaluated until the entire file has been read!
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Frequency Counting Revisited

We need frequency counting to be evaluated eagerly!
We can force evaluation by requiring values to be produced

-- eager, tail-recursive frequency counter
-- fcEager (c:s) front back -- front does not contain c, back to be check
fcEager :: String -> [CharCount] -> [CharCount] -> [CharCount]
fcEager "" [] ccl = ccl
fcEager (c:s) front [] = fcEager s [] ((c,1):front)
fcEager (c:s) front ((c1,n):back)

| (c == c1) = fcEager s [] (front ++ ((c,n+1
| otherwise = fcEager (c:s) ((c1,n):front) b

fc2 s = fcEager s [] [] -- replaces original freq

enc2 = ...

enc2 "huf" -- encode this program 

➪ (2117457 reductions, 6145824 cells, 100 garbage collections)
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Summary

You should know the answers to these questions:
❑ How can you be sure a recursive function will term
❑ How do you know where characters end in Huffma
❑ How can you generate a tree from its string repres
❑ Why doesn’t Haskell have to load the entire file int

evaluated?

Can you answer the following questions?
✎ Can you prove that Huffmann’s algorithm really genera
✎ What would happen if encode  used foldl  instead of
✎ Can parseTree be re-written so it uses the run-time sta

stack as a list?
✎ Our Huffmann encoder actually outputs one byte for ea

How would you adapt the program to produce bits inst
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6. Introduction to the Lambda C

Overview
❑ What is Computability? — Church’s Thesis
❑ Lambda Calculus — operational semantics
❑ The Church-Rosser Property
❑ Modelling basic programming constructs

References:
❑ Paul Hudak, “Conception, Evolution, and Applicati

Programming Languages,” ACM Computing Surve
411.

❑ Kenneth C. Louden, Programming Languages: Pr
Publishing (Boston), 1993.

❑ H.P. Barendregt, The Lambda Calculus — Its Syn
Holland, 1984, Revised edition.
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What is Computable?

Computation is usually modelled as a mapping from inputs
formal “machine,” or program, which processes its input in 

An “effectively computable” function is one that can be com
time using finite resources.

“Effectively
computable”

function

Problem

input oprogram/machine
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Church’s Thesis

Effectively computable functions [from positive intege
are just those definable in the lambda calculus.

Or, equivalently:

It is not possible to build a machine that is more powe
machine.

Church’s thesis cannot be proven because “effectively comp
not a mathematical one. It can only be refuted by giving a co
that can solve a problem not computable by a Turing mach

So far, all models of effectively computable functions have 
Turing machines (or the lambda calculus).
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Uncomputability

A problem that cannot be solved by any Turing machine in
formalism) is called uncomputable.

☞ Assuming Church’s thesis is true, an uncomp
solved by any real computer.

The Halting Problem

Given an arbitrary Turing machine and its input tape,
eventually halt?

The Halting Problem is provably uncomputable — which me
in practice.
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What is a Function?

Extensional view:

A (total) function f: A → B is a subset of A × B (i.e., a relatio
1. for each a∈A, there exists some (a,b) ∈ f (i.e.,
2. if (a,b1) ∈ f and (a, b2) ∈ f, then b1 = b2 (i.e.,

Intensional view:

A function f: A → B is an abstraction λ x . e,
where x is a variable name,
and e is an expression,
such that when a value a∈A is substituted for x in 
then this expression (i.e., f(a)) evaluates to some 
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The (Untyped) Lambda Calculu

The Lambda Calculus was invented by Alonzo Church [193
formalism for expressing computation by functions.

Syntax:

(Operational) Semantics:

The lambda calculus can be viewed as the simplest possib
programming language.

α conversion (renaming): λ x . e ↔ λ y . [ y/x ] e

β reduction (application): (λ x . e1) e2 → [ e2/x ] e1

η reduction: λ x . (e x) → e

e ::= x

| λ x . e

| e1 e2
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Beta Reduction

Beta reduction is the computational engine of the lambda c

Define: I ≡ λ x . x

Now consider:

I I = (λ x . x) (λ x . x ) → [ (λ x . x ) / x] x
= (λ x . x)
= I

We can implement most lambda expressions directly in Ha
i = \x -> x

? i 5
5
(2 reductions, 6 cells)
? i i 5
5
(3 reductions, 7 cells)
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Free and Bound Variables

The variable x is bound by the enclosing λ in the expressio
A variable that is not bound, is free :

An expression with no free variables is closed (otherwise it
For example, y is bound and x is free in the (open) express

Syntactic substitution will not work:
( λ x . λ y . x y ) y → [ y / x] (λ y . x y)

≠ (λ y . y y )

Since y is already bound in (λ y . x y), we cannot directly su

fv(x) = { x }

fv(e1 e2) = fv(e1) ∪ fv(e2)

fv(λ x . e) = fv(e) − { x }
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Substitution

We must define substitution carefully to avoid name captur

Consider:

[e/x] x = e

[e/x] y = y if x

[e/x] (e1 e2) = ([e/x] e1) ([e/x] e2)

[e/x] (λ x . e1) = (λ x . e1)

[e/x] (λ y . e1) = (λ y . [e/x] e1) if x

[e/x] (λ y . e1) = (λ z . [e/x] [z/y] e1) if x ≠

( λ x . (( λ y . x ) (λ x . x)) x ) y → [y / x] (( λ
= (( λ z . y ) 



Programmiersprachen 115.

U Introduction to the Lambda Calculus

bstituted by any other name

α conversion
β reduction

η reduction
niversität Bern

Alpha Conversion

Alpha conversions allows one to rename bound variables.

A bound name x in the lambda abstraction (λ x.e) may be su
y, as long as there are no free occurrences of y in e:

Consider:

( λ x . λ y . x y ) y → ( λ x . λ z . x z) y
→ [ y / x] (λ z . x z)
→ (λ z . y z)
= y
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Eta Reduction

Eta reductions allows one to remove “redundant lambdas”.

Suppose that f is a closed expression (i.e., x does not occu
Then:

( λ x . f x ) y → f y

More generally, this will hold whenever x does not occur fre
In such cases, we can always rewrite ( λ x . f x ) as f.
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β reduction
β reduction
β reduction

gous to a Turing machine
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Normal Forms

A lambda expression is in normal form if it can no longer be
reduction rules.

Not all lambda expressions have normal forms!

Ω = ( λ x . x x) ( λ x . x x) → [ ( λ x . x x) / x ] ( x x )
= ( λ x . x x) ( λ x . x x)
→ ( λ x . x x) ( λ x . x x)
→ ( λ x . x x) ( λ x . x x)
→ ...

Reduction of a lambda expression to a normal form is analo
halting or a program terminating.
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Evaluation Order

Most programming languages are strict, that is, all expressi
are evaluated before control is passed to the function.
Most modern functional languages, on the other hand, use
expressions are only evaluated when they are needed.

Consider:
sqr n = n * n

Applicative-order reduction:
sqr (2+5) ➪ sqr 7 ➪ 7*7 ➪ 49

Normal-order reduction:
sqr (2+5) ➪ (2+5) * (2+5) ➪ 7 * (2+5) ➪ 7 * 7 ➪ 49
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The Church-Rosser Property

“If an expression can be evaluated at all, it can be eva
using normal-order evaluation. If an expression can b
different orders (mixing normal-order and applicative 
all of these evaluation orders yield the same result”.

So, evaluation order “does not matter” in the lambda calcul

However , applicative order reduction may not terminate, e

Applicative order reduction
→ ( λ x . y) ( ( λ x . x x) ( λ x . x x) )
→ ( λ x . y) ( ( λ x . x x) ( λ x . x x) )
→ ...

 ( λ x . y) ( ( λ x . x x) ( λ x . x x) )

Normal orde
→ y
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Currying

Since a lambda abstraction only binds a single variable, fun
parameters must be modelled as curried higher-order functio
H.B. Curry, who popularized the approach].

To improve readability, multiple lambdas can be suppresse

λ x y . x = λ x . λ y . x
λ b x y . b x y = λ b . λ x . λ y 
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Representing Booleans

Although the lambda calculus is extremely sparse, most (se
constructs can be built up as lambda expressions.

Define:
True ≡ λ x y . x
False ≡ λ x y . y
not ≡ λ b . b False T
if b then x else y ≡ λ b x y . b x y

Then:
not True = ( λ b . b False

→ ( λ x y . x ) Fa
→ False

if True then x else y = ( λ b x y . b x 
→ (λ x y . x) x y
→ x
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Representing Tuples
Although tuples are not supported by the lambda calculus, 
as higher-order functions that “wrap” pairs of values.
n-tuples can be modelled by composing pairs ...

Define:
pair ≡ ( λ x y z . z x y)
first ≡ ( λ p . p True )
second ≡ ( λ p . p False )

Then:
(1, 2) = pair 1 2

→ ( λ z . z 1 2)

In Haskell:
t = \x -> \y -> x
f = \x -> \y -> y
pair = \x -> \y -> \z -> z x y
first = \p -> p t
second = \p -> p f

? first (pair 1 2)
1
? first (second (pa

2
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→ (False, 0)
→ (False, 1)

→ False
) → True

→ 0
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Representing Numbers

There is a “standard encoding” of natural numbers into the 

Define:
0 ≡ ( λ x . x )
succ ≡ ( λ n . (False, n) )

So:
1 ≡ succ 0
2 ≡ succ 1

Consider:
iszero ≡ first
pred ≡ second

Then:
iszero 1 = first (False, 0)
iszero 0 = ( λ p . p True ) ( λ x . x 
pred 1 = second (False, 0)



Programmiersprachen 124.

U Introduction to the Lambda Calculus

erate code just for programs

?
ulus avoid it?

nted in the lambda calculus?

ge?
?
hat does this mean?
 calculus? Fractions?
niversität Bern

Summary

You should know the answers to these questions:
❑ Is it possible to write a Pascal compiler that will gen

that terminate?
❑ What are the alpha, beta and eta conversion rules
❑ What is name capture? How does the lambda calc
❑ What is a normal form? How does one reach it?
❑ How can Booleans, tuples and numbers be represe

Can you answer the following questions?
✎ How can name capture occur in a programming langua
✎ What happens if you try to program Ω in Haskell? Why
✎ What do you get when you try to evaluate (pred 0)? W
✎ How would you model negative integers in the lambda
✎ Is it possible to model real numbers? Why, or why not?
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7. Fixed Points

Overview
❑ Recursion and the Fixed-Point Combinator
❑ The typed lambda calculus
❑ The polymorphic lambda calculus
❑ A quick look at process calculi

References:
❑ Paul Hudak, “Conception, Evolution, and Applicati

Programming Languages,” ACM Computing Surve
411.
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Recursion

Suppose we want to define arithmetic operations on our lam

In Haskell we can program:
plus n m

| n == 0 = m
| otherwise = plus (n-1) (m+1)

so we might try to define:

plus ≡ λ n m . iszero n m ( plus ( pred n

Unfortunately this is not a definition, since we are trying to u

Although recursion is fundamental to functional programmin
lambda calculus, so we must find a way to “program” it!
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Recursive functions as fixed po

We can obtain a closed expression by abstracting over plus

rplus ≡ λ plus n m . iszero n
m
( plus ( pred n ) ( succ 

Let fplus be the actual addition function we want. We must p
before we can perform any additions. But then (rplus fplus)
In other words, we are looking for an fplus such that:

rplus fplus ↔ fplus

I.e., we are searching for a fixed point of rplus ...
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Fixed Points

A Fixed Point of a function f  is a value p such that f p = p

Examples:
fact 1 = 1

fact 2 = 2

fib 0 = 0

fib 1 = 1

Fixed points are not always “well-behaved”:
succ n = n + 1

✎ What is a fixed point of succ ?
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Fixed Point Theorem

Fixed point Theorem:
Every lambda expression e has a fixed point p such that (e

Proof:
Let

Y ≡ λ f . (λ x . f (x x)) (λ x . f (x x))

Now consider:
p ≡ Y e → (λ x . e (x x)) (λ x . e (x x))

→ e ((λ x . e (x x)) (λ x . e (x x)))

→ e p

So, the “magical Y combinator” can always be used to find 
lambda expression.
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Using the Y Combinator

Consider
f ≡ λ x. True

Then
Y f → f (Y f)

= (λ x. True) (Y f)

→ True

Consider
Y succ → succ (Y succ)

→ (False, (Y succ))

✎ What are succ and pred of (False, (Y succ))? What do
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Recursive Functions are Fixed P
We cannot write:

plus ≡ λ n m . iszero n
m
( plus  ( pred n ) ( succ

because plus is unbound in the “definition”.
We can, however, abstract over plus:

rplus ≡ λ plus n m . iszero n
m
( plus ( pred n ) ( succ 

Now we seek a lambda expression plus, such that:
rplus plus ↔ plus

I.e., plus is a fixed point of rplus. By the fixed point theorem
plus ≡ Y rplus
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Unfolding Recursive Lambda Ex

Consider:

plus 1 1 = (Y rplus) 1 1
→ rplus plus 1 1
→ iszero 1

1
(plus (pred 1) (succ 1) 

→ False 1 (plus (pred 1) (
→ plus (pred 1) (succ 1)
→ rplus plus (pred 1) (suc
→ iszero (pred 1)

(succ 1)
(plus (pred (pred 1) ) (s

→ iszero 0
(succ 1)
(...)

→ True (succ 1) (...)
→ succ 1
→ 2
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The Typed Lambda Calculus

There are many variants of the lambda calculus.
The typed lambda calculus decorates terms with type anno

Syntax:

e ::= xτ | e1
τ2→τ1 e2

τ2 | (λ xτ2.eτ1)τ2→τ1

Operational Semantics:

Example:

True ≡ ( λ xA . ( λ yB 

α conversion : λ xτ2 . eτ1 ⇔ λ yτ2 . [ yτ2/xτ2 ] eτ1

β reduction: (λ xτ2 . e1
τ1) e2

τ2 ⇒ [ e2
τ2/xτ2 ] e1

τ1

η reduction: λ xτ2. (eτ1 xτ2) ⇒ eτ1
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The Polymorphic Lambda Calc

Polymorphic functions like “map” cannot be typed in the typ

Need type variables to capture polymorphism:

β reduction (ii): (λ xν . e1
τ1) e2

τ2 ⇒ [ τ2 / ν ] [ e2
τ

Example:

True ≡ ( λ xα . ( λ yβ .

Trueα→(β→α) aA bB → ( λ yβ . aA )β→

→  aA



Programmiersprachen 135.

U Fixed Points

 Haskell) works by inferring
lymorphic functions.

nique type!
niversität Bern

Hindley-Milner Polymorphism

Hindley-Milner polymorphism (i.e., that adopted by ML and
the type annotations for a slightly restricted subcalculus: po

If:
dlen l l' xs ys = (l xs) + (l' ys)

then
dlen length length “aaa” [1,2,3]

is ok, but if
dlen' l xs ys = (l xs) + (l ys),

then
dlen' length “aaa” [1,2,3]

is a type error since the argument l  cannot be assigned a u
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Polymorphism and self applica

Even the polymorphic lambda calculus is not powerful enoug
terms.

Recall that both Ω and the Y combinator make use of “self 

Ω = ( λ x . x x ) ( λ x . x x )

✎ What type annotation would you assign to the express
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Process Calculi

Process calculi model processes rather than functions.
Since inter-process communication is inherently non-determ
property typically does not hold:

Process calculi are capable of modeling all computation in 

a!c | a?x.x![] | a!b | c?x.a!x

c![] | a!b | c?x.a!x a!c | b![] | c?x.a!x

a!b | a![]



Programmiersprachen 138.

U Fixed Points

n the lambda calculus?

f the types of terms?
dinary one?

sion will terminate?
process calculus?
niversität Bern

Summary

You should know the answers to these questions:
❑ Why isn’t it possible to express recursion directly i
❑ What is a fixed point? Why is it important?
❑ How does the typed lambda calculus keep track o
❑ How does a polymorphic function differ from an or

Can you answer the following questions?
✎ Are there more fixed-point operators other than Y?
✎ How can you be sure that unfolding a recursive expres
✎ How would you express the semantics of the example 
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8. Introduction to Denotational 

Overview:
❑ Syntax and Semantics
❑ Approaches to Specifying Semantics
❑ Semantics of Expressions
❑ Semantics of Assignment
❑ Other Issues

References:
❑ D. A. Schmidt, Denotational Semantics, Wm. C. B
❑ D. Watt, Programming Language Concepts and Pa
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Defining Programming Languag

Three main characteristics of programming languages:

1. Syntax:  What is the appearance and structure of its

2. Semantics:  What is the meaning of programs?
The static semantics tells us which (syntactically valid
valid (i.e., which are type correct) and the dynamic 
interpret the meaning of valid programs.

3. Pragmatics:  What is the usability of the language?
How easy is it to implement? What kinds of applicat
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Uses of Semantic Specification

Semantic specifications are useful for language designers t
implementors as well as to programmers.

A precise standard for a computer implementation:
☞ How should the language be implemented on

User documentation:
☞ What is the meaning of a program, given a pa

language features?
A tool for design and analysis:

☞ How can the language definition be tuned so 
efficiently?

Input to a compiler generator:
☞ How can a reference implementation be obta
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Methods for Specifying Semant

Operational Semantics:
☞ [[ program ]] = abstract machine program
☞ can be simple to implement
☞ hard to reason about

Denotational Semantics:
☞ [[ program ]] = mathematical denotation
☞ facilitates reasoning
☞ not always easy to find suitable semantic dom

Axiomatic Semantics:
☞ [[ program ]] = set of properties
☞ good for proving theorems about programs
☞ somewhat distant from implementation

Structured Operational Semantics:
☞ [[ program ]] = transition system (defi
☞ good for concurrency and non-determinism
☞ hard to reason about equivalence
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Concrete and Abstract Syntax
How to parse “4 * 2 + 1 ”?

Abstract Syntax is compact but ambiguous:
Expr ::= Num

| Expr Op Expr
Op ::= +| -  | *  | /

Concrete Syntax is unambiguous but verbose:
Expr ::= Expr LowOp Term

| Term
Term ::= Term HighOp Factor

| Factor
Factor ::= Num

| ( Expr )
LowOp ::= + | -

HighOp ::= *  | /
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Semantic Domains

In order to define semantic mappings of programs and thei
mathematical denotations, the semantic domains must be p

data Bool = True | False

(&&), (||) :: Bool -> Bool -> Bool
False && x = False
True && x = x

False || x = x
True || x = True

not :: Bool -> Bool
not True = False
not False = True
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A Calculator Language

Abstract Syntax:
Prog ::= 'ON' Stmt
Stmt ::= Expr 'TOTAL' Stmt

| Expr 'TOTAL' 'OFF'

Expr ::= Expr1 '+' Expr2
| Expr1 '* ' Expr2
| 'IF ' Expr1 ', ' Expr2 ', ' Expr3
| 'LASTANSWER'
| '( ' Expr ') '
| Num

The program “ ON 4 * ( 3 + 2 ) TOTAL OFF  ” should
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Data Structures for Syntax Tree

We can represent programs in our calculator language as s

data Program = On ExprSequence

data ExprSequence = Total Expression ExprSequence
| TotalOff Expression

data Expression = Plus Expression Expression
| Times Expression Expression
| If Expression Expression Expression
| LastAnswer
| Braced Expression
| N Int
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Representing Syntax

The test program “ ON 4 * ( 3 + 2 ) TOTAL OFF  ” ca

And represented as:
test = On (TotalOff (Times (N 4)

(Braced (Plus (N 3)
(N 2) ) ) ) )

ON TOTAL OFF

*

4

+()

StmtProg
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Calculator Semantics
Programs:

P : Program → Int *
P [[ ON S ]] = S [[ S ]] (0)

Sequences:
S :: ExprSequence → Int → Int *
S [[ E TOTAL S ]] (n) = let n' = E [[ E ]] (n) in
S [[ E TOTAL OFF]] (n) = [ E [[ E ]] (n) ]

Expressions:
E : Expression → Int → Int
E [[ E1 + E2 ]] (n) = E [[ E1 ]] (n) + E [[ E2
E [[ E1 *  E2 ]] (n) = E [[ E1 ]] (n) × E [[ E2
E [[ IF  E1 ,  E2 ,  E3 ]] (n) = E [[ E1 ]] (n) = 0 → E
E [[ LASTANSWER]] (n) = n
E [[ (  E ) ]] (n) = E [[ E ]] (n)
E [[ N ]] (n) = N



Programmiersprachen 149.

U Introduction to Denotational Semantics
niversität Bern

Implementing the Calculator

Programs:
pp :: Program -> [Int]
pp (On s) = ss s 0

Sequences:
ss :: ExprSequence -> Int -> [Int]
ss (Total e s) n = let n' = (ee e n) in n' : (ss s n')
ss (TotalOff e) n = (ee e n) : [ ]

Expressions:
ee :: Expression -> Int -> Int
ee (Plus e1 e2) n = (ee e1 n) + (ee e2 n)
ee (Times e1 e2) n = (ee e1 n) * (ee e2 n)
ee (If e1 e2 e3) n

| (ee e1 n) == 0 = (ee e2 n)
| otherwise = (ee e3 n)

ee (LastAnswer) n = n
ee (Braced e) n = (ee e n)
ee (N num) n = num
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A Language with Assignment

Abstract Syntax:
Prog ::= Cmd '. '
Cmd ::= Cmd1 '; ' Cmd2

| 'if ' Bool 'then ' Cmd1 'else ' Cm
| Id ':= ' Exp

Exp ::= Exp1 '+' Exp2
| Id
| Num

Bool ::= Exp1 '=' Exp2
| 'not ' Bool

Example:
“ z := 1 ; if a = 0 then z := 3 else z := z + a .

Programs take a single number as input, which initializes th
a program is the final value of the variable ‘z’.
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Abstract Syntax Trees

Data Structures:
data Program = Dot Command

data Command = CSeq Command Command
| Assign Identifier Expression
| If BooleanExpr Command Command

data Expression = Plus Expression Expression
| Id Identifier
| Num Int

data BooleanExpr = Equal Expression Expression
| Not BooleanExpr

type Identifier = Char

Example:
Dot (CSeq (Assign 'z' (Num 1))

(If (Equal (Id 'a') (Num 0))
(Assign 'z' (Num 3))
(Assign 'z' (Plus (Id 'z') (Id 'a')))

)
)
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Modelling Environments

A store is a mapping from identifiers to values:

type Store = Identifier -> Int

newstore :: Store
newstore id = 0

access :: Identifier -> Store -> Int
access id store = store id

update :: Identifier -> Int -> Store -> Store
update id val store = store'

where store' id'
| id' == id = val
| otherwise = store id'
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Semantics of Assignments

pp :: Program -> Int -> Int
pp (Dot c) n = access 'z' (cc c (update 'a' n newstore))

cc :: Command -> Store -> Store
cc (CSeq c1 c2) s = cc c2 (cc c1 s)
cc (Assign id e) s = update id (ee e s) s
cc (If b c1 c2) s = ifelse (bb b s) (cc c1 s) (cc c2 s)

ee :: Expression -> Store -> Int
ee (Plus e1 e2) s = (ee e2 s) + (ee e1 s)
ee (Id id) s = access id s
ee (Num n) s = n

bb :: BooleanExpr -> Store -> Bool
bb (Equal e1 e2) s = (ee e1 s) == (ee e2 s)
bb (Not b) s = not (bb b s)

ifelse :: Bool -> a -> a -> a
ifelse True x y = x
ifelse False x y = y
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Practical Issues

Modelling:
❑ Errors and non-termination:

☞ need a special “error” value in semantic doma
❑ Branching:

☞ semantic domains in which “continuations” mo
make it easy to transfer control

❑ Interactive input
❑ Dynamic typing
❑ ...
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Theoretical Issues

What are the denotations of lambda abstractions?
❑ need Scott’s theory of semantic domains

What is the semantics of recursive functions?
❑ need least fixed point theory

How to model concurrency and non-determinism?
❑ abandon standard semantic domains
❑ use “interleaving semantics”
❑ “true concurrency” requires other models ...
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Summary

You should know the answers to these questions:
❑ What is the difference between syntax and seman
❑ What is the difference between abstract and conc
❑ What is a semantic domain?
❑ How can you specify semantics as mappings from
❑ How can assignments and updates be modelled w

Can you answer the following questions?
✎ Why are semantic functions typically higher-order?
✎ Does the calculator semantics specify strict or lazy eva
✎ Does the implementation of the calculator semantics u
✎ Why do commands and expressions have different sem
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9. Logic Programming

Overview
❑ Facts and Rules
❑ Resolution and Unification
❑ Searching and Backtracking
❑ Recursion, Functions and Arithmetic
❑ Lists and other Structures

References:
❑ Kenneth C. Louden, Programming Languages: Pr

Publishing (Boston), 1993.
❑ Sterling and Shapiro, The Art of Prolog, MIT Press
❑ Clocksin and Mellish, Programming in Prolog, Spr
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Logic Programming Languages

What is a Program?
A program is a database of facts (axioms) together with a s
proving theorems from the axioms.

Imperative Programming:
☞ Program = Algorithms + Data

Logic Programming:
☞ Program = Facts + Rules

or
☞ Algorithms = Logic + Control
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Prolog
A Prolog program consists of facts, rules, and questions:

❑ Facts are named relations between objects:
parent(charles, elizabeth).
% elizabeth is a parent of charles

female(elizabeth).
% elizabeth is female

❑ Rules are relations (goals) that can be inferred fro
mother(X, M) :- parent(X,M), female(M).
% M is a mother of X if M is a parent of X and M is female

❑ Questions are statements that can be answered u
?- parent(charles, elizabeth).

➪ yes

?- mother(charles, M).

➪ M = elizabeth
yes
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Horn Clauses

Both rules and facts are instances of Horn clauses, of the f

A0 if A1 and A2 and ... An

A0 is the head of the Horn clause and “A1 and A2 and ... An

Facts are just Horn clauses with no body:

parent(charles, elizabeth) if True
female(elizabeth) if True

mother(X, M) if pare
and fema
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Resolution and Unification

Questions (or goals) are answered by matching goals again
variables with terms, and backtracking when subgoals fail.

If a subgoal of a Horn clause matches the head of another H
us to replace that subgoal by the body of the matching Hor

Unification lets us bind variables to corresponding values in

mother(charles, M)
parent(charles, M) and female(M)

{ M = elizabeth } True and female(elizabeth)
{ M = elizabeth } True and True
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Prolog Databases
A Prolog database is a file of facts and rules to be “consulte

female(anne).
female(diana).
female(elizabeth).
male(andrew).
male(charles).
male(edward).
male(harry).
male(philip).
male(william).

parent(andrew, elizabeth).
parent(andrew, philip).
parent(anne, elizabeth).
parent(anne, philip).
parent(charles, elizabeth).
parent(charles, philip).
parent(edward, elizabeth).
parent(edward, philip).
parent(harry, charles).
parent(harry, diana).
parent(william, charles).
parent(william, diana).

?- consult('royal').

➪ yes

?- male(charles).

➪ yes

?- male(anne).

➪ no

?- male(mickey).

➪ no

?- parent(charles

➪ P = elizabeth
yes

?- male(X).

➪ X = andrew
X = charles
yes

?- parent(william,

➪ yes
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Unification

Unification is the process of instantiating variables by patte
1. A constant unifies only with itself:

?- charles = charles.

➪ yes

?- charles = andrew.

➪ no

2. An uninstantiated variable unifies with anything:
?- parent(charles, elizabeth) = Y.

➪ Y = parent(charles,elizabeth) ?
yes

3. A structured term unifies with another term only if it
and number of arguments, and the arguments can b

?- parent(charles, P) = parent(X, elizabeth).

➪ P = elizabeth,
X = charles ?
yes
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Evaluation Order

In principle, any of the parameters in a query may be instan

?- mother(X, elizabeth).

➪ X = andrew ? ;
X = anne ? ;
X = charles ? ;
X = edward ? ;
no

?- mother(X, M).

➪ M = elizabeth,
X = andrew ?
yes

Prolog adopts a closed world assumption — whatever cann
assumed to be false.

?- mother(elizabeth,M).

➪ no
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Backtracking
Prolog applies resolution in linear fashion, replacing goals l
database clauses top-to-bottom.

father(X, M) :- parent(X,M), male(M).

?- trace.

➪ {The debugger will first creep -- showing everything (trace)}
yes
{trace}

?- father(charles,F).

➪ + 1 1 Call: father(charles,_67) ?
+ 2 2 Call: parent(charles,_67) ?
+ 2 2 Exit: parent(charles,elizabeth) ?
+ 3 2 Call: male(elizabeth) ?
+ 3 2 Fail: male(elizabeth) ?
+ 2 2 Redo: parent(charles,elizabeth) ?
+ 2 2 Exit: parent(charles,philip) ?
+ 3 2 Call: male(philip) ?
+ 3 2 Exit: male(philip) ?
+ 1 1 Exit: father(charles,philip) ?

F = philip ?
yes

{trace}
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Comparison
The predicate = attempts to unify its two arguments:

?- X = charles.

➪ X = charles ?
yes

The predicate == tests if the terms instantiating its argumen
?- charles == charles.

➪ yes

?- X == charles.

➪ no

?- X = charles, male(charles) == male(X).

➪ X = charles ?
yes

The predicate \== tests if its arguments are not literally iden
?- X = male(charles), Y = charles, X \== male(Y).

➪ no
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Sharing Subgoals

Common subgoals can easily be factored out as relations:

sibling(X, Y) :- mother(X, M), mother(Y, M),
father(X, F), father(Y, F),
X \== Y.

brother(X, B) :- sibling(X,B), male(B).
uncle(X, U) :- parent(X, P), brother(P, U).

sister(X, S) :- sibling(X,S), female(S).
aunt(X, A) :- parent(X, P), sister(P, A).
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Disjunctions

One may define multiple rules for the same predicate, just a

isparent(C, P) :- mother(C, P).
isparent(C, P) :- father(C, P).

Disjunctions can also be expressed using the “;” operator:

isparent(C, P) :- mother(C, P); father(C, P).

Note that same information can be represented in various f
decided to express mother/2 and father/2 as facts, and par

❑ Which way is it easier to express and maintain fac
❑ Which way makes it faster to evaluate queries?
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Recursion
Recursive relations are defined in the obvious way:

ancestor(X, A) :- parent(X, A).

ancestor(X, A) :- parent(X, P), ancestor(P, A).

?- ancestor(X, philip).

➪ + 1 1 Call: ancestor(_61,philip) ?
+ 2 2 Call: parent(_61,philip) ?
+ 2 2 Exit: parent(andrew,philip) ?
+ 1 1 Exit: ancestor(andrew,philip) ?

X = andrew ?
yes

?- ancestor(harry, philip).

➪ + 1 1 Call: ancestor(harry,philip) ?
+ 2 2 Call: parent(harry,philip) ?
+ 2 2 Fail: parent(harry,philip) ?
+ 2 2 Call: parent(harry,_316) ?
+ 2 2 Exit: parent(harry,charles) ?
+ 3 2 Call: ancestor(charles,philip) ?
+ 4 3 Call: parent(charles,philip) ?
+ 4 3 Exit: parent(charles,philip) ?
+ 3 2 Exit: ancestor(charles,philip) ?
+ 1 1 Exit: ancestor(harry,philip) ?

yes
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Evaluation Order

Evaluation of recursive queries is sensitive to the order of th
when the recursive call is made:

anc2(X, A) :- anc2(P, A), parent(X, P).

anc2(X, A) :- parent(X, A).

?- anc2(harry, X).

➪ + 1 1 Call: anc2(harry,_67) ?
+ 2 2 Call: anc2(_325,_67) ?
+ 3 3 Call: anc2(_525,_67) ?
+ 4 4 Call: anc2(_725,_67) ?
+ 5 5 Call: anc2(_925,_67) ?
+ 6 6 Call: anc2(_1125,_67) ?
+ 7 7 Call: anc2(_1325,_67) ? abort

{Execution aborted}
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Negation as Failure

Searching can be controlled by explicit failure:

printall(X) :- X, print(X), nl, fail .
printall(_).

?- printall(brother(_,_)).

The cut operator (!) commits Prolog to a particular search p

parent(C,P) :- mother(C,P), !.
parent(C,P) :- father(C,P).

Negation can be implemented by a combination of cut and 

not(X) :- X, !, fail.

not(_).
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Changing the Database

The Prolog database can be modified dynamically by mean
rename(X,Y) :- retract(male(X)), assert(male(Y)), rename(X,Y).
rename(X,Y) :- retract(female(X)), assert(female(Y)), rename(X,Y).
rename(X,Y) :- retract(parent(X,P)), assert(parent(Y,P)), rename(X,Y).
rename(X,Y) :- retract(parent(C,X)), assert(parent(C,Y)), rename(X,Y).
rename(_,_).

?- male(charles); parent(charles, _); parent(_, charles).

➪ yes

?- rename(charles, mickey).

➪ yes

?- male(charles); parent(charles, _); parent(_, charles).

➪ no

NB: With SICSTUS Prolog, such predicates must be declar
:- dynamic male/1, female/1, parent/2.
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Functions and Arithmetic

Functions are relations between expressions and values:

X is 5 + 6 .

Yields:
X = 11 ?

And is syntactic sugar for:
is(X, +(5,6))

User-defined functions are written in a relational style:

fact(0,1).

fact(N,F) :- N > 0,
N1 is N - 1,
fact(N1,F1),
F is N * F1.



Programmiersprachen 174.

U Logic Programming

Element syntax
[ a ]

[ a , b ]

[ a , [ b ] , c ]

[ a | X ]

[ a , b | X ]
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Lists

Lists are pairs of elements and lists:

Formal object Cons pair syntax
.(a , [ ]) [ a | [ ] ]

.(a , .(b, [ ])) [ a | [ b | [ ] ] ]

.(a , .(.(b , [ ]) , .(c , [ ]))) [ a | [ [ b | [ ] ] | [ c | [ ] ] ] ]

.(a , X) [ a | X ]

.(a , .(b , X)) [ a | [ b | X ] ]
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Pattern Matching with Lists

in(X, [X | _ ]).
in(X, [ _ | L]) :- in(X, L).

?- in(b, [a,b,c]).
yes

?- in(X, [a,b,c]).
X = a ? ;
X = b ? ;
X = c ? ;
no

?- in(a, L).

L = [ a | _A ] ? ;
L = [ _A , a | _B ] ? ;
L = [ _A , _B , a | _C ] ? ;
L = [ _A , _B , _C , a | _D ] ?

yes
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Exhaustive Searching

Searching for permutations:
perm([ ],[ ]).

perm([C|S1],S2) :- perm(S1,P1),

append(X,Y,P1),

append(X,[C|Y],S2).

append([ ],L,L).
append([X|L1],L2,[X|L3]) :- append(L1,L2,L3) .

?- printall(perm([a,b,c,d],_)).

A declarative, but hopelessly inefficient sort program:
ndsort(L,S) :- perm(L,S),

issorted(S).

issorted([ ]).
issorted([ _ ]).
issorted([N,M|S]) :- N =< M,

issorted([M|S]).
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Summary

You should know the answers to these questions:
❑ What are Horn clauses?
❑ What are resolution and unification?
❑ How does Prolog attempt to answer a query using
❑ When does Prolog assume that the answer to a q
❑ When does Prolog backtrack? How does backtrac
❑ How are conjunction and disjunction represented?
❑ What is meant by “negation as failure”?
❑ How can you dynamically change the database?

Can you answer the following questions?
✎ How can we view functions as relations?
✎ Is it possible to implement negation without either cut o
✎ What happens if you use a predicate with the wrong nu
✎ What does Prolog reply when you ask not(male(X)).
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10. Applications of Logic Progra

Overview
❑ I. Solving a puzzle:

☞ SEND + MORE = MONEY

❑ II. Reasoning about functional dependencies:
☞ finding closures, candidate keys and BCNF d

References:
❑ A. Silberschatz, H.F. Korth and S. Sudarshan, Dat

edition, McGraw Hill, 1997.
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I. Solving a puzzle

✎ Find values for the letters so the following equation ho

 SEND
+MORE
-----
MONEY
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A non-solution:

We would like to write:
soln0 :- A is 1000*S + 100*E + 10*N + D,

B is 1000*M + 100*O + 10*R + E,
C is 10000*M + 1000*O + 100*N + 10*E + Y
C is A+B,
showAnswer(A,B,C).

showAnswer(A,B,C) :- writeln([A, ‘ + ‘, B, ‘ = ‘, C]).

writeln([]) :- nl.
writeln([X|L]) :- write(X), writeln(L).

But this doesn’t work because “is” can only evaluate expres
variables.

soln0.

➪ » evaluation_error: [goal(_1007 is 1000 * _1008 + 100 * _10
_1011),

argument_index(2)]

[Execution aborted]
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A first solution

So let’s instantiate them:
digit(0). digit(1). digit(2). digit(3). digit(4).
digit(5). digit(6). digit(7). digit(8). digit(9).

digits([]). % everything in the argument list is a digit
digits([D|L]) :- digit(D), digits(L).

soln1 :- digits([S,E,N,D,M,O,R,E,M,O,N,E,Y]), %
A is 1000*S + 100*E + 10*N + D,
B is 1000*M + 100*O + 10*R + E,
C is 10000*M + 1000*O + 100*N + 10*E + Y,
C is A+B, %
showAnswer(A,B,C).

This is now correct, but yields a trivial solution!
soln1.

➪ 0 + 0 = 0
yes
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A second (non-)solution

So let’s constrain S and M:
soln2 :- digits([S,M]),

not(S==0), not(M==0), % backtra
digits([N,D,M,O,R,E,M,O,N,E,Y]),
A is 1000*S + 100*E + 10*N + D,
B is 1000*M + 100*O + 10*R + E,
C is 10000*M + 1000*O + 100*N + 10*E + Y,
C is A+B,
showAnswer(A,B,C).

Maybe it works. We’ll never know ...
soln2.

➪ [Execution aborted]

after 8 minutes still running ...
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A third solution
Let’s try to exercise more control by instantiating variables 

sum([],0).
sum([N|L], TOTAL) :- % TOTAL is sum of numbers in [

sum(L,SUBTOTAL), TOTAL is N + SUBTOTAL.

carrysum(L,D,C) :- % Find D and C, where L is D + 1
sum(L,S), C is S/10, D is S - 10*C.

soln3 :- digits([D,E]), carrysum([D,E],Y,C1),
digits([N,R]), carrysum([C1,N,R],E,C2),
digit(O), carrysum([C2,E,O],N,C3),
digits([S,M]), not(S==0), not(M==0),
carrysum([C3,S,M],O,M),
A is 1000*S + 100*E + 10*N + D,
B is 1000*M + 100*O + 10*R + E,
C is A+B, % NB: we have dropped the eval
showAnswer(A,B,C).

This is also correct, but uninteresting:
soln3.

➪ 9000 + 1000 = 10000
yes
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A fourth solution
Let’s try to make the variables unique:

unique([]). % There are no duplicate elements in the arg
unique([X|L]) :- not(in(X,L)), unique(L).

in(X, [X|_]). % X is in the argument list
in(X, [_|L]) :- in(X, L).

soln4 :- L1 = [D,E], digits(L1), unique(L1),
carrysum([D,E],Y,C1),
L2 = [N,R,Y|L1], digits([N,R]), unique(L2),
carrysum([C1,N,R],E,C2),
L3 = [O|L2], digit(O), unique(L3),
carrysum([C2,E,O],N,C3),
L4 = [S,M|L3], digits([S,M]), not(S==0), not(M==0),
unique(L4),
carrysum([C3,S,M],O,M),
A is 1000*S + 100*E + 10*N + D,
B is 1000*M + 100*O + 10*R + E,
C is A+B,
showAnswer(A,B,C).

This works, in about 8 seconds on a PowerMac 7300/200:
soln4.

➪ 9567 + 1085 = 10652
yes
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II. Reasoning about functional d

We would like to represent functional dependencies for rela
terms, and write predicates that compute (i) closures of attri
and (iii) BCNF decompositions.

First, we would like to overload Prolog syntax as follows:
FDS = [ [a]->[b,c], [c,g]->[h,i], [b,c]->[h] ].

➪ Syntax Error - unable to parse this character  » ->[b

but the built-in arrow operator has precedence higher than 
op(1050, xfy, [ -> ]).
op(1000, xfy, [ ’,’ ]).
op(700, xfx, [ = ]).

so let’s change it:
% redefine precedence so -> has lower precedence than = or ,
:- op(600, xfx, [ -> ]).

Now we can get started ...
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Computing closures
We would like to define a predicate:

closure(FDS, AS, CS)

which computes the closure CS of an attribute set AS using

To do this, we should use Amstrong’s axioms:
1. B ⊆ A ⇒ A→B
2. A→B ⇒ AC→BC
3. A→B, B→C ⇒ A→C

Intuitively, we add attributes to a set AS’, using the axioms 
dependencies can be applied:

❑ start with AS→AS’, where AS’ = AS
❑ find some B→C, AS’ = BD ⇒ AS→AS’→CD
❑ repeat till no more FD applies

NB: each FD can be applied at most once!
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A closure predicate

Try to express the algorithm declaratively:
closure(FDS, AS, CS) :-

applies(FDS, B->C, AS, FDRest), % Find some B->C in
union(AS, C, AS1), % Use it to augment 
closure(FDRest, AS1, CS). % and continue with 

closure(FDS, AS, AS). % Else no FD applies

applies([B->C|FDS], B->C, AS, FDS) :-% FD applies to AS if
subset(B,AS).

applies([FD|FDS], B->C, AS, [FD|FDRest]) :-
applies(FDS, B->C, AS, FDRest). % If first doesn’t appl

Now we must worry about the details ...
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Manipulating sets

We need some predicates to manipulate attribute sets and 
in(X, [X|_]). % in(X,S) -- X is in the argument 
in(X, [_|S]) :- in(X, S).

subset([],_). % subset(S1,S2) -- S1 is a subse
subset([X|S1],S2) :-

in(X,S2),
subset(S1,S2).

rem(_,[],[]) . % rem(X,S,R) -- removing X from
rem(X,[X|S],R) :- rem(X,S,R), !.
rem(X,[Y|S],[Y|R]) :- rem(X,S,R) .

union([],S,S) . % union(S1,S2,U) -- U is the unio
union([X|S1],S2,U) :-

rem(X,S2,S), % transfer elements of S1 to S2 
union(S1,[X|S],U).

✎ How would you express set difference and intersection
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Evaluating closures

A couple of test cases:
showclosure(FDS, AS) :-

closure(FDS, AS, CS),
writeln([AS -> CS]). % calls write() for each eleme

find1 :-
FDS = [ [a]->[b,c],

[c,g]->[h,i],
[b,c]->[h] ],

writeln([‘FDS = ‘, FDS]),
showclosure(FDS, [a]),
showclosure(FDS, [a,c]),
showclosure(FDS, [a,g]).

find1.

➪ FDS = [[a]->[b,c],[c,g]->[h,i],[b,c]->[h]]
[a]->[c,b,a,h]
[a,c]->[b,a,c,h]
[a,g]->[i,h,g,a,b,c]
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Finding keys

Now we would like a predicate candkey/2  that suggests a
attributes in a set of FDs:

candkey(FDS, Key) :-
attset(FDS, AS), % Find the set of all a
minkey(FDS, AS, AS, Key). % Find a minimal key

minkey(FDS, AS, Key, MinKey) :- % Key is some key
smallerkey(FDS, AS, Key, SmallerKey), !, % Is there
minkey(FDS, AS, SmallerKey, MinKey). % if so, th

minkey(FDS, AS, MinKey, MinKey). % else we are done!

smallerkey(FDS, AS, Key, Smaller) :-
in(X, Key), rem(X, Key, Smaller), % Remove some X fr
iskey(Smaller, AS, FDS). % Do we still have a 

iskey(Key, AS, FDS) :- % Key is a key for att
closure(FDS, Key, Closure), % The closure of Key
subset(AS, Closure).

✎ How would you implement attset/2 ?
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Evaluating candidate keys

Two examples:
find2 :-

FDS = [ [a]->[b,c], [c,g]->[h,i], [b,c]->[h] ], writeln([‘FDS = ‘, FDS]),
candkey(FDS, Key), writeln([‘Key = ‘, Key]).

find2.

➪ FDS = [[a]->[b,c],[c,g]->[h,i],[b,c]->[h]]
Key = [a,g]

find3 :-
FDS = [ [a,b]->[c], [b]->[d], [e]->[f], [c,e]->[a] ], writeln([‘FDS = ‘,
candkey(FDS, Key), writeln([‘Key = ‘, Key]).

find3.

➪ FDS = [[a,b]->[c],[b]->[d],[e]->[f],[c,e]->[a]]
Key = [a,b,e]
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Testing for BCNF

Recall that a relation scheme is in BCNF if all non-trivial FD
isbcnf(FDS, RS) :-

fdsok(FDS, FDS, RS), !, % RS is BCNF if all FDS 
writeln([RS, ‘ is in BCNF’]).

isbcnf(FDS, RS) :-
writeln([RS, ‘ is NOT in BCNF’]).

fdsok([], _, RS). % Nothing to check, so m

fdsok([A->B|ToCheck], FDS, RS) :-
subset(B,A), % A->B is trivial, so conti
fdsok(ToCheck,FDS,RS).

fdsok([A->B|ToCheck], FDS, RS) :- % Else check if A is a key
iskey(A, RS, FDS), % A is a key for RS, so O
fdsok(ToCheck,FDS,RS). % check the others
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Evaluating the BCNF test

An example from the database course:
check1 :-

FDS = [ [branchName] -> [assets, branchCity],
[loanNumber] -> [amount, branchName],
[customerName] -> [customerName] ],

BranchScheme = [ branchName, assets, branchCity ],
isbcnf(FDS, BranchScheme),
BorrowScheme = [branchName, loanNumber, customerName, amou
isbcnf(FDS, BorrowScheme).

check1.

➪ [branchName,assets,branchCity] is in BCNF
[branchName,loanNumber,customerName,amount] is NOT in BC

✎ What would you modify to have isbcnf/2 report exac
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BCNF decomposition

Recall that BCNF decomposition works as follows:

while some R is not in BCNF
select non-trivial α→β holding on R wher

α→R is not in F+ and α∩β = ∅
replace R by α∪β and (R-β)

The trick is that α→β may not be explicitly in the list F of FD
compute the closure F+

Replace

by

and
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BCNF decomposition predicate

To decompose a schema, we must iterate through both the
bcnf(FDS, Decomp) :- % Decomp is

attset(FDS, AS), % Assume al
writeln([‘Attribute set is ‘, AS]),
bcnfDecomp(FDS, [AS], Decomp). % Start with

Iterate through the schemas:
bcnfDecomp(FDS, [], []). % Nothing to 

bcnfDecomp(FDS, [RS|Schema], Decomp) :- % If RS is n
findBad(A->B, FDS, FDS, RS), % Find a “bad
union(A,B,AB),
diff(RS,B,Diff),
writeln([‘Use ‘, A->B, ‘ to split ‘, RS, ‘ into ‘, AB, ‘ and ‘, Diff]), nl,
bcnfDecomp(FDS,[AB,Diff|Schema],Decomp).% Decompos

bcnfDecomp(FDS, [RS|Schema], [RS|Decomp]) :-% RS is in B
bcnfDecomp(FDS, Schema, Decomp).
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Finding “bad” FDs

For a given RS, we iterate through the FDs.

The “bad” FDs needed for decomposition may need to be d

findBad(A->B, [FD|FDS], AllFDS, RS) :- % A->B is a “
FD = A->B0, % Try to deriv
subset(A,RS), % A must app

diff(B0,A,B1), % A ∩ B sho
inter(B1,RS,B), % we are only
not(subset(B,A)), % A-> must n
not(iskey(A, RS, AllFDS)). % A->B is “ba

% for RS

findBad(FD, [OK|FDS], AllFDS, RS) :- % First FD is 
findBad(FD, FDS, AllFDS, RS).

✎ Can you justify the derivation of A->B using Armstrong
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Evaluating BCNF decompositio
The example from the database course:

check2 :-
FDS = [ [branchName] -> [assets, branchCity],

[loanNumber] -> [amount, branchName],
[customerName] -> [customerName] ], % chea

bcnf(FDS, BCNF), writeln([‘BCNF decomposition of ‘, FDS, ‘ is ‘, BC

check2.

➪ Attribute set is [branchCity,assets,branchName,amount,loanN
Name]

Use [branchName]->[assets,branchCity]
to split [branchCity,assets,branchName,amount,loanNumber,cus
into [branchName,assets,branchCity]
and [branchName,amount,loanNumber,customerName]

Use [loanNumber]->[amount,branchName]
to split [branchName,amount,loanNumber,customerName]
into [loanNumber,amount,branchName]
and [loanNumber,customerName]

BCNF decomposition of [[branchName]->[assets,branchCity],
[loanNumber]->[amount,branchName], [customerName]->[c

is [[branchName,assets,branchCity], [loanNumber,amount,branc
[loanNumber,customerName]]
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A final example

And finally, a more abstract, toy example:

check3 :-
FDS = [ [a,b]->[c],

[b]->[d],
[e]->[f],
[c,e]->[a] ],

bcnf(FDS, BCNF), writeln([‘BCNF decomposition of ‘, FDS, ‘ is ‘, BC

check3.

➪ Attribute set is [c,a,b,d,f,e]
Use [a,b]->[c] to split [c,a,b,d,f,e] into [b,a,c] and [a,b,d,f,e]

Use [b]->[d] to split [a,b,d,f,e] into [b,d] and [a,b,f,e]

Use [e]->[f] to split [a,b,f,e] into [e,f] and [a,b,e]

BCNF decomposition of [[a,b]->[c],[b]->[d],[e]->[f],[c,e]->[a]]
is [[b,a,c],[b,d],[e,f],[a,b,e]]

✎ What would you change in order to find all BCNF deco
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Summary

Can you answer the following questions?

✎ What happens when we ask digits([A,B,A]) ?
✎ How many times will soln2  backtrack before finding a
✎ How would you check if the solution to the puzzle is un
✎ How would you generalize the puzzle solution to solve
✎ The predicate in/2 can be used both to check if an ele

elements from a list. Does subset/2  also have this pr
✎ Can you justify that each of the recursive predicates w
✎ What would you do if you couldn’t change the precede
✎ Can you verify that the closure/3  predicate is correc
✎ What would happen if we didn’t cut in minkey/4 ?
✎ How could we generate the set of all min keys?
✎ Would it be just as easy to implement these solutions w
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11. Symbolic Interpretation

Overview
❑ Interpretation as Proof
❑ Operator precedence: representing programs as s
❑ An interpreter for the calculator language
❑ Implementing a Lambda Calculus interpreter
❑ Examples of lambda programs ...
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Interpretation as Proof

One can view the execution of a program as a step-by-step
reaches some terminating state, while producing output alo

☞ The program and its intermediate states are r
(typically, as syntax trees)

☞ Inference rules express how one program sta
next
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Representing Programs as Tree

Recall our Calculator example [Schmidt]:
P ::= 'on' S

S ::= E 'total' S | E 'total' 'OFF'

E ::= E1 '+' E2 | E1 '*' E2 | 'if' E1 'then' 
| 'lastanswer' | '(' E ')' | N

Syntax trees can be modelled directly as Prolog terms. For
on 2+3 total lastanswer + 1 total off

can be modelled by the term:
on(total(2+3, total(lastanswer+1, off)))



Programmiersprachen 203.

U Symbolic Interpretation

onvenient syntax:

se are pre-defined ...

e operator will appear.
fx for left-associative (iii) xfx
fix, (v) xf and yf for postfix:
niversität Bern

Prefix and Infix Operators

Operator type and precedence can be defined to achieve c
:- op(900, fx, on).
:- op(800, xfy, total).
:- op(600, fx, if).
:- op(590, xfy, then).
:- op(580, xfy, else).

% op(500, yfx, +). % the
% op(400, yfx, *).

The higher the precedence, the higher in the syntax tree th
Operators can be declared (i) xfy for right-associative, (ii) y
for non-associating, (vi) fx and fy (e.g., not not P ) for pre

?- 1+2+3*4 = +(+(1,2),*(3,4)).

➪ yes

?- (on 2+3 total lastanswer+1 total off)
== on(total(2+3, total(lastanswer+1, off))).

➪ yes
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Operator precedence

on 2+3 total lastanswer+1 total off
== on(total(2+3, total(lastanswer+1, off))).

on

total

+ total

+

lastanswer 1

2 3

900

800

500
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Standard Operators

The following operator precedences are predefined for SIC

op(1200, xfx, [ :- , -- ]).
op(1200, fx, [ :- , ?- ]).
op(1150, fx, [ mode , public , dynamic , multifile , parallel , wait ]).
op(1100, xfy, [ ; ]).
op(1050, xfy, [ -> ]).
op(1000, xfy, [ ’,’ ]).
op(900, fy, [ \+ , spy , nospy ]).
op(700, xfx, [ =, is, =.., ==, \==, @<, @>, @=<, @>=, =:=, =\=
op(500, yfx, [ +, - , /\ , \/ ]).
op(500, fx, [ + , - ]).
op(400, yfx, [ * , / , // , << , >> ]).
op(300, xfx, [ mod ]).
op(200, xfy, [ ^ ]).
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Building a Simple Interpreter
Top level programs:

on S :- seval(S, 0).

Statements:
seval(E total off, Prev) :- xeval(E, Prev, Val),

print(Val), nl.

seval(E total S, Prev) :- xeval(E, Prev, Val),
print(Val), nl,
seval(S, Val).

Expressions:
xeval(N, _, N) :- number(N).

xeval(E1+E2, Prev, V) :- xeval(E1, Prev, V1),
xeval(E2, Pre
V is V1+V2.

xeval(E1*E2, Prev, V) :- xeval(E1, Prev, V1),
xeval(E2, Pre
V is V1*V2.

xeval(lastanswer, Prev, Prev).

xeval(if E1 then E2 else _, Prev, Val) :- xeval(E1, Prev, 0),!,
xeval(E2, Pre

xeval(if _ then _ else E3, Prev, Val) :- xeval(E3, Prev, Val).
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Running the Interpreter
?- on 2+3 total off.

+ 1 1 Call: on 2+3 total off ?
+ 2 2 Call: seval(2+3 total off,0) ?
+ 3 3 Call: xeval(2+3,0,_660) ?
+ 4 4 Call: number(2+3) ?
+ 4 4 Fail: number(2+3) ?
+ 4 4 Call: xeval(2,0,_892) ?
+ 5 5 Call: number(2) ?
+ 5 5 Exit: number(2) ?
+ 4 4 Exit: xeval(2,0,2) ?
+ 6 4 Call: xeval(3,0,_885) ?
+ 7 5 Call: number(3) ?
+ 7 5 Exit: number(3) ?
+ 6 4 Exit: xeval(3,0,3) ?
+ 8 4 Call: _660 is 2+3 ?
+ 8 4 Exit: 5 is 2+3 ?
+ 3 3 Exit: xeval(2+3,0,5) ?
+ 9 3 Call: print(5) ?
+ 9 3 Exit: print(5) ? 5
+ 10 3 Call: nl ?
+ 10 3 Exit: nl ?
+ 2 2 Exit: seval(2+3 total off,0) ?
+ 1 1 Exit: on 2+3 total off ?

yes
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Lambda Calculus Interpreter

A somewhat more ambitious example is a Lambda Calculu

First we must choose a syntax for lambda expressions:

:- op(650, xfy, :). % body of abstraction
:- op(600, fx, \). % abstraction
:- op(500, yfx, @). % application

We cannot write e1 e2  in Prolog, so we must introduce an

For example, we will represent the lambda expression:
(λx . λy . x y) y

by the Prolog term:
(\x: \y: x@y) @ y == @(:(\(x),:(\(y),@(x,y))), y).
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Semantics

Alpha, beta and eta conversion are expressed as predicates
forms of lambda expressions:

alpha(\X:E, \Y:EY) :- fv(E, FE),
not(in(Y, FE)),
subst(Y, X, E, EY).

beta((\X:E1)@E2, E3) :- subst(E2, X, E1, E3).

eta(\X:E@X, E) :- fv(E, F),
not(in(X, F)).
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Free Variables
To implement conversion and reduction, we need to know t
expression:

fv(X, [X]) :- isname(X).

fv(E1@E2, F12) :- fv(E1, F1),
fv(E2, F2),
union(F1, F2, F12).

fv(\X:E, F) :- isname(X),
fv(E, FE),
diff(FE, [X], F).

isname(N) :- atom(N); number(N).

For example:
?- fv(\x: \y:x@y@z , F).

➪ F = [z] ?
yes
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Substitution
The predicate subst(E, X, EX, EE) is true if substituting E fo

subst(E, X, X, E) :- isname(X), !.

subst(E, X, Y, Y) :- isname(X), isname(Y),
X \== Y.

subst(E, X, E1@E2, EE1@EE2) :- subst(E, X, E1, EE1),
subst(E, X, E2, EE2).

subst(E, X, \X:E1, \X:E1).

subst(E, X, \Y:E1, \Y:EE1) :- X \== Y,
fv(E, FE),
not(in(Y, FE)), !,
subst(E, X, E1, EE1).

This rule avoid name capture by substituting Y by a new na
subst(E, X, \Y:E1, \Z:EEZ) :- X \== Y,

fv(E, FE),
% in(Y, FE),
fv(E1, F1),
union(FE, F1, FU),
newname(Y, Z, FU),
subst(Z, Y, E1, EZ),
subst(E, X, EZ, EEZ)
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Renaming
newname(Y, Z, F) is true if Z is a new name for Y, not in F

newname(Y, Y, F) :- not(in(Y, F)), !.

newname(Y, Z, F) :- tick(Y, T), newname(T, Z, F).

The built-in predicate name(X, L) is true if the name X is re

tick(Y, Z) is true if Z is Y with a “tick” (' = ASCII 39) appende
tick(Y, Z) :- name(Y, LY), append(LY, [39], LZ), name(Z, LZ

For example:
?- tick(x, Y).

➪ Y = x’ ?
yes

?- subst(x@y, z, \x:x@z, E).

➪ E = \x':x'@(x@y)
yes
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Normal Form Reduction

E => NF is true if E reduces to normal form NF;
lazy(E, EE) is true if E reduces to EE by one normal-order r

:- op(900, xfx, =>).

E => NF :- lazy(E, EE), !, EE => NF.
X => X. % no more reductions possible, so stop

lazy(E1, E2) :- beta(E1, E2), !.
lazy(E1, E2) :- eta(E1, E2), !.
lazy(E0@E2, E1@E2) :- lazy(E0, E1), !.

For example:
?- (\x : (\y:x)@(\x:x)@x ) @ y => E.

➪ E = y@y ?
yes
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Viewing Intermediate States

The => predicate tells us what normal form a lambda expres
tell us what reductions take us there.

To see intermediate reductions, we can print out each step

:- op(800, fx, eval).

eval E :- lazy(E, EE), !,
write(E), nl, write('-> '),
eval EE.

eval E :- write(E), nl, write('STOP'), nl.

The same example yields:
?- eval (\x: \y: x@y) @ y.

➪ (\x: \y:x@y)@y
-> \y':y@y'
-> y
STOP
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Lazy Evaluation

The lambda expression Ω = ( λ x . x x) ( λ x . x x) has no no

?- W = ((\x:x@x) @ (\x:x@x)),
eval W.

➪ (\x:x@x)@(\x:x@x)
-> (\x:x@x)@(\x:x@x)
-> (\x:x@x)@(\x:x@x)
<interrupt>

[Execution aborted]

But lazy evaluation allows it to be passed as a parameter if

?- W = ((\x:x@x) @ (\x:x@x)),
eval (\x:y) @ W.

➪ (\x:y)@((\x:x@x)@(\x:x@x))
-> y
STOP
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Booleans

Recall the standard encoding of Booleans as lambda expre
(or second) argument:

?- True = \x: \y:x,
False = \x: \y:y,
Not = \b:b@False@True,
eval Not@True.

➪ (\b:b@(\x: \y:y)@(\x: \y:x))@(\x: \y:x)
-> (\x: \y:x)@(\x: \y:y)@(\x: \y:x)
-> (\y: \x: \y:y)@(\x: \y:x)
-> \x: \y:y
STOP
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Tuples

Recall that tuples can be modelled as higher-order function
hold to another (client) function:

?- True = \x: \y:x, False = \x: \y:y,
Pair = (\x: \y: \z: z@x@y),
First = (\p:p @ True),
eval First @ (Pair @ 1 @ 2).

➪ (\p:p@(\x: \y:x))@((\x: \y: \z:z@x@y)@1@2)
-> (\x: \y: \z:z@x@y)@1@2@(\x: \y:x)
-> (\y: \z:z@1@y)@2@(\x: \y:x)
-> (\z:z@1@2)@(\x: \y:x)
-> (\x: \y:x)@1@2
-> (\y:1)@2
-> 1
STOP
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Natural Numbers

And natural numbers can be modelled using the standard e
(though you probably won’t like what you see!):

?- True = \x: \y:x, False = \x: \y:y,
Pair = (\x: \y: \z: z@x@y), First = (\p:p @ True), Second = (\p:p @ F
Zero = \x:x, Succ = \n:Pair@False@n, Succ@Zero => One,
IsZero = First, Pred = Second,
eval IsZero@(Pred@One).

➪ (\p:p@(\x: \y:x))@((\p:p@(\x: \y:y))@(\z:z@(\x: \y:y)@(\x:x)))
-> (\p:p@(\x: \y:y))@(\z:z@(\x: \y:y)@(\x:x))@(\x: \y:x)
-> (\z:z@(\x: \y:y)@(\x:x))@(\x: \y:y)@(\x: \y:x)
-> (\x: \y:y)@(\x: \y:y)@(\x:x)@(\x: \y:x)
-> (\y:y)@(\x:x)@(\x: \y:x)
-> (\x:x)@(\x: \y:x)
-> \x: \y:x
STOP

yes
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Fixed Points

Recall that we could not model the fixed point combinator Y
application cannot be typed.
In our untyped interpreter, we can implement Y:

?- Y = \f:(\x:f@(x@x))@(\x:f@(x@x)),
FP = Y@e,
eval FP.

➪ (\f:(\x:f@(x@x))@(\x:f@(x@x)))@e
-> (\x:e@(x@x))@(\x:e@(x@x))
-> e@((\x:e@(x@x))@(\x:e@(x@x)))
STOP

Note that this sequence validates that e@FP <-> FP.
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Recursive Functions as Fixed Po
?- True = \x: \y:x, False = \x: \y:y,

Pair = (\x: \y: \z: z@x@y), First = (\p:p @ True), Second = (\p:p @ F
Zero = \x:x, Succ = \n:Pair@False@n, Succ@Zero => One,
IsZero = First, Pred = Second,
Y = \f:(\x:f@(x@x))@(\x:f@(x@x)),
RPlus = \plus: \n: \m : IsZero@n @m @(plus @ (Pred@n)@(Succ@
Y@RPlus => FPlus, FPlus@One@One => Two,
eval IsZero@(Pred@(Pred@Two)).

➪ (\p:p@(\x: \y:x))@((\p:p@(\x: \y:y))
@((\p:p@(\x: \y:y))@(\z:z@(\x: \y:y)@(\z:z@(\x: \y:y)

-> (\p:p@(\x: \y:y))
@ ((\p:p@(\x: \y:y))@(\z:z@(\x: \y:y)@(\z:z@(\x: \y:y)@ (\x:x)))) @

-> (\p:p@(\x: \y:y)) @ (\z:z@(\x: \y:y)@(\z:z@(\x: \y:y)@(\x:x)))
@ (\x: \y:y)@(\x: \y:x)

-> (\z:z@(\x: \y:y)@(\z:z@(\x: \y:y)@(\x:x)))@(\x: \y:y)@(\x: \y:y)@(\x: \y
-> (\x: \y:y)@(\x: \y:y)@(\z:z@(\x: \y:y)@(\x:x))@(\x: \y:y)@(\x: \y:x)
-> (\y:y)@(\z:z@(\x: \y:y)@(\x:x))@(\x: \y:y)@(\x: \y:x)
-> (\z:z@(\x: \y:y)@(\x:x))@(\x: \y:y)@(\x: \y:x)
-> (\x: \y:y)@(\x: \y:y)@(\x:x)@(\x: \y:x)
-> (\y:y)@(\x:x)@(\x: \y:x)
-> (\x:x)@(\x: \y:x)
-> \x: \y:x

STOP
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Summary

You should know the answers to these questions:
❑ How can you represent programs as syntax trees?

syntax trees as Prolog terms?
❑ How can you define the syntax of your own langua
❑ Why did we define “:” as right associate but “@” as
❑ What is the difference between Succ@Zero=>One

Can you answer the following questions?
✎ How would you implement an interpreter for the assign

earlier?
✎ Why didn’t we use “.” in our syntax for lambda express
✎ Does the order of the fv/2  rules matter? What about s

✎ Can you explain each usage of “cut” (!) in the lambda i
✎ Can you think of other ways to implement newname/3

✎ How would you modify the lambda interpreter to use st
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12. Scripting

Overview
❑ Scripting vs. Programming
❑ Python — an object-oriented scripting language
❑ Example: gluing web objects with Python

References:
❑ Guido van Rossum, Python Tutorial, Stichting Mat

Amsterdam, 1996.
❑ Guido van Rossum, Python Reference Manual, St

Centrum, Amsterdam, 1996.
❑ Guido van Rossum, Python Library Reference, St

Centrum, Amsterdam, 1996.
❑ Aaron Watters , Guido van Rossum and James C

Programming with Python, M&T Books, 1996.
❑ Mark Lutz, Programming Python, O’Reilly, 1996.
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Scripting vs. Programming

Whereas a general-purpose programming language can be
applications, the main purpose of a scripting language is to
are written in other language.

❑ Unix shell: glues Unix programs written in C
❑ TCL: glues C libraries, e.g. TK interfa
❑ Applescript: glues Macintosh applications
❑ Visual basic: glues COM, ActiveX componen

A scripting language can often be used as an embedding la
application to be scriptable:

❑ Emacs editor: scriptable by EMACS Lisp
❑ Alpha editor: scriptable by TCL

The distinction is not always clear — e.g., Smalltalk is also 
and Python and Perl can be used as general-purpose prog
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Python

Python is an object-oriented scripting language that suppor
programming-in-the-large:

Scripting features:
❑ Built-in high-level abstractions: strings, big numbe
❑ Standard libraries: files, strings, regular expressio

sockets, CGI, http, ftp, HTML parsing ...
❑ Compilation to byte-code, garbage collection
❑ Dynamically bound names, run-time type-checking

Programming-in-the-large:
❑ Name spaces, modules, objects, multiple inheritan
❑ “Everything is an object”
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A taste of Python
oscar@pogo 1: python
Python 1.4 (Jun 4 1997) [GCC 2.7.2]
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>> 1+2 # Python can also be used intera
3
>>> 7/3
2
>>> x, y = 7.0, 3 # NB: tuple assignment
>>> x/y
2.33333333333

>>> "hello world" # Show the “official” representat
'hello world'
>>> hi = 'hello\nworld'
>>> hi
'hello\012world'
>>> print hi # Show the “pretty” string repres
hello
world
>>> hi = hi[:6] + "there" # Construct new string using slic
>>> print hi # Old value of hi is garbage colle
hello
there
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>>> hi[6] = ' ' # Oops -- strings are immuta
Traceback (innermost last):
File "<stdin>", line 1, in ?
TypeError: can't assign to this subscripted object
>>> print "%s %s" % (hi[:5], hi[7:])
hello here

>>> range(0,10) # Generate a list of numbers
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> reduce(lambda x, y: x+y, range(0,10))
45
>>> reduce(lambda x, y: x+y, ['hello', 'there'])
'hellothere'

>>> phone = { 'office' : 4618, 'fax' : 3965, 'sec' : 4692 }
>>> phone['fax'] = 3355 # NB: lists and dictionaries a
>>> phone.keys()
['office', 'fax', 'sec']
>>> phone.values()
[4618, 3355, 4692]
>>> phone.has_key('home')
0
>>> len(phone)
3
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The Uni Berne on-line Phone Bo

hidd
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Gluing Web Objects
The University’s Web Phone Service is nice, but is not ideal
with, for example, the Newton MessagePad 2000’s Names

We would like to script a tool that:

2. Parses the
HTML page
and generates
a dictionary for
each address
found

...1. Connects to
the phone book
server and
downloads the
query results

3. Formats the dictionari
as a table of delimited te
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The ubtb script interface
#!  /home/scgstat/Software/python1.4/bin/python

"""
ubtb --- interface to Uni Berne Telephone Book
Usage: ubtb [-dt|-nt] <name> ...
Returns either delimited text (-dt) or normal text (-nt)
(c) Oscar Nierstrasz 1997
"""

import sys # System module, f
from string import split, join # Some basic string 

def main():

parsepage = ParsePage() # Instantiate a functi

format = lambda page: showFields(selFields, page) #
results = [] # Start with empty lis
for arg in sys.argv[1:]: # Pick up the script a

if arg == "-dt": # Toggle the format 
format = lambda page: delText(selFields, page)

elif arg == "-nt":
format = lambda page: showFields(selFields, page)

else: # Convert the query
results = results + parsepage(getpage(arg))

format(results) # And print them out
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Talking to an HTTP server

def getpage(name):
""" get an HTML query results for "name" from the
Uni Berne Phone Book web server """

from urllib import urlopen # The
ubtb = "http://www.unibe.ch/cgi-bin/UniTelBuch.cgi"
try:

name = join(split(name, ' '), '+') # Re
url = urlopen("%s?name=%s" % (ubtb,name)) # Sup

except:
sys.stderr.write("Can't open " + ubtb)
sys.exit(1) # Exi

page = url.read() # Re
url.close() # Cf.
return page # Re
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The HTML results
Now we need to extract the (key,value) pairs from the web 
<DL COMPACT></DL><head>
<title>Phone Book - Search Result</title>
</head>
<body>
<a href="/">[University of Berne]</a>
<hr>
<h1>Phone Book - Search Result</h1>
<pre>
<hr>
</pre><h3>Nierstrasz Oscar</h3><pre>
<strong>Name</strong>                Nierstrasz Oscar
<strong>Title</strong>               Prof.
<strong>Institute</strong>           Informatik
<strong>Short Institute</strong>     IAM
<strong>Phone</strong>               +41 31 6314618
<strong>Alternate phone</strong>     +41 31 6314692
<strong>Office phone</strong>        4618 (4692)
<strong>Personal URL</strong>        <a href="http://iamwww.unibe.ch/~oscar/">http://ia
<strong>Office location</strong>     103 (1.OG)
<strong>Address</strong>             Schuetzenmattstr. 14
<strong></strong>                    CH-3012 Bern
<strong>Email</strong>               <a href="mailto:oscar@iam.unibe.ch">oscar@iam.unib
<hr>
</pre>
<a href="/Adm/Adm.html">Webmaster of the University of Berne</a>
</body>
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A page parsing function objec

The regular expression package provides us with the parsin

Each regular expression must be “compiled” (i.e., into a sta
used. Rather than compiling our regular expressions each ti
a function object that compiles them just once, when it is co

class ParsePage:

def __init__(self):
""" initialize a ParsePage function object """
import regex

# Recognize (key, value) pairs:
self.getFields = regex.compile("^<strong>\([^<]*\)<\/strong>[ \t]*

# Get rid of the HTML anchors surrounding text:
self.stripAnchor = regex.compile("^<a href=[^>]+>\([^<]+\)<\/a>$

The parts we wish to extract are surrounded by \( ... \)
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Parsing the HTML
class ParsePage:

...

def __call__(self, page):
""" parse output from phone book and return a list of dictionarie
results = [] # Will hold the lis
gf = self.getFields # Make some sh
sa = self.stripAnchor
for line in split(page, "\n"): # Split the page 

# start a new dictionary at start of new address
if line[:10] == "</pre><h3>":

dict = {} # Make a new, e
results.append(dict) # Add it to the en

else:
if gf.match(line) > 0:

(key,val) = gf.group(1,2) # Extract the (ke
if sa.match(val) > 0: # Strip away any

val = sa.group(1) # Extract just the
if key == "": # An empty key m

key = prevkey # from the previo
dict[key] = "%s, %s" % (dict[key],val)

else:
dict[key] = val

prevkey = key # Remember the
return results



Programmiersprachen 234.

U Scripting

ed fields
d for field names

 a field is missing

g of blanks
niversität Bern

Formatting

We select the fields that interest us:
selFields = [ 'Title', 'Name', 'Institute', 'Address',

'Phone', 'Alternate phone', 'Email', 'Personal URL', ]

The vanilla formatter:
def showFields(fields, dictList): # Print the select

padding = 20 # Space reserve
for dict in dictList:

for field in fields:
if dict.has_key(field): # Print nothing if

print pad(field+":",padding),
print dict[field]

print

def pad(s,n):
""" pad a string to a given length """
if len(s) < n:

return s + ' ' * (n - len(s)) # Append a strin
else:

return s
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Vanilla formatting

% ubtb "oscar nierstrasz"

Title: Prof.
Name: Nierstrasz Oscar
Institute: Informatik
Address: Schuetzenmattstr. 14, CH-3012 Bern
Phone: +41 31 6314618
Alternate phone: +41 31 6314692
Email: oscar@iam.unibe.ch
Personal URL: http://iamwww.unibe.ch/~oscar/
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Converting dictionaries to lists

We need to convert each dictionary into a list of values for 

def lookup(dict, keys):
""" lookup up a list of keys in a dictionary,
returning the list of values """
return map(lambda k, d=dict: getField(d,k), keys)

def getField(dict,key):
""" lookup keys in a dictionary, returning an empty string
if the key is not present (instead of raising an exception)
if dict.has_key(key):

return dict[key]
else:

return ""

>>> lookup({'a':'A', 'b':'B', 'c':'C'}, ['a', 'b', 'z'])

➪ ['A', 'B', '']
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Generating delimited text

Now we can apply our formatting function to the list of fields

def delText(fields, dictList):
""" print selected fields of a list of dictionaries as delimited text.
Print an empty string if a field is missing. """

# NB: nested function
def printList(list):

""" print list of fields, separated by tabs,
and each surrounded by quotes """
print '"%s"' % join(list, '"\t"')

printList(fields)

# convert each dictionary to a list of selected fields:
fieldList = map(lambda dict, fields=fields: lookup(dict, fields), dictList

map(printList, fieldList)

Note that lambdas do not “capture” names in the local scop
as default arguments!
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Delimited Text

Don’t forget to call main:

if __name__ == "__main__": # If called as a script, ca
main() # Otherwise, i.e., if impo

And finally we can generate the delimited text for the Newto

% ubtb -dt "hanspeter bieri" "horst bunke" "gerhard jaeger" "oscar nierst

"Title" "Name" "Institute" "Address" ...
"Prof." "Bieri Hanspeter" "Informatik" "Neubrueckstr. 10, CH-301
"Prof." "Bunke Horst" "Informatik" "Neubrueckstr. 10, CH-30
"Prof." "Jaeger Gerhard" "Informatik" "Neubrueckstr. 10, CH-30
"Prof." "Nierstrasz Oscar" "Informatik" "Schuetzenmattstr. 14, CH-
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Summary

You should know the answers to these questions:
❑ How does “scripting” differ from “programming”?
❑ What happens when you “import” a module in Pyt
❑ What is the difference between “import ” and “fro
❑ What happens when you evaluate “x = x + y ”?
❑ Does it matter if x  is a number or a string? A user-
❑ How are run-time type errors handled?
❑ When can objects be garbage-collected?

Can you answer the following questions?
✎ Why are strings immutable in Python if other kinds of li
✎ How would you construct a dictionary from a list of (ke
✎ What would this program look like without using lambd

✎ How many ways can you think of to replace blanks in a
✎ How would you write a script that produces an HTML in

that are reachable from its home page?
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13. Summary, Trends, Research

❑ Summary: functional, logic and object-oriented lan

❑ Scripting languages and Software Composition

❑ Research directions

☞ http://www.iam.unibe.ch/~scg/
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Functional Languages

Good for:
❑ equational reasoning
❑ declarative programming

Bad for:
❑ OOP
❑ explicit concurrency
❑ run-time efficiency (although constantly improving

Trends:
❑ standardization: Haskell, “ML 2000”
❑ extensions (concurrency, objects): Facile, “ML 200
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Lambda Calculus

Good for:
❑ simple, operational foundation for sequential prog

Bad for:
❑ programming

Trends:
❑ object calculi
❑ concurrent, distributed calculi (e.g., π calculus, “jo
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Type Systems

Good for:
❑ catching type errors
❑ documenting interfaces
❑ formalizing and reasoning about domains of functi

Bad for:
❑ reflection; self-modifying programs

Trends:
❑ automatic type inference
❑ reasoning about concurrency and other side effec
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Polymorphism

Good for:
❑ parametric good for generic containers
❑ subtyping good for frameworks (generic clients)
❑ overloading syntactic convenience (classes in gop
❑ coercion convenient, but may obscure meaning

Bad for:
❑ local reasoning
❑ optimization

Trends:
❑ combining subtyping, polymorphism and overload
❑ exploring alternatives to subtyping (“matching”)
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Denotational Semantics

Good for:
❑ formally and unambiguously specifying languages
❑ sequential languages

Bad for:
❑ modelling concurrency and distribution

Trends:
❑ “Natural Semantics” (inference rules vs. equations
❑ concurrent, distributed calculi
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Logic Programming

Good for:
❑ searching (expert systems, graph & tree searching
❑ symbolic interpretation

Bad for:
❑ debugging
❑ modularity

Trends:
❑ constraints
❑ concurrency
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Object-Oriented Languages

Good for:
❑ data abstraction
❑ modelling real-world “objects”
❑ developing reusable frameworks
❑ dynamic binding; various forms of polymorphism

Bad for:
❑ learning (steep learning curve)
❑ understanding (hard to keep systems well-structur
❑ semantics (no agreement)

Trends:
❑ extensions to existing paradigms (functional, logic
❑ extensions to concurrency, distribution
❑ object-oriented “scripting” (Perl, Python, JavaScrip
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Scripting Languages

Good for:
❑ rapid prototyping
❑ high-level programming
❑ reflection; on-the-fly generation and evaluation of 
❑ gluing components from different environments

Bad for:
❑ type-checking; reasoning about program correctne
❑ performance-critical applications

Trends:
❑ replacing programming as main development para
❑ scriptable applications
❑ graphical “builders” instead of languages
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Open Systems are Families of A

Open systems undergo changing requirements:

An individual system may either be an instance of a generic
snapshot in time of a changing application.

Open Requirements
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Component-Oriented Develop

S

Comp
Softw
is Fra

Generic

Components

Domain Knowledge

Requirements Models

Architecture

A Component Framework



Programmiersprachen 251.

U Summary, Trends, Research ...

d frameworks?

wledge?
are components?

meworks?
ent frameworks?
niversität Bern

Research Issues

1. Languages:
☞ How to specify components, architectures an
☞ How to specify applications as compositions?

2. Tools:
☞ How to represent and manage framework kno
☞ How to visually present and manipulate softw

3. Methods:
☞ How to drive application development from fra
☞ How to iteratively develop and evolve compon
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