Praktikum — Software Engineering

Prof. Oscar Nierstrasz

Lecturer: | s hiitzenmattstr. 14/103

Tel: 631.4618

Email: Oscar.Nierstrasz@iam.unibe.ch

Nathanael Schaerli
Assistants: |Roman Bertolami, Florian Brunner,
Marc-Philippe Horvath, Michael Locher

www.iam.unibe.ch/~scg/Teaching/PSE
[0 Requirements documents

WWWw: O PSE wiki

O Entry point to team pages

0 Pointers to technical documentation

http://www.iam.unibe.ch/~scg/Teaching/PSE

N I I B I B

Agenda

Introduction to PSE (Prof. Nierstrasz)

Client presentation (Fachschaft)

Student presentations (max 20 seconds eachl!)
Form teams (break)

Schedule meetings

N Y N N I O O O

Overview

Goals of this workshop

Project overview

Schedule — milestones, deliverables
Analysis and Design documents: guidelines
Prototyping — reducing risk

Testing — coverage and regression tests
Tools — UML, cvs, ANT, ...

Teamwork — roles and responsibilities

Goals of this Workshop. ..

Practising Responsibility-Driven Design

Methodological | Evaluating Implementation Strategies

skills Planning and Reporting

Prototyping

Working with open requirements (setting scope...)

Practical skills | Developing a complete product (documentation, installation...)

Teamwork (division of labour, planning, collaboration...)

JSP/TomCat, Zope ...

Technical skills | UML

Testing

The Customer

The Math-Stat-Info Fachschaft
(www.iam.unibe.ch/~mastainf) e B
provides various services to students

of the Mathematics department of
the University of Bern.

In an effort to modernize their
services, they would like to of fer the
Vorlesungsvorschauon their web site,
together with a set of operations
that make the web version both

attractive for students to use, and

easy for the Fachschaft to maintain.

http://www.iam.unibe.ch/~mastainf

Project Characteristics

Several characteristics of "real” projects:

0 Open-ended requirements

[0 Large user base

[0 Solution to be built using standard software packages

0 Project /ifetime extends beyond the end of the coursel
Non-issues:

[0 Requirements collection, done by the client

0 Communication: customer has IT expertise

0 No integration with existing applications or legacy
software

The Classical Software Lifecycle

The classical software lifecycle models

the software development as a step-
by-step "waterfall” between the

various development phases.

Reguiiements|
i\LA nalysis

\

pl emen’ra‘rm
‘\C Testi ng?\i

\LMai n’renan@

The waterfall model is unrealistic for many reasons, especially:
0 requirements must be “frozen" too early in the life-cycle
0 requirements are validated too late

Iterative Development

In practice, development is always iterative, and al/ software
phases progress in parallel.

Requirements Tesf/ng based on requirements
Collec‘rlon

Maintenance through iteration CTesfmgj

I Testing throughout

Analysns

alidation fhr'ough implementation

Implemen‘ra@
C Design M@Sign through refactoring

£

Preliminary Schedule

Meeting / Deliverable = Homework/Consultation
2001 | Introduction; Presentation of | Study project descriptions &
03-27| client and project; Team software documentation, prepare
forming risk analysis & workplan; prepare
interview questions
04-03 | Presentation of Risk Analysis | Implementation and testing...
Deliver workplan v1
04-10 | To be defined ...
04-17 | End of first iteration: DEMO | Revise workplan for second iteration
04-24 | Planning Game for second
iteration
05-01 | Deliver workplan v2 Implementation and testing ...
05-08 | To be defined ...
05-15 | End of second iteration: DEMO | Revise workplan for third iteration

Meeting / Deliverable

Homework/Consultation

9 | 05-22| Planning Game for third Product revision ...
iteration

10| 05-29 | To be defined ... Review test cases (other team)

(planned)

11 | 06-05 | Present test case review Product revision ...
(planned)

12 | 06-12 | End of third iteration: Review final product (other team),
Final DEMO, at client site finalize architecture documentation

13| 06-19 | Deliver full architecture Revise final product
documentation

14| 06-26 | Deliver revised final product;

Feedback and Testat

This schedule will be revised as the workshop progresses...

Evaluation

Every Team must:
0 provide deliverables of acceptable quality

—deliverables will be reviewed by the client or
another team

—unacceptable deliverables must be revised

Every Team Member must:

0 assume responsibility for and present at least one
deliverable

0 contribute “fairly” to the team effort

Deliverables

Group web pages
0 each group will have a group account for development

0 all deliverables (documentation, demos and source code)
must be accessible from the group’s web page

0 keep deliverables up-to-date as the project progresses

[1 each version and revision of a deliverable must be
accessible

O every deliverable will be reviewed by another team
0 write documentation and code to be read by others!

Log your activities

Keep minutes of all meetings
[Date & time; participants
[0 Decisions and actions with deadlines

Estimate cost of each task
0 Iteratively improve your estimates

—"We'll need about 8 CRC cards, so we'll probably
heed 80 minutes”

Log all effort
0 Use simple metrics

—"T spent 80 minutes debugging 15 short methods”
—"We spent 120 minutes filling out 12 CRC cards”
Weekly status reports must be logged on the web site!

Workplans

Planning and Cost Estimation

[]
[]

[]

] [

NB:

use conventional tools! (e.g., Gantt charts)

preﬂar'e a workplan with delivery times and costs for
each deliverable

break down each task into subtasks whose cost you can
estimate

detailed cost estimates must be made by the team
member who accepts responsibility for it

revise and refine your plan as the project progresses

keep precise logs of how much time you actually spendon
every subtask

O gradually try to improve your estimates!

oal is to improve your estimates, not to evaluate

productivity!

Requirements Collection and Analysis

Requirements Specification

[Clients provides requirements specification in the form
of Use Cases.

0 Requirements will be examined and probably refined
during the planning games.

0 Clients keeps up-to-date use-cases
or
[0 Teams keep up-to-date uses cases

Risk Assessment

A risk is something may delay the project or increase its cost.
0 Identify the risks and trade-offs

0 what open questions must be answered before you

can start implementing a solution? (what prototyping
IS heeded?)

0 TIdentify priorities

0 what are the minimal requirements for a first
product?

Prototyping

Prototyping is an essential activity carried out during all phases
of the software process.
Requirements validation
0 Prototype a user interface as early as possible to
validate your requirements specification.
Evaluating design decisions

0 Prototype parts of Kour' design to evaluate feasibility
and usability of technical alternatives.

[0 prototype to reduce risks!

Iterative development

[0 Integrate parts as early as possible to always have a
running prototype of the target application that can be
tested and demoed.

Architecture

0 Choose a simple architecture that can cope with all
known requirements

0 what are the principal parts of the system and how do
they communicate?

0 Architecture will be heavily influenced by the
framework that is used

0 Develop prototypes to test the architecture

Design
O Iteratively apply responsibility-driven design

[0 Evaluate technical alternatives and document design
decisions

O keep it simple; add complexity only when necessary
[0 prototype when trade-offs are unclear

[0 Refactor the design as the implementation evolves

Testing

Coverage

[0 Design tests that will exercise all required/implemented
functionality

0 every time you add a feature, write a test for that
featurel

[0 Check that all possible execution paths are tested
0 Apply both black-box and white-box testing

Testing

Regression

0 Automate testing so that all tests can be carried out
after any system change

[0 Set up tests so they can run in either

0 “verbose” mode (i.e., logging every interesting event),
or in

0 “silent” mode (i.e., only reporting when and where
tests have failed)

Tools

Use (at least) the following tools (or equivalent ones)!
UML Use UML to document all your models (esp.
requirements specification and design).

CVS Use version control for all text documents (i.e.,
both source code and documentation).

ANT Use ANT to automate compilation, installation,
testing and cleanup.

javadoc Automate generation of HTML documentation from
source code.

Many other tools are available — use them!

Teamwork

Break down and distribute work incrementally
0 always estimate cost when you accept a task
0 check and revise workplans and estimates as work
progresses

Use the team to your advantage
use role-playing with CRC cards to elaborate the design

distribute responsibilities according to skills
someone else should test your code

all code and documentation should be reviewed by
someone else

Program in pairs
[0 code review as you program to increase quality

I I I R

Roles and Responsibilities

Roles may be fixed or floating, but must always be assigned to
some team member.

Sample roles and responsibilities
0 Project Administrator

Chief programmer/architect

Backup programmer

Tester/test case developer

Toolsmith

Component librarian

Documentation editor

N D O O O

The team is responsible for all the deliverables.
Individuals assume responsibilities for specific subtasks.

Supporting roles

Customer
[0 answer questions about requirements 0 use the wiki!
0 accept/reject requirements specs
0 evaluate prototypes, final system

System support
[system administration
[0 maintain installation of required software
O (limited) help for technical problems O use the wiki!

Consultants
0 meet regularly (at least twice weekly) with their teams
[oversee quality of work; give advice
0 tool support; crisis detection; trouble-shooting

Forming Teams

. Identify your skills: strong and weak points
0 What skills would complement your own?

. Round table: 20 seconds to present yourself
0 What do you have to offer; who are you looking for?

. Form teams of five: look for suitable partners
[0 Seek complementary skills that cover responsibilities

. Prepare your strategy and tactics:
0 What questions do you heed to ask of the client?

0 What interactions do you anticipate with other
tfeams?

	Praktikum — Software Engineering
	Agenda
	Overview
	Goals of this Workshop...
	The Customer
	Project Characteristics
	The Classical Software Lifecycle
	Iterative Development
	Preliminary Schedule
	Evaluation
	Deliverables
	Log your activities
	Workplans
	Requirements Collection and Analysis
	Risk Assessment
	Prototyping
	Architecture
	Design
	Testing
	Testing
	Tools
	Teamwork
	Roles and Responsibilities
	Supporting roles
	Forming Teams

