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1. Infos
Me: Dr. Stéphane Ducasse
Where: Office 101, 10 Neubrückstrasse, CH-3012 Berne
EMail: ducasse@iam.unibe.ch
Me electronic: http://www.iam.unibe.ch/~ducasse/

Lecture Resources:
http://www.iam.unibe.ch/~scg/Resources/Smalltalk/
http://brain.cs.uiuc.edu/VisualWorks/
http://www.iam.unibe.ch/~ducasse/PubHTML/Smalltalk.htm
http://kilana.unibe.ch:8080/SmalltalkWiki/

News groups: comp.lang.smalltalk
Important Addresses to get free Smalltalks:
http://www.objectshare.com/VWNC/
http://www.squeak.org/
http://www.object-arts.com/Home.htm
ANSI X3j20: www.smalltalksystems.com/sts-pub/x3j20
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Some Web Pages
Wikis:

VisualWorks  /brain.cs.uiuc.edu/VisualWorks/
VisualAge /brain.cs.uiuc.edu/VisualAge/
http://kilana.unibe.ch:8080/SmalltalkWiki/

STIC:
/www.stic.org/

Cool Sites:
/www.smalltalk.org/
/www.goodstart.com/stlinks.html
/st-www.cs.uiuc.edu/

User Groups: ESUG, BSUG, GSUG, SSUG
www.esug.org/
www.bsug.org/
www.gsug.org/
www.iam.unibe.ch/~ssug/
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Structure of this Lecture (i)
❑ Basic Smalltalk Elements

– History and Concepts

– Syntax

– Class/Method Definitions

– Collections

– Numbers

– Streams

❑ Advanced Smalltalk Topics

– Classes

– MVC

– Concurrency

– Metaclasses

– Debugging

– Internals
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Structure of this Lecture (ii)
❑ Design Issues

– Abstract Classes

– Elementary Design Issues

– Idioms

– Some selected design patterns

❑ Comparisons

– Java, C++, Smalltalk

– Smalltalk for the Java Programmer

– Smalltalk for the Ada Programmer
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About this lecture

❑ If you have problems, contact me!

❑ Grab VisualWorks from www.cincom.com or http:/
or Squeak from www.squeak.org

❑ Do the exercises!!!
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Basic Smalltalk
❑ History and Concepts
❑ Tasting Smalltalk
❑ Syntax
❑ Class/Method Definitions
❑ Collections
❑ Numbers
❑ Streams
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2. Smalltalk in Context

❑ History
❑ Context
❑ Run-Time Architecture
❑ Concepts
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Smalltalk: More than a Langua

❑ A small and uniform language (two days to learn t
❑ A large set of reusable classes (basic data structu

sockets ...).
❑ A set of powerful development tools (Browsers, U

management, crash recovery, project managemen
❑ A run-time environment based on virtual machine 
❑ With Envy, team working and application manage

deployment).



Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk in Context

U 2.15

s very possible"

— Alan Kay

ildren)

n of a real phenomenon by
niversität Bern Ducasse Stéphane

Inspiration

"making simple things very simple and complex thing

❑ Flex (Alan Kay 1969)
❑ Lisp (interpreter, blocks, garbage collection)
❑ Turtle graphics (Logo Project, programming by ch
❑ Direct manipulation interfaces (Sketchpad 1960)
❑ Simula (classes and message sending, descriptio

means of a specification language: modelling)

☞ DynaBook: a desktop computer for children
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Precursor, Innovative and Visio
❑ First graphical bitmap-based

– multi-windowing (overlapping windows)

– programming environment (debugger, compiler

– with a pointing device

Yes a mouse !!!!
Xerox Smalltalk Team developed the mouse technology an

It was revolutionary! Apple copied them (Lis

❑ Virtual Machine +
Platform independent image technology

❑ Garbage Collector

❑ Just in Time Compilation

❑ Even in 1980 you got all the source in the develop
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History

1960

1970

1980

1990

FORTRAN
Algol 60

CO

PL/1
Simula 67

Smalltalk 72

Smalltalk 80

Objective C

C

C++ Ad

Pascal

ANSI C++

Self
Eiffel

Algol 68

Clu

Java Ad
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History
Internal.
1972: First interpreter; more agents than objects (every obj
syntax).
1976: Redesign: Hierarchy of classes with unique root + fix
code), contexts, process + semaphores + Browser + UI cla
Projects: ThingLab, Visual Programming Environment Prog
1978: Experimentation with 8086 microprocessor (NoteTak

External.
1980: Smalltalk-80 (Ascii, cleaning primitives for portability,
class objects, MVC, )
Projects: Galley Editor (mixing text, painting and animation
(physics simulation)
1981: books + four external virtual machines (Dec, Apple, H
generation scavenging
1988: Creation of Parc Place Systems
1992: Draft Ansi
1995-6: New Smalltalk implementations (MT, dolphin, Sque
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Smalltalk’s Concepts

❑ Everything is an object (numbers, files, editors, co
boolean).

❑ Objects communicate only by message passing.
❑ Each object is an instance of one class (which is a
❑ A class defines the structure and the behaviour of
❑ Each object possesses its own set of values.
❑ Dynamically typed.
❑ Purely based on late binding.

Programming in Smalltalk: Reading an interactive Book
❑ Reading the interface of the classes: (table of con
❑ Understanding the way the classes are implement
❑ Extending and changing the contents of the syste
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Messages, Methods and Protoc
Message: What  behaviour to perform

aWorkstation accept: aPacket

Method: How  to carry out the behaviour
accept: aPacket

(aPacket isAddressedTo: self)

ifTrue:[ Transcript show: 'A packet is accepted by the Workstation ', s

ifFalse: [super accept: aPacket]

Protocol: The complete set of messages an object respond
#name #initialize #hasNextNode #connectedTo: #name: #nextNode #nextNode: #printO
#typeName #accept: #send:

Often grouped into categories:
accessing #name

initialize-release #initialize

testing #hasNextNode

connection #connectedTo:

private #name: #nextNode #nextNode:

printing #printOn: #simplePrintString #typeName

send-receive #accept: #send:
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Objects, Classes and Metaclas

❑ Every object is an instance of a class
❑ A class specifies the structure and the behaviour o
❑ Instances of a class share the same behaviour an

❑ Classes are objects that create other instances
❑ Metaclasses are just classes that create classes a
❑ Metaclasses described class behaviour and state 

dictionary, instance variables...)
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Smalltalk Run-Time Architectur
Virtual Machine + Image + Changes and Sources

The byte-code is in fact translated into native code by a jus
The source and the changes are not necessary for interpret
for the development. Normally they are removed for deploy
An application can be delivered as some byte-code files tha
The development image is stripped to remove the unneces
components like the compiler, the scanner, the browser,....

A byte-code interp
the virtual machine

IMAGE2.IM
IMAGE2.CHA

Stand

IMAGE1.IM
IMAGE1.CHA

All the objects of the system
at a moment in time

One per user

+
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VisualWorks Advanced Runtim

❑ Parcels reproduce the schema of the image and c
pcl are byte code, pst source code

❑ Parcels allow atomic loading/unloading and prereq
❑ Extremely fast loading
❑ Good for dynamic loading, code management

Sources
Shared by everybody

VM

byte code of all the objects Source of all the objects

piece of image (byte code) piece of source (text)

Image

currently in memory

Change

currently in memory

User 1

VM

Imag

Parcel(pcl) Parcel(pst)
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3. Quick Overview of the Enviro

VW2.5 not VW3.0 — sorry!!
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Window

Blue
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Mouse Semantics

Select

Operate

Red

Yellow
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Opens a System Browser

Opens a workspace

Opens a file
selector

Opens a 
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Class MenuBar

Opens a ClassBrowser Opens 

Object ()
  Collection ()
    SequenceableCollection ()
       OrderedCollection ('firstInde

  LinkedOrderedColle

  SortedCollection ('s

Shows the class definition a

Ditto for class variables
and class references
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Method MenuBar

Opens a method browser

To know the implementors
of a method sent in the
current method body
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Cross Reference Facilities

Launcher
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Filing Out

category

class

protocol meth

Browser
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Hierarchy Browser
Use the Refactoring Browser instead!!!
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Debugger
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Crash Recovery
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Condensing Changes

SourceFileManager new condenseChange
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UIBuilder
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4. A Taste of Smalltalk
“Try not to care - Beginning Smalltalk programmers often h
think they need to understand all the details of how a thing w
This means it takes quite a while before they can master Tr
One of the great leaps in OO is to be able to answer the que
with "I don’t care"“. Alan Knight registered Guru
Two examples:

❑ “hello world”
❑ a LAN simulator

To give you an idea of:
❑ the syntax
❑ the elementary objects and classes
❑ the environment

To provide the basis for all the lectures:
❑ all the code examples,
❑ constructs,
❑ design decisions ...
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Power to Simplicity: Syntax on a
From Ralph Johnson

exampleWithNumber: x

“This is a small method that illustrates every part of Smalltalk
except primitives, which aren’t very standard. It has unary, binary, a
word messages, declares arguments and temporaries (but not b
accesses a global variable (but not and instance variable), uses li
character, symbol, string, integer, float), uses the pseudo variable
nil, self, and super, and has sequence, assignment, return and cas
zero argument and one argument blocks. It doesn’t do anything use

|y|

true & false not & (nil isNil) ifFalse: [self halt].

y := self size + super size.

#($a #a ‘a’ 1 1.0)

do: [:each | Transcript

show: (each class name);

show: (each printString);

show: ‘ ‘].

^ x < y
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Some Conventions
❑ Code Transcript show: ‘Hello world’

❑ Return Value
1 + 3 -> 4

Node new -> aNode

Node new PrIt -> a Workstation with name:#pc connectedto:#m

❑ Method selector #add:

❑ Method scope conventions:
Node>>accept: aPacket

instance method defined in the class Nod
Node class>> withName: aSymbol

class method defined in the class Node (i
❑ aSomething  is an instance of the class Somethin

❑ DoIt, PrintIt, InspectIt and Accept
Accept = Compile: Accept a method or a class de
DoIt = send a message to an object
PrintIt = send a message to an object + print to the
InspectIt = send a message to an object + inspect
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Hello World!

Transcript show: ‘hello world’

During implementation, we can dynamically ask the interpre
expression. To evaluate an expression, select it and with the
doIt .

Transcript  is a special object that is a kind of standard o
It refers to a TextCollector  instance associated with the
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Everything is an object
The launcher is an object.
The icons are objects.
The workspace is an object.
The window is an object: instance of ApplicationWindow

The text editor is an object: instance of ParagraphEditor

The scrollbars are objects too.
‘hello word’  is an object: aString  instance of String

#show:  is a Symbol  that is also an object.
The mouse is an object.
The parser is an object instance of Parser .
The compiler is also an object instance of Compiler .
The process scheduler is also an object.
The garbage collector is an object: instance of MemoryObje

...
⇒ a world consistent , uniform  written in itself!
you can learn  how it is implemented, you can extend  it or e
+ (almost) all the code is available and readable....Book co
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Objects communicate via mes
Transcript show: ‘hello world’

The above expression is a message:

– the object Transcript  is the receiver of the m

– the selector of the message is #show:

– an argument: a string ‘hello world’

Transcript  is a global variable (starts with an uppercase
Launcher’s report part.

Vocabulary Concerns:
Message passing or sending a message is equivalent to

– invoking a method in Java or C++

– calling a procedure in procedural languages

– applying a function in functional languages

(modulo polymorphism for the last two)
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A LAN Simulator
A LAN contains nodes, workstations, printers, file 
Packets are sent in a LAN and each nodes treats 

mac
node3

pcnode1

lpr
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Three Kind of Objects
Node and its subclasses represent the entities that are con
Packet  represents the information that flows between Nod
NetworkManager  represents how the nodes are connecte

N

Printer

NetworkManager

Packet
addressee
contents
originator
isSentBy: aNode
isAddressedTo: aNode

name
accep
send:
hasN

print: aPacke
accept: aPac

declareNode: aNode
undeclareNode: aNode
connectNodes: anArrayOfAddressees
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Interactions Between Nodes

accept: aPacket

send: aPacket

nodePrinter aPacket

isAddressedTo: nodePrinter

accept: aPacket

print: aPacket

[true]

[false]
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Node and Packet Creation
|macNode pcNode node1 printerNode node2 node3 packet|

"nodes definition"

macNode := Workstation withName: #mac.

pcNode := Workstation withName: #pc.

node1 := Node withName: #node1.

node2 := Node withName: #node2.

node3 := Node withName: #node2.

printerNode := Printer withName: #lpr.

"Node connections"

macNode nextNode: node1.

node1 nextNode: pcNode.

pcNode nextNode: node2.

node3 nextNode: printerNode.

lpr nextNode: macNode.

"packet creation"

packet := Packet send: 'This packet travelled to the printer' to: #lpr.
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Objects communicate by mes
Message: 1 + 2

- receiver : 1 (an instance of SmallInteger)
- selector: #+
- arguments: 2

Message: lpr nextNode: macNode
- receiver lpr (an instance of LanPrinter)
- selector: #nextNode:
- arguments: macNode (an instance of Workstatio

Message: Packet send: 'This packet travelled to the printer
- receiver: Packet (a class)
- selector: #send:to:
- arguments: 'This packet travelled to the printer' a

Message: Workstation withName: #mac
- receiver: Workstation (a class)
- selector: #withName:
- arguments: #mac
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Definition of a LAN

To simplify the creation and the manipulation of a LAN.

| aLan |

aLan := NetworkManager new.

aLan createAndDeclareNodesFromAddresses: #(node1 node2 node

aLan createAndDeclareNodesFromAddresses: #(mac pc) ofKind: W

aLan createAndDeclareNodesFromAddresses: #(lpr) ofKind: LanPri

aLan connectNodesFromAddresses: #(mac node1 pc node2 node3 

Now we can query the LAN to get some nodes:
aLan findNodeWithAddress: #mac
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Transmitting a Packet

| aLan packet macNode|

...

macNode := aLan findNodeWithAddress: #mac.

packet := Packet send: 'This packet travelled to the printer' to: #lpr.

macNode originate: packet.

-> mac sends a packet to pc

-> pc sends a packet to node1

-> node1 sends a packet to node2

-> node2 sends a packet to node3

-> node3 sends a packet to lpr

-> lpr is printing

-> this packet travelled to lpr
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How to Define a Class?
Fill the template:

NameOfSuperclass subclass: #NameOfClass

instanceVariableNames: 'instVarName1 instVarName2'

classVariableNames: 'ClassVarName1 ClassVarName2'

poolDictionaries: ''

category: 'LAN'

For example to create the class Packet
Object  subclass: # Packet

instanceVariableNames: ' addressee originator contents

classVariableNames: ''

poolDictionaries: ''

category: ' LAN'
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How to Define a Method?
Follow the template:
message selector and argument names

"comment stating purpose of message"

| temporary variable names |

statements

LanPrinter>>accept: thePacket

"If the packet is addressed to me, print it. Else just behave like a normal node"

(thePacket isAddressedTo: self )

ifTrue: [ self  print: thePacket]

ifFalse: [ super  accept: thePacket]

In Java we would write
void accept(thePacket Packet)

/*If the packet is addressed to me, print it. Else just behave like a normal node*

if (thePacket.isAddressedTo(this)){

this. print(thePacket)}

else super .accept(thePacket)
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5. Smalltalk Syntax in a Nutshel
From Ralph Johnson

exampleWithNumber: x

“This is a small method that illustrates every part of Smalltalk
except primitives, which aren’t very standard. It has unary, binary, a
word messages, declares arguments and temporaries (but not b
accesses a global variable (but not and instance variable), uses li
character, symbol, string, integer, float), uses the pseudo variable
nil, self, and super, and has sequence, assignment, return and cas
zero argument and one argument blocks. It doesn’t do anything use

|y|

true & false not & (nil isNil) ifFalse: [self halt].

y := self size + super size.

#($a #a ‘a’ 1 1.0)

do: [:each | Transcript

show: (each class name);

show: (each printString);

show: ‘ ‘].

^ x < y
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Constructs
Language constructs: ^ “ # ‘’ [] . ; () | := $ : er ! <primitive: >

^ return

“ comments

# symbol or array

‘ string

[ ] block or byte array

. separator and not terminator (o

; cascade (sending several mes

| local or block variable

:= assignment

$ character

: end of selector name

e, r number exponent or radix

! file element separator

<primitive: ...> for VM primitive calls
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Syntax in a Nutshell (i)

Note that @ is not an element of the syntax, but just a mes
(This is the same for /, bitShift, ifTrue:, do: ...)

comment: “a comment”

character: $c $h $a $r $a $c $t $e $r

string: ‘a nice string’  ‘lulu’ ‘l’’idiot’

symbol:  #mac #+

array:  #(1 2 3 (1 3) $a 4)

byte array: #[1 2 3]

integer: 1, 2r101

real: 1.5, 6.03e-34,4, 2.4e7

float: 1/33

boolean: true, false

point: 10@120
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Syntax in a Nutshell (ii)
assigment: var := aValue

block:  [:var ||tmp| expr...]

temporary variable: |tmp|

block variable: :var

unary message: receiver selector

binary message: receiver selector arg

keyword based: receiver keyword1: a

cascade: message ; selector 

separator: message . message

result: ^

parenthesis: (...)
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Messages instead of predefine

❑ in Java, C, C++, Ada, >>, if, for, ... are hardcoded 

❑ in Smalltalk there are just messages defined on ob

(>>) bitShift: is just a message sent to numbers
10 bitShift: 2

(if) ifTrue: is just messages sent to a boolean
(1> x) ifTrue:

(for) do:, to:do: are just messages to collections or
#(a b c d) do: [:each | Transcript show: each ; c

1 to: 10 do: [:i | Transcript show: each prin

=> Minimal parsing
=> Language extensible
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Class and Method Definition
Class: a message sent to another class

Object  subclass: # Node

instanceVariableNames: ' name nextNode '

classVariableNames: ''

poolDictionaries: ''

category: ' LAN'

☞ Instance variables are instance-based protec
Method: normally done in a browser or (by directly invoking

Node>>accept: thePacket

"If the packet is addressed to me, print it.
Else just behave like a normal node"

(thePacket isAddressedTo: self )

ifTrue: [ self  print: thePacket]

ifFalse: [ super  accept: thePacket]

☞ Methods are public
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Instance Creation

1, ‘abc’

Basic class messages creation (new, new:, basicN

Packet new

Class specific message creation
Workstation withName: #mac
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6. Syntax and Messages

The syntax of Smalltalk is simple and uniform, but it can se

– Literals: numbers, strings, arrays....

– Variables names

– Pseudo-variables

– Assignment, return

– Message Expressions

– Block expressions
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Read it as a non-computer per
| bunny |

bunny := Actor fromFile: ‘bunny.vrml’.

bunny head

doEachFrame:

[ bunny head

pointAt:  (camera transformScreenPointToScenePoint:  (Sensor m

using:  bunny)

duration:  camera rightNow ]
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Literal Overview (i)
Numbers:

SmallInteger, Integer,
4, 2r100 (4 in base 2),3r11 (4 in base 3), 1232

Fraction, Float, Double
3/4, 2.4e7, 0.75d

Characters:
$F, $Q $U $E $N $T $i $N

Unprintable characters
Character space, Character tab, Character cr

Symbols:
#class #mac #at:put:  #+ #accept:

Strings:
#mac asString -> 'mac'

12 printString -> '12'

'This packet travelled around to the printer' 'l''idiot'

String with: $A

To introduce a single quote inside a string, just double it.
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Literal Overview (ii)
Arrays:

#(1 2 3) #('lulu' (1 2 3))  #('lulu' #(1 2 3))

#(mac node1 pc node2 node3 lpr ) an array of symbols.

When one prints it it shows #(# mac #node1 #pc #node2 #node

Byte Array:
#[1 2 255]

Comments:
"This is a comment"

A comment can be on several lines. Moreover, avoid putting a space between
there is no space, the system helps you to select a commented expression.
double click: the entire commented expression is selected. After you can pri
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Literal Arrays and Arrays
Heterogenous

#('lulu' (1 2 3)) PrIt-> #('lulu' #(1 2 3))

#('lulu' 1.22 1)  PrIt-> #('lulu' 1.22 1)

An array of symbols:
#(calvin hobbes suzie) PrIt-> #(#calvin #hobbes #suzie)

An array of strings:
#('calvin' 'hobbes' 'suzie') PrIt->  #('calvin' 'hobbes' 'suzie')

Only the creation time differs between literal arrays and arra
at compile time, arrays at run-time.

#(Packet new) an array with two symbols and not an instance of Packet

Array new at: 1 put: (Packet new) is an array with one element an instance of Packe

Literal or not
#(...) considers elements as literals and false true and nil

#( 1 + 2 ) PrIt-> #(1 #+ 2)

Array with: (1 +2) PrIt->  #(3)
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Deep Into Literal Arrays
Implementation dependent technical note:
Literal arrays may only contain literal objects, false , true

'mac' asArray is an array of character

(#(false true nil) at: 2 )

ifTrue:[ Transcript show: ‘this is really true’]

ifFalse: [ 1/0]

Literature (Goldberg book) defines a literal as an object the
to the same object. This is a first approximation to present 
examine literals according to this principle, this is false in V
safer definition.) Literature defines literals as numbers, cha
arrays, symbols, and two strings, floats , arrays but they do
same object.
In fact literals are objects created at compile-time or even alr
stored into the compiled method literal frame. A compiled m
the bytecode translation of the source code. The literal fram
method that stores the literals used by the methods. You ca

Point inspect ->methodDict-> aCompiledMethod to
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Deep into Literal Arrays (ii)
The following example illustrates the difference between th
created instance of Array created via Array new:. Let us de
SmallInteger>>m1

|anArray|

anArray := #(nil).

(anArray at: 1 ) isNil

ifTrue:[ Transcript show: ‘Put 1’;cr. anArray at: 1 put: 1.]

1 m1 will only display the message Put 1 once. Because the
literal frame of the method and the #at:put: message modifie
SmallInteger>>m2

|anArray|

anArray := Array new: 1.

(anArray at: 1 ) isNil

ifTrue:[ Transcript show: ‘Put 1’;cr. anArray at: 1 put: 1]

1 m2 will always display the message Put 1 because in tha
created at run-time. Therefore it is not detected as a literal at
into the literal frame of the compiled method. You can find 
defining these methods on a class, inspecting the class the
then the corresponding methods.
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Deep into Literal Arrays (iii)

This internal representation of method objects has led to th
unwanted side effects

Never give direct access to a literal array but only provide a
For example:

ar

^ #(100@100 200@200) copy
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Symbols vs. Strings
– Symbols are used as method selectors, unique

– A symbol is a read-only object, strings are muta

– A symbol is unique, strings are not

#calvin == #calvin PrIt-> true

‘calvin’ == ‘calvin’ PrIt-> false

#calvin, #zeBest PrIt-> 'calvinzeBest'

Symbols are good candidates for identity based dictionarie

Hints: Comparing strings is a factor of 5 to 10 slower than symbols. But con
than 100 times more expensive.
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mporary|
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| methodTemporary|
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Variables Overview
– Maintains a reference to an object

– Dynamically typed and can reference different 

– Shared (starting with uppercase) or private (sta

variable

SharedVariable

instanceVariable

named indexed

: blockPar

| blockTe

privateVariab

ClassVariable

GlobalVariable

PoolVariable
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Temporary Variables
– To hold temporary values during evaluation (m

– Can be accessed by the expressions composin

|mac1 pc node1 printer mac2 packet|

Hint: Avoid using the same name for a temporary variable and an argument
temporary variable or block temporary. Your code will be more portable.
Instead of :

aClass>>printOn: aStream

|aStream|

...

Write
aClass>>printOn: aStream

|anotherStream|

...

Hint: Avoid using the same temporary variable for referencing two different o
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Assignments

variable := aValue

three := 3 raisedTo: 1

variable1 := variable2 := aValue

But assignment is not done by message passing.
This is one of Smalltalk’s few syntactic elements.

In Smalltalk, objects are manipulated via implicit pointers: e
So take care when different variables point to the same obj

p1 := p2 := 0@100

p1 x: 100

p1 PrIt->  100@100

p2 PrIt->  100@100
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Method Arguments
- Can be accessed by the expressions composing the meth
- Exist during the execution of the defining method.

- Method Name
accept: aPacket

In C++, Java:
void Printer::accept(aPacket Packet)

- But their values cannot be reassigned within the method.
Invalid Example, assuming contents is an instance varia

contents: aString

aString := aString, 'From Lpr'. “, concatenate strings”

addresse := aString

Valid Example
addressee: aString

addressee := aString , 'From Lpr'
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Instance Variables
- Private to a particular instance (not to all the instances of 
- Can be accessed by all the methods of the defining class
- Has the same lifetime as the object.

Declaration
Object subclass: #Node

instanceVariableNames: 'name nextNode '

...

Scope
Node>>setName: aSymbol nextNode: aNode

name := aSymbol.

nextNode := aNode

But preferably accessed using accessor methods
Node>>name

^name
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Six pseudo-variables (i)
Smalltalk expressions make references to these variables, 
values. They are hardwired in the compiler.

- nil   (nothing) value for the uninitialized variables. Unique
UndefinedObject

- true  unique instance of the class True

- false  unique instance of the class False

Hints: Don’t use False  instead of false . false is the boolean value, Fa
So

False

ifFalse: [Transcript show: ‘False’]

produces an error, but

false

ifFalse: [Transcript show: ‘False’]

works
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Six pseudo-variables (ii)
The following variables can only be used in a method body
- self  in the method body refers to the receiver  of a mess
- super in the method body refers also to the receiver of th
affects the lookup of the method. It starts in the superclass
method where the super was used and NOT the superclass
lookup semantics)

PrinterServer>>accept: thePacket

"If the packet is addressed to me, print it. Else just behave like

(thePacket isAddressedTo: self )

ifTrue: [ self  print: thePacket]

ifFalse: [ super  accept: thePacket]

- thisContext  refers to the instance of MethodContext
of a method (receiver, sender, method, pc, stack). Specific 
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Global Variables
• Capitalized

MyGlobal := 3.14

Smalltalk will ask you if you want to create a new global
Smalltalk at: #MyGlobal put: 3.14

MyGlobal PrIt-> 3.14

Smalltalk at: #MyGlobal PrIt-> 3.14

• Store in the default environment: Smalltalk  (aSystemD

• Accessible from everywhere
• Usually not really a good idea to use them; use a classVa
hierarchy or a instance variable of a class)
• To remove a global variable:

Smalltalk removeKey: #MyGlobal

• Some predefined global variables:
Smalltalk (classes + globals)

Undeclared (aPoolDictionary of undeclared variables accessible from

Transcript (System transcript)

ScheduledControllers (window controllers)

Processor (a ProcessScheduler list of all the process)
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Three Kinds of Messages
Unary

2.4 inspect

macNode name

Binary
1 + 2 -> 3

(1 + 2) * (2 + 3) PrIt-> 15

3 * 5 PrIt-> 15

Keyword based
6 gcd: 24 PrIt-> 6

pcNode nextNode: node2

aLan connectNodesFromAddresses: #(mac node1 pc node2 node3 lpr)

A message is composed of:

– a receiver, always evaluated (1+2)

– a selector, never evaluated

– and a list possibly empty of arguments that are

The receiver is linked with self  in a method body.
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Unary Messages

aReceiver aSelector

node3 nextNode -> printerNode

node3 name -> #node3

1 class PrIt-> SmallInteger

false not PrIt-> true

Date today PrIt-> Date today September 19, 1997

Time now PrIt-> 1:22:20 pm

Double pi PrIt-> 3.1415926535898d
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Binary Messages
aReceiver aSelector anArgume

Binary messages:

– arithmetic, comparison and logical operations

– one or two characters taken from: + - / \ * ~ <

1 + 2   2 >= 3  100@100     'the', 'best'

Restriction:

– second character is never $-

– no mathematical precedence so take care
3 + 2 * 10 -> 50

3 + (2 * 10) -> 23
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Keyword Messages
receiver keyword1: argument1 keyword2: a

In C-like languages would be:
receiver.keyword1keyword2...(argument1 type1, argum

Workstation withName: #Mac2

mac nextNode: node1

Packet send:  'This packet travelled around to the printer' to:  #lw100

aLan createAndDeclareNodesFromAddresses: #(node1 node2 node3) o

1@1 setX: 3

#(1 2 3) at: 2 put: 25

1 to: 10 -> (1 to: 10) anInterval

Browser newOnClass: Point

Interval from:1 to: 20 PrIt-> (1 to: 20)

12 between: 10 and: 20 PrIt-> true

x > 0 ifTrue:['positive'] ifFalse:['negative']
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Composition
69 class inspect

(0@0 extent: 100@100) bottomRight

Precedence Rules:

– (E) > Unary-E > Binary-E > Keywords-E

– at same level, from the left to the right
2 + 3 squared -> 11

2 raisedTo: 3 + 2 -> 32

#(1 2 3) at: 1+1 put: 10 + 2 * 3 ->  #(1 36 3)

Hints: Use () when two keyword based messages occur within a single expr
fine.

x isNil

ifTrue: [...]

isNil  is an unary message, so it is evaluated prior to ifTrue:
(x includes: 3)

ifTrue: [...]

includes: is a keyword based message, it has the same precedence th
prior to ifTrue: because the method includes:ifTrue:  does not ex
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Sequence
message1.
message2.
message3

. is a separator, not a terminator

|macNode pcNode node1 printerNode node2 node3 packet|

"nodes definition"

macNode := Workstation withName: #mac.

pcNode := Workstation withName: #pc.

node1 := Node withName: #node1.

node2 := Node withName: #node2.

node3 := Node withName: #node2.

Transcript cr.

Transcript show: 1 printString.

Transcript cr.

Transcript show: 2 printString
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Cascade
receiver selector1 [arg] ; selector2 [a

Transcript show: 1 printString. Transcript show: cr

Is equivalent to:
Transcript show: 1 printString ; cr

Important: the semantics of the cascade is to send all the m
the receiver of the FIRST message involved in the cascade
Examples:

|workst|

workst := Workstation new.

workst name: #mac .

workst nextNode: aNode

Is equivalent to: Workstation new name: #mac ; nextNode: aNode

Where name: is sent to the newly created instance of work

In the following example the FIRST message involved in th
and not #with: . So all the messages will be sent to the re
expression the newly created instance anOrderedCollection

(OrderedCollection with: 1) add: 25; add: 35
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yourself
One problem: (OrderedCollection with: 1) add: 25; add: 35 PrIt-> 35

Returns 35  and not the collection!

Let us analyze a bit:
OrderedCollection>>add: newObject

"Include newObject as one of the receiver's elements.  Answer newObject."

^self addLast: newObject

OrderedCollection>>addLast: newObject

"Add newObject to the end of the receiver.  Answer newObject."

lastIndex = self basicSize ifTrue: [self makeRoomAtLast].

lastIndex := lastIndex + 1.

self basicAt: lastIndex put: newObject.

^newObject

How can we reference the receiver of the cascade?

By using yourself: yourself returns the receiver of the ca
(OrderedCollection with: 1) add: 25; add: 35 ; yourself

-> OrderedCollection(1 25 35)
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Have You Really Understood Yo

Yourself returns the receiver of the cascade:
Workstation new name: #mac ; nextNode: aNode ; yourself

Here the receiver of the cascade is aWorkstation the new
the class Workstation. self of the yourself  method
(aWorkstation )

In
(OrderedCollection with: 1) add: 25; add: 35 ; yourself

anOrderedCollection(1) = self

So if you are that sure that you really understand yourself, w
Answer:

Object>>yourself

^ self
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Block (i): Definition
• A deferred sequence of actions
• Return value is the result of the last expression of the bloc
• = Lisp Lambda-Expression, ~ C functions, anonymous fun

[ :variable1 :variable2 |

| blockTemporary1 blockTemporary2 |

 expression1.

 ...variable1 ...

]

Two blocks without arguments and temporary variables
PrinterServer>>accept: thePacket

(thePacket isAddressedTo: self)

ifTrue: [self print: thePacket]

ifFalse: [super accept: thePacket]

A block with one argument and no temporary variable
NetworkManager>>findNodeWithAddress: aSymbol

“return the first node having the address aSymbol”

^self detectNode: [:aNode| aNode name = aSymbol]  ifNone: [nil]
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Block (ii): Evaluation
[....] value

or value:

or value:value:

or value:value:value:

or valueWithArguments: anArray

The value of a block is the value of its last statement, excep

Blocks are first class objects.
They are created, passed as argument, stored into variable
fct(x) = x ^ 2 + x
fct (2) = 6
fct (20) = 420

|fct|

fct:= [:x | x * x + x].

fct value: 2 PrIt-> 6

fct value: 20 PrIt-> 420

fct PrIt-> aBlockClosure
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Block (iii)

|index bloc |

index := 0.

bloc := [index := index +1].

index := 3.

bloc value -> 4

Integer>>factorial

"Answer the factorial of the receiver. Fail if the

receiver is less than 0. "

   | tmp |

   ....

   tmp := 1.

   2 to: self do: [:i | tmp := tmp * i].

   ^tmp

For performance reasons, avoid referring to variables outsi
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Primitives
For optimization, if a primitive fails the code following is exe
Integer>>@ y

"Answer a new Point whose x value is the receiver and whose y value is the argume

<primitive: 18>

^Point x: self y: y

World limits: We need some operations that are not defined
direct calls on the underlying implementation language (C, 
== anObject

"Answer true if the receiver and the argument are the same object (have the same

object pointer) and false otherwise.  Do not redefine the message == in any

other class!  No Lookup."

<primitive: 110>

self primitiveFailed

+ - < >* / = == bitShift:\\ bitAnd: bitOr: >= <= at: at:put:

new new:
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What You Should Know

❑ Syntax
❑ Basic objects
❑ Message constituants
❑ Message semantics
❑ Message precedence
❑ Block definition
❑ Block use
❑ yourself semantics
❑ pseudo-variables

To learn all that, the best thing to do is to start up Smalltalk
and look at the return values.
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7. Dealing with Classes

❑ Class definition
❑ Method definition
❑ Inheritance semantics
❑ Basic class instantiation
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Class Definition: The Class Pack

A template is proposed by the browser:
NameOfSuperclass subclass: #NameOfClass

   instanceVariableNames: ' instVarName1 instVarName2 '

   classVariableNames: 'ClassVarName1 ClassVarName2 '

   poolDictionaries: ''

   category: ' CategoryName '

Example:
Object subclass: #Packet

instanceVariableNames: ' contents addressee originator

classVariableNames: ''

poolDictionaries: ''

category: ' LAN-Simulation '

Automatically a class named “Packet class ” is created.
Packet  is the unique instance of Packet class .
(To see it, click on the class button in the browser)
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Named Instance Variables
NameOfSuperclass subclass: #NameOfClass

   instanceVariableNames: 'instVarName1 instVarName2'

       ...

Object subclass: #Packet

instanceVariableNames: ' contents addressee originator

...

• Begins with a lowercase letter
• Explicitly declared: a list of instance variables
• Name should be unique / inheritance
• Default value of instance variable is nil

• Private to the instance: instance based (vs. C++ class-ba
• Can be accessed by all the methods of the class and sub
• But instance variables cannot be accessed by class meth
• A client cannot directly access instance variables. No priv
• Need accessor methods to access instance variable.
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Method Definition
Follow the template:

message selector and argument names

"comment stating purpose of message"

| temporary variable names |

statements

For example:
Packet>>defaultContents

“returns the default contents of a Packet”

^ ‘contents no specified’

Workstation>>originate: aPacket

aPacket originator: self.

self send: aPacket

How to invoke a method on the same object? Send the me
Packet>>isAddressedTo: aNode

“returns true if I’m addressed to the node aNode”

^ self addressee = aNode name
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Accessing Instance Variables
Using direct access for the methods of the class

Packet>>isSentBy: aNode

^ originator = aNode

is equivalent to use accessors
Packet>>originator

^ originator

Packet>>isSentBy: aNode

^ self originator = aNode

Some accessors for the class Packet
Packet>>addressee

^ addressee

Packet>>addressee: aSymbol

addressee := aSymbol

Hints: Do not directly access instance variables of a superclass from the sub
not be strongly linked at the structure level.
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Methods always Return a Value
• Message = effect + return value
• By default, a method returns self

• In a method body, the ^ expression returns the value of th
the method execution.

Node>>accept: thePacket

"Having received the packet, send it on. This is the default behavior"

self send: thePacket

is equivalent to:
Node>>accept: thePacket

"Having received the packet, send it on. This is the default behavior"

self send: thePacket.

^self

If we want to return the value returned by #send:
Node>>accept: thePacket

"Having received the packet, send it on. This is the default behavior"

^self send: thePacket.
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Some Naming Conventions
• Shared variables begin with an upper case letter
• Private variables begin with a lower case letter
• Use imperative verbs for methods performing an action lik

For accessors, use the same name as the instance variable
addressee

^ addressee

addressee: aSymbol

addressee := aSymbol

• For predicate methods (returning a boolean) prefix the me
      isNil, isAddressedTo:, isSentBy:

• For converting methods prefix the method with as
       asString
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Inheritance in Smalltalk
• Single inheritance

• Static for the instance variables.
At class creation time the instance variables are collected fr
class. No repetition of instance variables.

• Dynamic for the methods.
Late binding (all virtual) methods are looked up at run-time 
type of the receiver.



Object-Oriented Design with Smalltalk a Pure OO Language Dealing with Classes

U 7.95

aPacket node1

odePrinter

t

niversität Bern Ducasse Stéphane

Remember...

Node

WorkstationPrinter

name
accept: aPacket
send: aPacket
hasNextNode

originate: aPacket
accept: aPacket

print: aPacket
accept: aPacket

nextNode

accept: aPacket

send: aPacket

nodePrinter

isAddressedTo: n

accept: aPacke

print: aPacket

[true]

[false]
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Node
Object subclass: #Node

instanceVariableNames: 'name nextNode '

...

Node methodsFor: ‘accessing’ ....

Node methodsFor: ‘printing’ ....

Node methodsFor: ‘send-receive’

accept: aPacket

"Having received the packet, send it on. This is the default behavior subclasses

will probably override me to do something special"

self hasNextNode

ifTrue: [self send: aPacket]

send: aPacket

"Precondition: there is a next node. Send a packet to the next node"

self nextNode accept: aPacket
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Workstation
Node subclass: #Workstation

instanceVariableNames: ''

...

Node methodsFor: ‘printing’ ....

Node methodsFor: ‘send-receive’

accept: aPacket

“when a workstation accepts a packet that is addressed to it, it just prints s
transcript”

(aPacket isAddressedTo: self)

ifTrue:[ Transcript show: 'A packet  is accepted by the Workstation ', self name 

ifFalse: [super accept: aPacket]

Node methodsFor: ‘send-receive’

originate: aPacket

aPacket originator: self.

self send: aPacket
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Message Sending & Method Lo
sending a message: receiver selector args ⇔
applying a method looked up associated with selector to th

Looking up a method:
When a message (receiver selector args) is sent, the meth
message selector is looked up through the inheritance cha

⇒ the lookup starts in the class of the receiver.
If the method is defined in the class dictionary, it is returned

Else the search continues in the superclasses of the receiv
If no method is found and there is no superclass to
a new method called #doesNotUnderstand: is
with a representation of the initial message.
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Method Lookup Examples (i)
node1 accept: aPacket

1. node1  is an instance of
2.accept:  is looked up in
3. accept:  is defined in
method executed

macNode accept: aPacke

1.macNode is an instance
2. accept:  is looked up in the class Workstation

3. accept:  is defined in Node ⇒ lookup stops + meth

macNode name

1. macNode is an instance of Workstation.

2. name:  is looked up in the class Workstation

3. name is not defined in Workstation ⇒ lookup con
4. name is defined in Node ⇒ lookup stops + method 

Node

WorkstationPrinter

name
accept: aPacket
send: aPacket
hasNextNode

originate: aPacket
accept: aPacket

print: aPacket
accept: aPacket

nextNode
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Method Lookup Examples (ii)
node1 print: aPacket

1. node  is an instance of Node

2. print:  is looked up in the class Node

3. print:  is not defined in Node ⇒ lookup continues
4. print:  is not defined in Object ⇒ lookup stops +
5. message: node1 doesNotUnderstand: #(#print aP

6. node1 is an instance of Node so doesNotUndersta
class Node

7. doesNotUnderstand:  is not defined in Node ⇒ l
8. doesNotUnderstand:  is defined in Object ⇒ lo

executed (open a dialog box)
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Method Lookup Examples (ii)

#node1

Node

Object

name
accept: aPacket
send: aPacket
hasNextNode

doesNotUnderstand: aMessage

print:

node1 print: aPacket

node1 doesNotUnderstand:

1

2

3

print:

1

4

do
#(print: aPacket)
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How to Invoke Overridden Met
Send messages to super

When a packet is not addressed to a workstation, we just w
next node, i.e. to perform the default behavior defined by N

Workstation>> accept: aPacket

“when a workstation accepts a packet that is addressed to it,

it just prints some trace in the transcript”

(aPacket isAddressedTo: self)

ifTrue:[Transcript show: 'A packet  is accepted by the Workstation ', self name a

ifFalse: [ super accept: aPacket ]

Hints: Do not send messages to super with different selectors than the origi
It introduces implicit dependency between methods with different names.
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Semantics of super

• Like self , super  is a pseudo-variable that refers to the r
• Used to invoke overridden methods.

• When using self , the lookup of the method begins in the

• When using super  the lookup of the method begins in th
the method containing the super expression and NOT in th
class.

Otherwise said:
• super  causes the method lookup to begin searching in th
the method containing super
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Node

Workstation

accept: aPacket

accept: aPacket

DuplexWorkstation

agate

<<instance of >>

super accept: aPacket
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Let us be Absurd!
Let us suppose the WRONG hypothesis:
“IF super semantics = starting the lookup of method in the
superclass of the receiver class”
agate accept: aPacket

1. agate  is an instance of DuplexWorkstation
accept: is looked up in the class DuplexWorkstation

2. accept: is not defined in DuplexWorkstation ⇒ looku
continues in Workstation

3. accept: is defined in Workstation ⇒ lookup stops +
method executed

4. Workstation>>accept: does a super accept:
5. By our hypothesis: super = lookup in the superclass

the receiver class. The superclass of the receiver
class = Workstation

⇒ That's loop
So that hypothesis is WRONG !!
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Object Instantiation

Objects can be created by:

– Direct Instance creation: (basic)new/new:

– Messages to instances that create other object

– Class specific instantiation messages
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Direct Instance Creation: (basic

• aClass new /basicNew ⇒ returns a newly and UNINIT

OrderedCollection new -> OrderedCollection ()

Packet new -> aPacket

Packet new addressee: #mac ; contents: ‘hello mac’

Instance variable values = nil
• #new: /basicNew:  to specify the size of the created inst

    Array new: 4 -> #(nil nil nil nil)

• #new/#new:  can be specialized to define customized cre

• #basicNew /#basicNew:  should never be overridden

• #new/basicNew  and new: /basicNew:  are class method
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Messages to Instances that Cre
1 to: 6  (an interval)

1@2 (a point)

(0@0) extent: (100@100)        (a rectangle)

#lulu asString                 (a string)

1 printString                  (a string)

3 asFloat                      (a float)

#(23 2 3 4) asSortedCollection (a sortedCollection)
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Opening the Box
1 to: 6 -> an Interval

Number>>to: stop

   "Answer an Interval from the receiver up to the argument, stop, with

   each next element computed by incrementing the previous one by 1."

^ Interval from: self to: stop by: 1

1 printString -> aString

Object>>printString

   "Answer a String whose characters are a description of the receiver."

| aStream |

aStream := WriteStream on: (String new: 16) .

self printOn: aStream.

^aStream contents

1@2 -> aPoint

Number>>@ y

   "Answer a new Point whose x value is the receiver and whose y value is the argument

<primitive: 18>

^Point x: self y: y
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Class specific Instantiation Mes

Array with: 1 with: 'lulu'

OrderedCollection with: 1 with:  2 with:  3

Rectangle fromUser  -> 179@95 corner: 409@219

Browser browseAllImplementorsOf: #at:put:

Packet send: ‘Hello mac’ to: #mac

Workstation withName: #mac
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What you should know

❑ Defining a class
❑ Defining methods
❑ Semantics of self

❑ Semantics of super

❑ Instance creation
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8.  Basic Objects, Conditional a

❑ Booleans
❑ Basic loops
❑ Overview of Collection — the superclass of more 

(Bag, Array , OrderedCollection , SortedColle
Dictionary ...)

❑ Loops and Iteration abstractions
❑ Common object behavior
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Boolean Objects
- false  and true  are objects described by classes Boolea

- uniform but optimized and inlined (macro expans
- Logical Comparisons &, |, xor:, not

aBooleanExpression comparison anotherBooleanExpression
(1 isZero) & false

- Lazy Logical operators
aBooleanExpression and: andBlock, aBooleanExpression or: orBlock

andBlock will only be valued if aBooleanExpressio
orBlock will only be valued if aBooleanExpression
false and: [1 error: 'crazy'] PrIt-> false and not an error

- Conditionals
aBoolean ifTrue: aTrueBlock ifFalse: aFalseBlock
aBoolean ifFalse: aTrueBlock ifTrue: aFalseBlock
aBoolean ifTrue: aTrueBlock
aBoolean ifFalse: aFalseBlock

1 < 2 ifTrue: [...] ifFalse: [...]
1 < 2 ifFalse: [...] ifTrue: [...]
1 < 2 ifTrue: [...]
1 < 2 ifFalse: [...]

Hints: Take care — true  is the boolean value and True  is the class of t
Hints: Why do conditional expressions use blocks? Because, when a messa
ments of the message are evaluated. So blocks are necessary to avoid eva
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Some Basic Loops
aBlockTest whileTrue

aBlockTest whileFalse

aBlockTest whileTrue: aBlockBody

aBlockTest whileFalse: aBlockBody

anInteger timesRepeat: aBlockBody

[x<y] whileTrue: [x := x + 3]

10 timesRepeat: [ Transcript show: 'hello'; cr]
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For the Curious!

BlockClosure>> whileTrue: aBlock

   ^ self value ifTrue:[aBlock value.

self whileTrue: aBlock]

BlockClosure>> whileTrue

   ^ [self value] whileTrue:[]

Integer>> timesRepeat: aBlock

"Evaluate the argument, aBlock, the number of times represented

   | count |

   count := 1.

   [count <= self] whileTrue:  [aBlock value.

count := count + 1]
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Collections
• Only the most important
• Some criteria to identify them. Access: indexed, sequentia
Size: fixed or dynamic. Element type: any or well-defined ty
Order: defined, defineable or none. Duplicates: possible or
Sequenceable ordered

ArrayedCollection fixed size + key = integer
Array any kind of elements
CharacterArray elements = character

String
IntegerArray

Interval arithmetique progression
LinkedList dynamic chaining of the element
OrderedCollection size dynamic + arrival order

SortedCollection explicit order
Bag possible duplicate + no order
Set no duplicate + no order

IdentitySet identification based on identity
Dictionary element = associations + key based

IdentityDictionary key based on identity
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Another View

Keyed

Adds Allowed

Sorted

UniqueKey

Sorted

Ordered

Array
String

Identity Dictionary

Integer Key

Dictionary

Collection

Collection

y

y

y

y

yn

n

n

n

n
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Collection Methods
Will be defined, redefined, optimized or forbidden  in sub
Accessing: #size, #capacity, #at: anInteger, #at: anInteger 
anElement

Testing: #isEmpty, #includes: anElement, #contains: aBloc
occurencesOf: anElement

Adding: #add: anElement, #addAll: aCollection

Removing: #remove: anElement, #remove:anElement ifAbs
#removeAll: aCollection

Enumerating (See generic enumerating)
#do: aBlock, #collect: aBlock, #select: aBlock, #reject:
#detect:, #detect: aBlock ifNone: aNoneBlock, #inject: aval
into: aBinaryBlock

Converting: #asBag, #asSet, #asOrderedCollection,
#asSortedCollection, #asArray, #asSortedCollection: aBloc

Creation: #with: anElement, #with:with:, #with:with:with:,
#with:with:with:with:, #with:All: aCollection
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Sequenceable Specific (Array)
|arr|

arr := #(calvin hates suzie).

arr at: 2 put: #loves.

arr PrIt-> #(#calvin #loves #suzie)

Accessing:
#first, #last, #atAllPut: anElement, #atAll: anIndexCollection
put: anElement

Searching (*: + ifAbsent:)
#indexOf: anElement, #indexOf: anElement ifAbsent: aBloc

Changing:
#replaceAll: anElement with: anotherElement

Copying:
#copyFrom: first to: last, copyWith: anElement, copyWithou
anElement
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KeyedCollection Specific (Dict
|dict|

dict := Dictionary new.

dict at: 'toto' put: 3.

dict at: 'titi' ifAbsent: [4]. -> 4

dict at: 'titi' put: 5.

dict removeKey: 'toto'.

dict keys -> Set ('titi')

Accessing:
#at: aKey, #at: aKey ifAbsent: aBlock, #at: aKey ifAbsentPu
aBlock, #at: aKey put: aValue, #keys, #values, #associatio

Removing:
#removeKey: aKey, #removeKey: aKey ifAbsent: aBlock

Testing:
#includeKey: aKey

Enumerating:
#keysAndValuesDo: aBlock, #associationsDo: aBlock, #ke
aBlock
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Choose your Camp!
You could write:

absolute: aCollection

|result|

result := aCollection species new: aCollection size.

1 to: aCollection size do:

[ :each | result at: each put: (aCollection at: each) abs].

^ result

Sure!
Or

absolute: aCollection

^ aCollection collect: [:each| each abs]

Really important:
Contrary to the first solution, this solution works well for ind
for sets.
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Iteration Abstraction: do:/colle
aCollection do: aOneParameterBlock

aCollection collect: aOneParameterBlock

aCollection with: anotherCollection do: aBinaryBlock

#(15 10 19 68) do:

   [:i | Transcript show: i printString ; cr ]

#(15 10 19 68) collect: [:i | i odd ]

PrIt-> #(true false true false)

#(1 2 3) with: #(10 20 30)

do: [:x :y| Transcript show: (y ** x) printString ; cr ]
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Iteration Abstraction: select:/re
aCollection select: aPredicateBlock

aCollection reject: aPredicateBlock

aCollection detect: aOneParameterPredicat

aCollection

detect: aOneParameterPredi

ifNone: aNoneBlock

#(15 10 19 68) select: [:i|i odd] -> #(15 19)

#(15 10 19 68) reject: [:i|i odd] ->  #(10 68)

#(12 10 19 68 21) detect: [:i|i odd] PrIt-> 19

#(12 10 12 68) detect: [:i|i odd] ifNone:[1] PrIt-> 1



Object-Oriented Design with Smalltalk a Pure OO Language Basic Objects, Conditional and Loops

U 8.123

:

ck
niversität Bern Ducasse Stéphane

Iteration Abstraction: inject:into

aCollection inject: aStartValue into: aBinaryBlo

|acc|

acc := 0.

#(1 2 3 4 5) do: [:element | acc := acc + element].

acc

-> 15

#(1 2 3 4 5)

   inject: 0

   into: [:acc :element| acc + element]

-> 15
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Collection Abstraction

aCollection includes: anElement

aCollection size

aCollection isEmpty

aCollection contains: aBooleanBlock

#(1 2 3 4 5) includes: 4 -> true

#(1 2 3 4 5) size -> 5

#(1 2 3 4 5) isEmpty -> false

#(1 2 3 4 5) contains: [:each | each isOdd]
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Examples of Use: NetworkMana
aLan findNodeWithAddress: #mac

NetworkManager>>findNodeWithAddress: aSymbol

^self findNodeWithAddress: aSymbol ifNone: [nil]

NetworkManager>>findNodeWithAddress: aSymbol ifNone: aBlock

^nodes detect: [:aNode|  aNode name = aSymbol ] ifNone:  aBlock

aLan createAndDeclareNodesFromAddresses: #(node1 node2 n

NetworkManager>>createAndDeclareNodesFromAddresses: anArrayOfAddresses ofKin
"given a list of addresses, create the corresponding nodes of the aNodeClass kind"

(Node withAllSubclasses includes:  aNodeClass)
ifTrue: [anArrayOfAddresses do: [:each |  self declareNode: (aNod
ifFalse: [self error: aNodeClass name , ' is not a class of nodes']
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Common Shared Behavior (i)
- Object is the root of the inheritance tree.
- Defines the common and minimal behavior for all the obje

⇒ 161 instance methods + 19 class methods
- #class

- Comparison of objects: #==, #~~, #=, #=~, #isNil, #notNil

- Copying of objects: #shallowCopy, #copy

#shallowCopy  : the copy shares instance variables wit
    default implementation of #copy  is #shallowCopy

a a copy
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Identity vs. Equality
= anObject

    returns true  if the structures are equivalent (the same h

(Array with: 1 with: 2) = (Array with:1 with:2) PrIt-> 

== anObject

       returns true if the receiver and the argument point to th
       object. #== should never be overridden. On Object #=

~= is not = , ~~  is not ==

(Array with: 1 with: 2 ) == (Array with: 1 with:2) Pr

(Array with: 1 with: 2 ) = (Array with: 1 with:2) PrIt

Take care when redefining #= . One should override #hash
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Common Shared Behavior (ii)
Print and store objects: #printString, #printOn: aStream

#storeString, #storeOn: aStream
#(123 1 2 3) printString -> '#(123 1 2 3)'

Date today printString -> 'October 5, 1997'

Date today storeString -> '(Date readFromString: ''10/5/1997'')'

OrderedCollection new add: 4 ; add: 3 ; storeString ->

'((OrderedCollection new) add: 4; add: 3; yourself)'

But you need to have the compiler, so for a deployed imag

Create instances from stored objects: class methods
readFrom: aStream, readFromString: aString

  Object readFromString:  '((OrderedCollection new) add: 4; add: 3; your

-> OrderedCollection (4 3)

Notifying the programmer:
   #error: aString, #doesNotUnderstand: aMessage,

   #halt, #shouldNotImplement, #subclassResponsibility

Examing Objects: #browse, #inspect
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Essential Common Shared Beha
#class  returns the class of the object

#inspect  opens an inspector

#browse  opens a browser

#halt stops the execution and opens a debugger (to be in

#printString   (calls #printOn: ) returns a string repres

#storeString  returns a string whose evaluation recreate
receiver
#readFromString: aStream  recreates an object
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What you should know

❑ Boolean protocol
❑ Collection protocol
❑ Conditionals
❑ Loops and Iteration Abstractions
❑ Common object protocol

But the best way to learn is to play with a Smalltalk system
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9. Numbers
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The Basics of Numbers
• Arithmetic

5 + 6, 5 - 6, 5 * 6,

division 30 / 9 , integer division 30 // 9  , modu
square root 9 sqrt , square 3 squared

• Rounding
3.8 ceiling -> 4

3.8 floor -> 3

3.811 roundTo: 0.01 -> 3.81

• Range 30 between: 5 and: 40

• Tests
3.8 isInteger

3.8 even, 3.8 odd

• Signs
positive, negative, sign, negated

• Other
min:, max:, cos, ln, log, log: arcSin, exp, **
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Deeper into Numbers: Double D
How to select a method depending on the receiver  AND th
Send a message back to the argument passing the receive

Example: Coercion between Float and Integer

A not very good solution:
Integer>>+ aNumber

(aNumber isKindOf: Float)
ifTrue: [ aNumber asFloat + self]
ifFalse: [ self addPrimitive: aNumber]

Float>>+ aNumber
(aNumber isKindOf: Integer)

ifTrue: [aNumber asFloat + self]
ifFalse: [self addPrimitive: aNumber]
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ger>>sumFromInteger: anInteger

<primitive: 40>
at>>sumFromInteger: anInteger

^ anInteger asFloat + self

eger>>sumFromFloat: aFloat
^aFloat + self asFloat

t>>sumFromFloat: aFloat
<primitive: 41>
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Deeper into Numbers: Double D
(c) Inte

(d) Flo

(a) Integer>>+ aNumber
^ aNumber sumFromInteger: self

(b) Float>>+ aNumber
^ aNumber sumFromFloat: self

(e) Int

(f) Floa

Some Tests:
1 + 1: (a->c)
1.0 + 1.0: (b->f)
1 + 1.0: (a->d->b->f)
1.0 + 1: (b->e->b->f)
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Deeper into Numbers: Coercio
ArithmeticValue>>coerce: aNumber

"Answer a number representing the argument, aNumber, that is the same kind of Nu
as the receiver.  Must be defined by all Number classes."

^self subclassResponsibility

ArithmicValue>>generality
"Answer the number representing the ordering of the receiver in the generality hie
in this hierarchy coerces to numbers higher in hierarchy (i.e., with larger generality

^self subclassResponsibility

Integer>>coerce: aNumber
"Convert a number to a compatible form"

^aNumber asInteger

Integer>>generality
^40

Generality
SmallInteger 20
Integer 40
Fraction 60
FixedPoint 70
Float 80
Double 90
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Deeper into Numbers: #retry:co

ArithmeticValue>>sumFromInteger: anInteger
"The argument anInteger, known to be a kind of integer,
encountered a problem on addition. Retry by coercing either
anInteger or self, whichever is the less general arithmetic value."
Transcript show: 'here arthmeticValue>>sunFromInteger' ;cr.
^anInteger retry: #+ coercing: self

ArithmeticValue>>retry: aSymbol coercing: aNumber
"Arithmetic represented by the symbol, aSymbol, could not be performed with th
argument, aNumber, because of the differences in representation. Coerce eith
the argument, depending on which has higher generality, and try again. If the ge
same, then this message should not have been sent so an error notification is provid

self generality < aNumber generality
ifTrue: [^(aNumber coerce: self) perform: aSymbol with: aNumber].

self generality > aNumber generality
ifTrue: [^self perform: aSymbol with: (self coerce: aNumber)].

self error: 'coercion attempt failed'
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10. Exceptions
Standardized by ANSI and available since VW3.0

Exception  is the root of the exception hierarchy: 84 prede
The two most important classes are:

❑ Error
❑ Notification

Specialised into predefined exceptions
Subclass them to create your own exceptions

Some methods of Exception:
defaultAction  is executed when an exception 
description  string describing the actual except
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Default Action

Open a Notifier

Inherited from Error

Inherited from Error

Do nothing continuing
executing

Display Yes/No dialog and
return a boolean value t the
signaler

Inherited from
ArithmeticError
niversität Bern Ducasse Stéphane

The Main Exceptions
Exception class Exceptional Event

Error Any program error

ArithmeticError Any error evaluating an
arithmetic

MessageNotUnderstood A message was sent to an
object that did not define a
corresponding method

Notification Any unusual event that does
not impair continued
execution of the program

Warning An unusual event that the
user should be informed
about

ZeroDivide
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Basic Example of Catching
|x y|

x := 7. y := 0.

[ x/y ]

on:  ZeroDivide

do: [:exception| Transcript show: exception description, c

0....]

an Exception Handler
is defined using on:do:

is composed by an exception class and a handler 
ZeroDivide

[:theException|  Transcript show: ‘ division by zero’

An Exception Handler completes by returning the value of t
the value of the protected block (here [x/y]).
We can exit the current method by putting an explicit return



Object-Oriented Design with Smalltalk a Pure OO Language Exceptions

U 10.140
niversität Bern Ducasse Stéphane

Exception Sets

[do some work]

on: ZeroDivide, Warning

do: [ :ex| what you want]

Or
|exceptionSets|

exceptionSets := ExceptionSet with: ZeroDivide with: Warning.

[do some work]

on: exceptionSets

do: [ :ex| what you want]
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Signaling Exception

Error raiseSignal

Warning raiseSignal: ‘description that you will get by asking descri
exception’
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Exception Environment
Each process has its own exception environment: an order

❑ Process starts ⇒ list empty
❑ [aaaa] on: Error do: [bbb] ⇒ Error,bbb added to th

❑ When an exception is signaled, the system sends a
of the exception handler.

❑ If the handler cannot handle the exception, the ne
❑ If no handler can handle the exception then the de
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Resumable and Non-Resumab
A handler block completes by executing the last statement 
The value of the last statement is then the value returned b
Where this value should be returned depends:

❑ Nonresumable: like Error
([Error raiseSignal. ‘Value from protected block’]

on: Error

do: [:ex|ex return: ‘ Value from handler ’])

☞ ‘Value from handler’

❑ Resumable: like Warning, Notification
([Notification raiseSignal. ‘ Value from protected block

on: Notification

do: [:ex|ex resume: ‘Value from handler’])

☞ ‘Value from protected block’
Here Notification raiseSignal raises an exception, 
and the value normally returned
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Resume:/Return:
Transcript show:

([Notification raiseSignal. 'Value from protected block']

on: Notification

do: [:ex| Transcript show: 'Entering handler '.

'Value from handler'. '5'])

-> Entering handler 5

Transcript show:

([Notification raiseSignal. ' Value from protected blo

on: Notification

do: [:ex| Transcript show: 'Entering handler '.

ex resume : 'Value from handler'. '5'])

-> Entering handler Value from protected block

Transcript show:

([Notification raiseSignal. 'Value from protected block']

on: Notification

do: [:ex| Transcript show: 'Entering handler '.

ex return: ' Value from handler '. '5'])

-> Entering handler Value from handler



Object-Oriented Design with Smalltalk a Pure OO Language Exceptions

U 10.145

mable and returns on a

sing the protected block,
e exception.

ted block that triggered the

e protected block
 one
t outer handler, control does

he outer handler resumes
n value, instead of the value
niversität Bern Ducasse Stéphane

Exiting Handlers Explicity
❑ exit  or exit: (VW specific) Resumes on a resu

nonresumable exception
❑ resume  or resume: Attempts to continue proces

immeditely following the message that triggered th
❑ return  or return: ends processing the protec

exception
❑ retry  re-evaluates the protected block
❑ retryUsing: evaluates a new block in place of th
❑ resignalAs: resignal the exception as another
❑ pass exit the current handler and pass to the nex

not return to the passer
❑ outer as with pass, except will regain control if t

exit:, resume: and return: return their argument as the retur
of the final statement of the handler block
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Examples
Look in Exception class examples categories

-2.0 to: 2.0 do:

[ :i |

[  10.0 / i. Transcript cr; show: i printString

on:  Number divisionByZeroSignal do:

[:ex | Transcript cr; show: 'divideByZero abort'.

ex return ]

]

-2.0

-1.0

divideByZero abort

1.0

2.0
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Examples
[ x /y]

on: ZeroDivide

do: [:exception|

y := 0.00001.

exception retry]

retry  recreates the exception environment of active hand
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11. Streams
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Streams
• Allows the traversal of a collection
• Associated with a collection

- collection is a Smalltalk collection: InternalStream

- collection is a file or an object that behaves like a co
• Stores the current position

Stream (abstract)
PeekableStream (abstract)

PositionableStream (abstract)
ExternalStream

ExternalReadStream
ExternalReadAppendStream
ExternalReadWriteStream

ExternalWriteStream
InternalStream

ReadStream
WriteStream

ReadWriteStream
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An Example
|st|

st := ReadWriteStream on: (OrderedCollection new: 5).

st nextPut: 1.

st nextPutAll: #(4 8 2 6 7).

st contents. PrIt-> OrderedCollection (1 4 8 2 6 7)

st reset.

st next. -> 1

st position: 3.

st next. -> 2

st := #(1 2 5 3 7) readStream.

st next. -> 1
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printSring, printOn:
Object>>printString

"Answer a String whose characters are a description of the receiver

| aStream |

aStream := WriteStream on: (String new: 16).

self printOn: aStream.

^aStream contents

Node>>printOn: aStream

super printOn: aStream .

aStream  nextPutAll: ' with name:'; print: self name.

self hasNextNode  ifTrue: [

aStream  nextPutAll: ' and next node:'; print: self nextNode nam
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Stream classes(i)
Stream.
#next  returns the next element
#next: n  returns the n next elements
#contents  returns all the elements
#nextPut: anElement  inserts element at the next positi
#nextPutAll: aCollection  inserts the collection elem
#atEnd  returns true if at the end of the collection

PeekableStream.
Access to the current without passing to the next
#peek

#skipFor: anArgument

#skip: n  increases the position of n
#skipUpTo: anElement  increases the position after anE
Creation
#on: aCollection,

#on: aCol from: firstIndex to: lastIndex  (ind
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Stream Classes (ii)
PositionableStream
#skipToAll: #throughAll: #upToAll:

#position

#position: anInteger

#reset #setToEnd #isEmpty

InternalStream
#size  returns the size of the internal collection
Creation #with: (without reinitializing the stream)

ReadStream WriteStream and ReadWriteStream
ExternalStream and subclasses
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Stream tricks
Transcript  is a TextCollector  that has aStream

TextCollector>>show: aString

self nextPutAll: aString.

self endEntry

#endEntry  via dependencies asks for refreshing the wind
If you want to speed up a slow trace, use #nextPutAll:  
#show:

|st sc|

st := ReadStream on: ‘we are the champions’.

sc := Scanner new on: st.

[st atEnd] whileFalse: [ Transcript nextPutAll: sc scanToken, ‘ * ‘].

Transcript endEntry
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Streams and Blocks
❑ How to ensure that the open files are closed

MyClass>readFile: aFilename

|readStream|

readStream := aFilename readStream.

[ [readStream atEnd]

whileFalse: [....] ]

valueNowOrOnUnwindDo: [ readStream close ]

❑ How to find open files (VW specific)
(ExternalStream classPool at: #OpenStreams) copy inspect
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Streams and Files
Filename.

#appendStream (addition + creation if file doesnot exists)

#newReadAppendStream, #newReadWriteStream (if receiver exists, co

#readAppendStream, #readWriteStream, #readStream, #writeStream

Example: removing Smalltalk comments of a file

|inStream outStream |

inStream := (Filename named: ‘/home/ducasse/test.st’) readStream.

outStream := (Filename named: ‘/home/ducasse/testout.st’) writeStream

“(or ‘/home/ducasse/ducasse’ asFilename)”

[inStream atEnd] whileFalse: [

outStream nextPutAll: (inStream upTo: $”).

inStream skipTo: $”].

^outStream contents

“do not forget to close the
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Advanced Smalltalk
❑ Advanced Classes
❑ MVC
❑ Concurrency
❑ Metaclasses
❑ Debugging
❑ Internals
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12. Advanced Classes

❑ Indexed Classes
❑ Class as Objects
❑ Class Instance Variables and Methods
❑ ClassVariables
❑ PoolDictionary
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Types of Classes
Indexed Named Definition Method Exam
No Yes #subclass:... Packet, W

Yes Yes #variableSubclass: Array, Com

Yes No #variableByteSubclass String, By

Method related to class types: #isPointers, #isBits, #isByt
#isVariable, #kindOfSubclass

❑ classes defined using #subclass:  support any 

❑ classes defined using #variableSubclass:  ca
variableSubclass:  or variableByteSubclass: sub

❑ classes defined using #variableByteSubclass

– can only be defined if the superclass has no de

– pointer classes and byte classes don’t mix

– only byte subclasses
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Two Views on Classes
❑ Named or indexed instance variables

Named: ‘addressee’  of Packet

Indexed: Array

❑ Or looking at them in another way:
Objects with pointers to other objects
Objects with arrays of bytes (word, long)

Difference for efficiency reasons:
arrays of bytes (like C strings) are faster than storing an arr
to a single byte.
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Indexed Classes
For classes that need a variable number of instance variab

Example: the class Array

ArrayedCollection variableSubclass: #Array

   instanceVariableNames: ''

   classVariableNames: ''

   poolDictionaries: ''

   category: 'Collections-Arrayed'

Array new: 4 -> #(nil nil nil nil)

#(1 2 3 4) class isVariable -> true
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Indexed Class/Instance Variab
❑ Indexed variable is implictly added to the list of ins
❑ Only one indexed instance variable per class
❑ Access with #at:  and #at:put:

(#at:put:  answers the value not the receiver)
❑ First access: anInstance at: 1

❑ #size  returns the number of indexed instance va
❑ Instantiated with #new:  max

|t|

t := (Array new: 4).

t at: 2 put: 'lulu'.

t at: 1 -> nil

❑ Subclasses should also be indexed



Object-Oriented Design with Smalltalk a Pure OO Language Advanced Classes

U 12.163

i)

cept Object ).
lookup

ll its

ces the
k.

 is

ues in macNode name
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The meaning of “Instance of” (
❑ Every object is an instance of a class.
❑ Every class is ultimately a subclass of Object  (ex
❑ When anObject receives a message, the method is

in its class and/or its superclasses.
❑ A class defines the structure and the behavior of a

instances.
❑ Each instance possesses its own set of values.
❑ Each instance shares the behavior with other instan

bevahior defined in its class via the instance of  lin

Example:
macNode name

1. macNode is an instance of Workstation ⇒ name
looked up in the class Workstation

2. name is not defined in Workstation ⇒ lookup contin
Node

3. name is defined in Node ⇒ lookup stops + method
executed
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 is looked up in the class
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⇒ withName:  is

⇒ lookup continues in the

tops + method executed
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The meaning of “Instance of” (ii)
❑ A class is an object too, so messages sent to it ar

the class, its metaclass.
❑ Every class (X) is the unique instance of its assoc

class

Example:
Node withName: #node1

1. Node is an instance of Node class ⇒ withName:
Node class

2. withName:  defined in Node class ⇒ lookup sto

Workstation withName: #mac

1. Workstation  is an instance of Workstation class
looked up in the class Workstation class

2. withName: is not defined in Workstation class
superclass of Workstation  class = Node class

3. withName:  is defined in Node class ⇒ lookup s
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class

lookup

instance of

method
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Lookup and Class Messages

instance
method

Workstation

Node class

Workstation class

withName:

Node

Workstation

name
accept: aPacket
send: aPacket
hasNextNode

originate: aPacket
accept: aPacket

macNode name

Object Object class

lookup
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The Meaning of “Instance-of” (

Node new: #node1

1. Node is an instance of Node class ⇒ new:  is loo
class

2. new:  is not defined in Node class ⇒ lookup con
Node class  = Object class

3. new: is not defined in Object class ⇒ lookup co
Node class  ....Class , ClassDescription , Beh

4. new:  is defined in Behavior ⇒ lookup stops + me

This is the same for
Array new: 4

new: is defined in Behavior (the ancestor of Array 

Hints: Behavior is the essence of a class. ClassDescription represents the e
the class. Class supports poolVariable and classVariable.
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Metaclass Responsibilities
Concept:

❑ Everything is an object
❑ Each object is instance of one class
❑ A class (X) is also an object, the sole  instance of 

named X class
❑ An object is a class if and only if it can create insta

Metaclass Responsibilities:
❑ instance creation
❑ class information (inheritance link, instance variab

Examples:
Node allSubclasses -> OrderedCollection (WorkStation OutputServer W
Server PrintServer)

LanPrint allInstances -> #()

Node instVarNames -> #('name' 'nextNode')

Workstation withName: #mac -> aWorkstation

Workstation selectors  -> IdentitySet (#accept: #originate:)

Workstation canUnderstand: #nextNode -> true
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Class Instance Variables

Like any object, a class is an instance of a class that can h
represent the state of a class.

Singleton Design Pattern: a class with only one instance
NetworkManager class

instanceVariableNames: 'uniqueInstance'

NetworkManager  being an instance of NetworkManager c
variable named uniqueInstance.

Hints: An instance variable of a class can be used to represent information sh
However, you should use class instance variables to represent state about th
...) and use classVariable instead.
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About Behavior
❑ Behavior  is the first metaclass. All other metacla
❑ Behavior  describes the minimal structure of a cl

– superclass

– subclasses

– method dictionary

– format (instance variable compressed descripti
Object subclass: #Behavior

instanceVariableNames: 'superclass methodDict format subclasses '

classVariableNames: ''

poolDictionaries: ''

category: 'Kernel-Classes'

Example of Queries
Packet superclass -> Object

Packet subclasses - #()

Packet selectors -> IdentitySet (#originator: #addressee: #addressee #isOriginatedF

#isAddressedTo: #originator #initialize #co

Packet allInstVarNames -> OrderedCollection ('addressee' 'originator' 'contents' 'vi

Packet isDirectSubclassOf: Object -> true
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Class Method
❑ As any object a metaclass can have methods that

class.
❑ Some examples of class behavior:

- class definition, finding all instances of a class
- navigation in the hierarchy,
- finding the instance variable names, methods
- instance creation, compiling methods

❑ Can only access instance variable of the class:
Examples: NetworkManager class>>new  can 
uniqueInstance  class instance variable and no
(like nodes ).

❑ Default Instance Creation class method:
- new/new: and basicNew/basicNew: (see Direct I

Packet new

❑ Specific instance creation method
Packet send: ‘Smalltalk is fun’ to: #lpr

Workstation withName: #mac

Workstation withName: #mac connectedTo: #lpr

Net
nod

find
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classVariable
How to share state between all the instances of a class: Us

❑ a classVariable is shared  and directly accessible 
class and subclasses

❑ A pretty bad name: should have been called Shar
❑ Shared Variable ⇒ begins with an uppercase lette

❑ a classVariable can be directly accessed in instan
methods

NameOfSuperclass subclass: #NameOfClass

...

classVariableNames: 'ClassVarName1 ClassVarName2'

...

Object subclass: #NetworkManager

...

classVariableNames: ‘Domain’

❑ Sometimes classVariable can be replaced by clas
 NetworkManager class>>domain

      ^ ‘iam.unibe.ch’
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Class Instance Variables / Clas
❑ a classVariable is shared  and directly accessible 

subclasses
❑ Class instance variables, just like normal instance

only via class message and accessors:

– an instance variable of a class is private to this

– an instance

❑ Take care when you change the value of a classVa
tree is impacted!

❑ ClassVariables can be used in conjunction with in
some common values that can be changed locally

❑ Examples: in the Scanner  class a table describes
(strings, comments, binary....). The original table is
its value is loaded into the instance variable. It is t
value of the instance variable to have a different s

Object subclass: #Scanner

instanceVariableNames: 'source mark prevEnd hereChar token tokenType buff

classVariableNames: 'TypeTable '

category: 'System-Compiler-Public Access'
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uniqueInstance

class methods

nager class>>new
ce isNil

uniqueInstance := super new] .

nce
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Summary of Variable Visibility

NetworkManager>>detectNode: aBoolBlock

instance variables
nodes classVariables

Domain

instance methods

NetworkMa
uniqueInstan

ifTrue:[ 

^uniqueInsta

^nodes detect: aBoolBlock
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Example From The System: Geo

Object subclass: #Geometric

instanceVariableNames: ''

classVariableNames: 'InverseScale Scale '

...

Geometric class>>initialize

"Reset the class variables."

Scale := 4096.

InverseScale := 1.0 / Scale
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Circle
Geometric subclass: #Circle

instanceVariableNames: 'center radius'

classVariableNames: ''

Circle>>center

^center

Circle>>setCenter: aPoint radius: aNumber

center := aPoint.

radius := aNumber

Circle>>area

| r |

r := self radius asLimitedPrecisionReal.

^r class pi * r * r

Circle>>diameter

^self radius * 2

Circle class>>center: aPoint radius: aNumber

^self basicNew setCenter: aPoint radius: aNumber
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poolDictionaries
❑ Also called Pool Variables.
❑ Shared variable ⇒ begins with a uppercase letter.
❑ Variable shared by a group of classes not linked b
❑ Each class possesses its own pool dictionary.
❑ They are not inherited.

❑ Examples of PoolDictionaries from the System:Te
CharacterArray subclass: #Text

instanceVariableNames: 'string runs '

classVariableNames: ''

poolDictionaries: 'TextConstants '

category: 'Collections-Text'

Elements stored into TextConstants like Ctrl, CR, ESC, Spa
from all the classes like ParagraphEditor....
On VW poolDictionary should not be an IdentityDictionary
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Example of PoolVariables
Instead of

Smalltalk at: #NetworkConstant put: Dictionary new.

NetworkConstant at: #rates put: 9000.

Node>>computeAverageSpeed

...

NetworkConstant at: #rates

Write:
Object subclass: #Packet

instanceVariableNames: ' contents addressee originator '

classVariableNames: ‘Domain’

poolDictionaries: 'NetworkConstant'

Node>>computeAverageSpeed

...

.. rates

rates  is directly accessed in the global  dictionary Networ

As a beginner policy, do not use poolDictionaries
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13. The Model View Controller P
❑ Not a tutorial on how to build user interface (look a
❑ => Observer pattern in Smalltalk



Object-Oriented Design with Smalltalk a Pure OO Language The Model View Controller Paradigm

U 13.179

al User Interface

veloping such applications?
niversität Bern Matthias Rieger

Context

Building interactive applications with a Graphic

Obvious example: the Smalltalk Development Environment

Characteristics of such applications:
❑ Event driven user interaction, not predictable

☞ Interface Code can get very complex
❑ Interfaces are often subject of changes

Question:
➪ How can we reduce the complexity of de

Answer:
➪ Modularity
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Program Architecture

A Software Architecture  is a collection of software and sy
connections between them and a number of constraints the

Goals we want to achieve with our architecture:
❑ manageable complexity
❑ reusability of the individual components
❑ pluggability,

i.e. an easy realization of the connections between

The Solution for the domain of GUI-driven applications:
We partition our application as follows:

– Model

– View

– Controller
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Separation of Concerns I:

Functionality vs. User In
Model:

– Domain specific information

– Core functionality, where the computation/data
takes place

User Interface:

– Presentation of the data in various formats

– dealing with user input (Mouse, Keyboard, etc.
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Separation of Concerns II:

Display vs. Interac
View:

– displaying the data from the model

Controller:

– relaying the user input to the View (e.g. Scrollin
or the model (e.g. modification of the data)

View and Controller are very much related. There is always
views and controllers. There are also examples of systems w
not separated.

Rationale for separating View and Controller:

– reusability of the individual components and fre
the same view with different controllers (differe
the same controller for different views (Action B
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The notion of Dependency
An object B that depends on  another object A must be info
state of A, in order to be able to adapt its own state.

Dependencies that are realised via messages sent directly
very reusable and are likely to break in times of change.

☞ Decoupling of subject and dependent

A

modification

change propagation

1

2

Subject
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Dependency Mechanism
The Publisher-Subscriber Pattern (a.k.a. Observer Pattern)

Intent: Define a one-to-many dependency between objects
changes state, all its dependents are notified and u

The pattern ensures the automatisation of
❑ adding and removing dependents
❑ change propagation

The publisher (subject) has a list of subscribers (observers
registers with a publisher.
Protocol:
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Subscriber2

ent:Subscriber2
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Publisher-Subscriber: A Sample

Publisher Subscriber1

addDepend

addDependent:Subscriber1

changed

update

update

removeDependent:Subscriber1

changed

update
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 terminology) and other
niversität Bern Matthias Rieger

Change Propagation: Push and

How is the changed data trans
from the publisher to the subsc

❑ Push:  the publisher sends the changed data alon
Advantages: only one message per subscriber ne
Disadvantage: Either the publisher knows for each
it needs which increases coupling between publish
many subscribers receive unnecessary data.

❑ Pull : the subscriber, after receiving the update me
the specific data he is interested in
Advantage: Only the necessary amount of data is 
Disadvantage: a lot of messages have to be excha

❑ Mixture: the publisher sends hints (“Aspects” in ST
parameters along with the update messages
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The MVC Pattern

Dependencies:

Other Messages:

Model

View

Contro

change propagation

Model

View

Controller

view messages

model access

and

editing messages

display ou

us
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A Standard Interaction Cycle
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MVC: Benefits and Liabilities

Benefits:

❑ Multiple views of the same model
❑ Synchronized views
❑ ‘Pluggable’ views and controllers
❑ Exchangeability of ‘look and feel’

Liabilities:

❑ Increa
❑ Poten

updat
❑ Intima

view a
❑ Close

contro
❑ Ineffic

view
❑ Inevit

contro

75

75%

Multiple Views per Model
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MVC and Smalltalk

MVC is a pattern and can be also applied with other progra

Examples:
❑ ET++ User Interface Framework (C++)
❑ Swing-Toolkit in the Java Foundation Classes 1.0

Nevertheless, the ties between MVC and Smalltalk are exc

❑ MVC was invented by a Smalltalker (Trygve Reen
❑ first implemented in Smalltalk-80; the Application F

built around it
❑ The first implementations of MVC in Smalltalk hav

evolution. Newer Implementations (for example in
the problems of the first, straightforward implemen
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Managing Dependents

Protocol to manage dependents (defined in Object>>depen

– addDependent:  anObject

– removeDependent:  anObject

Attention: Storage of Dependents !

❑ Object : keeps all its dependents in a class  varia
DependentsField  is an IdentityDictionary
the objects themselves and the values are the coll
for the corresponding objects.

❑ Model : defines an instance  variable dependents

☞ access is much more efficient than looking up
variable.
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Implementation of Change Pro

Change methods are implemented in Object>>changing

changed: anAspectSymbol

"The receiver changed. The change is denoted by the argument a
ally the argument is a Symbol that is part of the dependent’s chang
is, some aspect of the object’s behavior, and aParameter is addition
Inform all of the dependents."

self myDependents update: anAspectSymbol

Update methods are implemented in Object>>updating

update: anAspectSymbol

“Check anAspectSymbol to see if itequals some aspect of interest an
form the necessary action”

anAspectSymbol == anAspectOfInterest

ifTrue: [self doUpdate].
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Climbing up and down the Def

changed

self changed: nil

changed: anAspectSymbol

self changed: anAspectSymbol with: nil

changed: anAspectSymbol with: aParameter

self myDependents update: anAspectSymbol with: aPa

update: anAspectSymbol with: aParameter f

^self update: anAspectSymbol with: aPa

update: anAspectSymbol with: aParameter

^self update: anAspectSymbol

update: anAspectSymbol

^self
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Problems ...
Problems with the Vanilla Change Propagation Mechanism

❑ every dependent is notified about all the changes, e
(broadcast).

❑ the update: anAspect  methods are often long 
This is not clean object-oriented programming.

❑ all the methods changing something have to send s
might just be some dependent that is interested in

❑ danger of name clashes between apsects that are
that have to work together (can be solved by using

General problem:
complex objects depending on other comp

We need means to be more specific:
❑ publisher: send messages only to interested depe
❑ subscriber: being notified directly by a call to the m

specific change
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Dependency Transformer
A DependencyTransformer  is an intermediate object be
dependent. It

❑ waits for a specific update: anAspect  message
❑ sends a specific method to a specific object

A dependent that is only interested in a specific aspect of its
handle the update installs a DependencyTransformer  o

model expressInterestIn: anAspect

for: self

sendBack: aChangeMessage

dependents
collection

model

changed: #anAspect

update: #anAspect
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Inside a Dependency Transform

Initializing a DependencyTransformer :

setReceiver: aReceiver aspect: anAspect selector: aSymbol

receiver := aReceiver.

aspect := anAspect.

selector := aSymbol.

numArguments := selector numArgs.

numArguments > 2 ifTrue: [self error: ’selector expects too many arg

Transforming an update:  message:

update: anAspect with: parameters from: anObject

aspect == anAspect ifFalse: [^self].

numArguments == 0 ifTrue: [^receiver perform: selector].

numArguments == 1 ifTrue: [^receiver perform: selector with: param

numArguments == 2 ifTrue: [^receiver perform: selector with: param
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ValueHolder

A ValueHolder  is an object that encapsulates a value an
model, i.e. it notifies the dependents of the model automati

Creating a ValueHolder :

Accessing a ValueHolder :

Advantages:
❑ change propagation is triggered automatically by t

programmer does not have to do self changed

❑ objects can become dependents only of the value
(reduces broadcast problem)



Object-Oriented Design with Smalltalk a Pure OO Language The Model View Controller Paradigm

U 13.198

ts that make up the UI
niversität Bern Matthias Rieger

A UserInterface Window

The widge
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Widgets
A widget is responsible for displaying some aspect of a Use

❑ A widget can display an aspect of a model
❑ A widget can be combined with a controller, in whi

the aspect of the model displayed by the widget.

The connection between widgets and the model:
❑ Each component of a User Interface is a widget
❑ Each component of a model is an attribute or oper
❑ Most widgets modify an attribute or start an opera

The communication between a widget and the model compo
standardized:

Value Model Protocol

Each model component is put into an aspect model, which 
example. The Widget deals only with this aspect model.

☞ the widget does not have to know any specific
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The Application Model
An ApplicationModel is a model that is responsible for creat
user interface, usually consisting of a single window. It man
information. It leaves the domain information to its aspect m

Domain
Models

Application
Models

Customer

BankAccount

Transaction
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attributes
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The fine-grained Structure of an

Application
Model

Domain
Model

User
Interface

widgets
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14. Processes and Concurrency

- Concurrency and Parallelism
- Applications of Concurrency
- Limitations
- Atomicity
- Safety and Liveness
- Processes in Smalltalk:

Class Process, Process States, Process 
- Synchronization Mechanisms in Smalltalk:

Semaphores, Mutual Exclusion Semapho
- Delays
- Promises



Object-Oriented Design with Smalltalk a Pure OO Language Processes and Concurrency

U 14.204

t of statements; its execution
ore sequential programs that

r more processors
ts own processor but

ts own processor
k to others
niversität Bern Juan-Carlos Cruz

Concurrency and Parallelism

“A sequential program specifies sequential execution of a lis
is called a process. A concurrent program specifies two or m
may be executed concurrently as parallel processes”

A concurrent program can be executed by:
1. Multiprogramming: processes share one o
2. Multiprocessing: each process runs on i

with shared memory
3. Distributed processing: each process runs on i

connected by a networ

Motivations for concurrent programming:
1. Parallelism for faster execution
2. Improving processor utilization
3. Sequential model inappropriate
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Limitations

But concurrent applications introduce complexity:

- Safety
synchronization mechanisms are needed to maint

- Liveness
special techniques may be needed to guarantee p

- Non-determinism
debugging is harder because results may depend

- Run-time overhead
process creation, context switching and synchroni
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Atomicity

Programs P1 and P2 execute concurrently:

{ x = 0 }
P1: x := x + 1
P2: x := x + 2

{ x = ? }

What are possible values of x after P1 and P2 complete?
What is the intended final value of x?

Synchronization mechanisms are needed to restrict the pos
processes so that sets of actions can be seen as atomic.

Mutual exclusion ensures that statements within a critical s
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Safety and Liveness

There are two principal difficulties in implementing concurre

Safety - ensuring consistency:
☞ mutual exclusion - shared resources must be
☞ condition synchronization - operations may ne

resources are not in an appropriate state (e.g

Liveness - ensuring progress:
☞ No Deadlock - some process can always acc
☞ No Starvation - all processes can eventually a

Notations for expressing concurrent computation must add
1. Process creation : how is concurrent execution spe
2. Communication : how do processes communicate?
3. Synchronization : how is consistency maintained?
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Processes in Smalltalk: Process

- A Smalltalk system supports multiple independent proces

- Each instance of class Process  represents a sequence o
executed by the virtual machine concurrently with other pro

- Processes share a common address space (object memo

- Blocks are used as the basis for creating processes in Sm
create aProcess  is to send a block the message #fork

[ Transcript cr; show: 5 factorial printString ] fork

- The new process is added to the list of scheduled process
(i.e scheduled for execution) and will start executing as soo
releases the control of the processor.
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Processes in Smalltalk: Process

- We can create a new instance of class Process which is n
#newProcess  message to a block:

| aProcess |

aProcess := [ Transcript cr; show: 5 factorial printString ] newPro

- The actual process is not actually runnable until it receive
aProcess resume

- A process can be created with any number of arguments:
aProcess := [ :n | Transcript cr; show: n factorial printString ]

 newProcessWithArguments: #(5).

- A process can be temporarily stopped using a #suspend
process can be restarted later using the #resume  message

- A process can be stopped definitely using a message #te
has received the #terminate  message it cannot be resta
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 states
A process may be in one of
the five states:

1. suspended
2. waiting
3. runnable
4. running, or
5. terminated
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Processes in Smalltalk: Process

suspended

runnable

running

terminated

resume

suspend

newProcess
fork

suspend

terminate

waiting
signal*

wait*

*sent to aSemaphore

yield

scheduled
by the VM
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Process Scheduling and Prioritie
- Process scheduling is based on priorities associated to pr
- Processes of high priority run before processes of lower p
- Priority values go between 1 and 100.
- Eight priority values have assigned names.

Priority Name

100 timingPriority
Used by Proc
real time.

98 highIOPriority Used by tim

90 lowIOPriority Used by mos

70 userInterruptPriority
Used by use
immediate se

50 userSchedulingPriority
Used by proc
user interacti

30 userBackgroundPriority Used by us

10 systemBackgroundPriority Used by sy

1 systemRockBottonPriority The lowest
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Processes Scheduling and Prior
- Processes are scheduled by the unique instance of class
called Processor .

- A runnable process can be created with an specific priorit
message:

[ Transcript cr; show: 5 factorial printString ]

forkAt: Processor userBackgroundPriority.

- The priority of a process can be changed by using a #prio
| process1 process2 |

Transcript clear.

process1 := [ Transcript show: ‘first’] newProcess.

process1 priority: Processor systemBackgroundPriority.

process2 := [ Transcript show: ‘second’ ] newProcess.

process2 priority: Processor highIOPriority.

process1 resume.

process2 resume.

The default process priority is userSchedu
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The Process Scheduling Algorit
The active process can be
identified by the expression:

Processor activeProcess

The processor is given to
the process having the
highest priority.

A process will run until it is
suspended, terminated or
pre-empted by a higher
priority process, before
giving up the processor.

When the highest priority is
held by multiple processes,
the active process can give
up the processor by using
the message #yield .

Processor(ProcessorSchedule
activeProcess
quiescentProcessList

Array (indexed by priority)

100
99

50

3
2
1

...

...

firstLink
lastLink

firstLink
lastLink

P

P
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Processes

P0
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1

resume
newProcess

fork
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Process Scheduling

Active Process
P0

suspend

Processor

activeProcess
quiescentProcessList

P1 Px

100 50... ...scheduled
by the VM

yield
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Synchronization Mechanisms
Concurrent processes typically have references to some sh
may receive messages from these processes in an arbitrar
unpredictable results. Synchronization mechanisms serve m
consistency of shared objects.

We can calculate the sum of the first N natural numbers:
| n |

n := 100000.

[ | i temp |

Transcript cr; show: ‘P1 running’.

i := 1. temp := 0.

[ i <= n ] whileTrue: [ temp := temp + i. i := i + 1 ].

Transcript cr; show: ‘P1 sum is = ‘; show: temp printString ] forkAt: 6

P1 running

P1 sum is = 5000050000
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forkAt : 60.

: 50.
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Synchronization Mechanisms
What happens if at the same time another process modifies

| n d |

n := 100000.

d := Delay forMilliseconds: 400.

[ | i temp |

Transcript cr; show: ‘P1 running’.

i := 1. temp := 0.

[ i <= n ] whileTrue: [ temp := temp + i.

(i = 5000) ifTrue: [ d wait ].

i := i + 1 ].

Transcript cr; show: ‘P1 sum is = ‘; show: temp printString ]

[ Transcript cr; show: ‘P2 running’. n := 10 ] forkAt

P1 running

P2 running

P1 sum is = 12502500
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Synchronization using Semaph
A semaphore is an object used to synchronize multiple pro
an event to occur by sending the message #wait  to the se
then signals that the event has occurred by sending the me
semaphore.

| sem |

Transcript clear.

sem := Semaphore new.

[ Transcript show: ‘The’] fork.

[ Transcript show: ‘quick’. sem wait.

Transcript show: ‘fox’. sem signal ] fork.

[ Transcript show: ‘brown’. sem signal.

sem wait. Transcript show: ‘jumps over the lazy dog’; cr ] fork

- If a semaphore receives a #wait message for which no c
been sent, the process sending the #wait  message is sus
- Each semaphore maintains a linked list of suspended pro
- If a semaphore receives a #wait from two or more proce
process for each signal it receives
- A semaphore pays no attention to the priority of a process
the same order in which they “waited” on the semaphore.
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Semaphores
ActiveProcess

P0

suspend

Processor

activeProcess
quiescentProcessList

P1 Px

100 50... ...scheduled
by the VM

yield

aSemaphore

PP0

wait

z

Waiting Processes for aSemaphore

resume

signal*

*
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Semaphores for Mutual Exclusio
Semaphores are frequently used to provide mutual exclusio
is supported by the instance method #critical: . The bloc
when no other critical blocks sharing the same semaphore 

| n d sem |

n := 100000.

d := Delay forMilliseconds: 400.

[ | i temp |

Transcript cr; show: ‘P1 running’.

i := 1. temp := 0.

sem critical: [  [ i <= n ] whileTrue: [ temp := temp + i.

(i = 5000) ifTrue: [ d wait ].

i := i + 1 ]. ].

Transcript cr; show: ‘P1 sum is = ‘; show: temp printString ]

[ Transcript cr; show: ‘P2 running’. sem critical: [

A semaphore for mutual exclusion must start with one extra
critical section will never be entered. A special instance cre

Semaphore forMutualExclusion .
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Synchronization using a Shared

A SharedQueue enables synchronized communication betw
a normal queue (First in First Out, reads and writes), with th
aSharedQueue  protects itself against possible concurrent 
and/or multiple reads).

Processes add objects to the shared queue by using the m
read objects from the shared queue by sending the messag

| aSharedQueue d |

d := Delay forMilliseconds: 400.

aSharedQueue := SharedQueue new.

[ 1 to: 5 do:[:i | aSharedQueue nextPut: i ] ] fork.

[ 6 to: 10 do:[:i | aSharedQueue nextPut: i. d wait ] ] forkAt: 60.

[ 1 to: 5 do:[:i | Transcript cr; show:aSharedQueue next printString]

- If no object is available in the shared queue when the mess
process is suspended.
- We can query whether the shared queue is empty or not w
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Delays

Instances of class Delay  are used to delay the execution o

An instance of class Delay  will respond to the message #w
active process for a certain amount of time.

The time at which to resume is specified when the delay ins
be specified relative to the current time with the messages
#forSeconds: .

| minuteWait |

minuteWait := Delay forSeconds: 60.

minuteWait wait.

The resumption time can also be specified at an absolute t
system’s millisecond clock with the message #untilMilliseco
in this way can be sent the message wait at most once.
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Promises

- Class Promise  provides a means to evaluate a block wit

- An instance of Promise can be created by sending the me
[ 5 factorial ] promise

- The message #promiseAt: can be used to specify the p

- The result of the block can be accessed by sending the m
| promise |

promise := [ 5 factorial ] promise.

Transcript cr; show: promise value printString.

If the block has not completed evaluation, then the process
value of a promise will wait until the process evaluating the

A promise may be interrogated to discover if the process ha
message #hasValue
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15. Classes and Metaclasses: a

Some books are to be tasted,
others to be swallowed,
and some few to be chewed and

— Fra

At first sight, a difficult topic!
You can live without really understanding them, bu
a uniform model, and you will made less errors if yo
and you will really understand the object model

❑ Recap on Instantiation
❑ Recap on Inheritance
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The meaning of “Instance of”

- Every object is an instance of a class.
- Every class (except Object) is ultimately a subclass of Obj
- When anObject receives a message, the method is looked
in its class and/or its superclasses.

- A class defines the structure and the behavior of all its
instances.
- Each instance possesses its own set of values.
- Each instance shares its behavior with other instances. Th
behavior is defined in its class, and is accessed via the insta
of link.
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Concept of Metaclass & Respo
Concept:

- Everything is an object
- Every object is instance of exactly one class
- A class is also an object, and is an instance of its
- An object is a class if and only if it can create ins

Metaclass Responsibilities:
- instance creation
- method compilation (different semantics can be i
- class information (inheritance link, instance varia

Examples:
Node allSubclasses -> OrderedCollection (WorkStation OutputServer Workstation FileSe

PrintServer allInstances -> #()

Node instVarNames -> #('name' 'nextNode')

Workstation withName: #mac -> aWorkstation

Workstation selectors  -> IdentitySet (#accept: #originate:)

Workstation canUnderstand: #nextNode -> true
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Classes are Objects too!!

Try

OrderedCollection allInstVarNames

OrderedCollection class allInstVarNames

And try to understand

Look at Class class!
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Classes, metaclasses and meth
When anObject receives a message, the
method is looked up in its class and/or its
superclasses.

So when aClass receives a message, the
method is looked up in its class (a
metaclass) and/or its superclass

Here Workstation  receives withName: #mac

The method associated with #withName:  selector is looke
Workstation : Workstation class

Workstation withName: #
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Responsibilities of Object & Cla
Object
- represents the common behavior (like error, halting...) sha
instances and classes)
- so all the classes should inherit ultimately from Object

Workstation inherits from Node
Node inherits from Object

Class
- represents the common behavior of all the classes (comp
instance variable storing)
- Class inherits from Object because Class is an Object, alt
⇒ Class knows how to create instances
- So all the classes should inherit ultimately from Class
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A possible kernel for explicit m
The kernel of CLOS and ObjVlisp but not the kernel of Sma

Workstation

inherits
from

Object

aWorkstation

Class

inherits
from instance of

instance of

instance of
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Singleton with explicit metacla

inherits
from

Object
Classinherits

from

inst

instance of

instance of

Unique
Instance

Workstation

Special

inherits
from

Workstation

aWork1

aWork2

aSpecWork
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Deeper into it

Clas

instance of

instance of

U
In

Workstation

Special

inherits
from

Workstation

new
 returns

Workstation new

SpecialWorks
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Smalltalk Metaclasses in 7 poin
- no explicit metaclasses, only implicit non sharable metacl

(1): Every class is ultimately a subclass of Object (except O
Behavior

ClassDescription

Class

Metaclass

(2) Every object is an instance of a class.
Every class is an instance of a class which is its metaclass

(3) Every class is an instance of a metaclass.
Every user defined class is the sole  instance of another cla
Metaclasses are system generated so they are unnamed. Y
sending the message #class to a class.
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Smalltalk Metaclasses in 7 points

If X is a subclass of Y then X class is a subclass of Y class
But what is the superclass of the metaclass of Object ?
The superclass of Object  class is Class

(4) All metaclasses are (ultimately) subclasses of Class .

But metaclasses are also objects so they should be instanc

SmallInteger

SmallInteger
class

Integer

Integer
class

Number

Number
class

Object

Object
class

SmallInteger

SmallInteger
class

Integer

Integer
class

Number

Number
class

Class

Class
class
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Smalltalk Metaclasses in 7 poin

(5) Every metaclass is instance of Metaclass . So Metacla

Object  : common object behavior
Class : common class behavior (name, multiple instances)
Metaclass : common metaclass behavior (no name, uniqu
(6) The methods of Class and its superclasses support the 
objects that are classes.

SmallInteger

SmallInteger
class

Integer

Integer
class

Number

Number
class

Class

Class
class

Metaclass

Metaclass
class
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Smalltalk Metaclasses in 7 poin
(7) The methods of instances of Metaclass  add the beha
classes.
⇒ Methods of instance of Metaclass = methods of “Packet
example #withName: )

An instance method defined in Behavior  or ClassDescrip
class method. Example: #new, #new:

ClassDescription

ClassDescription
class

Behavior

Behavior

Class

Class
class

Metaclass

Metaclass
class

class
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Behavior Responsibilities
- Minimum state necessary for objects that have instances.
- Basic interface to the compiler.
- State: class hierarchy link, method dictionary, description
and number)
Methods:
- creating a method dictionary, compiling method (#compile

- instance creation (#new, #basicNew, #new:, #basicNew:

- class into hierarchy ( #superclass:, #addSubclass:)

- accessing (#selectors, #allSelectors, #compiledMethodAt
- accessing instances and variables (#allInstances, #instVA
#allInstVarNames, #classVarNames, #allClassVarNames

- accessing clas hierarchy (#superclass, #allSuperclasses, 
#allSubclasses )
- testing (#hasMethods, #includesSelector, #canUnderstan
#inheritsFrom:, #isVariable )
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ClassDescription Responsibilitie
ClassDescription  adds a number of facilities to basic B

- named instance variables
- category organization for methods
- the notion of a name of this class (implemented a
- the maintenance of the Changes set, and loggin
- most of the mechanisms needed for fileOut

ClassDescription is an abstract class: its facilities are in
two subclasses, Class  and Metaclass .

Subclasses must implement
#addInstVarName:

#removeInstVarName:

Instance Variables:
- instanceVariables<Array of: String> names of instance fie
- organization <ClassOrganizer> provides organization 
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Metaclass Responsibilities

- initialization of class variables
- creating initialized instances of the metaclass’s sole instan

- instance creation (#subclassOf: )
- metaclass instance protocol (#name:inEnvironment:subcl
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Class Responsibilities

Class  adds naming for class
Class  adds the representation for classVariable names an
(#addClassVaraNames, #addSharedPool:, #initialize
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16. Most Common Mistakes an

• Preventing: Most Common Mistakes
• Curing: Debugging Fast (from ST Report July 93)
• Extras
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Most Common Beginner Bugs
- true  is the boolean value, True  its class
Instead of:

Book>>initialize

inLibrary := True

do:
Book>>initialize

inLibrary := true

- nil  is not an acceptable receiver for ifTrue:

- whileTrue  receiver must be a block
     [x<y] whileTrue: [x := x + 3]

- (weakness of the system) Before creating a class, check i
Object subclass: #View

- Do not assign to a class
OrderedCollection := 2 will damage your system
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Return Value

- In a method self  is returned by default. Do not forget ^  f
Packet>>isAddressedTo: aNode

^ self addressee = aNode name

- In a #new method do not forget the ^ to return the newly c
Packet class>>new

super new initialize

returns self  : the class Packet  and not the newly created
Write:

Packet class>>new

^ super new initialize
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Take care about loops
- In a new method do not forget to use super or to invoke b
instance.
Example:

The following loops!
Packet class>> new

^self new initialize

You should write:
Packet class>> new

^ self basicNew initialize or ^ super new i

- Before redefining new as follows:
Packet class>>new

^super new initialize

check if this is not already done by super. If so, initialize
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Instance Variable Access in Cl

- Do not try to access instance variables to initialize them in
have the right. The new method can only access class insta
classVariables.

⇒ Define and invoke an initialize  m

Example:
Do not write

Packet class>>send: aString to: anAddress

contents := aString.

addressee := anAddress

Instead create an instance and invoke instance methods
Packet class>>send: aString to: anAddress

self new contents: aString; addressee: anAddress
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Assignments Bugs

- Do not try to assign a method argument
setName: aString

aString := aString, 'Device'.

name := aString

- Do not assign to a class
OrderedCollection := 2  will damage your sy

- Do not try to modify self  and super
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Redefinition Bugs

- Never  redefine basic -methods (#==, #basicNew, #basicN
#basicAt:Put: ...)

- Never  redefine #class

- Redefine #hash  when you redefine #= so that if a = b the

Book>>=aBook

^self title = aBook title & (self author = aBook author)

Book>>hash

^self title hash bitXor: self author hash
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Library Behavior-based Bugs

- #add:  returns the argument and not the receiver, so use
collection back.

- Do not forget to specialize #copyEmpty  when adding nam
to a subclass having indexed  instance variables (subclass

- Never iterate over a collection which the iteration someho
timers do:[:aTimer|

aTimer isActive ifFalse: ‘timers remove: aTimer]

Copy  first the collection
timers copy  do:[:aTimer|

aTimer isActive ifFalse: ‘timers remove: aTimer]

- Take care, since the iteration can involve various methods
be obvious!
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Use of Accessors: Protect your 
The literature says: “Access instance variables using metho

Schedule>>initialize

tasks := OrderedCollection new.

Schedule>>tasks

^tasks

However, accessors methods should be PRIVATE by defau

If accessors would be public, a client could write
ScheduleView>>addTaskButton

...

model tasks add: newTask

What happens if we change the representation of tasks?
If tasks  is now a dictionary ⇒ everything breaks.
Provide an adding method

Schedule>>addTask: aTask

tasks add: aTask

ScheduleView>>addTaskButton

...

model addTask: newTask
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Debugging Hints
Basic Printing

Transcript cr; show: ‘The total= ’, self total printString.

Use a global or a class to control printing information
Debug ifTrue:[Transcript cr; show: ‘The total= ’, self total printString]

Debug > 4

ifTrue:[Transcript cr; show: ‘The total= ’, self total printString]

Debug print:[Transcript cr; show: ‘The total= ’, self total printString]

Smalltalk removeKey: #Debug

Inspecting
Object>>inspect

you can create your own inspect method
MyInspector new inspect: anObject

Naming: useful to add an id for debugging purposes
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Where am I and how did I get h
Identifying the current context
“if this is not a block”

Transcript show: thisContext printString; cr.

Debug ifTrue:[ “use this expression in a block”

Transcript show: thisContext sender home printString; cr]

Audible Feedback
Screen default ringBell

Catching It in the Act
<Ctrl-C> (VW2.5) <Ctrl-Shift-C> Emergency stop

<Ctrl-Y> (VW3.0) <Ctrl-Shift-C> Emergency stop

Suppose that you cannot open a debugger
Transcript cr; show: (Notifierview shortStackFor: thisContext ofSize: 5)

Or in a file
|file|

file := ‘errors’ asFilename appendStream.

file cr; nextPutAll: (NotifierView shortStackFor: thisContext ofSize: 5).

file close
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Source Inspection
Source Code for Blocks
aBlockClosure method getSource

aMethodContext sourceCode

Decompiling a Method
Shift + select the method in the browser
Interesting for modifying literals or fixing MethodWrapper b
initialize

arrayConst := #(1 2 3 4)

then somebody somewhere does
arrayConst at:1 put:100

So your array is polluted. Note that if you recompile the me
the literal array are restored. So always consider returning 

Entry Points
How is a window opened or what happens when the menu
look into LauncherView  and UIVisualILauncher  imple
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Where am I going?
Breakpoints
self halt.

self error: ‘ invalid’

Conditional halt
i > 10 ifTrue:[self halt]

InputState default shiftDown ifTrue:[self halt]

InputState default altDown ifTrue:[self halt]

InputState default metaDown ifTrue:[self halt]

In a controller:
self sensor shiftDown ifTrue:[self halt]

Slowing Down Actions: useful for complex graphics
Cursor wait showWhile: [(Delay forMilliseconfs: 800) wait]

(Do not forget the wait)
Until a mouse button is clicked.
Cursor crossHair showWhile:

[ScheduledControllers activeController sensor waitNoButton; waitClickButton]
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How do I get out?

1 <CTRl+Shift-C or Y> Emergency Debugger

2 ObjectMemory quit

3 <ESC> to evaluate the expression

An Advanced Emergency Procedure: recompile the wrong 
aClass compile: ‘methodname methodcode’ classified: ‘what you want’

ex:

Controller compile: ‘controlInitialize ^self’ classified: ‘basic’

Graphical Feedback
Where the cursor is:
ScheduledControllers activeController sensor cursorPoint

Position the cursor explicitly
ScheduledControllers activeController sensor cursorPoint: aPoint

Rectangle fromUser

Indicating an area with a filled rectangle
ScheduledControllers activeController view graphicsContext display Rectangle: (0@0
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Finding & Closing Open Files in
ExternalStream classPool at: #openStreams

How to ensure that an open file will be closed in case of an
Use #valueNowOrOnUnwindDo:  or #valueOnUnwindDo:

|stream|

[ stream := (Filename named: aString) readStream.

...

] valueNowOrOnUnwindDo: [stream close ].

BlockClosure>>valueOnUnwindDo: aBlock

"Answer the result of evaluating the receiver. If an exception would cause

be abandoned, evaluate aBlock. "

BlockClosure>>valueNowOrOnUnwindDo: aBlock

"Answer the result of evaluating the receiver. If an exception would cause the evalua

be abandoned, evaluate aBlock.  The logic for this is in Exception.  If no exception o

also evaluate aBlock."
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17. Internal Structure of Object
Smalltalk gives to the programmer the illusion of uniformity

=> for example SmallInteger are defined as any o
=> in memory they are different than objects
=> the object pointer represents the SmallInteger

In the memory representation Smalltalk objects can be poin
index type, non-index type or immediate type.

indexable
#(1 2 3) at: 2

non indexable
aPacket name

This difference is transparent for the programmer today job
optimizations, analysis.... how can we compute the size in b
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Three ways to create classes:
Non indexable, pointer
Object subclass: #Packet

instanceVariableNames: 'contents addressee originator '

classVariableNames: ''

poolDictionaries: ''

category: 'Demo-LAN'

Indexable pointer
ArrayedCollection variableSubclass: #Array

instanceVariableNames: ''

classVariableNames: ''

poolDictionaries: ''

category: 'Collections-Arrayed'

Indexable, non pointer
LimitedPrecisionReal variableByteSubclass: #Float

instanceVariableNames: ''

classVariableNames: 'Pi RadiansPerDegree '

poolDictionaries: ''

category: 'Magnitude-Numbers'

Not possible to defined named instance variable
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Let us Code
Identifying subclass:....
| collection |

collection := SortedCollection new.

Smalltalk allBehaviorsDo:

[:each |

|boolean|

boolean := each isMeta not and: [each isObsolete not].

boolean := boolean and: [each isFixed].

boolean ifTrue: [collection add: each name]].

^collection

Identifying variableSubclass:...
boolean := each isMeta not and: [each isObsolete not].

boolean := boolean and: [each isPointers].

boolean := boolean and: [each isVariable].

boolean ifTrue: [collection add: each name]]

Identifying variableByteSubclass:...
boolean := each isMeta not and: [each isObsolete not].

boolean := boolean and: [each isBits].

boolean := boolean and: [each isVariable].

boolean ifTrue: [collection add: each name]]
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Format and other
The information for distinguishing between these three type
instance variable of Behavior.
Behavior>>isBits

"Answer whether the receiver contains just bits (not pointers)."

^format noMask: self pointersMask

Behavior>>hasImmediateInstances immediate type object?

Behavior>>isFixed non-indexable type object?

Behavior>>isPointers pointers type object?

Behavior>>isVariable indexable type object?

pointer type [isPointers]
indexable type [isVariable] variableSubclass:...
non-index type [isFixed] subclass:...

non-pointer [isBits]
index type [isVariable] variableByteSubclass:...
non-index type [isFixed] subclass:...

immediate [hasImmediateInstances] sub
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Object size in bytes
objectSizeInBytes: anObject

|bytesInOTE bytesInOOP aClass indexableFieldSize instVarFieldSize size|

bytesInOTE := ObjectMemory current bytesPerOTE.

bytesInOOP := ObjectMemory current bytesPerOOP.

aClass := anObject class.

aClass isPointers

ifTrue:

[instVarFieldSize := aClass instSize * bytesInOOP.

aClass isVariable

ifTrue: [indexableFieldSize := anObject basicSize * bytesInOOP]

ifFalse: [indexableFieldSize := 0]]

ifFalse:

[instVarFieldSize := 0.

aClass isVariable

ifTrue: [indexableFieldSize := anObject basicSize +

(bytesInOOP -1) bitAnd: bytesInOOP n

ifFalse:[indexableFieldSize := 0]].

size := bytesInOTE + instVarFieldSize + indexableFieldSize.

^size
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Analysis
OTE (ObjectTable Entry) = 12 bytes: OTE is a description
gc flags, ....)
OOP (Object Oriented Pointer) = 4 bytes
Pointers Type
Internals new objectSizeInBytes: WorkStation new

pointer, instSize = 3 (dependents name nextNode) * 4 = 12

not indexable

Internals new objectSizeInBytes: (WorkStation new name: #abc)

idem, because not recursive

Internals new objectSizeInBytes: 1@2

20 : 12 + 2 * 4

Indexable and Pointers Type
Internals new objectSizeInBytes: (OrderedCollection new: 10)

OrderedCollection new: 10

= 2 inst variable and 10 indexes

class instSize = 2 * 4

basicSize = 10 * 4

60 bytes
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Indexable pure
Internals new objectSizeInBytes: Float pi

4 indexed variable * 4

16

Non pointer,  non Index = immediate
but an immediate type object has no object table entry
the immediate object is stored into the OOP.

Internals new objectSizeInBytes: 1

= 12 but the code should use isImmediate
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18. Blocks and Optimization
Recall:

[ :x :y | |tmp| ...]

value

value:

value: value:

value: value: value:

valueWithArguments:

In VisualWorks there are four types of blocks:
❑ Full Blocks,
❑ Copying Blocks,
❑ Clean Blocks,
❑ Inlined Blocks.

The programmer does not have to explicitly mention which o
by the compiler. However, knowing the subtle differences a
more efficient.
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Full Blocks
❑ Read and assign temporary variables.
❑ Block containing explicit return ^.
❑ Compiled in a BlockClosure.
❑ Evaluation by the creation of an explicit MethodCo

instead of using a pseudo-object contained in the 
❑ Most costly

Instead of:
m1: arg1

arg1 isNil

ifTrue: [^ 1]

ifFalse: [^ 2]

Better:
m1: arg1

^ arg1 isNil

ifTrue: [1]

ifFalse: [2]
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Copying Blocks
❑ Read temporary variables but do not assign them.
❑ No explicit return.
❑ Access instance variables of self and assign them
❑ Not compiled into a BlockClosure.
❑ They are compiled by copying every access into the

references to a context where the copied variables
❑ Their arguments and temporaries are merged into

context as “compiler-generated temporaries”.
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Clean Blocks
❑ Contain only reference block temporary variables 
❑ No reference to self or to instance variables.

nodes do: [:each | each name = #stef]

nodes select: [:each | each isLocal]
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Inlined Blocks
❑ Code of certain methods, like whileFalse: ifTrue:, 

code of the calling method.
❑ The literal blocks (without arguments) passed as a

are also inlined in the byte-code of the calling met
❑ Inlined methods are whileTrue, whileTrue:, whileF

ifTrue:, ifFalse:, ifTrue:ifFalse:, ifFalse:ifTrue:, to:d
❑ Look in MessageNode>>transform* methods to se

testInLined
1 to: 5 do: [:x| ]

Compiled into :
| t1 |

t1 := 1.

[t1 <= 5] whileTrue: [t1 := t1 + 1].

But no BlockClosure is created (look into the byte codes)
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Full to Copy
Instead of:

|t|

[:x | t := x foo] value: 1.

t := t * 2.

^t

❑ The reference to t inside the block makes it at leas
❑ t := makes it full.

With the following we have a clean block.
|t|

t := [:x | x foo] value:1.

t := t * 2.

^t
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Contexts
Full blocks are evaluated in a separate context.

The following code evaluates to false:

|outerContext answer|

outerContext := thisContext.

(1 to: 1) do: [:i | answer := thisContext == outerContext].

answer

But the following evaluates to true because: to:do: is an inli

|outerContext answer|

outerContext := thisContext.

1 to: 1 do: [:i | answer := thisContext == outerContext].

answer

So this is better to use to:do: than (to:) do:
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Inject:into:
Instead of:

|maxNumber|

maxNumber := 0.

#(1 2 43 56 2 49 3 2 0 ) do: [:each| maxNumber := each max: maxNumb

maxNumber

Write
#(1 2 43 56 2 49 3 2 0 ) inject: 0 into: [:maxNumber :ele| maxNumber m

❑ no need the temporary variable
❑ full blocks to clean block
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About String Concatenation
❑ str1 , str2 creates a new structure in which str1 an

SequenceableCollection>>, aSequenceableCollection

"Answer a copy of the receiver concatenated with the argument,

a SequenceableCollection."

^self copyReplaceFrom: self size + 1

  to: self size

  with: aSequenceableCollection

SequenceableCollection>>copyReplaceFrom: start to: stop with: replace

"Answer a copy of the receiver satisfying the following conditions:

.. "
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Stream, Blocks and Optimisatio
(from Alan Knight)
Suppose that we want to concatenate a pretty long list of str
the Smalltalk dictionary.

|bigString|

bigString := String new.

Smalltalk keys do: [:aString | bigString := bigString, aString].

Here the assignment of bigString leads to a Full Block
We can suppress the assignment like that:

|aStream|

aStream:= WriteStream on: String new.

Smalltalk keys do: [:aString | aStream nextPutAll: aString].

We obtain a copying block.
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Stream, Blocks and Optimisatio
inject:into: allows us to suppress the reference to variables
and to obtain a clean block.

|aStream|

aStream:= WriteStream on: String new.

Smalltalk keys inject: aStream into: [:cumul :aString| cumul nextPut

 c

Now if we use a stream for the Smalltalk keys we can avoid
whileFalse: that is inlined the block will be inlined.

|aReadStream aWriteStream|

aReadStream := ReadStream on: Smalltalk keys asArray.

aWriteStream := WriteStream on: String new.

[aReadStream atEnd] whileFalse: [aWriteStream nextPutAll: a ReadStre

Optimization Yes, but Readibility First
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BlockClosure Class Comments
Instance Variables:

method <CompiledBlock>

outerContext <Context | nil>

copiedValues <Object | Array | nil>

There are currently three kinds of closures:
- "Clean" closure with no references to anything fr

closure has outerContext = nil and copiedValues = empty A
- "Copying" closure that copies immutable values 

closure is created. A copying closure has outerContext = ni
or Array.

-"Full" closure that retains a reference to the next o
outerContext ~= nil and copiedValues = nil.

As an optimization, copiedValues holds the single copied va
an Array of values if there is more than one.  Note that if th
the value being copied can be nil, so testing for nil in copiedV
of classifying closures. The way to check whether a closure
its method whether numCopiedValues > 0.
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19. Block Deep Understanding
VM represents the state of execution as Context objects

– for method MethodContext

– for block BlockContext

aContext contains a reference to

– the context from which it is invoked,

– the receiver

– arguments

– temporaries in the Context

We called home context the context in which a block is defi
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Lexically Scope
Arguments, temporaries, instance variables are lexically sc
These variables are bound in the context in which the block
and not in the context in which the block is evaluated

Test>>testScope

"self new testScope"

|t|

t := 15.

self testBlock: [Transcript show: t printString]

Test>>testBlock:aBlock

|t|

t := 50.

aBlock value

Test new testBlock

-> 15 and not 50
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Returning from a Block (i)
^ should be the last statement of a block body

[ Transcript show: 'two'.

^ self.

Transcript show: 'not printed']

^ return exits method containing it.

test

"self new test"

Transcript show: 'one'.

1 isZero

ifFalse: [ 0 isZero ifTrue: [ Transcript show: 'two'.

^ self]].

Transcript show: ' not printed'

-> one two
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Returning From a Block (ii)
Taking returning as a differenciator

❑ Simple block [:x :y| x *x. x + y] returns the value of
method that send it the message value

❑ Continuation blocks [:x :y| ^ x + y] returns the value
@@not clear activated@@ its homeContext

As a block is always evaluated in its homeContext, it is poss
a method which has already returned using other return. Th
trapped by the VM.

Object>>returnBlock

^[^self]

Object new returnBlock

-> Exception
|b|

b:= [:x| Transcript show: x. x].

b value: ‘ a’. b value: ‘ b’.

b:= [:x| Transcript show: x. ^x].

b value: ‘ a’. b value: ‘ b’.

Continuation blocks cannot be executed several times!
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Example of Block Evaluation
Test>>testScope

"self new testScope"

|t|

t := 15.

self testBlock: [Transcript show: t printString.

 ^self ]

Test>>testBlock:aBlock

|t|

t := 50.

aBlock value.

self halt.

Test new testBlock

-> 15 and not halt!!
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Creating an escape mechanism
|val|

val := [:exit |

|goSoon|

goSoon := Dialog confirm: 'Exit now?'.

goSoon ifTrue: [exit value: 'Bye'].

Transcript show: 'Not exiting'.

'last value'] valueWithExit.

Transcript show: val

yes -> print Bye
no -> print Not Exiting last value

BlockClosure>>valueWithExit

^self value: [:arg| ^arg ]
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Design Considerations
❑ Abstract Classes
❑ Design Issues
❑ Elementary Design Issues
❑ Idioms
❑ Some selected design patterns
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20. Abstract Classes
• Should not be instantiated (abstract in Java).
• Defines a protocol common to a hierarchy of classes that 
representation choices.
• A class is considered as abstract as soon as one of the m
respond to is not implemented (can be a inherited one).

• Deffered method send the message self subclassRespon

• Depending of the situation, override #new to produce an e

• Abstract classes are not syntactically distinguable from in
BUT as conventions use class comments: So look at the cl
and write in the comment which methods are abstract and 
Advanced tools check this situation.

Class Boolean is an abstract class that implements behavior common to true and fal

are True and False. Subclasses must implement methods for

logical operations &, not, |

controlling and:, or:, ifTrue:, ifFalse:, ifTrue:ifFalse:, ifFalse:ifTrue:
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Case Study: Boolean, True and

Object ()
   Boolean ( &, not, |, and:, or:,ifTrue:,
   ifFalse:,ifTrue:ifFalse:,ifFalse:ifTrue:
      False ()
      True ()

Boolean

False True
and:, or:,ifTrue:,ifFalse:,
ifTrue:ifFalse:,ifFalse:ifTrue:
&, not, |

and:, or:,if
ifTrue:ifFa
&, not, |

eqv:, xor:, storeOn:,
shallowCopy
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Boolean
Abstract method

Boolean>>not

"Negation. Answer true if the receiver is false, answer false if th
true."

self subclassResponsibility

Concrete method efined in terms of an abstract method
Boolean>>xor: aBoolean

   "Exclusive OR.  Answer true if the receiver is not equivalent to aBoole

   ^(self == aBoolean) not

When #not  will be defined, #xor:  is automatically defined

Note that VisualWorks introduced a kind of macro expansion, optimisation fo
compilation. A method is executed once and after it is compiled in native co
the native code is executed.
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False and True
False>>not

"Negation -- answer true since the receiver is false."

   ^true

True>>not

"Negation--answer false since the receiver is true."

   ^false

False>>ifTrue: trueBlock ifFalse: falseBlock

   "Answer the value of falseBlock. This method is typically not invoked b
ifTrue:/ifFalse: expressions are compiled in-line for literal blocks."

^falseBlock value

True>>ifTrue: trueBlock ifFalse: falseBlock

"Answer the value of trueBlock. This method is typically not
ifTrue:/ifFalse: expressions are compiled in-line for literal blocks."

^trueAlternativeBlock value
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CaseStudy: Magnitude:
1 > 2  =  2 < 1 = false

Magnitude>> < aMagnitude

  ^self subclassResponsibility

Magnitude>> = aMagnitude

^self subclassResponsibility

Magnitude>> <= aMagnitude

^(self > aMagnitude) not

Magnitude>> > aMagnitude

^aMagnitude < self

Magnitude>> >= aMagnitude

^(self < aMagnitude) not

Magnitude>> between: min and: max

^self >= min and: [self <= max]

1 <= 2   = (1 > 2) not

         = false not

         = true
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Date
Date>>< aDate

   "Answer whether the argument, aDate, precedes the date of the recei

year = aDate year

      ifTrue: [^day < aDate day]

      ifFalse: [^year < aDate year]

Date>>= aDate

   "Answer whether the argument, aDate, is the same day as the receive

self species = aDate species

      ifTrue: [^day = aDate day & (year = aDate year)]

      ifFalse: [^false]

Date>>hash

   ^(year hash bitShift: 3) bitXor: day
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21. Elements of Design
❑ Class definition
❑ Instance initialisation
❑ Enforcing the instance creation
❑ Instance/Class methods
❑ Instance variable/ Class instance variables
❑ Class initialisation
❑ Law of Demeter
❑ Factoring Constants
❑ Abstract Classes
❑ Template Methods
❑ Delegation
❑ Bad Coding Style
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A First Implementation of Packe

Object subclass: #Packet

instanceVariableNames: ‘contents addressee originator ‘

classVariableNames: ‘’

poolDictionaries: ‘’

category: ‘Lan-Simulation’

One instance method
Packet>>printOn: aStream

super printOn: aStream.

aStream nextPutAll: ‘ addressed to: ‘; nextPutAll: self addressee.

aStream nextPutAll: ‘ with contents: ’; nextPutAll: self contents

Some Accessors
Packet>>addressee

^addressee

Packet>>addressee: aSymbol

addressee := aSymbol
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Packet CLASS Definition
Packet Class is Automatically  defined

Packet class

   instanceVariableNames: ''

Example of instance creation
Packet new addressee: # mac ; contents: ‘hello mac’
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Fragile Instance Creation
Packet new addressee: # mac ; contents: ‘hello mac’

If we do not specify a contents, it breaks!
|p|

p := Packet new addressee: #mac.

p printOn: aStream -> error

Problems of this approach:
❑ responsibility of the instance creation relies on the
❑ can create packet without contents, witho
❑ instance variable not initialized -> error (for examp

=> system fragile
Solutions:

❑ Automatic initialization of instance variables
❑ Proposing a solid interface for the creation
❑ Lazy initialization



Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

U 21.291

alization
ith  uninitialized instance
ically called by creation

tance variables and override

Class Method

Instance Method

ket

 method like #new
niversität Bern Ducasse Stéphane

Assuring Instance Variable Initi
Problem.  By default #new class method returns instance w
variables. Moreover, #initialize  method is not automat
methods #new/new:

How to initialize a newly created instance ?

Solution. Defines an instance method that initializes the ins
#new to invoke it.

1 Packet class>>new

2 ^  super new initialize

3 Packet>>initialize

super initialize.

4 contents := ‘default message’

Packet new (1-2) -> aPacket initialize (3-4) -> returning anInitializedPac

Remind.  You cannot access instance variable from a class
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Strengthen Instance Creation In
Problem.

A client can still create aPacket  without address.
Solution.

❑ Force the client to use the class interface creation
❑ Providing an interface for creation and avoiding th

Packet send: ‘Hello mac’ to: #Mac

First try:
Packet class>>send: aString to: anAddress

^ self new contents: aString ; addressee: anAddress
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Other Instance Initialization
step 1.  SortedCollection sortBlock: [:a :b| a name < b name]

SortedCollection class>>sortBlock: aBlock

  "Answer a new instance of SortedCollection such that its elements are sorted

according to the criterion specified in aBlock."

^self new sortBlock: aBlock Class meth

step 2. self new = aSortedCollection

step 3. aSortedCollection sortBlock: aBlock Instance m

step 4.  returning the instance aSortedCollection

step 1. OrderedCollection with: 1

Collection class>>with: anObject

   "Answer a new instance of a Collection containing anObject."

| newCollection |

   newCollection := self new.

   newCollection add: anObject.

   ^newCollection
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Lazy Initialization
When some instance variables are:

❑ not used all the time
❑ consuming space, difficult to initialize because dep
❑ need a lot of computation

☞ Use lazy initialization based on accessors
☞ But lazy initialization should be used consiste

A lazy initialization scheme with default value
Packet>>contents

contents isNil

ifTrue: [contents := ‘no contents’]

^ contents

A lazy initialization scheme with computed value
Dummy>>ratioBetweenThermonuclearAndSolar

ratio isNil

ifTrue: [ratio := self heavyComputation]

^ ratio
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Providing a Default Value
The case of SortedCollection
OrderedCollection variableSubclass: #SortedCollection

instanceVariableNames: 'sortBlock '

classVariableNames: 'DefaultSortBlock '

SortedCollection class>>initialize

DefaultSortBlock := [:x :y | x <= y]

SortedCollection>>initialize

"Set the initial value of the receiver's sorting algorithm to a default."

sortBlock := DefaultSortBlock

SortedCollection class>>new: anInteger

"Answer a new instance of SortedCollection. The default sorting is a <= compa

^(super new: anInteger) initialize

SortedCollection class>>sortBlock: aBlock

"Answer a new instance of SortedCollection such that its elements

are sorted according to the criterion specified in aBlock."

^self new sortBlock: aBlock
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Invoking per default the creatio
OrderedCollection class>>new

"Answer a new empty instance of OrderedCollection.

^self new: 5
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Forbidding new
Problem.  We can still use #new to create fragile instances
Solution. #new should raise an error!

Packet class>>new

self error: 'Packet should only be created using send:to:'

But we still have to be able to create instance!
Packet class>>send: aString to: anAddress

^ self new contents: aString ; addressee: anAddress

=> raises an error
Packet class>>send: aString to: anAddress

^ super new contents: aString ; addressee: anAddress

=> bad style: link class and superclass dangerous

Solution: use basicNew  and basicNew:
Packet class>>send: aString to: anAddress

^ self basicNew  contents: aString ; addressee: anAddress
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Class Methods - Class Instance
❑ Classes (Packet class ) represents class (Pack

❑ Class instance variable are instance variable of cl
=> should represent the state of class: number of c
messages sent, superclasses, subclasses....

❑ Class methods represent CLASS behavior: instan
initialization, counting the number of instances....

❑ If you weaken the second point: class state and be
common properties shared by all the instances

Ex: If we want to encapsulate the way “no next node” is cod
aNode nextNode isNil not => aNode hasNextNode

Node>>hasNextNode

^ self nextNode = self noNextNode

Node>>noNextNode

^self class noNextNode

Node class>>noNextNode

^ nil
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Class Initialization
Automatically called by the system at load time  or explicitly
- Used to initialize a classVariable, a pool dictionary or clas
- ‘Classname initialize ’ at the end of the saved files.

Example: Date

Magnitude subclass: #Date

   instanceVariableNames: 'day year'

   classVariableNames: 'DaysInMonth FirstDayOfMonth MonthNames S

WeekDayNames'

   poolDictionaries: ''

   category: 'Magnitude-General'
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Date class>>initialize
Date class>>initialize

"Initialize class variables representing the names of the months a
number of seconds, days in each month, and first day of each month. "

   "Date initialize."

   MonthNames := #(January February March April May

June July August September October November December ).

   SecondsInDay := 24 * 60 * 60.

   DaysInMonth := #(31 28 31 30 31 30 31 31 30 31 30 31 ).

   FirstDayOfMonth := #(1 32 60 91 121 152 182 213 244 274

305 335 ).

   WeekDayNames := #(Monday Tuesday Wednesday Thursday

Friday Saturday Sunday )
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A Case Study: Scanner

Scanner new

scanTokens: 'identifier keyword: 8r31 ''string'' embedded.period ke

-> #(#identifier #keyword: 25 'string' 'embedded.period' #key:word: #'.')

Class Definition
Object subclass: #Scanner

instanceVariableNames: 'source mark prevEnd hereChar token toke
currentComment buffer typeTable  '

classVariableNames: ' TypeTable  '

poolDictionaries: ''

category: 'System-Compiler-Public Access'

Why having an instance variable and a classVariable deno
scanner table)?

❑ TypeTable is used to initialize once the table
❑ typeTable is used by every instance and each inst

table (copying).
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Scanner class>>initialize
" Scanner initialize "

| newTable |

newTable := ScannerTable new:  255 withAll: #xDefault. "default"

newTable atAllSeparatorsPut: #xDelimiter.

newTable atAllDigitsPut: #xDigit.

newTable atAllLettersPut: #xLetter.

newTable at: $_ asInteger put: #xLetter.

'!%&*+,-/<=>?@\~' do: [:bin | newTable at: bin asInteger put: #xBinary].

"Other multi-character tokens"

newTable at: $" asInteger put: #xDoubleQuote.

...

"Single-character tokens"

newTable at: $# asInteger put: #literalQuote.

newTable at: $( asInteger put: #leftParenthesis.

...

newTable at: $^ asInteger put: #upArrow.  "spacing circumflex, formerly up arrow"

newTable at: $| asInteger put: #verticalBar.

TypeTable := newTable
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Scanner
Instances only access the type table via the instance variab
has been initialized once.

Scanner class>> new

^super new initScanner

Scanner>>initScanner

buffer := WriteStream on: (String new: 40).

saveComments := true.

typeTable := TypeTable

A subclass just has to specialize initScanner without copyin
MyScanner>>initScanner

super initScanner

typeTable := typeTable copy.

typeTable at: $( asInteger put: #xDefault.

typeTable at: $) asInteger put: #xDefault
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Why Coupled Classes are Bad?

Packet>>addressee

^addressee

Workstation>>accept: aPacket

aPacket addressee = self name

ifTrue:[ Transcript show: 'A packet  is accepted by the Works

self name asString]

ifFalse: [super accept: aPacket]

If Packet changes the way addressee is represented
Workstation, Node, PrinterServer have to be chan
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The Law ot Demeter
You should only send messages to:

- an argument passed to you
- an object you create
- self, super
- your class

Avoid global variables
Avoid objects returned from message sends other than self

someMethod: aParameter

self foo.

super someMethod: aParameter.

self class foo.

self instVarOne foo.

instVarOne foo.

self classVarOne foo.

classVarOne foo.

aParameter foo.

thing := Thing new.

thing foo
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Illustrating the Law of Demeter

NodeManager>>declareNewNode: aNode

|nodeDescription|

(aNode isValid) “Ok passed as

ifTrue: [ aNode certified].

nodeDescription := NodeDescription for: aNode.

nodeDescription localTime. “I created it”

self addNodeDescription: nodeDescription. “I can talk to myself“

nodeDescription data “Wrong I should

at: self creatorKey “that data is a dic

put: self creator
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About the Use of Accessors (i)
Literature says: “Access instance variables using methods”

❑ Be consistent inside a class, do not mix direct acc
❑ First think accessors as private methods that sho
❑ Only when necessary put accessors in accessing 

Scheduler>>initialize

tasks := OrderedCollection new.

Scheduler>>tasks

^tasks

BUT: accessors methods should be PRIVATE by default at

Accessors are good for lazy initialization
Schedule>>tasks

tasks isNil ifTrue: [task := ...].

^tasks
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About the Use of Public Access
❑ This is not because accessors are methods that y

encapsulation.
❑ If they are mentionned as public (no inforcement i

tempted to write in a client:
❑

ScheduledView>>addTaskButton

...

model tasks add: newTask

What’s happen if we change the representation of tasks? If
===>IT BREAKS!!!.

❑ Take care about the coupling between your objec
interface!

Schedule>>addTask: aTask

tasks add: aTask

Returns consistenly the receiver or the element but the n
can look inside and modifies it) or returns a copy of it.
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Never do the work that somebo
do!

Alan Knight
XXX>>m

total := 0.

aPlant bilings do: [:each | (each status == #paid and: [each date>sta

ifTrue: [total := total + eac

Instead write

XXX>m

total := aPlant totalBillingsPaidSince: startDate
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Provide a Complete Interface
Packet>>addressee

^addressee

Workstation>>accept: aPacket

aPacket addressee = self name

ifTrue:[ Transcript show: 'A packet  is accepted by the Works

self name asString]

ifFalse: [super accept: aPacket]

=> This is the responsibility of an object to propose a comp
itself from client intrusion.

Shift the responsibility to the Packet object
Packet>>isAddressedTo: aNode

^ addressee = aNode name

Workstation>>accept: aPacket

(aPacket isAddressedTo: self)

ifTrue:[ Transcript show: 'A packet is accepted by the Wo
name asString]

ifFalse: [super accept: aPacket]
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Factoring Out Constants
Ex: If we want to encapsulate the way “no next node” is cod
Instead of writing:

Node>>nextNode

^ nextNode

NodeClient>>transmitTo: aNode

aNode nextNode = ‘no next node’

...

Write:
NodeClient>>transmitTo: aNode

aNode hasNextNode

....

Node>>hasNextNode

^ (self nextNode = self class noNextNode) not

Node class>>noNextNode

^ ‘no next node’
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Initializing without Duplicating
Node>>initialize

accessType := ‘local’

...

Node>>isLocal

^ accessType = ‘local’

=>
Node>>initialize

accessType := self localAccessType

Node>>isLocal

^ accessType = self localAccessType

Node>>localAccessType

^ ‘local’

Ideally you could be able to change the constant without ha
You may have to have mapping tables from model constants
constants.
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Constants Needed at Creation
Works well for:

Node class>>localNodeNamed: aString

|inst|

inst := self new.

inst name: aString.

inst type: inst  localAccessType

If you want to have the following creation interface
Node class>> name: aString accessType: aType

^self new name: aString ; accessType: aType

Node class>>name: aString

^self name:  aString accessType:  self localAccessType

You need:
Node class>>localAccessType

^ ‘local’

=> Factor the constant between class and instance level
Node>>localAccessType

^self class localAccessType

=> you could also use a ClassVariable that are shared betw
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Type Checking for Dispatching
How to invoke a method depending on the receiver and an
A not so good solution:

PSPrinter>>print: aDocument
^ aDocument isPS

ifTrue: [self printFromPS: aDocument]
ifFalse: [self printFromPS: aDocument asPS]

PSPrinter>>printFormPS: aPSDoc
<primitive>

PdfPrinter>>print: aDocument
^ aDocument isPS

ifTrue: [self printFromPDF: aDocument asPDF]
ifFalse: [self printFromPDF: aDocument]

PdfPrinter>>printFormPS: aPdfDoc
<primitive>

As we do not know how to coerce form the PSPrinter to a Pd
between documents.
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he receiver as an argument)
>printOnPSPrinter: aPSPrinter

<primitive>

>>printOnPdfPrinter:aPSPrinter

Sprinter print: self asPS

>printOnPSPrinter: aPdfPrinter

dfPrinter print: self asPdf

>printOnPdfPrinter:aPdfPrinter

rimitive>
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Double Dispatch
How to invoke a method depending on the receiver and an
Solution: use the information given by the single dispatch a
argument (send a message back to the argument passing t

(c) PSDoc>

(d) PdfDoc

aP

(a) PSPrinter>>print: aDoc
^ aDoc printOnPSPrinter: self

(b) PdfPrinter>>print: aDoc
^ aDoc printOnPdfPrinter: self

(e) PSDoc>

aP

(f)PdfDoc>

<p

Some Tests:
psptr print: psdoc =>(a->c)
pdfptr print: pdfdoc => (b->f)
psptr print: pdfdoc => (a->d->b->f)
pdfptr print: psdoc => (b->e->b->f)
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A Step Back
Example: Coercion between Float and Integer

Not a really good solution:

Integer>>+ aNumber
(aNumber isKindOf: Float)

ifTrue: [ aNumber asFloat + self]
ifFalse: [ self addPrimitive: aNumber]

Float>>+ aNumber
(aNumber isKindOf: Integer)

ifTrue: [aNumber asFloat + self]
ifFalse: [self addPrimitive: aNumber]

Here receiver and argument are the same,
we can coerce in both sense.
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ger>>sumFromInteger: anInteger

<primitive: 40>
at>>sumFromInteger: anInteger

^ anInteger asFloat + self

eger>>sumFromFloat: aFloat
^aFloat + self asFloat

t>>sumFromFloat: aFloat
<primitive: 41>
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Deeper on Double Dispatch : N
(c) Inte

(d) Flo

(a) Integer>>+ aNumber
^ aNumber sumFromInteger: self

(b) Float>>+ aNumber
^ aNumber sumFromFloat: self

(e) Int

(f) Floa

Some Tests:
1 + 1: (a->c)
1.0 + 1.0: (b->f)
1 + 1.0: (a->d->b->f)
1.0 + 1: (b->e->b->f)
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Methods are the Elementary Un
Node>>computeRatioForDisplay

|averageRatio defaultNodeSize|

averageRatio := 55.

defaultNodeSize := self mainWindowCoordinate / maximiseViewRat

self window add:

UINode new with:

(self bandWidth * averageRatio / defaultWindowSize)

...

We are forced to copy the method!
SpecialNode>>computeRatioForDisplay

|averageRatio defaultNodeSize|

averageRatio := 55.

defaultNodeSize := self mainWindowCoordinate + minimalRatio / m

self window add:

UINode new with:

(self bandWidth * averageRatio / defaultWindowSize)

...
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Methods are the Elementary Un
Self sends = planning for Reuse

Node>>computeRatioForDisplay

|averageRatio defaultNodeSize|

averageRatio := 55.

defaultNodeSize := self defaultNodeSize.

self window add:

UINode new with:

(self bandWidth * averageRatio / defaultWindowSize)

...

Node>>defaultNodeSize

^self mainWindowCoordinate / maximiseViewRatio

SpecialNode>>defaultNodeSize

^self mainWindowCoordinate + minimalRatio / maximiseViewRa
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Methods are the Elementary Un
Node>>computeRatioForDisplay

|averageRatio defaultNodeSize|

averageRatio := 55.

defaultNodeSize := self mainWindowCoordinate / maximiseViewRat

self window add:

UINode new with:

(self bandWidth * averageRatio / defaultWindowSize).

...

We are forced to copy the method!
SpecialNode>>computeRatioForDisplay

|averageRatio defaultNodeSize|

averageRatio := 55.

defaultNodeSize := self mainWindowCoordinate / maximiseViewRat

self window add:

ExtendedUINode  new with:

(self bandWidth * averageRatio / defaultWindowSize).
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Class Factories
Node>>computeRatioForDisplay

|averageRatio |

averageRatio := 55.

self window add:

self UIClass new with:

(self bandWidth * averageRatio / self defaultWindowSize)

...

Node>>UIClass

^UINode

SpecialNode>>UIClass

^ExtendedUINode
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Hook and Template Methods

❑ Hook methods do not have to be abstract, they ma
no behavior at all.

❑ This has an influence on the instanciability of the s

AbstractClass
template Method
hookMethod1
hookMethod2

...

...
sel

sel

ConcreteClass
hookMethod1
hookMethod2
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Hook Example: Copying
Object>>copy

" Answer another instance just like the receiver. Subclasses normally override
sage, but some objects that should not be copied override copy. "

^self shallowCopy postCopy

Object>>shallowCopy

"Answer a copy of the receiver which shares the receiver's instance

variables."

<primitive: 532>

....

Object>>postCopy

" Finish doing whatever is required, beyond a shallowCopy, to implement 'copy'.

Answer the receiver. This message is only intended to be sent to the newly created 

Subclasses may add functionality, but they should always do super postCopy first. "

" Note that any subclass that 'mixes in Modelness' (i.e., implements dependent

variable) must include the equivalent of 'self breakDependents'"

^self
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Hook Specialisation
Bag>>postCopy

"Make sure to copy the contents fully."

| new |

super postCopy.

new := contents class new: contents capacity.

contents keysAndValuesDo:

[:obj :count | new at: obj put: count].

contents := new.
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Hook and Template Example: P
Object>>printString

"Answer a String whose characters are a description of the receiver."

| aStream |

aStream := WriteStream on: (String new: 16).

self printOn: aStream.

^aStream contents

Object>>printOn: aStream

"Append to the argument aStream a sequence of characters

that describes the receiver."

| title |

title := self class name.

aStream nextPutAll:

((title at: 1) isVowel ifTrue: ['an '] ifFalse: ['a ']).

aStream print: self class
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Override of the Hook
Array>>printOn: aStream

"Append to the argument, aStream, the elements of the Array

enclosed by parentheses."

| tooMany |

tooMany := aStream position + self maxPrint.

aStream nextPutAll: '#('.

self do: [:element |

aStream position > tooMany

ifTrue:

[aStream nextPutAll: '...(more)...)'.

^self].

element printOn: aStream]

separatedBy: [aStream space].

aStream nextPut: $)

False>>printOn: aStream

"Print false."

aStream nextPutAll: 'false'
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Specialization of the Hook
The class Behavior that represents a class extends the defa
default one.

Behavior>>printOn: aStream

"Append to the argument aStream a statement of which

superclass the receiver descends from."

aStream nextPutAll: 'a descendent of '.

superclass printOn: aStream
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Behavior Up and State Down
4 steps

❑ Define classes by behavior, not state
❑ Implement behavior with abstract state: if you nee

messages not referencing the state variables direc
❑ Identify message layers: implement class’s behav

kernel method
❑ Defer identification of state variable: The abstract 

kernel methods that require state variables. Declar
and defer the kernel methods’ implementation to t

Collection>>removeAll: aCollection

aCollection do: [:each | self remove:  each]

^ aCollection

Collection>> remove:  oldObject

self remove:  oldObject ifAbsent:  [self notFoundError]

Collection>> remove:  anObject ifAbsent:  anExceptionBlock

self subclassResponsibility
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Guidelines for Creating Templa
❑ Simple implementation. Implement all the cod in o
❑ Break into steps. Comments logical subparts
❑ Make step methods. Extract subparts as method
❑ Call the step methods. (including when using the r
❑ Make constant methods. Methods doing nothing e
❑ Repeat step 1-5 if necessary on the methods crea
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Towards Delegation: Matching 
New requirement: A document can be printed on different
or lw200s depending on which printer is first encountered.
=> Packet need more than one destination

Ad-hoc Solution
LanPrinter>>accept: aPacket

(thePacket addressee = #*lw*)

ifTrue: [ self print: thePacket]

ifFalse: [ (thePacket isAddressedTo: self)

ifTrue: [self print: thePacket]

ifFalse: [super accept: thePacket]]

LanPrinter>>print: aPacket

Transcript

show: self name ;

‘***** printing *****‘;cr

show: aPacket contents ;cr
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Limits of such an ad-hoc solutio

❑ is not general
❑ brittle because based on convention
❑ adding a new kind of address behavior require ed
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Reifyand Delegate

An alternative solution: isAddressedTo: could be sent direc
With the current solution, the packet can still control the pro

accept: aPacket

send: aPacket

nodePrinter aPacke

isAddressedTo: nodePrinter

accept: aPacket

print: aPacket

[true]

[false]
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Reifying Address
Reify: v. making something an object (philosophy)

❑ NodeAddress is responsible for identifying the pac
Object subclass: #NodeAddress

instanceVariableNames: ‘id‘

NodeAddress>>isAddressedTo: aNodeAddress

^ self id = aNodeAddress id

Packet>>isAddressedTo: aNode

^ self addressee isAddressedTo: aNode name

Having the same name for packet and for address is not ne
meaningful!

Refactoring Remark:
name was not a good name, and now it is really a
-> we should rename it.
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Matching Address
Address subclass: #MatchingAddress

instanceVariableNames: ‘’

NodeAddress>>isAddressedTo: aNodeAddress

^ self id match: aNodeAddress id

❑ Works for packets with matchable addresses
Packet send: ‘lulu’ to: (MatchingAddress with: #*lw*)

❑ Does not work for nodes with matchable addresse
directed. But it corresponds to the requirements!
Node withName: (MatchingAddress with: #*lw*)

Packet>>isAddressedTo: aNode

^ self addressee  isAddressedTo: aNode name

Remarks
❑ inheritance class relationship is not really good be

duplication (coming soon)
❑ Creation interfaces could be drastically be improve
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Addresses
Object subclass: #Address

instanceVariableNames: ‘id‘

Address>>isAddressedTo: anAddress

^self subclassResponsibility

Address subclass: #NodeAddress

instanceVariableNames: ‘‘

Address subclass: #MatchingAddress

instanceVariableNames: ‘‘
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Trade Off
Delegation Pros

❑ No blob class: one class one responsibility
❑ Variation possibility
❑ Pluggable behavior without inheritance extension
❑ Runtime pluggability

Delegation Cons
❑ Difficult to follow responsibilities and message flow
❑ Adding new classes = adding complexities (more 
❑ New object
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Designing Classes for Reuse
❑ Encapsulation principle: minimize data representa

– Complete interface

– No overuse of accessors

– Responsibility of the instance creation

❑ Lose coupling between classes
❑ Methods are units of reuse (self send)
❑ Use polymorphism as much as possible avoid typ
❑ Behavior up and state down
❑ Use correct names for class
❑ Use correct names for methods



Object-Oriented Design with Smalltalk a Pure OO Language Elements of Design

U 21.344
niversität Bern Ducasse Stéphane

Bad coding practices
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Do not overuse conversions

nodes asSet

=> remove all the duplicated nodes (if node knows

But a systematic use of asSet to protect yourself f

nodes asSet asOrderedCollection

=> returns an ordered collection after removing du

=> look for the real source of duplication if you do 
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Hidding missing information
Dictionary>>at: aKey

raises an error if the key is not found

Dictionary>>at: aKey ifAbsent: aBlock

allows one to specify action <aBlock> to be done 

Do not overuse it!!!
nodes at: nodeId ifAbsent:[]

This is bad because at least we should know that the node
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Different Self/Super
Do not do a super with a different method selector

Packet class>>new

self error: 'Packet should only be created using send:to:'

Packet class>>send: aString to: anAddress

^ super new contents: aString ; addressee: anAddress

=> bad style: link class and superclass dangerous

Use basicNew  and basicNew:
Packet class>>send: aString to: anAddress

^ self basicNew  contents: aString ; addressee: anAddress

Never override basicNew and basicNew: (another name
without instance variable initialization)
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22. Selected Idioms

The Object Manifesto
Be lazy:

❑ Never do the job that you can delegate to another

Be private:
❑ Never let someone else plays with your private da

The Programmer Manifesto
❑ Say something only once
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Composed Method
How do you divide a program into methods?

❑ Messages take time
❑ Flow of control is difficult with small methods

But:
❑ Reading is improved
❑ Performance tuning is simpler (Cache...)
❑ Easier to maintain / inheritance impact

Divide your program into methods that perform one identifia
the operations in a method at the same level of abstraction

Controller>>controlActvity

self controlInitialize.

self controlLoop.

self controlTerminate
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Constructor Method
How do you represent instance creation?
Most simple way: Packet new addressee: # mac ; contents

Good if there are different combinations of parameters. But
understand how to create an instance.
Alternative: make sure that there is a method to represent e
instance.

Provide methods in class “instance creation” protocol that c
instances. Pass all required parameters to them

Packet class>>send: aString to: anAddress

^ self basicNew contents: aString ; addressee: anAdress ; yourself

Point class>>x:y:

Point class>> r: radiusNumber theta: thetaNumber

^ self

x: radiusNumber * thetaNumber cos

y: radiusNumber * thetaNumber sin

SortedCollection class>>sortBlock: aBlock
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Constructor Parameter Method
Once you have the parameters of a Constructor Method to 
them to the newly created instance?
Packet class>>send: aString to: anAddress

^ self basicNew

contents: aString ;

addressee: anAdress ;

yourself

But violates the “say things only once and only once” rule (
Code a single method in the “private” procotol that sets all t
its name with “set”, then the names of the variables.

Packet class>>send: aString to: anAddress

^ self basicNew setContents: aString addressee: anAddress

Packet>>setContents: aString addressee: anAddress

contents:= aString.

addressee := anAddress.

^self

Note self (Interesting Result) in setContents:addressee
of the method will be used as the return of the caller
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Query Method
How do you represent testing a property of an object?
What to return from a method that tests a property?
Instead of:
Switch>>makeOn

status := #on

Switch>>makeOff

status := #off

Switch>>status

^status

Client>>update

self switch status = #on ifTrue: [self light makeOn]

self switch status = #off ifTrue: [self light makeOff]

Defines
Switch>>isOn, Switch>>isOff

Provide a method that returns a Boolean in the “testing” pro
prefacing the property name with a form of “ be” or “ ha

Switch>>on is not a good name... #on: or #isOn ?
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Boolean Property Setting Metho
How do you set a boolean property?

Switch>>on: aBoolean

isOn := aBoolean

• Expose the representation of the status to the clients
• Responsibility of who turn off/on the switch: the client and

Create two methods beginning with “be”. One has the proper
negation. Add “toggle” if the client doesn’t want to know ab

beVisible/beInvisible/toggleVisible
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Comparing Method
How do we order objects?

<,<=,>,>= are defined on Magnitude and its subclasses.

Implement “<=” in “comparing” protocol to return true if the 
ordered before the argument

But also we can use sortBlock:  of SortedCollection clas

...sortBlock: [:a :b | a income > b income]
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Execute Around Method
How do represent pairs of actions that have to be taken tog
When a filed is opened it has to be closed....
Basic solutions: under the client responsibility, he should inv
Code a method that takes a Block as an argument. Name the
“During: aBlock” to the name of the first method that have t
body of the Execute Around Method, invoke the first metho
then invoke the second method.
File>>openDuring: aBlock File>>openDuring: aB

self open. self open.

aBlock value. [aBlock value]

self close valueNowO

Cursor>>showWhile: aBlock

| oldcursor |

oldcursor := self class currentCursor.

self show.

^aBlock

valueNowOrOnUnwindDo:

[oldcursor show]
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Choosing Message
How do you execute one of several alternatives?
responsible := (anEntry isKindOf: Film)

ifTrue:[anEntry producer]

ifFalse:[anEntry author]

Use polymorphism
Film>>responsible

^self producer

Entry>>responsible

^self author

responsible := anEntry responsible

Send a message to one of several different of objects, each
alternative
Examples:
Number>>+ aNumber

Object>>printOn: aStream

Collection>>includes:

A Choosing Message can be sent to self in anticipation of f
inheritance. See also the State Pattern.
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Intention Revealing Message
How do you communicate your intent when the implementa

We are not writing for computer but for reader
ParagraphEditor>>highlight: aRectangle

self reverse: aRectangle

If you would replace #highlight:  by #reverse:  , the s
way but you would reveal the implementation of the method

Send a message to self. Name the message so it communic
rather than how it is to be done. Code a simple method for 

Collection>>isEmpty

^self size = 0

Number>>reciprocal

^ 1 / self
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Intention Revealing Selector
How do you name a method?
If we choose to name after HOW it accomplished its task
Array>>linearSearchFor:

Set>>hashedSearchFor:

BTree>>treeSearchFor:

These names are not good because you have to know the 

Name methods after WHAT they accomplish
Better:

Collection>>searchFor:

Even better:
Collection>>includes:

Try to see if the name of the selector would be the same in
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Name Well your Methods (i)
Not precise, not good
setType: aVal

"compute and store the variable type"

self addTypeList: (ArrayType with: aVal).

currentType :=  (currentType computeTypes: (ArrayType with: aVal))

Precise, give to the reader a good idea of the functionality a
implementation
computeAndStoreType: aVal

"compute and store the variable type"

self addTypeList: (ArrayType with: aVal).

currentType :=  (currentType computeTypes: (ArrayType with: aVal))

Instead Of:
setTypeList: aList

"add the aList elt to the Set of type taken by the variable"

typeList add: aList.

Write:
addTypeList: aList

"add the aList elt to the Set of type taken by the variable"

typeList add: aList.
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do:
Instead of writing that:

|index|

index := 1.

[index <= aCollection size] whileTrue:

[... aCollection at: index...

index := index + 1]

Write that
aCollection do: [:each | ...each ...]
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collect:
Instead of :

absolute: aCollection

|result|

result := aCollection species new: aCollection size.

1 to: aCollection size do:

[ :each | result at: each put: (aCollection at: each) abs].

^ result

Write that:
absolute: aCollection

^ aCollection collect: [:each| each abs]

Note that this solution works well for indexable collection an
The previous one not!!!
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isEmpty, includes:
Instead of writing:
...aCollection size = 0 ifTrue: [...]

...aCollection size > 0 ifTrue: [...]

Write:
... aCollection isEmpty

Instead of writing:

|found|

found := false.

aCollection do: [:each| each = anObject ifTrue: [found : = true]].

...

Or:
|found|

found := (aCollection

detect: [:each| each | anObject]

ifNone:[ nil]) notNil.

Write:
|found|

found := aCollection includes: anObject
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How to Name Instance Variabl

nodes

instead of

nodeArray
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Class Naming
❑ Name a superclass with a single word that convey

Number

Collection

View

Model

❑ Name subclasses in your hierarchy by prepending
superclass name

OrderedCollection

SortedCollection

LargeInteger
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Reversing Method
How to code a smooth flow of messages?
Point>>printOn: aStream

x printOn: aStream

aStream nextPutAll: ‘ @’.

y printOn: aStream

Here three objects receive different messages.

Code a method on the parameter. Derive its name form the
the original receiver as a parameter to the new method. Imp
sending the original message to the original receiver.

But creating new selectors just ofr fun is not a good idea. E
existence.
Stream>>print: anObject

anObject printOn: self

Point>>printOn: aStream

aStream print: x; nextPutAll: ‘ @’; print: y

Note that the receiver can now change without affecting the
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Debug Printing Method
How do you code the default printing method?

Two audiences:
-you (a lot of information)
-your clients (should not be aware of the internal)

Override printOn: to provide information about object’s stru
programmer

In VisualWorks, two needs are supported
displayString for clients
printString for you (call printOn:)
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Method Comment
How do you comment methods?
Templates are not a good idea. Uses:
- Intention Revealing Selector says what the method does
- Type Suggesting Parameter Name says what the argume
Communicate important information that is not obvious from
comment at the beginning of the method

Example of important information:
- Method dependencies, preconditions
- To do
- Reasons for change (in a base class)

(self flags bitAnd: 2r1000) = 1 “Am I visible?”

ifTrue:[...]

isVisible

^(self flags bitAnd: 2r1000) = 1

self isVisible

ifTrue:[...]
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Delegation
How does an object share implementation whitout inheritan

With inheritance
- code in written in context of superclasses
- in rich hierarchies, you may to read and understa
- how to simulate multiple inheritance (if this is rea

Pass part of its work on to another object

Many object need to display, all objects delegate to a brush
VisualSmalltalk, GraphicsContext in VisualAge and VisualW
All the detailed code is concentrated in a single class and t
simplified view of the displaying.



Object-Oriented Design with Smalltalk a Pure OO Language

U 1.367

e delegate.The delegate
g but still need access to it.

ate?

legating object and it is self-
mple Delegation

as lots of other protocols,
tion.
legating is required.
niversität Bern Ducasse Stéphane

Simple Delegation
How do you invoke a disinterested delegate?

Some important question on delegation:
- is the identity of the delegating object important?
e.g. the delegating object can pass itself to be notified by th
could not want to have an explicit reference to the delegatin
- is the state of the delegating object important to the deleg

If the delegate has no reason to need the identity of the de
contained to accomplish its task without additional state: Si

Delegate messages unchanged

Suppose an object that acts a LITTLE as a collection but h
instead fo inheriting from a collection, delegates to a collec
Collection doesn’t care who invoked it. No state from the de
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Self Delegation (i)
How do you implement delegation to an object that needs r
object?

One way is to have a reference in the delegate to the deleg
Drawbacks:

- extra complexity,
- each time the delegate changes, one should destroy the
- each delegate can only be used by one delegating,
- If creating multiple copies of the delegate is expensive

work

Pass along the delegating object (i.e. self ) in an additional



Object-Oriented Design with Smalltalk a Pure OO Language

U 1.369

ash table. Variants of the

. Dictionaries compute hash
icHash”

 the hierarchy of the
niversität Bern Ducasse Stéphane

Self Delegation - Example
In VisualSmalltalk, hashed collections (dictionaries) use a h
hash table can be used depending on different criterias.
Hash value is implemented differently by different collections
by sending “hash” and IdentityDictionaries by sending “bas

Dictionary>>at: key put: value

self hashTable at: key put: value for: self

HashTable>>at: key put: value for: aCollection

|hash|

hash := aCollection hashOf: key

...

Dictionary>>hashOf: anObject

^anObject hash

IdentityDictionary>>hashOf: anObject

^anObject basicHash

The hierarchy of hashed Collections is then independent of
HashTable
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Pluggable Behavior
How do you parameterize the behavior of an object?

In the class based model instances have private values an
you want a different behavior you create a new class. But c
valuable: imagine a large number of classes with only a sin

Questions to consider: how much felxibility you need? How
vary dynamically? How hard is it to follow the code? Will cli
plugged?

Add a variable that will be used to trigger different

Typical examples are user-interface object that have to disp
dfferent objects
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Pluggable Selector
How do you code simple instance specific behavior?
The simplest way to implement Pluggable Behavior is to sto
Add a variable that conatins a selector to be performed. App
Role Suggesting Instance Variable Name. Create a Compo
performs the selector.
ListPane>>printElement: anObject

^anObject printString

And subclasses only specializing
DollarListPane>>printElement: anObject

^anObject asDollarFormatString

DescriptionListPane>>printElement: anObject

^ anObject description

ListPane>>printElement: anObject

^anObject perform: printMessage

ListPane>>initialize

printMessage := #printString

Readibility: harder to follow than simple class-based behav
Extent: if you need more than twice per object use State O
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Pluggable Block
How do you code COMPLEX Pluggable Behavior that is no

Add an instance variable to store a Block. Append “Block” to
Instance Variable Name. Create aComposed Method to ev
invoke the Pluggable Behavior.
Drawbacks: Enormous cost, readibility is worse, blocks are

PluggableAdaptor in VisualWorks allows one to map any in
An simplified version:
Car>>speedAdaptor

^PluggableAdaptor

getBlock: [self speed]

putBlock: [:newSpeed| self speed: newSpeed]

PluggableAdaptor>>value

^getBlock value

PluggableAdaptor>>value: anObject

putBlock value: anObject
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23. Some Selected Design Patte

❑ Singleton
❑ Template Method (already seen)
❑ Composite
❑ Null Object
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Singleton Instance: A Class Beh
Problem.  We want a class with a unique instance.
Solution. We specialize the #new class method so that if on
will be the only one. When the first instance is created, we s
of #new.

|aLan|

aLan := NetworkManager new

aLan == LAN new -> true

aLan uniqueInstance == NetworkManager new -> true
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Singleton Instance’s Implemen

NetWorkManager class

instanceVariableNames: 'uniqueInstance '

NetworkManager class>>new

self error: ‘should use uniqueInstance’

NetworkManager class>>uniqueInstance

uniqueInstance isNil

ifTrue: [ uniqueInstance := self basicNew initializ

^uniqueInstance

Providing access to the unique instance is not always nece
want to express. The difference between #new and #uniqu

- #new potentially initializes a new instance.
- #uniqueInstance  only returns the unique instance ther
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l point of access to it

Nil

Instance := self basicNew]
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Singleton
Intent
Ensure a class has only one instance, and provide a globa

A Possible Structure

Singleton
singletonMethod
singletonState
«shared variable»
UniqueInstance

Singleton class
uniqueInstance
new

«unique
Instance»

Client
clientMethod

UniqueInstance is

ifTrue:[Unique

^UniqueInstance

self error: ‘....’

Singleton uniqueInstance singletonMethod
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ble (ex: NotificationManager

gn Notifier we lose all

e access point. This class is
itialization....).
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Discussion
In some Smalltalk singletons are accessed via a global varia
uniqueInstance notifier).

SessionModel>>startupWindowSystem

“Private - Perform OS window system startup”

|oldWindows|

...

Notifier initializeWindowHandles.

...

oldWindows := Notifier windows.

Notifier initialize.

...

^oldWindows

Global Variable or Class Method Access
❑ Global Variable Access is dangerous: if we reassi

references to current windows.
❑ Class Method is better because it provides a singl

responsible for the singleton instance (cretaion, in



Object-Oriented Design with Smalltalk a Pure OO Language Some Selected Design Patterns

U 23.379

its identity does not change

y timebut that instance
urceFileManager, Screen in

is active at any point in time,
ct in VisualWorks,
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Singleton Variations
❑ Persistent Singleton: only one instance exists and

(ex: Notifier Manager in Visual Smalltalk)

❑ Transient Singleton: only one instance exists at an
changes (ex: SessionModel in Visual Smalltalk, So
VisualWorks)

❑ Single Active Instance Singleton: a single instance
but other dormant instances may also exist. Proje
ControllerManager.
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(protected in C++)
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Ensuring a Unique Instance

In Smalltalk we cannot prevent a client to send a message 
=> To prevent additional creation: redefine new/new:

Object subclass: #Singleton

instanceVariableNames: ‘’

classVariableNames: ‘UniqueInstance’

poolDictionaries: ‘’

Singleton class>>new

self error: ‘Class ‘, self name, ‘ cannot create new instances’
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class
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Providing Access
Lazzy Access
Singleton class>>uniqueInstance

UniqueInstance isNil

ifTrue:[UniqueInstance := self basicNew].

^UniqueInstance

With this solution we lose the initialization part of the super
ifTrue: [UniqueInstance := self basicNew initialize]

if the initialization was done using initialize
ifTrue: [UniqueInstance := super new]

is bad practice and may break
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Accessing the Singleton via ne
Singleton class>>new

^self uniqueInstance

The intent (singletoness) is not clear anymore!
New is used to return newly created instances.

|screen1 screen2|

screen1 := Screen new.

screen2 := Screen new

|screen1 screen2|

screen1 := Screen uniqueInstance.

screen2 := Screen uniqueInstance
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Singletons in a Single Subhierar

❑ Singleton for an entire subhierarchy of classes:
Object subclass: #Singleton

instanceVariableNames: ‘’

classVariableNames: ‘UniqueInstance’

poolDictionaries: ‘’

❑ ClassVariables are shared by all the subclasses

❑ Singleton for each of the classes in an hierarchy
Object subclass: #Singleton

instanceVariableNames: ‘’

classVariableNames: ‘’

poolDictionaries: ‘’

Singleton class instanceVariableNames: ‘uniqueInstance’

Singleton class>>uniqueInstance

uniqueInstance isNil

ifTrue:[uniqueInstance := self basicNew].

^uniqueInstance

Instances variables of classes are private to the class
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r of class
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.
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Instance/Class Methods
When a class should only have one instance, it could be tem
at the class level.
But this is not that good:

❑ Theoritically: classes behavior represents behavio
“Ordinary objects are used to model the real world
MetaObjects describe these ordinary objects”
=> Do not mess up this separation.
=> DO not mix domain objects with metaconcerns

❑ Pratical: What’s happen if later the object can hav
You have to change a lot of client code!
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Queries
An example: we want to be able to

❑ Specify different queries over a repository
q1 := PropertyQuery property: #HNL with: #< value: 4.

q2 := PropertyQuery property: #NOM with: #> value: 10.

q3 := MatchName match: ‘*figure*’

❑ Compose these queries and manipulate composit
(e1 e2 e3 e4 ... en)((q1 and q2 and q4) or q3) -> (e2 e5)

composer := AndComposeQuery with: (Array with: q1 with: q2 w
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ch | self holdsOn: each]

rComposite
ldsOn: anElement
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A Possible Solution
^aCollection select: [:ea

AbstractQuery
runOn: aCollection
holdsOn: anElement

AndComposite
holdsOn: anElement

MatchingProperty
holdsOn: anElement

Composite
add: aQuery
remove: aQuery

holdsOn: anElement

^ queries all:

[:each| each fulfils: anElement]

O
ho
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 hierarchies. Composite let
uniformly

tains composites
red into Component but only

ehavior for Leaf

ildren do: [:child|

child operation]

children
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Composite Pattern
Intent
Compose objects into tree structure to represent part-whole
clients treat individual objects and compositions of objects 

❑ Composite not only group leaves but can also con
❑ In Smalltalk add:, remove: do not need to be decla

on Composite
☞ This way we avoid to have to define dummy b

ch

Component
operation

Composite
operation
add: aComponent
remove: aComponent

Leaf
operation

Client
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ace and factor code there)
eaf (in case of complex

ove:)
 issues)

ildren and merge the

e children
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Implementation Issues
❑ Use a Component superclass (To define the interf
❑ Consider implementing abstract Composite and L

hierarchy)
❑ Only Composite delegates to children
❑ Composites can be nested
❑ Composite sets the parent back-pointer (add:/rem
❑ Can Composite contain any type of child? (domain
❑ Is the Composite’s number of children limited?
❑ Forward

– Simple forward. Send the message to all the ch
resuslts without performing any other behavior

– Selective forward. Conditionally forward to som

– Extended forward. Extra behavior

– Override. Instead of delegating
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e interface but does nothing.
f how to do nothing and hides

rns the default value
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NullObject
Intent
Provides a surrogate for another object that shares the sam
The NullObject encapsulate the implementation decisions o
thoses details from its collaborators

do nothing or retu

AbstractObject
operation

NullObject
operation

RealObject
operation

Client
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Without Null Object Illustration

The View has to check that its controller is not nil before inv

VisualPart>>objectWantingControl

...

^ ctrl isNil ifFalse: [ctrl isControlWanted

ifTrue: [self]

ifFalse: [nil]]
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With Null Object
Avoid to make explicit tests
VisualPart>>objectWantingControl

...

^ ctrl isControlWanted ifTrue: [self] ifFalse: [nil]

Controller>>isControlActive

^self viewHasCursor and:[...]

Controller>>startUp

self controlInitialize.

self controlLoop.

self controlTerminate

Controller>>isControlWanted

^self viewHasCursor

NoController>>isControlWanted

^false

NoController>>startUp

^self

NoController>>isControlActive

^false
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NullObject in Controller Hierarch

^ false

Controller
startUp
isControlWanted

NoController
isControlWanted
startUp

TextController
isControlWanted
startUp

View
controller

^ self
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ndle null case
y, coded efficiently
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be a null object.
ss and null object
to a real object
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Consequences
Advantages

❑ Uses polymorphic classes: NullObject and real on
so are interchangeable

❑ Simplifies client code: Clients does not have to ha
❑ Encapsulates do-nothing behavior: easy to identif
❑ Make do-nothing behavior reusable

Disadvantages
❑ Forces encapsulation: the same null object cannot

unless they all delegate to a collaborator that can 
❑ May cause class explosion: one class -> supercla
❑ Is non-mutable: a null object does not transform in
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exists before the NullObject

rence between collaborators

 in the collaborator class

ectly
ncapsulated in one place
ays the same way
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When/ When Not
Apply NullObject

❑ When an object requires a collaborator that already
pattern.

❑ When some instances should do nothing
❑ When you want clients to be able to ignore the diffe
❑ When you want the do-nothing behavior
❑ When all the do-nothing behavior is encapsulated

Do not apply NullObject, Use a variable set to nil
❑ When very little code actually uses the variable dir
❑ When the code that does use the variable is well e
❑ When the code that uses the variable handle it alw
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r represents a controller that
n-interactive.
w painter.
ragMode lets the user resize
 doing nothing.

anager is a platform neutral
ed input. Subclasses
platforms that don;t support

ool / class pool), instance
 / temporary, of a method or
lScopes holds instance and
riables. Every scope has an
When the lookup reaches a

code scope. NullScope are
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VisualWorks Examples
❑ Null Strategies

NoController in the (MVC) Controller hierarchy. NoControlle
never wants control.  It is the controller for views that are no
DragMode implements the dragging of widgets in the windo
SelectionDragMode allows the move of the widget, CornerD
it. NullDragMode responds to the mouse’s drag motions by

❑ Null Adapters
NullInputManager in the InputManager hierarchy. An InputM
object interface to platform events that affect internationalis
represent specific platforms. NullInputManager represents 
internatialisation.

❑ Reusable Nulls
A NameScope represents a name scope -- static (global / p
variables (of a class or class hierarchy), or local (argument
block). A StaticScope holds global and class variables, Loca
temporary variables. They form a tree that defines all the va
outer scope. GlobalScope has an outer scope a NullScope.
NullScope it answers that the variable is not defined in the 
reused by simple and clean blocks.
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Comparing
❑ Java, C++, Smalltalk
❑ Smalltalk for the Java Programmer
❑ Smalltalk for the Ada Programmer
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24. Comparing C++, Java and 

Overview
❑ History:

☞ target applications, evolution, design goals
❑ Language features:

☞ syntax, semantics, implementation technolog
❑ Pragmatics:

☞ portability, interoperability, environments & to
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BOL

a

Lisp

Prolog

Modula-2

Modula-3

Oberon

a 95
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History

1960

1970

1980

1990

FORTRAN
Algol 60

CO

PL/1
Simula 67

Smalltalk 72

Smalltalk 80

Objective C

C

C++ Ad

Pascal

ANSI C++

Self
Eiffel

Algol 68

Clu

Java Ad
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Target Application Domains

Smalltalk
Originally conceived as PL for children.
Designed as language and environment for “Dynabook”.
Now: Rapid prototyping. Simulation. Graphical user interfac

C++
Originally designed for simulation (C with Simula extension
Now: Systems programming. Telecommunications and oth
domains.

Java
Originally designed for embedded systems.
Now: Internet programming. Graphical user interfaces.
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 environments and

irtual functions (Simula-like).
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le language.
nsions (inner classes being

rhauled to support a more
ll expanding and evolving.
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Evolution
Smalltalk

❑ Originally (1972) every object was an independent
to incorporate a meta-reflective architecture.

❑ Now the language (Smalltalk-80) is stable, but the
frameworks continue to evolve.

C++
❑ Originally called C with classes, inheritance and v
❑ Since 1985 added strong typing, new and delete

templates, exceptions, and many, many other feat
❑ Standard libraries and interfaces are emerging. St

Java
❑ Originally called Oak, Java 1.0 was already a stab
❑ Java 1.1 and 1.2 introduced modest language exte

the most important).
❑ The Abstract Windowing Toolkit was radically ove

general-purpose event model. The libraries are sti
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Language Design Goals

Smalltalk
❑ “Everything is an object”
❑ Self-describing environment
❑ Tinkerability

C++
❑ C with classes

☞ and strong-typing, and ...
❑ “Every C program is also a C++ program” ... almo
❑ No hidden costs

Java
❑ C++ minus the complexity (syntactically, not sema
❑ Simple integration of various OO dimensions (few
❑ “Java — it’s good enough”
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Unique, Defining Features

Smalltalk
❑ Meta-reflective architecture

☞ The ultimate modelling tool
❑ Mature framework technology

C++
❑ “Portable assembler” with HL abstraction mechan

☞ Programmer is in complete control
❑ Templates (computationally complete!)

Java
❑ Dynamically loaded classes

☞ Applications are not “installed” in the convent
❑ First clean integration of many OO dimensions (co
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Java

pure

l automatic

l yes (it depends)

single

s no

static

er files) packages

rated)
yes

(well integrated)

ries) yes (monitors)

limited
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Overview of Features
Smalltalk C++

object model pure hybrid

memory management automatic manua

dynamic binding always optiona

inheritance single multiple

generics no template

type checking dynamic static

modules namespaces no (head

exceptions
yes yes

(weakly integ

concurrency yes (semaphores) no (libra

reflection
fully reflective
architecture

limited
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locks, returning etc.

ence levels, opaque type
niversität Bern Oscar Nierstrasz

Syntax

Smalltalk
Minimal. Essentially there are only objects and messages.
A few special operators exist for assignment, statements, b

C++
Baroque. 50+ keywords, two commenting styles, 17 preced
expressions, various syntactic ambiguities.

Java
Simplified C++. Fewer keywords. No operator overloading.
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Object Model

Smalltalk
❑ “Everything is an object”
❑ Objects are the units of encapsulation
❑ Objects are passed by reference

C++
❑ “Everything is a structure”
❑ Classes are the units of encapsulation
❑ Objects are passed by value

☞ Pointers are also values; “references” are rea

Java
❑ “Almost everything is an object”
❑ Classes are the units of encapsulation (like C++)
❑ Objects are passed by reference

☞ No pointers
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 to other objects
lected
trusive

s to other objects
CF)
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nd tools (Purify) can help

latform applications!
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Memory Management

Smalltalk
❑ Objects are either primitive, or made of references
❑ No longer referenced objects may be garbage col

☞ Garbage collection can be efficient and non-in

C++
❑ Objects are structures, possibly containing pointer
❑ Destructors should be explicitly programmed (cf. O

☞ Automatic objects are automatically destructe
☞ Dynamic objects must be explicitly delete d

❑ Reference counting, garbage collection libraries a

Java
❑ Objects are garbage collected

☞ Special care needed for distributed or multi-p
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Dynamic Binding

Smalltalk
❑ Message sends are always dynamic

☞ aggressive optimization performed (automatic

C++
❑ Only virtual methods are dynamically bound

☞ explicit inling (but is only a “hint” to the compi
❑ Overloaded methods are statically disambiguated

☞ Overridden, non-virtuals will be statically boun
❑ Overloading, overriding and coercion may interfer

A::f(float); B::f(float), B::f(int); A b = new A; b.f(3) calls A::f(float)

Java
❑ All methods (except “static,” and “final”) are dynam
❑ Overloading, overriding and coercion can still inter
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ltiple interfaces)
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d ...
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Inheritance, Generics

Smalltalk
❑ Single inheritance; single roots: Object,
❑ Dynamic typing, therefore no type parameters nee

C++
❑ Multiple inheritance; multi-rooted
❑ Generics supported by templates (glorified macros

☞ multiple instantiations may lead to “code bloa

Java
❑ Single inheritance; single root Object

☞ Multiple subtyping (a class can implement mu
❑ No support for generics; you must explicitly “down

☞ Several experimental extensions implemente



Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.409

into categories

ing)
niversität Bern Oscar Nierstrasz

Types, Modules

Smalltalk
❑ Dynamic type-checking

☞ invalid sends raise exceptions
❑ No module concept — classes may be organized 

☞ some implementations support namespaces

C++
❑ Static type-checking
❑ No module concept

☞ use header files to control visibility of names

Java
❑ Static and dynamic type-checking (safe downcast
❑ Classes live inside packages
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Exceptions, Concurrency
Smalltalk

❑ Can signal/catch exceptions
❑ Multi-threading by instantiating Process

☞ synchronization via Semaphores

C++
❑ Try/catch clauses

☞ any value may be thrown
❑ No concurrency concept (various libraries exist)

☞ exceptions are not necessarily caught in the r

Java
❑ Try/catch clauses

☞ exception classes are subclasses of Exceptio
❑ Multi-threading by instantiating Thread (or a subcl

☞ synchronization by monitors (synchronized cla
☞ exceptions are caught within the thread in wh
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Reflection

Smalltalk
❑ Meta-reflective architecture:

☞ every class is a subclass of Object (including 
☞ every class is an instance of Class (including 
☞ classes can be created, inspected and modifi
☞ Smalltalk’s object model itself can be modified

C++
❑ Run-time reflection only possible with specialized 
❑ Compile-time reflection possible with templates

Java
❑ Standard package supports limited run-time “refle

☞ only supports introspection
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Implementation Technology
Smalltalk
Virtual machine running “Smalltalk image.” Classes are com
then “interpreted” by the VM — now commonly compiled “ju
Most of the Java VM techniques were pioneered in Smallta
C++
Originally translated to C. Now native compilers.
Traditional compile and link phases. Can link foreign librarie
Opportunities for optimization are limited due to low-level la
Templates enable compile-time reflection techniques (i.e., t
compile-time; to select optimal versions of algorithms etc.)

Java
Hybrid approach.
Each class is compiled to byte-code. Class files may be dy
virtual machine that either interprets the byte-code, or comp
target machine.
Standard libraries are statically linked to the Java machine;
dynamically.
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Portability, Interoperability

Smalltalk
❑ Portability through virtual machine
❑ Interoperability through special bytecodes,native m

C++
❑ Portability through language standardization (C as
❑ Interoperability through C interfaces and middlewa

Java
❑ Portability through virtual machine
❑ Interoperability through native methods and middl
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Environments and Tools

Advanced development environments exist for all three lan
hierarchy browsers, graphical debuggers, profilers, “make” 
configuration management etc.

In addition:

Smalltalk
❑ Incremental compilation and execution is possible

C++
❑ Special tools exist to detect memory leaks (e.g., P

Java
❑ Tools exist to debug multi-threaded applications.
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Development Styles

Smalltalk
❑ Tinkering, growing, rapid prototyping.
❑ Incremental programming, compilation and debug
❑ Framework-based (vs. standalone applications).

C++
❑ Conventional programming, compilation and debu
❑ Library-based (rich systems libraries).

Java
❑ Conventional, but with more standard libraries & fr
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The Bottom Line ...
You can implement an OO design in any of the three.

Smalltalk
❑ Good for rapid development; evolving applications
❑ Requires investment in learning framework techno
❑ Not suitable for connection to evolving interfaces (
❑ Not so great for intensive data processing, or clien

C++
❑ Good for systems programming; control over low-
❑ Requires rigid discipline and investment in learnin
❑ Not suitable for rapid prototyping (too complex)

Java
❑ Good for internet programming
❑ Requires investment in learning libraries, toolkits a
❑ Not suitable for reflective programming (too static)
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25. Smalltalk for the Java Progr
❑ Syntax
❑ A bit of semantics
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Syntax (i)
Reference to nowhere

null nil
Comment

/* comment */ “com
// comment

Assignment
a = 1 a := 

Basic types
“string” ‘strin
‘c’ $c
true, false true,

Identity and Equality
“lulu” == “lulu” ‘lulu’
“lulu”.equals (“lulu”)
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Syntax (ii)
Self reference

this self
super supe
this.getClass() self c

Instance Variables Access
x x
this.x x
anotherObject.x

Instance Variable Definition
Node aNode; aNod

Local Variable
Node aNode; | aNo
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bject foo

oo
bject foo: a with: b

 index all: col (not readable)
dex addAll: col

bject fooA ; fooB
bject fooA .
herObject fooB

ction)
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Syntax Methods
Message Sends

anObject.foo() anO
this.foo()
foo() self f
anObject.foo(a,b) anO

addAll(index, col) add:
at: in

anObject fooA() ; anObject fooB() anO
anObject fooA(); anotherObject fooB() anO

anot

Method Definition
public boolean addAll (int index, Collection aColle

at: index addAll: aCollection
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Syntax Conditional and Loops
if (col.isEmpty()) col isEmpty

{a} ifTrue: [a]
if (col.isEmpty()) col isEmpty

{a} ifTrue: [a] ifFa
else {b} col isEmpty

ifFalse:[b] ifTr

while (col.isEmpty()) {a} [col isEmpty] whileTrue

do{a} while(col.isEmpty())
for (int n=1; n < k; n++){ 1 to: k do: [:n| ...]

...n...}
for (int n=1; n<k; n++){

......} k timesRepeat: [ ]
collection do:, collect:, 

try {a} catch (Exception e) {b} [a] on: Exception do: [b
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No Primitive Types Only Object

“string” ‘strin
new String (“string”)

true true
new Boolean (true)

1
new Integer (1) 1

int i,j ; i + j
i + j

Integer i, j;
i.add(j)



Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk for the Java Programmer

U 25.423

bject
’b’

 ‘b’
‘string’.
‘string’.
#string.
#string
 true
 b false
 true
 d true
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Literals representing the same o
“a” == “b” ‘a’==
“a”.equals(“b”) ‘a’ =

a = “string”; a := 
b = “string”; b := 
c = new String (“string”); c := 

d := 
a == b true a = b
a == c false a ==
a.equals(c) true c = d
a.equals(b) true c ==
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26. Smalltalk For the Ada Progr

❑ Vocabulary

– package + type -> class

– subprograms -> methods

– record component -> instance variable

– package variable -> classVariable

❑ Class Definition
❑ Method Definition
❑ Instance Creation Method
❑ Instance Creation
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Class Definition
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;

with Nodes; use Nodes;

package Packets is

type Packet is new Object with private; -- extending the data structure

...

private

type Packet is new Object with record -- the record component

Contents: Unbounded_String;

Addressee: Integer;

Originator: Node;

end record;

end Packets;

Object subclass: #Packet

instanceVariableNames: ' contents addressee originator '

classVariableNames: ''

poolDictionaries: ''

category: ' LAN-Simulation '
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Method Definition Declaration (
package Packets is

type Packet is new Object with private; -- extending the data structure

function Addressee(A_Packet: Packet) return Integer;

procedure Addressee (A_Packet: in out Packet, An_Address: in Integer);

function Is_Sent_By (A_Packet: Packet, A_Node: Node) return Boolean;

function Is_Addressed_To (A_Packet: Packet, A_Node: Node) return Boolean;

private

...

end Packets;

Packet>>addressee

^ addressee

Packet>>addressee: aSymbol

addressee := aSymbol

Packet>>isAddressedTo: aNode

“returns true if I’m addressed to the node aNode”

^ self addressee = aNode name

Packet>>isSentBy: aNode

^ originator = aNode



Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk For the Ada Programmer

U 26.427
niversität Bern Ducasse Stéphane

Method Definition (i)
package body Packets is

function Addressee (A_Packet: Packet) return Integer is

begin

return A_Packet.Addressee;

end Addressee;

procedure Addressee (A_Packet: in out Packet, An_Address: in Integer) is

begin

A_Packet.Addressee := An_Address;

end Addressee;

...

end Packets;

Packet>>addressee

^ addressee

Packet>>addressee: aSymbol

addressee := aSymbol
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Method Definition(ii)
package body Packets is

...

function Is_Sent_By (A_Packet: Packet, A_Node: Node) return Boolean is

begin

A_Packet.Originator = A_Node;

end Is_Sent_By;

function Is_Addressed_To (A_Packet: Packet, A_Node: Node) return Boolean is

begin

A_Packet.Addressee = Name(A_Node); --Name is a function on type Node

end Is_Addressed_To;

end Packets;

Packet>>isAddressedTo: aNode

“returns true if I’m addressed to the node aNode”

^ self addressee = aNode name

Packet>>isSentBy: aNode

^ originator = aNode
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Instance Creation Method
package Packets is

type Packet is new Object with private; -- extending the data structure

function Send_To (Contents: String, Address: Integer) return Packet;

...

end Packets;

package body Packets is

...

function Send_To (Contents: String, Address: Integer) return Packet;

begin

return (To_Unbounded(Contents), Integer, Empty_Node);

end Send_To;

end Packets;

Packet class >>send: aString to: anAddress

|inst|

inst := self new.

inst contents: aString.

inst to: anAddress.

^inst
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Instance Creation

procedure XXX

P: Packet := Send_To (“ This packet travelled to the printer

begin

Addressee(P);

...

end XXX;

XXX

|p|

p := Packet send:  'This packet travelled to the printer' to: 123.

p addressee
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27. References
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A Jungle of Names
Some Smalltalk Dialects:
• Smalltalk-80 -> ObjectWorks -> VisualWorks by (ParcPlac

mac, pc, hp, linux, unix
www.cincom.com/visualworks/

• IBM Smalltalk (pc, unix, aix...)
www.software.ibm.com/ad/smalltalk/

• Smalltalk-V (virtual) -> Parts ->  VisualSmalltalk by (Digita
• VisualAge = IBMSmalltalk + Envy (OTI ->  IBM)
• Smalltalk Agents (Mac) www.quasar.com
• SmallScript www.quasar.com (.Net, PC and Mac)
• Smalltalk MT (PC, assembler)
• Dolphin Smalltalk (PC)

www.object-arts.com/Home.htm
• Smalltalk/X -> www.exept.de (run java byte code into Sma
• Smalltalk/Express (free now but not maintained anymore)
• Enfin Smalltalk -> Object Studio (Cincom)

www.cincom.com/objectstudio/
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Team Development Environme
• Envy (OTI) most popular, available for VisualWorks
• VSE (Digitalk), (not available)
• TeamV, (not available)
• Store (new Objectshare)
• ObjectStudio v6 (similar to Envy)
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www.cincom.com/vwnc/)

vagr.html
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Some Free Smalltalks
Professional Environment

• VisualWorks 3.0 and VW5i.2 on PC for free
• VisualWorks 3.0 and VW5i.2 on Linux (Red-Hat)

www.cincom.com
• Dolphin Smalltalk on PC (not the last version)

www.object-arts.com/Home.htm
New concepts

• Squeak (Morphic Objects + Socket + all Platform
http://www.squeak.org/

• Gnu Smalltalk (not evaluated)

Free for Universities:
• VisualWorks 3.0 and VW5i.2) all platforms and products (
• VisualAge is free for University:

www.software.ibm.com/ad/smalltalk/education/uni
• Envy is free for University

contact amy_divis@oti.com
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Main References
* (Intro + VW) Smalltalk: an Introduction to application deve
Trevor Hopkins and Bernard Horan, Prentice-Hall,1995, 0-1
* (Intro + VW) Smalltalk, programmation orientée objet et dé
X. Briffault and G. Sabah, Eyrolles, Paris. 2-212-08914-7
+ (Intro + SEx) On To Smalltalk, P. Winston, Addison-Wesl
** (Hints, Design + VW) Smalltalk by Example : The Develo
McGraw Hill, ISBN: 0079130364, 1997
** (Idioms) Smalltalk Best Practice Patterns, Kent Beck, Pre
476904-x (Praxisnahe Gebrauchsmuster, K. Beck, Prentice
9549-1).
* (Idioms) Smalltalk with Style, S. Skublics and E. Klimas an
1996, 0-13-165549-3.

** (User Interface Reference + VW) The Smalltalk Develop
Tim Howard, Sigs Books, 1995, 1-884842-11-9
** (Envy) Joseph Pelrine, Alan Knight and Adrien ..., Title n
** (Design) The Design Patterns Smalltalk Companion, S. A
Woolf, Addison-Wesley, 1998,0-201-18462-1
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Other References (Old or Other
** Smalltalk-80: The language, Adele Goldberg and David R
1984-1989, 0-201-13688-0 (Purple book ST-80, part of the
but still really interesting: a reference!
• An introduction to Object-Oriented Programming and Sma
Richard S. Wiener, 1988, Addison-Wesley, ISBN 0-201-119

• Object-Oriented Programming with C++ and Smalltalk, Ca
1998, 0-13-103797-8
+ Smalltalk, Objects and Design, Chamond Liu, Manning, 0-
+ Smalltalk the Language, David Smith, Benjamin/Cummin
0908-X (IBM smalltalk)
• Discovering Smalltalk, John Pugh, 94 (Digitalk Smalltalk)
• Inside Smalltalk (I & II), Wilf Lalonde and Pugh, Prentice H
• Smalltalk-80: Bits of History and Words of Advice, G. Kran
201-11669-3
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Norton, 0-393-95505-2,1985
 the original VM description
ele Goldberg and Dave

malltalk, ECOOP’89
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mming Languages, Addison-
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Other References (ii)

• The Taste of Smalltalk, Ted Kaehler and Dave Patterson,
• Smalltalk The Language and Its Implementation (contains
available at users.ipa.net/~dwighth/smalltalk/bluebook/), Ad
Robson, 0-201-11371-6, 1982 (called The Blue Book)

To understand the language, its design, its intention....
• Peter Deutsch, The Past, The Present and the Future of S
• Byte 81 Special Issues on Smalltalk (read Dan Ingalls pap
• Alan Kay, The Early History of Smalltalk, History of Progra
Wesley, 1996
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Some Web Pages
Wikis:

VisualWorks  /brain.cs.uiuc.edu/VisualWorks/
VisualAge /brain.cs.uiuc.edu/VisualAge/
kilana.iam.unibe.ch/SmalltalkWiki/

STIC:
/www.stic.org/

Cool Sites:
/www.smalltalk.org/
/www.goodstart.com/stlinks.html
/st-www.cs.uiuc.edu/

ESUG, BSUG, GSUG, SSUG
www.esug.org/
www.bsug.org/
www.gsug.org/
kilana.iam.unibe.ch/SmalltalkWiki/SwissSmalltalkU
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