A Object-Oriented
Programming with Smalltalk

— a Pure Object Language

and its Environment

Dr. Stéphane Ducasse
ducasse@iam.unibe.ch
http://www.iam.unibe.ch/~ducasse/

University of Bern
1999/2000

Table of Contents

Infos

Some Web Pages

Structure of this Lecture (i)

Structure of this Lecture (ii)

What Topics Will (not) Be Addressed
About this lecture

@@To do listo@
Basic Smalltalk

1. Quick Overview of the Environment

Mouse Semantics

Class MenuBar

Method MenuBar

Cross Reference Facilities
Filing Out

Hierarchy Browser
Debugger

Crash Recovery
Condensing Changes
UlBuilder

2. Smalltalk in Context

Smalltalk: More than a Language

Inspiration

Precursor, Innovative and Visionary

History

History

Smalltalk’s Concepts

Messages, Methods and Protocols

Objects, Classes and Metaclasses

Smalltalk Run-Time Architecture

VisualWorks Advanced Runtime Architecture

3. The Taste of Smalltalk

Some Followed Conventions

Hello World!

Everything is an object

Objects communicate via messages (i)

© 0 N O

10
11
12
13

14
15
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41

A LAN Simulator

Three Kind of Objects

Interactions Between Nodes

Node and Packet Creation

Objects communicates by messages (ii)
Definition of a Lan

Transmitting a Packet

How to Define a Class?

How to Define a Method?

4. Smalltalk Syntax in a Nutshell
Syntax in a Nutshell (i)
Syntax in a Nutshell (ii)
Messages instead of predefined Syntax
Class and Method Definition
Instance Creation

5. Syntax and Messages
Literal Overview (i)
Literal Overview (ii)
Literal Arrays and Arrays
Deep Into Literal Arrays
Deep into Literal Arrays (ii)
Deep into Literal Arrays (iii)
Symbols vs. Strings
Variables Overview
Temporary Variables
Assigments
Method Arguments
Instance Variables
Six pseudo-variables (i)
Six pseudo-variables (i)
Global Variables
Three Kinds of Messages
Unary Messages
Binary Messages
Keyword Messages

March 13, 2000

42
43
44
45
46
47
48
49
50

51
52
53
54
55
56

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

Composition

Sequence

Cascade

yourself

Have You Really Understood Yourself ?
Block (i): Definition

Block (ii): Evaluation

Block (iii)

Primitives

What You Should Know

. Dealing with Classes

Class Definition: The Class Packet
Named Instance Variables

Method Definition

Accessing Instance Variables

Lazy Initialization

Methods always Return a Value
Some Naming Conventions
Inheritance in Smalltalk

Remember...

Node

Workstation

Message Sending & Method Lookup
Method Lookup Examples (i)
Method Lookup Examples (ii)
Method Lookup Examples (ii)

How to Invoke Overriden Methods?
Semantics of super

Let us be Absurb!

Object Instantiation

Direct Instance Creation: (basic)new/new:
Messages to Instances that Create Objects
Opening the Box

Class specific Instantiation Messages
What you should know

77
78
79
80
81
82
83
84
85
86

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

Table of Contents ii.

7. Basic Objects, Conditional and Loops 112 Examples 147 The notion of Dependency 183
Boolean Objects 113 Examples 148 Dependency Mechanism 184
Some Basic Loops 114 10. Streams 149 Publisher-Subscriber: A Sample Session 185
For the Curious! 115 Streams 150 Change Propagation: Push and Pull 186
Collections 116 An Example 151 The MVC Pattern 187
Another View 117 printSring, printOn: 152 A Standard Interaction Cycle 188
Collection Methods 118 Stream classes(i) 153 MVC: Benefits and Liabilities 189
Sequenceable Specific (Array) 119 Stream Classes (ii) 154 MVC and Smalltalk 190
KeyedCollection Specific (Dictionary) 120 Stream tricks 155 Managment of Dependents 191
Choose your Camp! 121 Streams and Files 156 Implementation of Change Propagation 192
lteration Abstraction: do:/collect: 122 Advanced Smalltalk 157 Climbing up and down the Default-Ladder 193
Iteration Abstraction: select:/reject:/detect: 123 11. Advanced Features 158 Problemsvithhé&/anill&Change®ropagatiomMechanism
Iteration Abstraction: inject:into: 124 @Types of Classes@159 194
Collection Abstraction 125 Two Views on Classes 160 Dependency Transformer 195
Examples of Use: NetworkManager 126 Indexed Classes 161 Inside a Dependency Transformer 196
Common Shared Behavior (i) 127 Indexed Class/Instance Variables 162 ValueHolder 197
Identity vs. Equality 128 The meaning of “Instance of” (i) 163 A UserInterface Window 198
Common Shared Behavior (ii) 129 Lookup and Class Messages 165 Widgets 199
Essential Common Shared Behavior 130 The Meaning of “Instance-of” i) 166 The Application Model 200
What you should know 131 Metaclass Responsibilities 167 The fine-grained Structure of an Application 201

8. Numbers 132 Class Instance Variables 168 MVC Bibliography 202
Basics on Number 133 About Behavior 169 13. Processes and Concurrency 204
Deeper on Numbers: Double Dispatch (i) 134 Class Method 170 Concurrency and Parallelism 205
Deeper on Numbers: Double Dispatch (ii) 135 classVariable 171 Limitations 206
Deeper on Numbers: Coercion & Generality 136 Class Instance Variables / ClassVariable 172 Atomicity 207
Deeper on Numbers: #retry:coercing: 137 Summary of Variable Visibility 173 Safety and Liveness 208

9. Exceptions 138 Example From The System: Geometric Class 174 Processes in Smallltalk: Process class 209
Main Exceptions 139 Circle 175 Processes in Smalltalk: Process class 210
Basic Example of Catching 140 poolDictionaries 176 Processes in Smalltalk: Process states 211
Exception Sets 141 Example of PoolVariables177 Process Scheduling and Priorities 212
Signaling Exception 142 12. The Model View Controller Paradigm 178 Processes Scheduling and Priorities 213
Exception Environment 143 Context 179 Processes Scheduling: The Algorithm 214
Resumable and Non-Resumable 144 Program Architecture 180 Process Scheduling 215
Resume:/Return: 145 Separation of Concerns I 181 Synchronization Mechanisms 216
Exiting Handlers Explicity 146 Separation of Concerns Il 182 Synchronization Mechanisms 217

March 13, 2000

Table of Contents

Synchronization using Semaphores
Semaphores

Semaphores for Mutual Exclusion
Synchronization using a SharedQueue
Delays

Promises

14. Classes and Metaclasses: an Analysis
The meaning of “Instance of”
Concept of Metaclass & Responsibilities
Classes, metaclasses and method lookup
Responsibilities of Object & Class classes
A possible kernel for explicit metaclasses
Singleton with explicit metaclasses
Deeper into it
Smalltalk Metaclasses in 7 points
Smalltalk Metaclasses in 7 points (iii)
Smalltalk Metaclasses in 7 points (iv)
Behavior Responsibilities
ClassDescription Responsibilities
Metaclass Responsibilities
Class Responsibilities

15. Most Common Mistakes and Debugging
Most Common Beginner Bugs
Return Value
Take care about loops
Instance Variable Access in Class Method
Assignments Bugs
Redefinition Bugs
Library Behavior-based Bugs
Use of Accessors: Protect your Cients
Debugging Hints
Where am | and how did | get here?
Source Inspection
Where am | going?
How do | get out?

218
219
220
221
222
223

224
225
226
227
228
229
230
231
232
234
235
236
237
238
239

240
241
242
243
244
245
246
247
248
249
250
251
252
253

Finding & Closing Open Files in VW
Internal Structure of Object

Three ways to create classes:

Let us Code

Format and other

Obiject size in bytes

Analysis

16. Blocks and Optimization

Full Blocks

Copying Blocks

Clean Blocks

Inlined Blocks

Full to Copy

Contexts

Inject:into:

About String Concatenation

254
255
256
257
258
259
260

262
263
264
265
266
267
268
269
270

Stream, Blocks and Optimisation (i)271

Stream, Blocks and Optimisation (ii)
BlockClosure Class Comments

17. Block Deep Understanding

Lexically Scope

Returning from a Block (i)
Returning From a Block (i)
Example of Block Evaluation

Design Considerations

Abstract Classes

Case Study: Boolean, True and False
Boolean

False and True

CaseStudy: Magnitude:

Date

18. Basic Elements of Design and Class Behavior

A First Implementation of Packet
Packet CLASS Definition

March 13, 2000

272
273

274
275
276
277
278
280
281
282
283
284
285
286
287

288
289
290

Fragile Instance Creation

Assuring Instance Variable Initialization
Other Instance Initialization

Strengthen Instance Creation Interface
Forbidding new

Class Methods - Class Instance Variables
Class Initialization

Date class>>initialize

A Case Study: Scanner

Scanner class>>initialize

Scanner

What is an object?

Why Coupled Classes are Bad?

The Law ot Demeter

lllustrating the Law of Demeter
About the Use of Accessors (i)
About the Use of Public Accessors (ii)
Never to work that somebody else can do!
Provide a Complete Interface
Factoring Out Constants

Initializing without Duplicating
Constants Needed at Creation Time

Type Checking for Dispatching

Double Dispatch (i)

A Step Back

Deeper on Double Dispatch : Numbers (ii)

Methods are the Elementary Unit of Reuse
Methods are the Elementary Unit of Reuse (ii)
Methods are the Elementary Unit of Reuse
Class Factories

Hook and Template Methods

Hook Example: Copying

201
292
293
294
295
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327

Table of Contents V.

Hook Specialisation 328 Accessing the Singleton via new? 366 Instance Creation 401

Hook and Template Example: Printing 329 Singletons in a Single Subhierarchy 367 23 References 402

Override of the Hook 330 Instance/Class Methods 368 A Jungle of Names 403

Specialisation of the Hook 331 Comparing 369 Team Development Environments 404

332 20. Comparing C++, Java and Smalltalk 370 Some Free Smalltalks 405

Towards Delegation 333 History 371 Main References 406

Limits of such ad-hoc solution334 Target Application Domains 372 Other References (Old or Other Dialects) 407

Object and Delegation 335 Evolution 373 Other References (i) 408

Trade Off 336 Language Design Goals 374 Some Web Pages 409
Bad coding practices 337 Unique, Defining Features 375
Different Self/Super 338 Overview of Features 376
Do not overuse conversions 339 Syntax 377
Hidding missing information 340 Object Model 378
Do not Check Return Values 341 Memory Management 379
19. Design Thoughts and Selected Idioms 342 Dynamic Binding 380
Composed Method 343 Inheritance, Generics 381
Constructor Method 344 Types, Modules 382
Constructor Parameter Method 345 Exceptions, Concurrency 383
Query Method 346 Reflection 384
Boolean Property Setting Method 347 Implementation Technology 385
Comparing Method 348 Portability, Interoperability 386
Execute Around Method 349 Environments and Tools 387
Choosing Message 350 Development Styles 388
Name Well your Methods (i) 353 The Bottom Line ... 389
do: 354 21. Smalltalk for the Java Programmer 390
collect: 355 Syntax (i) 391
isEmpty, includes: 356 Syntax (ii) 392
How to Name Instance Variables? 358 Syntax (iii) 393
Singleton Instance: A Class Behavior 359 Syntax of Basic Types 394
Singleton Instance’s Implementation 360 22.Smalltalk For the Ada Programmer 395
Singleton 361 Class Definition 396
Discussion 362 Method Definition Declaration (i) 397
Singleton Variations 363 Method Definition (i) 398
Ensuring a Unique Instance 364 Method Definition(ii) 399
Providing Access 365 Instance Creation Method 400

March 13, 2000

Object-Oriented Design with Smalltalk a Pure OO Language

INnfos

Me: Dr. Stéphane Ducasse

Where: Office 101 10 neubruckstrasse, CH-3012 Berne
EMail: ducasse@iam.unibe.ch

Me electronic: http://www.iam.unibe.ch/~ducasse/

Lectures Ressources:
http://www.iam.unibe.ch/~scg/Resources/Smalltalk/
http://brain.cs.uiuc.edu/VisualWorks/
http://www.iam.unibe.ch/~ducasse/PubHTML/Smalltalk.html
http://www.iam.unibe.ch/~scg/cgi-bin/Smalltalk.cgi

NewGroups: comp.lang.smalltalk
Important Addresses to get free Smalltalks:
http://www.objectshare.com/VWNC/
http://www.squeak.org/
http://www.object-arts.com/Home.htm
ANSI| Normalization: @@

Universitat Bern Ducasse Stéphane

Object-Oriented Design with Smalltalk a Pure OO Language

Some Web Pages

Wikis:
VisualWorks /brain.cs.uiuc.edu/VisualWorks/
VisualAge /brain.cs.uiuc.edu/VisualAge/
www.iam.unibe.ch/~scg/cgi-bin/Smalltalk.cgi
STIC:
/www.stic.org/
Cool Sites:

/www.smalltalk.org/
/www.goodstart.com/stlinks.html
/st-www.cs.uiuc.edu/

User Groups: ESUG, BSUG, GSUG, SSUG
www.esug.org/
www.bsug.org/
www.gsug.org/
www.iam.unibe.ch/~scg/cgi-bin/Smalltalk.cgi?SwissSmalltalkUserGroup

Universitat Bern Ducasse Stéphane

1.7

Object-Oriented Design with Smalltalk a Pure OO Language

Structure of this Lecture (i)

[J Basic Smalltalk Elements

— History and Concepts
— Syntax
— Class/Method Definitions
— Collections
— Numbers
— Streams
[Advanced Smalltalk Topics
— Classes
- MVC
— Concurrency
— Metaclasses
— Debugging
— Internals

Universitat Bern Ducasse Stéphane

1.8

Object-Oriented Design with Smalltalk a Pure OO Language

Structure of this Lecture (i)

[1 Design Issues
— Abstract Classes
— Elementary Design Issues
— Idioms
— Some selected design patterns
[0 Comparing with other
— Java, C++, Smalltalk
— Smalltalk for the Java Programmer
— Smalltalk for the Ada Programmer

Universitat Bern Ducasse Stéphane

1.9

Object-Oriented Design with Smalltalk a Pure OO Language

What Topics Will (not) Be Addressed

We focus on:

[]

N I I I I O B

Basic features

Syntax overview
Inheritance Semantics
Collections

Basic Elements of Design
Some Idioms

Most Common Bugs
Techniques to Debug

We do not cover:

[]
[]
[]

Concurrency Model
Metaclasses in Details
MVC in Detalils

Universitat Bern Ducasse Stéphane

1.10

Object-Oriented Design with Smalltalk a Pure OO Language

About this lecture

[1 If problem contact me!
[Take VisualWorks at http://www.objectshare.com/VWNC/ or squeak

www.squeak.org/
[1 Do to the exercises

1.11

Universitat Bern Ducasse Stéphane

Object-Oriented Design with Smalltalk a Pure OO Language

@@To do listo@

Design Issues
Exercises
Implement a Lan Manager (Banking)
code for the lan basic
code for the lan with user interface
Exceptions
Advanced Blocks
Idioms
Concurrency
MVC
Look at the syntax Put BNF of Squeak and VW
Look at at Patrick extensions of the lan
Look at the Joseph Slides
SUnit description
Check all the idioms lessons at the lab

Universitat Bern Ducasse Stéphane 1.12

Smalltalk a Pure OO Language Smalltalk in a Nutshell

Basic Smalltalk

History and Concepts
Tasting Smalltalk

Syntax

Class/Method Definitions
Collections

Numbers

Streams

N I I I I O B

Universitat Bern Ducasse Stéphane 1.13

Object-Oriented Design with Smalltalk a Pure OO Language Environment

1. Quick Overview of the Environment

VW2.5 not VW30 sorry!!

Universitat Bern Ducasse Stéphane 4.14

Object-Oriented Design with Smalltalk a Pure OO Language Environment

Mouse Semantics

Operate Window

Yellow l /
Blue

F's

~

Universitat Bern Ducasse Stéphane 4.15

Object-Oriented Design with Smalltalk a Pure OO Language

Universitat Bern

Environment

Q_ha File List Egﬂﬂgez _ Eatatfﬁ:
File Editor... | pen ange Lis
[C] Workspace File Out Changes...
Parcel List Empty Changes...
= Changed Methods
. m How Canvac Inspect ChangeSet
Palette [Open Broject A
" Canras Tool Exit Project
Image Editor

Menu Editor

/

I /' UisM
F 4 -

#se Tools Changss

Database Window Help

S| % |E|E

oF class—3lection acoess
Sl O g

criabed ab Augusit, 1997 9:44:17 am

frakbed cha bo festohi . done

>

<

L Opens a canvas editor

Opens a workspace

Ducasse Stéphane

4.16

Object-Oriented Design with Smalltalk a Pure OO Language Environment

Class MenuBar

wser Opens a HierarchyBrowser

X

(]

«cticn ()

usnceableCollection ()

OrderedCollection ['firstIndex’ 'lastIndesx’)
LinkedOrderedCollection ['backup')

aortedCollection | 'sortBlock')

e class definition and the class comments

firstindesd

ordered Collection addFirst:
R Ordered Collection makeRaomaAtLast

addFirst: newObject
“Add newObject o the beginning of the
Feceiver, Answer newObject”

fgeilgle = = 1 iFTrue: [s=IF makeRoomatFirst).
firstlndes = firstlndse:x - 1. —
self basicAl firstindes puk: neswObject, hd

Universitat Bern Ducasse Stéphane 4.17

Object-Oriented Design with Smalltalk a Pure OO Language Environment

Method MenuBar

browser

Senders of #add:

HelpPage addSeeilso: A
Hizrarchy Browser addClassrecursive v To:
[l nkiby Dictionany keys

/j keys o
“Ahswer a sel containing the receiver's keys”

|aZet|

aset = ldentiby 5 et new: self size.
self keysDo: [key | aSel Eael key)].
“amel

4|

Implementors of add:

Bag ad ::1: :.-
Collection add: ~
add: newObject [~
“Include neswObiject as ane of the recaivers elaments.
Answer newlbject”
“gelfadd: newDbject withDccumences: 1
|

Universitat Bern Ducasse Stéphane 4.18

Object-Oriented Design with Smalltalk a Pure OO Language

Cross Reference Facllities

Universitat Bern

Ducasse Stéphane

Environment

| Ele out as_..
ardcopy
Spavrn

senders
implementors
messages...

move ko
remove .

4.19

Object-Oriented Design with Smalltalk a Pure OO Language

Filing Out

| *Iile out as...
ardcopy
Spavrn

as._..

senders
implementors
messages. ..

10d_

move bo__
remove

Environment

Changes Database

Universitat Bern Ducasse Stéphane

method

Open Change List

File Out Changes...
Emply Changes...
Changed Methods
Inspect Changeset

Open Project k
Exit Project
project
4.20

Object-Oriented Design with Smalltalk a Pure OO Language

Hierarchy Browser

Not usefull wen you use the Refactoring Browser that you must use!!

Universitat Bern

Environment

rowser on: ArrayedCollection =i—————P/1-|

tin

dng

isLiteral _

storeCin:

* elermenks of the Array

k

XPrink.

Lmore] "

Ducasse Stéphane

4.21

Object-Oriented Design with Smalltalk a Pure OO Language

Debugger

Universitat Bern

Environment

ed exception: Message not understood: ¥source =—"—"——I=
doesMotlUnderstand:]
-|:I'|'I'|'Iith: ore Et\ack
o | K" -
mkdethod arguments: proceed
mkAethod: restart ""'|
senders

within Find.__ imp leme nbors
diot wit replace... messages B
Wap' W undo arafream” skip to caret

copy step

cut send
samfin paste ATwoByle Sring) ak: 2.
ourcefs lerSrearm.

do it

print it

| inspect &

accept

cancel w
2 Formalt ||instvartlame | || CodeReaderSiream A~

spawn o

explain

hardcopy |

Ducasse Stéphane

4.22

Object-Oriented Design with Smalltalk a Pure OO Language Environment

Crash Recovery

z[m Changa LIs1 e

cornmerk Condibon s Injout "
bl Eonditian aToElod: |) Conewrie
inthlizembe&&e% Condtion bype:blodsemrer Siring: {add) rephy all = | Bhew calogery
inkilEerekase Condbion whBkek: (g remmave all
(R0 i AT el B e AT R R — i
P {checking] Condtion chack fadd) bzt L
ik e R R} Favmall.. _ Llope
dok'——— - - ———— - | | elase
sk v For Cnegition clis forget || category

(Ine o crilion) Condtkon class cNUMGSMBRIN (30) [oopy oulection

Iresfa noe craticon’ Condblon class dreECREEYaRIN: || ealector
! = 1 [e el] EJ |:| LT

regbare ge|ecthan

denr:i!:ﬂ“ﬂ:f B.5iring in: elipss S —— |_
g AIay RN Fdalneeinstyar with: ACkEs Wi 2 connids +

Exbechi [GBS allirestyar ke es ncludas; a5 ming]
STaraling: aCkea prinkShrng | <1 Yoioes not-defieec %o instpnce varbkk @Sl

C:rarmcherBlkack: Kme iz |J|
Curaer ches orag
Pk oo L L Corticaint” s niL A retmB e ;| B 1| il B |56 B2 K e
ParagraphEditar backwardordkey: =
regafThe Tayt 1]
| b |

Eutvalve valua: sefleat
InldalSelectian == nll
Pk [D= [l cxarng o FeniAk Sty] Ua) vt
v deeBlect
br canboller And: inbialS=le=ctian.
b dlep S kactan: e
0 b A red Sanall).

Universitat Bern Ducasse Stéphane 4.23

Object-Oriented Design with Smalltalk a Pure OO Language

Condensing Changes

Universitat Bern

Environment

inge List EE
| file intout Al] show file
replay all V| show category
remoye all
| restore all - | Lfile
—— spawnall... — Etﬁpe
class
forget D category
3(::'1 replay selectlon D calackor
é remove selection q?l || same
—— restore selection
spawn selection... _
ith:a| conflicts -
1]
define<1%s:= instance variable ', ashing
1denseChanges
Ducasse Stéphane 4.24

Object-Oriented Design with Smalltalk a Pure OO Language

UlBuilder

Universitat Bern

Environment

Canuvas Tool on: A text

Amange Orid Look Special

] [zle]n]e]]
o] o

Proparties Tool on: A tast

Action Button ™
Basica

Label: Onmee boo e
Actiﬂn: " I';il":tlﬂ.lldill:lﬂl'l
D Motification

. e

Gl

D He Defmult #
] Size as Default e
|| Label k& Mmage AL & UL o

I Pl el || ool || AppN & CHEe | | Pray || [11

Ducasse Stéphane 4.25

Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk in Context

2. Smalltalk iIn Context

History

Context

Run-Time Architecture
Concepts

Universitat Bern Ducasse Stéphane 1.26

Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk in Context

Smalltalk: More than a Language

* A small and uniform language (two days for learning the syntax).
A set of reusable classes (basic data structure, Ul, database accesses, socket...).

A set of powerfull development tools (Browsers, UlBuilder, Inspector, changes, crash
recovery, project management).

* A run-time environment based on Virtual Machine technology.
» With Envy team working + application management (release, versioning, deployement).

Universitat Bern Ducasse Stéphane 1.27

Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk in Context

Inspiration

"making simple things Very simple and complex things Very possible" [Kay]

* Flex (Alan Kay 1969)

* Lisp (interpreter, blocks, garbage collector)

 Turtle graphics (Logo Project, children programming)
 Direct manipulation interfaces (Sketchpad 1960)

» Simula (classes and message sending, description of a real phenomen by means of a
specification language: modeling)

-> DynaBook: a desktop computer for children

Universitat Bern Ducasse Stéphane 1.28

Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk in Context

Precursor, Innovative and Visionary

e First graphical bitmap-based
multi-windowing (overlapping windows)
programming environment (debugger, compiler, editor, browser)
with a pointing device
Yes a mouse !l
Xerox Smalltalk Team developed the mouse technology and the bitmap:
it was revolutionary! Maclintosh copied them.

* Virtual Machine +
Plateform independent image technology

» Garbage Collector

 Just in Time Compilation

Universitat Bern Ducasse Stéphane 1.29

Object-Oriented Design with Smalltalk a Pure OO Language

History

1970

1980

Smalltalk in Context

FORTRAN
———————— —1 AlgoIs0 | COBOL |- Lisp
Simula 67 5L
Algol 68
Smalltalk 72|\ N\ Nl P“i'og
Clu Modula-2
Smalltalk 80+ % — — — — /= >~ - ——_X_ ______ S~ __
Obijective C e =s Ada\ Oberon
=l Sifte Modula-3 CLOS
ANSI C++
Jeile Ada 95

Universitat Bern

Ducasse Stéphane

1.30

Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk in Context

History

Internal.

1972: First interpreter, more agents than objects (every objects can specify its own
syntax).

1976: Redesign: Hierarchy of classes with unique root + fixed syntax (compact byte
code), contexts, process + semaphores + Browser + Ul class library.

Projects: ThingLab, Visual Programming Environment Programming by Rehearsal.
1978: Experimentation with 8086 microprocessor (NoteTaker project).

External.

1980: Smalltalk-80 (Ascii, cleaning primitives for portability, metaclasses, blocks as first-
class objects, MVC,)

Projects: Galley Editor (mixing text, painting and animations) + Alternate Reality Kit
(physics simulation)

1981: books + four external virtual machines (Dec, Apple, HP and Tektronix) -> gc by
generation scavenging

1988: Creation of Parc Place Systems
1992: Draft Ansi
1995-6: New Smalltalk implementations (MT, dolphin, Squeak VM in Smalltalk....)

Universitat Bern Ducasse Stéphane 1.31

Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk in Context

Smalltalk’s Concepts

» Everything is an object (numbers, files, editors, compilers, points, tools, boolean).
» Objects only communicate by message passing.

» Each object is an instance of one class (that is an object too).

* A class defines the structure and the behavior of its instances.

» Each object possesses its own set of values.

* Dynamically typed.

 Fully and only based on late binding.

Programming in Smalltalk: Reading an Open Book
» Reading the interface of the classes: (table of contents of a book)
» Understanding the way the classes are implemented: (reading the chapters)
» Extending and changing the contents of the system

Universitat Bern Ducasse Stéphane 1.32

Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk in Context

Messages, Methods and Protocols

Message: What behavior to perform
aWr kst ati on accept: aPacket

Method: How to carry out the behavior
accept: aPacket
(aPacket isAddressedTo: self)
ifTrue:[Transcript show 'A packet is accepted by the Wirkstation ', self nanme asString]

i f Fal se: [super accept: aPacket]

Protocol: The complete set of messages an object responds to:

#nane #initialize #hasNext Node #connect edTo: #name: #next Node #next Node: #printOn: #sinplePrintString
#t ypeNane #accept: #send:

Often grouped into categories:

accessing #nane
initialize-release #initialize

testing #hasNext Node

connection #connect edTo:

private #nane: #next Node #next Node:

printing #printOn: #sinplePrintString #typeNane
send-recei ve #accept: #send:

Universitat Bern Ducasse Stéphane 1.33

Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk in Context

Objects, Classes and Metaclasses

» Every object is an instance of a class
* A class specifies the structure and the behavior of all its instances
* Instances of a class share the same behavior and have a specific state

» Classes are objects that create other instances
» Metaclasses are just classes that create classes as instances

» Metaclasses described class behavior and state (subclasses, method dictionary,
instance variables...)

Universitat Bern Ducasse Stéphane 1.34

Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk in Context

Smalltalk Run-Time Architecture

Virtual Machine + Image + Changes and Sources

vig-code interpreler:

virtual machine interpretes the image
ol oy -\.-:: o ECE 10

Standard SOURCTS
b :

-

.\-\"'\.

Sh:lr;a-:il by evervhody

The byte-code is in fact translated into native code by a just in time compiler.

The source and the change are not necessary for interpreting the byte-code, this is just
for the development. Normally they are removed for deployement.

An application can be delivered as some byte-code files that will be executed with a VM.
The development image is stripped to remove the unnecessary development
components like the compiler, the scanner, the browser,....

Universitat Bern Ducasse Stéphane 1.35

Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk in Context

VisualWorks Advanced Runtime Architecture

| Sources |
I Shdred by everybody

User 2

VM

| Image - Change Image | —— Change
/ Source of all the objects

/ byte code of all the objects _ P
/ currently in memory currently in memory _ -~

—_—

—
—

{ e
\ » (Parcel(pcl)———(Parcel(pst))

piece of image (byte code) piece of source (text)

[1 Parcels reproduce the schema of the image and change:
pcl are byte code, pst source code
[J Parcels allow atomic loading/unloading and prerequisites parcels
[0 Extremely fast loading
[1 Good for dynamic loading, code management

Universitat Bern Ducasse Stéphane 1.36

Object-Oriented Design with Smalltalk a Pure OO Language

3. The Taste of Smalltalk

Two examples:
- hello world
- a LAN simulator

To give you an idea of:
- the syntax
- the elementary objects and classes
- the enviromnent

To give the base for all the lectures:
all the codes samples,
constructs,
design decisions...

Universitat Bern Ducasse Stéphane

The Taste of Smalltalk

2.37

Object-Oriented Design with Smalltalk a Pure OO Language The Taste of Smalltalk

Some Followed Conventions

e Code Transcri pt show. ‘Hello worl d’
* Return Value

1 + 3 ->14

Node new -> aNode

Node new prit-> a Wrkstation with nane: #pc connect edt o: #nmac

» Method selector #add:
» Method scope conventions:
Node>>accept: aPacket
instance method defined in the class Node
Node cl ass>>wi t hNanme: aSynbol
class method defined in the class Node (in the class of the class Node)
e aSonet hi ng is an instance of the class Sonet hi ng
 Dolt, Printlt, Inspectlt and Accept
Accept = Compile: Accept a method or a class definition
Dolt = send a message to an object
Printlt = send a message to an object + print to the result (#pri nt On:)
Inspectlt = send a message to an object + inspect to the result (#i nspect)

Universitat Bern Ducasse Stéphane 2.38

Object-Oriented Design with Smalltalk a Pure OO Language The Taste of Smalltalk

Hello World!

Database Window

Transcript show ‘hello world

During implementation, we can dynamically ask the interpreter to evaluate an
expression. To evaluate an expression, select it and with the middle mouse button apply

dolt.

Transcri pt is a special object that is a kind of standard output, it refers to a
Text Col | ect or instance associated with the launcher.

Universitat Bern Ducasse Stéphane 2.39

Object-Oriented Design with Smalltalk a Pure OO Language The Taste of Smalltalk

Everything is an object

The launcher is an object.

The icons are objects.

The workspace is an object.

The window is an object: instance of Appl i cat i onW ndow.
The text editor is an object: instance of Par agr aphEdi t or.
The scrollbars are objects too.

“hel | o word’ is an object: aSt ri ng instance of Stri ng.
#show. is a Synbol thatis also an object.

The mouse is an object.

The parser is an object instance of Par ser .

The compiler is also an object instance of Conpi | er.

The process scheduler is also an object.

The garbage collector is an object: instance of Menor yCbj ect .

=> a world consistent , uniform written in itself!
you can learn how it is implemented, you can extend it or even modify it.
+ (almost) all the code is available and readable....Book concept.

Universitat Bern Ducasse Stéphane 2.40

Object-Oriented Design with Smalltalk a Pure OO Language The Taste of Smalltalk

Objects communicate via messages (i)

Transcript show. ‘hello world
The above expression is a message:
— the object Tr anscri pt is the receiver of the message
— the selector of the message is #show:
— an argument: a string ‘ hel l o wor | d’

Transcri pt is a global variable (starts with an uppercase letter) that refers to the
Launcher’s report part.

Vocabulary Concerns:
Message passing or sending a message is equivalent to various extend to
- invoking a method in Java or C++
- calling a procedure in procedural languages
- applying a function in functional languages
(modulo the polymorphism for the two last ones)

Universitat Bern Ducasse Stéphane 2.41

Object-Oriented Design with Smalltalk a Pure OO Language The Taste of Smalltalk

A LAN Simulator

A LAN contains nodes, workstations, printers, file servers.
Packets are sent in a LAN and the nodes treat them differently.

]
mac ‘
lpr nodeS\\\\\\\\
— > node?2
]
nodel pC

Universitat Bern Ducasse Stéphane 2.42

Object-Oriented Design with Smalltalk a Pure OO Language The Taste of Smalltalk

Three Kind of Objects

Node and its subclasses represent the entities that are connected to form a LAN.
Packet represents the information that flows between Nodes.
Net wor kManager represents how the nodes are connected.

NetworkManager
declareNode: aNode
undeclareNode: aNode
connectNodes: anArrayOfAddressees nam é\lode nextNode
<> accept: aPacket
send: aPacket
hasNextNode
Packet
addressee Printer Workstation
contents print: aPacket originate: aPacket
originator accept: aPacket accept: aPacket
iIsSentBy: aNode
ISAddressedTo: aNode

Universitat Bern Ducasse Stéphane 2.43

Object-Oriented Design with Smalltalk a Pure OO Language The Taste of Smalltalk

Interactions Between Nodes

nodePrinter aPacket nodel

accept: aPacket

iIsAddressedTo: nodePrinter

\mt: aPacket

ha

[false]

send: aPacket
accept: aPacket

i) !

Universitat Bern Ducasse Stéphane 2.44

Object-Oriented Design with Smalltalk a Pure OO Language The Taste of Smalltalk

Node and Packet Creation

| mracNode pcNode nodel printerNode node2 node3 packet |

"nodes definition"

macNode : = Wirkstation w t hNane: #nac.
pcNode : = Wrkstati on w t hNane: #pc.
nodel : = Node wi t hNane: #nodel.

node2 : = Node wi t hNane: #node2.

node3 : = Node wi t hNane: #node2.
printerNode := Printer w thNane: #l pr.
"Node connecti ons"

macNode next Node: nodel.

nodel next Node: pcNode.

pcNode next Node: nodeZ2.

node3 next Node: pri nter Node.

| pr next Node: nacNode.

"packet creation”
packet := Packet send: 'This packet travelled to the printer' to: #lpr.

Universitat Bern Ducasse Stéphane 2.45

Object-Oriented Design with Smalltalk a Pure OO Language The Taste of Smalltalk

Objects communicates by messages (ii)

Message:
1+ 2
- receiver : 1 (an instance of Snmalll nteger)

- selector: #+

- argunents: 2

Message:
| pr next Node: macNode
- receiver lpr (an instance of LanPrinter)
- sel ector: #next Node:
- argunents: nmacNode (an instance of Wrkstation)

Message:
Packet send: 'This packet travelled to the printer' to: #l pr
- receiver: Packet (a class)
- selector: #send:to:

- argunments: 'This packet travelled to the printer' and #l pr

Message:
Workstation w thName: #nmac
- receiver: Wrkstation (a class)
- selector: #w t hName:
- argunents: #nmac

Universitat Bern Ducasse Stéphane 2.46

Object-Oriented Design with Smalltalk a Pure OO Language The Taste of Smalltalk

Definition of a Lan

To simplify the creation and the manipulation of a Lan.

| alLan |

aLan : = Networ kManager new.

aLan creat eAndDecl ar eNodesFr omAddr esses: #(nodel node2 node3) of Ki nd: Node.
aLan creat eAndDecl ar eNodesFr omAddr esses: #(nmac pc) of Kind: Wrkstati on.
aLan creat eAndDecl ar eNodesFr omAddr esses: #(l pr) of Kind: LanPrinter.

aLan connect NodesFr omAddr esses: #(nmac nodel pc node2 node3 | pr)

Now we can query the Lan to get some nodes:
aLan fi ndNodeWt hAddress: #nmac

Universitat Bern Ducasse Stéphane 2.47

Object-Oriented Design with Smalltalk a Pure OO Language

Transmitting a Packet

| aLan packet macNode|

macNode : = aLan fi ndNodeWt hAddr ess: #mac.

packet

: = Packet send: 'This packet travelled to the printer'

macNode ori gi nate: packet.

->
->
->
->
->
->

->

Universitat Bern

nmac sends a packet to pc

pc sends a packet to nodel
nodel sends a packet to node2
node2 sends a packet to node3
node3 sends a packet to | pr

| pr is printing

this packet travelled to I pr

Ducasse Stéphane

The Taste of Smalltalk

#l pr.

2.48

Object-Oriented Design with Smalltalk a Pure OO Language The Taste of Smalltalk

How to Define a Class?
Fill the template:

NanmeO Super cl ass subcl ass: #NanmeOf A ass
I nst anceVari abl eNanes: ' i nstVar Nanel i nst Var Nane2'
cl assVari abl eNanes: ' d assVar Nanel d assVar Nane2'
pool D ctionari es:
category: 'LAN

For example to create the class Packet
(bj ect subcl ass: #Packet
I nst anceVari abl eNanmes: 'addressee originator contents '
cl assVari abl eNanes: '

pool D ctionari es:
category: 'LAN

Universitat Bern Ducasse Stéphane 2.49

Object-Oriented Design with Smalltalk a Pure OO Language The Taste of Smalltalk

How to Define a Method?

Follow the template:

nmessage sel ector and argunent nanes

"comment stating purpose of nessage"

| tenmporary variabl e nanes |
statenents

LanPri nt er >>accept: thePacket
"If the packet is addressed to ne, print it. El se just behave |ike a normal node"
(t hePacket isAddressedTo: self)
ifTrue: [self print: thePacket]
i f Fal se: [super accept: thePacket]

In Java we would write
voi d accept (t hePacket Packet)
/*1f the packet is addressed to nme, print it. Else just behave |like a normal node*/
i f (thePacket.isAddressedTo(this)){
this. print(thePacket)}
el se super. accept (t hePacket)

Universitat Bern Ducasse Stéphane 2.50

Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk Syntax in a Nutshell

4. Smalltalk Syntax in a Nutshell

language construct: *“#“[].; (| :=%: er! <primitive: >
A return
“ comments
#symbol or array
‘ string
[] block or byte array
. separator and not terminator (or namespace access in VW5i)
, cascade (sending several messages to the same instance)
| local or block variable
.= assignment
$ character
. end of selector name
e, r number exponent or radix
| file element separator
<primitive: ...> for VM primitive calls

Universitat Bern Ducasse Stéphane 3.51

Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk Syntax in a Nutshell

Syntax in a Nutshell (i)

comment: “a conmment”

character: $¢c $h $a $r $a $c $t $e $r $s $# $©@
string: ‘a nice string’ ‘lulu *I’’idiot’
symbol: #mac #+

array: #(1 2 3 (1 3) $a 4)

byte array: #[1 2 3]

integer: 1, 2r101

real: 1.5, 6.03e-34,4, 2.4e7

float: 1/ 33

boolean: true, false

point: 10@20

Note that @ is not an element of the syntax just a message sent to a number. This is the
same for /

Universitat Bern Ducasse Stéphane 3.52

Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk Syntax in a Nutshell

Syntax in a Nutshell (i)

assigment: var : = aVal ue
block: [:var ||tnp| expr...]

temporary variable: [tmp]|

block variable: var

unary message: receiver selector

binary message: receiver selector argument

keyword based: receiver keywordl: argl keyword2: arg2...
cascade: message ; selector ...

separator: message . message

result: A

parenthesis: (...)

Universitat Bern Ducasse Stéphane 3.53

Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk Syntax in a Nutshell

Messages instead of predefined Syntax

g inJava, C, C++, Ada, >>, if, for, ... are hardcoded into the grammar

g in Smalltalk there are just messages defined on objects

(>>) bitShift: is just a message sent to numbers
10 bitShift: 2
(if) ifTrue: is just messages sent to a boolean
(1> x) ifTrue:
(for) do:, to:do: are just messages to collections or numbers

#(a b ¢ d) do: [:each | Transcript show each ; cr]
1 to: 10 do: [:i | Transcript show each printString; cr]

Universitat Bern Ducasse Stéphane

3.54

Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk Syntax in a Nutshell

Class and Method Definition

Class: a message sent to another class
bj ect subcl ass: #Node
I nst anceVari abl eNanes: ' nane next Node'
cl assVari abl eNanes: "'
pool D ctionari es:
category: 'LAN

-> Instance variables are instance-based protected

Method: normally done in a browser or (by directly invoking the compiler)
Node>>accept: thePacket

"If the packet is addressed to nme, print it. El se just behave |ike a normal node"
(t hePacket isAddressedTo: self)

ifTrue: [self print: thePacket]

i f Fal se: [super accept: thePacket]

-> Methods are public

Universitat Bern Ducasse Stéphane 3.55

Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk Syntax in a Nutshell

Instance Creation

1, ‘abc’
Basic class messages creation (new, new:, basicNew, basicNew:)
Packet new

Class specific message creation
Wor kst ati on w t hNane: #mac

Universitat Bern Ducasse Stéphane 3.56

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

5. Syntax and Messages

The syntax of Smalltalk is simple and uniform but it can seem strange at the first look

- Literals: numbers, strings, arrays....
- Variables names

- Pseudo-variables

- Assignment, return

- Message Expressions

- Block expressions

Universitat Bern Ducasse Stéphane 3.57

Object-Oriented Design with Smalltalk a Pure OO Language

Literal Overview (i)

Numbers:
Smallinteger, Integer,
4, 2r100 (4 in base 2),3r11 (4 in base 3), 1232
Fraction, Float, Double
3/4, 2.4e7, 0.75d
Characters:
$F, $Q $U $E SN $T $i SN
Unprintable characters

Character space, Character tab, Character cr

Symbols:

#cl ass #mac #at:put: #+ #accept:

Strings:
#mac asString -> 'nmac’
12 printString -> '12'
"This packet travelled around to the printer’' "|I""idiot’
String with: $A
To introduce a single quote inside a string just double it.

Universitat Bern Ducasse Stéphane

Syntax and Messages

3.58

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Literal Overview (i)

Arrays:
#(1 2 3) #('lulu (12 3)) #('lulu #(1 2 3))
#(mac nodel pc node2 node3 | pr) an array of synbols.

Wien one prints it it shows #(#nmac #nodel #pc #node2 #node3 #l pr)

Byte Array:
#[1 2 255]

Comments:
"This is a comment"

A comment can be on several lines. Moreover, avoid to put a space between the “ and the first letter. Indeed when
there is no space, the system helps you to select a commented expression. You just go after the “ character and
double click: all the commented expression is selected. After you can printlt or dolt.

Universitat Bern Ducasse Stéphane 3.59

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Literal Arrays and Arrays

Heterogenous
#('lulu (12 3)) Prit->#('lulu #(1 2 3))
#('lulu 1.22 1) Prit-> #('lulu 1.22 1)

An array of symbols:
#(cal vin hobbes suzie) Prit-> #(#cal vin #hobbes #suzi e)

An array of strings:
#('calvin' 'hobbes' 'suzie') Prit-> #('calvin' 'hobbes' 'suzie')

Only the creation differs between literal arrays and arrays. Literal arrays are known at
compile time, array at run-time.

#(Packet new) an array with two synbols and not an instance of Packet
Array new at: 1 put: (Packet new) is an array with one el enent an instance of Packet

Literal or not
#(...) considers elenents as literals and false true and nil
1 +2) Prit-> #(1 #+ 2)
Array with: (1 +2) Prit-> #(3)

Universitat Bern Ducasse Stéphane 3.60

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Deep Into Literal Arrays

Technical note implementation dependent: Literal arrays only contains literal objects and false true and nil

"mac' asArray is an array of character

(#(false true nil) at: 2)
ifTrue:[Transcript show: ‘this is really true’]

IfFalse: [1/0]
Literature (Goldberg book) defines a literal as an object which value refer always to the same objet. This
s a first approximation to present the concept. However, if we check the literals according to this principle,
this is false in VisualWorks (VisualAge as a safer definition.) Literature defines literals as numbers,
characters, strings of character, arrays, symbols, and two strings , floats , arrays but they do not refer
(hopefully) to the same object.
In fact literals are objects created at compile-time or even already exist in the system and stored into the
compiled method literal frame. A compiled method is an object that holds the bytecode translation of the
source code. The literal frame is a part of a compiled method that stores the literals used by the methods.
You can

Point inspect ->methodDict-> aCompiledMethod to se it.

Universitat Bern Ducasse Stéphane 3.61

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Deep into Literal Arrays (ii)

The following example illustrates the difference between the literal array and a newly
created instance of Array created via Array new:.. Let us defined the following method:
Smal | | nt eger >>nil
| anArray|
anArray = #(nil).
(anArray at: 1) isN|
ifTrue:[Transcript show ‘Put 1';cr. anArray at: 1 put: 1.]

1 nL will only display the nmessage Put 1 once. Because the array #(nil) is stored into
the literal frane of the nmethod and the #at:put: nessage nodified the conpiled nethod
itself.
Smal | | nt eger >>nR

| anArray|

anArray := Array new 1.

(anArray at: 1) isN |

i fTrue:[Transcript show ‘Put 1 ;cr. anArray at: 1 put: 1]

1 n2 wll always display the nessage Put 1 because in that case the array i s al ways creat ed
at run-tinme. Therefore it is not detected as literals at conpile-tinme and not stored into
the literal frane of the conpiled nethod. You can find yourself this infomation by de-
fining these nethods on a class, inspecting the class then its nethod dictionary and t hen
t he correspondi ng net hods.

Universitat Bern Ducasse Stéphane 3.62

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Deep into Literal Arrays (lii)

This is internal representation of the method objects have led to the following idioms to
control such perfide effect.

Never give access to literal array only provide copy of them.
For example:

ar
A #(100@L00 200@00) copy

Universitat Bern Ducasse Stéphane 3.63

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Symbols vs. Strings

- Symbols are used as method selectors, unique keys for dictionaries
- A symbol is a read-only object, strings are mutable objects
- A symbol is unique, strings not

#calvin == #calvin Prlt-> true

‘calvin’ == ‘calvin” Prlt-> fal se

#cal vin, #zeBest Prlt-> 'cal vi nzeBest'

Symbols are good candidates for identity based dictionary (I denti tyDi cti onary)

Hints: Comparing strings is a factor of 5 to 10 slower than symbols. But converting a string to a symbol is more
than 100 times more expensive.

Universitat Bern Ducasse Stéphane 3.64

Object-Oriented Design with Smalltalk a Pure OO Language

Variables Overview

- Maintains a reference to an object
- Dynamically typed and can reference different types of objects
- Shared (starting with uppercase) or private (starting with lowercase)

Universitat Bern

Ducasse Stéphane

Syntax and Messages

e
—

—_—

| leTnporary Vanahle

—
e T
T / ‘l"-. H"'H.ﬁ

Mporary N method
\\ parameter

H
| method T'emporary | |

1rreler

3.65

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Temporary Variables

- To hold temporary values during evaluation (method execution)
- Can be accessed by the expressions composing the method.

| mracl pc nodel printer nmac2 packet |

Hint: Avoid to use the same name for a temporary variable and an argument, an instance variable or another
temporary variable or block temporary. Your code will be more portable.

Instead of :
ad ass>>printOn: aStream
| aSt r eani
Write

ad ass>>printOn: aStream
| anot her St r ean

Hint: Avoid to use the same temporary variable for referencing two different objects

Universitat Bern Ducasse Stéphane 3.66

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Assigments

vari abl e : = aVal ue
three : = 3 rai sedTo: 1
vari abl el := vari abl e2 : = aVal ue

But assignment is not done by message passing.
This is one of the few Smalltalk syntax element

In Smalltalk, objects are manipulated via implicit pointer: everything is a pointer. So take
care to pointers to the same object

pl := p2 := 0@O00
pl x: 100

pl Prit-> 100@00
p2 Prit-> 100@00

Universitat Bern Ducasse Stéphane 3.67

Object-Oriented Design with Smalltalk a Pure OO Language

Method Arguments

- Can be accessed by the expressions composing the method.

- Exist during the execution of the defining method.

- Method Name

accept: aPacket
In C++, Java:

void Printer::accept(aPacket Packet)

- But their values cannot be reassigned within the method.

Invalid Example, assuming cont ent s is an instance variable:

contents: aString

asString := aString, 'FromLpr'. “, concatenate strings”
addresse : = aString
Valid Example

addressee: aString

addressee := aString , 'From Lpr'

Universitat Bern Ducasse Stéphane

Syntax and Messages

3.68

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Instance Variables

- Private to a particular instance (not to all the instances of a class like in C++).
- Can be accessed by all the methods of the defining class and its subclasses.
- Has the same lifetime that the object.

Declaration
bj ect subcl ass: #Node
I nst anceVari abl eNames: ' nane next Node

Scope
Node>>set Nane: aSynbol next Node: aNode
nane : = aSynbol .
next Node : = aNode

But preferably accessed with accessors
Node>>nane

Anane

Universitat Bern Ducasse Stéphane 3.69

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Six pseudo-variables (i)

Smalltalk expressions make references to these variables, but cannot change their
value. They are hardwired in the compiler.

- ni I (nothing) value for the uninitialized variables. Unique instance of the class
Undef i nedCbj ect

-t r ue unique instance of the class Tr ue
- f al se unique instance of the class Fal se

Hints: Do you use Fal se instead of f al Se. false is the boolean value, Fal Se the class representing it.
So

Fal se
| f Fal se: [Transcript show. °‘ False’]

produces an error, but
fal se

| f Fal se: [Transcript show. °‘ False’]

works

Universitat Bern Ducasse Stéphane 3.70

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Six pseudo-variables (i)

The following variables can only be used in a method body.
- sel f inthe method body refers to the receiver of a message.

- super inthe method body refers also to the receiver of the message but its semantics
affects the lookup of the method. It starts in the superclass of the class in which the

method where the super was used and NOT the superclass of the receiver (see method
lookup semantics)

Print er Server >>accept : t hePacket
"If the packet is addressed to ne, print it. El se just behave |ike a nornmal node"
(t hePacket i sAddressedTo: self)
I fTrue: [self print: thePacket]
| f Fal se: [super accept: thePacket]

-t hi sCont ext refers to the instance of Met hodCont ext that represents the context
of a method (receiver, sender, method, pc, stack). Specific to VisualWorks.

Universitat Bern Ducasse Stéphane 3.71

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Global Variables

» Capitalized
M/d obal := 3.14
Smalltalk will ask you if you want to create a new global
Smal I tal k at: #WM/d obal put: 3.14
M/d obal Prit-> 3.14
Smal ltalk at: #Wd obal Prit-> 3.14
 Store in the default environment: Smal | t al k (aSyst enDi cti onary)
» Accessible from everywhere

» Usually not really a good idea to use them, use a classVariable (if shared within an
hierarchy or a instance variable of a class)

* To remove a global variable:
Smal | tal k renoveKey: #M/d obal

« Some predefined global variables:
Smal I tal k (classes + gl obal s)

Undecl ared (aPool D ctionary of undecl ared vari abl es accessible fromthe conpiler)
Transcript (Systemtranscript)

Schedul edControl | ers (w ndow control | ers)

Processor (a ProcessScheduler list of all the process)

Universitat Bern Ducasse Stéphane 3.72

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Three Kinds of Messages

Unary
2.4 inspect

macNode nane
Binary
1+2->3
(1L +2) * (2+3) Prit-> 15
3* 5Prlit-> 15
Keyword based
6 gcd: 24 Prit-> 6
pcNode next Node: node2
aLan connect NodesFr omAddr esses: #(nmac nodel pc node2 node3 | pr)

Message composed by :

- a receiver always evaluated (1+2)

- a selector never evaluated

- and a list possibly empty of arguments that are all evaluated (2+3)
The receiver is linked with sel f in a method body.

Universitat Bern Ducasse Stéphane 3.73

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Unary Messages

aReceiver aSelector

node3 next Node -> printer Node

node3 nane -> #node3

1 class Prit-> Small | nteger

false not Prit-> true

Date today Prit-> Date today Septenber 19, 1997
Time now Prit-> 1:22:20 pm

Doubl e pi Prit-> 3.1415926535898d

Universitat Bern Ducasse Stéphane 3.74

Object-Oriented Design with Smalltalk a Pure OO Language

Binary Messages

aReceiver aSelector anArgument

Binary messages:
- arithmetic, comparison and logical operations

- one or two characters long taken from
+ -\ ~<>= @%| &! ?,

1+2 2>3 100@00 ‘the', 'best’

Restriction:
- second character is never $-

- no mathematical precedence so take care
3+2* 10 -> 50
3+ (2* 10) -> 23

Universitat Bern Ducasse Stéphane

Syntax and Messages

3.75

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Keyword Messages

receiver keywordl: argumentl keyword2: argument2 ...

In C-like languages: receiver keywordlkeyword?2...(argumentl typel, argument2, type2) : return-type

Wor kst ati on wi t hNane: #Mac2

mac next Node: nodel

Packet send: 'This packet travelled around to the printer' to: #l w100
aLan creat eAndDecl ar eNodesFr omAddr esses: #(nodel node2 node3) of Ki nd: Node
1@l setX: 3

#(1 2 3) at: 2 put: 25

1to: 10 -> (1 to: 10) aninterval

Browser newOnd ass: Poi nt

Interval from1l to: 20 Prit-> (1 to: 20)

12 between: 10 and: 20 Prit-> true

X >0 ifTrue:['positive'] ifFalse:['negative']

Universitat Bern Ducasse Stéphane 3.76

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Composition

69 cl ass i nspect
(0@ extent: 100@00) bottonR ght

Precedence Rules:
— (E) > Unary-E > Binary-E > Keywords-E
— at same level, from the left to the right
2 + 3 squared -> 11

2 raisedTo: 3 + 2 -> 32
#(1 2 3) at: 1+1 put: 10 + 2 * 3 -> #(1 36 3)

Hints: Use () when two keyword based messages are consequent, else the precedence order is fine.
X i sN |

ifTrue: [...]
| SNi | is an unary message, so it is evaluated priorto 1 f Tr ue:
(x includes: 3)
ifTrue: [...]

| ncl udes: is akeyword based message, it has the same precedence than ifTrue:, so it should be eval-
uated prior to ifTrue; because the method I NCl udes: i f Tr ue: does not exist.

Universitat Bern Ducasse Stéphane 3.77

Object-Oriented Design with Smalltalk a Pure OO Language

Sequence

messagel.
message?2.
message3

. IS a separator not a terminator

| mracNode pcNode nodel printerNode node2 node3 packet |

"nodes definition"

nmacNode
pcNode
nodel :
node2 :
node3 :

Transcri pt
Transcri pt
Transcri pt
Transcri pt

Universitat Bern

= Wrkstation w thNanme: #nac.

.= Workstation w thNanme: #pc.

Node wi t hNane: #nodel.
Node wi t hNane: #node2.
Node wi t hNane: #node2.

cr.
show. 1 printString.
cr.

show. 2 printString

Ducasse Stéphane

Syntax and Messages

3.78

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Cascade

receiver selectorl [arg] ; selector2 [arg] ; ...
Transcript show 1 printString. Transcript show cr

|s equivalent to:
Transcript show 1 printString ; cr

Important: the semantics of the cascade is to send all the messages composing the
cascade to the receiver of the FIRST message being involved into the cascade.

Examples:
| wor kst |
wor kst : = Workstation new.
wor kst nane: #nmac .
wor kst next Node: aNode

|s equivalent to: Wrkstation new name: #mac ; nextNode: aNode
Where nane: is sent to the newly created instance of workstation and next Node: too.

In the following example the FIRST message being involved in a cascade is the first
#add: and not#w t h: . So all the messages will be sent to the result of the parenthesed
expression the newly created instance anOr der edCol | ecti on

(OrderedCol l ection with: 1) add: 25; add: 35

Universitat Bern Ducasse Stéphane 3.79

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

yourself

One problem: (o deredcol lection with: 1) add: 25; add: 35 Prit-> 35
Returns 35 and not the collection!

Let us analyze a bit:

O deredCol | ecti on>>add: new(bj ect
"I ncl ude newChbj ect as one of the receiver's elenments. Answer new(bject."”
"sel f addLast: new(bj ect

O deredCol | ecti on>>addLast: new(Chj ect
"Add newChj ect to the end of the receiver. Answer new(bject."”
| astl ndex = self basicSize ifTrue: [self nakeRoomAt Last].
[astlndex := lastlndex + 1.
self basicAt: lastlndex put: new(bject.
"new(hj ect

How can we reference the receiver of the cascade?
By using yourself: your sel f returns the receiver of the cascade.

(O deredCol l ection wth: 1) add: 25; add: 35 ; yourself
-> O deredCol | ection(1 25 35)

Universitat Bern Ducasse Stéphane 3.80

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Have You Really Understood Yourself ?

Yourself returns the receiver of the cascade:
Wrkstati on new nane: #mac ; next Node: aNode ; yourself

Here the receiver of the cascade is aWor kst at i on the newly created instance and not
the class Wor kst ati on. sel f ofthe yoursel f method is linked to this instance
(aWor kst at i on)

In
(O deredCol l ection with: 1) add: 25; add: 35 ; yourself
anOrderedCol l ection(1l) = self

So if you are that sure that you really understand yourself, what is the code of yourself?
Answer:
bj ect >>your sel f
N sel f

Universitat Bern Ducasse Stéphane 3.81

Object-Oriented Design with Smalltalk a Pure OO Language

Block (1): Definition

» A deferred sequence of actions

* Return values is the result of the last expression of the block
» = Lisp Lambda-Expression, ~ C functions, anonymous functions or procedure

[:variablel :variable2 |
| blockTemporaryl blockTemporary? |
expressionl.
...variablel ...

]
Two blocks without arguments and temporary variables
Print er Server >>accept: thePacket
(t hePacket isAddressedTo: self)
ifTrue: [self print: thePacket]
i fFal se: [super accept: thePacket]

A block with one argument and no temporary variable
Net wor kManager >>f i ndNodeW t hAddr ess: aSynbol
“return the first node having the address aSynbol”
"sel f detectNode: [:aNode| aNode name = aSynbol] ifNone: [nil]

Universitat Bern Ducasse Stéphane

Syntax and Messages

3.82

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Block (ii): Evaluation

[....] value

or val ue:

or val ue: val ue:

or val ue: val ue: val ue:

or val ueWthArgunents: anArray

The value of a block is the value of its last statement, except if there is an explicit return *

Blocks are first class objects, they are created, pass as argument, stored into variables...
fct(x) =x "2 + X
fct (2) =6
fct (20) =420
| fct|
fect:=[:x | x* x + X].
fct value: 2 Prit-> 6
fct value: 20 Prit-> 420
fct Prit-> aBl ockd osure

Universitat Bern Ducasse Stéphane 3.83

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Block (i)

| i ndex bl oc |

i ndex := 0.

bloc := [index := index +1].
I ndex := 3.

bloc value -> 4

| nt eger >>f actori al
"Answer the factorial of the receiver. Fail if the

receiver is |less than O.

| tnp |

tnmp = 1.

2 to: self do: [:i | tnp :=1tnmp * i].
/\tn-p

For performance reason avoid as much as possible to refer to variables that are
outside a block.

Universitat Bern Ducasse Stéphane 3.84

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

Primitives

For optimization, if the primitive fails the code is executed.

| nt eger>>@y
"Answer a new Poi nt whose x value is the receiver and whose y value is the argunent."”

<primtive: 18>
APoint x: self y: vy

World limits!

== an(bj ect
"Answer true if the receiver and the argunent are the sanme object (have the sane
object pointer) and false otherwise. Do not redefine the nessage == in any

ot her class! No Lookup."

<primtive: 110>
self primtiveFailed

+ - <> [= =DbitShift:\\ bitAnd: bitQ: >= <= at: at:put:
new new.

Universitat Bern Ducasse Stéphane 3.85

Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

What You Should Know

- Syntax

- Basic objects

- Message constituants
- Message semantics

- Message precedence
- Block definition

- Block use

- yourself semantics

- pseudo-variables

To know all that, the best thing to do is to take a Smalltalk and type in some expressions,
to look at the return expressions

Universitat Bern Ducasse Stéphane 3.86

Smalltalk a Pure OO Language Dealing with Classes

6. Dealing with Classes

- Class definition

- Method definition

- Inheritance semantics

- Basic class instanciation

Universitat Bern Ducasse Stéphane 4.87

Smalltalk a Pure OO Language Dealing with Classes

Class Definition: The Class Packet

A template is proposed by the browser:
NanmeO Super cl ass subcl ass: #NanmeOf A ass
I nst anceVari abl eNanes: 'i nstVar Nanel i nst Var Nane2'
cl assVari abl eNanes: ' d assVar Nanel d assVar Nane2'
pool D ctionari es:
cat egory: 'CategoryNane'

Example:
(bj ect subcl ass: #Packet
I nst anceVari abl eNanmes: 'contents addressee origi nator '
cl assVari abl eNanes: '

pool D ctionari es:
category: 'LAN Sinul ation'

Automatically a class named “Packet cl ass”is created.
Packet is the unique instance of Packet cl ass.
(To see it click on the class button in the browser)

Universitat Bern Ducasse Stéphane 4.88

Smalltalk a Pure OO Language Dealing with Classes

Named Instance Variables

Nanme(F Super cl ass subcl ass: #NanmeOr d ass

I nst anceVar i abl eNanes: 'i nstVar Nanel i nst Var Nane2'

(bj ect subcl ass: #Packet

I nst anceVari abl eNanmes: 'contents addressee ori gi nator

» Begins with a lowercase letter

» Explicitly declared: a list of instance variables
 Name should be unique / inheritance
 Default value of instance variable is ni |

* Private to the instance: instance based (C++ class-based)

» Can be accessed by all the methods of the class and subclasses (instance methods)
» But instance variables cannot be accessed by class methods.

* A client cannot directly access to iv. No private, protected like in C++

* Need accessor methods to access instance variable.

Universitat Bern Ducasse Stéphane 4.89

Smalltalk a Pure OO Language Dealing with Classes

Method Definition

Follow the template:

nmessage sel ector and argument nanes

"coment stating purpose of nmessage"

| tenmporary variabl e nanes |
statenents
For example:
Packet >>def aul t Cont ent s
“returns the default contents of a Packet”
A ‘contents no specified

Wor kst ati on>>ori gi nate: aPacket
aPacket originator: self.
sel f send: aPacket

How to invoke a method on the same object? Send the message to sel f
Packet >>i sAddr essedTo: aNode
“returns true if |’ m addressed to the node aNode”
N self addressee = aNode nane

Universitat Bern Ducasse Stéphane 4.90

Smalltalk a Pure OO Language Dealing with Classes

Accessing Instance Variables

Using direct access for the methods of the class
Packet >>i sSent By: aNode
A originator = aNode
IS equivalent to use accessors

Packet >>ori gi nat or

A origi nator

Packet >>i sSent By: aNode
N self originator = aNode

Some accessors for the class Packet
Packet >>addr essee
N addr essee

Packet >>addr essee: aSynbol
addr essee : = aSynbol

Hints: Do not directly access instance variables of a superclass from the subclass methods. This way classes will
not be strongly linked at the structure level.

Universitat Bern Ducasse Stéphane 491

Smalltalk a Pure OO Language

Lazy Initialization

When some instance variables are
- not used all the time
- consuming a lot of space
- need a lot of computation

-> Use lazy initialization based on accessors

A lazy initialization schema with default value
Packet >>cont ent s
contents isN |
I fTrue: [contents := ‘no contents’]
N contents

A lazy initialization schema with computed value
Durmy>>r at i oBet weenTher nonucl ear AndSol ar
ratio i sN |
I fTrue: [ratio := self heavyConputati on]

Nratio

Universitat Bern Ducasse Stéphane

Dealing with Classes

4.92

Smalltalk a Pure OO Language Dealing with Classes

Methods always Return a Value

» Message = effect + return value
» By default, a method returns sel f

 In a method body, the * expression returns the value of the expression as the result of
the method execution.

Node>>accept: thePacket
"Havi ng received the packet, send it on. This is the default behavior”
sel f send: thePacket

IS equivalent to:

Node>>accept: thePacket
"Havi ng recei ved the packet, send it on. This is the default behavior"”
self send: thePacket.
~sel f

If we want to return the value returned by #send.:

Node>>accept: thePacket
"Havi ng received the packet, send it on. This is the default behavior"
"sel f send: thePacket.

Universitat Bern Ducasse Stéphane 4.93

Smalltalk a Pure OO Language Dealing with Classes

Some Naming Conventions

» Shared variables begin with an upper case letter
* Private variables begin with a lower case letter
» Use imperative verbs for methods performing action like #openOn:

For accessor, use the same name as for the instance variable

addr essee
N addr essee

addr essee: aSynbol
addr essee : = aSynbol

 For predicate methods (returning a boolean) prefix the method with i s or has
isNil, isAddressedTo:, isSentBy:

» For converting methods prefix the method with as

asString

Universitat Bern Ducasse Stéphane 4.94

Smalltalk a Pure OO Language Dealing with Classes

Inheritance in Smalltalk

* Single inheritance

» Static for the instance variables.

At class creation time the instance variables are collected from the superclasses and the
class. No repetition of instance variables.

* Dynamic for the methods.

Late binding (all virtual) methods are looked up at run-time depending of the dynamic
type of the receiver.

Universitat Bern Ducasse Stéphane 4.95

Smalltalk a Pure OO Language Dealing with Classes

Remember...

nodePrinter aPacket nodel
accept: aPacket
iIsAddressedTo: nodePrinter
4_ _____________
[true]
Node nextNode
name it aPack
accept: aPacket Print: aPacket
send: aPacket [r
haSNeXt/NOie [false]
| |
Printer Workstation :
print: aPacket originate: aPacket send: aPacket
accept: aPacket accept: aPacket accept: aPacket

Universitat Bern Ducasse Stéphane 4.96

Smalltalk a Pure OO Language Dealing with Classes

Node

(hj ect subcl ass: #Node
i nst anceVari abl eNanes: ' nane next Node

Node net hodsFor: ‘accessing’
Node net hodsFor: ‘printing’
Node net hodsFor: ‘send-receive’

accept: aPacket
"Havi ng received the packet, send it on. This is the default behavi or subcl asses

wi Il probably override ne to do sonething special"”

sel f hasNext Node
i fTrue: [self send: aPacket]

send: aPacket
"Precondition: there is a next node. Send a packet to the next node"

sel f next Node accept: aPacket

Universitat Bern Ducasse Stéphane 4.97

Smalltalk a Pure OO Language Dealing with Classes

Workstation

Node subcl ass: #Wrkstati on
i nst anceVari abl eNanes:

Node nethodsFor: ‘printing
Node net hodsFor: ‘ send-receive’

accept: aPacket

“when a workstation accepts a packet that is addressed to it, it just prints sone trace in the
transcript”

(aPacket isAddressedTo: self)
ifTrue:[Transcript show 'A packet 1is accepted by the Wrkstation ', self nanme asString]

i f Fal se: [super accept: aPacket]
Node net hodsFor: ‘send-receive’
origi nate: aPacket

aPacket originator: self.

sel f send: aPacket

Universitat Bern Ducasse Stéphane 4.98

Smalltalk a Pure OO Language Dealing with Classes

Message Sending & Method Lookup

sending a message: receiver selector args <=>
applying a method looked up associated with selector to the receiver and the args

Looking up a method:

When a message (receiver selector args) is sent, the method corresponding to the
message selector is looked up through inheritance chain.

=> the lookup starts in the class of the receiver.
If the method is defined in the class dictionary, it is returned.

Else the search continues in the superclasses of the receiver's class.
If no method is found and that there is no superclass to explore (class Cbj ect),
a new method called #doesNot Under st and: is sent to the receiver,
with a representation of the initial message.

Universitat Bern Ducasse Stéphane 4.99

Smalltalk a Pure OO Language Dealing with Classes

Method Lookup Examples (i)

nodel accept: aPacket

Node nextNode _ _
name 1. nodel is an instance of Node
accept: aPacket _]
send: aPacket 2.accept : islooked up in the class Node
hasNextNode] .)
3. accept: is defined in Node => lookup stops +
/\ method executed
| |
Printer Workstation
print: aPacket originate: aPacket| macNode accept: aPacket
accept: aPacket accept: aPacket .]]
1.macNode is an instance of Wor kst ati on

2. accept: islooked up in the class Wr kst ati on
3. accept: is defined in Node => lookup stops + method executed

macNode nane
1. macNode is an instance of Wor kst at i on.
2. nane: islooked up in the class Wor kst ati on
3. nane is not defined in Wor kst at i on => lookup continues in Node
4. nane is defined in Node => lookup stops + method executed

Universitat Bern Ducasse Stéphane 4.100

Smalltalk a Pure OO Language Dealing with Classes

Method Lookup Examples (ii)

nodel print: aPacket
1. node is an instance of Node
print: islooked up in the class Node
pri nt: is not defined in Node => lookup continues in Obj ect
pri nt: is not defined in Node => lookup stops + exception
message: nodel doesNot Under st and: #(#print aPacket) isexecuted

nodel is an instance of Node so doesNot Under st and: is looked up in the
class Node

doesNot Under st and: is not defined in Node => lookup continues in Obj ect

8. doesNot Under st and: is defined in Obj ect => lookup stops + method
executed (open a dialog box)

o kWD

~

Universitat Bern Ducasse Stéphane 4.101

Smalltalk a Pure OO Language Dealing with Classes

Method Lookup Examples (ii)

Object

doesNotUnderstand: aMessage | |

| print: |
| I
| | 6

Node |~ — -~ — = — =~ - - |
name
accept: aPacket - - B
send: aPacket 2
hasNextNode |< — — — 4 orint

I
_ I
4 | ' |
- | |
nodel print: aPacket 1\ | | doesNotUnderstand:5
[I
1

#nodel |~~~ —°

nodel print: aPacW W

Universitat Bern Ducasse Stéphane 4.102

Smalltalk a Pure OO Language Dealing with Classes

How to Invoke Overriden Methods?

Send messages to super

When a packet is not addressed to a workstation, we just want pass the packet to the
next node i.e. to perform the default behavior defined by Node.

Wor kst at i on>>accept: aPacket

“when a workstation accepts a packet that is addressed to it, it just prints sone trace in the
transcript”

(aPacket isAddressedTo: self)
i fTrue:[Transcript show 'A packet 1is accepted by the Wirkstation ', self nanme asString]

i fFal se: [super accept: aPacket]

Hints: Do not send messages to super with different selectors than the original one. It introduces implicit
dependency between methods with different names.

Universitat Bern Ducasse Stéphane 4.103

Smalltalk a Pure OO Language Dealing with Classes

Semantics of super

« Assel f, super is a pseudo-variable that refers to the receiver of the message.
» Used to invoke overriden methods.

 When using sel f the lookup of the method begins in the class of the receiver .

 When using super the lookup of the method begins in the superclass of the class of
the method containing the super expression and NOT in the superclass of the receiver
class.

Other said:;

e super causes the method lookup to begin searching in the superclass of the class of
the method containing super

Universitat Bern Ducasse Stéphane 4.104

Smalltalk a Pure OO Language Dealing with Classes

Let us be Absurb!

Let us suppose the WRONG hypothesis:

"IF super semantics = starting the lookup of method in the
superclass of the receiver class”

agat e accept: aPacket Node
1. agat e is an instance of DuplexWorkstation accept: aPacket
accept: is |looked up in the class Dupl exWrkstation A
2. accept: is not defined in DuplexWorkstation => lookup
continues in Workstation Workstation
3. accept: is defined in Workstation => lookup stops + accept: aPacket
method executed Asuper accept: aPacket

4. Workstation>>accept: does a super accept: |

5. By Hypothesis: super = lookup in the superclass of the DuplexWorkstation
receiver class. The superclass of the receiver class =

Workstation /4 _
<<instance of >>

agate

=> That's loop
So Hypothesis is WRONG !!

Universitat Bern Ducasse Stéphane 4.105

Smalltalk a Pure OO Language

Object Instantiation

Objects can be created by:
- Direct Instance creation: (basi c) new new:
- Messages to instances that create other objects
- Class specific instantiation messages

Universitat Bern Ducasse Stéphane

Dealing with Classes

4.106

Smalltalk a Pure OO Language Dealing with Classes

Direct Instance Creation: (basic)new/new:

« aCl ass newbasi cNew=> returns a newly and UNINITIALIZED instance
O deredCol | ection new -> OrderedCol I ection ()

Packet new -> aPacket
Packet new addressee: #nac ; contents: ‘hello mac’

Instance variable values = nil
o #new. /basi cNew. to specify the size of the created instance (indexed variable)
Array new 4 -> #(nil nil nil nil)

* #new/#new. can be specialized ot have a customized creation
» #basi cNew#basi cNew. should never be overriden

 # new/basi cNew and new: /basi cNew. are class methods

Universitat Bern Ducasse Stéphane 4.107

Smalltalk a Pure OO Language Dealing with Classes

Messages to Instances that Create Objects

1 to 6 (an interval)
1@ (a point)
(0@) extent: (100@L00) (a rectangl e)
#l ulu asString (a string)

1 printString (a string)

3 asFl oat (a float)

#(23 2 3 4) asSortedColl ection (a sortedCol | ection)

Universitat Bern Ducasse Stéphane 4.108

Smalltalk a Pure OO Language Dealing with Classes

Opening the Box

1to;: 6 -> an Interval
Nunber >>t o: stop

"Answer an Interval fromthe receiver up to the argunent, stop, wth

each next el enent conputed by increnenting the previous one by 1."
Alnterval from self to: stop by: 1

1 printString -> aString
Qoj ect>>printString

"Answer a String whose characters are a description of the receiver."
| aStream |

aStream:= WiteStreamon: (String new 16).
self printOn: aStream
NaStream contents

1@ -> aPoi nt

Nunber >>@y
"Answer a new Poi nt whose x value is the receiver and whose y value is the argunent."”
<primtive: 18>

APoint x: self y: vy

Universitat Bern Ducasse Stéphane 4.109

Smalltalk a Pure OO Language Dealing with Classes

Class specific Instantiation Messages

Array with: 1 with: "lulu

O deredCol lection with: 1 with: 2 with: 3
Rectangl e fromJser -> 179@5 corner: 409@19
Browser browseAl || npl emrent or sCf: #at : put :
Packet send: ‘Hello mac’ to: #nac

Wor kst ati on wi t hNane: #nmac

Universitat Bern Ducasse Stéphane 4.110

Smalltalk a Pure OO Language Dealing with Classes

What you should know

 Defining a class
 Defining methods

« Semantics of sel f
« Semantics of super
* Instance creation

Universitat Bern Ducasse Stéphane 4.111

Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

/. Basic Objects, Conditional and LoOops

- Booleans

- Basic loops

- Overview of Collection the superclass of more than 80 classes:
(Bag, Array, OrderedCol | ecti on, SortedCol | ecti on, Set,
Di ctionary..)

- Loops and Iteration abstractions

- Common object behavior

Universitat Bern Ducasse Stéphane 5.112

Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

Boolean Objects

-fal se andtr ue are objects described by classes Bool ean, Tr ue and Fal se
- uniform but optimized and inlined (macro expansion at compile time)

- Logical Comparisons &, |, xor:, not

aBool eanExpr essi on conpari son anot her Bool eanExpr essi on
(1 isZero) & false

- Lazy Logical operators
aBool eanExpr essi on and: andBl ock, aBool eanExpression or: orBl ock

andBlock will only be valued if aBooleanExpressionistrue

orBlock will only be valued if aBooleanExpressionis f al se
false and: [1 error: 'crazy'] Prlit-> false and not an error

- Conditionals

aBool ean i fTrue: aTrueBl ock ifFal se: aFal seBl ock
aBool ean ifFal se: aTrueBl ock ifTrue: aFal seBl ock
aBool ean i f True: aTrueBl ock
aBool ean i f Fal se: aFal seBl ock

1 <2 ifTrue: [...] ifFalse: [...]

1l <2ifFalse: [...] ifTrue: [...]

1 <2 ifTrue: [...]

1 <2ifFalse: [...]

Hints: Take care t I U€ is the boolean value and TTr Ue€ is the class of true its unique instance!
Hints: Why conditional expressions use blocks? Because, when a message is sent: the receiver and the argu-
ments of the message are evaluated. So block uses are necessary to avoid to evaluate both branchs.

Universitat Bern Ducasse Stéphane 5.113

Object-Oriented Design with Smalltalk a Pure OO Language

Some Basic Loops

aBl ockTest
aBl ockTest
aBl ockTest
aBl ockTest

whi | eTr ue
whi | eFal se
whi | eTrue: aBl ockBody
whi | eFal se: aBl ockBody

anl nt eger tinesRepeat: aBl ockBody

[Xx<y] whileTrue: [x := x + 3]

10 timesRepeat: [Transcript show 'hello';

Universitat Bern

Ducasse Stéphane

Basic Object, Conditional and Loops

cr]

5.114

Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

For the Curious!

Bl ockd osur e>>whi | eTrue: aBl ock
N sel f value ifTrue: [aBl ock val ue.
sel f whil eTrue: aBl ock]

Bl ockd osur e>>whi | eTr ue
N [self value] whileTrue:[]

| nt eger >>t i mesRepeat : aBl ock
“Eval uate the argunent, aBl ock, the nunber of tines represented by the receiver."

| count |

count := 1.

[count <= self] whileTrue: [aBl ock val ue.
count := count + 1]

Universitat Bern Ducasse Stéphane 5.115

Object-Oriented Design with Smalltalk a Pure OO Language

Collections

« Only the most important

» Some criterias to identify them. Access: indexed, sequential or key-based.
Size: fixed or dynamic. Element type: any or well-defined type.
Order: defined, defineable or no. Duplicate: possible or not

Sequenceabl e
ArrayedCol | ecti on
Array
Char acter Array
String
| nt eger Arr ay
I nterva
Li nkedLi st
O deredCol | ection
Sort edCol | ecti on
Bag
Set
| dent it ySet
Dictionary
| dentityDi ctionary

Universitat Bern

ordered

fixed size + key = integer
any kind of elenents

el enents = character

arithmeti que progression

dynam ¢ chai ni ng of the el ement
size dynamc + arrival order
explicit order

possi bl e duplicate + no order

no duplicate + no order
identification based on identity
el enent = associ ations + key based
key based on identity

Ducasse Stéphane

Basic Object, Conditional and Loops

5.116

Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

Another View

eyed

y ™ Duplicates Allowed
Integer Key y‘ 0
Adds AIIowed/ N UniqueKey Bag Set

Y\ 78R\

Arra | dentit D cti onar
SOI‘ted Stri %g Dcti on)a/r y Y
n
Sorted y
Col | ecti on
Ordered
Col | ection

Universitat Bern Ducasse Stéphane 5.117

Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

Collection Methods

Will be defined, redefined, optimized or forbiden in subclasses

Accessing: #si ze, #capacity, #at: anlnteger, #at: anlnteger put:
anEl enment

Testing: #1 sEnpty, #i ncl udes: anEl enent, #contains: aBl ock,
occurencesO : anEl enent

Adding: #add: anEl ement, #addAll: aColl ection

Removing: #r enove: anEl enent, #renove: anEl enent if Absent: aBl ock,
#removeAl |l . aCol | ecti on

Enumerating (See generic enumerating)

#do: aBl ock, #collect: aBl ock, #sel ect: aBl ock, #reject: aBl ock,
#detect:, #detect: aBl ock ifNone: aNoneBl ock, #i nject: aval ue
| nt o: aBi naryBl ock

Converting: #asBag, #asSet, #asOrderedColl ecti on,
#asSortedCol | ecti on, #asArray, #asSortedColl ection: aBl ock

Creation: #wmi t h: anEl enent, #wth:wth:, #wth:wth: wth:,
Awmth:wth:wth:wth:, #wth: All: aColl ection

Universitat Bern Ducasse Stéphane 5.118

Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

Seguenceable Specific (Array)

| arr|

arr := #(calvin hates suzie).
arr at: 2 put: #l oves.
arr Prlt-> #(#calvin #l oves #suzie)

Accessing:

#first, #last, #at Al |l Put: anEl enent, #at Al l: anl ndexColl ecti on:;:
put : anEl ement

Searching (*: + ifAbsent:)

#1 ndexOf : anEl ement, #i ndexCOf: anEl enent ifAbsent: aBl ock
Changing:

#repl aceAll : anEl ement w th: anot her El enent

Copying:

#copyFrom first to: last, copyWth: anEl enent, copyWthout:
anEl ement

Universitat Bern Ducasse Stéphane 5.119

Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

KeyedCollection Specific (Dictionary)

| di ct|

dict := Dictionary new.

dict at: "toto' put: 3.

dict at: "titi' ifAbsent: [4]. -> 4
dict at: "titi' put: 5.

di ct renoveKey: 'toto'.

dict keys -> Set ('titi")

Accessing:

#at:. aKey, #at: aKey ifAbsent: aBl ock, #at: aKey ifAbsent Put:
aBl ock, #at: aKey put: aVal ue, #keys, #val ues, #associ ations

Removing:

#renmoveKey: aKey, #renoveKey:. aKey ifAbsent: aBl ock
Testing:

#1 ncl udeKey: akKey

Enumerating:

#keysAndVal uesDo: aBl ock, #associ ationsDo: aBl ock, #keysDo:
aBl ock

Universitat Bern Ducasse Stéphane 5.120

Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

Choose your Camp!

You could write:

absol ute: aColl ection

Sure!
Or

| resul t|
result := aCollection species new aCollection size.

1 to: aCollection size do:
[:each | result at: each put: (aCollection at: each) abs].

N resul t

absol ute: aCol |l ection

A aCol l ection collect: [:each|l each abs]

Really important: Contrary to the first solution, this solution works well for indexable
collection and also for sets.

Universitat Bern Ducasse Stéphane 5.121

Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

lteration Abstraction: do:/collect:

aCol |l ecti on do: aOnePar anet er Bl ock

aCol l ection collect: aOneParaneterBl ock
aCol l ection with: anotherCollection do: aBinaryBl ock

#(15 10 19 68) do:
[:1 | Transcript show i printString ; cr]

#(15 10 19 68) collect: [:i | 1| odd]
Prit-> #(true fal se true fal se)

#(1 2 3) with: #(10 20 30)
do: [:x :y| Transcript show (y ** x) printString ; cr]

Universitat Bern Ducasse Stéphane 5.122

Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

Iteration Abstraction: select:./reject./detect.

aCol |l ection sel ect: aPredicateBl ock
aCol l ection reject: aPredicateBl ock
aCol | ection detect: aOneParaneterPredi cat eBl ock
aCol | ecti on
det ect: aOnePar anet er Predi cat eBl ock
| f None: aNoneBl ock

#(15 10 19 68) select: [:i|i odd] -> #(15 19)

#(15 10 19 68) reject: [:i]i odd] -> #(10 68)

#(12 10 19 68 21) detect: [:i|i odd] Prit-> 19

#(12 10 12 68) detect: [:i]i odd] ifNone:[1] Prit-> 1

Universitat Bern Ducasse Stéphane 5.123

Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

Iteration Abstraction: inject:into:

aCol l ection inject: aStartValue into: aBi naryBl ock

| acc|
acc := 0.
#(1 2 34 5) do: [:elenent | acc := acc + elenent].
acc
-> 15
#(1 2 3 45)
inject: O

into: [:acc :elenment| acc + el enent]
-> 15

Universitat Bern Ducasse Stéphane 5.124

Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

Collection Abstraction

aCol l ection includes: anEl enent
aCol | ection size

aCol l ection i seknpty

aCol | ecti on contai ns: aBool eanBl ock

#(1 2 3 4 5) includes: 4 -> true

#(1 2 345) size ->5

#(1 2 34 5) iskEmpty -> fal se

#(1 2 3 4 5) contains: [:each | each isQdd] -> true

Universitat Bern Ducasse Stéphane 5.125

Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

Examples of Use: NetworkManager

aLan fi ndNodeWt hAddress: #nac

Net wor kManager >>f i ndNodeW t hAddr ess: aSynbol
Asel f findNodeWthAddress: aSynbol ifNone: [nil]
Net wor kManager >>f i ndNodeW t hAddr ess: aSynbol ifNone: aBl ock

"nodes detect: [:aNode| aNode nanme = aSynbol] ifNone: aBl ock

aLan creat eAndDecl ar eNodesFr omAddr esses: #(nodel node2 node3) of Ki nd: Node

Net wor kManager >>cr eat eAndDecl ar eNodesFr omAddr esses: anArrayO Addresses of Ki nd: aNoded ass
"given a list of addresses, create the correspondi ng nodes of the aNoded ass ki nd"

(Node wit hAl | Subcl asses i ncl udes: aNoded ass)
i fTrue: [anArray(f Addresses do: [:each | self decl areNode: (aNoded ass w thNanme: each)]]
ifFalse: [self error: aNoded ass nane , ' is not a class of nodes']

Universitat Bern Ducasse Stéphane 5.126

Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

Common Shared Behavior (i)

- Object is the root of inheritance tree.

- Defines the common and minimal behavior for all the objects in the system.
=> 161 instance methods + 19 class methods

- #cl ass

- Comparison of objects: #==, #~~, #=, #=~, #isN |, #not N |

- Copy of objects: #shal | owCopy, #copy
#shal | owCopy : the copy shares instance variables with the receiver.
default implementation of #copy is #shal | owCopy

a a copy

T
1l - 1t

™~

Universitat Bern Ducasse Stéphane 5.127

Object-Oriented Design with Smalltalk a Pure OO Language

ldentity vs. Equality

= anObj ect

returns t r ue if the structures are equivalent (the same hash number)

(Array with: 1 with: 2) = (Array with:1 with:2) Prit-> true

== an(Obj ect
returns true if the receiver and the argument point to the same
object. #== should never be overriden. On Object #=is #==.
~= is not =, ~~ isnot ==

(Array wth: 1 with: 2) == (Array wth: 1 wth:2) Prit-> fal se
(Array with: 1 with: 2) = (Array with: 1 wth:2) Prit-> true

Take care when redefining #= one should override #hash too!

Basic Object, Conditional and Loops

Universitat Bern Ducasse Stéphane

5.128

Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

Common Shared Behavior (i)

Print and store objects: #print Stri ng, #printOn: aStream
#storeString, #storeOn: aStream
#(123 1 2 3) printString -> '#(123 1 2 3)°
Date today printString -> ' Cctober 5, 1997

Date today storeString -> '(Date readFronttring: ''10/5/1997"'")"
OrderedCol | ection new add: 4 ; add: 3 ; storeString ->

"((OrderedCol | ection new) add: 4; add: 3; yourself)’
But you need to have the compiler so for deployed image this is not convenient

Create instances from stored objects: class methods
readFrom aStream readFronfString: aString
bj ect readFronttring: ' ((OderedCollection new add: 4; add: 3; yourself)’
-> O deredCol l ection (4 3)

Notifying the programmer:

#error: aString, #doesNot Understand: aMessage,

#hal t, #shoul dNot | npl enent, #subcl assResponsibility
Examing Objects: #br owse, #i nspect

Universitat Bern Ducasse Stéphane

Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

Essential Common Shared Behavior

#cl ass returns the class of the object

#i nspect opens an inspector

#br owse opens a browser

#hal t stops the execution and opens a debugger (to be inserted in a body of a method)
#print String (calls#pri nt On:) returns a string representing the object

#st oreSt ri ng returns a string whom evaluation recreates an object equal to the
receiver

#readFronStri ng: aStreamrecreates an object

Universitat Bern Ducasse Stéphane 5.130

Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

What you should know

- Boolean protocol

- Collection protocol

- Conditionals

- Loops and lteration Abstractions
- Common object protocol

But the best way to know that is to play with a Smalltalk interpreter! Yes again!

Universitat Bern Ducasse Stéphane 5.131

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

8. Numbers

Universitat Bern Ducasse Stéphane 4.132

Smalltalk a Pure OO Language

Basics on Number

e Arithemic
5+6, 5-6, 5* 6,

division 30 / 9, integer division 30 // 9, modulo 30 \\ 9
square root9 sqrt,square 3 squar ed

* Rounding

3.8 ceiling -> 4

3.8 floor -> 3

3.811 roundTo: 0.01 -> 3.81
« Range 30 between: 5 and: 40
e Tests

3.8 islnteger

3.8 even, 3.8 odd
 Signs

positive, negative, sign, negated
» Other

mn:, nmax:, cos, In, log, log: arcSin, exp, **

Universitat Bern Ducasse Stéphane

Basic Object, Conditional and Loops

4.133

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

Deeper on Numbers: Double Dispatch (i)

How to select a method depending on the receiver AND the argument ?
Send a message back to the argument passing the receiver as an argument

Example: Coercion between Float and Integer

A not really good solution:

| nt eger >>+ aNunber
(aNunmber isKindO: Float)
i fTrue: [aNunber asFloat + self]
ifFalse: [self addPrimtive: aNunber]

FI oat >>+ aNunber
(aNunmber isKindO: |nteger)
i fTrue: [aNunber asFloat + self]
ifFalse: [self addPrimtive: aNunber]

Universitat Bern Ducasse Stéphane 4.134

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

Deeper on Numbers: Double Dispatch (i)

(c) I nteger>>sunfron nteger: anlnteger
<primtive: 40>

(d) Fl oat >>sunfrom nteger: anl nteger
A anlnteger asFloat + self

(a) | nt eger >>+ aNunber
A aNunber sunfrom nteger: self
(b) FlI oat >>+ aNunber
A aNunber sunfronfl oat: self
(e) I nteger>>sunfrontl oat: aFl oat
NaFl oat + sel f asFl oat
(f) Fl oat >>sunfrontl oat: aFl oat
<primtive: 41>

Some Tests:

+ 1

0+1

+ 1.0: (a->d->b->f)
0 + 1: (b->e->b->f)

Universitat Bern Ducasse Stéphane 4.135

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

Deeper on Numbers: Coercion & Generality

ArithnmeticVal ue>>coerce: aNunber
"Answer a nunber representing the argunment, aNunber, that is the sane kind of Nunber
as the receiver. Mist be defined by all Nunber classes.”

Asel f subcl assResponsibility

Arithm cVal ue>>general ity
"Answer the nunber representing the ordering of the receiver in the generality hierarchy. A nunber
in this hierarchy coerces to nunbers higher in hierarchy (i.e., with larger generality nunbers)."

Asel f subcl assResponsibility

| nt eger >>coerce: aNunber
"Convert a nunber to a conpatible fornf

~aNunber asl nt eger

| nt eger >>general ity
40

CGenerality
Smal | | nt eger 20
I nt eger 40
Fraction 60
Fi xedPoi nt 70
Fl oat 80
Doubl e 90

Universitat Bern Ducasse Stéphane 4.136

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

Deeper on Numbers: #retry.coercing:

Arit hmet i cVal ue>>sunfronl nt eger: anl nt eger
"The argunent anlnteger, known to be a kind of integer,
encountered a problemon addition. Retry by coercing either
anl nteger or self, whichever is the | ess general arithnetic value."
Transcript show 'here arthneticVal ue>>sunFrom nteger' ;cr
Nanl nteger retry: #+ coercing: self

ArithmeticVal ue>>retry: aSynbol coercing: aNunber
"Arithrmetic represented by the synbol, aSynbol, could not be perforned with the receiver and the
argunent, aNunber, because of the differences in representation. Coerce either the receiver or
t he argunent, dependi ng on whi ch has hi gher generality, and try again. If the generalities are the
sane, then this nmessage should not have been sent so an error notification is provided."

self generality < aNunber generality

i fTrue: [~(aNunber coerce: self) perform aSynbol w th: aNunber].
self generality > aNunber generality

ifTrue: [~self perform aSynbol with: (self coerce: aNunber)].
self error: 'coercion attenpt failed

Universitat Bern Ducasse Stéphane 4.137

Object-Oriented Design with Smalltalk a Pure OO Language

9. Exceptions
Normalised in the ANSI available since VW3.0

Exception is the root of the exception hierarchy: 84 predefined exceptions
Two most important are:
1 Error
[J Notification
Specialised into predefined exceptions
Subclass to create your own exceptions

Some methods of exception:
def aul t Acti on is executed when an exception occurs
descri pti on string describing the actual exception
resune:
return:

Universitat Bern Ducasse Stéphane 1.138

Object-Oriented Design with Smalltalk a Pure OO Language

Main Exceptions

Exception class Exceptional Event Default Action
Error Any program error Open a Notifier
ArithmeticError Any error evaluating an Inherited from Error
arithmetic
MessageNotUnderstood A message was sent to an | Inherited from Error
object that did not define a
corresponding method
Notification Any unusual event that does | Do nothing continuing
not impair continued executing
execution of the program
Warning An ususal event that the Display Yes/No dialog and
user should be informed return a boolean value t the
about signaler
ZeroDivide Inherited from
ArithmeticError

Universitat Bern

Ducasse Stéphane

1.139

Object-Oriented Design with Smalltalk a Pure OO Language

Basic Example of Catching

| x|
X :=7.y :=0.

[x/y]
on: ZeroD vide

do: [:exception| Transcript show exception description, cr.

0....]

an Exception Handler
is defined using on: do:
IS composed by an exception class and a handler block
Zer oD vi de
[:theException| Transcript show ‘ division by zero’]

An Exception Handler completes by returning the value of the handler block in place of
the value of the protected block (here [x/y]).

We can exit the current method by putting an explicit return inside the handler block

Universitat Bern Ducasse Stéphane 1.140

Object-Oriented Design with Smalltalk a Pure OO Language

Exception Sets

[do sone worK]
on: ZeroDi vi de, Warning
do: [: ex| what you want]

Or
| excepti onSet s|
exceptionSets : = ExceptionSet with: ZeroD vide wth: Warning.
[do sone worK]
on: exceptionSets
do: [: ex| what you want]

Universitat Bern Ducasse Stéphane 1.141

Object-Oriented Design with Smalltalk a Pure OO Language

Signaling Exception

Error raiseSi gnal

Warni ng raiseSignal: ‘description that you will get by asking description to the ex-
ception’

Universitat Bern Ducasse Stéphane 1.142

Object-Oriented Design with Smalltalk a Pure OO Language

Exception Environment

Each process has its own exception environment: an ordered list of active handlers.

[]
[]

1 O

Process starts => list empty
[aaaa] on: Error do: [bbb] => Error,bbb added at the beginning of the list

When an exception is signaled the system sends a message to the first handler
of the exception handler.

If the handler cannot handle the exception, the next one is asked
If no handler can handle the exception then the default action is performed

Universitat Bern Ducasse Stéphane 1.143

Object-Oriented Design with Smalltalk a Pure OO Language

Resumable and Non-Resumable

A handler block completes by executing the last statement of the block.
The value of the last statement is then the value returned by the handler block.
Where this value should be returned depends

[]

[]

Nonresumable: like Error

([Error raiseSignal. ‘Value fromprotected bl ock’]

on: Error

do: [:ex|ex return: ‘Value fromhandler’])
gives ‘Value from handler’

Resumable: like Warning, Notification

([Notification raiseSignal. ‘Value fromprotected bl ock’]

on: Notification

do: [:ex|ex resune: ‘Value fromhandler’])

gives ‘Value from protected block’

Here Notification raiseSignal raises an exception, then the context is restored
and the value normally returned

Universitat Bern Ducasse Stéphane 1.144

Object-Oriented Design with Smalltalk a Pure OO Language

Resume:/Return:

Transcri pt show.
([Notification raiseSignal. 'Value fromprotected bl ock']
on: Notification
do: [:ex| Transcript show 'Entering handler
"Value fromhandler'. '5'])
-> Entering handler 5

Transcri pt show
([Notification raiseSignal. 'Value fromprotected bl ock']
on: Notification
do: [:ex| Transcript show 'Entering handler '.
ex resune: 'Value fromhandler'. '5])
-> Entering handler Value from protected bl ock

Transcri pt show
([Notification raiseSignal. 'Value fromprotected bl ock']
on: Notification
do: [:ex| Transcript show 'Entering handler '.
ex return: 'Value fromhandler'. '"5])

-> Entering handl er Val ue from handl er

Universitat Bern Ducasse Stéphane 1.145

Object-Oriented Design with Smalltalk a Pure OO Language

Exiting Handlers Explicity

[J exit orexit: (VW specific) Resumes on resumable and returns on
nonresumable exception

[0 resune orresune: Attempts to continue processing the protected block,
immeditely following the message that triggered the exception.

returnorreturn: ends processing the protected block that triggered the
exception

r et ry re-evaluates the protected block
retryUsi ng: evaluates a new block in place of the protected block
resi gnal As: resignal the exception as another one

pass exit the current handler and pass to the next outer handler, control does
not return to the passer

[outer asinpass, exceptwill regain control if the outer handler resumes

exit:, resume: and return: return their argument as the return value, instead of the value
of the final statement of the handler block

]

N O N O

Universitat Bern Ducasse Stéphane 1.146

Object-Oriented Design with Smalltalk a Pure OO Language

Examples

Look in Exception class examples categories

-2.0 to: 2.0 do:
[0]
[100/ i. Transcript cr; show i printString]
on: Nunber divisi onByZeroSi gnal do:

[:ex | Transcript cr; show 'divideByZero abort'

ex return]

-2.0

-1.0

di vi deByZer o abort
1.0

2.0

Universitat Bern Ducasse Stéphane

1.147

Object-Oriented Design with Smalltalk a Pure OO Language

Examples

[x 1yl
on: ZeroD vi de

do: [:exception|
y = 0.00001.
exception retry]

r et ry recreates the exception environment of active handlers

Universitat Bern Ducasse Stéphane 1.148

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

10. Streams

Universitat Bern Ducasse Stéphane 4.149

Smalltalk a Pure OO Language

Streams

» Allows the traversal of a collection
» Associated with a collection

- collection is a Smalltalk collection: | nt er nal St r eam

Basic Object, Conditional and Loops

- collection is a file or an object that behaves like a collection: Ext er nal St r eam

SEEEEEEEEEEN

 Stores the current position

>

Stream (abstract)
Peekabl eSt ream (abstract)
Posi ti onabl eStream (abstract)
Ext ernal Stream
Ext er nal ReadSt r eam
Ext er nal ReadAppendSt r eam
Ext ernal ReadW it eSt r eam
External WiteStream
I nt ernal Stream
ReadSt r eam
WiteStream
ReadWiteStream

Universitat Bern Ducasse Stéphane

G

4.150

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

An Example

| st

st := ReadWiteStreamon: (OrderedCollection new 5).
st nextPut: 1.

st nextPutAll: #(4 8 2 6 7).

st contents. Prlt-> O deredCollection (148 2 6 7)
st reset.

st next. ->1
st position: 3.
st next. -> 2
st :=#(1 2 5 3 7) readStream
st next. ->1

Universitat Bern Ducasse Stéphane 4.151

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

printSring, printoOn:

oj ect>>print String
“"Answer a String whose characters are a description of the receiver."

| aStream |
aStream:= WiteStreamon: (String new 16).
self printOn: aStream

NaStream contents

Node>>pri nt On: aStream

super printOn: aStream

aStreamnextPutAll: ' with name:'; print: self name.
sel f hasNext Node ifTrue: [
aStreamnextPutAll: ' and next node:'; print: self nextNode nane]

Universitat Bern Ducasse Stéphane 4.152

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

Stream classes(i)

Stream.

#next returns the next element

#next : n returns the n next elements

#cont ent s returns all the elements

#next Put : anEl ement inserts element at the next position

#next Put Al I : aCol | ecti on inserts the collection element from the next position
#at End returns true if at the end of the collection

PeekableStream.

Access to the current without passing to the next

#peek

#ski pFor: anAgr unent

#ski p: nincreases the position of n

#ski pUpTo: anEl ement increases the position after anElement

Creation

#on: aCol | ecti on,

#on: aCol from firstlndex to: |astlndex (index elements included)

Universitat Bern Ducasse Stéphane 4.153

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

Stream Classes (i)

PositionnableStream

#ski pToAl | . #t hroughAl | . #upToAll :
#posi tion

#posi tion: anlnteger

#reset #set ToEnd #i sEnpty

InternalStream

#si1 ze returns the size of the internal collection
Creation #w t h: (without reinitializing the stream)

ReadStream WriteStream and ReadWriteStream
ExternalStream and subclasses

Universitat Bern Ducasse Stéphane 4.154

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

Stream tricks

Transcri pt isa Text Col | ect or that has aStream
Text Col | ect or >>show. aStri ng
self nextPutAl: aString.

self endEntry

#endEnt r y via dependencies asks for refreshing the window

If you want to speed up a slow trace, use #next Put Al | : + #endEnt r y instead of
#show.

| st sc
st := ReadStreamon: ‘we are the chanpions’.

Sc : = Scanner new on: st.
[st atEnd] whileFalse: [Transcript nextPutAll: sc scanToken, * * ‘].

Transcri pt endEntry

Universitat Bern Ducasse Stéphane 4.155

Smalltalk a Pure OO Language Basic Object, Conditional and Loops

Streams and Files

Filename.
#appendStream (addition + creation if file doesnot exists)
#newReadAppendSt ream #newReadWiteStream (if receiver exists, contents renoved)
#readAppendStream #readWiteStream #readStream #witeStream

Example: removing Smalltalk comments of a file

| i nSt ream out Stream |
inStream : = (Fil enane naned: ‘/hone/ducasse/test.st’) readStream
out Stream: = (Fil enane naned: ‘/hone/ducasse/testout.st’) witeStream
“(or *‘/homne/ ducasse/ ducasse’ asFil enane)”
[i nStream at End] whi | eFal se: [
outStreamnextPut All: (inStreamupTo: $").
i nStream ski pTo: $"].
Aout Stream contents

Universitat Bern Ducasse Stéphane 4.156

Smalltalk a Pure OO Language Smalltalk in a Nutshell

Advanced Smalltalk

Advanced Classes
MVC

Concurrency
Metaclasses
Debugging
Internals

OO 0000

Universitat Bern Ducasse Stéphane 1.157

Smalltalk a Pure OO Language Dealing with Classes

11. Advanced Features

- Indexed Classes

- Class as Objects

- Class Instance Variables and Methods
- ClassVariables

- PoolDictionary

Universitat Bern Ducasse Stéphane 5.158

Smalltalk a Pure OO Language Dealing with Classes

@Types of Classes@

Indexed Named Definition Method Examples

No Yes #subcl ass: . .. Packet, Wbrkstation
Yes Yes #vari abl eSubcl ass: Array, Conpil edMet hod
Yes No #vari abl eByt eSubcl ass String, ByteArray

Method related to class types: #i sPoi nters, #i sBits, #i sBytes, #i sFixed,
#i sVari abl e, #ki ndOf Subcl ass

o classes defined using #subcl ass: support any kind of subclasses

» classes defined using #vari abl eSubcl ass: can only have:
vari abl eSubcl ass: orvari abl eByt eSubcl ass: subclasses

» classes defined using #var i abl eByt eSubcl ass
- can only be defined if the superclass has no defined instance variable

- pointer classes and by classes don’t mix
- only byte subclasses

Universitat Bern Ducasse Stéphane 5.159

Smalltalk a Pure OO Language Dealing with Classes

Two Views on Classes

 Named or indexed instance variables
Named: ‘ addr essee’ of Packet
Indexed: Arr ay

 Or looking at them in another way:
Objects with pointers to other objects
Objects with arrays of bytes (word, long)

Difference for efficiency reason:

arrays of bytes (like C string) are faster than storing an array of pointers, each pointing
to a single byte.

Universitat Bern Ducasse Stéphane 5.160

Smalltalk a Pure OO Language Dealing with Classes

Indexed Classes

» For class that needs a variable number of instance variables

Example: the class Arr ay

ArrayedCol | ecti on vari abl eSubcl ass: #Array
I nst anceVari abl eNanes: "'

cl assVari abl eNanes:

pool Di ctionari es:

category: 'Collections-Arrayed

Array new. 4 -> #(nil nil nil nil)
#(1 2 3 4) class isVariable -> true

Universitat Bern Ducasse Stéphane 5.161

Smalltalk a Pure OO Language Dealing with Classes

Indexed Class/Instance Variables

* Indexed variable is implictly added to the list of instance variables
* Only one indexed instance variable per class
» Access with #at : and #at : put :
(#at : put : answers the value not the receiver)

* First access: anl nstance at: 1
» #si ze returns the number of indexed instance variables
* Instantiated with #new. max

| t]

t := (Array new 4).

t at: 2 put: "lulu'.
t at: 1 -> nil
» Subclasses should also be indexed

Universitat Bern Ducasse Stéphane 5.162

Smalltalk a Pure OO Language Dealing with Classes

The meaning of “Instance of” (i)

- Every object is an instance of a class. —
- Every class is ultimately subclass of Obj ect (except Obj ect). v

- When anObject receives a message, the method is lookup in its class and/or its |
superclasses. \

- A class defines the structure and the behavior of all its instances.
- Each instance possesses its own set of values. I

- Each instance shares the behavior with other instances the bevahior defined in its class
via the instance of link.

l
Example: mact
macNode nane

1. macNode is an instance of Wor kst at i on => nane is looked up in the class
Wor kst at i on

2. nane is not defined in Workstation => lookup continues in Node
3. nane is defined in Node => lookup stops + method executed

Universitat Bern Ducasse Stéphane 5.163

Smalltalk a Pure OO Language Dealing with Classes

The meaning of “Instance of” (ii)

- A class is an object too, so messages sent to it are looked up into the class of the class,
its metaclass.

- Every class (X) is the unigue instance of its associated metaclass named X class

Example:

Node wi t hNane: #nodel

1. Node is an instance of Node cl ass =>w t hName: is looked up in the class
Node cl ass

2. wthName: definedin Node cl ass =>lookup stops + method executed

Wor kst ati on wi t hName: #mac
1. Workstationis aninstance of Wor kst ati on cl ass =>w t hNane: is
looked up in the class Wor kst ati on cl ass

2. Wt hName: isnotdefinedin Wor kst ati on cl ass =>lookup continues in the
superclass of Wor kst at i on class = Node cl ass

3. w thNane: is defined in Node cl ass =>lookup stops + method executed

Universitat Bern Ducasse Stéphane 5.164

Smalltalk a Pure OO Language

Lookup and Class Messages

I nstance

nmet hod
| ookup

/

e

N
e

. . I
Object I Object class
Node Node class

name

accept: aPacket |- — = withName:

send: aPacket

hasNextNode

N

Workstation

originate: aPacket |

accept: aPacket

macNode name

Universitat Bern

Workstation class

Dealing with Classes

\
Wrkstati on wi t hNane: #nac

Ducasse Stéphane

- — 3 | NSt ance

of

5.165

Smalltalk a Pure OO Language Dealing with Classes

The Meaning of “Instance-of” (iii)

Node new. #nodel
1. Node is an instance of Node cl ass =>new: is looked up in the class Node
cl ass

2. new: is not defined in Node cl ass =>lookup continues in the superclass of
Node cl ass =Obj ect cl ass

3. new: isnotdefinedin Cbj ect cl ass =>lookup continues in the superclass of
Node cl assCl ass, Cl assDescri pti on, Behavi or

4. new: is defined in Behavi or =>lookup stops + method executed.

Hints: Behavior is the essence of a class. ClassDescription represents the extra functionality for the browsing of
the class. Class supports poolVariable and classVariable.

Universitat Bern Ducasse Stéphane 5.166

Smalltalk a Pure OO Language Dealing with Classes

Metaclass Responsibilities

Concept:
- Everything is an object
- Each object is instance of one class

- A class (X) is also an object, sole instance of its associated metaclass named
X class

- An object is a class if and only if it can create instances of itself.
Metaclass Responsibilities:
- instance creation
- class information (inheritance link, instance variables, method compilation...)

Examples:

Node al | Subcl asses -> O deredCol |l ection (WrkStation QutputServer Wrkstation File-
Server PrintServer)

LanPrint alllnstances -> #()

Node i nstVarNanes -> #(' nane' ' next Node')

Wor kst ati on wi thNane: #mac -> aWrkstation

Wrkstation selectors -> ldentitySet (#accept: #originate:)
Wr kst ati on canUnder st and: #next Node -> true

Universitat Bern Ducasse Stéphane 5.167

Smalltalk a Pure OO Language Dealing with Classes

Class Instance Variables

- As any object, a class is an instance of a class that can have instance variables that
represent the state of a class.

Singleton Design Pattern: a class with only one instance
Net wor kManager cl ass
I nst anceVari abl eNanes: ' uni quel nst ance'

Net wor kManager being an instance of Net wor kManager cl ass has an instance
variable named uni quel nst ance.

Hints: An instance variable of a class can be used to represent information shared by all the instances of the class.
However, use class instance variables to represent preferably state about the class (like the number of instances,
...) and use classVariable instead.

Universitat Bern Ducasse Stéphane 5.168

Smalltalk a Pure OO Language Dealing with Classes

About Behavior

- Behavi or is the first metaclass.
- All other metaclasses inherits from it
- Behavi or describes the minimal structure of a class:
- superclass
- subclasses
- method dictionary
- format (instance variable compressed description)

hj ect subcl ass: #Behavi or

i nst anceVari abl eNanes: ' supercl ass nethodD ct format subcl asses
cl assVari abl eNanes:
pool Di ctionari es:

category: 'Kernel-d asses

Example of Queries

Packet
Packet
Packet

Packet
Packet

supercl ass -> (bj ect

subcl asses - #()

selectors -> ldentitySet (#originator: #addressee: #addressee #i sOri gi nat edFrom #print On:
#i sAddressedTo: #originator #initialize #contents #contents:)

al Il I nstvarNanes -> OrderedCol | ection (' addressee' 'originator' 'contents' 'visitedNodes')

i sDi rect Subcl assO: Gbject -> true

Universitat Bern Ducasse Stéphane 5.169

Smalltalk a Pure OO Language Dealing with Classes

Class Method

- As any object a metaclass can have methods that represent the behavior of a class.
- Some examples of class behavior:
- class definition, finding all instances of a class

- naV|gat|0n |n the hlerarChy NetworkManager _»NetworIkManager
- finding the instance variable names, methods | nodes SriaeineEnee
- compiling method findNode... new

- instance creation
- Can only access instance variable of the class:

Examples: Net wor kManager cl ass>>newcan only access uni quel nst ance class
instance variable and not instance variables (like nodes).

- Default Instance Creation class method:
- new/new: and basicNew/basicNew: (see Direct Instance Creation)

Packet new

- Specific instance creation method
Packet send: ‘Smalltalk is fun’ to: #l pr
Workstati on wi thNane: #nmac
Wrkstation withNane: #mac connectedTo: #l pr

Universitat Bern Ducasse Stéphane 5.170

Smalltalk a Pure OO Language Dealing with Classes

classVariable

How to share state between all the instances of a class: Use classVariable

 a classVariable is shared and directly accessible by all the instances and subclasses
* A pretty bad name: should have been called Shared Variables
» Shared Variable => begins with a uppercase letter

 a classVariable can be directly accessed in instance methods and class methods

NaneCf Super cl ass subcl ass: #NanmeOr d ass
cl assVari abl eNanes: ' d assVar Nanel C assVar Nane2
oj ect subcl ass: #Net wor kManager

cl assVari abl eNanes: ‘ Donai n’

» Sometimes classVariable can be replaced by class methods
Net wor kManager cl ass>>donai n
A “Tamuni be. ch’

Universitat Bern Ducasse Stéphane 5171

Smalltalk a Pure OO Language Dealing with Classes

Class Instance Variables / ClassVariable

 a classVariable is shared and directly accessible by all the instances and subclasses

 Class instance variables as normal instance variables can be accessed only via class
message and accessors:

- an instance variable of a class is private to this class.
- an instance

» Take care when you change the value of a classVariable all the inheritance tree is
impacted!

» ClassVariables can be used in conjunction with instance variables to cache some
common values that can be changed locally in the classes.

Examples: in the Scanner class a table describes the types of the characters (strings,
comments, binary....). The original table is stored into a classVariable, its value is loaded
into the instance variable. It is then possible to change the value of the instance variable
to have a different scanner.
(hj ect subcl ass: #Scanner
i nstanceVari abl eNanes: 'source mark prevEnd hereChar token tokenType buffer typeTable '
cl assVari abl eNanes: ' TypeTabl e '

category: ' System Conpiler-Public Access'

Universitat Bern Ducasse Stéphane 5.172

Smalltalk a Pure OO Language Dealing with Classes

Summary of Variable Visibility

NetworkManager>>detectNode: aBoolBlock | | NetworkManager class>>new

"nodes det ect: aBool Bl ock uni quel nstance i sN |

) i f True: [uni quel nstance : = super new .
instance methods Auni quel nst ance

/ / class methods
Instance variables \

nodes classVariables

Domai n class instance variables
uni quel nst ance

Universitat Bern Ducasse Stéphane 5.173

Smalltalk a Pure OO Language Dealing with Classes

Example From The System: Geometric Class

(hj ect subcl ass: #Geonetric
i nst anceVari abl eNanes:
cl assVari abl eNanes: 'l nverseScal e Scal e

Ceonetric class>>initialize

"Reset the class variables."”

Scal e : = 4096.
| nverseScale := 1.0/ Scale

Universitat Bern Ducasse Stéphane 5.174

Smalltalk a Pure OO Language

Circle

CGeonetric subclass: #Grcle

i nst anceVari abl eNanes: 'center radi us'
cl assVari abl eNanes: '

G rcl e>>cent er
Acent er

G rcl e>>setCenter: aPoint radi us: aNunmber

aPoi nt .
aNunber

center

radi us :

G rcl e>>area

| r |
r := self radius asLi mtedPrecisionReal .
Ar class pi *r *r

G rcl e>>di anet er
"self radius * 2

Grcle class>>center: aPoint radi us: aNunber
Nsel f basi cNew set Center: aPoi nt radi us: aNunber

Universitat Bern Ducasse Stéphane

Dealing with Classes

5.175

Smalltalk a Pure OO Language Dealing with Classes

poolDictionaries

- Also called Pool Variables.

- Shared variable => begins with a uppercase letter.

- Variable shared by a group of classes not linked by inheritance.
- Each class possesses its own pool dictionary.

- They are not inherited.

- Examples of PoolDictionaries from the System:Text
Character Array subcl ass: #Text
I nst anceVari abl eNanes: 'string runs '
cl assVari abl eNanes:
pool D ctionaries: 'TextConstants '
category: 'Collections-Text'

Elements stored into TextConstants like Ctrl, CR, ESC, Space can be directly accessed
from all the classes like ParagraphEditor....

Universitat Bern Ducasse Stéphane 5.176

Smalltalk a Pure OO Language Dealing with Classes

Example of PoolVariables

Instead of
Smal [tal k at: #NetworkConstant put: Dictionary new.
Net wor kConst ant at: #rates put: 9000.
Node>>conput eAver ageSpeed

Net wor kConst ant at: #rates

Write:

oj ect subcl ass: #Packet
i nstanceVari abl eNanes: 'contents addressee originator '
cl assVari abl eNanes: ‘ Domai n’

pool Di ctionaries: 'NetworkConstant'
Node>>conput eAver ageSpeed

. rates

r at es is directly accessed in the global dictionary Net wor kConst ant .

As a beginner policy, do not use pool Di cti onari es

Universitat Bern Ducasse Stéphane

5.177

Smalltalk a Pure OO Language Smalltalk in a Nutshell

12. The Model View Controller Paradigm

Universitat Bern Ducasse Stéphane 1.178

Smalltalk a Pure OO Language Smalltalk in a Nutshell

Context

Building interactive applications with a Graphical User Interface
Obvious example: the Smalltalk Development Environment

Characteristics of such applications:
[Event driven user interaction, not predictable
[1 Interface Code can get very complex
[1 Interfaces are often subject of changes

Question:
[How can we reduce the complexity of the development of such
applications
Answer:
[0 Modularity

Universitat Bern Ducasse Stéphane 1.179

Smalltalk a Pure OO Language Smalltalk in a Nutshell

Program Architecture

A Software Architecture is a collection of software and system components,
connections between them and a number of constraints they have to fullfill.

Goals we want to achieve with our architecture:
[manageable complexity
[J reusability of the individual components
[0 pluggability,
l.e. an easy realization of the connections between the components

The Solution for the domain of GUI-driven applications:
We structure our application according to the following partition:

— Model
— View
— Controller

Universitat Bern Ducasse Stéphane 1.180

Smalltalk a Pure OO Language Smalltalk in a Nutshell

Separation of Concerns |
Functionality vs. User Unterface

Model:
— Domain specific information

— Core functionality, where the computation/data processing
takes place

User Interface:
— Presentation of the data in various formats
— dealing with user input (Mouse, Keyboard, etc.)

Universitat Bern Ducasse Stéphane 1.181

Smalltalk a Pure OO Language Smalltalk in a Nutshell

Separation of Concerns ll:
Display vs. Interaction

View:
— displaying the data from the model

Controller:

— relaying the user input to the View (e.g. Scrolling)
or the model (e.g. modification of the data)

View and Controller are very much related. There is always a 1:1 relationship between
views and controllers. There are examples of systems where view and controller are not
separated.

Rationale for separating View and Controller:

— reusability of the individual components and freedom of choice is better:
the same view with different controllers (different modes of interaction)
the same controller for different views (Action Button/Radio Button)

Universitat Bern Ducasse Stéphane 1.182

Smalltalk a Pure OO Language Smalltalk in a Nutshell

‘ The notion of Dependency

An object B that depends on another object A must be informed about changes in the
state of A, in order to be able to adapt its own state.

@ modification

\ @ change propagation

Subject

Dependencies that are realised via messages sent directly to dependent objects are not
very reusable and likely to break in times of change.

[Decoupling of subject and dependent

Universitat Bern Ducasse Stéphane 1.183

Smalltalk a Pure OO Language Smalltalk in a Nutshell

Dependency Mechanism

The Publisher-Subscriber Pattern (a.k.a. Observer Pattern)

Intent: Define a one-to-many dependency between objects so that when one object
changes state, all its dependents are notified and updated automatically.

The pattern ensures the automatisation of
[J adding and removing dependents
[J change propagation

The publisher (subject) has a list of subscribers (observers, dependents). A subscriber
registers with a publisher.

Protocol:

Universitat Bern Ducasse Stéphane 1.184

Smalltalk a Pure OO Language Smalltalk in a Nutshell

Publisher-Subscriber: A Sample Session

Publisher Subscriberl Subscriber2
‘ < addDependent : Subscri ber 1
- addDependent : Subscri ber 2
changed
I: updat e o
updat e .
< enmoveDependent : Subscri ber 1
changed
updat e .

Universitat Bern Ducasse Stéphane 1.185

Smalltalk a Pure OO Language Smalltalk in a Nutshell

Change Propagation: Push and Pull

How is the changed data transferred
from the publisher to the subscriber?

[0 Push: the publisher sends the changed data along with the update message
Advantages: only one message per subscriber needed.

Disadvantage: Either the publisher knows for each subscriber what data
it needs which enhances coupling between publisher and subscriber, or
many a subscriber receives unnecessary data.

[1 Pull: the subscriber after receiving the update message asks the publisher for
the specific data he is interested in

Advantage: Only the necessary amount of data is transferred.
Disadvantage: a lot of messages have to be exchanged.

[0 Mixture: the publisher sends hints (“Aspects” in ST terminology) and other
parameters along with the update messages

Universitat Bern Ducasse Stéphane 1.186

Smalltalk a Pure OO Language Smalltalk in a Nutshell

The MVC Pattern

Dependencies:

/\‘\/\/* View
Model change propagation
\/\/\/\/\/ Controller

Other Messages:

. display output
e View - L
Model and T view messages
\ "
Controller - [

editing messages _
user input

Universitat Bern Ducasse Stéphane 1.187

Smalltalk a Pure OO Language Smalltalk in a Nutshell

A Standard Interaction Cycle

<<diagram from the Buschmann et. al. book>>

Universitat Bern Ducasse Stéphane 1.188

Smalltalk a Pure OO Language Smalltalk in a Nutshell

MV C: Benefits and Liabilities

Universitat Bern Ducasse Stéphane 1.189

Smalltalk a Pure OO Language Smalltalk in a Nutshell

MVC and Smalltalk

MVC is a pattern and can be used to desing applictions independently of the
programming language.

Examples:
[0 ET++ User Interface Framework (C++)
[0 Swing-Toolkit in the Java Foundation Classes 1.0 (due mid February 98)

Nevertheless, the ties between MVC and Smalltalk are exceptionally strong:

[MVC was invented by a Smalltalker (Trygve Reenskaug)
(1 first implemented in Smalltalk-80; the Application Framework of Smalltalk is
built around it

[1 The first implementations of MVC in Smalltalk have undergone a strong
evolution. Newer Implementations (for example in VisualWorks) solve many of
the problems of the first, straightforward implementations.

Universitat Bern Ducasse Stéphane 1.190

Smalltalk a Pure OO Language Smalltalk in a Nutshell

Managment of Dependents

Protocol to manage dependents (defined in Obj ect >>dependent s access):

— addDependent : anObject
— renoveDependent : anObject

Attention: Storage of Dependents !

[Obj ect : keeps the all his dependents in a class variable Dependent sFi el d.

Dependent sFieldisanldentityDi cti onary, where the keys are
the objects themselves and the values are the collections of dependents
for the corresponding objects.

[0 Mbdel : defines an instance variable dependent s.

[J access is much more efficient than looking up the dependents in a class
variable.

Universitat Bern Ducasse Stéphane 1.191

Smalltalk a Pure OO Language Smalltalk in a Nutshell

Implementation of Change Propagation

Change methods are implemented in Qbj ect >>changi ng:

changed: anAspect Synbol

"The recei ver changed. The change i s denoted by the argunment anAspect Synbol. Usu-
ally the argunent is a Synbol that is part of the dependent’s change protocol, that
I's, sone aspect of the object’s behavior, and aParaneter is additional information.
Informall of the dependents."

sel f nyDependents update: anAspect Synbol

Update methods are implemented in Obj ect >>updat i ng:

updat e: anAspect Synbol

“Check anAspect Synbol to see if itequals sone aspect of interest and if it does, per-
formthe necessary action”

anAspect Synbol == anAspect O | nt er est
| fTrue: [self doUpdate].

Universitat Bern Ducasse Stéphane 1.192

Smalltalk a Pure OO Language Smalltalk in a Nutshell

Climbing up and down the Default-Ladder

Universitat Bern Ducasse Stéphane 1.193

Smalltalk a Pure OO Language Smalltalk in a Nutshell

Problems with the Vanilla Change
Propagation Mechanism

[1 every dependentis notified about all the changes, even if they are not interested
(broadcast).

[J theupdat e: anAspect methods are often long lists of tests of anAspect .
This is not clean object-oriented programming.

[1 allthe methods changing something have tosendsel f changed, since there
might just be some dependent that is interested in that change

[1 danger of name clashes between apsects that are defined in different models
that have to work together (can be solved by using update: w t h: from)

General problem:
complex objects depending on other complex objects.

We need means to be more specific:
[J publisher: send messages only to interested dependents

[J subscriber: being notified directly by a call to the method that handles that
specific change

Universitat Bern Ducasse Stéphane 1.194

Smalltalk a Pure OO Language Smalltalk in a Nutshell

Dependency Transformer

A DependencyTr ansf or mer is an intermediate object between a model and its
dependent. It

[0 waits for a specific updat e: anAspect message
[sends a specific method to a specific object

A dependent that is only interested in a specific aspect of its model and has a method
to handle the update installs a DependencyTr ansf or ner at his model:

i nt er est ed
obj ect

dependency
t ransf or ner

nodel

changed: #anAspect

dependent s updat e: #anAspect
col | ection >

nodel expresslnterestln: anAspect

for: self
sendBack: aChangeMessage

Universitat Bern Ducasse Stéphane 1.195

Smalltalk a Pure OO Language Smalltalk in a Nutshell

Inside a Dependency Transformer

Initializing a DependencyTr ansf or mer :

set Recei ver: aRecei ver aspect: anAspect sel ector: aSynbol

recei ver := aReceiver.

aspect : = anAspect.

sel ector := aSynbol.

numAr gunents : = sel ector nunmArgs.

numArgunents > 2 ifTrue: [self error: 'selector expects too nmany argunents’]

Transforming an updat e: message:

updat e: anAspect with: paraneters from anChject

aspect == anAspect ifFalse: ["self].

numArgunents == 0 ifTrue: [“receiver perform selector].

numArgunents == 1 ifTrue: [“receiver perform selector with: paraneters].
numArgunents == 2 ifTrue: [“receiver perform selector with: paraneters wth:

anChj ect]

Universitat Bern Ducasse Stéphane 1.196

Smalltalk a Pure OO Language Smalltalk in a Nutshell

ValueHolder

A Val ueHol der is an object that encapsulates a value and allows it to behave like a
model, i.e. it notifies the dependents of the model automatically when it is changed.

Creating a Val ueHol der:
Accessing a Val ueHol der :

Advantages:

[1 change propagation is triggered automatically by the Val ueHol der , the
programmer does not have to do sel f changed any more

[1 objects can become dependents only of the values they are interested in
(reduces broadcast problem)

Universitat Bern Ducasse Stéphane 1.197

Smalltalk a Pure OO Language Smalltalk in a Nutshell

A Userinterface Window

Universitat Bern Ducasse Stéphane 1.198

Smalltalk a Pure OO Language Smalltalk in a Nutshell

Widgets

A widget is responsible for displaying some aspect of a User Interface.

[0 A widget can display an aspect of a model

[A widget can be combined with a controller, in which case the user can modify
the aspect of the model displayed by the widget.

The connection between widgets and the model:
[Each component of a User Interface is a widget
[1 Each component of a model is an attribute or operation
[1 Most widgets modify an attribute or start an operation

The communication between a widget and the model component it represents visually is
standardized:

Value Model Protocol

Each model component is put into an aspect model, which can be a Val ueHol der for
example. The Widget deals only with this aspect model.

[1 the widget does not have to know any specifics about its model

Universitat Bern Ducasse Stéphane 1.199

Smalltalk a Pure OO Language Smalltalk in a Nutshell

The Application Model

An ApplicationModel is a model that is responsible for creating and managing a runtime
user interface, usually consisting of a single window. It manages only application
information. It leaves the domain information to its aspect models.

Domain Application User
Models Models Interfaces

Cust oner

\

Bank Account

\
P

Transacti on

Universitat Bern Ducasse Stéphane 1.200

Smalltalk a Pure OO Language Smalltalk in a Nutshell

The fine-grained Structure of an Application

Universitat Bern Ducasse Stéphane 1.201

Smalltalk a Pure OO Language Smalltalk in a Nutshell

MV C Bibliography

The Pattern:
E. Gamma et. al.: Design Patterns, Addison Wesley, 1995
[0 Observer, p. 239

F. Buschmann et. al.: A System of Patterns. Pattern-Oriented Software Architecture,
Wiley, 1996

[Model-View-Controller, p. 125
[1 Publisher-Subscriber, p. 339

The VisualWorks Application Framework:
VisualWorks Users Guide: Chapter 18, Application Framework (available online)
Visual Works Cookbook: Part Il, User Interface (available online)

Tim Howard: The Smalltalk Developer’'s Guide to VisualWorks, SIGS Books, 1995

Universitat Bern Ducasse Stéphane 1.202

Smalltalk a Pure OO Language Smalltalk in a Nutshell

Universitat Bern Ducasse Stéphane 1.203

Smalltalk a Pure OO Language Processes and Concurrency

13. Processes and Concurrency

- Concurrency and Parallelism
- Applications of Concurrency
- Limitations
- Atomicity
- Safety and Liveness
- Processes in Smalltalk:
Class Process, Process States, Process Scheduling and Priorities
- Synchronization Mechanisms in Smalltalk:
Semaphores, Mutual Exclusion Semaphores, SharedQueues
- Delays
- Promises

Universitat Bern Juan Carlos Cruz 10.204

Smalltalk a Pure OO Language

Concurrency and Parallelism

Processes and Concurrency

“A sequential program specifies sequential execution of a list of statements; its execution
is called a process. A concurrent program specifies two or more sequential programs that

may be executed concurrently as parallel processes”

A concurrent program can be executed by:

1. Multiprogramming: processes share one or more processors

2. Multiprocessing: each process runs on its own processor but
with shared memory

3. Distributed processing: each process runs on its own processor

connected by a network to others

Motivations for concurrent programming:
1. Parallelism for faster execution
2. Improving processor utilization
3. Sequential model inappropriate

Universitat Bern Juan Carlos Cruz

10.205

Smalltalk a Pure OO Language Processes and Concurrency

Limitations

But concurrent applications introduce complexity:

- Safety
synchronization mechanisms are needed to maintain consistency

- Liveness
special technigues may be needed to guarantee progress

- Non-determinism
debugging is harder because results may depend on “race conditions”

- Run-time overhead
process creation, context switching and synchronization take time

Universitat Bern Juan Carlos Cruz 10.206

Smalltalk a Pure OO Language Processes and Concurrency

Atomicity

Programs P1 and P2 execute concurrently:

{x=0}
P1: X =x+1
P2: X =X+2
{x=7}

What are possible values of x after P1 and P2 complete?
What is the intended final value of x?

Synchronization mechanisms are needed to restrict the possible interleavings of
processes so that sets of actions can be seen as atomic.

Mutual exclusion ensures that statements within a critical section are treated atomically.

Universitat Bern Juan Carlos Cruz 10.207

Smalltalk a Pure OO Language Processes and Concurrency

Safety and Liveness

There are two principal difficulties in implementing concurrent programs:

Safety - ensuring consistency:
+ mutual exclusion - shared resources must be updated atomically
+ condition synchronization - operations may need to be delayed if shared
resources are not in an appropriate state (e.g, read from an empty buffer)

Liveness - ensuring progress:

+ No Deadlock - some process can always access a shared resource
+ No Starvation - all processes can eventually access shared resources

Notations for expressing concurrent computation must address:
1. Process creation : how is concurrent execution specified?
2. Communication : how do processes communicate?
3. Synchronization : how is consistency maintained?

Universitat Bern Juan Carlos Cruz 10.208

Smalltalk a Pure OO Language Processes and Concurrency

Processes In Smalltalk: Process class

- A Smalltalk system supports multiple independent processes.

- Each instance of class Pr ocess represents a sequence of actions which can be
executed by the virtual machine concurrently with other processes.

- Processes share a common address space (object memory)

- Blocks are used as the basis for creating processes in Smalltalk. The simplest way to
create aPr ocess is to send a block a message #f or k

[Transcript cr; show 5 factorial printString] fork

- The new process is added to the list of scheduled processes. This process is runnable
(i.e scheduled for execution) and will start executing as soon as the current process
releases the control of the processor.

Universitat Bern Juan Carlos Cruz 10.209

Smalltalk a Pure OO Language Processes and Concurrency

Processes In Smalltalk: Process class

- We can create a new instance of class Pr ocess which is not scheduled by sending the
#newPr ocess message to a block:

| aProcess |
aProcess := [Transcript cr; show 5 factorial printString] newProcess

- The actual process is not actually runnable until it receives the #r esune message.
aProcess resune

- A process can be created with any number of arguments:
aProcess :=[:n | Transcript cr; show n factorial printString]
newPr ocessWt hArgunents: #(5).

- A process can be temporarily stopped using a #suspend message. A suspended
process can be restarted later using the #r esune message.

- A process can be stopped definitely using a message #t er m nat e. Once a process
has received the #t er m nat e message it cannot be restarted any more.

Universitat Bern Juan Carlos Cruz 10.210

Smalltalk a Pure OO Language Processes and Concurrency

Processes In Smalltalk: Process states

A process may be in one of

the five states:
fork

newProcess

resume 1. suspended
REEEETEN 2. waiting
s, wating - - 3. runnable
TTTENT signal 4. running, or
wa\it*\ 5. terminated
T

terminate yield

*sent to aSemaphore

Universitat Bern Juan Carlos Cruz 10.211

Smalltalk a Pure OO Language Processes and Concurrency

Process Scheduling and Priorities

- Process scheduling is based on priorities associated to processes.
- Processes of high priority run before processes of lower priority.

- Priority values go between 1 and 100.

- Eight priority values have assigned names.

Priority Name Purpose

100 timingPriority Used. by Processes that are dependant on
real time.

98 highlOPriority Used by time-critical I/O

90 lowlOPriority Used by most I/O Processes

70 userinterruptPriority U sed b_y user P_rocesses desiring
Immediate service

50 userSchedulingPriority Used_ by processes governing normal
user interaction

30 userBackgroundPriority Used by user background processes

10 systemBackgroundPriority Used by system background processes

1 systemRockBottonPriority] The lowest possible priority

Universitat Bern Juan Carlos Cruz 10.212

Smalltalk a Pure OO Language Processes and Concurrency

Processes Scheduling and Priorities

- Process scheduling is done by the unique instance of class Pr ocessor Schedul er
called Pr ocessor.

- A runnable process can be created with an specific priority using the #f or kAt :
message:

[Transcript cr; show 5 factorial printString]
forkAt: Processor userBackgroundPriority.

- The priority of a process can be changed by using a#pri ority: message
| processl process2 |
Transcript clear.
processl := [Transcript show ‘first’] newProcess.
processl priority: Processor systenBackgroundPriority.
process2 := [Transcript show ‘second] newProcess.
process2 priority: Processor highlCPriority.
processl resune.
process2 resune.

The default process priority is user Schedul i ngPri ority (50)

Universitat Bern Juan Carlos Cruz 10.213

Smalltalk a Pure OO Language

Processes and Concurrency

Processes Scheduling: The Algorithm

Processor(ProcessorScheduler)

activeProcess

quiescentProcessList

Array (inde
100
99
50
3
2 R
1

Universitat Bern

\ Process

nextLink nil
o suspendedContext
by priority) |priority 50
myList
Process Process
firstLinkT—> —>
IastLink\ _‘
Process

firstLink

lastLink

S

Juan Carlos Cruz

-The active process can be
identified by the expression:

Processor acti veProcess

-The processor is given to
the process having the
highest priority.

-A process will run until it is
suspended or terminated
before giving up the
processor, or pre-empted
by a higher priority process.

-When the highest priority is
held by multiple processes,
the active process can give
up the processor by using
the message #yi el d.

10.214

Smalltalk a Pure OO Language Processes and Concurrency

Process Scheduling

Active Process suspend
A

Suspended
Processes

\ Po
\
\
\
\
', Processor resume
—— newProcess
‘activeProcess
guiescentProcessList

scheduled 100 .. [s0] 1
by the VM Y — fork

P1 Px Py

| 4

Universitat Bern Juan Carlos Cruz 10.215

Smalltalk a Pure OO Language Processes and Concurrency

Synchronization Mechanisms

Processes have references to some common objects, such objects may receive
messages from several processes in an arbitrary order. This may lead to unpredictable
results. Synchronization mechanisms serve mainly to maintain consistency of shared
objects.

We can calculate the sum of the first N natural numbers:
| n |

n : = 100000.
[| 1 tenp |

Transcript cr; show ‘Pl running’ .

I :=1. tenp := 0.

[T <=n] whileTrue: [tenp :=tenp +i. 1 =1 + 1].

Transcript cr; show ‘Pl sumis ="'; show tenp printString] forkAt: 60.
P1 runni ng

P1 sumis = 5000050000

Universitat Bern Juan Carlos Cruz 10.216

Smalltalk a Pure OO Language Processes and Concurrency

Synchronization Mechanisms

What happens if at the same time another process maodifies the value of n?

| nd|
n := 100000.
d := Delay forMIliseconds: 400.
[| 1 tenp |
Transcript cr; show ‘Pl running .
I :=1. tenp := 0.
[1 <= n] whileTrue: [tenp :=tenp + i.
(i =5000) ifTrue: [d wait].
=0 +1]7.
Transcript cr; show ‘Pl sumis ="‘; show tenp printString] forkAt: 60.

[Transcript cr; show ‘P2 running’. n := 10] forkAt: 50.

P1 runni ng
P2 runni ng
P1 sumis = 12502500

Universitat Bern Juan Carlos Cruz 10.217

Smalltalk a Pure OO Language Processes and Concurrency

Synchronization using Semaphores

A semaphore is an object used to synchronize multiple processes. A process walits for
an event to occur by sending the message #wai t to the semaphore. Another process
then signals that the event has occurred by sending the message #si gnal to the
semaphore.

| sem|

Transcript clear.
sem : = Sermaphore new.
[Transcript show ‘The'] fork.
[Transcript show ‘quick’. semwait.
Transcript show ‘fox’. semsignal] fork.
[Transcript show ‘brown’. semsignal.
semwait. Transcript show ‘junps over the lazy dog'; cr] fork

- If a semaphore receives a #wai t message for which no corresponding #si gnal has
been sent, the process sending the #wai t message is suspended.

- Each semaphore maintains a linked list of suspended processes.

- If a semaphore receives a #wai t from two or more processes, it resumes only one
process for each signal it receives

- A semaphore pays no attention to the priority of a process. Processes are queued in
the same order in which they “waited” on the semaphore.

Universitat Bern Juan Carlos Cruz 10.218

Smalltalk a Pure OO Language Processes and Concurrency

Semaphores

ActiveProcess suspend
A Po -

Suspended
Processes

Po

) N Processor
yield newProcess

‘activeProcess
quiescentProcessList

scheduled 100 | .. | 50 | | 1
by the VM v fork
P1 Px Py
| A
wait
resumex*

Y aSemaphore

- PO |—> PZ

signal*

Waiting Processes for aSemaphore

Universitat Bern Juan Carlos Cruz 10.219

Smalltalk a Pure OO Language Processes and Concurrency

Semaphores for Mutual Exclusion

A semaphore is used frequently to provide mutual exclusion from a “critical region”. This
IS supported by the instance method #cri ti cal : . The block argument is only executed
when no other critical blocks sharing the same semaphore are evaluating.

| nd sem|

n := 100000.

d :=Delay forMIIliseconds: 400.
[| 1 tenp |

Transcript cr; show ‘Pl running .

I :=1. tenp := 0.

semcritical: [[1 <= n] whileTrue: [tenp :=tenp + 1.
(i 5000) ifTrue: [d wait].

=1 +1].].
Transcript cr; show ‘Pl sumis ="‘; show tenp printString] forkAt: 60.
[Transcript cr; show ‘P2 running’. semcritical: [n:=10]] forkAt: 50.

A semaphore for mutual exclusion must start out with one extra#si gnal , otherwise the
critical section will never be entered. A special instance creation method is provided:

Senmaphor e for Mut ual Excl usi on.

Universitat Bern Juan Carlos Cruz 10.220

Smalltalk a Pure OO Language Processes and Concurrency

Synchronization using a SharedQueue

A Shar edQueue enables to synchronize communication between processes. Its works
like a normal queue (First in First Out, reads and writes), the main difference is that
aShar edQueue protects itself against possible concurrent access (multiple writes and/
or multiple reads).

Processes add objects to the sharedqueue by using the message #next Put : (1) and
read objects from the sharedqueue by sending the message #next (3).

| aSharedQueue d |
d := Delay forMIliseconds: 400.

aShar edQueue : = SharedQueue new.

[1 to: 5 do:[:i | aSharedQueue nextPut: i]] fork.

[6 to: 10 do:[:i | aSharedQueue nextPut: 1. d wait]] forkAt: 60.

[1 to: 5 do:[:i | Transcript cr; show aSharedQueue next printString]] forkAt: 60.

- If no object is available into the sharedqueue when the messsage #next is received,
the process is suspended.

- We can request if the sharedqueue is empty or not by using the message #i sEnpt y

Universitat Bern Juan Carlos Cruz 10.221

Smalltalk a Pure OO Language Processes and Concurrency

Delays

Instances of class Delay are used to cause a real time delay in the execution of a
process.

An instance of class Del ay will respond to the message #wai t by suspending the
active process for a certain amount of time.

The time for resumption of the active process is specified when the delay instance is
created. Time can be specified relative to the current time with the messages
#forM I | i seconds: and #f or Seconds: .

| mnuteWait |
m nuteWait : = Delay forSeconds: 60.
mnuteVait wait.

The resumption time can also be specified at an absolute time with respect to the
system’s millisecond clock with the message #unti | M | | i seconds: . Delays created
in this way cannot be sent the message wait repeatedly.

Universitat Bern Juan Carlos Cruz 10.222

Smalltalk a Pure OO Language Processes and Concurrency

Promises

- Class Pr om se provides a means of evaluating a block in a concurrent process.

- An instance of promise can be created by sending the message #pr om se to a block:
[5 factorial] prom se

- The message #pr om seAt . can be used to specify the priority of the process created.

- The result of the block can be accessed by sending the message value to the promise:
| prom se |
promse :=[5 factorial] prom se.
Transcript cr; show promse value printString.

If the block has not completed evaluation, then the process that attempts to read the
value of a promise will wait until the process evaluating the block has completed.

A promise may be interrogated to discover if process has completed by sending the
message #hasVal ue

Universitat Bern Juan Carlos Cruz 10.223

Smalltalk a Pure OO Language Classes and Metaclasses

14. Classes and Metaclasses: an Analysis

Some books are to tasted,

others to be swallowed,
and some few to be chewed and digested

Franci s Bacon, O Studies

At first look, a difficult topic!
You can live without really understand them

But metaclasses give a uniform model and you will made less errors.
And you will really understand the Smalltalk model

Recap on Instantiation
Recap on Inheritance

Universitat Bern Ducasse Stéphane 11.224

Smalltalk a Pure OO Language Classes and Metaclasses

The meaning of “Instance of”

Node

send....
- Every object is an instance of a class. self subclass

- Every class is ultimately subclass of Object (except Object).
- When anObject receives a message, the method is lookup in 4 A

its class and/or its superclasses. (+ subclass
\ s of

-A class defines the structure and the behavior of all its ' Pri

instances. \ rinter

-Each instance possesses its own set of values. (send:....

- Each instance shares the behavior with other instances the T

bevahior defined in its class via the instance of link. Nstance of

aPrinter send....

Universitat Bern Ducasse Stéphane 11.225

Smalltalk a Pure OO Language Classes and Metaclasses

Concept of Metaclass & Responsibilities

Concept:
- Everything is an object
- Each object is instance of one class
-A class is also an object instance of a metaclass
- An object is a class if and only if it can create instances of itself.

Metaclass Responsibilities:
- instance creation
- method compilation (different semantics can be introduced)
- class information (inheritance link, instance variable, ...)

Examples:

Node al | Subcl asses -> OrderedCol | ecti on (WrkStati on Qut put Server Wirkstation FileServer PrintServer)
PrintServer alllnstances -> #()

Node i nstVar Nanes -> #(' name' ' next Node')

Wirkstation wi thName: #nmac -> aWrkstation

Wrkstation selectors -> ldentitySet (#accept: #originate:)

Wor kst ati on canUnder st and: #next Node -> true

Universitat Bern Ducasse Stéphane 11.226

Smalltalk a Pure OO Language Classes and Metaclasses

Classes, metaclasses and method lookup

When anObject receives a message,
the method is lookup in its class and/or - ()}
I cl ass

its superclasses.

_ inherits
So when aClass receives a message, from
the method is lookup in its class (a

metaclass) and/or its superclass (vor l;zt at | 09)

i nst ance of

Wor kst ati on

Wor kst ati on wi t hName: #nac

Here WOr kst at i on receives W t hNane: #nmac

The method associated with #w t hNane: selector is looked up in the class of
Wor kst ati on: Wor kst ati on cl ass

Universitat Bern Ducasse Stéphane 11.227

Smalltalk a Pure OO Language Classes and Metaclasses

Responsibilities of Object & Class classes

Object

- represents the common behavior (like error, halting...) shared by all the instances (final
instances and classes)

- s0 all the classes should inherit ultimately from Object
Workstation inherits from Node
Node inherits from Object

Class

- represents the common behavior of all the classes (compilation, method storing,
instance variable storing)

- Class inherits form Object because Class is an Object but a special one.
=> Class knows how to create instances
- So all the classes should inherit ultimately form Class

Universitat Bern Ducasse Stéphane 11.228

Smalltalk a Pure OO Language Classes and Metaclasses

‘ A possible kernel for explicit metaclasses
The kernel of CLOS and ObjVlisp but not the kernel of Smalltalk

i nherits
from

i nst ance of

‘K Class)

inherits
Y from

4
4

&
<Workstation

i nst ance of

i nst ance of

awbr kst ati on

Universitat Bern Ducasse Stéphane 11.229

Smalltalk a Pure OO Language Classes and Metaclasses

Singleton with explicit metaclasses

h t
(ot O)Q
3

i nst ance of

. -~ ~
"I nherits .\~
¢ from ~eeo
q ~aa -
!’ i nst ance of Instance Swa
: Lan >
<Workstation <
/f i nheri tx i nstance of
from \‘ i nst ance of
aWwr k1 ; alan
Special
avior k2 Workstation

aSpec\Wor k

Universitat Bern Ducasse Stéphane 11.230

Smalltalk a Pure OO Language Classes and Metaclasses

Deeper into it

returns a new in e
W

Wr kstati on new

/

/
/

Unique
Instance

i nst ance of

new N
I uni quel nstance isN | ...
CWorkstatlon unig Stance.
=
i nherit /
from ‘\ i nst ance of /
/
s

Special
Workstation

Speci al Wr kstati on new

Universitat Bern Ducasse Stéphane 11.231

Smalltalk a Pure OO Language Classes and Metaclasses

Smalltalk Metaclasses in 7 points

- no explicit metaclasses, only implicit non sharable metaclasses.

(1): Every class is ultimately a subclass of Object (except Object itself)
Behavi or
G assDescri ption
d ass
Met acl ass

(2) Every object is instance of a class.
Each class is instacnhe of a class its metaclass.

(3) Every class is instance of A metaclass.
Every user defined class is the sole instance of another class (a metaclass).

Metaclass are system generated so they are unamed you can accessed them using
#cl ass

Universitat Bern Ducasse Stéphane 11.232

Smalltalk a Pure OO Language Classes and Metaclasses

Smalltalk Metaclasses in 7 points (ii)

Smal | I nteger_ __ _>I nt eger — Ninber — bj ect
Smal | I nteger_ __ I nteger _ __ Nunmber _ j ect
cl ass Pl ass > cl ass > gPaSS

If X is a subclass of Y then X class is a subclass of Y class.
But what is the superclass of the metaclass of Cbj ect ?
The superclass of Obj ect classis Cl ass

(4) All metaclasses are (ultimately) subclasses of Cl ass.

d ass |
. |

¢ Smal | | nteger_ __ _>I nt eger - Ninber - hj ect |
|

d ass Smal | | nt eger | nt eger Nunmber j ect I
cl ass cl ass T~ P class T~ ® class © — ® class - — — _.

But metaclasses are also objects so they should be instances of a Metaclass

Universitat Bern Ducasse Stéphane 11.233

Smalltalk a Pure OO Language Classes and Metaclasses

Smalltalk Metaclasses in 7 points (i)

d ass Smal | | nteger_ __ _>I nt eger - Nunber _ > hj ect
cl ass + +
Smal | I nteger_ __ | nteger _ __ Nunber _ j ect
¢ cl ass '>cl ass Ll cl ass - class - — — 4
Met acl ass | | | |
Met acl ass

cl ass

(5) Every metaclass is instance of Met acl ass. Met acl ass is instance of itself

Cbj ect : common object behavior
Cl ass: common class behavior (hame, multiple instances)
Met acl ass: common metaclass behavior (no name, unigue instance)

(6) The methods of Class and its superclasses support the behavior common to those
objects that are classes.

Universitat Bern Ducasse Stéphane 11.234

Smalltalk a Pure OO Language Classes and Metaclasses

Smalltalk Metaclasses in 7 points (Iv)

(7) The methods of instances of Met acl ass add the behavior specific to particular
classes.

=> Methods of instance of Metaclass = methods of “Packet class” = class methods (for
example #w t hName:)

I

I

E . Lo . L . |

d ass / G assDescri ption s-Behavi or - (bj ect |
I
I

|

cl ass cl ass

7 | |

7 & O assDescri ptien— — — — — — — > : i ect
d Behavior - — J
, cPhsS
/
/

Met acl ass /
/

o

Met acl ass
cl ass

An instance method defined in Behavi or or Cl assDescri pti on, is available as a
class method. Example: #new, #new.

Universitat Bern Ducasse Stéphane 11.235

Smalltalk a Pure OO Language Classes and Metaclasses

Behavior Responsibilities

- Minimum state necessary for objects that have instances.
- Basic interface to the compiler.

- State: class hierarchy link, method dictionary, description of instances (representation
and number)

Methods:

- creating a method dictionary, compiling method (#conpi | e:)

- instance creation (#¥new, #basi cNew, #new., #basi cNew:)
- class into hierarchy (#super cl ass:, #addSubcl ass:)

- accessing (#selectors, #allSelectors, #compiledMethodAt:)

- accessing instances and variables (#al | | nst ances, #i nst VAr Nanes,
#al | | nst Var Nanes, #cl assVar Nanes, #al |l Cl assVar Nanes)

- accessing clas hierarchy (#super cl ass, #al | Super cl asses, #subcl asses,
#al | Subcl asses)

- testing (#hasMet hods, #i ncl udesSel ector, #canUnder st and:,
#i nheritsFrom , #isVari able)

Universitat Bern Ducasse Stéphane 11.236

Smalltalk a Pure OO Language Classes and Metaclasses

ClassDescription Responsibilities

Cl assDescri pti on adds a number of facilities to basic Behavi or :
- named instance variables
- category organization for methods
- the notion of a name of this class (implemented as subclass responsibility)
- the maintenance of the Changes set, and logging changes on a file
- most of the mechanism for fileOut

Cl assDescri pti onisan abstract class: its facilities are intended for inheritance by the
two subclasses, Cl ass and Met acl ass.

Subclasses must implement
#addl nst Var Nane:
#renovel nst Var Nane:
Instance Variables:
- instanceVariables<Array of: String> names of instance fields
- organization <ClassOrganizer> provides organization of message protocol

Universitat Bern Ducasse Stéphane 11.237

Smalltalk a Pure OO Language Classes and Metaclasses

Metaclass Responsibilities

- initialization of class variables
- creating initialized instances of the metaclass’s sole instance

- instance creation (#subcl assOf ;)
- metaclass instance protocol (#nane: i nEnvi ronnment : subcl assO :)

Universitat Bern Ducasse Stéphane 11.238

Smalltalk a Pure OO Language Classes and Metaclasses

Class Responsibilities

Cl ass adds naming for class

Cl ass adds the representation for classVariable names and shared pool variables
(#addCl assVar aNanes, #addSharedPool:, #initialize)

Universitat Bern Ducasse Stéphane 11.239

Smalltalk a Pure OO Language Debugging Hints

15. Most Common Mistakes and Debugging

» Preventing: Most Common Mistakes
» Curing: Debugging Fast (from ST Report July 93)
* Extra

Universitat Bern Ducasse Stéphane 8.240

Smalltalk a Pure OO Language Debugging Hints

Most Common Beginner Bugs

-t rue is the boolean value, Tr ue its class

Instead of:
Book>>initialize

I nLi brary := True
that:
Book>>initialize
I nLi brary := true

- ni | is not acceptable fori f Tr ue:

-whi | eTr ue receiver must be a block
[X<y] whileTrue: [x := x + 3]

- (weakness of the system) Before creating a class check if it already exists
(oj ect subcl ass: #Vi ew

- Do not assign class
O deredCol lection : = 2 will danmage your system

Universitat Bern Ducasse Stéphane 8.241

Smalltalk a Pure OO Language Debugging Hints

Return Value

- In a method sel f is returned by default, do not forget * for returning something else.
Packet >>i sAddr essedTo: aNode

N sel f addressee = aNode nane

- In a #new method do not forget the ” to return the newly created instance
Packet cl ass>>new

super newinitialize
returns sel f : the class Packet and not the newly created instance !!!
Write:

Packet cl ass>>new

N super new initialize

Packet cl ass>> new
Aself newinitialize
Loops !
Packet cl ass>> new

N self basicNew initialize or A super new initialize

Universitat Bern Ducasse Stéphane 8.242

Smalltalk a Pure OO Language Debugging Hints

Take care about loops

- In a newmethod do not forget to use super or to invoke basi cNewto create the new
instance.

Example:

The following loops!
Book>>new

"self newinitialize

You should write:
Packet cl ass>> new

N self basicNew initialize or A super newinitialize

- Before redefining new like the following
Packet cl ass>>new
Asuper new initialize

check if this is not already done. Else twice that expression in the same hierarchy will call
twiceinitialize

Universitat Bern Ducasse Stéphane 8.243

Smalltalk a Pure OO Language Debugging Hints

Instance Variable Access in Class Method

- Do not try to access instance variables to initialize them in the newmethod. You do not
have the right. new method can only access class instance variables and classVariables.

=> Define and invoke ani ni ti al i ze method on instances.

Example:
Do not write

Packet class>>send: aString to: anAddress
contents := aString.
addressee : = anAddress

Create an instance and invoke instance methods
Packet class>>send: aString to: anAddress

self new contents: aString; addressee: anAddress

Universitat Bern Ducasse Stéphane 8.244

Smalltalk a Pure OO Language Debugging Hints

Assignments Bugs

- Do not try to assign a method argument
set Nane: aString
asString := aString, 'Device'.
name : = aString

- Do not assign class
Or deredCol | ection : = 2 will damage your system

- Do not try to modify sel f and super

Universitat Bern Ducasse Stéphane 8.245

Smalltalk a Pure OO Language Debugging Hints

Redefinition Bugs

- Never redefine basic -methods (#==, #basi cNew, #basi cNew., #basi cAt:,
#basi cAt: Put: ..)

- Never redefine #cl ass

- Redefine #hash when you redefine #= so that if a = b then a hash = b hash

Book>>=aBook
"self title = aBook title & (self author = aBook author)

Book>>hash
N"self title hash bitXor: self author hash

Universitat Bern Ducasse Stéphane 8.246

Smalltalk a Pure OO Language Debugging Hints

Library Behavior-based Bugs

- #add: returns the argument and not the receiver, so use your sel f to get the
collection back.

- Do not forget to specialize #copyEnpt y when adding named instance variables
to a subclass having indexed instance variables (subclasses of Collection)

- Never iterate over a collection which the iteration somehow modifies.
timers do:[:aTi ner|
aTimer isActive ifFalse: ‘tinmers renove: aTiner]
Copy first the collection
tinmers copy do:[:aTi ner|
aTimer isActive ifFalse: ‘tiners renove: aTi ner]
- Take care the iteration can involve different nmethods and can be | ess obvi ous!

Universitat Bern Ducasse Stéphane 8.247

Smalltalk a Pure OO Language Debugging Hints

Use of Accessors: Protect your Cients

Literature says: “Access instance variables using methods”

Schedul e>>initialize

tasks := OrderedCol |l ecti on new
Schedul e>>t asks

"t asks

However, accessors methods should be PRIVATE by default.

If accessors would be public, a client could write
Schedul eVi ew>>addTaskBut t on

nodel tasks add: newTlask
What's happen if we change the representation of tasks?
If tasks is now a dictionary => that's breaks.

Provide an adding method
Schedul e>>addTask: aTask
tasks add: aTask
Schedul eVi ew>>addTaskBut t on

nodel addTask: newTask

Universitat Bern Ducasse Stéphane 8.248

Smalltalk a Pure OO Language Debugging Hints

Debugging Hints

Basic Printing
Transcript cr; show ‘The total=", self total printString.

Use a global or a class to control printing information

Debug i fTrue: [Transcript cr; show ‘The total=", self total printString]
Debug > 4

| fTrue:[Transcript cr; show ‘The total=", self total printString]
Debug print:[Transcript cr; show ‘The total=", self total printString]

Smal | tal k renmoveKey: #Debug

Inspecting
(hj ect >>i nspect

you can create your own inspect method
M/l nspect or new i nspect: an(hj ect

Naming: usefull to add a id for debugging purpose

Universitat Bern Ducasse Stéphane 8.249

Smalltalk a Pure OO Language Debugging Hints

Where am | and how did | get here?

|dentifying the current context

“iIf this is not a bl ock”

Transcri pt show thisContext printString; cr.
Debug ifTrue:[“use this expression in a bl ock”
Transcript show thisContext sender hone printString; cr]j

Audible Feedback

Screen default ringBell

Catching It in the Act
<Qarl-C (WR.5) <Crl-Shift-C Energency stop
<Qrl-Y> (WB.0) <Crl-Shift-C Energency stop

Suppose that you cannot open a debugger
Transcript cr; show (Notifierview shortStackFor: thisContext ofSize: 5)

Or in a file

| filel

file := "errors’ asFilenane appendStream

file cr; nextPutAll: (NotifierView shortStackFor: thisContext of Size: 5).

file cl ose

Universitat Bern Ducasse Stéphane 8.250

Smalltalk a Pure OO Language Debugging Hints

Source Inspection

Source Code for Blocks
aBl ockd osure net hod get Sour ce
aMet hodCont ext sour ceCode

Decompiling a Method
Shift + select the method is the browser
Interesting for literals modification or MethodWrapper bugs:
initialize
arrayConst := #(1 2 3 4)

then somebody somewhere does
arrayConst at:1 put:100

So your array is polluted. Note that if you recompile the method the original contents of
the literal array is restored. So think also to return copy of your literals.

Entry Points
How a window is opened or what happens when the menu is invoked?
look into Launcher Vi ewand Ul Vi sual | Launcher implementors of *enu*

Universitat Bern Ducasse Stéphane 8.251

Smalltalk a Pure OO Language Debugging Hints

Where am | going?

Breakpoints
self halt.
self error: ‘ invalid

Conditional halt
i > 10 ifTrue:[self halt]
I nput State default shiftDown ifTrue:[self halt]

I nput State default altDown ifTrue:[self halt]
Input State default nmetaDown ifTrue:[self halt]

In a controller:

self sensor shiftDown ifTrue:[self halt]

Slowing Down Actions: usefull for complex graphics
Cursor wait showhile: [(Delay forMIliseconfs: 800) wait]
(Do not forget the wait)

Until a mouse button is cliked.

Cursor crossHair showi | e:
[Schedul edControl l ers activeController sensor waitNoButton; waitdickButton]

Universitat Bern Ducasse Stéphane 8.252

Smalltalk a Pure OO Language Debugging Hints

How do | get out?

1 <CTRI +Shift-C or Y> Emergency Debugger

2 (bj ect Menory quit

3 <ESC> to eval uate the expression

An Advanced Emergency Procedure: recompile the wrong method if you know it!

ad ass conpil e: ‘nmethodnane net hodcode’ classified: ‘what you want’
ex:
Controller conpile: ‘controllnitialize *self’ classified: ‘basic’

Graphical Feedback
Where the cursor is:

Schedul edControll ers activeControll er sensor cursorPoi nt

Position the cursor explicitly
Schedul edControl |l ers activeControll er sensor cursorPoint: aPoint
Rect angl e fronmser

Indicating an area with a filled rectangle
Schedul edControl | ers activeController view graphi csContext display Rectangle: (0@ extent: 10@l00)

Universitat Bern Ducasse Stéphane 8.253

Smalltalk a Pure OO Language Debugging Hints

Finding & Closing Open Files in VW

Ext ernal Stream cl assPool at: #openStreans

How to ensure that an open file willl be close in case of error?
Use #val ueNowOr OnUnwi ndDo: or #val ueOnUnw ndDo:

| strean
[stream:= (Filenane naned: aString) readStream

] val ueNowOr OnUnwi ndDo: [stream cl os e].

Bl ockd osur e>>val ueOnUnwi ndDo: aBl ock
"Answer the result of evaluating the receiver. If an exception would cause the evaluation to
be abandoned, eval uate aBl ock.

Bl ockd osur e>>val ueNowOr OnUnwi ndDo: aBl ock
"Answer the result of evaluating the receiver. If an exception would cause the evaluation to
be abandoned, evaluate aBlock. The logic for this is in Exception. |If no exception occurs,

al so eval uate aBl ock."

Universitat Bern Ducasse Stéphane 8.254

Smalltalk a Pure OO Language

Internal Structure of Object

In the memory representation Smalltalk objects can be pointer type, non-pointer type,
index type, non-index type or immediate type.

indexable
#(123)at: 2

non indexable
aPacket name

This difference is transparent for the programmer today job but if we want to do some
optimizations, analysis.... how can we compute the size in bytes of an object?

Universitat Bern Dr.Stephane Ducasse 255

Smalltalk a Pure OO Language

Three ways to create classes:

Non indexable, pointer

hj ect subcl ass: #Packet

i nstanceVari abl eNanes: 'contents addressee origi nator
cl assVari abl eNanes:
pool Di ctionari es:
category: ' Deno-LAN
Indexable pointer
ArrayedCol | ection vari abl eSubcl ass: #Array
i nstanceVari abl eNanes:
cl assVari abl eNanes:
pool Di ctionari es:
category: 'Collections-Arrayed

Indexable, non pointer

Li m t edPreci si onReal vari abl eByt eSubcl ass: #Fl oat
i nst anceVar i abl eNanes:
cl assVari abl eNanes: ' Pi Radi ansPer Degree '
pool Di ctionari es:

category: 'Magnitude- Nunbers
Not possible to defined named instance variable

Universitat Bern Dr.Stephane Ducasse 256

Smalltalk a Pure OO Language

Let us Code

| collection
collection := SortedCol |l ecti on new
Smal | t al k al | Behavi or sDo:

[each |

| bool ean|

bool ean : = each isMeta not and: [each isCbsolete not].
bool ean : = bool ean and: [each i sFi xed].

bool ean ifTrue: [collection add: each nane]].
~col l ection

|dentifying variableSubclass....

bool ean : = each isMeta not and: [each isCbsolete not].
bool ean : = bool ean and: [each isPointers].
bool ean : = bool ean and: [each isVariable].

bool ean ifTrue: [collection add: each nane]]

|dentifying variableByteSubclass....

bool ean : = each isMeta not and: [each isCbsolete not].

bool ean : = bool ean and: [each isBits].

bool ean : = bool ean and: [each isVariable].

bool ean ifTrue: [collection add: each nane]]

Universitat Bern Dr.Stephane Ducasse 257

Smalltalk a Pure OO Language

Format and other

The information for distinguishing between these three type is stored in the format
instance variable of Behavior.

Behavi or>>i sBits

"Answer whether the receiver contains just bits (not pointers)."
Aformat noMask: sel f pointersMask

Behavi or >>hasl| nedi at el nst ances i medi ate type object?
Behavi or >>i sFi xed non-i ndexabl e type object?
Behavi or >>i sPoi nters poi nters type object?
Behavi or >>i sVari abl e i ndexabl e type object?

pointer type [isPointers]
indexable type [isVariable] variableSubclass....
non-index type [isFixed] subclass....
non-pointer [isBits]
index type [isVariable] variableByteSubclass....
non-index type [isFixed] subclass....
immediate [hasimmediatelnstances] subclass....

Universitat Bern Dr.Stephane Ducasse 258

Smalltalk a Pure OO Language

Object size in bytes

obj ect Si zel nByt es: an(bj ect

| byt esl nOTE byt esl nOOP ad ass i ndexabl eFi el dSi ze i nst VarFi el dSi ze si ze

byt esI nOTE : = (oj ect Menory current byt esPer OTE.
byt esl nOOP : = (bj ect Menory current byt esPer OOP
ad ass : = an(oj ect cl ass.

aC ass isPointers
i fTrue:
[i nstVarFiel dSize : = ad ass instSize * bytesl nOOP.
aC ass isVariable
i f True: [indexabl eFi el dSi ze : = an(Chj ect basi cSi ze * byt esl nOOP]
i f Fal se: [indexabl eFi el dSi ze : = 0]]
i fFal se:
[i nstVarFiel dSize := 0.
aC ass isVariabl e
i f True: [indexabl eFi el dSi ze : = an(oj ect basicSi ze +
(bytesl nOCOP -1) bitAnd: bytesl nOOP negat ed]
i f Fal se: [i ndexabl eFi el dSi ze := 0]].
size : = byteslInOTE + instVarFiel dSi ze + i ndexabl eFi el dSi ze.

Nsize

Universitat Bern Dr.Stephane Ducasse

259

Smalltalk a Pure OO Language

Analysis

OTE (ObjectTableEntry) = 12 OOP (ObjectPointer)= 4

Pointers Type

I nternal s new obj ect Si zel nBytes: WrkStati on new
pointer, instSize = 3 (dependents nanme nextNode) * 4 = 12
not i ndexabl e

I nternal s new obj ect Si zel nBytes: (WrkStation new nane: #abc)
i dem because not recursive

I nternal s new obj ectSi zel nBytes: 1@
20 12 + 2 * 4

Indexable and Pointers Type
I nternal s new obj ectSi zel nBytes: (O deredCollection new 10)
O deredCol | ecti on new. 10
= 2 inst variable and 10 i ndexes
class instSize =2 * 4
basicSize = 10 * 4
60 bytes

Universitat Bern Dr.Stephane Ducasse

260

Smalltalk a Pure OO Language

Indexable pure

I nternal s new obj ect Si zel nBytes: Fl oat pi
4 indexed variable * 4
16

Non pointer, non Index = immediate
but an immediate type object has no object table entry
the immediate object is stored into the OOP.

I nternal s new objectSi zel nBytes: 1
= 12 but the code shoul d use islnmediate

Universitat Bern Dr.Stephane Ducasse

261

Smalltalk a Pure OO Language Smalltalk in a Nutshell

16. Blocks and Optimization

Recall;

[:x:y | [tnp] ...]
val ue

val ue:

val ue: val ue:

val ue: val ue: val ue:
val ueWt hAr gunent s:

In VisualWorks there are four types of blocks:

O Full Block,

[1 Copying Block,
0 Clean Block

O Inlined Blocks.

A user does not have to explicitly mentioned which one is want to use. This is inferred by
the compiler. However, knowing the subtle differences allows the programmer to be more
efficient.

Universitat Bern Ducasse Stéphane 1.262

Smalltalk a Pure OO Language

Full Blocks

[Read and assign temporary variables.
[1 Block containing explicit return *.

[1 Compiled in a BlockClosure.

[1 Evaluation by the creation of an explicit MethodContext or BlockContext object

instead of using a pseudo-object contained in the stack.

[Most costly

Instead of:
ml: argl
argl i sN |
I fTrue: [/ 1]
| fFal se: [N 2]
Better:
m: argl
Nargl isN
I fTrue: [1]
I fFal se: [2]

Universitat Bern

Ducasse Stéphane

Smalltalk in a Nutshell

1.263

Smalltalk a Pure OO Language Smalltalk in a Nutshell

Copying Blocks

Read temporary variables but do not assign them.
No explicit return.

Access instance variables of self and assign them.
Not compiled into a BlockClosure.

They are compiled by copying every access into the block avoiding to explicitly
keep a reference to a context where the copied variables appear.

Their arguments and temporary are merged into the enclosing method’s context
as “compiler-generated temporaries”.

O 0O 0O 0O

]

Universitat Bern Ducasse Stéphane 1.264

Smalltalk a Pure OO Language Smalltalk in a Nutshell

Clean Blocks

[1 Contain only reference block temporary variable or global variable.
[1 No reference to self or to instance variables.

nodes do: [:each | each nane = #stef]
nodes select: [:each | each islLocal]

Universitat Bern Ducasse Stéphane 1.265

Smalltalk a Pure OO Language Smalltalk in a Nutshell

Inlined Blocks

[1 Code of certain methods like whileFalse: ifTrue: is direclty insered into the
code of the calling method.

[J The literal blocks (without arguments) passed as argument to such methods
are also inlined in the byte-code of the calling method.

1 Inlined methods are whileTrue, whileTrue:, whileFalse, whileFalse:, and: or:,
ifTrue:, ifFalse:, ifTrue:ifFalse:, ifFalse:ifTrue:, to:do:, to:do:by:

[0 Look in MessageNode>>transform* methods to see the inlining
[]

testinLined
1 to: 5 do: [:x]|]

Compiled into :
| t1]
tl = 1.
[tl <= 5] whileTrue: [tl :=1t1 + 1].
But no BlockClosure is created (look into the byte codes)

Universitat Bern Ducasse Stéphane 1.266

Smalltalk a Pure OO Language Smalltalk in a Nutshell

Full to Copy

Instead of:
| t]
[:x] t :=x foo] value: 1.
t =1t * 2.
At
[0 The reference to t inside the block makes it at least a copying block.
[0 t:=makes it full.
With the following we have a clean block.
| t]
t
t =1t * 2

M

[:x | x foo] value: 1.

Universitat Bern Ducasse Stéphane 1.267

Smalltalk a Pure OO Language

Contexts

Full blocks are evaluated in a separate context.

The following code evaluate to false:

| out er Cont ext answer |
out er Cont ext : = thi sCont ext.
(1 to: 1) do: [:i | answer := thisContext == outerContext].

answer

But the following evaluates to true because: to:do: is an inlined block

| out er Cont ext answer |
out er Cont ext : = thi sContext.
1 to: 1do: [:1 | answer := thisContext == outerContext].

answer
So this is better to use to:do: than (to:) do:

Universitat Bern Ducasse Stéphane

Smalltalk in a Nutshell

1.268

Smalltalk a Pure OO Language Smalltalk in a Nutshell

Inject.into:

Instead of:
| maxNunber |
maxNunber : = 0.
#(1 2 43 56 2 49 3 2 0) do: [:each] maxNunber := each max: nmaxNunber].
maxNunber

Write
#(1 2 43 56 2 49 32 0) inject: O into: [:nmaxNunber :ele| nmaxNunber nax: el e]

[no need the temporary variable
(1 full blocks to clean block

Universitat Bern Ducasse Stéphane 1.269

Smalltalk a Pure OO Language Smalltalk in a Nutshell

About String Concatenation

[1 strl, str2 creates a new structure in which strl and str2 elements are stored

Sequenceabl eCol | ecti on>>, aSequenceabl eCol | ecti on
"Answer a copy of the receiver concatenated with the argunent,
a Sequenceabl eCol | ection.”

"sel f copyRepl aceFrom self size + 1
to: self size
wi t h: aSequenceabl eCol | ecti on
Sequenceabl eCol | ecti on>>copyRepl aceFrom start to: stop with: replacenentCollection
"Answer a copy of the receiver satisfying the foll ow ng conditions:

Universitat Bern Ducasse Stéphane 1.270

Smalltalk a Pure OO Language Smalltalk in a Nutshell

Stream, Blocks and Optimisation (i)

(from Alan Knight)

Suppose that we want to concatenate a pretty long list of strings for example the keys of
the Smalltalk dictionary.

| bi gStri ng|
bigString := String new.
Smal I tal k keys do: [:aString | bigString := bigString, aString].

Here the assignment of bigString leads to a Full Block
We can suppress the assignment like that:

| aSt r eani
aStream= WiteStreamon: String new.
Smal ltal k keys do: [:aString | aStreamnextPutAll: aString].

We obtain a copying block.

Universitat Bern Ducasse Stéphane 1.271

Smalltalk a Pure OO Language Smalltalk in a Nutshell

Stream, Blocks and Optimisation (ii)

inject:into: allows us to suppress the reference to variables that are outside the block
and to obtain a clean block.

| aSt r eani

aStream= WiteStreamon: String new.

Smal ltal k keys inject: aStreaminto: [:cumul :aString| cumul nextPutAll: aString.
cumul] .

Now if we use a stream for the Smalltalk keys we can avoid iteration method. With
whileFalse: that is inlined the block will be inlined.

| aReadSt ream aWi t eStr eani

aReadStream : = ReadStreamon: Snalltal k keys asArray.

aWiteStream:= WiteStreamon: String new.

[aReadStream at End] whil eFal se: [aWiteStreamnextPut All: a ReadStream next].

Optimization Yes, but Readibility First

Universitat Bern Ducasse Stéphane 1.272

Smalltalk a Pure OO Language Smalltalk in a Nutshell

BlockClosure Class Comments

Instance Variables:
met hod <Conpi | edBl ock>

out er Context <Context | nil>
copi edVal ues <ject | Array | nil>
There are currently three kinds of closures:

- "Clean" closure with no references to anything from outer scopes. A clean
closure has outerContext = nil and copiedValues = empty Array.

- "Copying" closure that copies immutable values from outer scopes when the
closure is created. A copying closure has outerContext = nil and copiedValues = Object
or Array.

-"Full" closure that retains a reference to the next outer scope. A full closure has
outerContext ~= nil and copiedValues = nil.

As an optimization, copiedValues holds the single copied value if there is exactly one, or
an Array of values if there is more than one. Note that if there is a single copied value,
the value being copied can be nil, so testing for nil in copiedValues is not a reliable means
of classifying closures. The way to check whether a closure has copied values is to ask
its method whether numCopiedValues > 0.

Universitat Bern Ducasse Stéphane 1.273

Object-Oriented Design with Smalltalk a Pure OO Language

17. Block Deep Understanding

VM represents the state of execution as Context objects
for method MethodContext
for block BlockContext

aContext contains a reference to
the context from which it is invoked,
the receiver
arguments
temporaries in the Context

We called home context the context in which a block is defined

Universitat Bern Ducasse Stéphane 1.274

Object-Oriented Design with Smalltalk a Pure OO Language

Lexically Scope

Arguments, temporaries, instance variables are lexically scoped in Smalltalk
These variables are bound in the context in which the block is defined
and not in the context in which the block is evaluated

Test >>t est Scope

"sel f new test Scope"

| t]

t .= 15.

self testBlock: [Transcript show t printString]
Test >>t est Bl ock: aBl ock

| t]

t := 50.

aBl ock val ue

Test new t est Bl ock
-> 15 and not 50

Universitat Bern Ducasse Stéphane 1.275

Object-Oriented Design with Smalltalk a Pure OO Language

Returning from a Block (i)

A should be the last statement of a block body
[Transcript show 'two'.
N osel f.
Transcript show 'not printed]

A return exits method containing it.

t est

"self new test"”

Transcri pt show 'one'.
1 isZero
ifFalse: [O isZero ifTrue: [Transcript show 'two'.
N oself]].

Transcript show ' not printed

-> one two

Universitat Bern Ducasse Stéphane 1.276

Object-Oriented Design with Smalltalk a Pure OO Language

Returning From a Block (ii)

Taking returning as a differenciator

[1 Simple block [:x :y| X *x. x + y] returns the value of the last statement to the
method that send it the message value

[1 Continuation blocks [:x :y| * x + y] returns the value to the method that activated
@ @not clear activated@ @ its homeContext

As a block is always evaluated in its homeContext, it is possible to attempt to return from
a method which has already returned using other return. This runtime error condition is
trapped by the VM.

(hj ect >>r et ur nBl ock
N ~sel f]
bj ect new ret urnBl ock
-> Exception
| bl
b:=[:x| Transcript show

X
b value: * a . b value: * b'.

X. "X].
b value: * a . b value: * b'.

Continuation blocks cannot be executed several times!

b:=[:x] Transcript show

Universitat Bern Ducasse Stéphane 1.277

Object-Oriented Design with Smalltalk a Pure OO Language

Example of Block Evaluation

Test >>t est Scope
"self new test Scope"
| t]
t .= 15.
self testBlock: [Transcript show t printString.
Asel f]

Test >>t est Bl ock: aBl ock
| t]
t = 50.
aBl ock val ue.
self halt.

Test new t est Bl ock
-> 15 and not halt!!

Universitat Bern Ducasse Stéphane 1.278

Object-Oriented Design with Smalltalk a Pure OO Language

Creating an escape mechanism

|val |

val (= [:exit |
| goSoon|
goSoon := D alog confirm 'Exit now? .
goSoon ifTrue: [exit value: 'Bye'].
Transcript show 'Not exiting' .
‘last value'] valueWthExit.
Transcri pt show val
yes -> print Bye
no -> print Not Exiting last value

Bl ockd osur e>>val ueWt hExi t
Aself value: [:arg| ”arg]

Universitat Bern Ducasse Stéphane 1.279

Object-Oriented Design with Smalltalk a Pure OO Language

Universitat Bern Ducasse Stéphane 1.280

Smalltalk a Pure OO Language Smalltalk in a Nutshell

Design Considerations

Abstract Classes

Design Issues

Elementary Design Issues
ldioms

Some selected design patterns

O 0O 0O 0O

Universitat Bern Ducasse Stéphane 1.281

Smalltalk a Pure OO Language Basic Elements of Design

Abstract Classes

« Should not be instantiated (deferred class of Eiffel).

» Defines a protocol common to a hierarchy of classes that is independent from the
representation choices.

» A class is considered as abstract as soon as one of the methods to which it should
respond to is not implemented (can be a inherited one).

» Deffered method send the message sel f subcl assResponsi bility.
» Depending of the situation, override #newto produce an error.

» Abstract classes are not syntactically distinguable from instantiable classes.
BUT as conventions use class comments: So look at the class comment.

and write in the comment which methods are abstract and should be specialized.
Advanced tools check this situation.

Cl ass Bool ean i s an abstract class that inplenents behavior conmon to true and fal se. 1ts subcl asses
are True and Fal se. Subcl asses nust 1 nplenent mnethods for
| ogi cal operations & not, |

controlling and:, or:, ifTrue:, ifFalse:, ifTrue:ifFalse:, ifFalse:ifTrue:

Universitat Bern Ducasse Stéphane 7.282

Smalltalk a Pure OO Language Basic Elements of Design

Case Study: Boolean, True and False

g, ors Ifirae: .
Fes IrFalice Frirue;

True

and:, or: ,ifTrue: ,ifFalse: ,
ifTrue:ifFalse: ,ifFalse:ifT
&, not, |

Universitat Bern Ducasse Stéphane 7.283

Smalltalk a Pure OO Language Basic Elements of Design

Boolean
Abstract method

Bool ean>>not

“"Negation. Answer true if the receiver is false, answer false if the receiver is
true.”

sel f subcl assResponsibility

Concrete method efined in terms of an abstract method
Bool ean>>xor: aBool ean
"Exclusive OR Answer true if the receiver is not equivalent to aBool ean.™

N(sel f == aBool ean) not

When #not will be defined, #xor : is automatically defined

Note that VisualWorks introduced a kind of macro expansion, optimisation for essential methods and Just In Time
compilation. A method is executed once and after it is compiled in native code. So the second time it is invoked
the native code is executed.

Universitat Bern Ducasse Stéphane 7.284

Smalltalk a Pure OO Language Basic Elements of Design

False and True

Fal se>>not

"Negation -- answer true since the receiver is false."
Arue

Tr ue>>not

"Negation--answer false since the receiver is true."

N al se

Fal se>>i f True: trueBl ock ifFal se: falseBl ock

"Answer the value of falseBlock. This nethod is typically not invoked because
I fTrue:/ifFal se: expressions are conpiled in-line for literal blocks."

~f al seBl ock val ue

True>>i f True: trueBl ock ifFal se: fal seBl ock

“"Answer the value of trueBlock. This nethod is typically not invoked because
I fTrue:/ifFal se: expressions are conpiled in-line for literal blocks."

"trueA ternati veBl ock val ue

Universitat Bern Ducasse Stéphane 7.285

Smalltalk a Pure OO Language Basic Elements of Design

CaseStudy: Magnitude:

1>2 = 2<1=false

Magni t ude>> < aMagni t ude
"sel f subcl assResponsibility

Magni t ude>> = aMagni t ude

Asel f subcl assResponsibility
Magni t ude>> <= aMagni t ude

N(sel f > aMagni tude) not
Magni t ude>> > aMagni t ude

NaMagni tude < sel f
Magni t ude>> >= aMagni t ude

N(sel f < aMagni tude) not
Magni t ude>> between: mn and: max

Aself >= mn and: [self <= nax]

1 <=2 =(1>2) not
= fal se not
= true

Universitat Bern Ducasse Stéphane 7.286

Smalltalk a Pure OO Language Basic Elements of Design

Date

Dat e>>< aDat e
"Answer whet her the argunent, aDate, precedes the date of the receiver."

year = aDate year
| f True: [~day < aDate day]
| f Fal se: [“year < aDate year]

Dat e>>= aDat e
"Answer whet her the argunent, aDate, is the sane day as the receiver.

self species = aDate species
I fTrue: [~day = aDate day & (year = aDate year)]
| f Fal se: [~fal se]

Dat e>>hash
~(year hash bitShift: 3) bitXor: day

Universitat Bern Ducasse Stéphane 7.287

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

18. Basic Elements of Design and Class
Behavior

Class definition

Instance initialisation

Enforcing the instance creation
Instance/Class methods
Instance variable/ Class instance variables
Class initialisation

Law of Demeter

Factoring Constant

Abstract Classes

Template Methods

Delegation

Bad Style

N)) N D I O I O

Universitat Bern Ducasse Stéphane 7.288

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

A First Implementation of Packet

(hj ect subcl ass: #Packet
i nstanceVari abl eNanes: ‘contents addressee originator *
cl assVari abl eNanes: *’
pool Di ctionari es:

category: ‘Lan-Simulation

One instance method
Packet >>print On: aStream
super printOn: aStream
aStreamnext PutAll: * addressed to: ‘; nextPutAll: self addressee.

aStreamnextPutAll: * with contents: '; netxPutAll: self contents

Some Accessors
Packet >>addr essee

Naddr essee

Packet >>addr essee: aSynbol

addr essee : = aSynbol

Universitat Bern Ducasse Stéphane 7.289

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Packet CLASS Definition

Packet Class is Automatically defined
Packet cl ass

I nst anceVar i abl eNanes:

Example of instance creation
Packet new addressee: # mac ; contents: ‘hello nmac’

Universitat Bern Ducasse Stéphane 7.290

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Fragile Instance Creation

Packet new addressee: # mac ; contents: ‘hello nmac’

If we do not specify a contents, it breaks!

| pl
p : = Packet new addressee: #nac.

p printOn: aStream-> error

Problems of this approach:
[0 responsibility of the instance creation relies on the clients
[] can create packet without contents, without address
[0 instance variable not initialized -> error (for example, pri nt On:)
=> system fragile

Solutions:
[0 Automatic initialization of instance variables
[1 Proposing a solid interface for the creation

Universitat Bern Ducasse Stéphane 7.291

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Assuring Instance Variable Initialization

Problem. By default #new class method returns instance with uninitialized instance
variables. Moreover, #i ni ti al i ze method is not automatically called by creation

methods #new/ new.
How to initialize a newly created instance ?

Solution. Defines an instance method that initializes the instance variables and override
#newto invoke it.

1 Packet cl ass>>new d ass Mt hod
2 A super new initialize
3 Packet>>initialize | nst ance Met hod

super initialize.
4 contents := ‘default nessage’

Packet new (1-2) -> aPacket initialize (3-4) -> returning anlnitializedPacket

Remind. You cannot access instance variable from a class method like #new

Universitat Bern Ducasse Stéphane 7.292

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Other Instance Initialization

step 1. SortedCollection sortBlock: [:a :b|] a nane < b nane]

SortedCol | ection cl ass>>sort Bl ock: aBl ock
"Answer a new i nstance of SortedCollection such that its elenents are sorted
according to the criterion specified in aBl ock."
"sel f new sortBl ock: aBl ock d ass net hod

step 2. self new = aSortedCol | ection
step 3. aSortedCol |l ection sortBl ock: aBl ock | nst ance net hod
step 4. returning the instance aSortedCol | ection

step 1. OderedCollection with: 1

Col | ection class>>w th: anChj ect
"Answer a new i nstance of a Collection containing anCoject."”
| newCol | ection |
newCol | ection : = self new
newCol | ecti on add: anQoj ect.
AnewCol | ecti on

Universitat Bern Ducasse Stéphane 7.293

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Strengthen Instance Creation Interface

Problem.
A client can still create aPacket without address.

Solution.
[0 Force the client to use the class interface creation.

[1 Providing an interface for creation and avoiding the use of #new
Packet send: ‘Hello mac’ to: #Mac

First try:
Packet class>>send: aString to: anAddress
N self new contents: aString ; addressee: anAddress

Universitat Bern Ducasse Stéphane 7.294

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Forbidding new

Problem. We can still use #newto create fragile instances

Solution. #new should raise an error!
Packet cl ass>>new

self error: 'Packet should only be created using send:to:'

But we still have to be able to create instance!
Packet class>>send: aString to: anAddress
N self new contents: aString ; addressee: anAddress
=> raises an error
Packet class>>send: aString to: anAddress
A super new contents: aString ; addressee: anAddress

=> pad style: link class and superclass dangerous in case of evolution

Solution: use basi cNewand basi cNew.
Packet class>>send: aString to: anAddress

~n sel f basi cNew contents: aString ; addressee: anAddress

Universitat Bern Ducasse Stéphane

7.295

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Universitat Bern Ducasse Stéphane 7.296

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Class Methods - Class Instance Variables

[Classes (Packet cl ass) represents class (Packet).

[1 Class instance variable are instance variable of class
=> should represent the state of class: number of created instances, number of
messages sent, superclasses, subclasses....

[1 Class methods represent CLASS behavior: instance creation, class
initialization, counting the number of instances....

[J If you weaken the second point: class state and behavior can be used to define
common properties shared by all the instances

Ex: If we want to encapsulate the way “no next node” is coded. Instead of writing:
aNode next Node i sNiI => aNode hasNext Node

Node>>hasNext Node

N sel f next Node = self noNext Node
Node>>noNext Node

Asel f cl ass noNext Node
Node cl ass>>noNext Node

N oni

Universitat Bern Ducasse Stéphane 7.297

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Class Initialization

Automatically called by the system at load time or explicitly by the programmer.
- Used to initialize a classVariable, a pool dictionary or class instance variables.
-‘Classnane initialize’ atthe end of the saved files.

Example: Dat e

Magni t ude subcl ass: #Date
I nst anceVari abl eNanes: 'day year'

cl assVari abl eNanes: ' Daysl nMont h Fi rst DayOf Mont h Mont hNanmes Seconds| nDay
VekDayNanes'

pool Dictionaries: "'
category: ' Magnitude-Ceneral'

Universitat Bern Ducasse Stéphane 7.298

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Date class>>initialize

Date class>>initialize

“Initialize class variables representing the names of the nonths and days and the

nunber of seconds, days in each nonth, and first day of each nonth.

"Date initialize."

Mont hNames : = #(January February March April My

June July August Septenber Cctober Novenber Decenber).

SecondslnDay := 24 * 60 * 60.

Daysl nMonth : = #(31 28 31 30 31 30 31 31 30 31 30 31).

FirstDayOMonth = #(1 32 60 91 121 152 182 213 244 274
305 335).

VWekDayNanes : = #(Mnday Tuesday Wednesday Thur sday
Friday Saturday Sunday)

Universitat Bern Ducasse Stéphane

7.299

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

A Case Study: Scanner

Scanner new
scanTokens: 'identifier keyword: 8r31 ''string' ' enbedded. period key: word:
-> #(#identifier #keyword: 25 'string 'enbedded. period #key:word: # .')

Class Definition
(bj ect subcl ass: #Scanner

I nst anceVari abl eNanmes: ' source nmark prevEnd hereChar token tokenType saveComment s
current Comment buffer typeTable '

cl assVari abl eNanes: ' TypeTabl e

pool D ctionari es:
category: 'System Conpil er-Public Access'

Why having an instance variable and a classVariable denoting the same object (the
scanner table)?

[0 TypeTable is used to initialize once the table

[J typeTable is used by every instance and each instance can customized the
table (copying).

Universitat Bern Ducasse Stéphane 7.300

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Scanner class>>initialize

"Scanner initialize"

| newTabl e |

newlabl e : = Scanner Tabl e new. 255 withAl|: #xDefault. "default"
newTabl e at Al | Separat orsPut: #xDelimter

newlabl e atAll DigitsPut: #xDigit.

newTabl e at Al |l LettersPut: #xLetter.

newlTabl e at: $_ aslnteger put: #xLetter.

TOR*+, -/ <=>7@~' do: [:bin | newlable at: bin aslnteger put: #xBinary].
"Cther nulti-character tokens"

newTabl e at: $" aslnteger put: #xDoubl eQuote.

" Si ngl e-character tokens”
newTabl e at: $# aslnteger put: #literal Quote.
newTabl e at: $(aslnteger put: #l eftParenthesis.

newTabl e at: $" aslnteger put: #upArrow. "spacing circunflex, fornmerly up arrow'
newTabl e at: $| aslnteger put: #vertical Bar.
TypeTabl e : = newTabl e

Universitat Bern Ducasse Stéphane 7.301

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Scanner

Instances only access the type table via the instance variable that points to the table that
has been initialized once.

Scanner cl ass>> new

Asuper new i nit Scanner
Scanner >>j ni t Scanner
buffer := WiteStreamon: (String new 40).
saveComments : = true.
typeTabl e : = TypeTabl e

A subclass just has to specialize initScanner without copying the initialization of the table
MyScanner >>i ni t Scanner
super i nitScanner
typeTabl e : = typeTabl e copy.
typeTabl e at: $(aslnteger put: #xDefault.
typeTabl e at: $) aslnteger put: #xDefault

Universitat Bern Ducasse Stéphane 7.302

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Universitat Bern Ducasse Stéphane 7.303

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

What is an object?

a class should have ONE clear responsibility and collaborations

Write it in the class comments
if you cannot, there is something wrong with yoru class

Universitat Bern Ducasse Stéphane 7.304

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Why Coupled Classes are Bad?

Wor kst at i on>>accept : aPacket
aPacket addressee = self nane
ifTrue:[Transcript show 'A packet is accepted by the Wirkstation ', self name asString]

i f Fal se: [super accept: aPacket]

If Packet changes the way addressee is represented Workstation have to be changed too

Universitat Bern Ducasse Stéphane 7.305

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

The Law ot Demeter

You should only send messages to:
- an argument passed to you
- an object you create
- self, super
- your class
Avoid global variables

Avoid objects returned from message sends other then self
soneMet hod: aPar anet er

self foo.

super foo.

self class foo.

sel f instVar(One foo.
I nst Var One f oo.

sel f classVar(ne foo.
cl assVar One f oo.

aPar anet er foo.

thing := Thing new.
thing foo

Universitat Bern Ducasse Stéphane 7.306

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

lllustrating the Law of Demeter

NodeManager >>decl ar eNewNode: aNode
| nodeDescri pti on|
(aNode isValid) “Ck passed as an argunent to ne”
I fTrue: [aNode certified].
nodeDescri ption : = NodeDescription for: aNode.

nodeDescri ption | ocal Ti ne. “I created it”

sel f addNodeDescri ption: nodeDescri ption. “l can talk to nysel f*

nodeDescri ption data “Wong | should not know’
at: self creatorKey “that data is a dictionary”

put: self creator

Universitat Bern Ducasse Stéphane 7.307

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

About the Use of Accessors (i)

Literature says: “Access instance variables using methods”
[Be consistent inside a class, do not mix direct access and accessor use
[1 First think accessors as private methods that should not be invoked by clients
[0 Only when necessary put accessors in accessing protocol

Schedul e>>initialize
tasks := O deredCol | ecti on new.

Schedul e>>t asks
"t asks

BUT: accessors methods should be PRIVATE by default at least at the beginning.

Accessors are good for lazy initialization
Schedul e>>t asks
tasks isN| ifTrue:[task :=...].
"t asks

Universitat Bern Ducasse Stéphane 7.308

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

About the Use of Public Accessors (ii)

[1 This is not because accessors are methods that you provide a good data
encapsulation.

[If they are mentionned as public (no inforcement in Smalltalk) you could be
tempted to write in a client:

[]
Schedul edVi ew>>addTaskBut t on

nodel tasks add: newrlask

What's happen if we change the representation of tasks? If tasks is now a dictionary
===> THAT'S BREAK!!I,

[1 Take care about the coupling between your objects and provide a good
interface!

Schedul e>>addTask: aTask
t asks add: aTask

Returns consistenly the receiver or the element but the not the collection (else people
can look inside and modifies it) or returns a copy of it.

Universitat Bern Ducasse Stéphane 7.309

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Never to work that somebody else can do!

Alan Knight
total := 0.
aPlant bilings do: [:each | (each status == #paid and: [each date>startDate])
| fTrue: [total :=total + each anount]].
Instead write
total := aPlant total BillingsPai dSi nce: startDate

Universitat Bern Ducasse Stéphane 7.310

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Provide a Complete Interface

Wor kst at i on>>addr essee

Naddr essee
Wor kst at i on>>accept : aPacket
aPacket addressee = self nane
I fTrue:[Transcript show 'A packet is accepted by the Wrkstation ',
sel f nanme asString]
| f Fal se: [super accept: aPacket]
=> This is the responsibility of an object to propose a complete interface that propects
itself from client intrusion.

Shift the responsibility to the Packet object
Packet >>i sAddr essedTo: aNode
A addressee = aNode nane
Wr kst at i on>>accept: aPacket
aPacket isAddressedTo: self

| fTrue:[Transcript show 'A packet is accepted by the Wrkstation ', self
nane asString]

| f Fal se: [super accept: aPacket]

Universitat Bern Ducasse Stéphane 7.311

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Universitat Bern Ducasse Stéphane 7.312

Object-Oriented Design with Smalltalk a Pure OO Language

Factoring Out Constants

Ex: If we want to encapsulate the way “no next node” is coded.

Instead of writing:
Node>>next Node

N next Node
Noded i ent >>transmt To: aNode
aNode next Node = ‘no next node’

Write:
Noded i ent >>transm t To: aNode
aNode hasNext Node

Node>>hasNext Node
N sel f next Node = self cl ass noNext Node

Node cl ass>>noNext Node
N ''no next node’

Universitat Bern Ducasse Stéphane

Basic Elements of Design

7.313

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Initializing without Duplicating

Node>>initialize
accessType := ‘local’

Node>>i sLocal
AN accessType = ‘local’
=>
Node>>initialize
accessType : = self | ocal Access

Node>>i sLocal
AN accessType = self | ocal Access

Node>>| ocal AccessType
A “local’
|deally you could be able to change the constant without having any problems.

You may have to have mapping tables from model constants to Ul constants or database
constants.

Universitat Bern Ducasse Stéphane 7.314

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Constants Needed at Creation Time

Works well for:
Node cl ass>>| ocal NodeNaned: aStri ng

| i nst |

inst := self new

i nst nane: aString.

inst type: inst |ocal AccessType

If you want to have the following creation interface
Node cl ass>>nane: aString accessType: aType
Aself new nane: aString ; accessType: aType
Node cl ass>>nane: aString

Asel f name: aString accessType: self |ocal AccessType

You need:

Node cl ass>>| ocal AccessType

N ‘local’

=> Factor the constant between class and instance level

Node>>| ocal AccessType

"sel f class | ocal AccessType

=> you could also use a ClassVariable that are shared between class and their instances

Universitat Bern Ducasse Stéphane 7.315

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Universitat Bern Ducasse Stéphane 7.316

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Type Checking for Dispatching

How to invoke a method depending on the receiver and an argument?
not so good solution:

PSPri nt er>>print: aDocunent
A aDocument isPS
i fTrue: [self printFronPS: aDocunent]
ifFalse: [self printFronPS: aDocunent asPS]

PSPri nt er >>pri nt For nPS: aPSDoc
<primtive>

Pdf Pri nter>>print: aDocunent
A aDocunent isPS
i fTrue: [self printFronPDF. aDocunent asPDF]
i fFal se: [self printFronPDF: aDocunent]

Pdf Pri nt er >>pri nt For nPS: aPdf Doc

<primtive>

As we do not know how to coerce form the PSPrinter to a PdfPrinter we only use coercion
between documents

Universitat Bern Ducasse Stéphane 7.317

Object-Oriented Design with Smalltalk a Pure OO Language

Double Dispatch (i)

Basic Elements of Design

How to invoke a method depending on the receiver and an argument?

Solution: use the information given by the single dispatch and redispatch with the
argument (send a message back to the argument passing the receiver as an argument)

(a) PSPri nter>>print: aDocunent

A aDocunent print FronPS: sel f
(b) Pdf Printer>>print: aDocunent

A aDocunent print FronPDF: sel f

Some Tests:

psptr print: psdoc =>(a->c)

pdf ptr print: pdfdoc => (b->f)
psptr print: pdfdoc => (a->d->b->f)
pdf ptr print: psdoc => (b->e->b->f)

Universitat Bern

Ducasse Stéphane

(c) PSDoc>>print FronPS: aPSpri nter
<primtive>
(d) Pdf Doc>>pri nt FronPdf: aPSpri nter
aPSprinter print: self asPS

(e) PSDoc>>print FronPS: aPdf Printer
aPdf Printer print: self asPdf
(f) Pdf Doc>>print FronPdf: aPdf printer

<primtive>

7.318

Object-Oriented Design with Smalltalk a Pure OO Language

A Step Back

Example: Coercion between Float and Integer

Not a really good solution:

| nt eger >>+ aNunber
(aNunber isKindO: Float)
ifTrue: [aNunber asFloat + self]
ifFalse: [self addPrimtive: aNunber]

FI oat >>+ aNunber
(aNunmber isKindO: |nteger)
i fTrue: [aNunber asFloat + self]
ifFalse: [self addPrimtive: aNunber]

Here receiver and argument are the same,
we can coerce in both sense.

Universitat Bern Ducasse Stéphane

Basic Elements of Design

7.319

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Deeper on Double Dispatch : Numbers (ii)

(c) I nteger>>sunfron nteger: anlnteger
<primtive: 40>

(d) Fl oat >>sunfrom nteger: anl nteger
A anlnteger asFloat + self

(a) | nt eger >>+ aNunber
A aNunber sunfrom nteger: self
(b) FlI oat >>+ aNunber
A aNunber sunfronfl oat: self
(e) I nteger>>sunfrontl oat: aFl oat
NaFl oat + sel f asFl oat
(f) Fl oat >>sunfrontl oat: aFl oat
<primtive: 41>

Some Tests:

+ 1

0+1

+ 1.0: (a->d->b->f)
0 + 1: (b->e->b->f)

Universitat Bern Ducasse Stéphane 7.320

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Universitat Bern Ducasse Stéphane 7.321

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Methods are the Elementary Unit of Reuse

Node>>conput eRat i oFor D spl ay
| aver ageRat i o def aul t NodeSi ze|

averageRati o : = 55.
def aul t NodeSi ze : = self mai nWndowCoordi nate / maxi m seVi ewRati o.
sel f w ndow add:
U Node new wit h:
(self bandWdth * averageRatio / defaul t WndowSi ze)

We are forced to copy the method!
Speci al Node>>conput eRat i oFor D spl ay

| aver ageRat i o def aul t NodeSi ze|
averageRati o : = 55.
def aul t NodeSi ze : = self mai nWndowCoordi nate + mninmal Rati o / nmaxi m seVi ewRat i o.
sel f w ndow add:

U Node new wit h:

(self bandWdth * averageRatio / defaul t WndowSi ze)

Universitat Bern Ducasse Stéphane 7.322

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Methods are the Elementary Unit of Reuse (i)

Self sends = planning for Reuse

Node>>conput eRat i oFor D spl ay
| aver ageRati o |
averageRati o : = 55.
sel f w ndow add:
U Node new wi t h:
(sel f bandWdth * averageRatio / self defaul t WndowSi ze)

Node>>def aul t NodeSi ze
Asel f mai nW ndowCoordi nate / maxi m seVi ewRati o

Speci al Node>>def aul t NodeSi ze
Asel f mai nWndowCoordinate + mninmal Rati o / nmaxi m seViewRati o

Universitat Bern Ducasse Stéphane 7.323

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Methods are the Elementary Unit of Reuse

Node>>conput eRat i oFor D spl ay
| aver ageRat i o def aul t NodeSi ze|

averageRati o : = 55.
def aul t NodeSi ze : = self mai nWndowCoordi nate / maxi m seVi ewRati o.
sel f w ndow add:
U Node new wit h:
(self bandWdth * averageRatio / defaul t WndowSi ze).

We are forced to copy the method!
Speci al Node>>conput eRat i oFor D spl ay
| aver ageRat i o def aul t NodeSi ze|
averageRati o : = 55.
def aul t NodeSi ze : = self mai nWndowCoordi nate / maxi m seVi ewRati o.
sel f w ndow add:
Ext endedUl Node new wit h:
(self bandWdth * averageRatio / defaul t WndowSi ze).

Universitat Bern Ducasse Stéphane 7.324

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Class Factories

Node>>conput eRat i oFor D spl ay

| aver ageRati o |
averageRati o : = 55.
sel f w ndow add:
self Udass new wth:
(sel f bandWdth * averageRatio / self defaul t WndowSi ze)

Node>>Ul A ass
AU Node

Speci al Node>>Ul A ass
AExt endedU Node

Universitat Bern Ducasse Stéphane 7.325

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Hook and Template Methods

Universitat Bern Ducasse Stéphane 7.326

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Hook Example: Copying

bj ect >>copy

" Answer another instance just like the receiver. Subclasses nornmally override the post Copy nes-
sage, but sone objects that should not be copied override copy. "

Asel f shal | owCopy post Copy

bj ect >>shal | owCopy

"Answer a copy of the receiver which shares the receiver's instance
vari abl es. "

<primtive: 532>

hj ect >>post Copy
" Finish doing whatever is required, beyond a shall owCopy, to inplenent 'copy'.
Answer the receiver. This nmessage is only intended to be sent to the newy created instance.
Subcl asses may add functionality, but they should al ways do super postCopy first. "
" Note that any subclass that 'm xes in Mdel ness’ (i.e., inplenments dependents with an instance
variabl e) must include the equivalent of 'self breakDependents'"”

Nsel f

Universitat Bern Ducasse Stéphane 7.327

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Hook Specialisation

Bag>>post Copy
"Make sure to copy the contents fully."

| new |
super post Copy.
new : = contents class new. contents capacity.
contents keysAndVal uesDo:
[:0obj :count | new at: obj put: count].

contents : = new.

Universitat Bern Ducasse Stéphane 7.328

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Hook and Template Example: Printing

Obj ect>>printString
"Answer a String whose characters are a description of the receiver."

| aStream |
aStream:= WiteStreamon: (String new 16).

self printOn: aStream

NaStream contents

oj ect >>printOn: aStream
"Append to the argunment aStream a sequence of characters

t hat descri bes the receiver."

| title |
title := self class nane.
aStream next Put Al | :
((title at: 1) isVowel ifTrue: ['an '] ifFalse: ['a ']).

aStreamoprint: self class

Universitat Bern Ducasse Stéphane 7.329

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Override of the Hook

Array>>printOn: aStream
"Append to the argunent, aStream the elenents of the Array

encl osed by parent heses. "

| tooMany |
tooMany := aStream position + self maxPrint.
aStreamnext Put Al l: " #('.

self do: [:elenent |
aStream position > tooMany
i fTrue:
[aStream nextPutAll: '...(nore)...)".
nsel f].
el ement printOn: aStrean]
separ at edBy: [aStream space].
aStream next Put: $)

Fal se>>printOn: aStream
"Print false.”

aStream next Put Al l: 'fal se

Universitat Bern Ducasse Stéphane 7.330

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Specialisation of the Hook

The class Behavior that represents a class extends the default hook but still invokes the
default one.

Behavi or>>pri nt On: aStream
"Append to the argunment aStream a statenent of which

supercl ass the recei ver descends from"

aStream next Put All : 'a descendent of '

superclass printOn: aStream

Universitat Bern Ducasse Stéphane 7.331

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Universitat Bern Ducasse Stéphane 7.332

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Towards Delegation

New requirement. A document can be printed on different printers for example lw100s
ot lw200s depending on which printer is first encountered.

=> Packet need more than one destination

Ad-hoc Solution
LanPri nt er >>accept: aPacket
(t hePacket addressee = #*)
I fTrue: [self print: thePacket]
| fFal se: [(thePacket isAddressedTo: self)
I fTrue: [self print: thePacket]
| f Fal se: [super accept: thePacket]]

LanPrinter>>print: aPacket

Transcri pt
show self nane ;
L% %% %% pl’lntlng *****‘;Cr

show. aPacket contents ;cr

Universitat Bern Ducasse Stéphane 7.333

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Limits of such ad-hoc solution

[1 is not general
[1 brittle because based on convention
[J adding a new kind of address behavior require editing the class Printer

Universitat Bern Ducasse Stéphane 7.334

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Object and Delegation

Universitat Bern Ducasse Stéphane 7.335

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Trade Off

Delegation Pro
[No blob class: one class one responsibility
[1 Variation possibility

Delegation Cons
[1 Difficult to follow responsibilities and message flow
[J Adding new classes = adding complexities (more names)
[New object

Universitat Bern Ducasse Stéphane 7.336

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Bad coding practices

Universitat Bern Ducasse Stéphane 7.337

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Different Self/Super

Do not do a super with a different method selector

Packet cl ass>>new

self error: 'Packet should only be created using send:to:'

Packet class>>send: aString to: anAddress
A super new contents: aString ; addressee: anAddress

=> pad style: link class and superclass dangerous in case of evolution

Use basi cNewand basi cNew:
Packet class>>send: aString to: anAddress

n sel f basi cNew contents: aString ; addressee: anAddress

Never override basi cNewand basi cNew. (another name allocate only create instance
without instance variable initialization)

Universitat Bern Ducasse Stéphane 7.338

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Do not overuse conversions

nodes asSet
=> remove all the duplicated nodes (if node knows how to compare)

But a systematic use of asSet to protect yourself from duplicate is not good

nodes asSet asOrderedCol | ection
=> returns an ordered collection after removing duplicates

=> look for the real source of duplication if you do not want it!!!!

Universitat Bern Ducasse Stéphane 7.339

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Hidding missing information

D ctionary>>at: aKey
raises an error if the key is not found

D ctionary>>at: aKey ifAbsent: aBl ock
allows one to specify action <aBlock> to be done when the key does not exist

Do not overuse it!!!
nodes at: nodeld ifAbsent:[]

This is bad because at least we should know that the nodeld was missing

Universitat Bern Ducasse Stéphane 7.340

Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

Do not Check Return Values

Use exceptions

Universitat Bern Ducasse Stéphane 7.341

Smalltalk a Pure OO Language Design thoughts and iselected idioms

19. Design Thoughts and Selected Idioms

The Object Manifesto
Be lazy:

- Never do the job that you can delegate to another one!

Be private:
- Never let someone else plays with your private data

The Programmer Manifesto
- Say something only once

Universitat Bern Ducasse Stéphane 342

Smalltalk a Pure OO Language Design thoughts and iselected idioms

Composed Method

How do you divide a program into methods?

- Messages take time

- Flow of control is difficult with small methods

But:
- Reading is improved
- Performance tuning is simpler (Cache...)
- Easier to maintain / inheritance impact

Divide your program into methods that perform one identifiable task. Keep all of
the operations in a method at the same level of abstraction.

Control |l er>>control Actvity
self controllnitialize.
sel f control Loop.
self control Termnate

Universitat Bern Ducasse Stéphane 343

Smalltalk a Pure OO Language Design thoughts and iselected idioms

Constructor Method

How do you represent instance creation?
Most simple way: Packet new addressee: # mac ; contents: ‘hello mac’

Good if there are different combinations of parameters. But you have to read the code to
understand how to create an instance.

Alternative: make sure that there is a method to represent each valid way to create an
instance.

Provide methods in class “instance creation” protocol that create well-formed
instances. Pass all required parameters to them

Packet cl ass>>send: aString to: anAddress
N self basicNew contents: aString ; addressee: anAdress ; yourself
Poi nt cl ass>>x:vy:
Poi nt class>> r: radi usNunber theta: thetaNunber
N sel f
x: radi usNunber * thetaNunber cos
y: radi usNunber * thetaNunber sin
SortedCol | ecti on cl ass>>sort Bl ock: aBl ock

Universitat Bern Ducasse Stéphane 344

Smalltalk a Pure OO Language Design thoughts and iselected idioms

Constructor Parameter Method

Once you have the parameters of a Constructor Method to the class, how to you pass
them to the newly created instance?

Packet cl ass>>send: aString to: anAddress

N self basi cNew
contents: aString
addressee: anAdress ;
your sel f

But violates the “say things only once and only once” rule (initialize)

Code a single method in the “private” procotol that sets all the variables. Preface
its name with “set”, then the names of the variables.

Packet cl ass>>send: aString to: anAddress

N sel f basi cNew set Contents: aString addressee: anAddress
Packet >>set Contents: aString addressee: anAddress

contents: = aString.

addr essee : = anAddress.

~sel f

Note sel f (Interesting Result)inset Cont ent s: addr essee, because the return value
of the method will be used as the return of the caller

Universitat Bern Ducasse Stéphane 345

Smalltalk a Pure OO Language Design thoughts and iselected idioms

Query Method

How do you represent testing a property of an object?
What to return from a method that tests a property?

Instead of:

Swi t ch>>nakeOn
status : = #on

Swi t ch>>makeO f
status := #off

Swi t ch>>st at us
Astat us

d i ent >>updat e

self switch status = #on ifTrue: [self |ight makeOn]

#off ifTrue: [self light makeOrf]

self switch status

Defines
Switch>>isOn, Switch>>i sOf

Provide a method that returns a Boolean in the “testing” protocol. Name it by
prefacing the property name with a form of * be” or * has”- is, was, will, has

Switch>>on is not a good name... #on: or #isOn ?

Universitat Bern Ducasse Stéphane 346

Smalltalk a Pure OO Language Design thoughts and iselected idioms

Boolean Property Setting Method

How do you set a boolean property?

Swi t ch>>on: aBool ean
I sOn : = aBool ean
» EXpose the representation of the status to the clients
* Responsibility of who turn off/on the switch: the client and not the object itself

Create two methods beginning with “be”. One has the property name, the other the
negation. Add “toggle” if the client doesn’t want to know about the current state

beVi si bl e/ bel nvi si bl e/t oggl eVi si bl e

Universitat Bern Ducasse Stéphane 347

Smalltalk a Pure OO Language Design thoughts and iselected idioms

Comparing Method

How do we order objects?

<,<=,>>= are defined on Magnitude and its subclasses.

Implement “<=" in “comparing” protocol to return true if the receiver should be
ordered before the argument

But also we can use sort Bl ock: of Sort edCol | ecti on cl ass

...sortBlock: [:a :b | aincone > b incone]

Universitat Bern Ducasse Stéphane 348

Smalltalk a Pure OO Language Design thoughts and iselected idioms

Execute Around Method

How do represent pairs of actions that have to be taken together?
When a filed is opened it has to be closed....
Basic solutions: under the client responsibility, he should invoke them on the right order.

Code a method that takes a Block as an argument. Name the method by appending
“During: aBlock” to the name of the first method that have to be invoked. In the
body of the Execute Around Method, invoke the first method, evaluate the block,
then invoke the second method.

Fi | e>>openDuring: aBl ock

sel f open.
aBl ock val ue.
sel f cl ose

Cur sor >>showi | e: aBl ock
| ol dj
old := CQursor currentCursor
sel f show.
aBl ock val ue.

ol d show

Universitat Bern Ducasse Stéphane 349

Smalltalk a Pure OO Language Design thoughts and iselected idioms

Choosing Message

How do you execute one of several alternatives?
responsible := (anEntry isKindO: Filn
i f True: [anEntry producer]
i f Fal se: [anEntry aut hor]
Use polymorphism
Fi | me>responsi bl e
Asel f producer
Ent ry>>responsi bl e
Asel f aut hor

responsi ble : = anEntry responsibl e

Send a message to one of several different of objects, each of which executes one
alternative

Examples:
Nunber >>+ aNunber

oj ect >>print On: aStream
Col | ecti on>>i ncl udes:

A Choosing Message can be sent to self in anticipation of future refinement by
inheritance. See also the State Pattern.

Universitat Bern Ducasse Stéphane 350

Smalltalk a Pure OO Language Design thoughts and iselected idioms

Intention Revealing Message

How do you communicate your intent when the implementation is simple?

We are not writing for computer but for reader
Par agr aphEdi t or >>hi ghl i ght: aRect angl e
self reverse: aRectangle

If you would replace #hi ghl i ght: by #reverse: ,the system will run in the same
way but you would reveal the implementation of the method.

Send a message to self. Name the message so it communicates what is to be done
rather than how it is to be done. Code a simple method for the message.

Col | ecti on>>i sEnpty
"self size =0

Nunber >>r eci pr ocal
N1/ self

Universitat Bern Ducasse Stéphane 351

Smalltalk a Pure OO Language Design thoughts and iselected idioms

Intention Revealing Selector

What do you name a method?

If we choose to name after HOW it accomplished its task

Array>>| i near Sear chFor:
Set >>hashedSear chFor:
BTr ee>>t r eeSear chFor :

These names are not good because you have to know the type of the objects.

Name methods after WHAT they accomplish
Better:
Col | ecti on>>sear chFor:

Even better:
Col | ecti on>>i ncl udes:

Try to see if the name of the selector would be the same in a different implementations.

Universitat Bern Ducasse Stéphane 352

Smalltalk a Pure OO Language Design thoughts and iselected idioms

Name Well your Methods (i)

Not precise, not good
set Type: aVa

"conpute and store the variable type"
sel f addTypeList: (ArrayType with: aVal).
current Type := (currentType conputeTypes: (ArrayType with: aval))

Precise, give to the reader a good idea of the functionality and not about the
Implementation
conput eAndSt or eType: aVa

"conpute and store the variable type"

sel f addTypeList: (ArrayType with: aVal).

current Type := (current Type conputeTypes: (ArrayType with: aVal))

Instead Of:

set TypeLi st: aLi st
"add the aList elt to the Set of type taken by the vari abl e"
t ypeLi st add: aLi st.

Write:

addTypelLi st: aLi st
"add the aList elt to the Set of type taken by the variable"

typeLi st add: aLi st.

Universitat Bern Ducasse Stéphane 353

Smalltalk a Pure OO Language

do:

Instead of writing that:

| i ndex|

i ndex := 1.

[ndex <= aCol | ection size] whileTrue:

[... aCollection at: index...
I ndex : = index + 1]
Write that
aCol l ection do: [:each | ...each ...]

Universitat Bern Ducasse Stéphane

Design thoughts and iselected idioms

354

Smalltalk a Pure OO Language Design thoughts and iselected idioms

collect:
Instead of :
absol ute: aColl ection
| resul t|
result := aCollection species new aCollection size.

1 to: aCollection size do:
[:each | result at: each put: (aCollection at: each) abs].

N resul t

Write that:
absol ute: aColl ection
A aCol lection collect: [:each|l each abs]

Note that this solution works well for indexable collection and also for sets.
The previous one not!!!

Universitat Bern Ducasse Stéphane 355

Smalltalk a Pure OO Language Design thoughts and iselected idioms

ISEmpty, includes:

Instead of writing:

...aCollection size =0 ifTrue: [...]

...aCollection size >0 ifTrue: [...]

Write:
aCol | ection iskEnpty

Instead of writing:

| f ound|

found : = fal se.

aCol l ection do: [:each| each = anCbject ifTrue: [found : = true]].

Or:

| f ound|

found := (aCol |l ection
detect: [:each| each | an(bject]
ifNone:[nil]) notNI.

Write:

| f ound|

found : = aCol |l ection includes: anCbject

Universitat Bern Ducasse Stéphane 356

Smalltalk a Pure OO Language Design thoughts and iselected idioms

Class Naming

 Name a superclass with a single word that conveys its purpose in the design
Nunber
Col | ecti on
Vi ew
Model

* Name subclasses in your hierarchy by prepending an adjective to the superclass name

OrderedCol | ecti on
SortedCol | ecti on
Lar gel nt eger

Universitat Bern Ducasse Stéphane 357

Smalltalk a Pure OO Language Design thoughts and iselected idioms

How to Name Instance Variables?

nodes

instead of

nodeAr r ay

Universitat Bern Ducasse Stéphane 358

Smalltalk Discussion Group 359.

Singleton Instance: A Class Behavior

Problem. We want a class with a unigue instance.

Solution. We specialize the #newclass method so that if one instance already exists this
will be the only one. When the first instance is created, we store and returned it as result

of #new.

| aLan|

aLan : = Networ kManager new

aLan == LAN new -> true

aLan uni quel nst ance == Net wor kManager new -> true

Universitat Bern Stéphane Ducasse

Smalltalk Discussion Group 360.

Singleton Instance’s Implementation

Net Wor kManager cl ass

I nst anceVari abl eNanes: ' uni quel nst ance '
Net wor kManager cl ass>>new

self error: ‘should use uni quel nstance’

Net wor kManager cl ass>>uni quel nst ance
uni quel nst ance i sN |
I fTrue: [uniquelnstance := self basicNew initialize].
Auni quel nst ance

Providing access to the unique instance is not always necesssary. It depends what we
want to express. The difference between #new and #uni quel nst ance is:

- #new potentially initializes a new instance.
- #uni quel nst ance only returns the unique instance there is no initialization.

Universitat Bern Stéphane Ducasse

Smalltalk Discussion Group 361.

Singleton

Intent
Ensure a class has only one instance, and provide a global point of access to it

A Possible Structure

Singleton «unique | gipgleton class
. Instance» .
singletonMethod uniquelnstance o
singletonState new o '
1 / \
«shared variable» / Uni quel nstance i sNi |
Unlquelnstance // i f True: [Uni quel nstance : = sel f basi cNew]
/ AUni quel nst ance
/
/
Client self error: *....

clientMethod

~
~
~

~ ~Si ngl et on uni quel nst ance si ngl et onMet hod

Universitat Bern Stéphane Ducasse

Smalltalk Discussion Group 362.

Discussion

In some Smalltalk singletons are accessed via a global variable (ex NotificationManager
uniguelnstance notifier).
Sessi onMbdel >>st ar t upW ndowSyst em
“Private - Perform G5 wi ndow system startup”
| ol dW ndows|

Notifier initializeWndowHandl es.

ol dWndows := Notifier w ndows.
Notifier initialize.

Aol dW ndows

Global Variable or Class Method Access
- Global Variable Access is dangerous: if we reassign Notifier we lose all
references to current windows.

- Class Method is better because it provides a single access point. This class is
responsible for the singleton instance (cretaion, initialization....).

Universitat Bern Stéphane Ducasse

Smalltalk Discussion Group 363.

Singleton Variations

- Persistent Singleton: only one instance exists and its identity does not change (ex:
Notifier Manager in Visual Smalltalk)

- Transient Singleton: only one instance exists at any timebut that instance changes (ex:
SessionModel in Visual Smalltalk, SourceFileManager, Screen in VisualWorks)

- Single Active Instance Singleton: a single instance is active at any point in time, but
other dormant instances may also exist. Project in VisualWorks, ControllerManager.

Universitat Bern Stéphane Ducasse

Smalltalk Discussion Group

364.

Ensuring a Unique Instance

In Smalltalk we cannot prevent a client to send a message (protected in C++)
To prevent additional creation: redefine new/new: (for indexed classes)

(hj ect subcl ass: #Si ngl eton
i nstanceVari abl eNanes:
cl assVari abl eNanes: * Uni quel nst ance’
pool Di ctionari es:

Si ngl et on cl ass>>new
self error: ‘Class ‘', self nane, ‘' cannot

Universitat Bern

create new i nstances’

Stéphane Ducasse

Smalltalk Discussion Group

Providing Access

Lazzy Access
Si ngl et on cl ass>>uni quel nst ance
Uni quel nst ance i sNi |
i f True: [Uni quel nstance : = self basi cNew.
AUni quel nst ance

In this solution we lose the initialization part of the superclass

i fTrue: [Uniquelnstance := self basicNew initialize]
if the initialization was done using initialize
i f True: [Uni quel nstance : = super new

Is bad practice and may break

Universitat Bern

365.

Stéphane Ducasse

Smalltalk Discussion Group 366.

Accessing the Singleton via new?

Si ngl et on cl ass>>new

Asel f uni quel nst ance

The intent (singletoness) is not clear anymore!
New is used to return newly created instances.

| screenl screen2|
screenl : = Screen new.
screen2 : = Screen new

| screenl screen2|
screenl : = Screen uniquel nstance.

screen2 : = Screen uni quel nstance

Universitat Bern Stéphane Ducasse

Smalltalk Discussion Group

Singletons in a Single Subhierarchy

- Singleton for an entire subhierarchy of classes:
(hj ect subcl ass: #Si ngl eton
i nstanceVari abl eNanes: *’
cl assVari abl eNanes: * Uni quel nst ance’
pool Dictionaries:

ClassVariables are shared by all the subclasses

- Singleton for each of the classes in an hierarchy

hj ect subcl ass: #Si ngl et on

i nstanceVari abl eNanes: *’

cl assVari abl eNanes:

pool Di ctionaries: *
Si ngl eton cl ass instanceVari abl eNanes: ‘ uni quel nst ance’
Si ngl et on cl ass>>uni quel nst ance

uni quel nstance i sN |
i f True: [uni quel nstance : = self basi cNew.

Auni quel nst ance

Instances variables of classes are private to the class

Universitat Bern

367.

Stéphane Ducasse

Smalltalk Discussion Group 368.

Instance/Class Methods

When a class should only have one instance, it could be tempting to define all its behavior
at the class level.

But this is not that good:
- Theoritically: classes behavior represents behavior of class

“Ordinary objects are used to model the real world.

MetaObjects describe these ordinary objects”
Do not mess up this separation. DO not mix domain objects with metaconcerns.

- Pratical: What's happen if later the object can have multiple instances?
You have to change a lot of client code!

Universitat Bern Stéphane Ducasse

Smalltalk a Pure OO Language Smalltalk in a Nutshell

Comparing

1 Java, C++, Smalltalk
1 Smalltalk for the Java Programmer
[0 Smalltalk for the Ada Programmer

Universitat Bern Ducasse Stéphane 1.369

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

20. Comparing C++, Java and Smalltalk

Commented version
Overview
[1 History:
[1 target applications, evolution, design goals
[0 Language features:
[J syntax, semantics, implementation technology
[0 Pragmatics:
[1 portability, interoperability, environments & tools, development styles

Universitat Bern Oscar Nierstrasz 7.370

Smalltalk-A Pure OO Language

History

1970

1980

Comparing C++, Java and Smalltalk

FORTRAN
————————— 1 A0 || rcosoL L lsp |-
Simula 67 LT ;
Algol 68
Smalitak 72| N~ [C |y Prfi'og
Clu Modula-2
Smalltalk 80 % — — — - /-~ -——_X_ ______ S
Objective C C++ Ada Oberon
Self Eiffel Modula-3
ANSI C++
JEUE Ada 95

Universitat Bern

Oscar Nierstrasz

7.371

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

Target Application Domains

Smalltalk

Originally conceived as PL for children.

Designed as language and environment for “Dynabook”.

Now: Rapid prototyping. Simulation. Graphical user interfaces. “Elastic” applications.

C++
Originally designed for simulation (C with Simula extensions).

Now: Systems programming. Telecommunications and other high-performance
domains.

Java
Originally designed for embedded systems.
Now: Internet programming. Graphical user interfaces.

Universitat Bern Oscar Nierstrasz 7.372

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

Evolution
Smalltalk
[1 Originally (1972) every object was an independent entity. The language evolved
to incorporate a meta-reflective architecture.
[Now the language (Smalltalk-80) is stable, but the environments and
frameworks continue to evolve.
C++
(1 Originally called C with classes, inheritance and virtual functions (Simula-like).
[0 Since 1985 added strong typing, new and del et e, multiple inheritance,
templates, exceptions, and many, many other features.
[1 Standard libraries and interfaces are emerging. Still evolving.
Java
[1 Originally called Oak, Java 1.0 was already a stable language.
[1 Java 1.1 and 1.2 introduced modest language extensions (inner classes being
the most important).
[0 The Abstract Windowing Toolkit was radically overhauled to support a more

general-purpose event model. The libraries are still expanding and evolving.

Universitat Bern Oscar Nierstrasz 7.373

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

Language Design Goals

Smalltalk
1 “Everything is an object”
[1 Self-describing environment
[0 Tinkerability

C++
(1 C with classes
[J and strong-typing, and ...
[0 “Every C program is also a C++ program” ... almost
(1 No hidden costs

Java
[0 C++ minus the complexity (syntactically, not semantically)
[J Simple integration of various OO dimensions (few innovations)
[0 “Java — it's good enough”

Universitat Bern Oscar Nierstrasz 7.374

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

Unigue, Defining Features

Smalltalk
[0 Meta-reflective architecture
[1 The ultimate modelling tool
[1 Mature framework technology

C++
[1 “Portable assembler” with HL abstraction mechanisms
1 Programmer is in complete control
[0 Templates (computationally complete!)

(1 Dynamically loaded classes
[1 Applications are not “installed” in the conventional sense
[1 First clean integration of many OO dimensions (concurrency, exceptions ...)

Universitat Bern Oscar Nierstrasz 7.375

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

Overview of Features

Smalltalk C++ Java
object model pure hybrid pure
memory management automatic manual automatic
dynamic binding always optional yes (it depends)
inheritance single multiple single
generics no templates no
type checking dynamic static static
modules namespaces no (header files) packages
exceptions o (Weakly¥§fegrated) (well izteesgrated)
concurrency yes (semaphores) no (libraries) yes (monitors)
reflection fully n_eflective limited limited
architecture

Universitat Bern Oscar Nierstrasz 7.376

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

Syntax

Smalltalk
Minimal. Essentially there are only objects and messages.
A few special operators exist for assignment, statements, blocks, returning etc.

C++

Barogue. 50+ keywords, two commenting styles, 17 precedence levels, opaque type
expressions, various syntactic ambiguities.

Java
Simplified C++. Fewer keywords. No operator overloading.

Universitat Bern Oscar Nierstrasz 7.377

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

Object Mode|

Smalltalk
1 “Everything is an object”
[1 Objects are the units of encapsulation
[1 Objects are passed by reference

C++
[0 “Everything is a structure”
[1 Classes are the units of encapsulation
[1 Objects are passed by value
[1 Pointers are also values; “references” are really aliases

Java
[0 “Almost everything is an object”
[0 Classes are the units of encapsulation (like C++)
[J Objects are passed by reference

[0 No pointers

Universitat Bern Oscar Nierstrasz 7.378

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

Memory Management

Smalltalk
[1 Objects are either primitive, or made of references to other objects
[No longer referenced objects may be garbage collected
[1 Garbage collection can be efficient and non-intrusive

C++

]

Objects are structures, possibly containing pointers to other objects
Destructors should be explicitly programmed (cf. OCF)

[J Automatic objects are automatically destructed

[Dynamic objects must be explicitly del et ed

[1 Reference counting, garbage collection libraries and tools (Purify) can help

]

Java
[1 Objects are garbage collected
[1 Special care needed for distributed or multi-platform applications!
— closed world assumption!

Universitat Bern Oscar Nierstrasz 7.379

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

Dynamic Binding

Smalltalk
[Message sends are always dynamic
[J aggressive optimization performed (automatic inlining, JIT compilation etc.)

C++

[0 Only virtual methods are dynamically bound
[0 explicit inling (but is only a “hint” to the compiler!)

[1 Overloaded methods are statically disambiguated by the type system
[0 Overridden, non-virtuals will be statically bound!

[1 Overloading, overriding and coercion may interfere!

— A::f(float); B::f(float), B::f(int); A b = new A, b.f(3) calls A::f(float)

Java
(1 All methods (except “static,” and “final”) are dynamically bound
[1 Overloading, overriding and coercion can still interfere!

Universitat Bern Oscar Nierstrasz 7.380

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

Inheritance, Generics

Smalltalk
[J Single inheritance; single roots: Object,
[1 Dynamic typing, therefore no type parameters needed for generic classes

C++
[0 Multiple inheritance; multi-rooted

[1 Generics supported by templates (glorified macros)
[0 multiple instantiations may lead to “code bloat”

Java
[1 Single inheritance; single root Object
[J Multiple subtyping (a class can implement multiple interfaces)
(1 No support for generics; you must explicitly “downcast” (dynamic typecheck)
[0 Several experimental extensions implemented ...

Universitat Bern Oscar Nierstrasz 7.381

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

Types, Modules

Smalltalk
[Dynamic type-checking
[J invalid sends raise exceptions
[No module concept — classes may be organized into categories
[some implementations support namespaces

C++
[J Static type-checking
[No module concept
[1 use header files to control visibility of names
— C++ now supports explicit name spaces? does this help?
Java
[1 Static and dynamic type-checking (safe downcasting)
[1 Classes live inside packages

Universitat Bern Oscar Nierstrasz 7.382

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

Exceptions, Concurrency

Smalltalk
[1 Can signal/catch exceptions — seems not to be widely used!
[0 Multi-threading by instantiating Process
[1 synchronization via Semaphores

C++
[1 Trylcatch clauses
[J any value may be thrown
[No concurrency concept (various libraries exist)
[1 exceptions are not necessarily caught in the right context!

Java
[J Trylcatch clauses
[1 exception classes are subclasses of Exception or Error
[0 Multi-threading by instantiating Thread (or a subclass)
[0 synchronization by monitors (synchronized classes/methods + wait/signal)
[1 exceptions are caught within the thread in which they are raised

Universitat Bern Oscar Nierstrasz 7.383

Smalltalk-A Pure OO Language

Reflection
Smalltalk
[1 Meta-reflective architecture:
[1 every class is a subclass of Object (including Class)
[1 every class is an instance of Class (including Object)
[1 classes can be created, inspected and modified at run-time
[1 Smalltalk’s object model itself can be modified
C++
[0 Run-time reflection only possible with specialized packages
[0 Compile-time reflection possible with templates
Java

[1 Standard package supports limited run-time “reflection”

[

Universitat Bern

only supports introspection — 1.e. Inspecting and reacting on an object’s interface

Comparing C++, Java and Smalltalk

Oscar Nierstrasz

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

Implementation Technology

Smalltalk

Virtual machine running “Smalltalk image.” Classes are compiled to “byte code”, which is
then “interpreted” by the VM — now commonly compiled “just-in-time” to native code.

— Most of the Java VM techniques were pioneered in Smalltalk.
C++
Originally translated to C. Now native compilers.

Traditional compile and link phases. Can link foreign libraries (if link-compatible.)
Opportunities for optimization are limited due to low-level language model.

Templates enable compile-time reflection techniques (i.e., to resolve polymorphism at
compile-time; to select optimal versions of algorithms etc.)

Java
Hybrid approach.

Each class is compiled to byte-code. Class files may be dynamically loaded into a Java
virtual machine that either interprets the byte-code, or compiles it “just in time” to the
target machine.

Standard libraries are statically linked to the Java machine; others must be loaded
dynamically.

Universitat Bern Oscar Nierstrasz 7.385

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

Portabillity, Interoperability

Smalltalk
[1 Portability through virtual machine
[0 Interoperability through special bytecodes,native methods and middleware

C++
[1 Portability through language standardization (C as a “portable assembler”)
[0 Interoperability through C interfaces and middleware

Java
(1 Portability through virtual machine
(I Interoperability through native methods and middleware

Universitat Bern Oscar Nierstrasz 7.386

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

Environments and Tools

Advanced development environments exist for all three languages, with class and
hierarchy browsers, graphical debuggers, profilers, “make” facilities, version control,
configuration management etc.

In addition:

Smalltalk

[J Incremental compilation and execution is possible
— NB: Envy supports programming by teams (version control etc.)
C++

[1 Special tools exist to detect memory leaks (e.g., Purify)

Java
[1 Tools exist to debug multi-threaded applications.

Universitat Bern Oscar Nierstrasz 7.387

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

Development Styles

Smalltalk
1 Tinkering, growing, rapid prototyping.
[0 Incremental programming, compilation and debugging.
[0 Framework-based (vs. standalone applications).

C++
[1 Conventional programming, compilation and debugging cycles.
[1 Library-based (rich systems libraries).

Java
[1 Conventional, but with more standard libraries & frameworks.

Universitat Bern Oscar Nierstrasz 7.388

Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

The Bottom Line ...

You can implement an OO design in any of the three.

Smalltalk
[1 Good for rapid development; evolving applications; wrapping
[1 Requires investment in learning framework technology
[1 Not suitable for connection to evolving interfaces (need special tools)

— Not so great for intensive data processing, or client-side internet programming

C++
[1 Good for systems programming; control over low-level implementation
[1 Requires rigid discipline and investment in learning language complexity
[0 Not suitable for rapid prototyping (too complex)

Java
[0 Good for internet programming
[0 Requires investment in learning libraries, toolkits and idioms
[J Not suitable for reflective programming (too static)

Universitat Bern Oscar Nierstrasz 7.389

Smalltalk a Pure OO Language Smalltalk in a Nutshell

21. Smalltalk for the Java Programmer
[1 Syntax

Universitat Bern Ducasse Stéphane 1.390

Smalltalk a Pure OO Language Smalltalk in a Nutshell

Syntax (i)

Receiver
null nil
this self
super super
this.getClass() self class

Comment
[* comment */ “‘comment”
/[comment

Instance Variables Access
X X
this.x X
anotherObject.x

Instance Variable Definition

Integer n; n
Local Variable
Integer n; In|

Universitat Bern Ducasse Stéphane 1.391

Smalltalk a Pure OO Language Smalltalk in a Nutshell

Syntax (ii)
Message Sends
anObject.foo() anObject foo
foo() self foo
anObject.foo(a,b) anObject foo: a with: b
aDict.atput(a,b) aDict at: a put: b
anObject a; anObject b anObjecta; b
anObject a .
anObject b
Method Definition
Q@ at: aKey put: aValue

Universitat Bern Ducasse Stéphane 1.392

Smalltalk a Pure OO Language Smalltalk in a Nutshell

Ssyntax (i)

if (isTrue){a} isTrue ifTrue: [a]
if (...) {a} else {b} ... IfTrue: [a] ifFalse: [b]
... IfFalse:[b] ifTrue: [a]
while (isTrue) {a} Q@ [a] whileTrue:
do{} while() Q@
for (n=1, n++, n<k){ Q@ 1 to: kdo: [:n] ...]
N
for (n=1, n++, n<k){
...... } k timesRepeat: []
collection do:, collect:, detect:,
try {a} catch (Exception e) {b} [a] on: Exception do: [b]

Universitat Bern Ducasse Stéphane 1.393

Smalltalk a Pure OO Language Smalltalk in a Nutshell

Syntax of Basic Types

‘astring
$c
13

#aSymbol #’aSymbol with space’
#(1 $a #(1 #+))

[:a :b|
Ic| ...]

Universitat Bern Ducasse Stéphane 1.394

1 ~J

- record component -> instance variable
- package variable -> classVariable
Jefinition

| Definition

e Creation Method

e Creation

ern Ducasse Stéphane

acket is new (bject with record -- the record conponent

tents: Unbounded_String;
ressee: |nteger;

gi nat or: Node;

sord;

S,

icl ass: #Packet

ceVari abl eNanes: 'contents addressee origi nator

ar i abl eNanes:
stionaries: '
"y: "LAN-Si mul ati on’

ern

Ducasse Stéphane

Jit 1>_ocinn_wy \ _raClnecu. raCncu, _IWUCT. I1WUT) [CLUI Il DUUI Tall,

>n |s_Addressed_To (A Packet: Packet, A Node: Node) return Bool ean;

S,

Idr essee

A addressee

Idr essee: aSynbo

addr essee : = aSynbol

Addr essedTo: aNode

turns true if |'’maddressed to the node aNode”
el f addressee = aNode name

Sent By: aNode

N ooriginator = aNode

ern Ducasse Stéphane

41 TOOCC,

ire Addressee (A Packet: in out Packet, An_Address: in Integer) is

‘acket . Addr essee : = An_Address;

Ir essee;

S;

Idr essee

A addressee

Idr essee: aSynbol
addr essee : = aSynbol

ern Ducasse Stéphane

Q.O?ﬂr -1yl iacl vi - __hwugc,
_Sent _By;
on |'s_Addressed _To (A Packet: Packet, A Node: Node) return Boolean is

‘acket . Addressee = Nanme(A Node); --Nane is a function on type Node
_Addr essed_To;

S;

Addr essedTo: aNode
turns true if |'’m addressed to the node aNode”
el f addressee = aNode nane

Sent By: aNode

AN originator = aNode

ern Ducasse Stéphane

S,

dy Packets is

on Send_To (Contents: String, Address: Integer) return Packet;
(To_Unbounded(Contents), Integer, Enpty_ Node);

1d_To;

S,

iss>>send: aString to: anAddress

= self new

ntents: aString.
> anAddress.

ern Ducasse Stéphane

Addr essee(P)

XXX

| pl
p := Packet send: 'This packet travelled to the printer' to: 123.
p addressee

ern Ducasse Stéphane

Smalltalk a Pure OO Language References

23. References

Universitat Bern Ducasse Stéphane 9.402

Smalltalk a Pure OO Language References

A Jungle of Names

Some Smalltalk Dialects:

« Smalltalk-80 -> ObjectWorks -> VisualWorks by (ParcPlace -> ObjectShare->Cincom)
mac, pc, hp, linux, unix
www.objectshare.com/vwnc/
« IBM Smalltalk (pc, unix, aix...)
www.software.ibm.com/ad/smalltalk/
« Smalltalk-V (virtual) -> Parts -> VisualSmalltalk by (Digitalk -> ObjectShare)
 VisualAge = IBMSmalltalk + Envy (OTI -> IBM)
« Smalltalk Agents (Mac)
« Smalltalk MT (PC, assembler)
* Dolphin Smalltalk (PC)
www.object-arts.com/Home.htm
« Smalltalk/X -> www.exept.de (run java byte code into Smalltalk VM)
« Smalltalk/Express (free now but not maintained anymore)
» Enfin Smalltalk -> Object Studio (Cimcon)
www.cincom.com/objectstudio/

Universitat Bern Ducasse Stéphane 9.403

Smalltalk a Pure OO Language References

Team Development Environments

* Envy (OTI) most popular, available for VisualWorks
» VSE (Digitalk),

e TeamV,

» Store (new Objectshare)

* ObjectStudio v6 (similar to Envy)

Universitat Bern Ducasse Stéphane 9.404

Smalltalk a Pure OO Language References

Some Free Smalltalks

Professional Environment
 VisualWorks 3.0 and VW5i on PC for free
 VisualWorks 3.0 and VWS5i on Linux (Red-Hat)
www.objectshare.com/vwnc/
» Dolphin Smalltalk on PC (not the last version)
www.object-arts.com/Home.htm

New concepts
» Squeak (Morphic Objects + Socket + all Platforms) continous development
http://www.squeak.org/
* Gnu Smalltalk (not evaluated)

Free for Universities:
 VisualWorks 3.0 and VW5i) all platforms and products (www.objectshare.com/vwnc/)

* VisualAge is free for University:
www.software.ibm.com/ad/smalltalk/education/univagr.html

* Envy is free for University
contact amy_divis@oti.com

Universitat Bern Ducasse Stéphane 9.405

Smalltalk a Pure OO Language References

Main References

* (Intro + VW) Smalltalk: an Introduction to application development using VisualWorks,
Trevor Hopkins and Bernard Horan, Prentice-Hall,1995, 0-13-318387-4

* (Intro + VW) Smalltalk, programmation orientée objet et développement d'applications,
X. Briffault and G. Sabah, Eyrolles, Paris. 2-212-08914-7

+ (Intro + SExX) On To Smalltalk, P. Winston, Addison-Wesley, 1998, 0-201-49827-8

** (Hints, Design + VW) Smalltalk by Example : The Developer's Guide, Alec Sharp,
McGraw Hill, ISBN: 0079130364, 1997

** (ldioms) Smalltalk Best Practice Patterns, Kent Beck, Prentice Hall, 1997, isbn 0-13-
476904-x (Praxisnahe Gebrauchsmuster, K. Beck, Prentice-Hall, 1997, ISBN 3-8272-
9549-1).

* (Idioms) Smalltalk with Style, S. Skublics and E. Klimas and D. Thomas, Prentice-Hall,
1996, 0-13-165549-3.

** (User Interface Reference + VW) The Smalltalk Developer's Guide to VisualWorks,
Tim Howard, Sigs Books, 1995, 1-884842-11-9

** (Envy) Joseph Pelrine, Alan Knight and Jan Steinman, Title not know yet, SIG Press.

** (Design) The Design Patterns Smalltalk Companion, S. Alpert and K. Brown and B.
Woolf, Addison-Wesley, 1998,0-201-18462-1

Universitat Bern Ducasse Stéphane 9.406

Smalltalk a Pure OO Language References

Other References (Old or Other Dialects)

** Smalltalk-80: The language, Adele Goldberg and David Robson, Addison-Wesley,
1984-1989, 0-201-13688-0 (Purple book ST-80, part of the original blue book). VW. old
but still really interesting: a reference!

* An introduction to Object-Oriented Programming and Smalltalk, Lewis J. Pinson and
Richard S. Wiener, 1988, Addison-Wesley, ISBN 0-201-119127. (ST-80)

» Object-Oriented Programming with C++ and Smalltalk, Caleb Drake, Prentice Hall,
1998, 0-13-103797-8

+ Smalltalk, Objects and Design, Chamond Liu, Manning-Prentice-Hall, 0-13-268335-0
(IBM Smalltalk)

+ Smalltalk the Language, David Smith, Benjamin/Cummings Publishing, 1995,0-8053-
0908-X (IBM smalltalk)

 Discovering Smalltalk, John Pugh, 94 (Digitalk Smalltalk)
* Inside Smalltalk (I & II), Wilf Lalonde and Pugh, Prentice Hall,90, (ParcPlace ST-80)

« Smalltalk-80: Bits of History and Words of Advice, G. Kranser, Addison-Wesley,89, O-
201-11669-3

Universitat Bern Ducasse Stéphane 9.407

Smalltalk a Pure OO Language References

Other References (i)

» The Taste of Smalltalk, Ted Kaehler and Dave Patterson, Norton, 0-393-95505-2,1985
« Smalltalk The Language and Its Implementation (contains the original VM description

@ @ available at @ @), Adele Goldberg and Dave Robson, 0-201-11371-6, 1982 (called
The Blue Book)

To understand the language, its design, its intention....
» Peter Deutsch, The Past, The Present and the Future of Smalltalk, ECOOP’89
» Byte 81 Special Issues on Smalltalk

» Alan Kay, The Early History of Smalltalk, History of Porgamming Languages, Addsison-
Wesley, 1996

Universitat Bern Ducasse Stéphane 9.408

Smalltalk a Pure OO Language References

Some Web Pages

Wikis:
VisualWorks /brain.cs.uiuc.edu/VisualWorks/
VisualAge /brain.cs.uiuc.edu/VisualAge/
STIC:
/www.stic.org/
Cool Sites:

/www.smalltalk.org/
/www.goodstart.com/stlinks.html
/st-www.cs.uiuc.edu/

ESUG, BSUG, GSUG, SSUG
www.esug.org/
www.bsug.org/
www.gsug.org/
www.iam.unibe.ch/~scg/cgi-bin/Smalltalk.cgi?SwissSmalltalkUserGroup

Universitat Bern Ducasse Stéphane 9.409

	A Object-Oriented Programming with Smalltalk — a Pure Object Language and its Environment
	Infos
	Some Web Pages
	Structure of this Lecture (i)
	Structure of this Lecture (ii)
	What Topics Will (not) Be Addressed
	About this lecture
	@@To do list@@
	Basic Smalltalk
	1. Quick Overview of the Environment
	Mouse Semantics
	Class MenuBar
	Method MenuBar
	Cross Reference Facilities
	Filing Out
	Hierarchy Browser
	Debugger
	Crash Recovery
	Condensing Changes
	UIBuilder

	2. Smalltalk in Context
	Smalltalk: More than a Language
	Inspiration
	Precursor, Innovative and Visionary
	History
	History
	Smalltalk’s Concepts
	Messages, Methods and Protocols
	Objects, Classes and Metaclasses
	Smalltalk Run-Time Architecture
	VisualWorks Advanced Runtime Architecture

	3. The Taste of Smalltalk
	Some Followed Conventions
	Hello World!
	Everything is an object
	Objects communicate via messages (i)
	A LAN Simulator
	Three Kind of Objects
	Interactions Between Nodes
	Node and Packet Creation
	Objects communicates by messages (ii)
	Definition of a Lan
	Transmitting a Packet
	How to Define a Class?
	How to Define a Method?

	4. Smalltalk Syntax in a Nutshell
	Syntax in a Nutshell (i)
	Syntax in a Nutshell (ii)
	Messages instead of predefined Syntax
	Class and Method Definition
	Instance Creation

	5. Syntax and Messages
	Literal Overview (i)
	Literal Overview (ii)
	Literal Arrays and Arrays
	Deep Into Literal Arrays
	Deep into Literal Arrays (ii)
	Deep into Literal Arrays (iii)
	Symbols vs. Strings
	Variables Overview
	Temporary Variables
	Assigments
	Method Arguments
	Instance Variables
	Six pseudo-variables (i)
	Six pseudo-variables (ii)
	Global Variables
	Three Kinds of Messages
	Unary Messages
	Binary Messages
	Keyword Messages
	Composition
	Sequence
	Cascade
	yourself
	Have You Really Understood Yourself ?
	Block (i): Definition
	Block (ii): Evaluation
	Block (iii)
	Primitives
	What You Should Know

	6. Dealing with Classes
	Class Definition: The Class Packet
	Named Instance Variables
	Method Definition
	Accessing Instance Variables
	Lazy Initialization
	Methods always Return a Value
	Some Naming Conventions
	Inheritance in Smalltalk
	Remember...
	Node
	Workstation
	Message Sending & Method Lookup
	Method Lookup Examples (i)
	Method Lookup Examples (ii)
	Method Lookup Examples (ii)
	How to Invoke Overriden Methods?
	Semantics of super
	Let us be Absurb!
	Object Instantiation
	Direct Instance Creation: (basic)new/new:
	Messages to Instances that Create Objects
	Opening the Box
	Class specific Instantiation Messages
	What you should know

	7. Basic Objects, Conditional and Loops
	Boolean Objects
	Some Basic Loops
	For the Curious!
	Collections
	Another View
	Collection Methods
	Sequenceable Specific (Array)
	KeyedCollection Specific (Dictionary)
	Choose your Camp!
	Iteration Abstraction: do:/collect:
	Iteration Abstraction: select:/reject:/detect:
	Iteration Abstraction: inject:into:
	Collection Abstraction
	Examples of Use: NetworkManager
	Common Shared Behavior (i)
	Identity vs. Equality
	Common Shared Behavior (ii)
	Essential Common Shared Behavior
	What you should know

	8. Numbers
	Basics on Number
	Deeper on Numbers: Double Dispatch (i)
	Deeper on Numbers: Double Dispatch (ii)
	Deeper on Numbers: Coercion & Generality
	Deeper on Numbers: #retry:coercing:

	9. Exceptions
	Main Exceptions
	Basic Example of Catching
	Exception Sets
	Signaling Exception
	Exception Environment
	Resumable and Non-Resumable
	Resume:/Return:
	Exiting Handlers Explicity
	Examples
	Examples

	10. Streams
	Streams
	An Example
	printSring, printOn:
	Stream classes(i)
	Stream Classes (ii)
	Stream tricks
	Streams and Files
	Advanced Smalltalk

	11. Advanced Features
	@Types of Classes@
	Two Views on Classes
	Indexed Classes
	Indexed Class/Instance Variables
	The meaning of “Instance of” (i)
	Lookup and Class Messages
	The Meaning of “Instance-of” (iii)
	Metaclass Responsibilities
	Class Instance Variables
	About Behavior
	Class Method
	classVariable
	Class Instance Variables / ClassVariable
	Summary of Variable Visibility
	Example From The System: Geometric Class
	Circle
	poolDictionaries
	Example of PoolVariables

	12. The Model View Controller Paradigm
	Context
	Program Architecture
	Separation of Concerns I:
	Separation of Concerns II:
	The notion of Dependency
	Dependency Mechanism
	Publisher-Subscriber: A Sample Session
	Change Propagation: Push and Pull
	The MVC Pattern
	A Standard Interaction Cycle
	MVC: Benefits and Liabilities
	MVC and Smalltalk
	Managment of Dependents
	Implementation of Change Propagation
	Climbing up and down the Default-Ladder
	Problems with the Vanilla Change Propagation Mechanism
	Dependency Transformer
	Inside a Dependency Transformer
	ValueHolder
	A UserInterface Window
	Widgets
	The Application Model
	The fine-grained Structure of an Application
	MVC Bibliography

	13. Processes and Concurrency
	Concurrency and Parallelism
	Limitations
	Atomicity
	Safety and Liveness
	Processes in Smalltalk: Process class
	Processes in Smalltalk: Process class
	Processes in Smalltalk: Process states
	Process Scheduling and Priorities
	Processes Scheduling and Priorities
	Processes Scheduling: The Algorithm
	Process Scheduling
	Synchronization Mechanisms
	Synchronization Mechanisms
	Synchronization using Semaphores
	Semaphores
	Semaphores for Mutual Exclusion
	Synchronization using a SharedQueue
	Delays
	Promises

	14. Classes and Metaclasses: an Analysis
	The meaning of “Instance of”
	Concept of Metaclass & Responsibilities
	Classes, metaclasses and method lookup
	Responsibilities of Object & Class classes
	A possible kernel for explicit metaclasses
	Singleton with explicit metaclasses
	Deeper into it
	Smalltalk Metaclasses in 7 points
	Smalltalk Metaclasses in 7 points (iii)
	Smalltalk Metaclasses in 7 points (iv)
	Behavior Responsibilities
	ClassDescription Responsibilities
	Metaclass Responsibilities
	Class Responsibilities

	15. Most Common Mistakes and Debugging
	Most Common Beginner Bugs
	Return Value
	Take care about loops
	Instance Variable Access in Class Method
	Assignments Bugs
	Redefinition Bugs
	Library Behavior-based Bugs
	Use of Accessors: Protect your Cients
	Debugging Hints
	Where am I and how did I get here?
	Source Inspection
	Where am I going?
	How do I get out?
	Finding & Closing Open Files in VW
	Internal Structure of Object
	Three ways to create classes:
	Let us Code
	Format and other
	Object size in bytes
	Analysis

	16. Blocks and Optimization
	Full Blocks
	Copying Blocks
	Clean Blocks
	Inlined Blocks
	Full to Copy
	Contexts
	Inject:into:
	About String Concatenation
	Stream, Blocks and Optimisation (i)
	Stream, Blocks and Optimisation (ii)
	BlockClosure Class Comments

	17. Block Deep Understanding
	Lexically Scope
	Returning from a Block (i)
	Returning From a Block (ii)
	Example of Block Evaluation
	Design Considerations
	Abstract Classes
	Case Study: Boolean, True and False
	Boolean
	False and True
	CaseStudy: Magnitude:
	Date

	18. Basic Elements of Design and Class Behavior
	A First Implementation of Packet
	Packet CLASS Definition
	Fragile Instance Creation
	Assuring Instance Variable Initialization
	Other Instance Initialization
	Strengthen Instance Creation Interface
	Forbidding new
	Class Methods - Class Instance Variables
	Class Initialization
	Date class>>initialize
	A Case Study: Scanner
	Scanner class>>initialize
	Scanner
	What is an object?
	Why Coupled Classes are Bad?
	The Law ot Demeter
	Illustrating the Law of Demeter
	About the Use of Accessors (i)
	About the Use of Public Accessors (ii)
	Never to work that somebody else can do!
	Provide a Complete Interface
	Factoring Out Constants
	Initializing without Duplicating
	Constants Needed at Creation Time
	Type Checking for Dispatching
	Double Dispatch (i)
	A Step Back
	Deeper on Double Dispatch : Numbers (ii)
	Methods are the Elementary Unit of Reuse
	Methods are the Elementary Unit of Reuse (ii)
	Methods are the Elementary Unit of Reuse
	Class Factories
	Hook and Template Methods
	Hook Example: Copying
	Hook Specialisation
	Hook and Template Example: Printing
	Override of the Hook
	Specialisation of the Hook
	Towards Delegation
	Limits of such ad-hoc solution
	Object and Delegation
	Trade Off
	Bad coding practices
	Different Self/Super
	Do not overuse conversions
	Hidding missing information
	Do not Check Return Values

	19. Design Thoughts and Selected Idioms
	Composed Method
	Constructor Method
	Constructor Parameter Method
	Query Method
	Boolean Property Setting Method
	Comparing Method
	Execute Around Method
	Choosing Message
	Name Well your Methods (i)
	do:
	collect:
	isEmpty, includes:
	How to Name Instance Variables?
	Singleton Instance: A Class Behavior
	Singleton Instance’s Implementation
	Singleton
	Discussion
	Singleton Variations
	Ensuring a Unique Instance
	Providing Access
	Accessing the Singleton via new?
	Singletons in a Single Subhierarchy
	Instance/Class Methods
	Comparing

	20. Comparing C++, Java and Smalltalk
	History
	Target Application Domains
	Evolution
	Language Design Goals
	Unique, Defining Features
	Overview of Features
	Syntax
	Object Model
	Memory Management
	Dynamic Binding
	Inheritance, Generics
	Types, Modules
	Exceptions, Concurrency
	Reflection
	Implementation Technology
	Portability, Interoperability
	Environments and Tools
	Development Styles
	The Bottom Line ...

	21. Smalltalk for the Java Programmer
	Syntax (i)
	Syntax (ii)
	Syntax (iii)
	Syntax of Basic Types

	22. Smalltalk For the Ada Programmer
	Class Definition
	Method Definition Declaration (i)
	Method Definition (i)
	Method Definition(ii)
	Instance Creation Method
	Instance Creation

	23. References
	A Jungle of Names
	Team Development Environments
	Some Free Smalltalks
	Main References
	Other References (Old or Other Dialects)
	Other References (ii)
	Some Web Pages

