
 

A Object-Oriented 
Programming with Smalltalk 
— a Pure Object Language 

and its Environment

 

Dr. Stéphane Ducasse
ducasse@iam.unibe.ch

http://www.iam.unibe.ch/~ducasse/

University of Bern
1999/2000



 Ta ii.  

I
S
S
S
W
A
@
B

 

1. Q

 

M
C
M
C
F
H
D
C
C
U

 

2. S

 

S
I
P
H
H
S
M
O
S
V

 

3. T

 

S
H
E
O

    

Composition 77
Sequence 78
Cascade 79
yourself 80
Have You Really Understood Yourself ? 81
Block (i): Definition 82
Block (ii): Evaluation 83
Block (iii) 84
Primitives 85
What You Should Know 86

 

6. Dealing with Classes 87

 

Class Definition: The Class Packet 88
Named Instance Variables 89
Method Definition 90
Accessing Instance Variables 91
Lazy Initialization 92
Methods always Return a Value 93
Some Naming Conventions 94
Inheritance in Smalltalk 95
Remember... 96
Node 97
Workstation 98
Message Sending & Method Lookup 99
Method Lookup Examples (i) 100
Method Lookup Examples (ii) 101
Method Lookup Examples (ii) 102
How to Invoke Overriden Methods? 103
Semantics of super 104
Let us be Absurb! 105
Object Instantiation 106
Direct Instance Creation: (basic)new/new: 107
Messages to Instances that Create Objects 108
Opening the Box 109
Class specific Instantiation Messages 110
What you should know 111
ble of Contents

March 13, 2000

nfos 6
ome Web Pages 7
tructure of this Lecture (i) 8
tructure of this Lecture (ii) 9
hat Topics Will (not) Be Addressed 10
bout this lecture 11
@To do list@@ 12

asic Smalltalk 13

uick Overview of the Environment 14
ouse Semantics 15
lass MenuBar 17
ethod MenuBar 18
ross Reference Facilities 19

iling Out 20
ierarchy Browser 21
ebugger 22
rash Recovery 23
ondensing Changes 24
IBuilder 25

malltalk in Context 26
malltalk: More than a Language 27
nspiration 28
recursor, Innovative and Visionary 29
istory 30
istory 31
malltalk’s Concepts 32
essages, Methods and Protocols 33
bjects, Classes and Metaclasses 34

malltalk Run-Time Architecture 35
isualWorks Advanced Runtime Architecture 36

he Taste of Smalltalk 37
ome Followed Conventions 38
ello World! 39
verything is an object 40
bjects communicate via messages (i) 41

A LAN Simulator 42
Three Kind of Objects 43
Interactions Between Nodes 44
Node and Packet Creation 45
Objects communicates by messages (ii) 46
Definition of a Lan 47
Transmitting a Packet 48
How to Define a Class? 49
How to Define a Method? 50

4. Smalltalk Syntax in a Nutshell 51
Syntax in a Nutshell (i) 52
Syntax in a Nutshell (ii) 53
Messages instead of predefined Syntax 54
Class and Method Definition 55
Instance Creation 56

5. Syntax and Messages 57
Literal Overview (i) 58
Literal Overview (ii) 59
Literal Arrays and Arrays 60
Deep Into Literal Arrays 61
Deep into Literal Arrays (ii) 62
Deep into Literal Arrays (iii) 63
Symbols vs. Strings 64
Variables Overview 65
Temporary Variables 66
Assigments 67
Method Arguments 68
Instance Variables 69
Six pseudo-variables (i) 70
Six pseudo-variables (ii) 71
Global Variables 72
Three Kinds of Messages 73
Unary Messages 74
Binary Messages 75
Keyword Messages 76



 
Ta iii.

 

7. B

 

B
S
F
C
A
C
S
K
C
I
I
I
C
E
C
I
C
E
W

 

8. N

 

B
D
D
D
D

 

9. E

 

M
B
E
S
E
R
R
E

      

The notion of Dependency 183
Dependency Mechanism 184
Publisher-Subscriber: A Sample Session 185
Change Propagation: Push and Pull 186
The MVC Pattern 187
A Standard Interaction Cycle 188
MVC: Benefits and Liabilities 189
MVC and Smalltalk 190
Managment of Dependents 191
Implementation of Change Propagation 192
Climbing up and down the Default-Ladder 193
Problems with the Vanilla Change Propagation Mechanism

194
Dependency Transformer 195
Inside a Dependency Transformer 196
ValueHolder 197
A UserInterface Window 198
Widgets 199
The Application Model 200
The fine-grained Structure of an Application 201
MVC Bibliography 202

 

13. Processes and Concurrency 204

 

Concurrency and Parallelism 205
Limitations 206
Atomicity 207
Safety and Liveness 208
Processes in Smalltalk: Process class 209
Processes in Smalltalk: Process class 210
Processes in Smalltalk: Process states 211
Process Scheduling and Priorities 212
Processes Scheduling and Priorities 213
Processes Scheduling: The Algorithm 214
Process Scheduling 215
Synchronization Mechanisms 216
Synchronization Mechanisms 217
ble of Contents

March 13, 2000

asic Objects, Conditional and Loops 112
oolean Objects 113
ome Basic Loops 114
or the Curious! 115
ollections 116
nother View 117
ollection Methods 118

equenceable Specific (Array) 119
eyedCollection Specific (Dictionary) 120
hoose your Camp! 121

teration Abstraction: do:/collect: 122
teration Abstraction: select:/reject:/detect: 123
teration Abstraction: inject:into: 124

ollection Abstraction 125
xamples of Use: NetworkManager 126
ommon Shared Behavior (i) 127

dentity vs. Equality 128
ommon Shared Behavior (ii) 129

ssential Common Shared Behavior 130
hat you should know 131

umbers 132
asics on Number 133
eeper on Numbers: Double Dispatch (i) 134
eeper on Numbers: Double Dispatch (ii) 135
eeper on Numbers: Coercion & Generality 136
eeper on Numbers: #retry:coercing: 137

xceptions 138
ain Exceptions 139

asic Example of Catching 140
xception Sets 141
ignaling Exception 142
xception Environment 143
esumable and Non-Resumable 144
esume:/Return: 145
xiting Handlers Explicity 146

Examples 147
Examples 148

10. Streams 149
Streams 150
An Example 151
printSring, printOn: 152
Stream classes(i) 153
Stream Classes (ii) 154
Stream tricks 155
Streams and Files 156
Advanced Smalltalk 157

11. Advanced Features 158
@Types of Classes@159

Two Views on Classes 160
Indexed Classes 161
Indexed Class/Instance Variables 162
The meaning of “Instance of” (i) 163
Lookup and Class Messages 165
The Meaning of “Instance-of” (iii) 166
Metaclass Responsibilities 167
Class Instance Variables 168
About Behavior 169
Class Method 170
classVariable 171
Class Instance Variables / ClassVariable 172
Summary of Variable Visibility 173
Example From The System: Geometric Class 174
Circle 175
poolDictionaries 176

Example of PoolVariables177

12. The Model View Controller Paradigm 178
Context 179
Program Architecture 180
Separation of Concerns I: 181
Separation of Concerns II: 182



 
Ta iv.

 

S
S
S
S
D
P  

14.

 

T
C
C
R
A
S
D
S
S
S
B
C
M
C

 

15.

 

M
R
T
I
A
R
L
U
D
W
S
W
H

      

Fragile Instance Creation 291
Assuring Instance Variable Initialization 292
Other Instance Initialization 293
Strengthen Instance Creation Interface 294
Forbidding new 295
Class Methods - Class Instance Variables 297
Class Initialization 298
Date class>>initialize 299
A Case Study: Scanner 300
Scanner class>>initialize 301
Scanner 302

303
What is an object? 304
Why Coupled Classes are Bad? 305
The Law ot Demeter 306
Illustrating the Law of Demeter 307
About the Use of Accessors (i) 308
About the Use of Public Accessors (ii) 309
Never to work that somebody else can do! 310
Provide a Complete Interface 311
Factoring Out Constants 313
Initializing without Duplicating 314
Constants Needed at Creation Time 315

316
Type Checking for Dispatching 317
Double Dispatch (i) 318
A Step Back 319
Deeper on Double Dispatch : Numbers (ii) 320

321
Methods are the Elementary Unit of Reuse 322
Methods are the Elementary Unit of Reuse (ii) 323
Methods are the Elementary Unit of Reuse 324
Class Factories 325
Hook and Template Methods 326
Hook Example: Copying 327
ble of Contents

March 13, 2000

ynchronization using Semaphores 218
emaphores 219
emaphores for Mutual Exclusion 220
ynchronization using a SharedQueue 221
elays 222
romises 223

 Classes and Metaclasses: an Analysis 224
he meaning of “Instance of” 225
oncept of Metaclass & Responsibilities 226
lasses, metaclasses and method lookup 227
esponsibilities of Object & Class classes 228
 possible kernel for explicit metaclasses 229
ingleton with explicit metaclasses 230
eeper into it 231
malltalk Metaclasses in 7 points 232
malltalk Metaclasses in 7 points (iii) 234
malltalk Metaclasses in 7 points (iv) 235
ehavior Responsibilities 236
lassDescription Responsibilities 237
etaclass Responsibilities 238
lass Responsibilities 239

 Most Common Mistakes and Debugging 240
ost Common Beginner Bugs 241

eturn Value 242
ake care about loops 243
nstance Variable Access in Class Method 244
ssignments Bugs 245
edefinition Bugs 246
ibrary Behavior-based Bugs 247
se of Accessors: Protect your Cients 248
ebugging Hints 249
here am I and how did I get here? 250

ource Inspection 251
here am I going? 252
ow do I get out? 253

Finding & Closing Open Files in VW 254
Internal Structure of Object 255
Three ways to create classes: 256
Let us Code 257
Format and other 258
Object size in bytes 259
Analysis 260

16. Blocks and Optimization 262
Full Blocks 263
Copying Blocks 264
Clean Blocks 265
Inlined Blocks 266
Full to Copy 267
Contexts 268
Inject:into: 269
About String Concatenation 270

Stream, Blocks and Optimisation (i)271
Stream, Blocks and Optimisation (ii) 272
BlockClosure Class Comments 273

17. Block Deep Understanding 274
Lexically Scope 275
Returning from a Block (i) 276
Returning From a Block (ii) 277
Example of Block Evaluation 278

280
Design Considerations 281
Abstract Classes 282
Case Study: Boolean, True and False 283
Boolean 284
False and True 285
CaseStudy: Magnitude: 286
Date 287

18. Basic Elements of Design and Class Behavior 288
A First Implementation of Packet 289
Packet CLASS Definition 290



 
Ta v.

 

H
H
O
S

T

O
T
B
D
D
H
D

 

19.

 

C
C
C
Q
B
C
E
C
N
d
c
i
H
S
S
S
D
S
E
P

      

Instance Creation 401

 

23. References 402

 

A Jungle of Names 403
Team Development Environments 404
Some Free Smalltalks 405
Main References 406
Other References (Old or Other Dialects) 407
Other References (ii) 408
Some Web Pages 409
ble of Contents

March 13, 2000

ook Specialisation 328
ook and Template Example: Printing 329
verride of the Hook 330

pecialisation of the Hook 331
332

owards Delegation 333
Limits of such ad-hoc solution334

bject and Delegation 335
rade Off 336
ad coding practices 337
ifferent Self/Super 338
o not overuse conversions 339
idding missing information 340
o not Check Return Values 341

 Design Thoughts and Selected Idioms 342
omposed Method 343
onstructor Method 344
onstructor Parameter Method 345
uery Method 346

oolean Property Setting Method 347
omparing Method 348

xecute Around Method 349
hoosing Message 350
ame Well your Methods (i) 353
o: 354
ollect: 355

sEmpty, includes: 356
ow to Name Instance Variables? 358
ingleton Instance: A Class Behavior 359
ingleton Instance’s Implementation 360
ingleton 361
iscussion 362
ingleton Variations 363
nsuring a Unique Instance 364
roviding Access 365

Accessing the Singleton via new? 366
Singletons in a Single Subhierarchy 367
Instance/Class Methods 368
Comparing 369

20. Comparing C++, Java and Smalltalk 370
History 371
Target Application Domains 372
Evolution 373
Language Design Goals 374
Unique, Defining Features 375
Overview of Features 376
Syntax 377
Object Model 378
Memory Management 379
Dynamic Binding 380
Inheritance, Generics 381
Types, Modules 382
Exceptions, Concurrency 383
Reflection 384
Implementation Technology 385
Portability, Interoperability 386
Environments and Tools 387
Development Styles 388
The Bottom Line ... 389

21. Smalltalk for the Java Programmer 390
Syntax (i) 391
Syntax (ii) 392
Syntax (iii) 393
Syntax of Basic Types 394

22. Smalltalk For the Ada Programmer 395
Class Definition 396
Method Definition Declaration (i) 397
Method Definition (i) 398
Method Definition(ii) 399
Instance Creation Method 400



 
Object-Oriented Design with Smalltalk a Pure OO Language 

U 1.6

  

l

niversität Bern Ducasse Stéphane

Infos
Me: Dr. Stéphane Ducasse 
Where: Office 101 10 neubruckstrasse, CH-3012 Berne
EMail: ducasse@iam.unibe.ch
Me electronic: http://www.iam.unibe.ch/~ducasse/

Lectures Ressources: 
http://www.iam.unibe.ch/~scg/Resources/Smalltalk/
http://brain.cs.uiuc.edu/VisualWorks/
http://www.iam.unibe.ch/~ducasse/PubHTML/Smalltalk.htm
http://www.iam.unibe.ch/~scg/cgi-bin/Smalltalk.cgi

NewGroups: comp.lang.smalltalk
Important Addresses to get free Smalltalks:
http://www.objectshare.com/VWNC/
http://www.squeak.org/
http://www.object-arts.com/Home.htm
ANSI Normalization: @@



 
Object-Oriented Design with Smalltalk a Pure OO Language 

U 1.7

  

ssSmalltalkUserGroup
niversität Bern Ducasse Stéphane

Some Web Pages
Wikis:

VisualWorks  /brain.cs.uiuc.edu/VisualWorks/
VisualAge /brain.cs.uiuc.edu/VisualAge/
www.iam.unibe.ch/~scg/cgi-bin/Smalltalk.cgi

STIC: 
/www.stic.org/

Cool Sites:
/www.smalltalk.org/
/www.goodstart.com/stlinks.html 
/st-www.cs.uiuc.edu/

User Groups: ESUG, BSUG, GSUG, SSUG
www.esug.org/
www.bsug.org/
www.gsug.org/
www.iam.unibe.ch/~scg/cgi-bin/Smalltalk.cgi?Swi



 
Object-Oriented Design with Smalltalk a Pure OO Language 

U 1.8

     
niversität Bern Ducasse Stéphane

Structure of this Lecture (i)
❑ Basic Smalltalk Elements

– History and Concepts

– Syntax

– Class/Method Definitions

– Collections

– Numbers

– Streams

❑ Advanced Smalltalk Topics

– Classes

– MVC

– Concurrency

– Metaclasses

– Debugging 

– Internals



 
Object-Oriented Design with Smalltalk a Pure OO Language 

U 1.9

     
niversität Bern Ducasse Stéphane

Structure of this Lecture (ii)
❑ Design Issues

– Abstract Classes

– Elementary Design Issues

– Idioms

– Some selected design patterns

❑ Comparing with other

– Java, C++, Smalltalk

– Smalltalk for the Java Programmer

– Smalltalk for the Ada Programmer



 
Object-Oriented Design with Smalltalk a Pure OO Language 

U 1.10

 

ssed

                       
niversität Bern Ducasse Stéphane

What Topics Will (not) Be Addre
We focus on:

❑ Basic features
❑ Syntax overview
❑ Inheritance Semantics
❑ Collections 
❑ Basic Elements of Design 
❑ Some Idioms
❑ Most Common Bugs
❑ Techniques to Debug

We do not cover: 
❑ Concurrency Model
❑ Metaclasses in Details
❑ MVC in Details



 
Object-Oriented Design with Smalltalk a Pure OO Language 

U 1.11

     

/VWNC/ or squeak 

  
niversität Bern Ducasse Stéphane

About this lecture
❑ If problem contact me!
❑ Take VisualWorks at http://www.objectshare.com

www.squeak.org/
❑ Do to the exercises 



 
Object-Oriented Design with Smalltalk a Pure OO Language 

U 1.12

  
niversität Bern Ducasse Stéphane

@@To do list@@
Design Issues
Exercises 

Implement a Lan Manager (Banking)
code for the lan basic 
code for the lan with user interface

Exceptions
Advanced Blocks
Idioms
Concurrency
MVC
Look at the syntax Put BNF of Squeak and VW
Look at at Patrick extensions of the lan
Look at the Joseph Slides
SUnit description
Check all the idioms lessons at the lab



 
Smalltalk a Pure OO Language Smalltalk in a Nutshell

Universität Bern Ducasse Stéphane 1.13

 

Basic Smalltalk

 

❑

 

History and Concepts

 

❑

 

Tasting Smalltalk

 

❑

 

Syntax

 

❑

 

Class/Method Definitions

 

❑

 

Collections

 

❑

 

Numbers

 

❑

 

Streams



 
Object-Oriented Design with Smalltalk a Pure OO Language Environment

U 4.14

 

nment

 
niversität Bern Ducasse Stéphane

1. Quick Overview of the Enviro

VW2.5 not VW30 sorry!!



 
Object-Oriented Design with Smalltalk a Pure OO Language Environment

U 4.15  
niversität Bern Ducasse Stéphane

Mouse Semantics



Object-Oriented Design with Smalltalk a Pure OO Language Environment

U 4.16
 

niversität Bern Ducasse Stéphane



Object-Oriented Design with Smalltalk a Pure OO Language Environment

U 4.17
 

niversität Bern Ducasse Stéphane

 Class MenuBar



Object-Oriented Design with Smalltalk a Pure OO Language Environment

U 4.18
 

niversität Bern Ducasse Stéphane

 Method MenuBar



Object-Oriented Design with Smalltalk a Pure OO Language Environment

U 4.19
 

niversität Bern Ducasse Stéphane

 Cross Reference Facilities



Object-Oriented Design with Smalltalk a Pure OO Language Environment

U 4.20
 

niversität Bern Ducasse Stéphane

 Filing Out



Object-Oriented Design with Smalltalk a Pure OO Language Environment

U 4.21

must use!!
 

niversität Bern Ducasse Stéphane

 

Hierarchy Browser

 

Not usefull wen you use the Refactoring Browser that you 



Object-Oriented Design with Smalltalk a Pure OO Language Environment

U 4.22
 

niversität Bern Ducasse Stéphane

 

Debugger



Object-Oriented Design with Smalltalk a Pure OO Language Environment

U 4.23
 

niversität Bern Ducasse Stéphane

 Crash Recovery



Object-Oriented Design with Smalltalk a Pure OO Language Environment

U 4.24
 

niversität Bern Ducasse Stéphane

 Condensing Changes



Object-Oriented Design with Smalltalk a Pure OO Language Environment

U 4.25
 

niversität Bern Ducasse Stéphane

 UIBuilder



Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk in Context

U 1.26
 

niversität Bern Ducasse Stéphane

 2. Smalltalk in Context

 

History
Context 
Run-Time Architecture
Concepts



Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk in Context

U 1.27

ge

yntax). 
se accesses, socket...).

r, Inspector, changes, crash 

logy.
se, versioning, deployement).
 

niversität Bern Ducasse Stéphane

 

Smalltalk: More than a Langua

 

• A small and uniform language (two days for learning the s
• A set of reusable classes (basic data structure, UI, databa
• A set of powerfull development tools (Browsers, UIBuilde
recovery, project management). 
• A run-time environment based on Virtual Machine techno
• With Envy team working + application management (relea



Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk in Context

U 1.28

y possible"  [Kay]

al phenomen by means of a 
 

niversität Bern Ducasse Stéphane

 

Inspiration

 

"making simple things Very simple and complex things Ver

• Flex (Alan Kay 1969)
• Lisp (interpreter, blocks, garbage collector)
• Turtle graphics (Logo Project, children programming)
• Direct manipulation interfaces (Sketchpad 1960)
• Simula (classes and message sending, description of a re
specification language: modeling)

-> DynaBook: a desktop computer for children



Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk in Context

U 1.29

nary

mpiler, editor, browser) 

d the bitmap:
em. 
 

niversität Bern Ducasse Stéphane

 

Precursor, Innovative and Visio

 

• First graphical bitmap-based 
multi-windowing (overlapping windows) 

  programming environment (debugger, co
with a pointing device 

Yes a mouse !!!!
Xerox Smalltalk Team developed the mouse technology an

it was revolutionary! MacIntosh copied th

• Virtual Machine + 
Plateform independent image technology

 
• Garbage Collector 

• Just in Time Compilation



Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk in Context

U 1.30

BOL

a

Lisp

Prolog

Modula-2

Modula-3

Oberon

a 95

CLOS
 

niversität Bern Ducasse Stéphane

 

History

1960

1970

1980

1990

FORTRAN
Algol 60

CO

PL/1
Simula 67

Smalltalk 72

Smalltalk 80

Objective C

C

C++ Ad

Pascal

ANSI C++

Self
Eiffel

Algol 68

Clu

Java Ad



Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk in Context

U 1.31

jects can specify its own 

ed syntax (compact byte 
ss library.
ramming by Rehearsal.
er project).

 metaclasses, blocks as first-

s) + Alternate Reality Kit 

HP and Tektronix) -> gc by 

eak VM in Smalltalk....)
 

niversität Bern Ducasse Stéphane

 

History

 

Internal. 

 

1972: First interpreter, more agents than objects (every ob
syntax).                                                                             
1976: Redesign: Hierarchy of classes with unique root + fix
code), contexts, process + semaphores + Browser + UI cla
Projects: ThingLab, Visual Programming Environment Prog
1978: Experimentation with 8086 microprocessor (NoteTak

 

External. 

 

1980: Smalltalk-80 (Ascii, cleaning primitives for portability,
class objects, MVC, )
Projects: Galley Editor (mixing text, painting and animation
(physics simulation)
1981: books + four external virtual machines (Dec, Apple, 
generation scavenging
1988: Creation of Parc Place Systems
1992: Draft Ansi 
1995-6: New Smalltalk implementations (MT, dolphin, Squ



Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk in Context

U 1.32

, points, tools, boolean).

too).
nces.

ntents of a book)
nted: (reading the chapters)
em
 

niversität Bern Ducasse Stéphane

 

Smalltalk’s Concepts

 

• Everything is an object (numbers, files, editors, compilers
• Objects only communicate by message passing.
• Each object is an instance of one class (that is an object 
• A class defines the structure and the behavior of its insta
• Each object possesses its own set of values.
• Dynamically typed.
• Fully and only based on late binding.

Programming in Smalltalk: Reading an Open Book
• Reading the interface of the classes: (table of co
• Understanding the way the classes are impleme
• Extending and changing the contents of the syst



Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk in Context

U 1.33

ols

orkstation ', self name asString]

s to:
ode: #printOn: #simplePrintString
 

niversität Bern Ducasse Stéphane

 

Messages, Methods and Protoc

 

Message: 

 

What

 

 behavior to perform 

 

aWorkstation accept: aPacket

 

Method: 

 

How

 

 to carry out the behavior

 

accept: aPacket

(aPacket isAddressedTo: self)

ifTrue:[ Transcript show: 'A packet  is accepted by the W

ifFalse: [super accept: aPacket]

 

Protocol: The complete set of messages an object respond

 

#name #initialize #hasNextNode #connectedTo: #name: #nextNode #nextN
#typeName #accept: #send:

 

Often grouped into categories: 

 

accessing #name

initialize-release #initialize

testing #hasNextNode

connection #connectedTo:

private #name: #nextNode #nextNode:

printing #printOn: #simplePrintString #typeName

send-receive #accept: #send:



Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk in Context

U 1.34

ses

nstances
 specific state

ces
ses, method dictionary, 
 

niversität Bern Ducasse Stéphane

 

Objects, Classes and Metaclas

 

• Every object is an instance of a class
• A class specifies the structure and the behavior of all its i
• Instances of a class share the same behavior and have a

• Classes are objects that create other instances
• Metaclasses are just classes that create classes as instan
• Metaclasses described class behavior and state (subclas
instance variables...)



Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk in Context

U 1.35

t in time compiler. 
ing the byte-code, this is just 
ement. 
t will be executed with a VM. 
sary development 
 

niversität Bern Ducasse Stéphane

 

Smalltalk Run-Time Architecture

 

Virtual Machine + Image + Changes and Sources

The byte-code is in fact translated into native code by a jus
The source and the change are not necessary for interpret
for the development. Normally they are removed for deploy
An application can be delivered as some byte-code files tha
The development image is stripped to remove the unneces
components like the compiler, the scanner, the browser,....



Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk in Context

U 1.36

e Architecture

hange: 

quisites parcels

User 2

e Change
 

niversität Bern Ducasse Stéphane

 

VisualWorks Advanced Runtim

 

❑

 

Parcels reproduce the schema of the image and c
pcl are byte code, pst source code

 

❑

 

Parcels allow atomic loading/unloading and prere

 

❑

 

Extremely fast loading

 

❑

 

Good for dynamic loading, code management

 

Sources

 

Shared by everybody

 VM  

byte code of all the objects Source of all the objects 

piece of image (byte code) piece of source (text)

 

Image

 

currently in memory

 

Change

 

currently in memory

User 1

 

VM 

Imag

 

Parcel(pcl) Parcel(pst)



Object-Oriented Design with Smalltalk a Pure OO Language The Taste of Smalltalk

U 2.37
 

niversität Bern Ducasse Stéphane

 

3. The Taste of Smalltalk

 

Two examples: 
- hello world
- a LAN simulator

To give you an idea of:
- the syntax
- the elementary objects and classes
- the enviromnent

To give the base for all the lectures: 
all the codes samples, 
constructs, 
design decisions...



Object-Oriented Design with Smalltalk a Pure OO Language The Taste of Smalltalk

U 2.38

ac

e

n the class of the class Node)

finition

e result (#printOn:)
t to the result (#inspect)
 

niversität Bern Ducasse Stéphane

 

Some Followed Conventions

 

• Code 

 

Transcript show: ‘Hello world’

 

• Return Value

 

1 + 3

 

 

 

-> 4

 

Node new 

 

-> aNode

 

Node new 

 

PrIt-> a Workstation with name:#pc connectedto:#m

 

• Method selector

 

 #add:

 

• Method scope conventions: 

 

Node>>

 

accept: aPacket

 

instance method defined in the class 

 

Nod

 

Node class>>

 

withName: aSymbol

 

class method defined in the class 

 

Node

 

 (i

 
 

• 

 

aSomething

 

 is an instance of the class 

 

Something

 

• DoIt, PrintIt, InspectIt and Accept
Accept = Compile: Accept a method or a class de
DoIt = send a message to an object
PrintIt = send a message to an object + print to th 

 

InspectIt = send a message to an object + inspec

 
 



Object-Oriented Design with Smalltalk a Pure OO Language The Taste of Smalltalk

U 2.39

eter to evaluate an 
e middle mouse button apply 

output, it refers to a 
 

niversität Bern Ducasse Stéphane

 

Hello World!

 

Transcript show: ‘hello world’ 

 

During implementation, we can dynamically ask the interpr
expression. To evaluate an expression, select it and with th

 

doIt

 

. 

 

Transcript

 

 is a special object that is a kind of standard 

 

TextCollector instance associated with the launcher. 



Object-Oriented Design with Smalltalk a Pure OO Language The Taste of Smalltalk

U 2.40

w.
r.

g.

ect.

even modify  it. 
ncept.
niversität Bern Ducasse Stéphane

Everything is an object
The launcher is an object.
The icons are objects. 
The workspace is an object.
The window is an object: instance of ApplicationWindo
The text editor is an object: instance of ParagraphEdito
The scrollbars are objects too.
‘hello word’ is an object: aString instance of Strin
#show: is a Symbol that is also an object.
The mouse is an object.
The parser is an object instance of Parser.
The compiler is also an object instance of Compiler. 
The process scheduler is also an object.
The garbage collector is an object: instance of MemoryObj
...
=> a world consistent , uniform  written in itself!
you can learn  how it is implemented, you can extend  it or 
+ (almost) all the code is available and readable....Book co



Object-Oriented Design with Smalltalk a Pure OO Language The Taste of Smalltalk

U 2.41

sages (i)

essage

 letter) that refers to the 

lent to various extend to

ages
ges
st ones)
niversität Bern Ducasse Stéphane

Objects communicate via mes
Transcript show: ‘hello world’ 

The above expression is a message:

– the object Transcript is the receiver of the m

– the selector of the message is #show: 

– an argument: a string ‘hello world’

Transcript is a global variable (starts with an uppercase
Launcher’s report part.

Vocabulary Concerns:
Message passing or sending a message is equiva
 - invoking a method in Java or C++

- calling a procedure in procedural langu
- applying a function in functional langua
(modulo the polymorphism for the two la



Object-Oriented Design with Smalltalk a Pure OO Language The Taste of Smalltalk

U 2.42

 servers.
m differently. 

node2
niversität Bern Ducasse Stéphane

A LAN Simulator
A LAN contains nodes, workstations, printers, file
Packets are sent in a LAN and the nodes treat the

mac
node3

pcnode1

lpr



Object-Oriented Design with Smalltalk a Pure OO Language The Taste of Smalltalk

U 2.43

nected to form a LAN. 
es.

ed. 

ode

Workstation

t: aPacket
: aPacket
extNode

originate: aPacket
accept: aPacket

et
cket

nextNode
niversität Bern Ducasse Stéphane

Three Kind of Objects
Node and its subclasses represent the entities that are con
Packet represents the information that flows between Nod
NetworkManager represents how the nodes are connect

N

Printer

NetworkManager

Packet
addressee
contents
originator
isSentBy: aNode
isAddressedTo: aNode

name
accep
send
hasN

print: aPack
accept: aPa

declareNode: aNode
undeclareNode: aNode
connectNodes: anArrayOfAddressees



Object-Oriented Design with Smalltalk a Pure OO Language The Taste of Smalltalk

U 2.44

node1
niversität Bern Ducasse Stéphane

Interactions Between Nodes
 

accept: aPacket

send: aPacket

nodePrinter aPacket

isAddressedTo: nodePrinter

accept: aPacket

print: aPacket

[true]

[false]



Object-Oriented Design with Smalltalk a Pure OO Language The Taste of Smalltalk

U 2.45

|

e printer' to:  #lpr.
niversität Bern Ducasse Stéphane

Node and Packet Creation
|macNode pcNode node1 printerNode node2 node3 packet

"nodes definition"

macNode := Workstation withName: #mac.

pcNode := Workstation withName: #pc.

node1 := Node withName: #node1.

node2 := Node withName: #node2.

node3 := Node withName: #node2.

printerNode := Printer withName: #lpr.

"Node connections"

macNode nextNode: node1.

node1 nextNode: pcNode.

pcNode nextNode: node2.

node3 nextNode: printerNode.

lpr nextNode: macNode.

"packet creation"

packet := Packet send:  'This packet travelled to th



Object-Oriented Design with Smalltalk a Pure OO Language The Taste of Smalltalk

U 2.46

ssages (ii)
niversität Bern Ducasse Stéphane

Objects communicates by me
Message:

1 + 2

- receiver : 1 (an instance of SmallInteger)

- selector: #+

- arguments: 2

Message:
lpr nextNode: macNode

- receiver lpr (an instance of LanPrinter)

- selector: #nextNode: 

- arguments: macNode (an instance of Workstation)

Message:
Packet send:  'This packet travelled to the printer' to:  #lpr

- receiver: Packet (a class)

- selector: #send:to:

- arguments: 'This packet travelled to the printer' and #lpr

Message: 
Workstation withName: #mac

- receiver: Workstation (a class)

- selector: #withName:

- arguments: #mac



Object-Oriented Design with Smalltalk a Pure OO Language The Taste of Smalltalk

U 2.47

e2 node3) ofKind: Node.

fKind: Workstation.

nd: LanPrinter.

 node3 lpr)
niversität Bern Ducasse Stéphane

Definition of a Lan

To simplify the creation and the manipulation of a Lan.

| aLan |

aLan := NetworkManager new. 

aLan createAndDeclareNodesFromAddresses: #(node1 nod

aLan createAndDeclareNodesFromAddresses: #(mac pc) o

aLan createAndDeclareNodesFromAddresses: #(lpr) ofKi

aLan connectNodesFromAddresses: #(mac node1 pc node2

Now we can query the Lan to get some nodes:
aLan findNodeWithAddress: #mac



Object-Oriented Design with Smalltalk a Pure OO Language The Taste of Smalltalk

U 2.48

e printer' to:  #lpr.
niversität Bern Ducasse Stéphane

Transmitting a Packet

| aLan packet macNode|

...

macNode := aLan findNodeWithAddress: #mac.

packet := Packet send:  'This packet travelled to th

macNode originate: packet.

-> mac sends a packet to pc 

-> pc sends a packet to node1

-> node1 sends a packet to node2

-> node2 sends a packet to node3

-> node3 sends a packet to lpr

-> lpr is printing 

-> this packet travelled to lpr



Object-Oriented Design with Smalltalk a Pure OO Language The Taste of Smalltalk

U 2.49

s '
niversität Bern Ducasse Stéphane

How to Define a Class?
Fill the template:

NameOfSuperclass subclass: #NameOfClass

instanceVariableNames: 'instVarName1 instVarName2'

classVariableNames: 'ClassVarName1 ClassVarName2'

poolDictionaries: ''

category: 'LAN'

For example to create the class Packet
Object subclass: #Packet

instanceVariableNames: 'addressee originator content

classVariableNames: ''

poolDictionaries: ''

category: 'LAN'



Object-Oriented Design with Smalltalk a Pure OO Language The Taste of Smalltalk

U 2.50

ike a normal node"

ve like a normal node*/
niversität Bern Ducasse Stéphane

How to Define a Method?
Follow the template: 
message selector and argument names

"comment stating purpose of message"

| temporary variable names |

statements

LanPrinter>>accept: thePacket

"If the packet is addressed to me, print it. Else just behave l

(thePacket isAddressedTo: self)

ifTrue: [self print: thePacket] 

ifFalse: [super accept: thePacket]

In Java we would write 
void accept(thePacket Packet)

/*If the packet is addressed to me, print it. Else just beha

if (thePacket.isAddressedTo(this)){

this.print(thePacket)}

else super.accept(thePacket)



Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk Syntax in a Nutshell

U 3.51

l

ess in VW5i)
 instance)
niversität Bern Ducasse Stéphane

4. Smalltalk Syntax in a Nutshel

language construct: ^ “ # ‘’ [] . ; () | := $ : er ! <primitive: >
^ return
“ comments
#symbol or array
‘ string
[] block or byte array
. separator and not terminator (or namespace acc
; cascade (sending several messages to the same
| local or block variable
:= assignment
$ character
: end of selector name
e, r number exponent or radix
! file element separator
<primitive: ...> for VM primitive calls



Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk Syntax in a Nutshell

U 3.52

 

 sent to a number. This is the 
niversität Bern Ducasse Stéphane

Syntax in a Nutshell (i)

comment:   “a comment”
character: $c $h $a $r $a $c $t $e $r $s $# $@
string:    ‘a nice string’  ‘lulu’ ‘l’’idiot’
symbol:   #mac #+ 
array:    #(1 2 3 (1 3) $a 4)
byte array: #[1 2 3]
integer:   1, 2r101
real:      1.5, 6.03e-34,4, 2.4e7
float:     1/33
boolean:   true, false
point:    10@120

Note that @ is not an element of the syntax just a message
same for / 



Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk Syntax in a Nutshell

U 3.53

rd2: arg2...
niversität Bern Ducasse Stéphane

Syntax in a Nutshell (ii)
assigment: var := aValue
block:  [:var ||tmp| expr...]

temporary variable: |tmp|
block variable: :var
unary message: receiver selector
binary message: receiver selector argument
keyword based: receiver keyword1: arg1 keywo
cascade: message ; selector ...
separator:  message . message
result: ^

parenthesis: (...)



Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk Syntax in a Nutshell

U 3.54

d Syntax
 into the grammar

bjects

mbers

lean

ections or numbers
how: each ; cr]

each printString; cr]
niversität Bern Ducasse Stéphane

Messages instead of predefine
q in Java, C, C++, Ada, >>, if, for, ... are hardcoded

q in Smalltalk there are just messages defined on o

(>>) bitShift: is just a message sent to nu
10 bitShift: 2

(if) ifTrue: is just messages sent to a boo
(1> x) ifTrue: 

(for) do:, to:do: are just messages to coll
#(a b c d) do: [:each | Transcript s

1 to: 10 do: [:i | Transcript show: 



Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk Syntax in a Nutshell

U 3.55

d 

 the compiler)

e like a normal node"
niversität Bern Ducasse Stéphane

Class and Method Definition

Class: a message sent to another class
Object subclass: #Node

instanceVariableNames: 'name nextNode'

classVariableNames: ''

poolDictionaries: ''

category: 'LAN'

-> Instance variables are instance-based protecte

Method: normally done in a browser or (by directly invoking
Node>>accept: thePacket

"If the packet is addressed to me, print it. Else just behav

(thePacket isAddressedTo: self)

ifTrue: [self print: thePacket] 

ifFalse: [super accept: thePacket]

-> Methods are public



Object-Oriented Design with Smalltalk a Pure OO Language Smalltalk Syntax in a Nutshell

U 3.56

ew, basicNew:)
niversität Bern Ducasse Stéphane

Instance Creation

1, ‘abc’

Basic class messages creation (new, new:, basicN

Packet new 

Class specific message creation
Workstation withName: #mac



Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

U 3.57

em strange at the first look
niversität Bern Ducasse Stéphane

5. Syntax and Messages

The syntax of Smalltalk is simple and uniform but it can se

- Literals: numbers, strings, arrays....
- Variables names
- Pseudo-variables
- Assignment, return
- Message Expressions
- Block expressions



Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

U 3.58

2

niversität Bern Ducasse Stéphane

Literal Overview (i)
Numbers: 

SmallInteger, Integer, 
4, 2r100 (4 in base 2),3r11 (4 in base 3), 123

Fraction, Float, Double
 3/4, 2.4e7, 0.75d

Characters: 
$F, $Q $U $E $N $T $i $N

Unprintable characters
Character space, Character tab, Character cr

Symbols: 
#class #mac #at:put:  #+ #accept: 

Strings: 
#mac asString -> 'mac'

12 printString -> '12'

'This packet travelled around to the printer' 'l''idiot'

String with: $A 

To introduce a single quote inside a string just double it.



Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

U 3.59

de3 #lpr)

 the “ and the first letter. Indeed when 
 You just go after the “ character and 
 or doIt.
niversität Bern Ducasse Stéphane

Literal Overview (ii)
Arrays: 

#(1 2 3) #('lulu' (1 2 3))  #('lulu' #(1 2 3)) 

#(mac node1 pc node2 node3 lpr) an array of symbols. 

When one prints it it shows #(#mac #node1 #pc #node2 #no

Byte Array: 
#[1 2 255]

Comments: 
"This is a comment"

A comment can be on several lines. Moreover, avoid to put a space between
there is no space, the system helps you to select a commented expression.
double click: all the commented expression is selected. After you can printIt



Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

U 3.60

' 'suzie')

Literal arrays are known at 

Packet

an instance of Packet

d nil
niversität Bern Ducasse Stéphane

Literal Arrays and Arrays
Heterogenous

#('lulu' (1 2 3)) PrIt-> #('lulu' #(1 2 3)) 

#('lulu' 1.22 1) PrIt-> #('lulu' 1.22 1)

An array of symbols: 
#(calvin hobbes suzie) PrIt-> #(#calvin #hobbes #suzie)

An array of strings:
#('calvin' 'hobbes' 'suzie') PrIt->  #('calvin' 'hobbes

Only the creation differs between literal arrays and arrays. 
compile time, array at run-time.

#(Packet new) an array with two symbols and not an instance of 

Array new at: 1 put: (Packet new) is an array with one element 

Literal or not
#(...) considers elements as literals and false true an

#( 1 + 2 ) PrIt-> #(1 #+ 2)

Array with: (1 +2) PrIt->  #(3)



Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

U 3.61

 and false true and nil

 refer always to the same objet. This 
he literals according to this principle, 
ture defines literals as numbers, 
ats , arrays but they do not refer 

ist in the system and stored into the 
olds the bytecode translation of the 
res the literals used by the methods. 
niversität Bern Ducasse Stéphane

Deep Into Literal Arrays
Technical note implementation dependent: Literal arrays only contains literal objects

'mac' asArray is an array of character

(#(false true nil) at: 2 )
ifTrue:[ Transcript show: ‘this is really true’]
ifFalse: [ 1/0]

Literature (Goldberg book) defines a literal as an object which value
is a first approximation to present the concept. However, if we check t
this is false in VisualWorks (VisualAge as a safer definition.) Litera
characters, strings of character, arrays, symbols, and two strings , flo
(hopefully) to the same object.
In fact literals are objects created at compile-time or even already ex
compiled method literal frame. A compiled method is an object that h
source code. The literal frame is a part of a compiled method that sto
You can

Point inspect ->methodDict-> aCompiledMethod to see it. 



Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

U 3.62

e literal array and a newly 
fined the following method: 

 array #(nil) is stored into
modified the compiled method

se the array is always created
pile-time and not stored into
rself this infomation by de-
ts method dictionary and then
niversität Bern Ducasse Stéphane

Deep into Literal Arrays (ii)
The following example illustrates the difference between th
created instance of Array created via Array new:. Let us de
SmallInteger>>m1

|anArray|

anArray := #(nil).

(anArray at: 1 ) isNil

ifTrue:[ Transcript show: ‘Put 1’;cr. anArray at: 1 put: 1.]

1 m1 will only display the message Put 1 once. Because the
the literal frame of the method and the #at:put: message 
itself.

SmallInteger>>m2

|anArray|

anArray := Array new: 1.

(anArray at: 1 ) isNil

ifTrue:[ Transcript show: ‘Put 1’;cr. anArray at: 1 put: 1]

1 m2 will always display the message Put 1 because in that ca
at run-time. Therefore it is not detected as literals at com
the literal frame of the compiled method. You can find you
fining these methods on a class, inspecting the class then i
the corresponding methods.



Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

U 3.63

ed to the following idioms to 

.

niversität Bern Ducasse Stéphane

Deep into Literal Arrays (iii)

This is internal representation of the method objects have l
control such perfide effect. 

Never give access to literal array only provide copy of them
For example:

ar
^ #(100@100 200@200) copy 



Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

U 3.64

eys for dictionaries
le objects

(IdentityDictionary)

nverting a string to a symbol is more
niversität Bern Ducasse Stéphane

Symbols vs. Strings
- Symbols are used as method selectors, unique k
- A symbol is a read-only object, strings are mutab
- A symbol is unique, strings not

#calvin == #calvin PrIt-> true

‘calvin’ == ‘calvin’ PrIt-> false

#calvin, #zeBest PrIt-> 'calvinzeBest'

Symbols are good candidates for identity based dictionary 

Hints: Comparing strings is a factor of 5 to 10 slower than symbols. But co
than 100 times more expensive.



Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

U 3.65

pes of objects
ting with lowercase)
niversität Bern Ducasse Stéphane

Variables Overview
- Maintains a reference to an object
- Dynamically typed and can reference different ty
- Shared (starting with uppercase) or private (star



Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

U 3.66

ution)
od.

t, an instance variable or another 

 objects
 

niversität Bern Ducasse Stéphane

 

Temporary Variables

 

- To hold temporary values during evaluation (method exec
- Can be accessed by the expressions composing the meth

 |mac1 pc node1 printer mac2 packet| 

Hint: Avoid to use the same name for a temporary variable and an argumen
temporary variable or block temporary. Your code will be more portable. 
Instead of : 

 

aClass>>printOn: aStream

|aStream|

...

 

Write

 

aClass>>printOn: aStream

|anotherStream|

...

 

Hint: Avoid to use the same temporary variable for referencing two different



Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

U 3.67

erything is a pointer. So take 
 

niversität Bern Ducasse Stéphane

 

Assigments

 

variable := aValue 

three := 3 raisedTo: 1

variable1 := variable2 := aValue

 

But assignment is not done by message passing. 
This is one of the few Smalltalk syntax element

In Smalltalk, objects are manipulated via implicit pointer: ev
care to pointers to the same object

 

p1 := p2 := 0@100

p1 x: 100

p1 

 

PrIt->

 

 100@100

p2 

 

PrIt->

 

 100@100



Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

U 3.68

od.

ble: 

s”
 

niversität Bern Ducasse Stéphane

 

Method Arguments

 

- Can be accessed by the expressions composing the meth
- Exist during the execution of the defining method.

- Method Name

 

accept: aPacket

 

In C++, Java: 

 

void Printer::accept(aPacket Packet)

 

- But their values cannot be reassigned within the method.
Invalid Example, assuming 

 

contents 

 

is an instance varia

 

contents: aString

aString := aString, 'From Lpr'. “, concatenate string

   addresse := aString 

 

Valid Example

 

addressee: aString

addressee := aString , 'From Lpr'



Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

U 3.69

 a class like in C++).
 and its subclasses.
 

niversität Bern Ducasse Stéphane

 

Instance Variables

 

- Private to a particular instance (not to all the instances of
- Can be accessed by all the methods of the defining class
- Has the same lifetime that the object. 

Declaration

 

Object subclass: #Node

instanceVariableNames: 'name nextNode '

...

 

Scope

 

Node>>setName: aSymbol nextNode: aNode

name := aSymbol. 

nextNode := aNode

 But preferably accessed with accessors 

Node>>name

^name 



Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

U 3.70

 but cannot change their 

 instance of the class 

False the class representing it. 
 

niversität Bern Ducasse Stéphane

 

Six pseudo-variables (i)

 

Smalltalk expressions make references to these variables,
value. They are hardwired in the compiler. 

- 

 

nil

 

  (nothing) value for the uninitialized variables. Unique

 

UndefinedObject

 

- 

 

true

 

 unique instance of the class 

 

True

 

- 

 

false

 

 unique instance of the class 

 

False

 

Hints: Do you use 

 

False

 

 instead of 

 

false

 

. false is the boolean value, 
So

False 

ifFalse: [Transcript show: ‘False’]

produces an error, but

false 

ifFalse: [Transcript show: ‘False’]

works 



Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

U 3.71

.
age.
e message but its semantics 
 of the class in which the 
s of the receiver (see method 

st behave like a normal node"

 that represents the context 
 to VisualWorks.
niversität Bern Ducasse Stéphane

Six pseudo-variables (ii)
The following variables can only be used in a method body
- self in the method body refers to the receiver  of a mess
- super in the method body refers also to the receiver  of th
affects the lookup of the method. It starts in the superclass
method where the super was used and NOT the superclas
lookup semantics)

PrinterServer>>accept: thePacket

"If the packet is addressed to me, print it. Else ju

(thePacket isAddressedTo: self)

ifTrue: [self print: thePacket] 

ifFalse: [super accept: thePacket]

- thisContext refers to the instance of MethodContext
of a method (receiver, sender, method, pc, stack). Specific



Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

U 3.72

Dictionary)

riable (if shared within an 

essible from the compiler)
niversität Bern Ducasse Stéphane

Global Variables
• Capitalized

MyGlobal := 3.14

Smalltalk will ask you if you want to create a new global
Smalltalk at: #MyGlobal put: 3.14

MyGlobal PrIt-> 3.14

Smalltalk at: #MyGlobal PrIt-> 3.14

• Store in the default environment: Smalltalk (aSystem
• Accessible from everywhere
• Usually not really a good idea to use them, use a classVa
hierarchy or a instance variable of a class)
• To remove a global variable:

Smalltalk removeKey: #MyGlobal

• Some predefined global variables:
Smalltalk (classes + globals)

Undeclared (aPoolDictionary of undeclared variables acc

Transcript (System transcript) 

ScheduledControllers (window controllers)

Processor (a ProcessScheduler list of all the process)



Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

U 3.73

de3 lpr)

ll evaluated (2+3)
niversität Bern Ducasse Stéphane

Three Kinds of Messages
Unary

2.4 inspect

macNode name

Binary       
1 + 2 -> 3

(1 + 2) * (2 + 3) PrIt-> 15

3 * 5 PrIt-> 15

Keyword based   
6 gcd: 24 PrIt-> 6

pcNode nextNode: node2

aLan connectNodesFromAddresses: #(mac node1 pc node2 no

Message composed by : 
  - a receiver always evaluated (1+2) 
   - a selector never evaluated
   - and a list possibly empty of arguments that are a
The receiver is linked with self in a method body.



Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

U 3.74
niversität Bern Ducasse Stéphane

Unary Messages

aReceiver aSelector

node3 nextNode -> printerNode

node3 name -> #node3

1 class PrIt-> SmallInteger

false not PrIt-> true

Date today PrIt-> Date today September 19, 1997

Time now PrIt-> 1:22:20 pm

Double pi PrIt-> 3.1415926535898d



Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

U 3.75

nt 
niversität Bern Ducasse Stéphane

Binary Messages
aReceiver aSelector anArgume

Binary messages:
   - arithmetic, comparison and logical operations
   - one or two characters long taken from

   + - / \ * ~ < > = @ % | & ! ? ,

   

   1 + 2   2 >= 3  100@100     'the', 'best'

Restriction: 
   - second character is never $-
   - no mathematical precedence so take care

3 + 2 * 10 -> 50

3 + (2 * 10) -> 23



Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

U 3.76

rgument2 ...
ment2, type2) : return-type

ter' to:  #lw100

node3) ofKind: Node
niversität Bern Ducasse Stéphane

Keyword Messages
receiver keyword1: argument1 keyword2: a

In C-like languages: receiver keyword1keyword2...(argument1 type1, argu

Workstation withName: #Mac2

mac nextNode: node1

Packet send:  'This packet travelled around to the prin

aLan createAndDeclareNodesFromAddresses: #(node1 node2 

1@1 setX: 3

#(1 2 3) at: 2 put: 25

1 to: 10 -> (1 to: 10) anInterval

Browser newOnClass: Point

Interval from:1 to: 20 PrIt-> (1 to: 20)

12 between: 10 and: 20 PrIt-> true

x > 0 ifTrue:['positive'] ifFalse:['negative'] 



Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

U 3.77

 precedence order is fine. 

nce than ifTrue:, so it should be eval-

does not exist.
niversität Bern Ducasse Stéphane

Composition
69 class inspect

(0@0 extent: 100@100) bottomRight

Precedence Rules:

– (E) > Unary-E > Binary-E > Keywords-E

– at same level, from the left to the right
2 + 3 squared -> 11

2 raisedTo: 3 + 2 -> 32

#(1 2 3) at: 1+1 put: 10 + 2 * 3 ->  #(1 36 3)

Hints: Use () when two keyword based messages are consequent, else the
x isNil 

ifTrue: [...]

isNil is an unary message, so it is evaluated prior to ifTrue:

(x includes: 3)

ifTrue: [...]

includes: is a keyword based message, it has the same precede

uated prior to ifTrue: because the method includes:ifTrue: 



Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

U 3.78
niversität Bern Ducasse Stéphane

Sequence
message1.
message2.
message3

. is a separator not a terminator

|macNode pcNode node1 printerNode node2 node3 packet|

"nodes definition"

macNode := Workstation withName: #mac.

pcNode := Workstation withName: #pc.

node1 := Node withName: #node1.

node2 := Node withName: #node2.

node3 := Node withName: #node2.

Transcript cr.

Transcript show: 1 printString.

Transcript cr.

Transcript show: 2 printString



Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

U 3.79

rg] ; ... 

essages composing the 
ed into the cascade. 

e

station and nextNode: too.

d in a cascade is the first 
 the result of the parenthesed 
ction
niversität Bern Ducasse Stéphane

Cascade
receiver selector1 [arg] ; selector2 [a

Transcript show: 1 printString. Transcript show: cr

Is equivalent to: 
Transcript show: 1 printString ; cr 

Important: the semantics of the cascade is to send all the m
cascade to the receiver of the FIRST message being involv
Examples: 

|workst|

workst := Workstation new.

workst name: #mac .

workst nextNode: aNode

Is equivalent to: Workstation new name: #mac ; nextNode: aNod

Where name: is sent to the newly created instance of work

In the following example the FIRST message being involve
#add: and not #with:. So all the messages will be sent to
expression the newly created instance anOrderedColle

(OrderedCollection with: 1) add: 25; add: 35



Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

U 3.80

> 35

ewObject."

scade. 
niversität Bern Ducasse Stéphane

yourself
One problem: (OrderedCollection with: 1) add: 25; add: 35 PrIt-

Returns 35 and not the collection!

Let us analyze a bit: 
OrderedCollection>>add: newObject 

"Include newObject as one of the receiver's elements.  Answer n

^self addLast: newObject

OrderedCollection>>addLast: newObject 

"Add newObject to the end of the receiver.  Answer newObject."

lastIndex = self basicSize ifTrue: [self makeRoomAtLast].

lastIndex := lastIndex + 1.

self basicAt: lastIndex put: newObject.

^newObject

How can we reference the receiver of the cascade? 

By using yourself: yourself returns the receiver of the ca
(OrderedCollection with: 1) add: 25; add: 35 ; yourself

-> OrderedCollection(1 25 35)



Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

U 3.81

ourself ?

elf 

wly created instance and not 
d is linked to this instance 

 

what is the code of yourself? 
niversität Bern Ducasse Stéphane

Have You Really Understood Y

Yourself returns the receiver of the cascade:
Workstation new name: #mac ; nextNode: aNode ; yours

Here the receiver of the cascade is aWorkstation the ne
the class Workstation. self of the yourself metho
(aWorkstation)

In
(OrderedCollection with: 1) add: 25; add: 35 ; yourself

anOrderedCollection(1) = self

So if you are that sure that you really understand yourself, 
Answer: 

Object>>yourself

   ^ self



Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

U 3.82

ock
nctions or procedure
niversität Bern Ducasse Stéphane

Block (i): Definition
• A deferred sequence of actions
• Return values is the result of the last expression of the bl
• = Lisp Lambda-Expression, ~ C functions, anonymous fu

[ :variable1 :variable2 | 
| blockTemporary1 blockTemporary2 |
 expression1.
 ...variable1 ...
]

Two blocks without arguments and temporary variables 
PrinterServer>>accept: thePacket

(thePacket isAddressedTo: self)

ifTrue: [self print: thePacket] 

ifFalse: [super accept: thePacket]

A block with one argument and no temporary variable
NetworkManager>>findNodeWithAddress: aSymbol 

“return the first node having the address aSymbol”

^self detectNode: [:aNode| aNode name = aSymbol] ifNone: [nil]



Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

U 3.83

t if there is an explicit return ^

ment, stored into variables...
niversität Bern Ducasse Stéphane

Block (ii): Evaluation
[....] value

or value:

or value:value:

or value:value:value:

or valueWithArguments: anArray

The value of a block is the value of its last statement, excep

Blocks are first class objects, they are created, pass as argu
fct(x) = x ^ 2 + x 
fct (2) = 6
fct (20) = 420 

|fct|

fct:= [:x | x * x + x].

fct value: 2 PrIt-> 6

fct value: 20 PrIt-> 420 

fct PrIt-> aBlockClosure



Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

U 3.84

r to variables that are 
niversität Bern Ducasse Stéphane

Block (iii)

|index bloc |

index := 0.

bloc := [index := index +1].

index := 3.

bloc value -> 4

Integer>>factorial

"Answer the factorial of the receiver. Fail if the 

receiver is less than 0. "

   | tmp |

   ....

   tmp := 1.

   2 to: self do: [:i | tmp := tmp * i].

   ^tmp

For performance reason avoid as much as possible to refe
outside a block.



Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

U 3.85

ose y value is the argument."

ame object (have the same
he message == in any

t:
niversität Bern Ducasse Stéphane

Primitives
For optimization, if the primitive fails the code is executed.
Integer>>@ y

"Answer a new Point whose x value is the receiver and wh

<primitive: 18>
^Point x: self y: y

World limits!
== anObject

"Answer true if the receiver and the argument are the s
object pointer) and false otherwise.  Do not redefine t
other class!  No Lookup."

<primitive: 110>
self primitiveFailed

+ - < >* / = == bitShift:\\ bitAnd: bitOr: >= <= at: at:pu
new new: 



Object-Oriented Design with Smalltalk a Pure OO Language Syntax and Messages

U 3.86

d type in some expressions, 
niversität Bern Ducasse Stéphane

What You Should Know

- Syntax 
- Basic objects
- Message constituants
- Message semantics
- Message precedence
- Block definition
- Block use
- yourself semantics
- pseudo-variables

To know all that, the best thing to do is to take a Smalltalk an
to look at the return expressions



Smalltalk a Pure OO Language Dealing with Classes

U 4.87
niversität Bern Ducasse Stéphane

6. Dealing with Classes

- Class definition
- Method definition
- Inheritance semantics
- Basic class instanciation



Smalltalk a Pure OO Language Dealing with Classes

U 4.88

et

r '
niversität Bern Ducasse Stéphane

Class Definition: The Class Pack

A template is proposed by the browser:
NameOfSuperclass subclass: #NameOfClass

   instanceVariableNames: 'instVarName1 instVarName2'

   classVariableNames: 'ClassVarName1 ClassVarName2'

   poolDictionaries: ''

   category: 'CategoryName'

Example:
Object subclass: #Packet

instanceVariableNames: 'contents addressee originato

classVariableNames: ''

poolDictionaries: ''

category: 'LAN-Simulation'

Automatically a class named “Packet class” is created.
Packet is the unique instance of Packet class. 
(To see it click on the class button in the browser)



Smalltalk a Pure OO Language Dealing with Classes

U 4.89

r '

)
classes (instance methods)
ods.
 like in C++
niversität Bern Ducasse Stéphane

Named Instance Variables
NameOfSuperclass subclass: #NameOfClass

   instanceVariableNames: 'instVarName1 instVarName2'

       ...

Object subclass: #Packet

instanceVariableNames: 'contents addressee originato

...

• Begins with a lowercase letter
• Explicitly declared: a list of instance variables
• Name should be unique / inheritance  
• Default value of instance variable is nil

• Private to the instance: instance based (C++ class-based
• Can be accessed by all the methods of the class and sub
• But instance variables cannot be accessed by class meth
• A client cannot directly access to iv. No private, protected
• Need accessor methods to access instance variable.



Smalltalk a Pure OO Language Dealing with Classes

U 4.90

ssage to self
niversität Bern Ducasse Stéphane

Method Definition
Follow the template:

message selector and argument names

"comment stating purpose of message"

| temporary variable names |

statements

For example: 
Packet>>defaultContents

“returns the default contents of a Packet”

^ ‘contents no specified’

Workstation>>originate: aPacket

aPacket originator: self.

self send: aPacket

How to invoke a method on the same object? Send the me
Packet>>isAddressedTo: aNode

“returns true if I’m addressed to the node aNode”

^ self addressee = aNode name



Smalltalk a Pure OO Language Dealing with Classes

U 4.91

class methods. This way classes will 
niversität Bern Ducasse Stéphane

Accessing Instance Variables
Using direct access for the methods of the class 

Packet>>isSentBy: aNode

^ originator = aNode

is equivalent to use accessors
Packet>>originator

^ originator

Packet>>isSentBy: aNode

^ self originator = aNode

Some accessors for the class Packet
Packet>>addressee

^ addressee

Packet>>addressee: aSymbol

addressee := aSymbol

Hints: Do not directly access instance variables of a superclass from the sub
not be strongly linked at the structure level.



Smalltalk a Pure OO Language Dealing with Classes

U 4.92
niversität Bern Ducasse Stéphane

Lazy Initialization
When some instance variables are

- not used all the time
- consuming a lot of space
- need a lot of computation 
-> Use lazy initialization based on accessors

A lazy initialization schema with default value
Packet>>contents

contents isNil

ifTrue: [contents := ‘no contents’]

^ contents

A lazy initialization schema with computed value
Dummy>>ratioBetweenThermonuclearAndSolar

ratio isNil

ifTrue: [ratio := self heavyComputation]

^ ratio



Smalltalk a Pure OO Language Dealing with Classes

U 4.93

e

e expression as the result of 

havior"

havior"

havior"
niversität Bern Ducasse Stéphane

Methods always Return a Valu
• Message = effect + return value
• By default, a method returns self
• In a method body, the ^ expression returns the value of th
the method execution.

Node>>accept: thePacket

"Having received the packet, send it on. This is the default be

self send: thePacket

is equivalent to: 
Node>>accept: thePacket

"Having received the packet, send it on. This is the default be

self send: thePacket.

^self 

If we want to return the value returned by #send:
Node>>accept: thePacket

"Having received the packet, send it on. This is the default be

^self send: thePacket.



Smalltalk a Pure OO Language Dealing with Classes

U 4.94

openOn:

ble

ethod with is or has
niversität Bern Ducasse Stéphane

Some Naming Conventions
• Shared variables begin with an upper case letter
• Private variables begin with a lower case letter
• Use imperative verbs for methods performing action like #

For accessor, use the same name as for the instance varia
addressee

^ addressee 

addressee: aSymbol

addressee := aSymbol

• For predicate methods (returning a boolean) prefix the m
      isNil, isAddressedTo:, isSentBy:

• For converting methods prefix the method with as
       asString



Smalltalk a Pure OO Language Dealing with Classes

U 4.95

om the superclasses and the 

 depending of the dynamic 
niversität Bern Ducasse Stéphane

Inheritance in Smalltalk
• Single inheritance

• Static for the instance variables.
At class creation time the instance variables are collected fr
class. No repetition of instance variables.

• Dynamic for the methods.
Late binding (all virtual) methods are looked up at run-time
type of the receiver.



Smalltalk a Pure OO Language Dealing with Classes

U 4.96

aPacket node1

nodePrinter

et
niversität Bern Ducasse Stéphane

Remember...

Node

WorkstationPrinter

name
accept: aPacket
send: aPacket
hasNextNode

originate: aPacket
accept: aPacket

print: aPacket
accept: aPacket

nextNode

accept: aPacket

send: aPacket

nodePrinter

isAddressedTo: 

accept: aPack

print: aPacket

[true]

[false]



Smalltalk a Pure OO Language Dealing with Classes

U 4.97

havior subclasses 

node"
niversität Bern Ducasse Stéphane

Node
Object subclass: #Node

instanceVariableNames: 'name nextNode '

...

Node methodsFor: ‘accessing’ ....

Node methodsFor: ‘printing’ ....

Node methodsFor: ‘send-receive’

accept: aPacket 

"Having received the packet, send it on. This is the default be

will probably override me to do something special"

self hasNextNode 

ifTrue: [self send: aPacket]

send: aPacket

"Precondition: there is a next node. Send a packet to the next 

self nextNode accept: aPacket



Smalltalk a Pure OO Language Dealing with Classes

U 4.98

it just prints some trace in the

station ', self name asString]
niversität Bern Ducasse Stéphane

Workstation
Node subclass: #Workstation

instanceVariableNames: ''

...

Node methodsFor: ‘printing’ ....

Node methodsFor: ‘send-receive’

accept: aPacket

“when a workstation accepts a packet that is addressed to it, 
transcript”

(aPacket isAddressedTo: self)

ifTrue:[ Transcript show: 'A packet  is accepted by the Work

ifFalse: [super accept: aPacket]

Node methodsFor: ‘send-receive’

originate: aPacket

aPacket originator: self.

self send: aPacket



Smalltalk a Pure OO Language Dealing with Classes

U 4.99

okup

e receiver and the args

od corresponding to the 

d.

er's class.
ss to explore (class Object),
s sent to the receiver, 
niversität Bern Ducasse Stéphane

Message Sending & Method Lo
sending a message: receiver selector args  <=>
applying a method looked up associated with selector to th

Looking up a method: 
When a message (receiver selector args) is sent, the meth
message selector is looked up through inheritance chain.

=>  the lookup starts in the class of the receiver.
If the method is defined in the class dictionary, it is returne

Else the search continues in the superclasses of the receiv
If no method is found and that there is no supercla
a new method called #doesNotUnderstand: i
with a representation of the initial message.



Smalltalk a Pure OO Language Dealing with Classes

U 4.100

et

f Node
n the class Node
 Node => lookup stops + 

cket

 of Workstation

thod executed

ntinues in Node
 executed
niversität Bern Ducasse Stéphane

Method Lookup Examples (i)
node1 accept: aPack

1. node1 is an instance o
2.accept: is looked up i
3. accept: is defined in
method executed

macNode accept: aPa

1.macNode is an instance
2. accept: is looked up in the class Workstation
3. accept: is defined in Node => lookup stops + me

macNode name

1. macNode is an instance of Workstation. 
2. name: is looked up in the class Workstation
3. name is not defined in Workstation => lookup co
4. name is defined in Node => lookup stops + method

Node

WorkstationPrinter

name
accept: aPacket
send: aPacket
hasNextNode

originate: aPacket
accept: aPacket

print: aPacket
accept: aPacket

nextNode



Smalltalk a Pure OO Language Dealing with Classes

U 4.101

s in Object
xception
int aPacket) is executed 
stand: is looked up in the 

 lookup continues in Object
ookup stops + method 
niversität Bern Ducasse Stéphane

Method Lookup Examples (ii)
node1 print: aPacket

1. node is an instance of Node
2. print: is looked up in the class Node
3. print: is not defined in Node => lookup continue
4. print: is not defined in Node => lookup stops + e
5. message: node1 doesNotUnderstand: #(#pr
6. node1 is an instance of Node so doesNotUnder

class Node
7. doesNotUnderstand: is not defined in Node =>
8. doesNotUnderstand: is defined in Object => l

executed (open a dialog box)



Smalltalk a Pure OO Language Dealing with Classes

U 4.102

5

6

esNotUnderstand:

doesNotUnderstand:
niversität Bern Ducasse Stéphane

Method Lookup Examples (ii)

#node1

Node

Object

name
accept: aPacket
send: aPacket
hasNextNode

doesNotUnderstand: aMessage

print:

node1 print: aPacket

node1 print: aPacket

1

2

3

print:

1

4

do



Smalltalk a Pure OO Language Dealing with Classes

U 4.103

ods?

ant pass the packet to the 
ode. 

it just prints some trace in the

tation ', self name asString]

nal one. It introduces implicit 
niversität Bern Ducasse Stéphane

How to Invoke Overriden Meth
Send messages to super

When a packet is not addressed to a workstation, we just w
next node i.e. to perform the default behavior defined by N

Workstation>>accept: aPacket

“when a workstation accepts a packet that is addressed to it, 
transcript”

(aPacket isAddressedTo: self)

ifTrue:[Transcript show: 'A packet  is accepted by the Works

ifFalse: [super accept: aPacket]

Hints: Do not send messages to super with different selectors than the origi
dependency between methods with different names. 



Smalltalk a Pure OO Language Dealing with Classes

U 4.104

ceiver of the message.

 class of the receiver .

e superclass of the class of 
e superclass of the receiver 

he superclass of the class of 
niversität Bern Ducasse Stéphane

Semantics of super
• As self, super is a pseudo-variable that refers to the re
• Used to invoke overriden methods.

• When using self the lookup of the method begins in the

• When using super the lookup of the method begins in th
the method containing the super expression and NOT in th
class. 
Other said: 
• super causes the method lookup to begin searching in t
the method containing super



Smalltalk a Pure OO Language Dealing with Classes

U 4.105

Let us be Absurb!
Let us suppose the WRONG hypothesis: 
"IF super semantics = starting the lookup of method in the 
superclass of the receiver class"
agate accept: aPacket

1. agate is an instance of DuplexWorkstation

up 

 

 the 
 = 

Node

Workstation

accept: aPacket

accept: aPacket

DuplexWorkstation

agate

<<instance of >>

super accept: aPacket
niversität Bern Ducasse Stéphane

accept: is looked up in the class DuplexWorkstation

2. accept: is not defined in DuplexWorkstation => look
continues in Workstation

3. accept: is defined in Workstation => lookup stops +
method executed

4. Workstation>>accept: does a super accept:
5. By Hypothesis: super = lookup in the superclass of

receiver class. The superclass of the receiver class
Workstation

=> That's loop
So Hypothesis is WRONG !!



Smalltalk a Pure OO Language Dealing with Classes

U 4.106
niversität Bern Ducasse Stéphane

Object Instantiation
Objects can be created by: 

- Direct Instance creation: (basic)new/new:
- Messages to instances that create other objects
- Class specific instantiation messages



Smalltalk a Pure OO Language Dealing with Classes

U 4.107

c)new/new:

IALIZED instance

tance (indexed variable)

ation

ds
niversität Bern Ducasse Stéphane

Direct Instance Creation: (basi

• aClass new/basicNew => returns a newly and UNINIT

OrderedCollection new -> OrderedCollection ()

Packet new -> aPacket

Packet new addressee: #mac ; contents: ‘hello mac’

Instance variable values = nil 
• #new:/basicNew: to specify the size of the created ins

    Array new: 4 -> #(nil nil nil nil)

• #new/#new: can be specialized ot have a customized cre

• #basicNew/#basicNew: should never be overriden

• #new/basicNew and new:/basicNew: are class metho



Smalltalk a Pure OO Language Dealing with Classes

U 4.108

ate Objects
niversität Bern Ducasse Stéphane

Messages to Instances that Cre
1 to: 6             (an interval)

1@2                            (a point)

(0@0) extent: (100@100)        (a rectangle)

#lulu asString                 (a string)

1 printString                  (a string)

3 asFloat                      (a float)

#(23 2 3 4) asSortedCollection (a sortedCollection)



Smalltalk a Pure OO Language Dealing with Classes

U 4.109

with

."

ver."

lue is the argument."
niversität Bern Ducasse Stéphane

Opening the Box
1 to: 6 -> an Interval

Number>>to: stop

   "Answer an Interval from the receiver up to the argument, stop, 

   each next element computed by incrementing the previous one by 1

^Interval from: self to: stop by: 1

1 printString -> aString

Object>>printString

   "Answer a String whose characters are a description of the recei

| aStream |

aStream := WriteStream on: (String new: 16).

self printOn: aStream.

^aStream contents

1@2 -> aPoint

Number>>@ y

   "Answer a new Point whose x value is the receiver and whose y va

<primitive: 18>

^Point x: self y: y



Smalltalk a Pure OO Language Dealing with Classes

U 4.110

sages
niversität Bern Ducasse Stéphane

Class specific Instantiation Mes
Array with: 1 with: 'lulu'

OrderedCollection with: 1 with:  2 with:  3 

Rectangle fromUser -> 179@95 corner: 409@219

Browser browseAllImplementorsOf: #at:put:

Packet send: ‘Hello mac’ to: #mac

Workstation withName: #mac



Smalltalk a Pure OO Language Dealing with Classes

U 4.111
niversität Bern Ducasse Stéphane

What you should know

• Defining a class
• Defining methods
• Semantics of self 
• Semantics of super
• Instance creation



Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 5.112

nd Loops

an 80 classes:
ortedCollection, Set, 
niversität Bern Ducasse Stéphane

7. Basic Objects, Conditional a
- Booleans 
- Basic loops
- Overview of Collection the superclass of more th

(Bag, Array, OrderedCollection, S
Dictionary...)

- Loops and Iteration abstractions
- Common object behavior



Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 5.113

ean, True and False
ion at compile time)

lock

n is true
 is false
ror

 its unique instance! 
e is sent: the receiver and the argu-
 to evaluate both branchs.
niversität Bern Ducasse Stéphane

Boolean Objects
- false and true are objects described by classes Bool

- uniform but optimized and inlined (macro expans
- Logical Comparisons &, |, xor:, not

aBooleanExpression comparison anotherBooleanExpression
(1 isZero) & false

- Lazy Logical operators
  aBooleanExpression and: andBlock, aBooleanExpression or: orB

     andBlock will only be valued if aBooleanExpressio
orBlock will only be valued if aBooleanExpression

   false and: [1 error: 'crazy'] PrIt-> false and not an er

- Conditionals
aBoolean ifTrue: aTrueBlock ifFalse: aFalseBlock 
aBoolean ifFalse: aTrueBlock ifTrue: aFalseBlock
aBoolean ifTrue: aTrueBlock
aBoolean ifFalse: aFalseBlock

1 < 2 ifTrue: [...] ifFalse: [...]
1 < 2 ifFalse: [...] ifTrue: [...]
1 < 2 ifTrue: [...]
1 < 2 ifFalse: [...]

Hints: Take care true is the boolean value and True is the class of true
Hints: Why conditional expressions use blocks? Because, when a messag
ments of the message are evaluated. So block uses are necessary to avoid



Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 5.114

 cr]
niversität Bern Ducasse Stéphane

Some Basic Loops
aBlockTest whileTrue

aBlockTest whileFalse

aBlockTest whileTrue: aBlockBody

aBlockTest whileFalse: aBlockBody

anInteger timesRepeat: aBlockBody

[x<y] whileTrue: [x := x + 3]

10 timesRepeat: [ Transcript show: 'hello';



Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 5.115

resented by the receiver."
niversität Bern Ducasse Stéphane

For the Curious!

BlockClosure>>whileTrue: aBlock

   ^ self value ifTrue: [aBlock value. 

           self whileTrue: aBlock]

BlockClosure>>whileTrue

   ^ [self value] whileTrue:[] 

Integer>>timesRepeat: aBlock 

"Evaluate the argument, aBlock, the number of times rep

   | count |

   count := 1.

   [count <= self] whileTrue: [aBlock value.

         count := count + 1]



Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 5.116

tial or key-based.
pe.
niversität Bern Ducasse Stéphane

Collections
• Only the most important
• Some criterias to identify them. Access: indexed, sequen
Size: fixed or dynamic. Element type: any or well-defined ty
Order: defined, defineable or no. Duplicate: possible or not
Sequenceable ordered

ArrayedCollection fixed size + key = integer
Array any kind of elements
CharacterArray elements = character

String
IntegerArray

Interval arithmetique progression
LinkedList dynamic chaining of the element
OrderedCollection size dynamic + arrival order 

SortedCollection explicit order
Bag possible duplicate + no order
Set no duplicate + no order

IdentitySet identification based on identity
Dictionary element = associations + key based

IdentityDictionary key based on identity



Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 5.117

Duplicates Allowed

Bag Set

onary

y n
niversität Bern Ducasse Stéphane

Another View

Keyed

Adds Allowed

Sorted

UniqueKey

Sorted

Ordered

Array
String

Identity Dicti

Integer Key

Dictionary

Collection

Collection

y

y

y

y

yn

n

n

n

n



Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 5.118

lasses
#at: anInteger put: 

tains: aBlock, 

nt ifAbsent: aBlock, 

ck, #reject: aBlock, 
k, #inject: avalue 

on, 
lection: aBlock

h:with:with:, 
on
niversität Bern Ducasse Stéphane

Collection Methods
Will be defined, redefined, optimized or forbiden  in subc
Accessing: #size, #capacity, #at: anInteger, 
anElement

Testing: #isEmpty, #includes: anElement, #con
occurencesOf: anElement

Adding: #add: anElement, #addAll: aCollection
Removing: #remove: anElement, #remove:anEleme
#removeAll: aCollection

Enumerating (See generic enumerating)
#do: aBlock, #collect: aBlock, #select: aBlo
#detect:, #detect: aBlock ifNone: aNoneBloc
into: aBinaryBlock

Converting: #asBag, #asSet, #asOrderedCollecti
#asSortedCollection, #asArray, #asSortedCol

Creation: #with: anElement, #with:with:, #wit
#with:with:with:with:, #with:All: aCollecti



Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 5.119

: anIndexCollection: 

Absent: aBlock

ent, copyWithout: 
niversität Bern Ducasse Stéphane

Sequenceable Specific (Array)
|arr|

arr := #(calvin hates suzie).

arr at: 2 put: #loves.

arr PrIt-> #(#calvin #loves #suzie)

Accessing: 
#first, #last, #atAllPut: anElement, #atAll
put: anElement

Searching (*: + ifAbsent:)
#indexOf: anElement, #indexOf: anElement if

Changing: 
#replaceAll: anElement with: anotherElement

Copying: 
#copyFrom: first to: last, copyWith: anElem
anElement



Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 5.120

ionary)

 aKey ifAbsentPut: 
es, #associations

: aBlock

aBlock, #keysDo: 
niversität Bern Ducasse Stéphane

KeyedCollection Specific (Dict
|dict|

dict := Dictionary new.

dict at: 'toto' put: 3.

dict at: 'titi' ifAbsent: [4]. -> 4

dict at: 'titi' put: 5.

dict removeKey: 'toto'.

dict keys -> Set ('titi')

Accessing: 
#at: aKey, #at: aKey ifAbsent: aBlock, #at:
aBlock, #at: aKey put: aValue, #keys, #valu

Removing: 
#removeKey: aKey, #removeKey: aKey ifAbsent

Testing: 
#includeKey: aKey

Enumerating:
#keysAndValuesDo: aBlock, #associationsDo: 
aBlock



Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 5.121

ach) abs].

 works well for indexable 
niversität Bern Ducasse Stéphane

Choose your Camp!
You could write: 

absolute: aCollection

|result|

result := aCollection species new: aCollection size.

1 to: aCollection size do: 

[ :each | result at: each put: (aCollection at: e

^ result

Sure! 
Or

absolute: aCollection

^ aCollection collect: [:each| each abs]

Really important: Contrary to the first solution, this solution
collection and also for sets. 



Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 5.122

ct:

k

: aBinaryBlock

ing ; cr ]
niversität Bern Ducasse Stéphane

Iteration Abstraction: do:/colle
aCollection do: aOneParameterBlock

aCollection collect: aOneParameterBloc

aCollection with: anotherCollection do

#(15 10 19 68) do:  

   [:i | Transcript show: i printString ; cr ]

#(15 10 19 68) collect: [:i | i odd ]

   PrIt-> #(true false true false)

#(1 2 3) with: #(10 20 30) 

do: [:x :y| Transcript show: (y ** x) printStr



Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 5.123

ject:/detect: 
ock

ock

rPredicateBlock

PredicateBlock 
niversität Bern Ducasse Stéphane

Iteration Abstraction: select:/re
aCollection select: aPredicateBl

aCollection reject: aPredicateBl

aCollection detect: aOneParamete

aCollection 

detect: aOneParameter

ifNone: aNoneBlock

#(15 10 19 68) select: [:i|i odd] -> #(15 19)

#(15 10 19 68) reject: [:i|i odd] ->  #(10 68)

#(12 10 19 68 21) detect: [:i|i odd] PrIt-> 19

#(12 10 12 68) detect: [:i|i odd] ifNone:[1] PrIt-> 1



Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 5.124

:

to: aBinaryBlock
niversität Bern Ducasse Stéphane

Iteration Abstraction: inject:into

aCollection inject: aStartValue in

|acc|

acc := 0.

#(1 2 3 4 5) do: [:element | acc := acc + element].

acc 

-> 15

#(1 2 3 4 5) 

   inject: 0 

   into: [:acc :element| acc + element]

-> 15



Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 5.125

k

isOdd] -> true
niversität Bern Ducasse Stéphane

Collection Abstraction

aCollection includes: anElement

aCollection size

aCollection isEmpty

aCollection contains: aBooleanBloc

#(1 2 3 4 5) includes: 4 -> true

#(1 2 3 4 5) size -> 5

#(1 2 3 4 5) isEmpty -> false

#(1 2 3 4 5) contains: [:each | each 



Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 5.126

ger

node2 node3) ofKind: Node

ses ofKind: aNodeClass 
he aNodeClass kind"

aNodeClass withName: each)]]
nodes']
niversität Bern Ducasse Stéphane

Examples of Use: NetworkMana
aLan findNodeWithAddress: #mac

NetworkManager>>findNodeWithAddress: aSymbol 

^self findNodeWithAddress: aSymbol ifNone: [nil]

NetworkManager>>findNodeWithAddress: aSymbol ifNone: aBlock

^nodes detect: [:aNode| aNode name = aSymbol] ifNone: aBlock

aLan createAndDeclareNodesFromAddresses: #(node1 

NetworkManager>>createAndDeclareNodesFromAddresses: anArrayOfAddres
"given a list of addresses, create the corresponding nodes of t

(Node withAllSubclasses includes: aNodeClass)
ifTrue: [anArrayOfAddresses do: [:each | self declareNode: (
ifFalse: [self error: aNodeClass name , ' is not a class of 



Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 5.127

cts in the system.

l, #notNil

th the receiver.
niversität Bern Ducasse Stéphane

Common Shared Behavior (i)
- Object is the root of inheritance tree.
- Defines the common and minimal behavior for all the obje

=> 161 instance methods + 19 class methods
- #class
- Comparison of objects: #==, #~~, #=, #=~, #isNi

- Copy of objects: #shallowCopy, #copy
    #shallowCopy : the copy shares instance variables wi
    default implementation of #copy is #shallowCopy

a a copy



Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 5.128

ash number)

true

e same 
s #==.

-> false

> true

too!
niversität Bern Ducasse Stéphane

Identity vs. Equality
= anObject

    returns true if the structures are equivalent (the same h

(Array with: 1 with: 2) = (Array with:1 with:2) PrIt-> 

== anObject

       returns true if the receiver and the argument point to th
       object. #== should never be overriden. On Object #= i
~= is not =,  ~~  is not == 

(Array with: 1 with: 2 ) == (Array with: 1 with:2) PrIt

(Array with: 1 with: 2 ) = (Array with: 1 with:2) PrIt-

Take care when redefining #= one should override #hash 



Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 5.129

Stream, 

0/5/1997'')'

-> 

self)'

his is not convenient

g
: 4; add: 3; yourself)' 
niversität Bern Ducasse Stéphane

Common Shared Behavior (ii)
Print and store objects: #printString, #printOn: a
                #storeString, #storeOn: aStream

#(123 1 2 3) printString -> '#(123 1 2 3)'

Date today printString -> 'October 5, 1997'

Date today storeString -> '(Date readFromString: ''1

OrderedCollection new add: 4 ; add: 3 ; storeString 

 '((OrderedCollection new) add: 4; add: 3; your

But you need to have the compiler so for deployed image t

Create instances from stored objects: class methods 
   readFrom: aStream, readFromString: aStrin

  Object readFromString:  '((OrderedCollection new) add

-> OrderedCollection (4 3)

Notifying the programmer: 
   #error: aString, #doesNotUnderstand: aMessage, 

   #halt, #shouldNotImplement, #subclassResponsibility

Examing Objects: #browse, #inspect



Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 5.130

avior

serted in a body of a method)

senting the object 

s an object equal to the 
niversität Bern Ducasse Stéphane

Essential Common Shared Beh
#class returns the class of the object

#inspect opens an inspector

#browse opens a browser

#halt  stops the execution and opens a debugger (to be in

#printString  (calls #printOn:) returns a string repre

#storeString returns a string whom evaluation recreate
receiver 
#readFromString: aStream recreates an object



Object-Oriented Design with Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 5.131

erpreter! Yes again!
niversität Bern Ducasse Stéphane

What you should know
- Boolean protocol 
- Collection protocol 
- Conditionals 
- Loops and Iteration Abstractions
- Common object protocol

But the best way to know that is to play with a Smalltalk int



Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.132
niversität Bern Ducasse Stéphane

8. Numbers



Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.133

ulo 30 \\ 9
niversität Bern Ducasse Stéphane

Basics on Number
• Arithemic

5 + 6, 5 - 6, 5 * 6, 

division 30 / 9, integer division 30 // 9 , mod
square root 9 sqrt, square 3 squared

• Rounding
3.8 ceiling -> 4

3.8 floor -> 3

3.811 roundTo: 0.01 -> 3.81

• Range 30 between: 5 and: 40

• Tests
3.8 isInteger

3.8 even, 3.8 odd

• Signs
positive, negative, sign, negated

• Other 
min:, max:, cos, ln, log, log: arcSin, exp, **



Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.134

ispatch (i)
e argument ?
r as an argument
niversität Bern Ducasse Stéphane

Deeper on Numbers: Double D
How to select a method depending on the receiver  AND th
Send a message back to the argument passing the receive

Example: Coercion between Float and Integer

A not really good solution: 
Integer>>+ aNumber

(aNumber isKindOf: Float)
ifTrue: [ aNumber asFloat + self]
ifFalse: [ self addPrimitive: aNumber]

Float>>+ aNumber
(aNumber isKindOf: Integer)

ifTrue: [aNumber asFloat + self]
ifFalse: [self addPrimitive: aNumber]



Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.135

ispatch (ii)
nteger>>sumFromInteger: anInteger
<primitive: 40>

loat>>sumFromInteger: anInteger
^ anInteger asFloat + self 

nteger>>sumFromFloat: aFloat
^aFloat + self asFloat

loat>>sumFromFloat: aFloat
<primitive: 41>
niversität Bern Ducasse Stéphane

Deeper on Numbers: Double D
(c) I

(d) F

(a) Integer>>+ aNumber
^ aNumber sumFromInteger: self 

(b)  Float>>+ aNumber
^ aNumber sumFromFloat: self 

(e) I

(f) F

Some Tests: 
1 + 1: (a->c)
1.0 + 1.0: (b->f)
1 + 1.0: (a->d->b->f)
1.0 + 1: (b->e->b->f)



Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.136

 & Generality
e same kind of Number 

e generality hierarchy.  A number 
with larger generality numbers)."
niversität Bern Ducasse Stéphane

Deeper on Numbers: Coercion
ArithmeticValue>>coerce: aNumber 

"Answer a number representing the argument, aNumber, that is th
as the receiver.  Must be defined by all Number classes."

^self subclassResponsibility

ArithmicValue>>generality
"Answer the number representing the ordering of the receiver in th
in this hierarchy coerces to numbers higher in hierarchy (i.e., 

^self subclassResponsibility

Integer>>coerce: aNumber
"Convert a number to a compatible form"

^aNumber asInteger

Integer>>generality
^40

Generality
SmallInteger 20
Integer 40
Fraction 60
FixedPoint 70
Float 80
Double 90



Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.137

rcing:

ue."

formed with the receiver and the 
.  Coerce either the receiver or 
gain. If the generalities are the 
otification is provided."

ber].

].
niversität Bern Ducasse Stéphane

Deeper on Numbers: #retry:coe

ArithmeticValue>>sumFromInteger: anInteger
"The argument anInteger, known to be a kind of integer, 
encountered a problem on addition. Retry by coercing either 
anInteger or self, whichever is the less general arithmetic val
Transcript show: 'here arthmeticValue>>sunFromInteger' ;cr. 
^anInteger retry: #+ coercing: self

ArithmeticValue>>retry: aSymbol coercing: aNumber 
"Arithmetic represented by the symbol, aSymbol, could not be per
argument, aNumber, because of the differences in representation
the argument, depending on which has higher generality, and try a
same, then this message should not have been sent so an error n

self generality < aNumber generality
ifTrue: [^(aNumber coerce: self) perform: aSymbol with: aNum

self generality > aNumber generality
ifTrue: [^self perform: aSymbol with: (self coerce: aNumber)

self error: 'coercion attempt failed'



Object-Oriented Design with Smalltalk a Pure OO Language 

U 1.138

ned exceptions

 occurs
tion
niversität Bern Ducasse Stéphane

9. Exceptions
Normalised in the ANSI available since VW3.0

Exception is the root of the exception hierarchy: 84 predefi
Two most important are:

❑ Error
❑ Notification 

Specialised into predefined exceptions
Subclass to create your own exceptions

Some methods of exception: 
defaultAction is executed when an exception
description string describing the actual excep
resume:

return:



Object-Oriented Design with Smalltalk a Pure OO Language 

U 1.139

Default Action 

Open a Notifier

Inherited from Error

Inherited from Error

Do nothing continuing 
executing

Display Yes/No dialog and 
return a boolean value t the 
signaler

Inherited from 
ArithmeticError
niversität Bern Ducasse Stéphane

Main Exceptions
Exception class Exceptional Event

Error Any program error

ArithmeticError Any error evaluating an 
arithmetic 

MessageNotUnderstood A message was sent to an 
object that did not define a 
corresponding method

Notification Any unusual event that does 
not impair continued 
execution of the program

Warning An ususal event that the 
user should be informed 
about

ZeroDivide



Object-Oriented Design with Smalltalk a Pure OO Language 

U 1.140

iption, cr.

 block 

]

the handler block in place of 

 inside the handler block
niversität Bern Ducasse Stéphane

Basic Example of Catching
|x y| 

x := 7. y := 0.

[x/y] 

on: ZeroDivide

do: [:exception| Transcript show: exception descr

0....]

an Exception Handler 
is defined using on:do:
is composed by an exception class and a handler

ZeroDivide 

[:theException| Transcript show: ‘ division by zero’

An Exception Handler completes by returning the value of 
the value of the protected block (here [x/y]).
We can exit the current method by putting an explicit return



Object-Oriented Design with Smalltalk a Pure OO Language 

U 1.141

rning.
niversität Bern Ducasse Stéphane

Exception Sets

[do some work]

on: ZeroDivide, Warning

do: [ : ex| what you want]

Or
|exceptionSets|

exceptionSets := ExceptionSet with: ZeroDivide with: Wa

[do some work]

on: exceptionSets

do: [ : ex| what you want]



Object-Oriented Design with Smalltalk a Pure OO Language 

U 1.142

asking description to the ex-
niversität Bern Ducasse Stéphane

Signaling Exception

Error raiseSignal

Warning raiseSignal: ‘description that you will get by 
ception’



Object-Oriented Design with Smalltalk a Pure OO Language 

U 1.143

ed list of active handlers.

he beginning of the list

 message to the first handler 

xt one is asked
fault action is performed
niversität Bern Ducasse Stéphane

Exception Environment
Each process has its own exception environment: an order

❑ Process starts => list empty
❑ [aaaa] on: Error do: [bbb] => Error,bbb added at t

❑ When an exception is signaled the system sends a
of the exception handler. 

❑ If the handler cannot handle the exception, the ne
❑ If no handler can handle the exception then the de



Object-Oriented Design with Smalltalk a Pure OO Language 

U 1.144

le
 of the block.
y the handler block. 

ock’]

 then the context is restored
niversität Bern Ducasse Stéphane

Resumable and Non-Resumab
A handler block completes by executing the last statement
The value of the last statement is then the value returned b
Where this value should be returned depends 

❑ Nonresumable: like Error
([Error raiseSignal. ‘Value from protected block’]

on: Error

do: [:ex|ex return: ‘Value from handler’])

gives ‘Value from handler’
❑ Resumable: like Warning, Notification
([Notification raiseSignal. ‘Value from protected bl

on: Notification

do: [:ex|ex resume: ‘Value from handler’])

gives ‘Value from protected block’
Here Notification raiseSignal raises an exception,
and the value normally returned



Object-Oriented Design with Smalltalk a Pure OO Language 

U 1.145
niversität Bern Ducasse Stéphane

Resume:/Return:
Transcript show: 

([Notification raiseSignal. 'Value from protected block']
on: Notification
do: [:ex| Transcript show: 'Entering handler '.
'Value from handler'. '5'])

-> Entering handler 5

Transcript show: 
([Notification raiseSignal. 'Value from protected block']

on: Notification
do: [:ex| Transcript show: 'Entering handler '.
ex resume: 'Value from handler'. '5']) 

-> Entering handler Value from protected block

Transcript show: 
([Notification raiseSignal. 'Value from protected block']

on: Notification
do: [:ex| Transcript show: 'Entering handler '.
ex return: 'Value from handler'. '5'])

-> Entering handler Value from handler



Object-Oriented Design with Smalltalk a Pure OO Language 

U 1.146

able and returns on 

sing the protected block, 
e exception. 
ted block that triggered the 

he protected block
r one
t outer handler, control does 

 outer handler resumes 
n value, instead of the value 
niversität Bern Ducasse Stéphane

Exiting Handlers Explicity
❑ exit or exit: (VW specific) Resumes on resum

nonresumable exception
❑ resume or resume:Attempts to continue proces

immeditely following the message that triggered th
❑ return or return: ends processing the protec

exception
❑ retry re-evaluates the protected block
❑ retryUsing:evaluates a new block in place of t
❑ resignalAs: resignal the exception as anothe
❑ pass exit the current handler and pass to the nex

not return to the passer 
❑ outer as in pass, except will regain control if the

exit:, resume: and return: return their argument as the retur
of the final statement of the handler block



Object-Oriented Design with Smalltalk a Pure OO Language 

U 1.147

 ]

o abort'. 
niversität Bern Ducasse Stéphane

Examples
Look in Exception class examples categories

-2.0 to: 2.0 do: 

[ :i | 

[ 10.0 / i. Transcript cr; show: i printString

on: Number divisionByZeroSignal do:

[:ex | Transcript cr; show: 'divideByZer

ex return ]

]

-2.0

-1.0

divideByZero abort

1.0

2.0



Object-Oriented Design with Smalltalk a Pure OO Language 

U 1.148

lers
niversität Bern Ducasse Stéphane

Examples
[ x /y]

on: ZeroDivide

do: [:exception|

y := 0.00001.

exception retry]

retry recreates the exception environment of active hand



Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.149
niversität Bern Ducasse Stéphane

10. Streams 



Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.150

am

ollection: ExternalStream
niversität Bern Ducasse Stéphane

Streams
• Allows the traversal of a collection 
• Associated with a collection

- collection is a Smalltalk collection: InternalStre
- collection is a file or an object that behaves like a c

• Stores the current position

Stream (abstract)
PeekableStream (abstract)

PositionableStream (abstract)
ExternalStream 

ExternalReadStream 
ExternalReadAppendStream 
ExternalReadWriteStream 

ExternalWriteStream 
InternalStream 

ReadStream 
WriteStream 

ReadWriteStream 



Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.151
niversität Bern Ducasse Stéphane

An Example
|st| 

st := ReadWriteStream on: (OrderedCollection new: 5).

st nextPut: 1.

st nextPutAll: #(4 8 2 6 7).

st contents. PrIt-> OrderedCollection (1 4 8 2 6 7)

st reset.

st next. -> 1

st position: 3. 

st next. -> 2

st := #(1 2 5 3 7) readStream.

st next. -> 1



Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.152

of the receiver."

f nextNode name]
niversität Bern Ducasse Stéphane

printSring, printOn:
Object>>printString

"Answer a String whose characters are a description 

| aStream |

aStream := WriteStream on: (String new: 16).

self printOn: aStream.

^aStream contents

Node>>printOn: aStream

super printOn: aStream.

aStream nextPutAll: ' with name:'; print: self name.

self hasNextNode  ifTrue: [

aStream nextPutAll: ' and next node:'; print: sel



Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.153

tion
ent from the next position

Element

dex elements included)
niversität Bern Ducasse Stéphane

Stream classes(i)
Stream. 
#next returns the next element
#next: n returns the n next elements
#contents returns all the elements
#nextPut: anElement inserts element at the next posi
#nextPutAll: aCollection inserts the collection elem
#atEnd returns true if at the end of the collection

PeekableStream. 
Access to the current without passing to the next
#peek

#skipFor: anAgrument

#skip: n increases the position of n
#skipUpTo: anElement increases the position after an
Creation
#on: aCollection, 

#on: aCol from: firstIndex to: lastIndex (in



Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.154
niversität Bern Ducasse Stéphane

Stream Classes (ii)
PositionnableStream
#skipToAll: #throughAll: #upToAll:

#position 

#position: anInteger 

#reset #setToEnd #isEmpty

InternalStream
#size returns the size of the internal collection
Creation #with: (without reinitializing the stream)

ReadStream WriteStream and ReadWriteStream
ExternalStream and subclasses



Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.155

ow
 + #endEntry instead of 

Token, ‘ * ‘].
niversität Bern Ducasse Stéphane

Stream tricks
Transcript is a TextCollector that has aStream

TextCollector>>show: aString

self nextPutAll: aString.

self endEntry

#endEntry via dependencies asks for refreshing the wind
If you want to speed up a slow trace, use #nextPutAll:
#show:

|st sc|

st := ReadStream on: ‘we are the champions’.

sc := Scanner new on: st.

[st atEnd] whileFalse: [ Transcript nextPutAll: sc scan

Transcript endEntry



Smalltalk a Pure OO Language Basic Object, Conditional and Loops

U 4.156

ts)

exists, contents removed)

eStream

eadStream.

’) writeStream.
niversität Bern Ducasse Stéphane

Streams and Files
Filename. 

#appendStream (addition + creation if file doesnot exis

#newReadAppendStream, #newReadWriteStream (if receiver 

#readAppendStream, #readWriteStream, #readStream, #writ

Example: removing Smalltalk comments of a file

|inStream outStream |

inStream := (Filename named: ‘/home/ducasse/test.st’) r

outStream := (Filename named: ‘/home/ducasse/testout.st

“(or ‘/home/ducasse/ducasse’ asFilename)”

[inStream atEnd] whileFalse: [

outStream nextPutAll: (inStream upTo: $”).

inStream skipTo: $”].

^outStream contents



Smalltalk a Pure OO Language Smalltalk in a Nutshell

Universität Bern Ducasse Stéphane 1.157

Advanced Smalltalk
❑ Advanced Classes
❑ MVC
❑ Concurrency
❑ Metaclasses
❑ Debugging 
❑ Internals



Smalltalk a Pure OO Language Dealing with Classes

U 5.158
niversität Bern Ducasse Stéphane

11. Advanced Features
- Indexed Classes
- Class as Objects
- Class Instance Variables and Methods
- ClassVariables
- PoolDictionary



Smalltalk a Pure OO Language Dealing with Classes

U 5.159

mples
ket, Workstation

ay, CompiledMethod

ing, ByteArray

 #isBytes, #isFixed, 

subclasses

 have: 
bclasses

ined instance variable
niversität Bern Ducasse Stéphane

@Types of Classes@
Indexed Named Definition Method Exa
No Yes #subclass:... Pac

Yes Yes #variableSubclass: Arr

Yes No #variableByteSubclass Str

Method related to class types: #isPointers, #isBits,
#isVariable, #kindOfSubclass

• classes defined using #subclass: support any kind of 

• classes defined using #variableSubclass: can only
variableSubclass: or variableByteSubclass:su

• classes defined using #variableByteSubclass
- can only be defined if the superclass has no def
- pointer classes and by classes don’t mix
- only byte subclasses



Smalltalk a Pure OO Language Dealing with Classes

U 5.160

y of pointers, each pointing 
niversität Bern Ducasse Stéphane

Two Views on Classes
• Named or indexed instance variables

Named: ‘addressee’ of Packet 
Indexed: Array 

• Or looking at them in another way: 
Objects with pointers to other objects 
Objects with arrays of bytes (word, long)

Difference for efficiency reason: 
arrays of bytes (like C string) are faster than storing an arra
to a single byte.



Smalltalk a Pure OO Language Dealing with Classes

U 5.161

les
niversität Bern Ducasse Stéphane

Indexed Classes
• For class that needs a variable number of instance variab

Example: the class Array

ArrayedCollection variableSubclass: #Array

   instanceVariableNames: ''

   classVariableNames: ''

   poolDictionaries: ''

   category: 'Collections-Arrayed'

Array new: 4 -> #(nil nil nil nil)

#(1 2 3 4) class isVariable -> true



Smalltalk a Pure OO Language Dealing with Classes

U 5.162

Indexed Class/Instance Variables
• Indexed variable is implictly added to the list of instance variables
• Only one indexed instance variable per class
• Access with #at: and #at:put: 

(#at:put: answers the value not the receiver) 
niversität Bern Ducasse Stéphane

• First access: anInstance at: 1
• #size returns the number of indexed instance variables
• Instantiated with #new: max

|t|

t := (Array new: 4).

t at: 2 put: 'lulu'. 

t at: 1 -> nil

• Subclasses should also be indexed



Smalltalk a Pure OO Language Dealing with Classes

U 5.163

i)

ect).
p in its class and/or its 

tances.

 bevahior defined in its class 

e is looked up in the class 

ues in Node
 executed

macN

in

o
a

niversität Bern Ducasse Stéphane

The meaning of “Instance of” (
- Every object is an instance of a class.
- Every class is ultimately subclass of Object (except Obj
- When anObject receives a message, the method is looku
superclasses.

- A class defines the structure and the behavior of all its ins
- Each instance possesses its own set of values.
- Each instance shares the behavior with other instances the
via the instance of  link.

Example:
macNode name

1. macNode is an instance of Workstation => nam
Workstation

2. name is not defined in Workstation => lookup contin
3. name is defined in Node => lookup stops + method



Smalltalk a Pure OO Language Dealing with Classes

U 5.164

up into the class of the class, 

etaclass named X class

e: is looked up in the class 

ops + method executed

lass => withName: is 

s => lookup continues in the 

 stops + method executed
niversität Bern Ducasse Stéphane

The meaning of “Instance of” (ii)
- A class is an object too, so messages sent to it are looked 
its metaclass.
- Every class (X) is the unique instance of its associated m

Example:
Node withName: #node1

1. Node is an instance of Node class => withNam
Node class

2. withName: defined in Node class => lookup st

Workstation withName: #mac

1. Workstation is an instance of Workstation c
looked up in the class Workstation class

2. withName: is not defined in Workstation clas
superclass of Workstation class = Node class

3. withName: is defined in Node class => lookup



Smalltalk a Pure OO Language Dealing with Classes

U 5.165

ion withName: #mac

class 

lookup

instance of

method
niversität Bern Ducasse Stéphane

Lookup and Class Messages

instance 
method

Workstat

Node class

Workstation class

withName: 

Node

Workstation

name
accept: aPacket
send: aPacket
hasNextNode

originate: aPacket
accept: aPacket

macNode name

Object Object class

lookup



Smalltalk a Pure OO Language Dealing with Classes

U 5.166

iii)

oked up in the class Node 

ntinues in the superclass of 

ontinues in the superclass of 
havior

ethod executed.

xtra functionality for the browsing of 
niversität Bern Ducasse Stéphane

The Meaning of “Instance-of” (

Node new: #node1

1. Node is an instance of Node class => new: is lo
class

2. new: is not defined in Node class => lookup co
Node class = Object class

3. new: is not defined in Object class => lookup c
Node class ....Class, ClassDescription, Be

4. new: is defined in Behavior => lookup stops + m

Hints: Behavior is the essence of a class. ClassDescription represents the e
the class. Class supports poolVariable and classVariable.



Smalltalk a Pure OO Language Dealing with Classes

U 5.167

ssociated metaclass named 

tances of itself. 

bles, method compilation...)

tputServer Workstation File-

ate:)
niversität Bern Ducasse Stéphane

Metaclass Responsibilities
Concept: 

- Everything is an object 
- Each object is instance of one class
- A class (X) is also an object, sole  instance of its a

X class
- An object is a class if and only if it can create ins

Metaclass Responsibilities:
- instance creation
- class information (inheritance link, instance varia

Examples: 
Node allSubclasses -> OrderedCollection (WorkStation Ou
Server PrintServer)

LanPrint allInstances -> #()

Node instVarNames -> #('name' 'nextNode')

Workstation withName: #mac -> aWorkstation

Workstation selectors  -> IdentitySet (#accept: #origin

Workstation canUnderstand: #nextNode -> true



Smalltalk a Pure OO Language Dealing with Classes

U 5.168

ave instance variables that 

r class has an instance 

ared by all the instances of the class. 
e class (like the number of instances, 
niversität Bern Ducasse Stéphane

Class Instance Variables
- As any object, a class is an instance of a class that can h
represent the state of a class.

Singleton Design Pattern: a class with only one instance
NetworkManager class

instanceVariableNames: 'uniqueInstance'

NetworkManager being an instance of NetworkManage
variable named uniqueInstance.

Hints: An instance variable of a class can be used to represent information sh
However, use class instance variables to represent preferably state about th
...) and use classVariable instead.



Smalltalk a Pure OO Language Dealing with Classes

U 5.169

class:

escription) 

classes '

ssee #isOriginatedFrom: #printOn: 

tialize #contents #contents:)

nator' 'contents' 'visitedNodes')
niversität Bern Ducasse Stéphane

About Behavior
- Behavior is the first metaclass.
- All other metaclasses inherits from it
- Behavior describes the minimal structure of a 

- superclass
- subclasses
- method dictionary
- format (instance variable compressed d

Object subclass: #Behavior

instanceVariableNames: 'superclass methodDict format sub

classVariableNames: ''

poolDictionaries: ''

category: 'Kernel-Classes'

Example of Queries
Packet superclass -> Object

Packet subclasses - #()

Packet selectors -> IdentitySet (#originator: #addressee: #addre

#isAddressedTo: #originator #ini

Packet allInstVarNames -> OrderedCollection ('addressee' 'origi

Packet isDirectSubclassOf: Object -> true



Smalltalk a Pure OO Language Dealing with Classes

U 5.170

ent the behavior of a class.

ss uniqueInstance class 

nstance Creation)

tworkManager
des

NetworkManager

new

class
uniqueInstance

dNode...
niversität Bern Ducasse Stéphane

Class Method
- As any object a metaclass can have methods that repres
- Some examples of class behavior:

- class definition, finding all instances of a class
- navigation in the hierarchy 
- finding the instance variable names, methods
- compiling method
- instance creation

- Can only access instance variable of the class: 
Examples: NetworkManager class>>new can only acce
instance variable and not instance variables (like nodes).

- Default Instance Creation class method: 
- new/new: and basicNew/basicNew: (see Direct I

Packet new 

- Specific instance creation method
Packet send: ‘Smalltalk is fun’ to: #lpr

Workstation withName: #mac

Workstation withName: #mac connectedTo: #lpr

Ne
no

fin



Smalltalk a Pure OO Language Dealing with Classes

U 5.171

e classVariable 

e instances and subclasses
bles

ods and class methods

ds
niversität Bern Ducasse Stéphane

classVariable
How to share state between all the instances of a class: Us

• a classVariable is shared  and directly accessible by all th
• A pretty bad name: should have been called Shared Varia
• Shared Variable => begins with a uppercase letter 

• a classVariable can be directly accessed in instance meth
NameOfSuperclass subclass: #NameOfClass

...

classVariableNames: 'ClassVarName1 ClassVarName2'

...

Object subclass: #NetworkManager

...

classVariableNames: ‘Domain’

• Sometimes classVariable can be replaced by class metho
 NetworkManager class>>domain

      ^ ‘iam.unibe.ch’



Smalltalk a Pure OO Language Dealing with Classes

U 5.172

sVariable
e instances and subclasses

 be accessed only via class 

e to this class.

 all the inheritance tree is 

variables to cache some 
. 
es of the characters (strings,
sVariable, its value is loaded

value of the instance variable

okenType buffer typeTable '
niversität Bern Ducasse Stéphane

Class Instance Variables / Clas
• a classVariable is shared  and directly accessible by all th

• Class instance variables as normal instance variables can
message and accessors:

- an instance variable of a class is privat
- an instance

• Take care when you change the value of a classVariable
impacted! 
• ClassVariables can be used in conjunction with instance 
common values that can be changed locally in the classes
Examples: in the Scanner class a table describes the typ
comments, binary....). The original table is stored into a clas
into the instance variable. It is then possible to change the 
to have a different scanner. 

Object subclass: #Scanner

instanceVariableNames: 'source mark prevEnd hereChar token t

classVariableNames: 'TypeTable '

category: 'System-Compiler-Public Access'



Smalltalk a Pure OO Language Dealing with Classes

U 5.173

class instance variables
uniqueInstance

class methods

nager class>>new 
ance isNil

:[ uniqueInstance := super new].

tance
niversität Bern Ducasse Stéphane

Summary of Variable Visibility

NetworkManager>>detectNode: aBoolBlock

instance variables
nodes classVariables

Domain

instance methods

NetworkMa
uniqueInst

ifTrue

^uniqueIns

^nodes detect: aBoolBlock



Smalltalk a Pure OO Language Dealing with Classes

U 5.174

metric Class
niversität Bern Ducasse Stéphane

Example From The System: Geo

Object subclass: #Geometric

instanceVariableNames: ''

classVariableNames: 'InverseScale Scale '

...

Geometric class>>initialize

"Reset the class variables."

Scale := 4096.

InverseScale := 1.0 / Scale



Smalltalk a Pure OO Language Dealing with Classes

U 5.175
niversität Bern Ducasse Stéphane

Circle
Geometric subclass: #Circle

instanceVariableNames: 'center radius'

classVariableNames: ''

Circle>>center

^center

Circle>>setCenter: aPoint radius: aNumber 

center := aPoint.

radius := aNumber

Circle>>area

| r |

r := self radius asLimitedPrecisionReal.

^r class pi * r * r

Circle>>diameter

^self radius * 2

Circle class>>center: aPoint radius: aNumber

^self basicNew setCenter: aPoint radius: aNumber



Smalltalk a Pure OO Language Dealing with Classes

U 5.176

itance.

ce can be directly accessed 
niversität Bern Ducasse Stéphane

poolDictionaries
- Also called Pool Variables.
- Shared variable => begins with a uppercase letter.
- Variable shared by a group of classes not linked by inher
- Each class possesses its own pool dictionary.
- They are not inherited.

- Examples of PoolDictionaries from the System:Text
CharacterArray subclass: #Text

instanceVariableNames: 'string runs '

classVariableNames: ''

poolDictionaries: 'TextConstants '

category: 'Collections-Text'

Elements stored into TextConstants like Ctrl, CR, ESC, Spa
from all the classes like ParagraphEditor....



Smalltalk a Pure OO Language Dealing with Classes

U 5.177

rkConstant.
niversität Bern Ducasse Stéphane

Example of PoolVariables
Instead of 

Smalltalk at: #NetworkConstant put: Dictionary new.

NetworkConstant at: #rates put: 9000.

Node>>computeAverageSpeed

...

NetworkConstant at: #rates

Write: 
Object subclass: #Packet

instanceVariableNames: 'contents addressee originator '

classVariableNames: ‘Domain’

poolDictionaries: 'NetworkConstant'

Node>>computeAverageSpeed

...

.. rates 

rates is directly accessed in the global  dictionary Netwo
As a beginner policy, do not use poolDictionaries



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.178

Paradigm
niversität Bern Ducasse Stéphane

12. The Model View Controller 



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.179

al User Interface

t

 development of such 
niversität Bern Ducasse Stéphane

Context

Building interactive applications with a Graphic

Obvious example: the Smalltalk Development Environmen

Characteristics of such applications:
❑ Event driven user interaction, not predictable

☞ Interface Code can get very complex
❑ Interfaces are often subject of changes

Question:
➪ How can we reduce the complexity of the

applications

Answer:
➪ Modularity



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.180

stem components, 
y have to fullfill.

n the components

tition:
niversität Bern Ducasse Stéphane

Program Architecture

A Software Architecture  is a collection of software and sy
connections between them and a number of constraints the

Goals we want to achieve with our architecture:
❑ manageable complexity
❑ reusability of the individual components
❑ pluggability,

i.e. an easy realization of the connections betwee

The Solution for the domain of GUI-driven applications:
We structure our application according to the following par

– Model

– View

– Controller



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.181

nterface

 processing 

)

niversität Bern Ducasse Stéphane

Separation of Concerns I:

Functionality vs. User U
Model:

– Domain specific information

– Core functionality, where the computation/data
takes place

User Interface:

– Presentation of the data in various formats

– dealing with user input (Mouse, Keyboard, etc.



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.182

tion

g) 

 a 1:1 relationship between 
re view and controller are not 

edom of choice is better:
nt modes of interaction)
utton/Radio Button)
niversität Bern Ducasse Stéphane

Separation of Concerns II:

Display vs. Interac
View:

– displaying the data from the model

Controller:

– relaying the user input to the View (e.g. Scrollin
or the model (e.g. modification of the data)

View and Controller are very much related. There is always
views and controllers. There are examples of systems whe
separated.

Rationale for separating View and Controller:

– reusability of the individual components and fre
the same view with different controllers (differe
the same controller for different views (Action B



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.183

rmed about changes in the 

to dependent objects are not 

B

niversität Bern Ducasse Stéphane

The notion of Dependency
An object B that depends on  another object A must be info
state of A, in order to be able to adapt its own state.

Dependencies that are realised via messages sent directly 
very reusable and likely to break in times of change.

☞ Decoupling of subject and dependent

A

modification

change propagation

1

2

Subject



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.184

)

 so that when one object 
pdated automatically.

, dependents). A subscriber 
niversität Bern Ducasse Stéphane

Dependency Mechanism
The Publisher-Subscriber Pattern (a.k.a. Observer Pattern

Intent: Define a one-to-many dependency between objects
changes state, all its dependents are notified and u

The pattern ensures the automatisation of 
❑ adding and removing dependents
❑ change propagation

The publisher (subject) has a list of subscribers (observers
registers with a publisher.
Protocol:



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.185

 Session

Subscriber2

ent:Subscriber2
niversität Bern Ducasse Stéphane

Publisher-Subscriber: A Sample

Publisher Subscriber1

addDepend

addDependent:Subscriber1

changed

update

update

removeDependent:Subscriber1

changed

update



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.186

d Pull

ferred
riber?

g with the update message
eded.
 subscriber what data 

her and subscriber, or 

ssage asks the publisher for 

 transferred.
anged.

T terminology) and other 
niversität Bern Ducasse Stéphane

Change Propagation: Push an

How is the changed data trans
from the publisher to the subsc

❑ Push:  the publisher sends the changed data alon
Advantages: only one message per subscriber ne
Disadvantage: Either the publisher knows for each
it needs which enhances coupling between publis
many a subscriber receives unnecessary data.

❑ Pull : the subscriber after receiving the update me
the specific data he is interested in
Advantage: Only the necessary amount of data is
Disadvantage: a lot of messages have to be exch

❑ Mixture: the publisher sends hints (“Aspects” in S
parameters along with the update messages



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.187

oller

tput

er input
niversität Bern Ducasse Stéphane

The MVC Pattern

Dependencies:

Other Messages:

Model

View

Contr

change propagation

Model

View

Controller

view messages

model access

and

editing messages

display ou

us



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.188
niversität Bern Ducasse Stéphane

A Standard Interaction Cycle

<<diagram from the Buschmann et. al. book>>



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.189
niversität Bern Ducasse Stéphane

MVC: Benefits and Liabilities



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.190

ependently of the 

 (due mid February 98)

eptionally strong: 

skaug)
Framework of Smalltalk is 

e undergone a strong 
 VisualWorks) solve many of 
tations.
niversität Bern Ducasse Stéphane

MVC and Smalltalk

MVC is a pattern and can be used to desing applictions ind
programming language. 

Examples:
❑ ET++ User Interface Framework (C++)
❑ Swing-Toolkit in the Java Foundation Classes 1.0

Nevertheless, the ties between MVC and Smalltalk are exc

❑ MVC was invented by a Smalltalker (Trygve Reen
❑ first implemented in Smalltalk-80; the Application 

built around it
❑ The first implementations of MVC in Smalltalk hav

evolution. Newer Implementations (for example in
the problems of the first, straightforward implemen



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.191

endents access):

ariable DependentsField .
y, where the keys are 

lections of dependents 

s.
 the dependents in a class 
niversität Bern Ducasse Stéphane

Managment of Dependents

Protocol to manage dependents (defined in Object>>dep

– addDependent: anObject

– removeDependent: anObject

Attention: Storage of Dependents !

❑ Object: keeps the all his dependents in a class  v
DependentsField is an IdentityDictionar
the objects themselves and the values are the col
for the corresponding objects.

❑ Model: defines an instance  variable dependent
☞ access is much more efficient than looking up

variable.



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.192

pagation

g:

rgument anAspectSymbol.  Usu-
dent’s change protocol, that
r is additional information.

:

interest and if it does, per-
niversität Bern Ducasse Stéphane

Implementation of Change Pro

Change methods are implemented in Object>>changin

changed: anAspectSymbol 

"The receiver changed.  The change is denoted by the a
ally the argument is a Symbol that is part of the depen
is, some aspect of the object’s behavior, and aParamete
Inform all of the dependents."

self myDependents update: anAspectSymbol

Update methods are implemented in Object>>updating

update: anAspectSymbol

“Check anAspectSymbol to see if itequals some aspect of 
form the necessary action”

anAspectSymbol == anAspectOfInterest

ifTrue: [self doUpdate].



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.193

fault-Ladder
niversität Bern Ducasse Stéphane

Climbing up and down the De



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.194

ge 

ven if they are not interested 

 lists of tests of anAspect. 

elf changed, since there 
 that change 
 defined in different models 

g update:with:from:)

lex objects.

ndents
ethod that handles that  
niversität Bern Ducasse Stéphane

Problems with the Vanilla Chan
Propagation Mechanism

❑ every dependent is notified about all the changes, e
(broadcast).

❑ the update: anAspect methods are often long
This is not clean object-oriented programming.

❑ all the methods changing something have to send s
might just be some dependent that is interested in

❑ danger of name clashes between apsects that are
that have to work together (can be solved by usin

General problem:
complex objects depending on other comp

We need means to be more specific:
❑ publisher: send messages only to interested depe
❑ subscriber: being notified directly by a call to the m

specific change



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.195

etween a model and its 

e

f its model and has a method
mer at his model:

dependency
transformer

interested
object
niversität Bern Ducasse Stéphane

Dependency Transformer
A DependencyTransformer is an intermediate object b
dependent. It 

❑ waits for a specific update: anAspect messag
❑ sends a specific method to a specific object

A dependent that is only interested in a specific aspect o
to handle the update installs a DependencyTransfor

model expressInterestIn: anAspect

for: self 

sendBack: aChangeMessage

dependents
collection

model

changed: #anAspect

update: #anAspect



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.196

er

ol

cts too many arguments’]

or].

or with: parameters].

or with: parameters with:

anObject]
niversität Bern Ducasse Stéphane

Inside a Dependency Transform

Initializing a DependencyTransformer:

setReceiver: aReceiver aspect: anAspect selector: aSymb

receiver := aReceiver.

aspect := anAspect.

selector := aSymbol.

numArguments := selector numArgs.

numArguments > 2 ifTrue: [self error: ’selector expe

Transforming an update: message:

update: anAspect with: parameters from: anObject

aspect == anAspect ifFalse: [^self].

numArguments == 0 ifTrue: [^receiver perform: select

numArguments == 1 ifTrue: [^receiver perform: select

numArguments == 2 ifTrue: [^receiver perform: select



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.197

d allows it to behave like a 
cally when it is changed.

the ValueHolder, the 
 any more
s they are interested in 
niversität Bern Ducasse Stéphane

ValueHolder
A ValueHolder is an object that encapsulates a value an
model, i.e. it notifies the dependents of the model automati

Creating a ValueHolder:

Accessing a ValueHolder:

Advantages:
❑ change propagation is triggered automatically by 

programmer does not have to do self changed
❑ objects can become dependents only of the value

(reduces broadcast problem)



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.198
niversität Bern Ducasse Stéphane

A UserInterface Window



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.199

er Interface.

ich case the user can modify 

ration
tion

onent it represents visually is 

 can be a ValueHolder for 

cs about its model
niversität Bern Ducasse Stéphane

Widgets
A widget is responsible for displaying some aspect of a Us

❑ A widget can display an aspect of a model 
❑ A widget can be combined with a controller, in wh

the aspect of the model displayed by the widget.

The connection between widgets and the model:
❑ Each component of a User Interface is a widget
❑ Each component of a model is an attribute or ope
❑ Most widgets modify an attribute or start an opera

The communication between a widget and the model comp
standardized:

Value Model Protocol

Each model component is put into an aspect model, which
example. The Widget deals only with this aspect model.

☞ the widget does not have to know any specifi



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.200

ting and managing a runtime 
ages only application 
odels.

User
Interfaces
niversität Bern Ducasse Stéphane

The Application Model
An ApplicationModel is a model that is responsible for crea
user interface, usually consisting of a single window. It man
information. It leaves the domain information to its aspect m

Domain
Models

Application
Models

Customer

BankAccount

Transaction



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.201

n Application
niversität Bern Ducasse Stéphane

The fine-grained Structure of a



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.202

ed Software Architecture, 

ork (available online)

nline)

rks, SIGS Books, 1995
niversität Bern Ducasse Stéphane

MVC Bibliography

The Pattern:
E. Gamma et. al.: Design Patterns, Addison Wesley, 1995

☞ Observer, p. 239

F. Buschmann et. al.: A System of Patterns. Pattern-Orient
Wiley, 1996

☞ Model-View-Controller, p. 125
☞ Publisher-Subscriber, p. 339

The VisualWorks Application Framework:
VisualWorks Users Guide: Chapter 18, Application Framew

Visual Works Cookbook: Part II, User Interface (available o

Tim Howard: The Smalltalk Developer’s Guide to VisualWo



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.203
niversität Bern Ducasse Stéphane



Smalltalk a Pure OO Language Processes and Concurrency

U 10.204

y

 Scheduling and Priorities

ores, SharedQueues
niversität Bern Juan Carlos Cruz

13. Processes and Concurrenc

- Concurrency and Parallelism
- Applications of Concurrency
- Limitations
- Atomicity 
- Safety and Liveness
- Processes in Smalltalk: 

Class Process, Process States, Process
- Synchronization Mechanisms in Smalltalk: 

Semaphores, Mutual Exclusion Semaph
- Delays
- Promises



Smalltalk a Pure OO Language Processes and Concurrency

U 10.205

t of statements; its execution 
ore sequential programs that 

r more processors
its own processor but

its own processor
rk to others
niversität Bern Juan Carlos Cruz

Concurrency and Parallelism

“A sequential program specifies sequential execution of a lis
is called a process. A concurrent program specifies two or m
may be executed concurrently as parallel processes”

A concurrent program can be executed by:
1. Multiprogramming: processes share one o
2. Multiprocessing: each process runs on 

with shared memory
3. Distributed processing: each process runs on 

connected by a netwo

Motivations for concurrent programming:
1. Parallelism for faster execution
2. Improving processor utilization
3. Sequential model inappropriate



Smalltalk a Pure OO Language Processes and Concurrency

U 10.206

tain consistency

rogress

 on “race conditions”

ization take time
niversität Bern Juan Carlos Cruz

Limitations

But concurrent applications introduce complexity:

- Safety
synchronization mechanisms are needed to main

- Liveness
special techniques may be needed to guarantee p

- Non-determinism 
debugging is harder because results may depend

- Run-time overhead
process creation, context switching and synchron



Smalltalk a Pure OO Language Processes and Concurrency

U 10.207

ssible interleavings of 

ection are treated atomically.
niversität Bern Juan Carlos Cruz

Atomicity

Programs P1 and P2 execute concurrently:

{ x = 0 }
P1: x := x + 1
P2: x := x + 2

{ x = ? }

What are possible values of x after P1 and P2 complete?
What is the intended final value of x?

Synchronization mechanisms are needed to restrict the po
processes so that sets of actions can be seen as atomic.

Mutual exclusion ensures that statements within a critical s



Smalltalk a Pure OO Language Processes and Concurrency

U 10.208

ent programs:

 updated atomically
eed to be delayed if shared
, read from an empty buffer)

ess a shared resource
access shared resources

ress:
cified?

?

niversität Bern Juan Carlos Cruz

Safety and Liveness

There are two principal difficulties in implementing concurr

Safety - ensuring consistency:
+ mutual exclusion - shared resources must be
+ condition synchronization - operations may n

resources are not in an appropriate state (e.g

Liveness - ensuring progress:
+ No Deadlock - some process can always acc
+ No Starvation - all processes can eventually 

Notations for expressing concurrent computation must add
1. Process creation : how is concurrent execution spe
2. Communication : how do processes communicate
3. Synchronization : how is consistency maintained?



Smalltalk a Pure OO Language Processes and Concurrency

U 10.209

class

ses. 

of actions which can be 
cesses.

ry)

alltalk. The simplest way to 

fork

es. This process is runnable 
n as the current process 
niversität Bern Juan Carlos Cruz

Processes in Smalltalk: Process 

- A Smalltalk system supports multiple independent proces

- Each instance of class Process represents a sequence 
executed by the virtual machine concurrently with other pro

- Processes share a common address space (object memo

- Blocks are used as the basis for creating processes in Sm
create aProcess is to send a block a message #fork

[ Transcript cr; show: 5 factorial printString ] 

- The new process is added to the list of scheduled process
(i.e scheduled for execution) and will start executing as soo
releases the control of the processor.



Smalltalk a Pure OO Language Processes and Concurrency

U 10.210

class

ot scheduled by sending the 

intString ] newProcess

s the #resume message.

al printString ] 

 message. A suspended 
e. 

erminate. Once a process 
rted any more.
niversität Bern Juan Carlos Cruz

Processes in Smalltalk: Process 

- We can create a new instance of class Process which is n
#newProcess message to a block:

| aProcess |

aProcess := [ Transcript cr; show: 5 factorial pr

- The actual process is not actually runnable until it receive
aProcess resume

- A process can be created with any number of arguments:
aProcess := [ :n | Transcript cr; show: n factori

 newProcessWithArguments: #(5).

- A process can be temporarily stopped using a #suspend
process can be restarted later using the #resume messag

- A process can be stopped definitely using a message #t
has received the #terminate message it cannot be resta



Smalltalk a Pure OO Language Processes and Concurrency

U 10.211

states
A process may be in one of 
the five states: 

1. suspended
2. waiting
3. runnable
4. running, or
5. terminated
niversität Bern Juan Carlos Cruz

Processes in Smalltalk: Process 

suspended

runnable

running

terminated

resume

suspend

newProcess
fork

suspend

terminate

waiting
signal*

wait*

*sent to aSemaphore

yield

scheduled
by the VM



Smalltalk a Pure OO Language Processes and Concurrency

U 10.212

s
rocesses. 
riority.

Purpose

cesses that are dependant on 

e-critical I/O

st I/O Processes

r Processes desiring 
ervice

cesses governing normal 
ion

ser background processes

ystem background processes

t possible priority
niversität Bern Juan Carlos Cruz

Process Scheduling and Prioritie
- Process scheduling is based on priorities associated to p
- Processes of high priority run before processes of lower p
- Priority values go between 1 and 100.
- Eight priority values have assigned names.

Priority Name

100 timingPriority
Used by Pro
real time.

98 highIOPriority Used by tim

90 lowIOPriority Used by mo

70 userInterruptPriority
Used by use
immediate s

50 userSchedulingPriority
Used by pro
user interact

30 userBackgroundPriority Used by u

10 systemBackgroundPriority Used by s

1 systemRockBottonPriority The lowes



Smalltalk a Pure OO Language Processes and Concurrency

U 10.213

ities
ss ProcessorScheduler 

y using the #forkAt: 

ority: message

s.

rity.

ess.

ulingPriority (50)
niversität Bern Juan Carlos Cruz

Processes Scheduling and Prior
- Process scheduling is done by the unique instance of cla
called Processor. 

- A runnable process can be created with an specific priorit
message:

[ Transcript cr; show: 5 factorial printString ] 

forkAt: Processor userBackgroundPriority.

- The priority of a process can be changed by using a #pri
| process1 process2 |

Transcript clear.

process1 := [ Transcript show: ‘first’] newProces

process1 priority: Processor systemBackgroundPrio

process2 := [ Transcript show: ‘second’ ] newProc

process2 priority: Processor highIOPriority.

process1 resume.

process2 resume.

The default process priority is userSched



Smalltalk a Pure OO Language Processes and Concurrency

U 10.214

rithm
-The active process can be 
identified by the expression:

Processor activeProcess

-The processor is given to 
the process having the 
highest priority.

-A process will run until it is 
suspended or terminated 
before giving up the 
processor, or pre-empted 
by a higher priority process.

-When the highest priority is 
held by multiple processes, 
the active process can give 
up the processor by using 
the message #yield.
niversität Bern Juan Carlos Cruz

Processes Scheduling: The Algo

Processor(ProcessorScheduler)
activeProcess
quiescentProcessList

Array (indexed by priority)

100
99

50

3
2
1

...

...

Process

nextLink
suspendedContext
priority
myList

nil

50

firstLink
lastLink

firstLink
lastLink

Process Process

Process



Smalltalk a Pure OO Language Processes and Concurrency

U 10.215

Suspended
Processes

P0

Py

1

resume
newProcess

fork
niversität Bern Juan Carlos Cruz

Process Scheduling

Active Process
P0

suspend

Processor

activeProcess
quiescentProcessList

P1 Px

100 50... ...scheduled
by the VM

yield



Smalltalk a Pure OO Language Processes and Concurrency

U 10.216

 objects may receive 
is may lead to unpredictable 
tain consistency of shared 

 ].

tString ] forkAt: 60.
niversität Bern Juan Carlos Cruz

Synchronization Mechanisms
Processes have references to some common objects, such
messages from several processes in an arbitrary order. Th
results. Synchronization mechanisms serve mainly to main
objects.

We can calculate the sum of the first N natural numbers:
| n | 

n := 100000.

[ | i temp | 

Transcript cr; show: ‘P1 running’.

i := 1. temp := 0.

[ i <= n ] whileTrue: [ temp := temp + i. i := i + 1

Transcript cr; show: ‘P1 sum is = ‘; show: temp prin

P1 running

P1 sum is = 5000050000



Smalltalk a Pure OO Language Processes and Concurrency

U 10.217

s the value of n?

it ].

tString ] forkAt: 60.

50.
niversität Bern Juan Carlos Cruz

Synchronization Mechanisms
What happens if at the same time another process modifie

| n d |

n := 100000.

d := Delay forMilliseconds: 400.

[ | i temp | 

Transcript cr; show: ‘P1 running’.

i := 1. temp := 0.

[ i <= n ] whileTrue: [ temp := temp + i.

(i = 5000) ifTrue: [ d wa

i := i + 1 ].

Transcript cr; show: ‘P1 sum is = ‘; show: temp prin

[ Transcript cr; show: ‘P2 running’. n := 10 ] forkAt: 

P1 running

P2 running

P1 sum is = 12502500



Smalltalk a Pure OO Language Processes and Concurrency

U 10.218

ores
cesses. A process waits for 
maphore. Another process 
ssage #signal to the 

; cr ] fork

corresponding #signal has 
pended.
cesses.
esses, it resumes only one 

s. Processes are queued in 
niversität Bern Juan Carlos Cruz

Synchronization using Semaph
A semaphore is an object used to synchronize multiple pro
an event to occur by sending the message #wait to the se
then signals that the event has occurred by sending the me
semaphore. 

| sem |

Transcript clear.

sem := Semaphore new.

[ Transcript show: ‘The’] fork.

[ Transcript show: ‘quick’. sem wait.

Transcript show: ‘fox’. sem signal ] fork.

[ Transcript show: ‘brown’. sem signal.

sem wait. Transcript show: ‘jumps over the lazy dog’

- If a semaphore receives a #wait message for which no 
been sent, the process sending the #wait message is sus
- Each semaphore maintains a linked list of suspended pro
- If a semaphore receives a #wait from two or more proc
process for each signal it receives
- A semaphore pays no attention to the priority of a proces
the same order in which they “waited” on the semaphore.



Smalltalk a Pure OO Language Processes and Concurrency

U 10.219

Suspended
Processes

P0

Py

1

resume
newProcess

fork
niversität Bern Juan Carlos Cruz

Semaphores

ActiveProcess
P0

suspend

Processor

activeProcess
quiescentProcessList

P1 Px

100 50... ...scheduled
by the VM

yield

aSemaphore

PP0

wait

z

Waiting Processes for aSemaphore

resume

signal*

*



Smalltalk a Pure OO Language Processes and Concurrency

U 10.220

n
 from a “critical region”. This 

ck argument is only executed 
 are evaluating. 

 + i.

it ].

tString ] forkAt: 60.

 := 10 ]] forkAt: 50.

xtra #signal, otherwise the 
ation method is provided:
niversität Bern Juan Carlos Cruz

Semaphores for Mutual Exclusio
A semaphore is used frequently to provide mutual exclusion
is supported by the instance method #critical:. The blo
when no other critical blocks sharing the same semaphore

| n d sem |

n := 100000.

d := Delay forMilliseconds: 400.

[ | i temp | 

Transcript cr; show: ‘P1 running’.

i := 1. temp := 0.

sem critical: [ [ i <= n ] whileTrue: [ temp := temp

(i = 5000) ifTrue: [ d wa

i := i + 1 ]. ].

Transcript cr; show: ‘P1 sum is = ‘; show: temp prin

[ Transcript cr; show: ‘P2 running’. sem critical: [ n

A semaphore for mutual exclusion must start out with one e
critical section will never be entered. A special instance cre

Semaphore forMutualExclusion.



Smalltalk a Pure OO Language Processes and Concurrency

U 10.221

Queue
etween processes. Its works 
e main difference is that 
 access (multiple writes and/

ssage #nextPut: (1) and 
e #next (3).

 forkAt: 60.

t printString] ] forkAt: 60.

esssage #next is received, 

ng the message #isEmpty
niversität Bern Juan Carlos Cruz

Synchronization using a Shared
A SharedQueue enables to synchronize communication b
like a normal queue (First in First Out, reads and writes), th
aSharedQueue protects itself against possible concurrent
or multiple reads).

Processes add objects to the sharedqueue by using the me
read objects from the sharedqueue by sending the messag

| aSharedQueue d |

d := Delay forMilliseconds: 400.

aSharedQueue := SharedQueue new.

[ 1 to: 5 do:[:i | aSharedQueue nextPut: i ] ] fork.

[ 6 to: 10 do:[:i | aSharedQueue nextPut: i. d wait ] ]

[ 1 to: 5 do:[:i | Transcript cr; show:aSharedQueue nex

- If no object is available into the sharedqueue when the m
the process is suspended. 
- We can request if the sharedqueue is empty or not by usi



Smalltalk a Pure OO Language Processes and Concurrency

U 10.222

y in the execution of a 

wait by suspending the 

hen the delay instance is 
with the messages 

ime with respect to the 
iseconds:. Delays created 
niversität Bern Juan Carlos Cruz

Delays

Instances of class Delay are used to cause a real time dela
process. 

An instance of class Delay will respond to the message #
active process for a certain amount of time. 

The time for resumption of the active process is specified w
created. Time can be specified relative to the current time 
#forMilliseconds: and #forSeconds:. 

| minuteWait |

minuteWait := Delay forSeconds: 60.

minuteWait wait.

The resumption time can also be specified at an absolute t
system’s millisecond clock with the message #untilMill
in this way cannot be sent the message wait repeatedly.



Smalltalk a Pure OO Language Processes and Concurrency

U 10.223

n a concurrent process. 

ssage #promise to a block:

riority of the process created.

essage value to the promise:

 that attempts to read the 
 block has completed.

ompleted by sending the 
niversität Bern Juan Carlos Cruz

Promises

- Class Promise provides a means of evaluating a block i

- An instance of promise can be created by sending the me
[ 5 factorial ] promise

- The message #promiseAt: can be used to specify the p

- The result of the block can be accessed by sending the m
| promise |

promise := [ 5 factorial ] promise.

Transcript cr; show: promise value printString.

If the block has not completed evaluation, then the process
value of a promise will wait until the process evaluating the

A promise may be interrogated to discover if process has c
message #hasValue



Smalltalk a Pure OO Language Classes and Metaclasses

U 11.224

n Analysis
 books are to tasted,

 to be swallowed,

me few to be chewed and digested

Francis Bacon, Of Studies

ill made less errors.
l

niversität Bern Ducasse Stéphane

14. Classes and Metaclasses: a
Some

others

and so

 At first look, a difficult topic!
You can live without really understand them
But metaclasses give a uniform model and you w
And you will really understand the Smalltalk mode

Recap on Instantiation 
Recap on Inheritance



Smalltalk a Pure OO Language Classes and Metaclasses

U 11.225

The meaning of “Instance of”

- Every object is an instance of a class.
- Every class is ultimately subclass of Object (except Object).
- When anObject receives a message, the method is lookup in 
its class and/or its superclasses.

e 

 

Printer

subclass
of

aPrinter send:...

instance of

send:....
 .....

Node
send:...

self subclass
niversität Bern Ducasse Stéphane

-A class defines the structure and the behavior of all its 
instances.
-Each instance possesses its own set of values.
- Each instance shares the behavior with other instances th
bevahior defined in its class via the instance of link.



Smalltalk a Pure OO Language Classes and Metaclasses

U 11.226

nsibilities

tances of itself. 

introduced)
ble, ...)

rkstation FileServer PrintServer)
niversität Bern Ducasse Stéphane

Concept of Metaclass & Respo
Concept: 

- Everything is an object 
- Each object is instance of one class
-A class is also an object instance of a metaclass
- An object is a class if and only if it can create ins

Metaclass Responsibilities:
- instance creation
- method compilation (different semantics can be 
- class information (inheritance link, instance varia

Examples: 
Node allSubclasses -> OrderedCollection (WorkStation OutputServer Wo

PrintServer allInstances -> #()

Node instVarNames -> #('name' 'nextNode')

Workstation withName: #mac -> aWorkstation

Workstation selectors  -> IdentitySet (#accept: #originate:)

Workstation canUnderstand: #nextNode -> true



Smalltalk a Pure OO Language Classes and Metaclasses

U 11.227

od lookup

ed up in the class of 

e: #mac

Workstation

Workstation
class

instance of 

class

inherits
from
niversität Bern Ducasse Stéphane

Classes, metaclasses and meth
 When anObject receives a message, 
the method is lookup in its class and/or 
its superclasses.

So when aClass receives a message, 
the method is lookup in its class (a 
metaclass) and/or its superclass

Here Workstation receives withName: #mac
The method associated with #withName: selector is look
Workstation: Workstation class

Workstation withNam



Smalltalk a Pure OO Language Classes and Metaclasses

U 11.228

ss classes 

red by all the instances (final 

ilation, method storing, 

t a special one.
niversität Bern Ducasse Stéphane

Responsibilities of Object & Cla
Object
- represents the common behavior (like error, halting...) sha
instances and classes) 
- so all the classes should inherit ultimately from Object

Workstation inherits from Node
Node inherits from Object

Class
- represents the common behavior of all the classes (comp
instance variable storing)
- Class inherits form Object because Class is an Object bu
=> Class knows how to create instances
- So all the classes should inherit ultimately form Class



Smalltalk a Pure OO Language Classes and Metaclasses

U 11.229

taclasses
lltalk 
niversität Bern Ducasse Stéphane

A possible kernel for explicit me
The kernel of CLOS and ObjVlisp but not the kernel of Sma

Workstation

inherits
from

Object

aWorkstation

Class

inherits
from instance of

instance of

instance of



Smalltalk a Pure OO Language Classes and Metaclasses

U 11.230

sses

tance of

Lan

aLan

instance of
niversität Bern Ducasse Stéphane

Singleton with explicit metacla

inherits
from

Object
Classinherits

from

ins

instance of

instance of

Unique
Instance

Workstation

Special

inherits
from

Workstation

aWork1

aWork2

aSpecWork



Smalltalk a Pure OO Language Classes and Metaclasses

U 11.231

s

nique
stance
new 
 uniqueInstance isNil...
^ uniqueInstance

s a new instance

station new
niversität Bern Ducasse Stéphane

Deeper into it

Clas

instance of

instance of

U
In

Workstation

Special

inherits
from

Workstation

new
 return

Workstation new

SpecialWork



Smalltalk a Pure OO Language Classes and Metaclasses

U 11.232

ts
asses. 

bject itself)

ss (a metaclass).
can accessed them using 
niversität Bern Ducasse Stéphane

Smalltalk Metaclasses in 7 poin
- no explicit metaclasses, only implicit non sharable metacl

(1): Every class is ultimately a subclass of Object (except O
Behavior

ClassDescription

Class 

Metaclass

(2) Every object is instance of a class.
Each class is instacne of a class its metaclass.

(3) Every class is instance of A metaclass.
Every user defined class is the sole  instance of another cla
Metaclass are system generated so they are unamed you 
#class



Smalltalk a Pure OO Language Classes and Metaclasses

U 11.233

 (ii)

. 

es of a Metaclass

Object

Object
class
niversität Bern Ducasse Stéphane

Smalltalk Metaclasses in 7 points

If X is a subclass of Y then X class is a subclass of Y class
But what is the superclass of the metaclass of Object? 
The superclass of Object class is Class
(4) All metaclasses are (ultimately) subclasses of Class.

But metaclasses are also objects so they should be instanc

SmallInteger

SmallInteger
class

Integer

Integer
class

Number

Number
class

Object

Object
class

SmallInteger

SmallInteger
class

Integer

Integer
class

Number

Number
class

Class

Class
class



Smalltalk a Pure OO Language Classes and Metaclasses

U 11.234

ts (iii)

ss is instance of itself

)
ue instance)
 behavior common to those 

Object

Object
class
niversität Bern Ducasse Stéphane

Smalltalk Metaclasses in 7 poin

(5) Every metaclass is instance of Metaclass. Metacla

Object : common object behavior
Class: common class behavior (name, multiple instances
Metaclass: common metaclass behavior (no name, uniq
(6) The methods of Class and its superclasses support the
objects that are classes.

SmallInteger

SmallInteger
class

Integer

Integer
class

Number

Number
class

Class

Class
class

Metaclass

Metaclass
class



Smalltalk a Pure OO Language Classes and Metaclasses

U 11.235

ts (iv)
vior specific to particular 

t class” = class methods (for 

iption, is available as a 

Object

Object
class
niversität Bern Ducasse Stéphane

Smalltalk Metaclasses in 7 poin
(7) The methods of instances of Metaclass add the beha
classes.
=> Methods of instance of Metaclass = methods of “Packe
example #withName:)

An instance method defined in Behavior or ClassDescr
class method. Example: #new, #new:

ClassDescription

ClassDescription
class

Behavior

Behavior

Class

Class
class

Metaclass

Metaclass
class

class



Smalltalk a Pure OO Language Classes and Metaclasses

U 11.236

. 

 of instances (representation 

le:)
icNew:)
:)

: )
instVArNames, 
VarNames)
lasses, #subclasses, 

Understand:, 
niversität Bern Ducasse Stéphane

Behavior Responsibilities
- Minimum state necessary for objects that have instances
- Basic interface to the compiler.
- State: class hierarchy link, method dictionary, description
and number) 
Methods: 
- creating a method dictionary, compiling method (#compi
- instance creation (#new, #basicNew, #new:, #bas
- class into hierarchy ( #superclass:, #addSubclass
- accessing (#selectors, #allSelectors, #compiledMethodAt
- accessing instances and variables (#allInstances, #
#allInstVarNames, #classVarNames, #allClass

- accessing clas hierarchy (#superclass, #allSuperc
#allSubclasses)
- testing (#hasMethods, #includesSelector, #can
#inheritsFrom:, #isVariable)



Smalltalk a Pure OO Language Classes and Metaclasses

U 11.237

s
ehavior:

as subclass responsibility)
g changes on a file

tended for inheritance by the 

lds
 of message protocol
niversität Bern Ducasse Stéphane

ClassDescription Responsibilitie
ClassDescription adds a number of facilities to basic B

- named instance variables
- category organization for methods
- the notion of a name of this class (implemented 
- the maintenance of the Changes set, and loggin
- most of the mechanism for fileOut

ClassDescription is an abstract class: its facilities are in
two subclasses, Class and Metaclass.

Subclasses must implement
#addInstVarName:

#removeInstVarName:

Instance Variables:
- instanceVariables<Array of: String> names of instance fie
- organization <ClassOrganizer> provides organization



Smalltalk a Pure OO Language Classes and Metaclasses

U 11.238

nce

subclassOf:....)
niversität Bern Ducasse Stéphane

Metaclass Responsibilities
- initialization of class variables
- creating initialized instances of the metaclass’s sole insta

- instance creation (#subclassOf:)
- metaclass instance protocol (#name:inEnvironment:



Smalltalk a Pure OO Language Classes and Metaclasses

U 11.239

d shared pool variables 
ialize)
niversität Bern Ducasse Stéphane

Class Responsibilities
Class adds naming for class
Class adds the representation for classVariable names an
(#addClassVaraNames, #addSharedPool:, #init



Smalltalk a Pure OO Language Debugging Hints

U 8.240

d Debugging
niversität Bern Ducasse Stéphane

15. Most Common Mistakes an

• Preventing: Most Common Mistakes
• Curing: Debugging Fast (from ST Report July 93)
• Extra 



Smalltalk a Pure OO Language Debugging Hints

U 8.241

f it already exists
niversität Bern Ducasse Stéphane

Most Common Beginner Bugs
- true is the boolean value,  True its class
Instead of: 

Book>>initialize

inLibrary := True

that: 
Book>>initialize

inLibrary := true

- nil is not acceptable for ifTrue:

- whileTrue receiver must be a block
     [x<y] whileTrue: [x := x + 3]

- (weakness of the system) Before creating a class check i
Object subclass: #View

- Do not assign class
OrderedCollection := 2 will damage your system



Smalltalk a Pure OO Language Debugging Hints

U 8.242

or returning something else.

created instance

ated instance !!!

^ super new initialize
niversität Bern Ducasse Stéphane

Return Value
- In a method self is returned by default, do not forget ^  f

Packet>>isAddressedTo: aNode

^ self addressee = aNode name

- In a #new method do not forget the ^ to return the newly 
  Packet class>>new

 super new initialize

     returns self : the class Packet and not the newly cre
Write: 

Packet class>>new

 ^ super new initialize

Packet class>> new

^self new initialize

Loops !!!
Packet class>> new

^ self basicNew initialize or 



Smalltalk a Pure OO Language Debugging Hints

U 8.243

asicNew to create the new 

 super new initialize

in the same hierarchy will call 
niversität Bern Ducasse Stéphane

Take care about loops
- In a new method do not forget to use super or to invoke b
instance.
Example: 

The following loops! 
Book>>new 

^self new initialize

You should write: 
Packet class>> new

^ self basicNew initialize or ^

- Before redefining new like the following
Packet class>>new 

^super new initialize 

check if this is not already done. Else twice that expression 
twice initialize



Smalltalk a Pure OO Language Debugging Hints

U 8.244

ass Method

 the new method. You do not 
ariables and classVariables. 
ethod on instances.
niversität Bern Ducasse Stéphane

Instance Variable Access in Cl

- Do not try to access instance variables to initialize them in
have the right. new method can only access class instance v

=> Define and invoke an initialize m

Example: 
Do not write 

Packet class>>send: aString to: anAddress

contents := aString.

addressee := anAddress

Create an instance and invoke instance methods 
Packet class>>send: aString to: anAddress

self new contents: aString; addressee: anAddress



Smalltalk a Pure OO Language Debugging Hints

U 8.245
niversität Bern Ducasse Stéphane

Assignments Bugs

- Do not try to assign a method argument
  setName: aString

      aString := aString, 'Device'.

      name := aString

- Do not assign class
     OrderedCollection := 2 will damage your system

- Do not try to modify self and super 



Smalltalk a Pure OO Language Debugging Hints

U 8.246

asicNew:, #basicAt:, 

en a hash = b hash

author)
niversität Bern Ducasse Stéphane

Redefinition Bugs

- Never  redefine basic -methods  (#==, #basicNew, #b
#basicAt:Put:...)

- Never  redefine #class

- Redefine #hash when you redefine #= so that if a = b th

Book>>=aBook

^self title = aBook title & (self author = aBook 

Book>>hash

^self title hash bitXor: self author hash



Smalltalk a Pure OO Language Debugging Hints

U 8.247

 yourself to get the 

med instance variables
asses of Collection)

w modifies.

 and can be less obvious!
niversität Bern Ducasse Stéphane

Library Behavior-based Bugs

- #add: returns the argument and not the receiver, so use
collection back.

-  Do not forget to specialize #copyEmpty when adding na
    to a subclass  having indexed  instance variables (subcl

- Never iterate over a collection which the iteration someho
timers do:[:aTimer|

aTimer isActive ifFalse: ‘timers remove: aTimer]

     Copy  first the collection
timers copy do:[:aTimer|

aTimer isActive ifFalse: ‘timers remove: aTimer]

- Take care the iteration can involve different methods



Smalltalk a Pure OO Language Debugging Hints

U 8.248

Cients
”

ult. 
niversität Bern Ducasse Stéphane

Use of Accessors: Protect your 
Literature says: “Access instance variables using methods

Schedule>>initialize

tasks := OrderedCollection new. 

Schedule>>tasks

^tasks

However, accessors methods should be PRIVATE by defa

If accessors would be public, a client could write
ScheduleView>>addTaskButton

...

model tasks add: newTask

What’s happen if we change the representation of tasks? 
If tasks is now a dictionary => that’s breaks.
Provide an adding method

Schedule>>addTask: aTask

tasks add: aTask

ScheduleView>>addTaskButton

...

model addTask: newTask



Smalltalk a Pure OO Language Debugging Hints

U 8.249

ing.

total printString]

al printString]

otal printString]
niversität Bern Ducasse Stéphane

Debugging Hints
Basic Printing

Transcript cr; show: ‘The total= ’, self total printStr

Use a global or a class to control printing information
Debug ifTrue:[Transcript cr; show: ‘The total= ’, self 

Debug > 4 

ifTrue:[Transcript cr; show: ‘The total= ’, self tot

Debug print:[Transcript cr; show: ‘The total= ’, self t

Smalltalk removeKey: #Debug

Inspecting
Object>>inspect

you can create your own inspect method
MyInspector new inspect: anObject

Naming: usefull to add a id for debugging purpose



Smalltalk a Pure OO Language Debugging Hints

U 8.250

here?

e: 5)

e: 5).
niversität Bern Ducasse Stéphane

Where am I and how did I get 
Identifying the current context
“if this is not a block”

Transcript show: thisContext printString; cr.

Debug ifTrue:[ “use this expression in a block” 

Transcript show: thisContext sender home printString; cr]

Audible Feedback
Screen default ringBell

Catching It in the Act
<Ctrl-C> (VW2.5) <Ctrl-Shift-C> Emergency stop 

<Ctrl-Y> (VW3.0) <Ctrl-Shift-C> Emergency stop

Suppose that you cannot open a debugger 
Transcript cr; show: (Notifierview shortStackFor: thisContext ofSiz

Or in a file
|file|

file := ‘errors’ asFilename appendStream.

file cr; nextPutAll: (NotifierView shortStackFor: thisContext ofSiz

file close



Smalltalk a Pure OO Language Debugging Hints

U 8.251

:

thod the original contents of 
our literals.

 is invoked?
lementors of ‘*enu*’
niversität Bern Ducasse Stéphane

Source Inspection
Source Code for Blocks
aBlockClosure method getSource

aMethodContext sourceCode

Decompiling a Method
Shift + select the method is the browser
Interesting for literals modification or MethodWrapper bugs
initialize

arrayConst := #(1 2 3 4)

then somebody somewhere does
arrayConst at:1 put:100 

So your array is polluted. Note that if you recompile the me
the literal array is restored. So think also to return copy of y

Entry Points
How a window is opened or what happens when the menu
look into LauncherView and UIVisualILauncher imp



Smalltalk a Pure OO Language Debugging Hints

U 8.252

tClickButton]
niversität Bern Ducasse Stéphane

Where am I going?
Breakpoints
self halt.

self error: ‘ invalid’

Conditional halt
i > 10 ifTrue:[self halt]

InputState default shiftDown ifTrue:[self halt]

InputState default altDown ifTrue:[self halt]

InputState default metaDown ifTrue:[self halt]

In a controller: 
self sensor shiftDown ifTrue:[self halt]

Slowing Down Actions: usefull for complex graphics
Cursor wait showWhile: [(Delay forMilliseconfs: 800) wait]

(Do not forget the wait)
Until a mouse button is cliked.
Cursor crossHair showWhile: 

[ScheduledControllers activeController sensor waitNoButton; wai



Smalltalk a Pure OO Language Debugging Hints

U 8.253

 method if you know it!

Rectangle: (0@0 extent: 10@100)
niversität Bern Ducasse Stéphane

How do I get out?

1 <CTRl+Shift-C or Y> Emergency Debugger

2 ObjectMemory quit

3 <ESC> to evaluate the expression

An Advanced Emergency Procedure: recompile the wrong
aClass compile: ‘methodname methodcode’ classified: ‘what you want’

ex:

Controller compile: ‘controlInitialize ^self’ classified: ‘basic’

Graphical Feedback
Where the cursor is: 
ScheduledControllers activeController sensor cursorPoint

Position the cursor explicitly
ScheduledControllers activeController sensor cursorPoint: aPoint

Rectangle fromUser

Indicating an area with a filled rectangle
ScheduledControllers activeController view graphicsContext display 



Smalltalk a Pure OO Language Debugging Hints

U 8.254

 VW

or?
o:

on would cause the evaluation to

would cause the evaluation to

ion.  If no exception occurs,
niversität Bern Ducasse Stéphane

Finding & Closing Open Files in
ExternalStream classPool at: #openStreams

How to ensure that an open file willl be close in case of err
Use #valueNowOrOnUnwindDo: or #valueOnUnwindD

|stream|

[ stream := (Filename named: aString) readStream.

...

] valueNowOrOnUnwindDo: [stream close].

BlockClosure>>valueOnUnwindDo: aBlock

"Answer the result of evaluating the receiver. If an excepti

be abandoned, evaluate aBlock. "

BlockClosure>>valueNowOrOnUnwindDo: aBlock

"Answer the result of evaluating the receiver. If an exception 

be abandoned, evaluate aBlock.  The logic for this is in Except

also evaluate aBlock."



Smalltalk a Pure OO Language

U 255

nter type, non-pointer type, 

 but if we want to do some 
bytes of an object?
niversität Bern Dr.Stephane Ducasse

Internal Structure of Object
In the memory representation Smalltalk objects can be poi
index type, non-index type or immediate type.

indexable
#(1 2 3) at: 2 

non indexable
aPacket name

This difference is transparent for the programmer today job
optimizations, analysis.... how can we compute the size in 



Smalltalk a Pure OO Language

U 256
niversität Bern Dr.Stephane Ducasse

Three ways to create classes:
Non indexable, pointer
Object subclass: #Packet

instanceVariableNames: 'contents addressee originator '

classVariableNames: ''

poolDictionaries: ''

category: 'Demo-LAN'

Indexable pointer
ArrayedCollection variableSubclass: #Array

instanceVariableNames: ''

classVariableNames: ''

poolDictionaries: ''

category: 'Collections-Arrayed'

Indexable, non pointer
LimitedPrecisionReal variableByteSubclass: #Float

instanceVariableNames: ''

classVariableNames: 'Pi RadiansPerDegree '

poolDictionaries: ''

category: 'Magnitude-Numbers'

Not possible to defined named instance variable



Smalltalk a Pure OO Language

U 257

.

.

.

niversität Bern Dr.Stephane Ducasse

Let us Code
Identifying subclass:....
| collection |

collection := SortedCollection new.

Smalltalk allBehaviorsDo: 

[:each |

|boolean|

boolean := each isMeta not and: [each isObsolete not]

boolean := boolean and: [each isFixed].

boolean ifTrue: [collection add: each name]].

^collection

Identifying variableSubclass:...
boolean := each isMeta not and: [each isObsolete not]

boolean := boolean and: [each isPointers].

boolean := boolean and: [each isVariable].

boolean ifTrue: [collection add: each name]]

Identifying variableByteSubclass:...
boolean := each isMeta not and: [each isObsolete not]

boolean := boolean and: [each isBits].

boolean := boolean and: [each isVariable].

boolean ifTrue: [collection add: each name]]



Smalltalk a Pure OO Language

U 258

 is stored in the format 

"

class:...
niversität Bern Dr.Stephane Ducasse

Format and other
The information for distinguishing between these three type
instance variable of Behavior.
Behavior>>isBits

"Answer whether the receiver contains just bits (not pointers).

^format noMask: self pointersMask

Behavior>>hasImmediateInstances immediate type object?

Behavior>>isFixed non-indexable type object?

Behavior>>isPointers pointers type object?

Behavior>>isVariable indexable type object? 

pointer type [isPointers]
indexable type [isVariable] variableSubclass:...
non-index type [isFixed] subclass:...

non-pointer [isBits]
index type [isVariable] variableByteSubclass:...
non-index type [isFixed] subclass:...

immediate [hasImmediateInstances] sub



Smalltalk a Pure OO Language

U 259

ze size|

ytesInOOP] 

InOOP negated]
niversität Bern Dr.Stephane Ducasse

Object size in bytes
objectSizeInBytes: anObject

|bytesInOTE bytesInOOP aClass indexableFieldSize instVarFieldSi

bytesInOTE := ObjectMemory current bytesPerOTE.

bytesInOOP := ObjectMemory current bytesPerOOP.

aClass := anObject class.

aClass isPointers

ifTrue: 

[instVarFieldSize := aClass instSize * bytesInOOP. 

aClass isVariable

ifTrue: [indexableFieldSize := anObject basicSize * b

ifFalse: [indexableFieldSize := 0]]

ifFalse: 

[instVarFieldSize := 0.

aClass isVariable

ifTrue: [indexableFieldSize := anObject basicSize + 

(bytesInOOP -1) bitAnd: bytes

ifFalse:[indexableFieldSize := 0]].

size := bytesInOTE + instVarFieldSize + indexableFieldSize.

^size



Smalltalk a Pure OO Language

U 260
niversität Bern Dr.Stephane Ducasse

Analysis
OTE  (ObjectTableEntry) = 12 OOP (ObjectPointer)= 4
Pointers Type
Internals new objectSizeInBytes: WorkStation new

pointer, instSize = 3 (dependents name nextNode) * 4 = 12

not indexable

Internals new objectSizeInBytes: (WorkStation new name: #abc)

idem, because not recursive

Internals new objectSizeInBytes: 1@2

20 : 12 + 2 * 4

Indexable and Pointers Type
Internals new objectSizeInBytes: (OrderedCollection new: 10)

OrderedCollection new: 10 

= 2 inst variable and 10 indexes

class instSize = 2 * 4

basicSize = 10 * 4

60 bytes



Smalltalk a Pure OO Language

U 261
niversität Bern Dr.Stephane Ducasse

Indexable pure 
Internals new objectSizeInBytes: Float pi 

4 indexed variable * 4

16

Non pointer,  non Index = immediate 
but an immediate type object has no object table entry 
the immediate object is stored into the OOP. 

Internals new objectSizeInBytes: 1 

= 12 but the code should use isImmediate



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.262

ant to use. This is inferred by 
s the programmer to be more 
niversität Bern Ducasse Stéphane

16. Blocks and Optimization
Recall: 

[ :x :y | |tmp| ...] 

value

value: 

value: value: 

value: value: value: 

valueWithArguments:

In VisualWorks there are four types of blocks: 
❑ Full Block, 
❑ Copying Block, 
❑ Clean Block 
❑ Inlined Blocks. 

A user does not have to explicitly mentioned which one is w
the compiler. However, knowing the subtle differences allow
efficient.



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.263

ntext or BlockContext object 
 stack. 
niversität Bern Ducasse Stéphane

Full Blocks 
❑ Read and assign temporary variables. 
❑ Block containing explicit return ^. 
❑ Compiled in a BlockClosure.
❑ Evaluation by the creation of an explicit  MethodCo

instead of using a pseudo-object contained in the
❑ Most costly

Instead of: 
m1: arg1

arg1 isNil 

ifTrue: [^ 1]

ifFalse: [^ 2]

Better:
m1: arg1 

^ arg1 isNil

ifTrue:[1]

ifFalse: [2]



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.264

. 

.

e block avoiding to explicitly 
riables appear. 

e enclosing method’s context 
niversität Bern Ducasse Stéphane

Copying Blocks
❑ Read temporary variables but do not assign them
❑ No explicit return. 
❑ Access instance variables of self and assign them
❑ Not compiled into a BlockClosure. 
❑ They are compiled by copying every access into th

keep a reference to a context where the copied va
❑ Their arguments and temporary are merged into th

as “compiler-generated temporaries”. 



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.265

r global variable. 
niversität Bern Ducasse Stéphane

Clean Blocks
❑ Contain only reference block temporary variable o
❑ No reference to self or to instance variables.

nodes do: [:each | each name = #stef]

nodes select: [:each | each isLocal]



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.266

 direclty insered into the 

argument to such methods
hod. 
alse, whileFalse:, and: or:, 
o:, to:do:by:

ee the inlining
niversität Bern Ducasse Stéphane

Inlined Blocks
❑ Code of certain methods like whileFalse: ifTrue: is

code of the calling method. 
❑ The literal blocks (without arguments) passed as 

are also inlined in the byte-code of the calling met
❑ Inlined methods are whileTrue, whileTrue:, whileF

ifTrue:, ifFalse:, ifTrue:ifFalse:, ifFalse:ifTrue:, to:d
❑ Look in MessageNode>>transform* methods to s
❑

testInLined
1 to: 5 do: [:x| ]

Compiled into : 
| t1 |

t1 := 1.

[t1 <= 5] whileTrue: [t1 := t1 + 1].

But no BlockClosure is created (look into the byte codes)



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.267

st a copying block. 
niversität Bern Ducasse Stéphane

Full to Copy 
Instead of: 

|t|

[:x | t := x foo] value: 1.

t := t * 2.

^t

❑ The reference to t inside the block makes it at lea
❑ t := makes it full. 

With the following we have a clean block. 
|t|

t := [:x | x foo] value:1.

t := t * 2.

^t



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.268

xt].

ined block

].
niversität Bern Ducasse Stéphane

Contexts
Full blocks are evaluated in a separate context. 

The following code evaluate to false:

|outerContext answer|

outerContext := thisContext.

(1 to: 1) do: [:i | answer := thisContext == outerConte

answer

But the following evaluates to true because: to:do: is an inl

|outerContext answer|

outerContext := thisContext.

1 to: 1 do: [:i | answer := thisContext == outerContext

answer

So this is better to use to:do: than (to:) do:



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.269

max: maxNumber].

le| maxNumber max: ele]
niversität Bern Ducasse Stéphane

Inject:into:
Instead of:

|maxNumber|

maxNumber := 0.

#(1 2 43 56 2 49 3 2 0 ) do: [:each| maxNumber := each 

maxNumber

Write 
#(1 2 43 56 2 49 3 2 0 ) inject: 0 into: [:maxNumber :e

❑ no need the temporary variable
❑ full blocks to clean block



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.270

d str2 elements are stored

 argument,

 with: replacementCollection 

ing conditions:
niversität Bern Ducasse Stéphane

About String Concatenation
❑ str1 , str2 creates a new structure in which str1 an

SequenceableCollection>>, aSequenceableCollection 

"Answer a copy of the receiver concatenated with the

a SequenceableCollection."

^self copyReplaceFrom: self size + 1

  to: self size

  with: aSequenceableCollection

SequenceableCollection>>copyReplaceFrom: start to: stop

"Answer a copy of the receiver satisfying the follow

.."



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.271

n (i)

rings for example the keys of 

aString].

ing].
niversität Bern Ducasse Stéphane

Stream, Blocks and Optimisatio
(from Alan Knight)
Suppose that we want to concatenate a pretty long list of st
the Smalltalk dictionary.

|bigString|

bigString := String new.

Smalltalk keys do: [:aString | bigString := bigString, 

Here the assignment of bigString leads to a Full Block
We can suppress the assignment like that: 

|aStream|

aStream:= WriteStream on: String new.

Smalltalk keys do: [:aString | aStream nextPutAll: aStr

We obtain a copying block. 



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.272

n (ii)
 that are outside the block

cumul nextPutAll: aString.

cumul].

d iteration method. With 

l: a ReadStream next].
niversität Bern Ducasse Stéphane

Stream, Blocks and Optimisatio
inject:into: allows us to suppress the reference to variables
and to obtain a clean block.

|aStream|

aStream:= WriteStream on: String new.

Smalltalk keys inject: aStream into: [:cumul :aString| 

 

Now if we use a stream for the Smalltalk keys we can avoi
whileFalse: that is inlined the block will be inlined.

|aReadStream aWriteStream|

aReadStream := ReadStream on: Smalltalk keys asArray.

aWriteStream := WriteStream on: String new. 

[aReadStream atEnd] whileFalse: [aWriteStream nextPutAl

Optimization Yes, but Readibility First



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.273

om outer scopes. A clean 
rray.

from outer scopes when the 
il and copiedValues = Object 

uter scope. A full closure has 

lue if there is exactly one, or 
ere is a single copied value, 
alues is not a reliable means 
 has copied values is to ask 
niversität Bern Ducasse Stéphane

BlockClosure Class Comments
Instance Variables:

method <CompiledBlock>

outerContext <Context | nil>

copiedValues <Object | Array | nil>

There are currently three kinds of closures: 
- "Clean" closure with no references to anything fr

closure has outerContext = nil and copiedValues = empty A
- "Copying" closure that copies immutable values 

closure is created. A copying closure has outerContext = n
or Array.

-"Full" closure that retains a reference to the next o
outerContext ~= nil and copiedValues = nil.  

As an optimization, copiedValues holds the single copied va
an Array of values if there is more than one.  Note that if th
the value being copied can be nil, so testing for nil in copiedV
of classifying closures. The way to check whether a closure
its method whether numCopiedValues > 0.



Object-Oriented Design with Smalltalk a Pure OO Language 

U 1.274

ined
niversität Bern Ducasse Stéphane

17. Block Deep Understanding
VM represents the state of execution as Context objects

for method MethodContext
for block BlockContext

aContext contains a reference to 
the context from which it is invoked, 
the receiver
arguments
temporaries in the Context

We called home context the context in which a block is def



Object-Oriented Design with Smalltalk a Pure OO Language 

U 1.275

oped in Smalltalk
k is defined 
niversität Bern Ducasse Stéphane

Lexically Scope
Arguments, temporaries, instance variables are lexically sc
These variables are bound in the context in which the bloc
and not in the context in which the block is evaluated

Test>>testScope

"self new testScope"

|t|

t := 15.

self testBlock: [Transcript show: t printString]

Test>>testBlock:aBlock

|t|

t := 50.

aBlock value

Test new testBlock 

-> 15 and not 50



Object-Oriented Design with Smalltalk a Pure OO Language 

U 1.276

wo'.
niversität Bern Ducasse Stéphane

Returning from a Block (i)
^ should be the last statement of a block body

[ Transcript show: 'two'.

^ self. 

Transcript show: 'not printed']

^ return exits method containing it.

test

"self new test"

Transcript show: 'one'.

1 isZero 

ifFalse: [ 0 isZero ifTrue: [ Transcript show: 't

 ^ self]].

Transcript show: ' not printed'

-> one two



Object-Oriented Design with Smalltalk a Pure OO Language 

U 1.277

f the last statement to the 

 to the method that activated 

ible to attempt to return from 
his runtime error condition is 
niversität Bern Ducasse Stéphane

Returning From a Block (ii)
Taking returning as a differenciator

❑ Simple block [:x :y| x *x. x + y] returns the value o
method that send it the message value

❑ Continuation blocks [:x :y| ̂  x + y] returns the value
@@not clear activated@@ its homeContext

As a block is always evaluated in its homeContext, it is poss
a method which has already returned using other return. T
trapped by the VM.

Object>>returnBlock

^[^self]

Object new returnBlock

-> Exception
|b| 

b:= [:x| Transcript show: x. x].

b value: ‘ a’. b value: ‘ b’.

b:= [:x| Transcript show: x. ^x].

b value: ‘ a’. b value: ‘ b’.

Continuation blocks cannot be executed several times!



Object-Oriented Design with Smalltalk a Pure OO Language 

U 1.278
niversität Bern Ducasse Stéphane

Example of Block Evaluation
Test>>testScope

"self new testScope"

|t|

t := 15.

self testBlock: [Transcript show: t printString.

 ^self ]

Test>>testBlock:aBlock

|t|

t := 50.

aBlock value.

self halt.

Test new testBlock 

-> 15 and not halt!!



Object-Oriented Design with Smalltalk a Pure OO Language 

U 1.279
niversität Bern Ducasse Stéphane

Creating an escape mechanism
|val|

val := [:exit |

|goSoon|

goSoon := Dialog confirm: 'Exit now?'.

goSoon ifTrue: [exit value: 'Bye'].

Transcript show: 'Not exiting'.

'last value'] valueWithExit.

Transcript show: val

yes -> print Bye 
no -> print Not Exiting last value

BlockClosure>>valueWithExit

^self value: [:arg| ^arg ]



Object-Oriented Design with Smalltalk a Pure OO Language 

U 1.280
niversität Bern Ducasse Stéphane



Smalltalk a Pure OO Language Smalltalk in a Nutshell

Universität Bern Ducasse Stéphane 1.281

Design Considerations
❑ Abstract Classes
❑ Design Issues
❑ Elementary Design Issues
❑ Idioms
❑ Some selected design patterns



Smalltalk a Pure OO Language Basic Elements of Design

U 7.282

 is independent from the 

ethods to which it should 

sponsibility.
error.

stantiable classes. 
lass comment.
should be specialized. 

o true and false.  Its subclasses 

lse:ifTrue:
niversität Bern Ducasse Stéphane

Abstract Classes
• Should not be instantiated (deferred class of Eiffel).
• Defines a protocol common to a hierarchy of classes that
representation choices.
• A class is considered as abstract as soon as one of the m
respond to is not implemented (can be a inherited one).

• Deffered method send the message self subclassRe
• Depending of the situation, override #new to produce an 

• Abstract classes are not syntactically distinguable from in
BUT as conventions use class comments: So look at the c
and write in the comment which methods are abstract and 
Advanced tools check this situation.

Class Boolean is an abstract class that implements behavior common t

are True and False. Subclasses must implement methods for 

logical operations &, not, | 

controlling and:, or:, ifTrue:, ifFalse:, ifTrue:ifFalse:, ifFa



Smalltalk a Pure OO Language Basic Elements of Design

U 7.283

 False
niversität Bern Ducasse Stéphane

Case Study: Boolean, True and



Smalltalk a Pure OO Language Basic Elements of Design

U 7.284

swer false if the receiver is

quivalent to aBoolean."

r essential methods and Just In Time 
de. So the second time it is invoked 
 

niversität Bern Ducasse Stéphane

 

Boolean

 

Abstract method

 Boolean>>not

   "Negation.  Answer true if the receiver is false, an
true."

self subclassResponsibility

 

Concrete method efined in terms of an abstract method

 

Boolean>>xor: aBoolean 

   "Exclusive OR.  Answer true if the receiver is not e

   ^(self == aBoolean) not

 

When 

 

#not

 

 will be defined, 

 

#xor:

 

 is automatically defined

 

Note that VisualWorks introduced a kind of macro expansion, optimisation fo
compilation. A method is executed once and after it is compiled in native co
the native code is executed.



Smalltalk a Pure OO Language Basic Elements of Design

U 7.285

ypically not invoked because
iteral blocks."

ypically not invoked because
iteral blocks."
 

niversität Bern Ducasse Stéphane

 

False and True

 

False>>not

"Negation -- answer true since the receiver is false."

   ^true

True>>not

"Negation--answer false since the receiver is true."

   ^false

False>>ifTrue: trueBlock ifFalse: falseBlock 

   "Answer the value of falseBlock. This method is t
ifTrue:/ifFalse: expressions are compiled in-line for l

^falseBlock value

True>>ifTrue: trueBlock ifFalse: falseBlock 

   "Answer the value of trueBlock. This method is t
ifTrue:/ifFalse: expressions are compiled in-line for l

^trueAlternativeBlock value



Smalltalk a Pure OO Language Basic Elements of Design

U 7.286
 

niversität Bern Ducasse Stéphane

 

CaseStudy: Magnitude: 

 

1 > 2  =  2 < 1 = false

Magnitude>> < aMagnitude 

  ^self subclassResponsibility

Magnitude>> = aMagnitude 

^self subclassResponsibility

Magnitude>> <= aMagnitude 

^(self > aMagnitude) not

Magnitude>> > aMagnitude 

^aMagnitude < self

Magnitude>> >= aMagnitude 

^(self < aMagnitude) not

Magnitude>> between: min and: max 

^self >= min and: [self <= max]

1 <= 2   = (1 > 2) not

         = false not

         = true



Smalltalk a Pure OO Language Basic Elements of Design

U 7.287

te of the receiver."

 as the receiver. "
 

niversität Bern Ducasse Stéphane

 

Date

 

Date>>< aDate 

   "Answer whether the argument, aDate, precedes the da

year = aDate year

      ifTrue: [^day < aDate day]

      ifFalse: [^year < aDate year]

Date>>= aDate 

   "Answer whether the argument, aDate, is the same day

self species = aDate species

      ifTrue: [^day = aDate day & (year = aDate year)]

      ifFalse: [^false]

Date>>hash

   ^(year hash bitShift: 3) bitXor: day



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.288

d Class 
 

niversität Bern Ducasse Stéphane

 

18. Basic Elements of Design an
Behavior

 

❑

 

Class definition

 

❑

 

Instance initialisation 

 

❑

 

Enforcing the instance creation 

 

❑

 

Instance/Class methods

 

❑

 

Instance variable/ Class instance variables

 

❑

 

Class initialisation

 

❑

 

Law of Demeter

 

❑

 

Factoring Constant

 

❑

 

Abstract Classes

 ❑ Template Methods

 

❑ Delegation 

❑

 

Bad Style



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.289

et

ee.

ts
 

niversität Bern Ducasse Stéphane

 

A First Implementation of Pack

 

Object subclass: #Packet

instanceVariableNames: ‘contents addressee originator ‘

classVariableNames: ‘’

poolDictionaries: ‘’

category: ‘Lan-Simulation’

 

One instance method

 

Packet>>printOn: aStream

super printOn: aStream.

aStream nextPutAll: ‘ addressed to: ‘; nextPutAll: self address

aStream nextPutAll: ‘ with contents: ’; netxPutAll: self conten

 

Some Accessors

 

Packet>>addressee

^addressee

Packet>>addressee: aSymbol

addressee := aSymbol



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.290
 

niversität Bern Ducasse Stéphane

 

Packet CLASS Definition

 

Packet Class is 

 

Automatically

 

 defined 

 

Packet class

   instanceVariableNames: ''

 

Example of instance creation

 

Packet new addressee: # mac ; contents: ‘hello mac’



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.291

 clients
out address
le, printOn:) 
 

niversität Bern Ducasse Stéphane

 

Fragile Instance Creation

 

Packet new addressee: # mac ; contents: ‘hello mac’

 

If we do not specify a contents, it breaks!

 

|p|

p := Packet new addressee: #mac.

p printOn: aStream -> error

 

Problems of this approach:

 

❑

 

responsibility of the instance creation relies on the

 

❑

 

can create packet without contents, with

 

❑

 

instance variable not initialized -> error (for examp

 

=> system fragile

Solutions: 
❑ Automatic initialization of instance variables
❑ Proposing a solid interface for the creation



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.292

lization
ith  uninitialized instance 

tically called by creation 

tance variables and override 

Class Method

Instance Method

ng anInitializedPacket

 method like #new
niversität Bern Ducasse Stéphane

Assuring Instance Variable Initia
Problem.  By default #new class method returns instance w
variables. Moreover, #initialize method is not automa
methods #new/new:

How to initialize a newly created instance ?

Solution.  Defines an instance method that initializes the ins
#new to invoke it.

1 Packet class>>new

2 ^ super new initialize

3 Packet>>initialize

super initialize.

4 contents := ‘default message’

Packet new (1-2) -> aPacket initialize (3-4) -> returni

Remind.  You cannot access instance variable from a class



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.293

name]

 are sorted 

lass method

Instance method
niversität Bern Ducasse Stéphane

Other Instance Initialization
step 1. SortedCollection sortBlock: [:a :b| a name < b 

SortedCollection class>>sortBlock: aBlock 

  "Answer a new instance of SortedCollection such that its elements

according to the criterion specified in aBlock."

^self new sortBlock: aBlock C

step 2. self new = aSortedCollection 

step 3. aSortedCollection sortBlock: aBlock

step 4. returning the instance aSortedCollection

step 1. OrderedCollection with: 1

Collection class>>with: anObject 

   "Answer a new instance of a Collection containing anObject."

| newCollection |

   newCollection := self new.

   newCollection add: anObject.

   ^newCollection



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.294

nterface

. 

. 
e use of #new
niversität Bern Ducasse Stéphane

Strengthen Instance Creation I
Problem.  

A client can still create aPacket without address
Solution.  

❑ Force the client to use the class interface creation
❑ Providing an interface for creation and avoiding th

Packet send: ‘Hello mac’ to: #Mac

First try: 
Packet class>>send: aString to: anAddress 

^ self new contents: aString ; addressee: anAddress



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.295

d:to:'

 in case of evolution

anAddress
niversität Bern Ducasse Stéphane

Forbidding new
Problem.  We can still use #new to create fragile instances
Solution. #new should raise an error! 

Packet class>>new

self error: 'Packet should only be created using sen

But we still have to be able to create instance!
Packet class>>send: aString to: anAddress

^ self new contents: aString ; addressee: anAddress

=> raises an error
Packet class>>send: aString to: anAddress

^ super new contents: aString ; addressee: anAddress

=> bad style: link class and superclass dangerous

Solution: use basicNew and basicNew: 
Packet class>>send: aString to: anAddress

^ self basicNew contents: aString ; addressee: 



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.296
niversität Bern Ducasse Stéphane



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.297

 Variables
ket).
ass 
reated instances, number of  

ce creation, class  

havior can be used to define 

ded. Instead of writing: 
niversität Bern Ducasse Stéphane

Class Methods - Class Instance
❑ Classes (Packet class) represents class (Pac
❑ Class instance variable are instance variable of cl

=> should represent the state of class: number of c
messages sent, superclasses, subclasses....

❑ Class methods represent CLASS behavior: instan
initialization, counting the number of instances....

❑ If you weaken the second point: class state and be
common properties shared by all the instances

Ex: If we want to encapsulate the way “no next node” is co
aNode nextNode isNil => aNode hasNextNode

Node>>hasNextNode

^ self nextNode = self noNextNode

Node>>noNextNode

^self class noNextNode

Node class>>noNextNode

^ nil



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.298

y by the programmer.
s instance variables.
.

thNames SecondsInDay
niversität Bern Ducasse Stéphane

Class Initialization
Automatically called by the system at load time  or explicitl
- Used to initialize a classVariable, a pool dictionary or clas
- ‘Classname initialize’ at the end of the saved files

Example: Date

Magnitude subclass: #Date

   instanceVariableNames: 'day year'

   classVariableNames: 'DaysInMonth FirstDayOfMonth Mon

WeekDayNames'

   poolDictionaries: ''

   category: 'Magnitude-General'



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.299

f the months and days and the
 each month. "

 ).

 ).

274 
niversität Bern Ducasse Stéphane

Date class>>initialize
Date class>>initialize

   "Initialize class variables representing the names o
number of seconds, days in each month, and first day of

   "Date initialize."

   MonthNames := #(January February March April May 

June July August September October November December

   SecondsInDay := 24 * 60 * 60.

   DaysInMonth := #(31 28 31 30 31 30 31 31 30 31 30 31

   FirstDayOfMonth := #(1 32 60 91 121 152 182 213 244 

305 335 ).

   WeekDayNames := #(Monday Tuesday Wednesday Thursday 

Friday Saturday Sunday )



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.300

edded.period key:word: .   ' 

' #key:word: #'.')

 token tokenType saveComments

ting the same object (the 

tance can customized the 
niversität Bern Ducasse Stéphane

A Case Study: Scanner

Scanner new 

scanTokens: 'identifier keyword: 8r31 ''string'' emb

-> #(#identifier #keyword: 25 'string' 'embedded.period

Class Definition
Object subclass: #Scanner

instanceVariableNames: 'source mark prevEnd hereChar
currentComment buffer typeTable '

classVariableNames: 'TypeTable '

poolDictionaries: ''

category: 'System-Compiler-Public Access'

Why having an instance variable and a classVariable deno
scanner table)?

❑ TypeTable is used to initialize once the table
❑ typeTable is used by every instance and each ins

table (copying).



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.301

xBinary].

formerly up arrow"
niversität Bern Ducasse Stéphane

Scanner class>>initialize
"Scanner initialize"

| newTable |

newTable := ScannerTable new: 255 withAll: #xDefault. "default"

newTable atAllSeparatorsPut: #xDelimiter.

newTable atAllDigitsPut: #xDigit.

newTable atAllLettersPut: #xLetter.

newTable at: $_ asInteger put: #xLetter.

'!%&*+,-/<=>?@\~' do: [:bin | newTable at: bin asInteger put: #

"Other multi-character tokens"

newTable at: $" asInteger put: #xDoubleQuote.

...

"Single-character tokens"

newTable at: $# asInteger put: #literalQuote.

newTable at: $( asInteger put: #leftParenthesis.

...

newTable at: $^ asInteger put: #upArrow.  "spacing circumflex, 

newTable at: $| asInteger put: #verticalBar.

TypeTable := newTable



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.302

le that points to the table that 

g the initialization of the table
niversität Bern Ducasse Stéphane

Scanner
Instances only access the type table via the instance variab
has been initialized once. 

Scanner class>> new

^super new initScanner

Scanner>>initScanner

buffer := WriteStream on: (String new: 40).

saveComments := true.

typeTable := TypeTable

A subclass just has to specialize initScanner without copyin
MyScanner>>initScanner

super initScanner

typeTable := typeTable copy.

typeTable at: $( asInteger put: #xDefault.

typeTable at: $) asInteger put: #xDefault



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.303
niversität Bern Ducasse Stéphane



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.304

collaborations

class
niversität Bern Ducasse Stéphane

What is an object?

a class should have ONE clear responsibility and 

Write it in the class comments
if you cannot, there is something wrong with yoru 



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.305

orkstation ', self name asString]

tation have to be changed too
niversität Bern Ducasse Stéphane

Why Coupled Classes are Bad?
Workstation>>accept: aPacket

aPacket addressee = self name

ifTrue:[ Transcript show: 'A packet  is accepted by the W

ifFalse: [super accept: aPacket]

If Packet changes the way addressee is represented Works



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.306

f

niversität Bern Ducasse Stéphane

The Law ot Demeter
You should only send messages to:

- an argument passed to you 
- an object you create
- self, super
- your class

Avoid global variables
Avoid objects returned from message sends other then sel

someMethod: aParameter

self foo.

super foo.

self class foo.

self instVarOne foo.

instVarOne foo.

self classVarOne foo.

classVarOne foo.

aParameter foo.

thing := Thing new.

thing foo



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.307

 

sed as an argument to me”

ted it”

talk to myself“

I should not know”

ata is a dictionary”
niversität Bern Ducasse Stéphane

Illustrating the Law of Demeter

NodeManager>>declareNewNode: aNode

|nodeDescription|

(aNode isValid) “Ok pas

ifTrue: [ aNode certified].

nodeDescription := NodeDescription for: aNode.

nodeDescription localTime. “I crea

self addNodeDescription: nodeDescription. “I can 

nodeDescription data “Wrong 

at: self creatorKey “that d

put: self creator



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.308

”
ess and accessor use
uld not  be invoked by clients
 protocol

t least at the beginning.
niversität Bern Ducasse Stéphane

About the Use of Accessors (i)
Literature says: “Access instance variables using methods

❑ Be consistent inside a class, do not mix direct acc
❑ First think accessors as private  methods that sho
❑ Only when necessary put accessors in accessing

Schedule>>initialize

tasks := OrderedCollection new. 

Schedule>>tasks

^tasks

BUT: accessors methods should be PRIVATE by default a

Accessors are good for lazy initialization
Schedule>>tasks

tasks isNil ifTrue:[task := ...].

^tasks



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.309

sors (ii)
ou provide a good data 

n Smalltalk) you could be 

f tasks is now a dictionary 

ts and provide a good 

ot the collection (else people
niversität Bern Ducasse Stéphane

About the Use of Public Acces
❑ This is not because accessors are methods that y

encapsulation. 
❑ If they are mentionned as public (no inforcement i

tempted to write in a client: 
❑

ScheduledView>>addTaskButton

...

model tasks add: newTask

What’s happen if we change the representation of tasks? I
===> THAT’S BREAK!!!.

❑ Take care about the coupling between your objec
interface!

Schedule>>addTask: aTask

tasks add: aTask

Returns consistenly the receiver or the element but the n
can look inside and modifies it) or returns a copy of it. 



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.310

else can do!

d: [each date>startDate])

otal + each amount]].
niversität Bern Ducasse Stéphane

Never to work that somebody 
Alan Knight

total := 0.

aPlant bilings do: [:each | (each status == #paid an

ifTrue: [total := t

Instead write

total := aPlant totalBillingsPaidSince: startDate



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.311

ed by the Workstation ', 

lete interface that propects 

ed by the Workstation ', self
niversität Bern Ducasse Stéphane

Provide a Complete Interface
Workstation>>addressee

^addressee

Workstation>>accept: aPacket

aPacket addressee = self name

ifTrue:[ Transcript show: 'A packet  is accept

self name asString]

ifFalse: [super accept: aPacket]

=> This is the responsibility of an object to propose a comp
itself from client intrusion.

Shift the responsibility to the Packet object
Packet>>isAddressedTo: aNode

^ addressee = aNode name

Workstation>>accept: aPacket

aPacket isAddressedTo: self

ifTrue:[ Transcript show: 'A packet  is accept
name asString]

ifFalse: [super accept: aPacket]



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.312
niversität Bern Ducasse Stéphane



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.313

ded. 
niversität Bern Ducasse Stéphane

Factoring Out Constants
Ex: If we want to encapsulate the way “no next node” is co
Instead of writing: 

Node>>nextNode

^ nextNode

NodeClient>>transmitTo: aNode

aNode nextNode = ‘no next node’

...

Write: 
NodeClient>>transmitTo: aNode

aNode hasNextNode 

....

Node>>hasNextNode

^ self nextNode = self class noNextNode

Node class>>noNextNode

^ ‘no next node’



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.314

ving any problems.
s to UI constants or database 
niversität Bern Ducasse Stéphane

Initializing without Duplicating
Node>>initialize

accessType := ‘local’

...

Node>>isLocal

^ accessType = ‘local’

=>
Node>>initialize

accessType := self localAccess

Node>>isLocal

^ accessType = self localAccess

Node>>localAccessType

^ ‘local’

Ideally you could be able to change the constant without ha
You may have to have mapping tables from model constant
constants. 



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.315

 Time

een class and their instances
niversität Bern Ducasse Stéphane

Constants Needed at Creation
Works well for:

Node class>>localNodeNamed: aString

|inst|

inst := self new.

inst name: aString.

inst type: inst localAccessType

If you want to have the following creation interface
Node class>>name: aString accessType: aType

^self new name: aString ; accessType: aType

Node class>>name: aString

^self name: aString accessType: self localAccessType

You need:
Node class>>localAccessType

^ ‘local’

=> Factor the constant between class and instance level
Node>>localAccessType

^self class localAccessType

=> you could also use a ClassVariable that are shared betw



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.316
niversität Bern Ducasse Stéphane



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.317

 argument?

fPrinter we only use coercion 
niversität Bern Ducasse Stéphane

Type Checking for Dispatching
How to invoke a method depending on the receiver and an
not so good solution:

PSPrinter>>print: aDocument
^ aDocument isPS

ifTrue: [self printFromPS: aDocument]
ifFalse: [self printFromPS: aDocument asPS]

PSPrinter>>printFormPS: aPSDoc
<primitive>

PdfPrinter>>print: aDocument
^ aDocument isPS

ifTrue: [self printFromPDF: aDocument asPDF]
ifFalse: [self printFromPDF: aDocument]

PdfPrinter>>printFormPS: aPdfDoc
<primitive>

As we do not know how to coerce form the PSPrinter to a Pd
between documents



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.318

 argument?
nd redispatch with the 

the receiver as an argument) 
c>>printFromPS: aPSprinter

<primitive>

oc>>printFromPdf: aPSprinter

PSprinter print: self asPS

c>>printFromPS: aPdfPrinter

PdfPrinter print: self asPdf

oc>>printFromPdf: aPdfprinter

primitive>
niversität Bern Ducasse Stéphane

Double Dispatch (i)
How to invoke a method depending on the receiver and an
Solution: use the information given by the single dispatch a
argument (send a message back to the argument passing 

(c) PSDo

(d) PdfD

a

(a) PSPrinter>>print: aDocument
^ aDocument printFromPS: self 

(b)  PdfPrinter>>print: aDocument
^ aDocument printFromPDF: self

(e) PSDo

a

(f) PdfD

<

Some Tests: 
psptr print: psdoc =>(a->c)
pdfptr print: pdfdoc => (b->f)
psptr print: pdfdoc => (a->d->b->f)
pdfptr print: psdoc => (b->e->b->f)



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.319
niversität Bern Ducasse Stéphane

A Step Back
Example: Coercion between Float and Integer

Not a really good solution: 

Integer>>+ aNumber
(aNumber isKindOf: Float)

ifTrue: [ aNumber asFloat + self]
ifFalse: [ self addPrimitive: aNumber]

Float>>+ aNumber
(aNumber isKindOf: Integer)

ifTrue: [aNumber asFloat + self]
ifFalse: [self addPrimitive: aNumber]

Here receiver and argument are the same,
we can coerce in both sense.



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.320

umbers (ii)
nteger>>sumFromInteger: anInteger
<primitive: 40>

loat>>sumFromInteger: anInteger
^ anInteger asFloat + self 

nteger>>sumFromFloat: aFloat
^aFloat + self asFloat

loat>>sumFromFloat: aFloat
<primitive: 41>
niversität Bern Ducasse Stéphane

Deeper on Double Dispatch : N
(c) I

(d) F

(a) Integer>>+ aNumber
^ aNumber sumFromInteger: self 

(b)  Float>>+ aNumber
^ aNumber sumFromFloat: self 

(e) I

(f) F

Some Tests: 
1 + 1: (a->c)
1.0 + 1.0: (b->f)
1 + 1.0: (a->d->b->f)
1.0 + 1: (b->e->b->f)



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.321
niversität Bern Ducasse Stéphane



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.322

nit of Reuse

iseViewRatio.

Size)

alRatio / maximiseViewRatio.

Size)
niversität Bern Ducasse Stéphane

Methods are the Elementary U
Node>>computeRatioForDisplay

|averageRatio defaultNodeSize|

averageRatio := 55.

defaultNodeSize := self mainWindowCoordinate / maxim

self window add:

UINode new with: 

(self bandWidth * averageRatio / defaultWindow

...

We are forced to copy the method! 
SpecialNode>>computeRatioForDisplay

|averageRatio defaultNodeSize|

averageRatio := 55.

defaultNodeSize := self mainWindowCoordinate + minim

self window add:

UINode new with: 

(self bandWidth * averageRatio / defaultWindow

...



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.323

nit of Reuse (ii)

indowSize)

iseViewRatio
niversität Bern Ducasse Stéphane

Methods are the Elementary U
Self sends = planning for Reuse

Node>>computeRatioForDisplay

|averageRatio |

averageRatio := 55.

self window add:

UINode new with: 

(self bandWidth * averageRatio / self defaultW

...

Node>>defaultNodeSize

^self mainWindowCoordinate / maximiseViewRatio

SpecialNode>>defaultNodeSize

^self mainWindowCoordinate + minimalRatio / maxim

 



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.324

nit of Reuse

iseViewRatio.

Size).

iseViewRatio.

Size).
niversität Bern Ducasse Stéphane

Methods are the Elementary U
Node>>computeRatioForDisplay

|averageRatio defaultNodeSize|

averageRatio := 55.

defaultNodeSize := self mainWindowCoordinate / maxim

self window add:

UINode new with: 

(self bandWidth * averageRatio / defaultWindow

...

We are forced to copy the method! 
SpecialNode>>computeRatioForDisplay

|averageRatio defaultNodeSize|

averageRatio := 55.

defaultNodeSize := self mainWindowCoordinate / maxim

self window add:

ExtendedUINode new with: 

(self bandWidth * averageRatio / defaultWindow



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.325

indowSize)
niversität Bern Ducasse Stéphane

Class Factories
Node>>computeRatioForDisplay

|averageRatio |

averageRatio := 55.

self window add:

self UIClass new with: 

(self bandWidth * averageRatio / self defaultW

...

Node>>UIClass

^UINode

SpecialNode>>UIClass

^ExtendedUINode



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.326
niversität Bern Ducasse Stéphane

Hook and Template Methods



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.327

rmally override the postCopy mes-

ance 

mplement 'copy'.

o the newly created instance.

er postCopy first. "

ments dependents with an instance

"

niversität Bern Ducasse Stéphane

Hook Example: Copying
Object>>copy

" Answer another instance just like the receiver. Subclasses no
sage, but some objects that should not be copied override copy. "

^self shallowCopy postCopy

Object>>shallowCopy

"Answer a copy of the receiver which shares the receiver's inst

variables."

<primitive: 532>

....

Object>>postCopy

" Finish doing whatever is required, beyond a shallowCopy, to i

Answer the receiver. This message is only intended to be sent t

Subclasses may add functionality, but they should always do sup

" Note that any subclass that 'mixes in Modelness' (i.e., imple

variable) must include the equivalent of 'self breakDependents'

^self



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.328
niversität Bern Ducasse Stéphane

Hook Specialisation 
Bag>>postCopy

"Make sure to copy the contents fully."

| new |

super postCopy.

new := contents class new: contents capacity.

contents keysAndValuesDo:

[:obj :count | new at: obj put: count].

contents := new.



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.329

rinting

iver."
niversität Bern Ducasse Stéphane

Hook and Template Example: P
Object>>printString

"Answer a String whose characters are a description of the rece

| aStream |

aStream := WriteStream on: (String new: 16).

self printOn: aStream.

^aStream contents

Object>>printOn: aStream 

"Append to the argument aStream a sequence of characters

that describes the receiver."

| title |

title := self class name.

aStream nextPutAll:

((title at: 1) isVowel ifTrue: ['an '] ifFalse: ['a ']).

aStream print: self class



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.330
niversität Bern Ducasse Stéphane

Override of the Hook
Array>>printOn: aStream 

"Append to the argument, aStream, the elements of the Array 

enclosed by parentheses."

| tooMany |

tooMany := aStream position + self maxPrint.

aStream nextPutAll: '#('.

self do: [:element | 

aStream position > tooMany

ifTrue: 

[aStream nextPutAll: '...(more)...)'.

^self].

element printOn: aStream]

separatedBy: [aStream space].

aStream nextPut: $)

False>>printOn: aStream 

"Print false."

aStream nextPutAll: 'false'



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.331

ault hook but still invokes the 
niversität Bern Ducasse Stéphane

Specialisation of the Hook
The class Behavior that represents a class extends the def
default one. 

Behavior>>printOn: aStream 

"Append to the argument aStream a statement of which

superclass the receiver descends from."

aStream nextPutAll: 'a descendent of '.

superclass printOn: aStream



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.332
niversität Bern Ducasse Stéphane



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.333

 printers for example lw100s 
niversität Bern Ducasse Stéphane

Towards Delegation
New requirement: A document can be printed on different
ot lw200s depending on which printer is first encountered. 
=> Packet need more than one destination

Ad-hoc Solution
LanPrinter>>accept: aPacket

(thePacket addressee = #*)

ifTrue: [ self print: thePacket]

ifFalse: [ (thePacket isAddressedTo: self)

ifTrue: [self print: thePacket]

ifFalse: [super accept: thePacket]]

LanPrinter>>print: aPacket

Transcript 

show: self name ; 

‘***** printing *****‘;cr

show: aPacket contents ;cr 



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.334

iting the class Printer 
niversität Bern Ducasse Stéphane

Limits of such ad-hoc solution

❑ is not general
❑ brittle because based on convention
❑ adding a new kind of address behavior require ed



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.335
niversität Bern Ducasse Stéphane

Object and Delegation



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.336

names)
niversität Bern Ducasse Stéphane

Trade Off
Delegation Pro

❑ No blob class: one class one responsibility
❑ Variation possibility

Delegation Cons
❑ Difficult to follow responsibilities and message flow
❑ Adding new classes = adding complexities (more 
❑ New object



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.337
niversität Bern Ducasse Stéphane

Bad coding practices



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.338

d:to:'

 in case of evolution

anAddress

 allocate only create instance 
niversität Bern Ducasse Stéphane

Different Self/Super
Do not do a super with a different method selector

Packet class>>new

self error: 'Packet should only be created using sen

Packet class>>send: aString to: anAddress

^ super new contents: aString ; addressee: anAddress

=> bad style: link class and superclass dangerous

Use basicNew and basicNew: 
Packet class>>send: aString to: anAddress

^ self basicNew contents: aString ; addressee: 

Never override basicNew and basicNew: (another name
without instance variable initialization)



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.339

s how to compare)

rom duplicate is not good

plicates

 not want it!!!!
niversität Bern Ducasse Stéphane

Do not overuse conversions

nodes asSet 

=> remove all the duplicated nodes (if node know

But a systematic use of asSet to protect yourself f

nodes asSet asOrderedCollection

=> returns an ordered collection after removing du

=> look for the real source of duplication if you do



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.340

when the key does not exist

Id was missing
niversität Bern Ducasse Stéphane

Hidding missing information
Dictionary>>at: aKey

raises an error if the key is not found

Dictionary>>at: aKey ifAbsent: aBlock

allows one to specify action <aBlock> to be done 

Do not overuse it!!!
nodes at: nodeId ifAbsent:[]

This is bad because at least we should know that the node



Object-Oriented Design with Smalltalk a Pure OO Language Basic Elements of Design

U 7.341
niversität Bern Ducasse Stéphane

Do not Check Return Values

Use exceptions



Smalltalk a Pure OO Language Design thoughts and iselected idioms

U 342

ted Idioms

r one!

ata
niversität Bern Ducasse Stéphane

19. Design Thoughts and Selec

The Object Manifesto
Be lazy: 

- Never do the job that you can delegate to anothe

Be private:
- Never let someone else plays with your private d

The Programmer Manifesto
- Say something only once



Smalltalk a Pure OO Language Design thoughts and iselected idioms

U 343

able task. Keep all of 
.

niversität Bern Ducasse Stéphane

Composed Method
How do you divide a program into methods?

- Messages take time
- Flow of control is difficult with small methods
But: 

- Reading is improved
- Performance tuning is simpler (Cache...)
- Easier to maintain / inheritance impact

Divide your program into methods that perform one identifi
the operations in a method at the same level of abstraction

Controller>>controlActvity

self controlInitialize.

self controlLoop.

self controlTerminate



Smalltalk a Pure OO Language Design thoughts and iselected idioms

U 344

contents: ‘hello mac’

 you have to read the code to 

each valid way to create an 

reate well-formed 

elf 
niversität Bern Ducasse Stéphane

Constructor Method
How do you represent instance creation?
Most simple way: Packet new addressee: # mac ; 

Good if there are different combinations of parameters. But
understand how to create an instance.
Alternative: make sure that there is a method to represent 
instance.

Provide methods in class “instance creation” protocol that c
instances. Pass all required parameters to them

Packet class>>send: aString to: anAddress

^ self basicNew contents: aString ; addressee: anAdress ; yours

Point class>>x:y:

Point class>> r: radiusNumber theta: thetaNumber

^ self 

x: radiusNumber * thetaNumber cos

y: radiusNumber * thetaNumber sin

SortedCollection class>>sortBlock: aBlock



Smalltalk a Pure OO Language Design thoughts and iselected idioms

U 345

 the class, how to you pass 

initialize)
the variables. Preface 

ee, because the return value 
niversität Bern Ducasse Stéphane

Constructor Parameter Method
Once you have the parameters of a Constructor Method to
them to the newly created instance? 
Packet class>>send: aString to: anAddress

^ self basicNew 

contents: aString ; 

addressee: anAdress ; 

yourself 

But violates the “say things only once and only once” rule (
Code a single method in the “private” procotol that sets all 
its name with “set”, then the names of the variables.

Packet class>>send: aString to: anAddress

^ self basicNew setContents: aString addressee: anAddress 

Packet>>setContents: aString addressee: anAddress

contents:= aString.

addressee := anAddress. 

^self

Note self (Interesting Result) in setContents:address
of the method will be used as the return of the caller



Smalltalk a Pure OO Language Design thoughts and iselected idioms

U 346

otocol. Name it by 
s”- is, was, will, has
niversität Bern Ducasse Stéphane

Query Method
How do you represent testing a property of an object? 
What to return from a method that tests a property?
Instead of: 
Switch>>makeOn

status := #on

Switch>>makeOff

status := #off

Switch>>status

^status 

Client>>update

self switch status = #on ifTrue: [self light makeOn]

self switch status = #off ifTrue: [self light makeOff]

Defines
Switch>>isOn, Switch>>isOff

Provide a method that returns a Boolean in the “testing” pr
prefacing the property name with a form of “ be” or “ ha

Switch>>on is not a good name... #on: or #isOn ?



Smalltalk a Pure OO Language Design thoughts and iselected idioms

U 347

od

 not the object itself

rty name, the other the 
out the current state
niversität Bern Ducasse Stéphane

Boolean Property Setting Meth
How do you set a boolean property?

Switch>>on: aBoolean

isOn := aBoolean

• Expose the representation of the status to the clients
• Responsibility of who turn off/on the switch: the client and

Create two methods beginning with “be”. One has the prope
negation. Add “toggle” if the client doesn’t want to know ab

beVisible/beInvisible/toggleVisible



Smalltalk a Pure OO Language Design thoughts and iselected idioms

U 348

 receiver should be 

n class
niversität Bern Ducasse Stéphane

Comparing Method
How do we order objects? 

<,<=,>,>= are defined on Magnitude and its subclasses.

Implement “<=” in “comparing” protocol to return true if the
ordered before the argument

But also we can use sortBlock: of SortedCollectio

...sortBlock: [:a :b | a income > b income]



Smalltalk a Pure OO Language Design thoughts and iselected idioms

U 349

ether?

voke them on the right order. 
e method by appending 
o be invoked. In the 
d, evaluate the block, 
niversität Bern Ducasse Stéphane

Execute Around Method 
How do represent pairs of actions that have to be taken tog
When a filed is opened it has to be closed....
Basic solutions: under the client responsibility, he should in
Code a method that takes a Block as an argument. Name th
“During: aBlock” to the name of the first method that have t
body of the Execute Around Method, invoke the first metho
then invoke the second method.
File>>openDuring: aBlock

self open.

aBlock value.

self close

Cursor>>showWhile: aBlock

|old|

old := Cursor currentCursor.

self show.

aBlock value.

old show



Smalltalk a Pure OO Language Design thoughts and iselected idioms

U 350

 of which executes one 

uture refinement by 
niversität Bern Ducasse Stéphane

Choosing Message
How do you execute one of several alternatives?
responsible := (anEntry isKindOf: Film)

ifTrue:[anEntry producer]

ifFalse:[anEntry author]

Use polymorphism
Film>>responsible

^self producer

Entry>>responsible

^self author

responsible := anEntry responsible

Send a message to one of several different of objects, each
alternative
Examples: 
Number>>+ aNumber

Object>>printOn: aStream

Collection>>includes: 

A Choosing Message can be sent to self in anticipation of f
inheritance. See also the State Pattern.



Smalltalk a Pure OO Language Design thoughts and iselected idioms

U 351

tion is simple?

system will run in the same 
d.

ates what is to be done 
 the message.
niversität Bern Ducasse Stéphane

Intention Revealing Message
How do you communicate your intent when the implementa

We are not writing for computer but for reader
ParagraphEditor>>highlight: aRectangle

self reverse: aRectangle

If you would replace #highlight: by #reverse: , the 
way but you would reveal the implementation of the metho

Send a message to self. Name the message so it communic
rather than how it is to be done. Code a simple method for

Collection>>isEmpty

^self size = 0

Number>>reciprocal

^ 1 / self



Smalltalk a Pure OO Language Design thoughts and iselected idioms

U 352

 type of the objects.

 a different implementations.
niversität Bern Ducasse Stéphane

Intention Revealing Selector
What do you name a method?
If we choose to name after HOW it accomplished its task
Array>>linearSearchFor:

Set>>hashedSearchFor:

BTree>>treeSearchFor:

These names are not good because you have to know the

Name methods after WHAT they accomplish
Better:

Collection>>searchFor: 

Even better: 
Collection>>includes: 

Try to see if the name of the selector would be the same in



Smalltalk a Pure OO Language Design thoughts and iselected idioms

U 353

l))

and not about the 

l))
niversität Bern Ducasse Stéphane

Name Well your Methods (i)
Not precise, not good
setType: aVal 

"compute and store the variable type"

self addTypeList: (ArrayType with: aVal).

currentType :=  (currentType computeTypes: (ArrayType with: aVa

Precise, give to the reader a good idea of the functionality 
implementation
computeAndStoreType: aVal 

"compute and store the variable type"

self addTypeList: (ArrayType with: aVal).

currentType :=  (currentType computeTypes: (ArrayType with: aVa

Instead Of: 
setTypeList: aList

"add the aList elt to the Set of type taken by the variable"

typeList add: aList.

Write: 
addTypeList: aList

"add the aList elt to the Set of type taken by the variable"

typeList add: aList.



Smalltalk a Pure OO Language Design thoughts and iselected idioms

U 354
niversität Bern Ducasse Stéphane

do:
Instead of writing that: 

|index|

index := 1.

[index <= aCollection size] whileTrue:

[... aCollection at: index...

index := index + 1]

Write that
aCollection do: [:each | ...each ...]



Smalltalk a Pure OO Language Design thoughts and iselected idioms

U 355

ach) abs].

nd also for sets.
niversität Bern Ducasse Stéphane

collect:
Instead of :

absolute: aCollection

|result|

result := aCollection species new: aCollection size.

1 to: aCollection size do: 

[ :each | result at: each put: (aCollection at: e

^ result

Write that: 
absolute: aCollection

^ aCollection collect: [:each| each abs]

Note that this solution works well for indexable collection a
The previous one not!!!



Smalltalk a Pure OO Language Design thoughts and iselected idioms

U 356
niversität Bern Ducasse Stéphane

isEmpty, includes:
Instead of writing: 
...aCollection size = 0 ifTrue: [...]

...aCollection size > 0 ifTrue: [...]

Write:
... aCollection isEmpty 

Instead of writing:
|found|

found := false.

aCollection do: [:each| each = anObject ifTrue: [found : = true]].

...

Or:
|found|

found := (aCollection 

detect: [:each| each | anObject]

ifNone:[ nil]) notNil.

Write:
|found|

found := aCollection includes: anObject



Smalltalk a Pure OO Language Design thoughts and iselected idioms

U 357

rpose in the design

ctive to the superclass name
niversität Bern Ducasse Stéphane

Class Naming
• Name a superclass with a single word that conveys its pu

Number

Collection 

View

Model

• Name subclasses in your hierarchy by prepending an adje

OrderedCollection

SortedCollection

LargeInteger



Smalltalk a Pure OO Language Design thoughts and iselected idioms

U 358

les?
niversität Bern Ducasse Stéphane

How to Name Instance Variab

nodes 

instead of 

nodeArray



Smalltalk Discussion Group 359.

U Stéphane Ducasse

avior

e instance already exists this 
tore and returned it as result 
niversität Bern

Singleton Instance: A Class Beh
Problem.  We want a class with a unique instance.
Solution.  We specialize the #new class method so that if on
will be the only one. When the first instance is created, we s
of #new. 

|aLan|

aLan := NetworkManager new

aLan == LAN new -> true

aLan uniqueInstance == NetworkManager new -> true



Smalltalk Discussion Group 360.

U Stéphane Ducasse

tation

ize].

sssary. It depends what we 
ueInstance is: 

re is no initialization.
niversität Bern

Singleton Instance’s Implemen

NetWorkManager class

instanceVariableNames: 'uniqueInstance '

NetworkManager class>>new

self error: ‘should use uniqueInstance’ 

NetworkManager class>>uniqueInstance

uniqueInstance isNil 

ifTrue: [ uniqueInstance := self basicNew initial

^uniqueInstance

Providing access to the unique instance is not always nece
want to express. The difference between #new and #uniq
- #new potentially initializes a new instance.
- #uniqueInstance only returns the unique instance the



Smalltalk Discussion Group 361.

U Stéphane Ducasse

l point of access to it

 isNil

iqueInstance := self basicNew]

e

hod
niversität Bern

Singleton
Intent 
Ensure a class has only one instance, and provide a globa

A Possible Structure

Singleton
singletonMethod
singletonState
«shared variable»
UniqueInstance

Singleton class
uniqueInstance
new

«unique
Instance»

Client
clientMethod

UniqueInstance

ifTrue:[Un

^UniqueInstanc

self error: ‘....’

Singleton uniqueInstance singletonMet



Smalltalk Discussion Group 362.

U Stéphane Ducasse

able (ex NotificationManager 

sign Notifier we lose all 

le access point. This class is 
n....).
niversität Bern

Discussion
In some Smalltalk singletons are accessed via a global vari
uniqueInstance notifier). 

SessionModel>>startupWindowSystem

“Private - Perform OS window system startup”

|oldWindows|

...

Notifier initializeWindowHandles.

...

oldWindows := Notifier windows.

Notifier initialize.

...

^oldWindows

Global Variable or Class Method Access
- Global Variable Access is dangerous: if we reas

references to current windows.
- Class Method is better because it provides a sing

responsible for the singleton instance (cretaion, initializatio



Smalltalk Discussion Group 363.

U Stéphane Ducasse

tity does not change (ex: 

ut that instance changes (ex: 
een in VisualWorks) 

ve at any point in time, but 
orks, ControllerManager. 
niversität Bern

Singleton Variations
- Persistent Singleton: only one instance exists and its iden
Notifier Manager in Visual Smalltalk)

- Transient Singleton: only one instance exists at any timeb
SessionModel in Visual Smalltalk, SourceFileManager, Scr

- Single Active Instance Singleton: a single instance is acti
other dormant instances may also exist. Project in VisualW



Smalltalk Discussion Group 364.

U Stéphane Ducasse

message (protected in C++)
 (for indexed classes)

es’
niversität Bern

Ensuring a Unique Instance
In Smalltalk we cannot prevent a client to send a 
To prevent additional creation: redefine new/new:

Object subclass: #Singleton

instanceVariableNames: ‘’

classVariableNames: ‘UniqueInstance’

poolDictionaries: ‘’

Singleton class>>new

self error: ‘Class ‘, self name, ‘ cannot create new instanc



Smalltalk Discussion Group 365.

U Stéphane Ducasse

ss
niversität Bern

Providing Access
Lazzy Access
Singleton class>>uniqueInstance

UniqueInstance isNil

ifTrue:[UniqueInstance := self basicNew].

^UniqueInstance

In this solution we lose the initialization part of the supercla
ifTrue: [UniqueInstance := self basicNew initialize]

if the initialization was done using initialize
ifTrue: [UniqueInstance := super new] 

is bad practice and may break



Smalltalk Discussion Group 366.

U Stéphane Ducasse

w?
niversität Bern

Accessing the Singleton via ne
Singleton class>>new

^self uniqueInstance

The intent (singletoness) is not clear anymore!
New is used to return newly created instances. 

|screen1 screen2|

screen1 := Screen new.

screen2 := Screen new

|screen1 screen2|

screen1 := Screen uniqueInstance.

screen2 := Screen uniqueInstance



Smalltalk Discussion Group 367.

U Stéphane Ducasse

chy
niversität Bern

Singletons in a Single Subhierar

- Singleton for an entire subhierarchy of classes:
Object subclass: #Singleton

instanceVariableNames: ‘’

classVariableNames: ‘UniqueInstance’

poolDictionaries: ‘’

ClassVariables are shared by all the subclasses

- Singleton for each of the classes in an hierarchy
Object subclass: #Singleton

instanceVariableNames: ‘’

classVariableNames: ‘’

poolDictionaries: ‘’

Singleton class instanceVariableNames: ‘uniqueInstance’

Singleton class>>uniqueInstance 

uniqueInstance isNil

ifTrue:[uniqueInstance := self basicNew].

^uniqueInstance

Instances variables of classes are private to the class



Smalltalk Discussion Group 368.

U Stéphane Ducasse

pting to define all its behavior 

ior of class
. 

in objects with metaconcerns.
ve multiple instances?
niversität Bern

Instance/Class Methods
When a class should only have one instance, it could be tem
at the class level.
But this is not that good:

- Theoritically: classes behavior represents behav
“Ordinary objects are used to model the real world
MetaObjects describe these ordinary objects”
Do not mess up this separation. DO not mix doma
- Pratical: What’s happen if later the object can ha
You have to change a lot of client code!



Smalltalk a Pure OO Language Smalltalk in a Nutshell

Universität Bern Ducasse Stéphane 1.369

Comparing
❑ Java, C++, Smalltalk
❑ Smalltalk for the Java Programmer
❑ Smalltalk for the Ada Programmer



Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.370

 Smalltalk

y

ols, development styles
niversität Bern Oscar Nierstrasz

20. Comparing C++, Java and
Commented version

Overview
❑ History:

☞ target applications, evolution, design goals
❑ Language features:

☞ syntax, semantics, implementation technolog
❑ Pragmatics:

☞ portability, interoperability, environments & to



Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.371

BOL

a

Lisp

Prolog

Modula-2

Modula-3

Oberon

a 95
niversität Bern Oscar Nierstrasz

History

1960

1970

1980

1990

FORTRAN
Algol 60

CO

PL/1
Simula 67

Smalltalk 72

Smalltalk 80

Objective C

C

C++ Ad

Pascal

ANSI C++

Self
Eiffel

Algol 68

Clu

Java Ad



Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.372

ces. “Elastic” applications.

s).
er high-performance 
niversität Bern Oscar Nierstrasz

Target Application Domains

Smalltalk
Originally conceived as PL for children.
Designed as language and environment for “Dynabook”.
Now: Rapid prototyping. Simulation. Graphical user interfa

C++
Originally designed for simulation (C with Simula extension
Now: Systems programming. Telecommunications and oth
domains.

Java
Originally designed for embedded systems.
Now: Internet programming. Graphical user interfaces.



Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.373

 entity. The language evolved 

 environments and 

irtual functions (Simula-like).
e, multiple inheritance, 
tures.
till evolving.

le language.
ensions (inner classes being 

rhauled to support a more 
ill expanding and evolving.
niversität Bern Oscar Nierstrasz

Evolution
Smalltalk

❑ Originally (1972) every object was an independent
to incorporate a meta-reflective architecture.

❑ Now the language (Smalltalk-80) is stable, but the
frameworks continue to evolve.

C++
❑ Originally called C with classes, inheritance and v
❑ Since 1985 added strong typing, new and delet

templates, exceptions, and many, many other fea
❑ Standard libraries and interfaces are emerging. S

Java
❑ Originally called Oak, Java 1.0 was already a stab
❑ Java 1.1 and 1.2 introduced modest language ext

the most important).
❑ The Abstract Windowing Toolkit was radically ove

general-purpose event model. The libraries are st



Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.374

st

ntically)
 innovations)
niversität Bern Oscar Nierstrasz

Language Design Goals

Smalltalk
❑ “Everything is an object”
❑ Self-describing environment
❑ Tinkerability

C++
❑ C with classes

☞ and strong-typing, and ...
❑ “Every C program is also a C++ program” ... almo
❑ No hidden costs

Java
❑ C++ minus the complexity (syntactically, not sema
❑ Simple integration of various OO dimensions (few
❑ “Java — it’s good enough”



Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.375

isms

ional sense
ncurrency, exceptions ...)
niversität Bern Oscar Nierstrasz

Unique, Defining Features

Smalltalk
❑ Meta-reflective architecture

☞ The ultimate modelling tool
❑ Mature framework technology

C++ 
❑ “Portable assembler” with HL abstraction mechan

☞ Programmer is in complete control
❑ Templates (computationally complete!)

Java
❑ Dynamically loaded classes

☞ Applications are not “installed” in the convent
❑ First clean integration of many OO dimensions (co



Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.376

Java

pure

al automatic

l yes (it depends)

e single

es no 

static

er files) packages

rated)
yes

(well integrated)

aries) yes (monitors)

limited
niversität Bern Oscar Nierstrasz

Overview of Features
Smalltalk C++

object model pure hybrid

memory management automatic manu

dynamic binding always optiona

inheritance single multipl

generics no templat

type checking dynamic static

modules namespaces no (head

exceptions
yes yes

(weakly integ

concurrency yes (semaphores) no (libr

reflection
fully reflective 
architecture

limited



Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.377

locks, returning etc.

ence levels, opaque type 
niversität Bern Oscar Nierstrasz

Syntax

Smalltalk
Minimal. Essentially there are only objects and messages. 
A few special operators exist for assignment, statements, b

C++
Baroque. 50+ keywords, two commenting styles, 17 preced
expressions, various syntactic ambiguities.

Java
Simplified C++. Fewer keywords. No operator overloading.



Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.378

lly aliases
niversität Bern Oscar Nierstrasz

Object Model

Smalltalk
❑ “Everything is an object”
❑ Objects are the units of encapsulation
❑ Objects are passed by reference

C++
❑ “Everything is a structure”
❑ Classes are the units of encapsulation
❑ Objects are passed by value

☞ Pointers are also values; “references” are rea

Java
❑ “Almost everything is an object”
❑ Classes are the units of encapsulation (like C++)
❑ Objects are passed by reference

☞ No pointers



Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.379

s to other objects
lected
ntrusive

rs to other objects
CF)

d

nd tools (Purify) can help

latform applications!
niversität Bern Oscar Nierstrasz

Memory Management

Smalltalk
❑ Objects are either primitive, or made of reference
❑ No longer referenced objects may be garbage col

☞ Garbage collection can be efficient and non-i

C++
❑ Objects are structures, possibly containing pointe
❑ Destructors should be explicitly programmed (cf. O

☞ Automatic objects are automatically destructe
☞ Dynamic objects must be explicitly deleted

❑ Reference counting, garbage collection libraries a

Java
❑ Objects are garbage collected

☞ Special care needed for distributed or multi-p
— closed world assumption!



Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.380

 inlining, JIT compilation etc.)

ler!)
 by the type system
nd!
e!
loat)

ically bound
rfere!
niversität Bern Oscar Nierstrasz

Dynamic Binding

Smalltalk
❑ Message sends are always dynamic

☞ aggressive optimization performed (automatic

C++
❑ Only virtual methods are dynamically bound

☞ explicit inling (but is only a “hint” to the compi
❑ Overloaded methods are statically disambiguated

☞ Overridden, non-virtuals will be statically bou
❑ Overloading, overriding and coercion may interfer
— A::f(float); B::f(float), B::f(int); A b = new A; b.f(3) calls A::f(f

Java
❑ All methods (except “static,” and “final”) are dynam
❑ Overloading, overriding and coercion can still inte



Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.381

ded for generic classes

s)
t”

ltiple interfaces)
cast” (dynamic typecheck)
d ...
niversität Bern Oscar Nierstrasz

Inheritance, Generics

Smalltalk
❑ Single inheritance; single roots: Object, 
❑ Dynamic typing, therefore no type parameters nee

C++
❑ Multiple inheritance; multi-rooted
❑ Generics supported by templates (glorified macro

☞ multiple instantiations may lead to “code bloa

Java
❑ Single inheritance; single root Object

☞ Multiple subtyping (a class can implement mu
❑ No support for generics; you must explicitly “down

☞ Several experimental extensions implemente



Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.382

 into categories

ing)
niversität Bern Oscar Nierstrasz

Types, Modules

Smalltalk
❑ Dynamic type-checking

☞ invalid sends raise exceptions
❑ No module concept — classes may be organized

☞ some implementations support namespaces

C++
❑ Static type-checking
❑ No module concept

☞ use header files to control visibility of names
— C++ now supports explicit name spaces? does this help?

Java
❑ Static and dynamic type-checking (safe downcast
❑ Classes live inside packages



Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.383

ems not to be widely used!

right context!

n or Error
lass)
asses/methods + wait/signal)
ich they are raised
niversität Bern Oscar Nierstrasz

Exceptions, Concurrency
Smalltalk

❑ Can signal/catch exceptions — se
❑ Multi-threading by instantiating Process

☞ synchronization via Semaphores

C++
❑ Try/catch clauses

☞ any value may be thrown
❑ No concurrency concept (various libraries exist)

☞ exceptions are not necessarily caught in the 

Java
❑ Try/catch clauses

☞ exception classes are subclasses of Exceptio
❑ Multi-threading by instantiating Thread (or a subc

☞ synchronization by monitors (synchronized cl
☞ exceptions are caught within the thread in wh



Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.384

 Class)
 Object)
ied at run-time
d

 packages

ction”
 and reacting on an object’s interface
niversität Bern Oscar Nierstrasz

Reflection

Smalltalk
❑ Meta-reflective architecture:

☞ every class is a subclass of Object (including
☞ every class is an instance of Class (including
☞ classes can be created, inspected and modif
☞ Smalltalk’s object model itself can be modifie

C++
❑ Run-time reflection only possible with specialized
❑ Compile-time reflection possible with templates

Java
❑ Standard package supports limited run-time “refle

☞ only supports introspection — i.e. inspecting



Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.385

piled to “byte code”, which is 
ust-in-time” to native code.

es (if link-compatible.) 
nguage model.

to resolve polymorphism at 

namically loaded into a Java 
piles it “just in time” to the 

; others must be loaded 
niversität Bern Oscar Nierstrasz

Implementation Technology
Smalltalk
Virtual machine running “Smalltalk image.” Classes are com
then “interpreted” by the VM — now commonly compiled “j
— Most of the Java VM techniques were pioneered in Smalltalk.
C++
Originally translated to C. Now native compilers.
Traditional compile and link phases. Can link foreign librari
Opportunities for optimization are limited due to low-level la
Templates enable compile-time reflection techniques (i.e., 
compile-time; to select optimal versions of algorithms etc.) 

Java
Hybrid approach.
Each class is compiled to byte-code. Class files may be dy
virtual machine that either interprets the byte-code, or com
target machine.
Standard libraries are statically linked to the Java machine
dynamically.



Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.386

ethods and middleware

 a “portable assembler”)
are

eware
niversität Bern Oscar Nierstrasz

Portability, Interoperability

Smalltalk
❑ Portability through virtual machine
❑ Interoperability through special bytecodes,native m

C++
❑ Portability through language standardization (C as
❑ Interoperability through C interfaces and middlew

Java
❑ Portability through virtual machine
❑ Interoperability through native methods and middl



Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.387

guages, with class and 
 facilities, version control, 

urify)
niversität Bern Oscar Nierstrasz

Environments and Tools

Advanced development environments exist for all three lan
hierarchy browsers, graphical debuggers, profilers, “make”
configuration management etc.

In addition:

Smalltalk
❑ Incremental compilation and execution is possible

— NB: Envy supports programming by teams (version control etc.)
C++

❑ Special tools exist to detect memory leaks (e.g., P

Java
❑ Tools exist to debug multi-threaded applications.



Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.388

ging.

gging cycles.

rameworks.
niversität Bern Oscar Nierstrasz

Development Styles

Smalltalk
❑ Tinkering, growing, rapid prototyping.
❑ Incremental programming, compilation and debug
❑ Framework-based (vs. standalone applications).

C++
❑ Conventional programming, compilation and debu
❑ Library-based (rich systems libraries).

Java
❑ Conventional, but with more standard libraries & f



Smalltalk-A Pure OO Language Comparing C++, Java and Smalltalk

U 7.389

; wrapping
logy

(need special tools)
amming

level implementation
g language complexity

and idioms
)

niversität Bern Oscar Nierstrasz

The Bottom Line ...
You can implement an OO design in any of the three.

Smalltalk
❑ Good for rapid development; evolving applications
❑ Requires investment in learning framework techno
❑ Not suitable for connection to evolving interfaces 

— Not so great for intensive data processing, or client-side internet progr
C++

❑ Good for systems programming; control over low-
❑ Requires rigid discipline and investment in learnin
❑ Not suitable for rapid prototyping (too complex)

Java
❑ Good for internet programming
❑ Requires investment in learning libraries, toolkits 
❑ Not suitable for reflective programming (too static



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.390

ammer
niversität Bern Ducasse Stéphane

21. Smalltalk for the Java Progr
❑ Syntax



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.391

r
class

ment”
niversität Bern Ducasse Stéphane

Syntax (i)
Receiver

null nil
this self
super supe
this.getClass() self 

Comment
/* comment */ “com
// comment 

Instance Variables Access
x x
this.x x
anotherObject.x

Instance Variable Definition
Integer n; n

Local Variable
Integer n; |n|



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.392

bject foo
foo
bject foo: a with: b
t at: a put: b
bject a ; b
bject a .
bject b 

Key put: aValue
niversität Bern Ducasse Stéphane

Syntax (ii)
Message Sends

anObject.foo() anO
foo() self 
anObject.foo(a,b) anO
aDict.atput(a,b) aDic
anObject a; anObject b anO

anO
anO

Method Definition
@@ at: a



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.393

]

 detect:,
]

niversität Bern Ducasse Stéphane

Syntax (iii)

if (isTrue){a} isTrue ifTrue: [a]
if (...) {a} else {b} ... ifTrue: [a] ifFalse: [b

... ifFalse:[b] ifTrue: [a]
while (isTrue) {a} @@ [a] whileTrue: 
do{} while() @@
for (n=1, n++, n<k){ @@ 1 to: k do: [:n| ...]

...n...}
for (n=1, n++, n<k){

......} k timesRepeat: [ ]
collection do:, collect:,

try {a} catch (Exception e) {b} [a] on: Exception do: [b



Smalltalk a Pure OO Language Smalltalk in a Nutshell

U 1.394

ith space’
niversität Bern Ducasse Stéphane

Syntax of Basic Types

‘astring ‘
$c
13
#aSymbol #’aSymbol w
#(1 $a #( 1 #+ ))

[:a :b| 
|c| ...]



 subprogram
s 

>
 m

ethods
- record com

ponent ->
 instance variable

- package variable ->
 classV

ariable
D

efinition
d D

efinition
ce C

reation M
ethod

ce C
reation
ern
D

ucasse S
téphane



a
c
k
e
t
 
i
s
 
n
e
w
 
O
b
j
e
c
t
 
w
i
t
h
 
r
e
c
o
r
d
 
-
-
 
t
h
e
 
r
e
c
o
r
d
 
c
o
m
p

n
t
e
n
t
s
:
 
U
n
b
o
u
n
d
e
d
_
S
t
r
i
n
g
;

d
r
e
s
s
e
e
:
 
I
n
t
e
g
e
r
;

g
i
n
a
t
o
r
:
 
N
o
d
e
;

c
o
r
d
;

t
s
;

ern
D

ucasse S
téphane

b
c
l
a
s
s
:
 
#
P
a
c
k
e
t

c
e
V
a
r
i
a
b
l
e
N
a
m
e
s
:
 
'
c
o
n
t
e
n
t
s
 
a
d
d
r
e
s
s
e
e
 
o
r
i
g
i
n
a
t
o
r
 
'

a
r
i
a
b
l
e
N
a
m
e
s
:
 
'
'

c
t
i
o
n
a
r
i
e
s
:
 
'
'

r
y
:
 
'
L
A
N
-
S
i
m
u
l
a
t
i
o
n
'

o
n
e
n
t
 



o
n
 
I
s
_
S
e
n
t
_
B
y
 
(
_
P
a
c
k
e
t
:
 
P
a
c
k
e
t
,
 
_
N
o
d
e
:
 
N
o
d
e
)
 
r
e
t

o
n
 
I
s
_
A
d
d
r
e
s
s
e
d
_
T
o
 
(
A
_
P
a
c
k
e
t
:
 
P
a
c
k
e
t
,
 
A
_
N
o
d
e
:
 
N
o
d
e

t
s
;

d
d
r
e
s
s
e
e

^
 
a
d
d
r
e
s
s
e
e

d
d
r
e
s
s
e
e
:
 
a
S
y
m
b
o
l

ern
D

ucasse S
téphane

a
d
d
r
e
s
s
e
e
 
:
=
 
a
S
y
m
b
o
l

s
A
d
d
r
e
s
s
e
d
T
o
:
 
a
N
o
d
e

e
t
u
r
n
s
 
t
r
u
e
 
i
f
 
I
’
m
 
a
d
d
r
e
s
s
e
d
 
t
o
 
t
h
e
 
n
o
d
e
 
a
N
o
d
e
”

e
l
f
 
a
d
d
r
e
s
s
e
e
 
=
 
a
N
o
d
e
 
n
a
m
e

s
S
e
n
t
B
y
:
 
a
N
o
d
e

^
 
o
r
i
g
i
n
a
t
o
r
 
=
 
a
N
o
d
e

u
r
n
 
B
o
o
l
e
a
n
;

)
 
r
e
t
u
r
n
 
B
o
o
l
e
a
n
;



d
r
e
s
s
e
e
;

u
r
e
 
A
d
d
r
e
s
s
e
e
 
(
A
_
P
a
c
k
e
t
:
 
i
n
 
o
u
t
 
P
a
c
k
e
t
,
 
A
n
_
A
d
d
r
e
s
s

P
a
c
k
e
t
.
A
d
d
r
e
s
s
e
e
 
:
=
 
A
n
_
A
d
d
r
e
s
s
;

d
r
e
s
s
e
e
;

t
s
;

d
d
r
e
s
s
e
e

ern
D

ucasse S
téphane

^
 
a
d
d
r
e
s
s
e
e

d
d
r
e
s
s
e
e
:
 
a
S
y
m
b
o
l

a
d
d
r
e
s
s
e
e
 
:
=
 
a
S
y
m
b
o
l

:
 
i
n
 
I
n
t
e
g
e
r
)
 
i
s



P
a
c
k
e
t
.
O
r
i
g
i
n
a
t
o
r
 
=
 
_
N
o
d
e
;

_
S
e
n
t
_
B
y
;

o
n
 
I
s
_
A
d
d
r
e
s
s
e
d
_
T
o
 
(
A
_
P
a
c
k
e
t
:
 
P
a
c
k
e
t
,
 
A
_
N
o
d
e
:
 
N
o
d
e

P
a
c
k
e
t
.
A
d
d
r
e
s
s
e
e
 
=
 
N
a
m
e
(
A
_
N
o
d
e
)
;
 
-
-
N
a
m
e
 
i
s
 
a
 
f
u
n
c
t
i

_
A
d
d
r
e
s
s
e
d
_
T
o
;

t
s
;

s
A
d
d
r
e
s
s
e
d
T
o
:
 
a
N
o
d
e

ern
D

ucasse S
téphane

e
t
u
r
n
s
 
t
r
u
e
 
i
f
 
I
’
m
 
a
d
d
r
e
s
s
e
d
 
t
o
 
t
h
e
 
n
o
d
e
 
a
N
o
d
e
”

e
l
f
 
a
d
d
r
e
s
s
e
e
 
=
 
a
N
o
d
e
 
n
a
m
e

s
S
e
n
t
B
y
:
 
a
N
o
d
e

^
 
o
r
i
g
i
n
a
t
o
r
 
=
 
a
N
o
d
e

)
 
r
e
t
u
r
n
 
B
o
o
l
e
a
n
 
i
s

o
n
 
o
n
 
t
y
p
e
 
N
o
d
e



t
s
;

o
d
y
 
P
a
c
k
e
t
s
 
i
s

o
n
 
S
e
n
d
_
T
o
 
(
C
o
n
t
e
n
t
s
:
 
S
t
r
i
n
g
,
 
A
d
d
r
e
s
s
:
 
I
n
t
e
g
e
r
)
 
r
e

(
T
o
_
U
n
b
o
u
n
d
e
d
(
C
o
n
t
e
n
t
s
)
,
 
I
n
t
e
g
e
r
,
 
E
m
p
t
y
_
N
o
d
e
)
;

n
d
_
T
o
;

t
s
;

ern
D

ucasse S
téphane

a
s
s
>
>
s
e
n
d
:
 
a
S
t
r
i
n
g
 
t
o
:
 
a
n
A
d
d
r
e
s
s

=
 
s
e
l
f
 
n
e
w
.

o
n
t
e
n
t
s
:
 
a
S
t
r
i
n
g
.

o
:
 
a
n
A
d
d
r
e
s
s
.

t
u
r
n
 
P
a
c
k
e
t
;



A
d
d
r
e
s
s
e
e
(
P
)
;

.
.
.

d
 
X
X
X
;

X

|
p
|

p
 
:
=
 
P
a
c
k
e
t
 
s
e
n
d
:
 
 
'
T
h
i
s
 
p
a
c
k
e
t
 
t
r
a
v
e
l
l
e
d
 
t
o
 
t
h
e
 

ern
D

ucasse S
téphane

p
 
a
d
d
r
e
s
s
e
e

p
r
i
n
t
e
r
'
 
t
o
:
 
1
2
3
.



Smalltalk a Pure OO Language References

U 9.402
niversität Bern Ducasse Stéphane

23. References



Smalltalk a Pure OO Language References

U 9.403

ce -> ObjectShare->Cincom) 

lk -> ObjectShare)

alltalk VM)
niversität Bern Ducasse Stéphane

A Jungle of Names
Some Smalltalk Dialects: 
• Smalltalk-80 -> ObjectWorks -> VisualWorks by (ParcPla

mac, pc, hp, linux, unix
www.objectshare.com/vwnc/

• IBM Smalltalk (pc, unix, aix...)
www.software.ibm.com/ad/smalltalk/

• Smalltalk-V (virtual) -> Parts ->  VisualSmalltalk by (Digita
• VisualAge = IBMSmalltalk + Envy (OTI ->  IBM)
• Smalltalk Agents (Mac)
• Smalltalk MT (PC, assembler)
• Dolphin Smalltalk (PC) 

www.object-arts.com/Home.htm
• Smalltalk/X -> www.exept.de (run java byte code into Sm
• Smalltalk/Express (free now but not maintained anymore)
• Enfin Smalltalk -> Object Studio (Cimcon)

www.cincom.com/objectstudio/



Smalltalk a Pure OO Language References

U 9.404

nts
niversität Bern Ducasse Stéphane

Team Development Environme
• Envy (OTI) most popular, available for VisualWorks
• VSE (Digitalk), 
• TeamV, 
• Store (new Objectshare)
• ObjectStudio v6 (similar to Envy) 



Smalltalk a Pure OO Language References

U 9.405

s) continous development 

ww.objectshare.com/vwnc/)

ivagr.html
niversität Bern Ducasse Stéphane

Some Free Smalltalks
Professional Environment

• VisualWorks 3.0 and VW5i on PC for free
• VisualWorks 3.0 and VW5i on Linux (Red-Hat)

www.objectshare.com/vwnc/
• Dolphin Smalltalk on PC (not the last version)

www.object-arts.com/Home.htm
New concepts

• Squeak (Morphic Objects + Socket + all Platform
http://www.squeak.org/

• Gnu Smalltalk (not evaluated)

Free for Universities: 
• VisualWorks 3.0 and VW5i) all platforms and products (w
• VisualAge is free for University:

www.software.ibm.com/ad/smalltalk/education/un
• Envy is free for University

contact amy_divis@oti.com 



Smalltalk a Pure OO Language References

U 9.406

lopment using VisualWorks, 
13-318387-4
veloppement d'applications, 

ley, 1998, 0-201-49827-8
per's Guide, Alec Sharp, 

entice Hall, 1997, isbn 0-13-
-Hall, 1997, ISBN 3-8272-

nd D. Thomas, Prentice-Hall, 

er’s Guide to VisualWorks, 

itle not know yet, SIG Press.
Alpert and K. Brown and B. 
niversität Bern Ducasse Stéphane

Main References
* (Intro + VW) Smalltalk: an Introduction to application deve
Trevor Hopkins and Bernard Horan, Prentice-Hall,1995, 0-
* (Intro + VW) Smalltalk, programmation orientée objet et dé
X. Briffault and G. Sabah, Eyrolles, Paris. 2-212-08914-7
+ (Intro + SEx) On To Smalltalk, P. Winston, Addison-Wes
** (Hints, Design + VW) Smalltalk by Example : The Develo
McGraw Hill, ISBN: 0079130364, 1997
** (Idioms) Smalltalk Best Practice Patterns, Kent Beck, Pr
476904-x (Praxisnahe Gebrauchsmuster, K. Beck, Prentice
9549-1).
* (Idioms) Smalltalk  with Style, S. Skublics and E. Klimas a
1996, 0-13-165549-3.

** (User Interface Reference + VW) The Smalltalk Develop
Tim Howard, Sigs Books, 1995, 1-884842-11-9
** (Envy) Joseph Pelrine, Alan Knight and Jan Steinman, T
** (Design) The Design Patterns Smalltalk Companion, S. 
Woolf, Addison-Wesley, 1998,0-201-18462-1



Smalltalk a Pure OO Language References

U 9.407

r Dialects)
Robson, Addison-Wesley, 
 original blue book). VW. old 

alltalk, Lewis J. Pinson and 
9127. (ST-80)

aleb Drake, Prentice Hall, 

rentice-Hall, 0-13-268335-0 

gs Publishing, 1995,0-8053-

Hall,90, (ParcPlace ST-80)
nser, Addison-Wesley,89, 0-
niversität Bern Ducasse Stéphane

Other References (Old or Othe
** Smalltalk-80: The language, Adele Goldberg and David 
1984-1989, 0-201-13688-0 (Purple book ST-80, part of the
but still really interesting: a reference!
• An introduction to Object-Oriented Programming and Sm
Richard S. Wiener, 1988, Addison-Wesley, ISBN 0-201-11

• Object-Oriented Programming with C++ and Smalltalk, C
1998, 0-13-103797-8
+ Smalltalk, Objects and Design, Chamond Liu, Manning-P
(IBM Smalltalk)
+ Smalltalk the Language, David Smith, Benjamin/Cummin
0908-X (IBM smalltalk)
• Discovering Smalltalk, John Pugh, 94 (Digitalk Smalltalk)
• Inside Smalltalk (I & II), Wilf Lalonde and Pugh, Prentice 
• Smalltalk-80: Bits of History and Words of Advice, G. Kra
201-11669-3



Smalltalk a Pure OO Language References

U 9.408

 Norton, 0-393-95505-2,1985
 the original VM description 

 0-201-11371-6, 1982 (called 

Smalltalk, ECOOP’89

ming Languages, Addsison-
niversität Bern Ducasse Stéphane

Other References (ii)

• The Taste of Smalltalk, Ted Kaehler and Dave Patterson,
• Smalltalk The Language and Its Implementation (contains
@@ available at @@), Adele Goldberg and Dave Robson,
The Blue Book)

To understand the language, its design, its intention....
• Peter Deutsch, The Past, The Present and the Future of 
• Byte 81 Special Issues on Smalltalk
• Alan Kay, The Early History of Smalltalk, History of Porgam
Wesley, 1996



Smalltalk a Pure OO Language References

U 9.409

ssSmalltalkUserGroup
niversität Bern Ducasse Stéphane

Some Web Pages
Wikis:

VisualWorks  /brain.cs.uiuc.edu/VisualWorks/
VisualAge /brain.cs.uiuc.edu/VisualAge/

STIC: 
/www.stic.org/

Cool Sites:
/www.smalltalk.org/
/www.goodstart.com/stlinks.html 
/st-www.cs.uiuc.edu/

ESUG, BSUG, GSUG, SSUG
www.esug.org/
www.bsug.org/
www.gsug.org/
www.iam.unibe.ch/~scg/cgi-bin/Smalltalk.cgi?Swi


	A Object-Oriented Programming with Smalltalk — a Pure Object Language and its Environment
	Infos
	Some Web Pages
	Structure of this Lecture (i)
	Structure of this Lecture (ii)
	What Topics Will (not) Be Addressed
	About this lecture
	@@To do list@@
	Basic Smalltalk
	1. Quick Overview of the Environment
	Mouse Semantics
	Class MenuBar
	Method MenuBar
	Cross Reference Facilities
	Filing Out
	Hierarchy Browser
	Debugger
	Crash Recovery
	Condensing Changes
	UIBuilder

	2. Smalltalk in Context
	Smalltalk: More than a Language
	Inspiration
	Precursor, Innovative and Visionary
	History
	History
	Smalltalk’s Concepts
	Messages, Methods and Protocols
	Objects, Classes and Metaclasses
	Smalltalk Run-Time Architecture
	VisualWorks Advanced Runtime Architecture

	3. The Taste of Smalltalk
	Some Followed Conventions
	Hello World!
	Everything is an object
	Objects communicate via messages (i)
	A LAN Simulator
	Three Kind of Objects
	Interactions Between Nodes
	Node and Packet Creation
	Objects communicates by messages (ii)
	Definition of a Lan
	Transmitting a Packet
	How to Define a Class?
	How to Define a Method?

	4. Smalltalk Syntax in a Nutshell
	Syntax in a Nutshell (i)
	Syntax in a Nutshell (ii)
	Messages instead of predefined Syntax
	Class and Method Definition
	Instance Creation

	5. Syntax and Messages
	Literal Overview (i)
	Literal Overview (ii)
	Literal Arrays and Arrays
	Deep Into Literal Arrays
	Deep into Literal Arrays (ii)
	Deep into Literal Arrays (iii)
	Symbols vs. Strings
	Variables Overview
	Temporary Variables
	Assigments
	Method Arguments
	Instance Variables
	Six pseudo-variables (i)
	Six pseudo-variables (ii)
	Global Variables
	Three Kinds of Messages
	Unary Messages
	Binary Messages
	Keyword Messages
	Composition
	Sequence
	Cascade
	yourself
	Have You Really Understood Yourself ?
	Block (i): Definition
	Block (ii): Evaluation
	Block (iii)
	Primitives
	What You Should Know

	6. Dealing with Classes
	Class Definition: The Class Packet
	Named Instance Variables
	Method Definition
	Accessing Instance Variables
	Lazy Initialization
	Methods always Return a Value
	Some Naming Conventions
	Inheritance in Smalltalk
	Remember...
	Node
	Workstation
	Message Sending & Method Lookup
	Method Lookup Examples (i)
	Method Lookup Examples (ii)
	Method Lookup Examples (ii)
	How to Invoke Overriden Methods?
	Semantics of super
	Let us be Absurb!
	Object Instantiation
	Direct Instance Creation: (basic)new/new:
	Messages to Instances that Create Objects
	Opening the Box
	Class specific Instantiation Messages
	What you should know

	7. Basic Objects, Conditional and Loops
	Boolean Objects
	Some Basic Loops
	For the Curious!
	Collections
	Another View
	Collection Methods
	Sequenceable Specific (Array)
	KeyedCollection Specific (Dictionary)
	Choose your Camp!
	Iteration Abstraction: do:/collect:
	Iteration Abstraction: select:/reject:/detect:
	Iteration Abstraction: inject:into:
	Collection Abstraction
	Examples of Use: NetworkManager
	Common Shared Behavior (i)
	Identity vs. Equality
	Common Shared Behavior (ii)
	Essential Common Shared Behavior
	What you should know

	8. Numbers
	Basics on Number
	Deeper on Numbers: Double Dispatch (i)
	Deeper on Numbers: Double Dispatch (ii)
	Deeper on Numbers: Coercion & Generality
	Deeper on Numbers: #retry:coercing:

	9. Exceptions
	Main Exceptions
	Basic Example of Catching
	Exception Sets
	Signaling Exception
	Exception Environment
	Resumable and Non-Resumable
	Resume:/Return:
	Exiting Handlers Explicity
	Examples
	Examples

	10. Streams
	Streams
	An Example
	printSring, printOn:
	Stream classes(i)
	Stream Classes (ii)
	Stream tricks
	Streams and Files
	Advanced Smalltalk

	11. Advanced Features
	@Types of Classes@
	Two Views on Classes
	Indexed Classes
	Indexed Class/Instance Variables
	The meaning of “Instance of” (i)
	Lookup and Class Messages
	The Meaning of “Instance-of” (iii)
	Metaclass Responsibilities
	Class Instance Variables
	About Behavior
	Class Method
	classVariable
	Class Instance Variables / ClassVariable
	Summary of Variable Visibility
	Example From The System: Geometric Class
	Circle
	poolDictionaries
	Example of PoolVariables

	12. The Model View Controller Paradigm
	Context
	Program Architecture
	Separation of Concerns I:
	Separation of Concerns II:
	The notion of Dependency
	Dependency Mechanism
	Publisher-Subscriber: A Sample Session
	Change Propagation: Push and Pull
	The MVC Pattern
	A Standard Interaction Cycle
	MVC: Benefits and Liabilities
	MVC and Smalltalk
	Managment of Dependents
	Implementation of Change Propagation
	Climbing up and down the Default-Ladder
	Problems with the Vanilla Change Propagation Mechanism
	Dependency Transformer
	Inside a Dependency Transformer
	ValueHolder
	A UserInterface Window
	Widgets
	The Application Model
	The fine-grained Structure of an Application
	MVC Bibliography

	13. Processes and Concurrency
	Concurrency and Parallelism
	Limitations
	Atomicity
	Safety and Liveness
	Processes in Smalltalk: Process class
	Processes in Smalltalk: Process class
	Processes in Smalltalk: Process states
	Process Scheduling and Priorities
	Processes Scheduling and Priorities
	Processes Scheduling: The Algorithm
	Process Scheduling
	Synchronization Mechanisms
	Synchronization Mechanisms
	Synchronization using Semaphores
	Semaphores
	Semaphores for Mutual Exclusion
	Synchronization using a SharedQueue
	Delays
	Promises

	14. Classes and Metaclasses: an Analysis
	The meaning of “Instance of”
	Concept of Metaclass & Responsibilities
	Classes, metaclasses and method lookup
	Responsibilities of Object & Class classes
	A possible kernel for explicit metaclasses
	Singleton with explicit metaclasses
	Deeper into it
	Smalltalk Metaclasses in 7 points
	Smalltalk Metaclasses in 7 points (iii)
	Smalltalk Metaclasses in 7 points (iv)
	Behavior Responsibilities
	ClassDescription Responsibilities
	Metaclass Responsibilities
	Class Responsibilities

	15. Most Common Mistakes and Debugging
	Most Common Beginner Bugs
	Return Value
	Take care about loops
	Instance Variable Access in Class Method
	Assignments Bugs
	Redefinition Bugs
	Library Behavior-based Bugs
	Use of Accessors: Protect your Cients
	Debugging Hints
	Where am I and how did I get here?
	Source Inspection
	Where am I going?
	How do I get out?
	Finding & Closing Open Files in VW
	Internal Structure of Object
	Three ways to create classes:
	Let us Code
	Format and other
	Object size in bytes
	Analysis

	16. Blocks and Optimization
	Full Blocks
	Copying Blocks
	Clean Blocks
	Inlined Blocks
	Full to Copy
	Contexts
	Inject:into:
	About String Concatenation
	Stream, Blocks and Optimisation (i)
	Stream, Blocks and Optimisation (ii)
	BlockClosure Class Comments

	17. Block Deep Understanding
	Lexically Scope
	Returning from a Block (i)
	Returning From a Block (ii)
	Example of Block Evaluation
	Design Considerations
	Abstract Classes
	Case Study: Boolean, True and False
	Boolean
	False and True
	CaseStudy: Magnitude:
	Date

	18. Basic Elements of Design and Class Behavior
	A First Implementation of Packet
	Packet CLASS Definition
	Fragile Instance Creation
	Assuring Instance Variable Initialization
	Other Instance Initialization
	Strengthen Instance Creation Interface
	Forbidding new
	Class Methods - Class Instance Variables
	Class Initialization
	Date class>>initialize
	A Case Study: Scanner
	Scanner class>>initialize
	Scanner
	What is an object?
	Why Coupled Classes are Bad?
	The Law ot Demeter
	Illustrating the Law of Demeter
	About the Use of Accessors (i)
	About the Use of Public Accessors (ii)
	Never to work that somebody else can do!
	Provide a Complete Interface
	Factoring Out Constants
	Initializing without Duplicating
	Constants Needed at Creation Time
	Type Checking for Dispatching
	Double Dispatch (i)
	A Step Back
	Deeper on Double Dispatch : Numbers (ii)
	Methods are the Elementary Unit of Reuse
	Methods are the Elementary Unit of Reuse (ii)
	Methods are the Elementary Unit of Reuse
	Class Factories
	Hook and Template Methods
	Hook Example: Copying
	Hook Specialisation
	Hook and Template Example: Printing
	Override of the Hook
	Specialisation of the Hook
	Towards Delegation
	Limits of such ad-hoc solution
	Object and Delegation
	Trade Off
	Bad coding practices
	Different Self/Super
	Do not overuse conversions
	Hidding missing information
	Do not Check Return Values

	19. Design Thoughts and Selected Idioms
	Composed Method
	Constructor Method
	Constructor Parameter Method
	Query Method
	Boolean Property Setting Method
	Comparing Method
	Execute Around Method
	Choosing Message
	Name Well your Methods (i)
	do:
	collect:
	isEmpty, includes:
	How to Name Instance Variables?
	Singleton Instance: A Class Behavior
	Singleton Instance’s Implementation
	Singleton
	Discussion
	Singleton Variations
	Ensuring a Unique Instance
	Providing Access
	Accessing the Singleton via new?
	Singletons in a Single Subhierarchy
	Instance/Class Methods
	Comparing

	20. Comparing C++, Java and Smalltalk
	History
	Target Application Domains
	Evolution
	Language Design Goals
	Unique, Defining Features
	Overview of Features
	Syntax
	Object Model
	Memory Management
	Dynamic Binding
	Inheritance, Generics
	Types, Modules
	Exceptions, Concurrency
	Reflection
	Implementation Technology
	Portability, Interoperability
	Environments and Tools
	Development Styles
	The Bottom Line ...

	21. Smalltalk for the Java Programmer
	Syntax (i)
	Syntax (ii)
	Syntax (iii)
	Syntax of Basic Types

	22. Smalltalk For the Ada Programmer
	Class Definition
	Method Definition Declaration (i)
	Method Definition (i)
	Method Definition(ii)
	Instance Creation Method
	Instance Creation

	23. References
	A Jungle of Names
	Team Development Environments
	Some Free Smalltalks
	Main References
	Other References (Old or Other Dialects)
	Other References (ii)
	Some Web Pages



