

OO Design with Smalltalk a
Pure Object Oriented
Language and Environment

About the exercises

The exercises developped in the following lessons have been originally written by Roel
Wuyts and Koen De Hondt from University of Brussels.I heavily extended them and
thanks them for sharing them with me. You can find all the information relative to the lec-
ture at University of Bern at http://www.iam.unibe.ch/@@

About me

Dr. Stéphane Ducasse
Room 101
Email: ducasse@iam.unibe.ch
WWW: http://www.iam.unibe.ch/~ducasse/

Feel free to come and ask questions about the lectures and possible student projects or
DiplomatArbeit. You can send email, I will reply but it is always better to have an answer
in front of a browser. The last versions of theses files will be available at http://
www.iam.unibe.ch/~ducasse/

Learning Objectives

At the end of this lecture you should be able to
• Read Smalltalk code and understand it
• Interact with the environment and find information
• Understand some basic library element
• Define your own classes
• Apply some elementary OO design guidelines

4 OO Design with Smalltalk a Pure Object Oriented Language and Envi-4 OO Design with Smalltalk a Pure Object Oriented Language and Envi-

How do you will get evaluated?

The most important question is how will you get evaluated for this lecture. As this lecture
is not obligatory and is a special lecture, there will be no final exam. However, you will
have to prove that you made your exercises and that you know how to interact with the sys-
tem. This means that at the end of the lecture I will personaly take some time with each of
the attendee and ask him to find some information with VisualWorks or explain some piec-
es of code. The questions that I will ask will be exactly at the same level that the first exer-
cises. So for those that will effectively open VisualWorks and do the exercises, there will
be no problems. For the other ones, I think that they will not obtain the lecture.

How do we will proceed?

You will have to do the following exercises at home or during your free time and during
the exercises sessions. Do the exercises of the first 4 chapters alone and ask me questions
during the first exercises session. Pay attention that the exercises at the end are more excit-
ing that the first stupid ones. I will start the exercises considering that the first 4 chapters
have been worked. So you can ask me questions on the previous chapters but you should
at least have tried before.

Outline of the exercises

1. Basics of the VisualWorks Smalltalk Environment

2. Objects and expressions

3. Viewing, creating and editing classes

4. Defining protocols and methods

5. Basic LAN Application

6. Understanding Self and Super Better

7. Extending the LAN Application

8. VisualWorks Application Building

9. More about Applications

10. Building an Interface for the LAN Application

11. Building a Dialog and originating packets

55

Where to get VisualWorks or Squeak?

You can get a full but non-commercial version of VisualWorks 3.0 at http://www.object-
share.com/vwnc/. Several versions are available: PC, Linux and Mac. The only difference
between a non-commercial version and a commercial one is that you should not develop
software that you sell with the non-commercial version. Moreover, you cannot load com-
mercial parcels (byte-code) into a non-commercial virtual machine. The inverse is possi-
ble i.e. you can distribute code developed with the non-commercial to person using a
commercial version.

For Squeak go to http://www.squeak.org/
Register, download and install the version. If you have any kind of problem for installing
VisualWorks, just ask and do not wait not the end of the lecture for that.

Some Conventions

Throughout the exercises I will use italic text (like this) for text you have to type and cou-
rier (

like that

) to refer all the Smalltalk entities (class names, instance variables,
methods).

6 Interacting with the VisualWorks Smalltalk Environment6 Interacting with the VisualWorks Smalltalk Environment

Chapter 1

Interacting with the
VisualWorks Smalltalk
Environment

1.1 Meaning of the files

In Smalltalk, the source code of classes and methods is translated to Smalltalk-byte code,
which is then interpreted and executed by the Smalltalk Virtual Machine. (Note that this is
an approximation because Smalltalk dialects were also the first languages to develop Just
in Time compilation, i.e. a method is compiled into byte-codes but also into native code
that is executed directly on the processor.)

When looking at VisualWorks Smalltalk, there are three important files:
• visual.sou (ASCII): contains the textual code of the initial classes of the system. This

file is never changed. It is only read, never written.
• visual.im (Binary): contains byte code of all the objects of the system, the libraries

and the modifications you made. This file is your personal file representing the state
of your system after every action you make.

• visual.cha (ASCII): contains all the modifications made in the image-file and all the
new source code since this was created (cha is for changes). This file should be in
sync with the .im file. This file is useful to restore the state after an image crash.

There are several implications to consider: You need to have write access to the .im and
.cha files. The .sou file is shared by all the users to save space. The VM being a byte-code
stack machine does not need to have the source code to work, only the byte-code (the im-
age) suffices. However you as a programmer need to read the code. In case of problem like
“source code not found”, the system automatically disassembles the byte-code and dis-
play it instead of the source code. That’s why if the browser shows you code like the one
displayed below containing t1 t2 … instead of normal variable names, do not save your
image and check if the source code is reachable by the system (look into the settings if the
variable VISUALWORKS points to the right directory).

accept: t1
" ***This is decompiled code.***
This may reflect a problem with the configuration of your image
and its sources and changes files.

Starting up 7Starting up 7

Please refer to the documentation and the settings tool for help
in

setting up the proper source code files."

self send: t1.
^self

1.2 Starting up

On Macintosh, to open an image:
• Drag the file 'visual.im' on the virtual machine to start the image if this is the first

time, or double click on it.
• If you want to start your own image, just double click on it or drag it over the virtual

machine.

On Solaris: you should invoke the virtual machine passing it an image as parameter. Let us
imagine that VisualWorks has been installed in the directory visualworks and that the vir-
tual machine is called vw you will have to type

visualworks/bin/vw visualworks/image/visual.im
Then after you can specify your own image visualworks/bin/vw myvisual.im

After opening the image, and thus starting a Smalltalk session, you see two windows: the
VisualWorks launcher (with menu, buttons and a transcript), and a Workspace window
(the one containing the copyright message). You can iconize or close this last one, since
we do not need it for the moment. Associated with the Launcher is the Transcript. The
Transcript is the widget that displays the information of the system below the Launcher
toolbar. In the displayed Launcher the Transcript displays the feedback we get when we
save an image. We will see later on how you can put your own messages there.

8 Interacting with the VisualWorks Smalltalk Environment8 Interacting with the VisualWorks Smalltalk Environment

The Launcher is the starting point for working with your environment and for the opening
of all the programming tools that you might need. To begin we will first create a fresh im-
age.

1.3 Creating your own image

The first time you started with the default image. This image is used by all the users (and
you if you want to restart with a clean image in the future), so you should not modify it.
Note that you may not have the right to do write access es with this image. We need to cre-
ate your own image. We do so by saving the default image.
We are going to create a new image for this lesson.

• Select ‘Save As...’ in the file-menu
• When the system prompts you for the name for the new image, give the name you

want for your image.
• Have a look at the Transcript and note what it says.

1.4 About the mouse

The Smalltalk Development Environment of which VisualWorks is a descendant was the
first application to use multiple overlapping windows and a mouse, back in 72 when it was
created. It extensively uses three mouse buttons that are context sensitive and can be used
everywhere throughout Smalltalk:

• The left mouse button is the select button: you can select text, select the window or
part of the window where you want to type text.

• The middle button is the operate button: once you have selected a piece of text or a
window, this button allows you to interact, to operate on it. Depending of the context,
you can for example, copy, paste or undo some text, or compile, format methods.

• The right button is the window button: this button has the responsibility to interact
with the windowing system. You can iconify, resize, relable, close windows.

On a Macintosh, where only one button is available, you have to use some keyboard keys
together with pressing your mouse button:

• The select button is the mouse button pressed alone.
• For the operate button, press the button while holding the alt-key pressed.
• For the window button, press the button while holding the apple-key pressed.

About the mouse 9About the mouse 9

1.4.1 Selecting text and doing basic text manipulations

One of the basic manipulations you do when programming is working with text. There-
fore, this section introduces you to the different ways you can select text, and manipulate
these selections.

The basic way of selecting text is by clicking in front of the first character you want to se-
lect, and dragging your mouse to the last character you want in the selection while keeping
the button pressed down. Selected text will be highlighted.

Exercise : 1

Select some parts of text in the

Transcript

.
Hints: There is a faster way to select a piece of text. You can also select a single word by
double clicking on it. When the text is delimited by '' (single quotes), "" (double quotes),
() (parentheses), [] (brackets), or {} (braces), you can select anything in between by dou-
ble clicking just after the first delimiter.

Exercise : 1

Try these new selection techniques.

Now we have a look at the text operations offered by the mouse menu. Select a piece of
text in the

Transcript

 and bring on the operate menu. Note that you have to keep your
mouse button pressed to keep seeing the window.

Exercise : 1

Copy this piece of text and paste it after your selection. Afterwards cut the newly inserted
piece of text.

Exercise : 1

See if there is an occurrence of the word visual in the Transcript. Note that to find things in
a text window, there is no need to select text. Just bring up the operate menu.

Exercise : 1

Replace the word visual with C++ using the replace operation (if it does not contain visual,
add this word or replace something else). Take your time and explore the different options
of the replace operation.

10 Interacting with the VisualWorks Smalltalk Environment10 Interacting with the VisualWorks Smalltalk Environment

1

Exercise : 1

Bring up the operate menu, but don't select anything yet. Press and hold the shift button,
and select paste in the operation menu. What happens?

1.5 Opening a WorkSpace Window

We will now open a workspace window, a text window much like the

Transcript

, you
use to type text and expressions and evaluate them. To open a workspace:

• Select the tools menu in the Launcher
• From the Tools menu, select Workspace
• Or you can click on the workspace icon:

You will see a framing rectangle (with your mouse in the upper left corner), that indi-
cates the position where the Workspace will open. You can move your mouse around to
change the position. Click one time once you have found a good spot for your Workspace.

Now your mouse is in the bottom right corner, and you can adjust the size of the Work-
space. If you click once more, once you have given it the size you like, the Workspace win-
dow appears. This is the basic way of opening any kind of VisualWorks application
window. Experiment with it until you feel comfortable with it.

1.5.1 The Window menu

To resize a window on the Macintosh, click in the lower right corner while holding the alt-
button (option). On a PC or Sun, you resize VisualWorks windows the same way as any
other window.

Once you have opened your Workspace window, bring up the window menu, and experi-
ment with it. Note that this menu is the same for each window, and contains the very basic
window manipulations.

1.6 Evaluating Expressions

In the operate menu you will see the next three different options do it, print it and inspect
for evaluating an expression and getting the result:

• do it: evaluates the current selection, and does not show any result of the evaluation
result. For example, if you evaluate the following expression

Browser open

using

Evaluating Expressions 11Evaluating Expressions 11

do it the system will open a class browser but it will not show you a result. We do it
when we are interested only by the side effects of an expression and not its result.

• print it: prints the result of the evaluation of your selection just after the selected text.
The result is automatically highlighted, so you can easily delete it if you want to. For
example if you select and evaluate the expression

Browser open

, the system will
open a class browser and will print the result of the expression in our example you
will obtain the string

an UIBuilder

. It is important to notice that the displayed re-
sult is a string. The system obtains such a string by sending the message

print-
String

 to the result. The same effect can be obtained by sending the message print-
String explicitly to the result of the expression evaluation. “Printing” the expression

Browser open

 is equivalent to do it the expression

Browser open print-
String

.
• inspect it: opens an inspector on the result of the evaluation. Inspecting works in a

similar way that printing an expression. The main difference is that the result is not
printed in the current window but open an inspector. The system obtains an inspector
by sending the message inspect to the result. The same effect can be obtained by
sending the message inspect explicitly. Inspecting the expression

Browser open

is equivalent to “do it” the expression

Browser open inspect

.

The distinction between these three operations is essential, so check that you REALLY
understand their differences.

Exercise: 1

select 3, bring up the operate menu, and select print it.

Exercise: 1

print the result of 3+4

Exercise 9: 1

Type

Date today

 and print it. Afterwards, select it again and inspect it. You should have
a window similar as the one below. Such a window is an inspector on the result of the eval-
uation of the expression

Date today

 (the expression tells to VisualWorks to create an
object containing the current date). This inspector window consists of two parts: the left
one is a list view containing

self

 (a pseudo variable containing the object you are in-
specting) and the instance variables of the object, in this case

day

 and

year

. On the right
is an edit field showing the value of the currently selected variable.

12 Interacting with the VisualWorks Smalltalk Environment12 Interacting with the VisualWorks Smalltalk Environment

• Click on

self

 in the inspector. What do you get? Does it resemble the result shown

by Date today printString

?
• Select

day

. What do you get? Now change this value, bring up the operate menu, and
select and accept it (menu operation). Click again on

self

. Any difference?
• In the inspector edit field (right field), type the following:

self weekday

, select it
and print it. This causes the message

weekday

 to be sent to

self

 (i.e. the date object
that we are currently inspecting) and the result to be printed. Experiment with other
expressions like:

self daysInMonth
self monthName

Close the inspector when you are finished.

Note. It is really important to be clear about the fact that an inspector is a debugging tool.
In this sense it directly accesses and shows the internals of an object, thus it violates the
encapsulation principle. An inspector does not use the public interface of an object but
uses the reflective capabilities of Smalltalk to access object internals. That’s why you
should be aware that some of the information that an inspector shows is strictly dependent
on the private internal representation of the inspected object.

• What hypothesis can you elaborate on the way dates are internally represented?
• Check the interface of the

Date

 class in particular the instance creation protocol on
the class side. Do you agree with us that there is a difference between the way objects
are represented and their public interface defined in terms of behavior?

Exercise: 1

Type in the Workspace the following expression:

Time now

, and inspect it. Have a look
at

self

 and the instance variables. Browse the interface of the class

Time

.

Exercise: 1

Type in the Workspace the following expression:

Time dateAndTimeNow

. This tells
VisualWorks to create an object representing both today's date and the current time, and

Using the System Transcript 13Using the System Transcript 13

open an inspector on it. Select the item

self

 in the inspector. [Note that

self

 is an object
called an Array. It holds on to two other objects (elements 1 and 2). You can inspect each
element to get either the time or the date object.

1.7 Using the System Transcript

We have already seen that the Transcript is a text window at the bottom of the Launch-
er where the system shows you important information. You can also use the Transcript
yourself as an inexpensive user interface.

If you have a Workspace open, place it so that it does not cover the Transcript . Other-
wise, open one and take care of where you put it. Now, in the Workspace, type:

Transcript cr.
Transcript show: 'This is a test'.
Trancript cr.

Select these 3 lines and “do it” them.

This will cause the string This is a test to be printed in the Transcript , preceded and
followed by a carriage return. Note that the argument of the show: message was a literal
string (you see this because it is contained in single quotes). This is important to know be-
cause the argument of the show: method always has to be a string. This means that if you
want any non-string object to be printed (like a Number for example), you first have to
convert it to a string by sending the message printStrin g to it. For example, type in the
workspace the following expression and evaluate it:
Transcript show: 42 printString, 'is the answer to the Universe'.
Note here that the comma is used to concatenate the two strings that are passed to the
show: message 42 printStrin g and 'is the answer to the Universe' .

Exercise: 1

Experiment on your own with different expressions.
Transcript cr ; show: ‘This is a test’ ; cr

Explain why this expression gives the same result that before. What is the semantics of
‘;’?

14 Objects and expressions14 Objects and expressions

Chapter 2

Objects and expressions
This lesson is about reading and understanding Smalltalk expressions, and differentiating
between different types of messages and receivers.
Note that in the expressions you will be asked to read and evaluate, you can assume that
the implementation of methods generally corresponds to what their message names imply
(i.e. 2 + 2 = 4).

Exercise: 1

For each of the Smalltalk expressions below, fill in the answers:

3 + 4

What is the receiver object?
What is the message selector?
What is/are the argument(s)?
What is the result returned by evaluating the expression, what is the string representation
of the result?

Date today
What is the receiver object?
What is the message selector?
What is/are the argument(s)?
What is the result returned by evaluating the expression, what is the string representation
of the result?

#(calvin hates suzie) at: 2 put: ‘loves’
What is the receiver object?
What is the message selector?
What is/are the argument(s)?
What is the result returned by evaluating the expression, what is the string representation
of the result?

Exercise: 1

What kind of object does the literal expression 'Hello, Dave' describe?

Exercise: 1

What kind of object does the literal expression #Node1 describe?

Exercise: 1

What kind of object does the literal expression #(1 2 3) describe?

Exercise: 1

What can one assume about a variable named Transcript ?

Using the System Transcript 15Using the System Transcript 15

Exercise: 1

What can one assume about a variable named rectangle ?

Exercise: 1

Examine the following expression :
| anArray |
anArray := #('first' 'second' 'third' 'fourth').
^anArray at: 2

What is the resulting value when it is evaluated (^ means return)?

Exercise: 1

Remember that the precedence rules are the following, the greater precedence is evaluat-
ed prior to the lower.

Unary > binary > keywords
() > Unary

Which sets of parentheses are redundant with regard to evaluation of the following expres-
sions:
((3 + 4) + (2 * 2) + (2 * 3))

(x isZero)
ifTrue: [....]

(x includes: y)
ifTrue: [....]

Exercise: 1

Guess what are the results of the following expressions:

6 + 4 / 2
1 + 3 negated
1 + (3 negated)
2 raisedTo: 3 + 2
2 negated raisedTo: 3 + 2

Exercise: 1

Examine the following expression:
25@50
What type of message is being sent?
What is the message selector?
What is the receiver object?
What is the resulting value (use VisualWorks for this)?

16 Objects and expressions16 Objects and expressions

Exercise: 1

Examine the following expression and write down the sequence of steps that the Smalltalk
system would take to execute the following expression:

Date today daysInMonth

Exercise: 1

Examine the following expression and write down the sequence of steps that the Smalltalk
system would take to execute the following expression:

Transcript show: (45 + 9) printString

Exercise: 1

Examine the following expression and write down the sequence of steps that the Smalltalk
system would take to execute the following expression:

5@5 extent: 6.0 truncated @ 7

Exercise: 1

In lesson 1 we saw how to write strings to the Transcript , and how the message
printString could be sent to any non-string object to obtain a string representation.
Now write a Smalltalk expression to print the result of 34 + 89 on the Transcript .
Test your code!

Exercise: 1

Examine the block expression
|anArray sum |
sum := 0.
anArray := #(21 23 53 66 87).
anArray do: [:item | sum := sum + item].
^sum

What is the final result of sum?
How could this piece of code be rewritten to use explicit array indexing (with the method
at:) to access the array elements? Test your version. Rewrite this code using in-

ject:into:

Exercise: 1

Evaluate the following expressions and elaborate a hypothesis regarding the difference
between identity and equality between strings and symbols.

‘lulu’ = ‘lulu’
‘lulu’ == ‘lulu’
#lulu = #lulu
#lulu == #lulu

Using the System Transcript 17Using the System Transcript 17

Exercise: 1

Understanding the common protocol shared by all the collections is a key point in learning
of Smalltalk and will help to write fast, simple and elegant code. You should be able to
identify and use the following methods: do:, collect:, detect:, reject:, select:, includes:,
isEmpty, size and inject:into:. Guess the results of the following expressions and check
them by evaluating them.

Knowing that ColorValue constantNames returns the following value
#(#black #blue #brown #chartreuse #cyan #darkCyan #darkGray #darkGreen #darkMa-
genta #darkRed #olive #gray #green #lightYellow #lightGray #magenta #navy #orange
#orchid #paleGreen #pink #purple #red #royalBlue #salmon #lightCyan #springGreen
#veryDarkGray #veryLightGray #white #yellow)

Guess the result of the following expressions:

ColorValue constantNames size

ColorValue constantNames includes: #turqoise

ColorValue constantNames select: [:each| each size = 4]

ColorValue constantNames detect: [:each| each size = 4]

ColorValue constantNames reject: [:each| each size = 4]

ColorValue constantNames collect: [:each| each asString]

ColorValue constantNames do: [:each | Transcript show: each ;cr]

ColorValue constantNames
inject: ''
into: [:final :current| final , current asString]

18 Viewing, creating and editing classes18 Viewing, creating and editing classes

Chapter 3

Viewing, creating and
editing classes
This lesson will show you the use of the System Browser to browse through the class sys-
tem, to define a class, and to save this class to file. In the first part, we will browse through
some classes. In the second part, we will create our first class. In the third part, we will save
it. For this lesson you need to work on your own image, so first start a new image (use vis-
ual.im), and save it under a different name (for example, lesson).

From the Browse menu in the Launcher, open a Class Browser. This is the basic tool you
use to find classes, browse their code, and implement your own classes and methods (see
the screen dump below). A class browser is composed by four list views and one edit field
below.

3.1 Looking at existing classes

A Smalltalk environment like VisualWorks contains more than 1500 classes and 8000
methods. To ease navigation in this huge amount of information, the system proposes
some means to organise and navigate through it. The idea is to categorize the classes and
the methods into groups or folders named class categories for the classes and method pro-

Looking at existing classes 19Looking at existing classes 19

tocols for the methods. Please note that these elements do not possess any language se-
mantics and are just a way to organize the information.

The Class Browser consists of four lists on top and of an edit space. The four lists are (from
left to right):

• The category list displays groups of classes (= categories). In the picture, the selected
class category is ‘Lan-Simulation’.

• The class list shows the classes in a selected category. In the picture, FileServer, Lan,
Node and Packet are the classes classified into the category ‘Lan-Simulation’.

• The protocol list shows groups of methods (= protocols) in a class. In the displayed
browser the protocol named sending/receiving groups all the methods related to the
packet acceptation and sending.

• The method list shows the methods of the selected protocol.
The contents of the edit field that spans the whole lower part of the window changes de-
pending on the current selection you make in the lists. Initially, with nothing selected, it is
empty. In the previous screenshot it displays the current selected method.

How to Browse?

One of the predominant impressions when one starts to program with Smalltalk is that
there is too much information available. The truth behind this is that all the information is
potentially available. However:

• You do not have to know all the classes and all the methods before starting to pro-
gram.

• The environment is there to help you to find the information you are looking for. Use
the method senders and implementors (menu operate on the method list pane, or Im-
plementors of the Browse Menu) to quickly identify which classes implement the se-
lected method and which methods callthe selected method.

A good way to read this information is to consider the class browser as a book: The four
panes representing the sections, subsections and subsubsections, the method senders and
implementors function as the cross-references and index, the explain function (menu op-
erate on the edit field) as a first aid. Moreover you do not have to read the body of the meth-
od to use it, normally reading the first line containing the method name and argument and
the comments explaining what the purpose of the method is should suffice. You should
only read a method body as your last chance to understand the purpose of the method or to
understand how the programmer implemented the functionality.

Illustration of Browsing

Let us consider the following example that first creates an empty ordered collection, then
adds 35 to it.

20 Viewing, creating and editing classes20 Viewing, creating and editing classes

If you inspect the result you will get 35 and not the collection. This is one of the famous
Smalltalk library legacy. One way to solve this behaviour is to add a new line containing
ordColl . However imagine that we want to understand why we have such a behaviour.

|ordColl|
ordColl := OrderedCollection new: 5.
ordColl add: 35.

After browsing the class OrderedCollection you should be able to obtain the fol-
lowing situation.

Reading the comments of the method add: clearly suffices to explain the described be-
havior: add: does not return the receiver (the collection) but the argument being added.
However imagine that such a comment would not exist. In this case, you can now read the
method body and understand that the result of add: is the one of addAll: . So reading
now the method addAll: you obtain the same situation: the comments define well the
behaviour of the method. Again reading quickly through the code allows us to identify the
expected behaviour: The return value is the added element.

This is just a simple illustration of the power of the ability to read the code. Since ALL the
environment and ALL the entities of the system are just objects, their code is available on
line. This means that you can for example read the code of all the objects you want to un-
derstand or extend.

Looking at existing classes 21Looking at existing classes 21

An important clarification. A lot of programmers are afraid by the fact that all the code is
available. Especially for their product they think that this is dangerous to openly deliver
the code they are producing. They are right. The main point here is that the source code is
only present in the development environment and not in the running executable. When you
sell a product developed in Smalltalk, first lot of the code implementing the development
environment is removed (debugger, compiler, parser, editor…) and second you normally
only delivers an executable consisting of a VM and the byte code of your application, not
its source code.

3.1.1 Exercises

We will begin with selecting a category called Graphics-Geometry . When you do that
the content of the edit field will be updated to present you a class-template. This template
is used when you want to create classes (we will do so later on). The class list shows the
classes in the selected category.

Exercise: 1

Now select the class Point . The edit field shows the definition of the class Point . Note
how the template is filled in. Try to understand the structure of this class.

• Ask for all the references to this class
• Ask for all references to the instance variable x

• Ask for all the senders of the method x

• Ask for the comment of the class Point

You can now select the protocol called accessing . The edit field updates again, to ena-
ble you to add a method to the class Point in the selected protocol. Have a look at the dif-
ferent protocols and their methods. Select methods in the method list, and look at their
code. Begin in the accessing protocol, and try to understand what is going on.

Exercise: 1

Every list in the upper half of the class browser has its own operation menu that is dis-
played if you press the operation button on a list. Do this for the four lists, and try out any
commands that you do not fully understand (do not remove anything).

Exercise: 1

What are the superclasses of Array ?

22 Viewing, creating and editing classes22 Viewing, creating and editing classes

Exercise: 1

Who references (by name) the class ByteArray ?

Exercise: 1

How many instance variables does an instance of class LuminanceBasedColorPol-
icy have?

Exercise: 1

Using the method sender and implementor functionality describe step by step how you
would rename a method such that other methods that once used it can still do? A freely
available tool, the Refactoring Browser that you can load (menu Tools item Load Parcel
Named), does all these steps automatically for you. It contains a lot more refactorings and
is a really good browser. Try it.

Exercise: 1

Find at least 3 classes that implement the method at:

Exercise: 1

Can I compare instances of the class Date with the > and < operators? Give reasons for
your answer.

Exercise: 1

Go to the class FixedPoint , and locate the protocol double dispatching. This protocol
contains the methods for a technique called double dispatching. Try to figure out what this
technique is all about and what it solves. To do so, look at where the methods of this pro-
tocol are used.

Exercise: 1

Find all the classes implementing ifTrue:ifFalse:

Exercise: 1

Evaluate and explain the differences between the two following expressions:

0 to: 10 by: 2 do:
[:i | Transcript show: I printString ; cr]

(0 to: 10 by: 2) do:
[:i | Transcript show: I printString ; cr]

Hint: Find the method to:by:do: and the method to:by: defined in Integer.

Looking at existing classes 23Looking at existing classes 23

Exercise: 1

Print the following expressions and explain why the result is different.
Array with: 1 with: 2 with: 3
Array with: 1 ; with: 2 ; with: 3

Exercise: 1

Find the method factorial and reimplement it using inject :into :

Exercise: 1

Check using a hierarchy browser which subclasses of Magnitude are abstract classes.
Check especially the comments. You can also check all the sender of subclassRe-
sponsibility

Exercise: 1

Search the implementors of ->
Inspect the expressions

#lulu->23
 23->34

Exercise: 1

• Write an expression that returns the subclasses of Collection class.
• Using only public methods of the class Behavior, find the expression that returns

the number of methods defined in one class.

Exercise: 1

(for the wild and foolish) Find the method browseAllSelect :
Using this method write an expression that opens a browser showing all the unary meth-
ods.

Hint: look in the CompiledMethod class or its superclasses how we can know the
number of arguments of a method.
Browser browseAllSelect: [:method | method]

24 Viewing, creating and editing classes24 Viewing, creating and editing classes

Exercise: 1

Inspect the following expression: #(calvin hates suzie) at: 1 + 1 put: #loves
The result is not what we expected, how do you explain that? Find the method responsible
for such an unexpected behaviour.
Propose (yourself) a solution, so that the array (the receiver) is returned instead of the re-
sult of the message.

3.2 Creating your own class

In this part we will create our first class in a category of our own. The steps we are going
to take are the same every time you create a class, so memorize them well. We are going to
create a class SimpleCounter in a category called DemoCounter .

Step 1: Creating a category

Step 2: Creating a class

Creating a class requires the following five steps that consist basically of editing the class
definition template to specify the class you want to create. Before you begin, make sure
that only the category DemoCounter is selected.

2525

• Superclass Specification. First, replace the word NameOfSuperclass with the
word Model . This is to specify the superclass of the class you are creating. (Note that
Model is the superclass used for objects that will play a model role in a MVC triad,
see future lessons. So, for your other classes you should type the superclass of the
class that you are creating).

• Class Name. Next, fill in the name of your class by replacing the word NameOf-
Class with the word SimpleCounter . Take care that the name of the class starts
with a capital and that you do not remove the # sign in front of NameOfClass .

• Instance Variable Specification. Then, fill in the names of the instance variables of
this class. We need one instance variable called counterValue . You add it by re-
placing the words instVarName1 and instVarName2 with the word counterVal-
ue.. Take care that you leave the string quotes!

• Class Variable Specification. Now you can fill in any class variables you may use.
Since we need none, remove the words ClassVarName1 and ClassVarName2 ,
leaving an empty string (i.e. 2 single quotes ’’).

• Compilation. That’s it! We now have a filled-in class definition for the class Sim-
pleCounter . To add it to the system, we still have to compile it. Therefore, select
the accept option from the operate menu. The class SimpleCounter is now com-
piled and added to the system.

26 Viewing, creating and editing classes26 Viewing, creating and editing classes

As we are good citizens, we give SimpleCounter a class comment by selecting com-
ment from the operate menu of the class list. Give this comment:

SimpleCounter is a concrete class which supports incrementing
and decrementing a counter.

Instance Variables:
counterValue <Integer>

Select accept to store this class comment in the class.

Filing the category out on disk

To be able to load your class next week, we now create a so-called file-out. A file-out is a
text file that contains method and/or class definitions, and that you can use to load your
classes and/or methods in an image.

To create the file-out: Select the category DemoCounter and select file-out from the op-
erate menu. Give a filename (for example 'democounter.st'). The system now writes the
textual representation of all the classes in the selected category to this file. If you want to
just save one class, one protocol or even a single method, you can use the appropriate op-
erate menu item on the element you want to save.

2727

Chapter 4

Defining protocols and
methods
This lesson will show how to use the System Browser to add protocols and methods.
Therefore, we will use the class SimpleCounter created before, and add some behav-
iour. We will also test this class. If you saved your image at the end of the last lesson and
you can restart it, just read the following to learn how to fill in code into your environment.

4.1 Filing in Smalltalk code

At the end of the previous lesson we created a file-out containing the classes in the catego-
ry DemoCounter . To import these classes in the environment we are working, we need
to perform a file-in operation. To do so, we will use a tool called the File List. To start with,
open this tool (it's under Tools, in the VisualWorks Launcher). You can click on the file in
icon. You get something like this:

There are three important parts in this window:

28 Defining protocols and methods28 Defining protocols and methods

• On the top you have an edit field that allow you to specify in which directory you
want to look for your files and which files you want to filter. For example if you want
to see all the files with the extension .st in the directory called Macintosh HD:Us-
er:Stef: just type: Macintosh HD:User:Stef:*.st. Note that you can also open an op-
erate menu in the edit field on top. The last menu item is volumes. Select this to get a
list with the file volumes of your computer (partitions on a PC, hard disks on a
Mac,…). Select the volume your files are on. When you have done that, the file list
will contain the files and directories of that volume. To change to a specific directory,
select the directory in the list, bring up the operate menu, and select new pattern.

• The middle part of the window display the list of the files that match the expression
contained into the top edit field. You can select a file then using the operate menu file
in it.

• The bottom subwindow is a text viewer, displaying either the contents or some statis-
tics of the selected file.

Exercise: 1

If you do not have the image containing the definition of the class DemoCounter , file-in
the file you have created in the previous lesson.

4.2 Creating and testing methods

The class we have defined has one instance variable, counterValue . Remember that in
Smalltalk, everything is an object and that the only way to interact with an object is by
sending it messages. Therefore, there is no mechanism to access the instance variables
from outside. What you can do is define messages that return the value of the instance var-
iable of a class. Such methods are called accessors, and it is common practice to always
define and use them. We will start to create an accessor method for our instance variable
counterValue .

Remember that every method belongs to a protocol. These protocols are just a group of
methods without any language semantics, but convey important navigation information
for the reader of your class. Although protocols can have any name, Smalltalk program-
mers follow certain conventions for naming these protocols. If you define a method and
are not sure what protocol it should be in, first go through existing code and try to find a
fitting name.

An important remark: Accessors can be defined in protocols ‘accessing’ or ‘pri-
vate’ . Use the ‘accessing’ protocol when a client object (like an interface) really
needs to access your data. Use ‘private’ to clearly state that no client should use the
accessor. Again this is purely a convention. There is no way in Smalltalk to enforce access

Creating and testing methods 29Creating and testing methods 29

rights like private in C++. To emphasize that objects are not just data structure but provide
services that are more elaborated than just accessing data, put your accessors in a ‘pri-
vate’ protocol. As a good practice if you are not sure first define your accessors in a
‘private’ protocol and once some clients really need access to some specific data, cre-
ate a new protocol ‘accessing’ and move your method there. Note that this discussion
does not seem to be very important in the context of this specific simple example. Howev-
er, this question is central to the notion of object and encapsulation of the data. An impor-
tant side effect of this discussion is that you should always ask yourself when you, as a
client of an object, are using an accessor if the object is really well defined and if it does
not need extra functionality.

Exercise: 1

Decide in which protocol you are going to put the accessor for counterValue

We now create the accessor method for the instance variable counterValue. Start by select-
ing the class DemoCounter in a browser, and make sure the class/instance switch is set
to instance.

Create a new protocol. Select the newly created protocol. Then the edit field displays a
method template laying out the default structure of a method.

Replace the template with the following method definition. This defines a method called
counterValue, taking no arguments, having a method comment and returning the instance
variable counterValue. Then choose accept in the operate menu to compile the method.:

30 Defining protocols and methods30 Defining protocols and methods

counterValue
^counterValue

After having written the text, you can now test your new method by typing and evaluating
the next expression in a workspace:

SimpleCounter new counterValue

This expression first creates a new instance of SimpleCounter, and then sends the message
counterValue to it to retrieve the current value of counterValue. This should return nil (the
default value for noninitialised instance variables; at the end of this lesson we will create
instances where counterValue has a reasonable default initialisation value).

Exercise 1

Another method that is normally used besides the accessor method is a so-called mutator
method. Such a method is used to change the value of an instance variable from a client.
For example, the next expression first create a new SimpleCounter instance and then sets
the value of counterValue to 7:

SimpleCounter new counterValue: 7

This mutator method does not currently exist, so as an exercise write the method counter-
Value: such that, when invoked on an instance of SimpleCouter, the counterValue instance
variable is set to the argument given to the message. Test your method by typing and eval-
uating the expression above.

Exercise 1

Implement the following methods in the given protocols:

Now test the methods increment and decrement. Note that the method printOn: is used
when you do print it or click on self in an inspector.

protocol methods
operations increment

 self counterValue: self counterValue + 1
operations decrement

 self counterValue: self counterValue — 1
printing printOn: aStream

 super printOn: aStream.
 aStream nextPutAll: ’ with value: ’, self counterValue printString.
 aStream cr.

Creating and testing methods 31Creating and testing methods 31

4.2.1 Adding an instance creation method

When we create a new instance of the class SimpleCounter using the message new, we
would like to obtain an instance well initialized. To do so, we need to override the method
new to add a call to an initialization method (invoking an initialize method is a very
common practice! Ask for the senders of initialize). Notice that new is always sent
to a class. This means we have to define the new method on the class side. To define an in-
stance creation method like the method new you should be on the class side, so set the
class/instance switch on class.

Define a new protocol called instance creation , and implement the method new as
follows:

new
"Create and return an initialized instance of SimpleCounter"

|newInstance|
newInstance := super new.
newInstance initialize.
^ newInstance

This code returns a new and well initialized instance. We first create a new instance by
calling the normal creation method (super new), then we assign this new created in-
stance into the temporary variable called newInstance . Then we invoke the initialize
method on this new created instance via the temporary variable and finally we return it.

Note that the previous method body is strictly equivalent to the following one. Try to un-
derstand why they are equivalent.

new
"Create and return an initialized instance of SimpleCounter"

^ super new initialize

4.2.2 Adding an instance initialization method

Now we have to write an initialization method that sets a default value to the counter-
Value instance variable. However, as we mentioned the initialize message is sent
to the newly created instance. This means that the initialize method should be de-
fined at the instance side as any method that is sent to an instance of SimpleCounter

32 Defining protocols and methods32 Defining protocols and methods

like increment and decrement . The initialize method does not have specific
and predefined semantics; it is just a convention to name the method that is responsible to
set up the instance variable default values.

Therefore at the instance side create a protocol initialize-release , and create fol-
lowing method (the body of this method is left blank. Fill it in!

initialize
"set the initial value of the counterValue to 0"
...

Remark. As we already mentionned, the initialize method is not automatically in-
voked by the method new. We had to override the method new to call the initialize
method. This a weakness of the Smalltalk libraries, so you should always check if the class
that you are creating inherits from a new method that implements the call to the ini-
tialize method. It is a good practice to add such a calling structure (new calling ini-
tialize) in the root of the your class hierarchy. This way you share the calling structure
and are sure that the initialize method is always called for all your classes.

Now create a new instance of class SimpleCounter . Is it initialized by default? The fol-
lowing code should now work without problem:

SimpleCounter new increment

Another instance creation method

To be sure that you have really understood the distinction between instance and class
methods, define now a different instance creation method named withValue: that giv-
en an integer argument returns an instance of SimpleCounter with the specified value.
The following expression should return 20.

(SimpleCounter withValue: 19) increment ; counterValue

4.2.3 A Difficult Point

Let us just think a bit! To create a new instance we said that we should send messages (like
new and basicNew) to a class. For example to create an instance of SimpleCounter
we sent new to SimpleCounter. As classes are also objects in Smalltalk, they are instances
of other classes that define the structure and the behavior of classes. One of the classes that
represents classes as objects is Behavior. Browse the class Behavior . In particular, Be-

Creating and testing methods 33Creating and testing methods 33

havior defines the methods new and basicNew that are responsible of creating new in-
stances.
If you did not redefine the new message locally to the class of SimpleCounter , when
you send the message new to the class SimpleCounter, the new method executed is the one
defined in Behavior .

34 A Basic LAN Application34 A Basic LAN Application

Chapter 5

A Basic LAN Application
In the following lesson we will work on an application that simulates a simple LAN net-
work. The purpose of this lesson is to create a basis for further lessons on writing OO pro-
grams. It will use the knowledge of previous lessons for creating classes and methods. We
will create several classes for simulating the LAN: Packet , Node, Workstation , and
PrintServer . We start with the simplest version of a LAN then during the following
exercises we will add new requirements and modify the proposed implementation to take
them into account.

5.1 Creating the Class Node

The class Node will be the root of all the entities that form a LAN. This class contains the
basic behavior common for all nodes. The responsibility of a node is to be inserted into a
network, which is basically a linked list of nodes, so a Node should know its next node. A
node should be uniquely identifiable with a name. This is its responsibility to send and re-
ceive packets of information. We chose to represent the name of a node by a symbol be-
cause symbols are unique in Smalltalk and the next node by a node object.

Node inherits from Model

Collaborators: Node and Packet

Responsibility:

name (aSymbol) returns the name of the node

hasNextNode tells is a node has a next node

send: aPacket sends a packet to the following node

accept: aPacket receives a packet and treat it. Per default send it to
the following node

Creating the Class Node 35Creating the Class Node 35

Exercise 1

Create a new category LAN, and create a subclass of Model called Node, with two in-
stance variables: name and nextNode . (We ask you to create Node as a subclass of Mod-
el because in the future lessons you will create a user interface for a LAN and a node will
play the role Model of a Model-View-Controller triad).

Exercise 1

Create accessors and mutators for the two instance variables. Document the mutators to
inform users that the argument passed to name: should be a Symbol, and the arguments
passed to nextNode : should be a node. Define them in a ‘private’ protocol.
Note that a node is identifiable via its name. Its name is part of its public interface, so you
should move the method name from the ‘private’ protocol to the ‘accessing’ pro-
tocol.

Exercise 1

Define a method called hasNextNode that returns whether the node has a next node or
not.

Exercise 1

Create an instance method printOn: that puts my class name and my name variable on
the argument, aStream . Include my next node's name ONLY if there is a next node (Hint:
look at the method printOn: from previous lesson, and consider that name instance
variable is a symbol and nextNode a node).

Printing a Node should result in the following:

(Node new name: #Node1 ; nextNode: (Node new name: #PC1)) printString

Node named: Node1 connected to: PC1

Exercise 1

Create a class method new and an instance method initialize . Make sure that a new
instance of Node created with the new method uses initialize (see previous lesson).
Leave initialize empty for the moment (it is difficult to give meaningful default val-
ues for the name and nextNode of Node. However, subclasses may want to override this
method to do something).

36 A Basic LAN Application36 A Basic LAN Application

Exercise 1

A node has two basic messages to send and receive packets. When a packet is sent to a
node, the node has to accept: the packet, and send it on. Note that with this simple be-
havior the packet can loop infinitely in the LAN. We will propose some solutions to this
issue later. To implement this behavior, add a protocol ‘send-receive’ , and imple-
ment the following two methods, for which we only give the selector and the comment
(and some partial code):

Node>>accept: thePacket
"Having received the packet, send it on. This

is the default behavior My subclasses will probably override me
to do something special"

…

Node>>send: aPacket
"Precondition: self have a nextNode"
"send a packet to my following node"

Transcript show:

self name printString,

' sends a packet to ',

self nextNode name printString;cr.

…

5.2 Creating the Class Packet

A packet in an object representing an information that is sent from node to node. So the
responsibilities of this object is to allow us to define the originator of the sending, the ad-
dress of the receiver and the contents.

Packet inherits from Object

Collaborators: Node

Responsibility:

addressee returns the addressee of the node to which the packet is sent.

contents describes the contents of the message sent.

originator references the node that sent the packet.

Creating the Class Workstation 37Creating the Class Workstation 37

Exercise 1

In the category LAN, create a subclass of Object called Packet , with three instance var-
iables: contents , addressee and originator . Create accessors and mutators for
each of them in the ‘accessing’ protocol (in that particular case the accessors repre-
sents the public interface of the object). The addressee is represented as a symbol, the
contents as a string and the originator has a reference to a node.

Exercise 1

Define the method printOn : aStream that puts a textual representation of a packet on
its argument aStream .

5.3 Creating the Class Workstation

A workstation is the entry point for new packets onto the LAN network, it can originate
packet to other workstations, printers of file servers. Since it is kind of a network node, but
provides additional behavior, we will make it a subclass of Node. That way, it inherits the
instance variables and methods defined in Node. Moreover, a workstation have to treat
packets that are destinated to it in a special way.

Exercise 1

In the category LAN, create a subclass of Node called Workstation without instance
variables.

Workstation inherits from Node

Collaborators: Node, Workstation and Packet

Responsibility: (the ones of node)

originate: aPacket sends a packet.

accept: aPacket does some actions on packets send to
the workstation (printing in the transcript). For the other pack-
ets just send them to the following nodes.

38 A Basic LAN Application38 A Basic LAN Application

Exercise 1

Define the method accept: aPacket so that if the workstation is the destination of the
packet, the following message is written into the Transcript . Note that if the packets
are not addressed to the workstation they are sent to the next node of the current one.

(Workstation new name: #Mac ; nextNode: (Printer new name: #PC1)) accept: (Packet
new addressee: #Mac)

A packet is accepted by the Workstation Mac

Hints. To implement the acceptation of packet addressed to other node, you could copy
and paste the code of the Node class. However this is a bad practice, decreasing the reuse
of code and the “Say it only once” rules. It is better to invoke the default code that is cur-
rently overriden by using super.

Exercise 1

Write the body for the method originate: that is responsible for inserting packets in
the network in the method protocol ‘send-receive’. In particular a packet should be
marked with its originator and then sent.

Workstation>>originate: aPacket
"This is how packets are inserted into the network. This is a likely method

to be rewritten to permit packets to be entered in various ways. Currently, I assume that
someone else creates the packet and passes it to me as an argument."

...

5.4 Creating the class LANPrinter

Exercise 1

Having only nodes and workstations provide only limited functionality of a real LAN. Of
course, we would like to do something with the packets that are travelling around the LAN.
Therefore, you will create a class LanPrinter here, a special node that receive packets
addressed to it and print them (on the Transcript). Note that we named it this way be-
cause Printer already exists in the system. Write this class.

Simulating the LAN 39Simulating the LAN 39

5.5 Simulating the LAN

Implement the following two methods on the class side of the class Node, in a protocol
called examples . But take care the code presented has some bugs that you should find
and fix! As you will notice creating a LAN is boring. We will fix that in the future by pro-
posing a NetworkManager class.

simpleLan
"Create a simple lan"
"self simpleLan"

|mac pc node1 node2 igPrinter|
"create the nodes, workstations, printers and fileserver"
mac := Workstation new name: #mac.
pc := Workstation new name: #pc.
node1 := Node new name: #node1.
node2 := Node new name: #node2.
node3 := Node new name: #node3.
igPrinter := Printer new name: #IGPrinter.

"connect the different nodes."
"I make following connections:

mac -> node1 -> node2 ->
igPrinter -> node3 -> pc -> mac"

mac nextNode: node1.
node1 nextNode: node2.
node2 nextNode: igPrinter.
igPrinter nextNode: node3.
node3 nextNode: pc.

LanPrinter inherits from Node

Collaborators: Node and Packet

Responsibility:

accept: aPacket if the packet is addressed to the printer,
prints the packet contents else sends the packet to the following
node

print: aPacket prints the contents of the packet (into the
Transcript)

40 A Basic LAN Application40 A Basic LAN Application

pc nextNode: mac.

"create a packet and start simulation"
packet := Packet new

addressee: #IGPrinter;
contents: 'This packet travelled around to the printer IG-

Printer.
mac originate: packet.

anotherSimpleLan
"create the nodes, workstations and printers"

| mac pc node1 node2 igPrinter node3 packet |
mac := Workstation new name: #mac.
pc := Workstation new name: #pc.
node1 := Node new name: #node1.
node2 := Node new name: #node2.
node3 := Node new name: #node3.
igPrinter := LanPrinter new name: #IGPrinter.

"connect the different nodes."
"I make the following connections:

mac -> node1 -> node2 -> igPrinter -> node3 -> pc -> mac"
mac nextNode: node1.
node1 nextNode: node2.
node2 nextNode: igPrinter.
igPrinter nextNode: node3.
node3 nextNode: pc.
pc nextNode: mac.

"create a packet and start simulation”
packet := Packet new

addressee: #anotherPrinter;
contents: 'This packet travels around to the printer IGPrint-

er’.
pc originate: packet.

As you will notice the system does not handle loops, we will propose a solution to this
problem in future lessons. To break the loop, try Ctrl-C or Ctrl-Y depending of the Visu-
alWorks versions.

Creating of the Class FileServer 41Creating of the Class FileServer 41

5.6 Creating of the Class FileServer

Create the class FileServer a special node that saves packets that are addressed to it (just
display a message on the Transcript).

Table 5.1

FileServer inherits from Node

Collaborators: Node and Packet

Responsibility:

accept: aPacket if the packet is addressed to the file server save it
(Transcript trace) else send the packet to the following node

save: aPacket save a packet

42 Fundamentals on the Semantics of Self and Super42 Fundamentals on the Semantics of Self and Super

Chapter 6

Fundamentals on the
Semantics of Self and Super
This lesson wants you to give a better understanding of self and super .

6.1 self

When the following message is evaluated:

aWorkstation originate: aPacket

The system starts to look up the method originate: starts in the class of the message re-
ceiver: Workstation . Since this class defines a method originate :, the method
lookup stops and this method is executed. Following is the code for this method:

Workstation>>originate: aPacket

aPacket originator: self.
self send: aPacket

It first sends the message originator: to an instance of Packet with as argument
self which is a pseudo-variable that represents the receiver of originate: method.
The same process occurs. Originator: is looked up into the class Packet . As Pack-
et defines a method named originator:, the method lookup stops and the method is
executed. As shown below the body of this method is to assign the value of the first argu-
ment (aNode) to the instance variable originator . Assignment is one of the few con-
structs of Smalltalk. It is not realized by a message sent but handle by the compiler. So no
more message sends are performed for this part of originator: .

 Packet>>originator: aNode

originator := aNode

In the second line of the method originate:, the message send: thePacket is sent to
self . self represents the instance that receives the originate: message. The semantics of
self specifies that the method lookup should start in the class of the message receiver. Here

super 43super 43

Workstation . Since there is no method send: defined on the class Workstation ,
the method lookup continues in the superclass of Workstation: Node. Node implements
send :, so the method lookup stops and send: is invoked :

Node>>send: thePacket

self nextNode accept: thePacket

The same process occurs for the expressions contained into the body of the method
send: .

6.2 super

Now we present the difference between the use of self and super. Self and super are both
pseudo-variables that are managed by the system (compiler). They both represents the re-
ceiver of the message being executed. However, there is no use to pass super as method ar-
gument, self is enough for this.
The main difference between self and super is their semantics regarding method lookup.

• The semantics of self is to start the method lookup into the class of the message receiver
and to continue in its superclasses.

• The semantics of super is to start the method look into the superclass of class in which
the method being executed was defined and to continue in its superclasses.. Take care
the semantics is NOT to start the method lookup into the superclass of the receiver
class, the system would loop with such a definition (see exercise 1 to be convinced).
Using super to invoke a method allows one to invoke overridden method.

Let us illustrate with the following expression: the message accept: is sent to an instance
of Workstation.

aWorkstation accept: (Packet new addressee: #Mac)

As explained before the method is looked up into the class of the receiver, here Worksta-
tion. The method being defined into this class, the method lookup stops and the method is
executed.

Workstation>>accept: aPacket

(aPacket addressee = self name)
ifTrue:[Transcript show: 'Packet accepted', self name asString]
ifFalse: [super accept: aPacket]

44 Fundamentals on the Semantics of Self and Super44 Fundamentals on the Semantics of Self and Super

Imagine that the test evaluates to false. The following expression is then evaluated.

super accept: aPacket

The method accept: is looked up in the superclass of the class in which the containing
method accept: is defined. Here the containing method is defined into Workstation
so the lookup starts in the superclass of Workstation : Node. The following code is ex-
ecuted following the rule explained before.

Node>>accept: aPacket

self hasNextNode
ifTrue:[self send: aPacket]

Remark. The previous example does not show well the vicious point in the super semantics:
the method look into the superclass of class in which the method being executed was defined
and not in the superclass of the receiver class.
You have to do the following exercise to prove yourself that you understand well the nu-
ance.

Exercise 1

Imagine now that we define a subclass of Workstation called AnotherWorksta-
tion and that this class does NOT defined a method accept :. Evaluate the following ex-
pression with both semantics:

anAnotherWorkstation accept: (Packet new addressee: #Mac)

You should be convinced that the semantics of super change the lookup of the method so
that the lookup (for the method via super) does NOT start in the superclass of the receiver
class but in the superclass of the class in which the method containing the super. With the
wrong semantics the system should loop.

Reducing the coupling between classes 45Reducing the coupling between classes 45

Chapter 7

Object Responsibility and
Better Encapsulation

7.1 Reducing the coupling between classes

To be a good object you have to follow as much as possible the following rules:
• Be private. Never let somebody else play with your data.
• Be lazy. Let do other objects your job.
• Be focused. Do only one main task.

While these guidelines are not really formal, one of the main consequences is that this is the
responsibility of an object to provide a well defined interface protecting itself from its cli-
ents. The other consequence is that by delegating to other objects an object concentrates on
a single task and responsibility. We now look how such guidelines can help us to provide
better objects in our example.

7.1.1 Law of Demeter

@@ Stef @@

7.1.2 Current situation

The interface of the packet class is really weak. It just provides free access to its data. The
main impact of this weakness is the fact that the clients of the class Packet like Work-
station relies on the internal coding of the Packet as shown in the first line of the follow-
ing method.

Workstation>>accept: aPacket

aPacket addressee = self name
ifTrue:[Transcript show: 'A packet is accepted by the Workstation ', self

name asString]
ifFalse: [super accept: aPacket]

46 Object Responsibility and Better Encapsulation46 Object Responsibility and Better Encapsulation

As a consequence, if the structure of the class Packet would change, the code of its clients
would have to change too. Generalizing such a bad practice would lead to system that is bad-
ly coupled and being really difficult to change to meet new requirements.

7.1.3 Solution

This is the responsibility of a packet to say if the packet is addressed to a particular node or
if it was sent by a particular node.

Exercise 1

• Define a method named isAddressedTo: aNode in ‘testing’ protocol that an-
swers if a given packet is addressed to the specified node.

• Define a method named isOriginatedFrom: aNode in ‘testing’ protocol
that answers if a given packet is originated from the specified node.

Once these methods are defined, change the code of all the clients of the class Packet to
call them. You should note that a better interface encapsulates better the private data and the
way they are represented. This allows one to locate the change in case of evolution.

Class Creation Responsibility 47Class Creation Responsibility 47

Chapter 8

The Question of Class
Responsibility

8.1 Class Creation Responsibility

One of the problems with the first approach for creating the nodes and the packets is the fol-
lowing: it is the responsibility of the client of the objects to create them well-formed. For ex-
ample, it is possible to create a node without specifying a name! This is a disaster for our
LAN system, the node would never be reachable, and worse the system would breaks be-
cause the assumptions that the name of a node is specified would not hold anymore (insert
an anonymous node in Lan and try it out). The same problem occurs with the packet: it is
possible to create a packet without address nor contents.

The solution to these problems is to give the responsibility to the objects to create well-
formed instances. Several variations are possible:

• When possible, providing default values for instance variable is a good way to provide
well-defined instances.

• It is also a good solution to propose a consistent and well-defined creation interface.
For example one can only provide an instance creation method that requires the man-
datory value for the instance and forbid the creation of other instances.

8.1.1 Applying to the class Packet

We investigate the two solutions for the Packet class. For the first solution, the principle is
that the creation method (new) should invoke an initialize method. Implement this solution.
Just remember that new is sent to classes (class method) and that initialize is sent to
instances (instance method). Implement the method new in a ‘instance creation’ protocol
and initialize in a ‘initialize-release’ protocol.

Packet class>>new
…

Packet>>initialize
…

48 The Question of Class Responsibility48 The Question of Class Responsibility

The only default value that can have a default value is contents, choose

contents = ‘no contents’.

Ideally if each LAN would contain a default trash node, the default address and originator
would point to it. We will implement this functionality in a future lesson. Implement first
your own solution.

8.1.2 Say Something Only Once

Note that with this solution it would be convenient to know if a packet contents is the default
one or not. For this purpose you could provide the method hasDefaultContents that
tests that. You can implement it in a clever way as shown below:

Instead of writing:

Packet>>hasDefaultContents

^ contents = ‘no contents’

Packet>>initialize
…
contents := ‘no contents’
…

You apply the rule ‘Say only once’ and avoid to duplicate the information. We define a new
method that returns the default content and use it as shown below:

Packet>>defaultContents

^ ‘no contents’

Packet>>initialize

…
contents := self defaultContent
…

Packet>>hasDefaultContent

Defining a Creation Interface. 49Defining a Creation Interface. 49

^contents = self defaultContents

With this solution, we limit the knowledge to the internal coding of the default contents
value to only one method. This way changing it does not affect the clients nor the other part
of the class.

8.2 Defining a Creation Interface.

We now apply the second approach by providing a better interface for creating packet. For
this purpose we define a new creation method that requires a contents and an address. De-
fine two class methods named send:to : and to: in the class Packet (protocol ‘in-
stance creation’) that creates a new Packet with a contents and an address.

Packet class>>send: aString to: aSymbol
....

Packet class>>to: aSymbol
....

Class methods for sharing default values.

For the method to:, the contents of the packet is not defined.There are two ways to provide
a default value: (a) you let the initialize method defining the default value as shown in the
previous section or (b) you can invoke send:to: with the default value (Note that the initial-
ize method should not be called). Moreover, you should consider that the method default-
Contents as you implemented it in the previous section is an instance method and that
while you are implementing the method to: you do not have already created an instance.

The solution to this problem is to define two methods defaultContents one at the in-
stance level and the other at the class level as follow:

Packet class>>defaultContents

^ ‘no contents’

Packet>>defaultContents

^self class defaultContents

Packet class>>to: aSymbol
^self send: self defaultContents to: aSymbol

50 The Question of Class Responsibility50 The Question of Class Responsibility

Exercise 1

Implement this solution

8.2.1 Applying to the Class Node

Now apply the same techniques to the class Node. Note that you already implemented a
similar schema that the default value in the previous lessons. Indeed by default instance
variable value is nil and you already implemented the method hasNextNode that to pro-
vide a good interface.

Exercise 1

Define a class method named withName: in the class Node (protocol ‘instance
creation’) that creates a new node and assign its name.

Node class>>withName: aSymbol
....

Define a class method named withName:connectedTo: in the class Node (protocol
‘instance creation’) that creates a new node and assign its name and the next node
in the LAN.

Node class>>withName: aSymbol connectedTo: aNode
....

Note that if to avoid to duplicate information, the first method can simply invoke the second
one.

8.3 Forbidding the Basic Instance Creation

One the last question that should be discussed is the following one: should we or not let a
client create an instance without using the constrained interface? There is no general answer,
it really depends on what we want to express. Sometimes it could be convenient to create an
uncompleted instance for debugging or user interface interaction purpose.

Forbidding the Basic Instance Creation 51Forbidding the Basic Instance Creation 51

8.3.1 Forcing client to use the right method

Let us imagine that we want to ensure that no instance can be created without calling the
methods we specified. We simply redefine the creation method new so that it will raise an
error.

Rewrite the new method of the class Node and Packet as the following:
Node class>>new

self error: ‘you should invoke the method... to create a ...’

However, you have just introduced a problem: the instance creation methods you just
wrote in the previous exercise will not work anymore, because they call new, and that call-
ing results in an error! Propose a solution to this problem.

8.3.2 Avoid to call super on a different selector

A first solution could be the following code:

Node class>>withName: aSymbol connectedTo: aNode

^ super new initialize name: aSymbol ; nextNode: aNode

However, even if the semantics permits such a call using super with a different method se-
lector than the containing method one, it is a bad practice. In fact it implies an implicit de-
pendency between two different methods in different classes, whereas the super normal use
links two methods with the same name in two different classes. It is always a good practice
to invoke the own methods of an object by using self. This conceptually avoids to link the
class and its superclass and we can continue to consider the class as self contained.

basicNew to the rescue!

The solution is to rewrite the method such as:

Node class>>withName: aSymbol connectedTo: aNode

^ self basicNew initialize name: aSymbol ; nextNode: aNode

In Smalltalk there is a convention that all the methods starting with ‘basic’ should not be
overridden. basicNew is the method that always returns a newly created instance.

52 The Question of Class Responsibility52 The Question of Class Responsibility

Exercise 1

Browse all the methods starting with ‘basic*’ and limit yourself to Object and Behav-
ior.

Exercise 1

Do the same for the instance creation methods in class Packet .

8.4 Protecting yourself from your children

The following code is a possible way to define an instance creation method for the class
Node.

Node class>>withName: aSymbol

^ self new name: aSymbol

We create a new instance by invoking new, we assign the name of the node and then we re-
turn it. One possible problem with such a code is that a subclass of the class Node may re-
define the method name: (for example to have a persistent object) and return another value
than the receiver (here the newly created instance). In such a case invoking the method with-
Name: on such a class would not return the new instance. One way to solve this problem is
the following:

Node class>>withName: aSymbol

|newInstance|
newInstance := self new.
NewInstance name: aSymbol.
^newInstance

This is a good solution but it is a bit too verbose. It introduces extra complexity by the the
extra temporary variable definition and assignment. A good Smalltalk solution for this
problem is illustrated by the following code and relies on the use of the yourself mes-
sage.

Node class>>withName: aSymbol

^self new name: aSymbol ; yourself

53 The Question of Class Responsibility53 The Question of Class Responsibility

yourself specifies that the receiver of the first message involved into the cascade (name:
here and not new) is return. Guess what is the code of the yourself method is and check by
looking in the library if your guess is right.

54 Hook and Template Methods54 Hook and Template Methods

Chapter 9

Hook and Template Methods
Hook and Template methods are soem of the basic tool that a designer has to design exten-
sible system. Template method set up the context in which hook methods will be called. In
this context hook methods represent customizable entry points that future subclasses can
specialize while being sure to be invoked in a coherent context. Here we present a small
scenario to show you how template and hook methods talk to each other.

9.1 Studying a famoos couple

The Smalltalk class library contains lot of hooks that allows an easy customization of the
proposed behavior. For example every object knows how to respond to the message print-
String by returning a string. Such a behavior is implemented in the following way: the
method printString is a template method that creates a stream which is passed as argument
of the printOn: hook method. printString is the method called when you do a print it.

Object>>printString
"Answer a String whose characters are a description of the receiver."

| aStream |
aStream := WriteStream on: (String new: 16).
self printOn: aStream.
^aStream contents

Per default the printOn: method defined on the class Object writes in the stream argu-
ment the concatenation of ‘an’ or ‘a’ and the class name of the receiver.

Object>>printOn: aStream
"Append to the argument aStream a sequence of characters
that describes the receiver."

| title |
title := self class name.
aStream nextPutAll:

((title at: 1) isVowel ifTrue: ['an '] ifFalse: ['a ']).
aStream print: self class

As Object is the root of the inheritance hierarchy, any class can simply sepcify a new
printOn: without having worry about the template method.

55 Hook and Template Methods55 Hook and Template Methods

Example of hook methods

For example the class Array specializes the printOn: method is the following way:

Array>>printOn: aStream
"Append to the argument, aStream, the elements of the Array
enclosed by parentheses."

| tooMany |
tooMany := aStream position + self maxPrint.
aStream nextPutAll: '#('.
self do: [:element |

aStream position > tooMany
ifTrue:

[aStream nextPutAll: '...(more)...)'.
^self].

element printOn: aStream]
separatedBy: [aStream space].

aStream nextPut: $)

The class False has only one instance false so the specialization is rather simple.

False>>printOn: aStream
"Print false."

aStream nextPutAll: 'false'

The class Behavior that represents a class extends the default hook but still invokes the
default one.

Behavior>>printOn: aStream
"Append to the argument aStream a statement of which
superclass the receiver descends from."

aStream nextPutAll: 'a descendent of '.
superclass printOn: aStream

Exercise 1

Ask all the implementers of the hook method printOn: and browse some of them. Verify
that there is only one printString method defined in the system.

56 Hook and Template Methods56 Hook and Template Methods

9.2 Designing our own hook/Template couple

Current Situation

A possible way to print a Node is the following one (the first line is the call and the sec-
ond line the resulting string).

(Node withName: #Node1 connectedTo: (Node new name: #PC1)) printString

Node named: Node1 connected to: PC1

A straightforward way to implement the printOn: method on the class Node is the fol-
lowing code:

Node>>printOn: aStream

aStream nextPutAll: 'Node named: ', self name asString.
self hasNextNode

ifTrue:[aStream nextPutAll: ' connected to: ', self nextNode name]

However, with such an implementation the printing of all kinds of nodes is the same.

New Requirements

To help in the understanding of the LAN we would like that depending on the specific class
of node we obtain a specific printing like the following ones:

(Workstation withName: #Mac connectedTo: (LanPrinter withName: #PC1) printString

Workstation Mac connected to Printer PC1

(LanPrinter withName: #Pr1 connectedTo: (Node withName: #N1) printString

Printer Pr1 connected to Node N1

However the do not want to duplicate the same code in all the subclasses of Node.

Exercise 1

• Define the method typeName that returns a string representing the name of the type
of node in the ‘printing’ protocol. This method should be defined in Node and all its
subclasses.

(LanPrinter withName: #PC1) typeName
‘Printer’

57 Hook and Template Methods57 Hook and Template Methods

(Node withName: #N1) typeName
‘Node’

• Define the method simplePrintString on the class Node to provide more information
about a node as show below:

(Workstation withName: #Mac connectedTo:
(LanPrinter withName: #PC1)) simplePrintString

‘Workstation Mac’

(LanPrinter withName: #PC1) simplePrintString
‘Printer PC1’

• Then modify the printOn: method of the class Node to produce the following output

 (Node withName: #Mac connectedTo: (LanPrinter new name: #PC1))
‘Node Mac connected to Printer PC1’

The method typeName is a hook method. It allows the subclasses to specialize the behav-
ior of the superclass, here the printing of a all the different kinds of nodes. The method
simplePrintString , even if in our case is rather simple, is a template method that
specifies the context in which hook methods will be called and how they will fit into the
template method to produce the expected result. Note that for abstract classes hook meth-
ods can be abstract too, one other case the hook method can propose a default behavior.

58 Extending the LAN Application58 Extending the LAN Application

Chapter 10

Extending the LAN
Application
This lesson uses the basic LAN-example and adds new classes and behaviour. Doing so,
the design is extended to be more general and adaptive.

10.1 Handling Loops

When a packet is sent to an unknown node, it loops endlessly around the LAN. You will im-
plement two solutions for this problem.

Solution1.

The first obvious solution is to avoid that a node resends a packet if it was the originator of
the packet that it is sent. Modify the accept: method of the class Node to implement such
a functionality.

Solution 2.

The first solution is fragile because it relies on the fact that a packet is marked by its origina-
tor and that this node belongs to the LAN. A ‘bad’ node could pollute the network by origi-
nate packets with a anonymous name. Think about different solutions.

Among the possible solutions, two are worth to be further analyzed:
• Each node keeps track of the packets it already received. When a packet already re-

ceived is asked to be accepted again by the node, the packet is not sent again in the
LAN. This solution implies that packet can be uniquely identified. Their current repre-
sentation does not allow that. We could imagine to tag the packet with a unique gener-
ated identifier. Moreover, each node would have to remember the identity of all the
packets and there is no simple way to know when the identity of treated node can be
removed from the nodes.

• Each packet keeps track of the node it visited. Every time a packet aarrived at a node, it
is asked if it has already been here. This solution implies a modification of the commu-
nication between the nodes and the packet: the node must ask the status of the packet.
This solution allows the construction of different packet semantics (one could imagine
that packets are broadcasted to all the nodes, or have to be accepted twice). Moreover
once a packet is accepted, the references to the visited nodes are simply destroyed with
the packet so there is no need to propagate this information among the nodes.

59 Extending the LAN Application59 Extending the LAN Application

We propose you to implement the second solution so that the class Packet provides the
following interface (the new responsibilities are in bold).

New instance variable.

A packet needs to keep track of the nodes it visited. Add a new instance variable called vis-
itedNodes in the class Packet. We want to collect the visited nodes in a set. Browse
the class Set and its superclass to find the function you need.

• Initialize the new instance variable. Modify the initialize methods of the class Packet so
that the visitedNodes instance variable is initialized with an empty set.

• Node Acceptation Methods. In a protocol named ‘node acceptation’, define the meth-
od isAcceptableBy : and hasBeenAcceptedBy :.

• Test if your implementation works by sending a ‘bad’ node with a bad originator into
the LAN.

Packet inherits from Object

Collaborators: Node

Responsibility:

addressee returns the addressee of the node to which the packet is sent.

addressee returns the addressee of the node to which the packet is sent.

contents describes the contents of the message sent.

originator references the node that sent the packet.

isAddressedTo: aNode answers if a given packet is addressed to the specified
node.

isOriginatedFrom: aNode answers if a given packet is originated from the
specified node.

hasBeenAcceptedBy: aNode tells a packet that it has been accepted by a given
node.

isAcceptableBy: aNode answers if a packet is acceptable by a node

60 Extending the LAN Application60 Extending the LAN Application

10.2 Introducing a Shared Initialization Process

As you noticed, each time a new class is created that is not a subclass of Node we have to
implement a new method whose the only purpose was to call the initialize method. We want
to habe such a behavior specified only once and shared by all our Lan classes.

Define a class LanObject that inherits form Object, implements an instance method initialize
and a class method new that automatically calls the initialize method on the newly created ob-
ject and retrun it.

Then make all the classes that previously inherited from Object inherit from LanObject and
check and remove if necessary if the unnecessary new methods.

10.3 Broadcasting and Multiple Addresses

Up to now, when a packet reaches a node it is addressed to, the packet is handled by the node
and the transmission of the packet is terminated (because is not sent to the next node in the
network). In this exercise, we want you to provide facilities for broadcasting. If a node han-
dles a packet that is broadcasted, the packet must be sent to the next node in the LAN instead
of terminating the connection. For example, broadcasting makes it possible to save the con-
tents of the same packet on different fileservers of the LAN. First try to solve this problem,
and implement it afterwards.
 In the current LAN, a packet only has one addressee. This exercise wants to add packets
that have multiple addressees. Propose a solution for this problem, and implement it after-
wards.

10.4 Different Documents

Suppose we have several kinds of documents (ASCII and Postscript) and two kinds of
LANPrinter in the LAN (LANASCIIPrinter and LANPostscriptPrinter). We then want to
make sure that every printer prints the right kind of document. Propose a solution for this
problem.

10.5 Logging Node

We want to add a logging facility: this means each time a packet is sent from a node, we want
to identify the node and the packet. Propose and implement a solution. Hint: introduce a new
subclass of Node between Node and its subclasses and specialize the send : method.

61 Extending the LAN Application61 Extending the LAN Application

10.6 Automatic Naming

The name of a node have to be specified by its creator. We would like to have an automatic
naming process that occurs when no name are specified. Note that the names should be
unique. As a solution we propose you to use a counter, as this counter have to last over in-
stance creations but still does not have any meaning for a particular node we use an instance
variable of the class node.
Note that the NetworkManager could also be the perfect object to implement such a fonc-
tionality.
We also would like that all the printer names start with Pr. Propose a solution.

Workstation Mac connected to Printer PC

10.7 Introducing a Lan Manager

@@

62 VisualWorks Application Building62 VisualWorks Application Building

Chapter 11

VisualWorks Application
Building
So far, you have been introduced to the basic OOP concepts and basic VisualWorks tools.
This lesson will give an introduction to building applications in VisualWorks. Therefore,
we will create a simple user-interface for our SimpleCounter application.

11.1 Model-View-Controller

As explained in the lecture, VisualWorks extensively uses the MVC paradigm, mixed with
a dependency mechanism. In this lesson we will present the basic use of MVC, while the
following lessons will further explore this, and the dependency mechanism.

Specs for the Application

Now we create a very simple application that introduces the basic tools and procedures to
follow when developing a VisualWorks application. This is the interface for the applica-
tion we are going to develop:

When the application opens, the input field will display 0. When the
the increment button, this value should be incremented by 1. Clicki n
rement button will decrement the value with one.

11.2 ApplicationModel

As told before, everything in Smalltalk is an object. So are applica t
ate: they are instances that know how to open, view, update and chan g

63 VisualWorks Application Building63 VisualWorks Application Building

selves, accept input, ... So, creating an application consists of cr
that knows how to do all these things. Luckily, there is already a
defined that you can use to build applications. The basic class you a r
build will therefore be a subclass of a class called ApplicationMod
tionModel already

• defines basic application behavior (opening, running, closing, minimizing, …)
• can open an application interface.

Our application subclass will have to implement
• the actual interface to be opened,
• behavior specific for your application,
• glue code, to glue together the models and View/Controllers.

Basically, our application class will thus implement application s p
thereby linking the views/controllers used in the interface with
model. As explained in the lecture, models and view/controllers do
each other directly, but will each talk to the applicationModel that
everything together.

Building an application (i.e. constructing a subclass of Applicatio n
boils down to two steps:

• building the interface
• programming the applicationModel

11.3 Building the interface

Now we will need to build the interface as pictured above. An interf a
several widgets (user interface elements), in this case an input fi e
buttons. There are several kinds of widgets:

• data widgets (gather/display input): let the user enter information, or display infor-
mation

• action widgets (invoke operations): buttons or menus, e.g. to increment or decrement
the counter

• static widgets (organise/structure the interface): labels identifying other widgets for
the user.

You build an interface by creating a visual specification of the cont e
layout. To do so, there are several steps to be taken:

• 1. opening a blank canvas,

64 VisualWorks Application Building64 VisualWorks Application Building

• 2. painting the canvas with widgets chosen from a Palette,
• 3. setting properties for each widget and applying them to the canvas,
• 4. installing the canvas in an application model.

Step 1: opening a blank canvas

A canvas is the place where you visually edit the interface of the application. To open a
blank canvas, use the canvas button (as shown above) on the VisualWorks Launcher, or se-
lect New Canvas in the Tools menu of the VisualWorks Launcher. VisualWorks will open
a window containing an unlabeled canvas, a Canvas Tool, and a palette:

• the canvas tool provides you with the basic operations to build/install/define and
open your application.

• the palette contains predefined widgets to use on the canvas.
• the unlabeled canvas is a visual representation for the window we are going to build.

Step 2: painting the canvas

We will now paint the widgets such that our interface looks like the one pictured above.
Basically this comes down on selecting widgets on the palette (by clicking them once),
and putting them on the canvas (by clicking once again).

First, we will put an input field on our canvas. To do so, follow these steps:
• verify that the single-selection button on the palette is active (it should look like the

picture above). This enables you to paint a single copy of a widget on the canvas.
• note that, when you select a widget on the palette, the name of the selected widget is

shown in the indicator field at the bottom of the palette.
• select the Input Field widget by clicking it once (if you select the wrong widget, se-

lect other widgets until the indicator field displays Input Field).
• paint the input field by moving the mouse pointer to the canvas and clicking the select

button once, positioning the widget, and clicking the select button a second time to
place it on the canvas.

65 VisualWorks Application Building65 VisualWorks Application Building

Once widgets are painted on the canvas, there are several editing operations that can be
performed:

• to select a widget: click it once
• to deselect a widget: hold down the shift button while clicking on the selected widget,

or click somewhere outside the widget
• to resize a widget: select the widget, click on one of the handles of the widget (the

black squares at the outside of the widget) and resize it.
• to move a widget: select it, press the select button between the handles of the widget

and move it
• to cut/copy a widget: select the widget, bring up the operate menu and select cut/copy

in the edit menu
• to paste a widget (once you have cut/copied it): bring up the operate menu anywhere

on a canvas, and select paste from the edit menu. The pasted widget is automatically
placed at the same position as the widget that is cut/copied, and is automatically se-
lected. You can now move it to another position.

Exercise 1

Copy the one button widget that is currently on the canvas to make a second one, and po-
sition the two buttons according to the picture of the application.

Step 3: setting and applying properties of widgets

We now have painted widgets, and are ready to set their properties. Properties define a va-
riety of visual attributes, the nature of the data they use or display, and how that data is ref-
erenced by the application. We will now specify the different properties for our input field
and buttons.

To display a widget’s properties, we use the so-called Properties Tool. To open this tool,
select the input field and click the Properties button on the Canvas Tool. The properties
tool opens, and we are now ready to examine and change the properties that are available
for an input field.

The properties are always arranged in a notebook, containing several pages. By clicking
a tab of such a page, you select that page. Note that a Properties Tool does not belong to a
particular canvas, or a particular widget. For example, if you now select one of the two but-
tons, the Properties Tool will change to allow you to view/change the properties for that
widget.

66 VisualWorks Application Building66 VisualWorks Application Building

We will now fill in the properties for the input field. Select the input field widget on the
canvas. Go to the Basics page. Type in the aspect field: counterValue (always start aspect
names with a small letter), and select Number in the type box. Apply these changes to the
widget by pressing the apply button. You can now select the Details page. On this page,
mark the check box Read-Only. Also apply these changes too.

Just to be a little bit less blind.

The symbol that you typed in the aspect field corresponds to the selector of a method that
we will create after. This method will return the model corresponding to the input field.
Here as you will see the model will be value holder on the Number. This means that the
valueHolder on a number will be the model (of the MVC pattern) for the inputField widg-
et. The model of the InputField will be a ValueHolder, a basic object that send the message
update to its dependent when it receives the message value:.

Exercise: 1

Set and apply the following properties for the left button:

The symbol associated with the Action button is the selector of a method of the applica-
tion model that will be invoked when the button is pressed.

Exercise: 1

Set and apply these properties for the right button:

Page Property Setting

Basics Label increment

Action increment

Be Default checked

Page Property Setting

Basics Label decrement

Action decrement

Be Default unchecked

67 VisualWorks Application Building67 VisualWorks Application Building

Step 4 : Installing the canvas on an application model

At any time in the painting process, you can save the canvas by installing it in an appli-
cation model. Installing a canvas creates an interface specification, which serves as the ap-
plication’s blueprint for building an operational window. An interface specification is a
description of an interface. Each installed interface specification is stored in (and returned
by) a unique class method in the application model by default named windowSpec. Note
that a same interface specification can be save with different names, more interesting a
same set of widget can be saved in different positions under different method name.

You can think of a canvas as the VisualWorks graphical user interface for creating and
editing an interface specification. Whereas a canvas is a graphical depiction of the win-
dow’s contents and layout, an interface specification is a symbolic representation that an
application model can interpret.

To install a canvas:

• click Install... in the canvas tool
• a dialog box comes up where you have to provide the name of the application model

and the class method in which to install the canvas. Provide SimpleCounterApp as
class name. Leave windowSpec (the default name of the class method where the in-
terface specification is stored) as name of the selector. Press OK when finished.

• since your application model does not exist yet, you get another dialog box where
you have to provide some information concerning your application model. Leave the
name of the class, but provide DemoCounter as name for the category. Since we are
creating a normal application (and not a dialog box or so), choose the application
check box. Note that VisualWorks then fills in ApplicationModel as superclass.
Leave this and select OK. Select a second time OK to close the first dialog box.

The canvas is now installed on the class SimpleCounterApp. Open a browser, go to the
category DemoCounter, select the class switch to see the class methods, and note that
there is a method windowSpec in a protocol called ‘interface specs’.

11.4 Programming the application model

As said in previous section, we now have to program our application model to:
• specify the interface’s appearance and basic behavior,
• supplement the application’s basic behavior with application-specific behavior.
As said before there are several kinds of widgets: static widgets, action widgets and data

widgets. Each of these kinds of widgets needs special programming care.

68 VisualWorks Application Building68 VisualWorks Application Building

Static Widgets

These are widgets like labels and separators that have no controller since they are just
used to display something, and do not accept any kind of user input. No programming is
required in the application model for this kind of widgets.

Action Widgets

An action widget delegates an action to the application model from which it was built.
Thus, when a user activates an action widget (for example, clicking the increment button),
a message is sent by the widget to our application model (an instance of the class Simple-
CounterApp). What message is sent is defined in the properties of the widget, in the Action
field on the Basics page. Since we have defined the action property of the left button to be
increment, this means that a message increment is sent to the application model when the
user presses the increment button.

Data Widgets

A data widget is designed to use an auxiliary object called a value model to manage the
data it presents. (The value model play the M of the MVC pattern. This means that it prop-
agates an update message to its dependent, the widget.) Thus, instead of holding on to the
data directly it delegates this task to a value model:

• when a data widget accepts input from a user, it sends this input to its value model for
storage,

• when a data widget needs to update its display, it asks its value model for the data to
be displayed.

The basic way to set up this interaction between a widget and its value model is by:
• telling a widget the name of its value model (in our input field we filled in the aspect

field on the basics page with counterValue, telling the widget to use a message with
this name to access its value model in the application model.

• programming the application model such that it is able to create and return this value
model. For example, since we have provided counterValue as name for of the mes-
sage that will be used by the input field widget to access its valueModel, we will have
to provide this message in the class SimpleCounterApp.

Defining stub methods, and opening the application

As was said in the beginning, the application model is the glue for the models and the
views/controllers. This means we have to implement:

• methods for every data widget to let the widget access its value model,
• methods that perform a certain action and that are triggered by action widget.

69 VisualWorks Application Building69 VisualWorks Application Building

Luckily, VisualWorks helps us with this step by generating stub-methods, methods with
a default implementation that can then be changed to provide the desired behavior. To cre-
ate such methods, we have to fill in the properties for every widget on our canvas (which
we have done in previous steps), and then we use the define property.

To define properties: deselect every widget on the canvas, and select the define button
on the canvas tool. A list will come up with all the models where the system will create stub
methods for. Leave all the models selected and press OK. The system will now generate
the stub methods.

Note that often it is better to write by yourself the code generated, because you can have
the control of the way the value model are created and accessed.

We now have a basic application that we can open. To do so, select the Open button on
the canvas tool.. You now can click on the buttons, but since we have not yet provided any
actions, the default action happens (which is to do nothing).

Go to your browser again, and deselect the class SimpleCounterApp, and select it again.
Set the switch to instance, and you will notice that the generation process added some
methods:

• two methods in the action protocol: increment and decrement,
• a method counterValue in a protocol aspects.

11.4.1 About value models

In previous section we explained that a data widget holds on to a value model, and that
this value model actually holds the model. A data widget performs two basic operations
with its value model:

• ask the contents of the value model using the value message,
• set contents of the value model using the value: message.

VisualWorks provides a whole hierarchy of different value models in the class Value-
Model and its subclasses. The simplest is ValueHolder: it wraps any kind of object, and al-
lows to access it using value (to get the stored object) and value: (to set the object).
Sending the message asValue to that object creates a valueholder on an object. Moreover
using a valueHolder ensure that its dependents receive the message update:, each time the
value model receives value:.

In our application, we have an input field that should display a number. The input field
is a data widget, so it has to hold on to a value model. This value model will actually store
a number. Note that the Model-View-Controller principle tells us that the data widget (a
view-controller pair) should not know its model directly. Therefore, the input field only

70 VisualWorks Application Building70 VisualWorks Application Building

knows that it has to send counterValue to the application model, and the model knows
nothing (since it is wrapped in a value model). This means that we have to program our ap-
plication model so that it provides the correct mapping.

If you look at the implementation of the method counterValue (a stub method generated
by the define command), you will see the following piece of code:

counterValue
"This method was generated by UIDefiner. Any edits made here
may be lost whenever methods are automatically defined. The
initialization provided below may have been preempted by an
initialize method."

^counterValue isNil
ifTrue:[counterValue :- 0 asValue]
ifFalse:[counterValue]

This code implement a lazzy initialization of the value model. This means that if the val-
ueModel (counterValue) is defined, it is created, stored and return. If the valueModel is al-
ready defined, it is just simply return. Note that this is the method that is sent by the input
field to access its value model.

Note such kind of lazzy initialization can be replaced by the following methods:

SimpleCounterApp>>initialize
super initialize.
counterValue := 0 asValue.

SimpleCounter>>counterValue
^ counterValue

The following code only works if the initialize method is automatically invoke when the
application model is created. This is the case because the class ApplicationModel class de-
fines a class method new as follows.

ApplicationModel>>new
^super new initialize

Exercise 2: 1

Provide the implementation for increment and decrement, and test it.

71 Lesson 10: More about Applications71 Lesson 10: More about Applications

Chapter 12

Lesson 10: More about
Applications
This lesson uses lesson 8 as basis, and explains some extras about application building.

12.1 Outlining

On the canvas tool you see a line of buttons as below, that is used to line out components.
The first 6 are used to align them with other widgets, the middle 4 are used to equal spacing
between widgets, and the last two are concerned with equalling heights and widths.

Exercise 1

Use these alignment tools to properly align your application

12.2 Making the widget’s positions relative

A handy feature is to set up the size and position of the widgets relative to window bounds.
You make widgets relative using the Position page in their properties. The proportion sets
the percentage (between 0 and 1) for the relative position; the offset uses this as start. Note
that 0 means left or top and 1 means right or bottom. For example, to say to our input field
that it should at all times keep 10 pixels from the left and right border, we would set the
first (L) and the third (R) positions to:

L 0 10
R 1 -10

To make sure that our left button keeps ten from the left side, and keeps ten from the mid-
dle of the window, we use:

L 0 10
R 0.5 -10

Likewise, for the other button:
L 0.5 10
R 1 -10

7272

Exercise 1

Make the components relative, and resize your application…

12.3 Changing the input field’s model

Currently, the model of our input field is a simple number. This means that we have to put
more logic in our application, including behavior that one would expect in the model. In
other words, there is too much logic in the application, which gives problems when updat-
ing/reusing this application and model. This section will therefore use our implementation
of SimpleCounter (see lessons 3 and 4) as model instead of number.

There are two major issues we have to deal with:
• 1.use a SimpleCounter instance as model instead of a number,
• 2.take care of the dependency-mechanism

12.4 Make a SimpleCounter instance the model

As explained before, the inputfield has a valueholder as model, and uses the messages val-
ue and value: to get/put the data from it. However, SimpleCounter has no messages value
and value: but messages counterValue and counterValue:. This means we cannot use a
simple value holder that holds the SimpleCounter instance, but have to use a more sophis-
ticated one that translates these messages. This is done using the class AspectAdaptor. So,
our input field will hold an AspectAdaptor, which will actually hold the instance of Sim-
pleCounter. To use this aspectAdaptor, we have to initialize counterValue like this:

counterValue := (AspectAdaptor forAspect: #counterValue)
subject: SimpleCounter new;
subjectSendsUpdates: true

In the application model, the method counterValue is used to return the actual model to be
used by the input field. Since this method uses lazy initialization, it actually performs two
functions (see lesson 8):

• 1.initialize and return the value model (the ifTrue:-branch),
• 2.return the value model if it has been initialized

Exercise 3: Adapt the implementation to use the implementation given above. Take care
because, when a user uses define… in the Canvas Tool, the counterValue method is regen-
erated !

7373

12.5 Dependency mechanism

As explained in the lectures, in the Model-View-Controller the model does not know its
dependents and does not invoked directly their update when it changes. Instead, it sends
to itself a changed message, this has as a consequence that its dependents know their mod-
el has changed and that their update method is invoked. Our model, the SimpleCounter in-
stance does not send change messages… yet. Since the aspect we are interested in is
counterValue, we have to send a change message in the counterValue mutator (the acces-
sor is just used to get the value, so there's no need to send a change message there). Change
the counterValue mutator code so it resembles the following:

counterValue: aNumber
counterValue := aNumber.
self changed: #counterValue

Test your application now. Does it work correctly ?

Exercise 1

Adapt the implementation of increment and decrement method in SimpleCounterAppl to
use the increment and decrement methods that are already defined on SimpleCounter.
Hint: take a look at the AspectAdaptor class if necessary.

12.6 Using the builder at run-time

The builder (class UIBuilder) is the part of the User Interface Builder (UIB) that is respon-
sible for constructing user interfaces from the resources (interface specification, menu
specification,...). It is also responsible for helping create the user interface in the canvas
editing process, and it provides access to the interface after the user interface is built. We
will explore this last functionality by adding extra behavior that disables the decrement
button when the value displayed is 0.

Assigning an ID to the button

To disable the button, we will need to talk to the button at run-time. The button is kept in
the builder (that we can access at runtime by sending a message builder to self), but we
need to give it an identifier to be able to identify it. To give it an identifier, open a canvas
tool on the simpleCounter canvas used in previous exercises (use the resources editor or if
you use the refactoring browser just look at the class method windowSpec and click on ed-
it), open a properties tool on the decrement button and get the Basics page. Fill in #decre-
mentButton in the ID-field. We will use this identifier later on. Also, on the details page,
check the Initially Disabled check box. Install the new canvas and open it.

7474

Enhancing our domain model

Exercise 1

Write a method named isZero that returns whether counterValue equals 0 or not on Sim-
pleCounter in a protocol testing.

OnchangeSend: to:

We now want to be notified when the value of our domain-model changes by using the
message onchangeSend: #aSymbol to: anObject that is defined on all value models. It ex-
presses that we want the value model to send the message aSymbol to anObject when its
value changes (note that in most of the cases we set anObject to be self). Usually this de-
pendency is set up in the initialize method of the application.

Exercise 1

Set up a dependency to be notified with a message counterValueChanged whenever the
value of counterValue changes.

SimpleCounterApp>>initialize
....
counterValue onChangeSend: #counterValueChanged to: self

To enable or disable the button, you first have to ask the builder for it, and then send enable:
aBoolean to it.

Exercise 1

Define the method counterValueChanged so that if the value of the counter is zero, the dec-
rement button is enable. Your code should contain the following expressions:

(self builder componentAt: #decrementButton) isEnabled: true

75 Building an Interface for the LAN Application75 Building an Interface for the LAN Application

Chapter 13

Building an Interface for the
LAN Application

In this exercise you will build a basic interface that allows us to more easily create and run
LAN simulations. You will learn how to use some other widgets, more value models and
a dialog interface. We will start with an interface for the basic LAN example (containing
Node, Workstation, PrintServer and FileServer).

13.1 Overview

This is an example of the application running:

As said before, there are several stages when developing an applicat i

7676

• 1.developing the domain model,
• 2.building an interface, and
• 3.programming the application model

13.2 Model

For this exercise, our domain model will be our LAN classes (Node a
classes, Packet and subclasses,…). We already have this domain model,
doesn't send changed messages.

Exercise 1

Adapt the class Node and Packet to send change messages. When you consistently used
your mutator, this boils down to adding self changed: #nameOfMessageWithoutColons in
the body of the mutators.

13.3 Building the interface

We are then ready to build the interface as displayed above and using
erties given here:

Action Button

Basics Label: Workstation

Action: newWorkstation

Action Button

Basics Label: Node

Action: newNode

Action Button

Basics Label: PrintServer

Action: newPrintServer

7777

Action Button

Basics Label: FileServer

Action: newFileServer

Action Button

Basics Label: Remove

Action: remove

ID: removeButton

List View

Basics Aspect: nodeList

Details Scroll Bars Horizontal, Verti-
cal

Bordered On

Can Tab On

Label

Basics Label: Name

Input Field

Basics Aspect: nodeName

Type: Symbol

Notification Change: changedNode

7878

The last raw means that when the value of the inputField is changed,
cation get a notification: its method changedNode is invoked. NameMen

Install and define the action and aspect methods of this application.

13.4 Opening the Application, and manually adding
some methods

Try to open the application. You will get an exception saying that th e
ing #deviceNameMenu is not found. The reason is that the define proces
not generate menus, and that we have to do it manually. We will ther e
to manually create a method deviceNameMenu (in the aspect protocol)
method should return a valueHolder containing a menu. In the beginn i

Label

Basics Label: Next Node

Menu Button

Basics Label: <none>

Aspect: nextNode

Menu: deviceNameMenu

Details Bordered On

Notifcation Change: changedNode

Action Button

Basics Label: Originate

Action: originate

ID: originateButton

Group Box

Basics Label: Create

7979

menu will be empty.

Exercise 1

Using the inspiration of other generated aspect methods, add another instance variable and
write the method deviceNameMenu.

Open your application again. Try the different buttons. Afterwards, t y
the input field, and the press tab, return, or select accept in th e
operate menu. You should get an exception, because we asked to be n o
when the input field changes with a message changedNode, but this is n
erated.

Exercise 1

Add a method changedNode in a protocol ‘private’. For the moment let it return self, just
as the other action methods do.

13.5 Programming the application model

The basic action methods

We now have to connect our interface to our domain model. We start
list widget, because it is the most interesting one. A list widget us e
InList value model. SelectionInList is a value model with three in s
ables:

• dependents: the dependents of the SelectionInList include at least the list widget. Us-
ers might want to become dependent to.

• listHolder: this is a ValueHolder on the list to be displayed in the list view.
• selectionIndex: this is a ValueHolder that contains the index of the currently selected

element.

This is not really important to know the instance variable. The imp o
sages of SelectionInList are list (returns the list) , list: (to s
tion (returns the current selected element), selection: (to set
selected element of the list), selectionIndex (returns the index o f
selected element) , selectionIndex: (to set the index of the select e
and selectionHolder (returns the selectionHolder).

Exercise 1

Read the class comment and browse the messages listed above of SelectionInList.

8080

We now implement the action methods to add different kinds of nodes. W

with the method newNode. In the method body:
• get the list object from your nodeList,
• ask this list to add a new Node,test it

Afterwards
• proceed and implement the messages newFileServer, newPrintServer and newWork-

station.
• implement the method remove (nothing should happen if there is no selection, other-

wise the current selection should be removed)

Connecting the name field

In the previous lesson we used an AspectAdaptor to connect our inpu t

an instance of SimpleCounter. The AspectAdaptor did the translation

the input field (that uses value and value:) and its model (which us

Value and counterValue:). We now use AspectAdaptors to let several w

share a single model.

The model of the name and nextNode widget should be the currently s e

node in the nodeList. Therefore, if this selection changes, we woul d

widgets to get updated, and when we fill in and accept a value, th i

affect the current selection. Therefore, we should create and assi g

Adaptors for the name and nextNode aspects that both have the same

jectChannel. Note that here we will use subjectChannel instead of

because the model will be a valueHolder. With a subject, this is the

some domain specific element itself).

We will again need to write an initialize method in a protocol cal l

release’ to initialize the variables:
• get the selectionHolder object from your nodeList (store it in an temporary variable)
• create a new AspectAdaptor with as subjectChannel the selectionHolder, and a fo-

rAspect: of #name. Assign this to the variable nodeName.
• create a new AspectAdaptor with a subjectChannel the selectionHolder, and a fo-

rAspect: of #nextNode. Assign this to the variable nextNode.

Open your application, add some nodes, select a node. The input fiel d

update. Change the name and select accept in the operate menu (or do

return). Deselect the node again and it should update.

8181

Connecting the next node field

When the application is running, and you try to expand the menu butt
ing happens. this is because the menu that is supposed to be there,
should contain the nodes to point to, is still empty. So, we still
this menu.

Note that menus basically contain Association's (an Association is a
pair (look it up)), where the key is the name that is used to displa y
and the value is the object you get when asking for the selection. I
the keys will be the names of the nodes, and the values will be the n
selves. Now, you should first check a class MenuBuilder that aids i n
menus:

Exercise 1

Browse the class MenuBuilder (especially the examples at the class side).

Then, go to the method changedNode in the ‘private’ protocol:
• create a new instance of MenuBuilder, and hold it in a temporary variable
• iterate through the nodeList's list adding an Association of "item name -> item" to the

MenuBuilder for each item in the list.
• set the value of DeviceNameMenu to be the menuBuilder's menu (use setValue: to do

this; using value: the menu button will flash each time you add or change a node)

Test the implementation by creating some nodes, filling in their names
next nodes.

Remove a device from the list. If you do this, you will notice that
contains the removed node ! Modify the remove method to send self ch
Node as the last action in the method. Test your application again.

82 Building a Dialog and Originating Packets82 Building a Dialog and Originating Packets

Chapter 14

Building a Dialog and
Originating Packets
In the previous exercise we build a graphical user interface to structure the nodes in the
LAN application. We left one thing for this exercise: the originate button. When the user
clicks the originate button, we want a dialog box to open that allows us to fill in the origi-
nator, addressee and contents of the packet we are going to send. Based on this informa-
tion, we can then start simulating.

14.1 Dialogs

Custom Dialogs are the least simple VisualWorks applications. A custom dialog can get
its resources and widgets from the main application model. Or you can create a separate
application model for it, typically a subclass of SimpleDialog. Using the main application
model provides tighter integration, since the main model does not need to query a second
model for the values that it needs.

You can configure a SimpleDialog dynamically, as we will do in this exercise. This ap-
proach is typically used when the widget models needed by the dialog are not needed be-
yond the lifetime of the dialog. Simple Dialogs are self-contained applications that can be
used to collect user input in a controlled way. VisualWorks helps you build the dialog in-
terface, but you must supply the underlying ValueModels to hold the user input until the
user selects the Accept button.

14.2 The canvas

Open a new canvas from the Launcher and paint the window shown to the right (there are
two menu buttons and a text editor). Then fill in next properties:

8383

Menu Button

Basics Label: <none>

Aspect: originator

Menu: originatorMenu

Details Bordered On

Menu Button

Basics Label: <none>

Aspect: addressee

Menu: addresseeMenu

Details Bordered On

8484

Define the aspects of the canvas.

Take care when installing the canvas: we are going to install it in our application class
(LANInterface), but under a different name than windowSpec (because the interface of
our application is stored there, and we do not want to override it, right?). Instead, call the
method originateDialogSpec.

Try to open the canvas. You will notice an exception, because the dialog is supposed to
work with a SimpleDialog, not the LANInterface itself (a subclass of ApplicationModel).
Close the exception and proceed to the next step.

Extending the domain models to support dynamic menus

The two menu buttons will have to show appropriate lists of workstations or outputserv-
ers. In fact, we would like to be able to select all nodes that can originate packets or that
can do output.

Open a Browser and select the class Node
• Create a new protocol called ‘testing’.
• Add the method canOriginate that returns false.
• Add the method canOutput that returns false.

Text Editor

Basics Aspect: contents

Details Scroll Bars Vertical

Bordered On

Action Button

Basics Label: Accept

 Actions: accept

Action Button

Basics Label: Cancel

 Actions: cancel

8585

Select the class Workstation
• Create a new protocol called ‘testing’.
• Override the method canOriginate to return true.
Select the class OutputServer
• Create a new protocol called ‘testing’.
• Override the method canOutput to return true.

We can now ask every node these two questions, and they will answer what's appropri-
ate in their case. These methods allow us to dynamically build menus of the appropriate
devices for the user to select when originating a new packet.

Connecting the dialog to the LANINterface

We will start by filling in the originate method. Use following implementation:

originate

| dialogModel dialogBuilder returnVal packet dialogOriginator dialogAddressee di-
alogContents |

"the next three lines create ValueHolders to support the three dialog widgets"
dialogOriginator := nil asValue.
dialogAddressee := nil asValue.
dialogContents := String new asValue.

"next two lines create a new SimpleDialog object and retrieves the builder"
dialogModel := SimpleDialog new.
dialogBuilder := dialogModel builder.

"the following lines connect the widgets of the interface with the ValueHolders cre-
ated"

dialogBuilder aspectAt: #originator put: dialogOriginator.
dialogBuilder aspectAt: #addressee put: dialogAddressee.
dialogBuilder aspectAt: #contents put: dialogContents.

"the following lines ask the LANInterface for the originators and outputters menus.
We will write these next, so select proceed when VisualWorks indicates that they are new
messages."

dialogBuilder aspectAt: #originators put: self originatorsMenu.
dialogBuilder aspectAt: #addressees put: self addresseesMenu.

"the following lines open the dialog interface, originateDialog, and accept user in-
put"

8686

returnVal := dialogModel openFor: self interface: #originateDialog.
"returnvalue will be true if the user selected Accept, otherwise it will be false"
returnVal ifTrue: ["create a new packet, fill it in and give it to the workstation"

packet := Packet send: dialogContents value to:dialogAddressee value name.
packet originator: dialogOriginator value]

We still have to write two messages originatorsMenu and addresseesMenu that have to
dynamically create and return a menu. Write these two messages, using canOriginate and
canOutput and the hints provided in previous lesson when we wrote the method changed-
Node (in the section 'Connecting the next node field).

If you want, you can now experiment with other additions:
• disable the remove button, the name field or the next node field if no device is selected
• add a window menu that mimics the buttons on the interface
• catch the #closeRequest message and pop up a dialog asking the user if they really

want to close
• …

