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1. Object-Oriented Programm

Overview
❑ Dimensions of Object-Oriented Languages
❑ Objects and Dynamic Binding
❑ Inheritance and Subtyping
❑ Generics and Type Casting

Text:
❑ David Flanagan, Java in a Nutshell, O’Reilly, 199

On-line resources:
❑ Locally installed Java resources (on-line tutorial, 

http://iamwww.unibe.ch/~scg/Java/

❑ Free Java implementations and documentation (
ftp://sunsite.cnlab-switch.ch/mirror/javasoft/
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The Evolution of OOP
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Dimensions of Object-Oriented

❑ Object-Based languages (e.g., Ada) support enc
state (objects)

❑ Class-Based  languages (e.g., Clu) support insta
classes

❑ Object-Oriented languages (e.g., Objective C) s
classes

❑ Pure Object-Oriented languages (e.g., Smalltal
objects (vs. Hybrid OOLs like C++)

❑ Strongly-Typed  object-oriented languages (e.g.
expressions are type-consistent

❑ Concurrent  object-oriented languages (e.g., Jav
serve requests concurrently; individual objects ca
concurrent requests

❑ Persistent  object-oriented languages support ob
multiple user sessions

— Wegner, OOPS Mes
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Java

Language design influenced by existing OO languages (C
❑ Strongly-typed, concurrent, pure object-oriented 
❑ Syntax, type model influenced by C++
❑ Single-inheritance but multiple subtyping
❑ Garbage collection

Innovation in support for network applications:
❑ Standard API for language features, basic GUI, I
❑ Compiled to bytecode; interpreted by portable ab
❑ Support for native methods
❑ Classes can be dynamically loaded over network
❑ Security model protects clients from malicious ob

Java applications do not have to be installed and maintain
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Java and C++ — Similarities an

Java resembles C++ only superficially:

Similarities:
❑ primitive data types (in Java, platform independe
❑ syntax: control structures, exceptions ...
❑ classes, visibility declarations (public , private

❑ multiple constructors, this , new

❑ types, type casting

Extensions:
❑ garbage collection
❑ standard classes (Strings, collections ...)
❑ packages
❑ standard abstract machine
❑ final classes
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Java and C++ — Simplification

Whereas C++ is a hybrid language, Java is a pure object-
eliminates many of the complex features of C++:

Simplifications:
❑ no pointers — just references
❑ no functions — can declare static  methods
❑ no global variables — can declare public static

❑ no destructors — garbage collection and finalize

❑ no linking — dynamic class loading
❑ no header files — can define interface

❑ no operator overloading — only method overload
❑ no member initialization lists — super  construct
❑ no preprocessor — static final  constants a
❑ no multiple inheritance — can implement multiple
❑ no structs, unions, enums — typically not needed
❑ no templates — but generics will likely be added
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The “Hello World” Program

// My first Java program!

public class helloWorld  {
public static void main (String

System.out.println(“Hello World”);
}

}

helloWorld  objects can be instantiated by any client

only classes can be declared (pure OO)

class methods behave like g

Every program m
method declared

Strin

a class in the package java.lang a public class va
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Packages

A Java program is a collection of classes organized into p
❑ At least one class must have a public static void

❑ The first statement of a source file may declare t
package games.tetris;

❑ Source files (e.g., helloWorld.java) are compiled 
helloWorld.class), one for each target class

❑ Class files must be stored in subdirectories corre
hierarchy

❑ When using classes, either the full package nam
java.lang.System.out.println(“Hello World”);

or classes from the package may be imported:
import java.lang.*; // this package is always impo

❑ Class names are usually capitalized for readabili
a.b.c.d.e.f(); // which is the name of the class?!
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Java Basics
Java’s primitive data types and control statements resemb

Primitive Data Types:
boolean byte char double float int long short void

Literals:
false null true

Control flow:
if ( boolean  ) { Statements  } else { Statements  }

for ( boolean  ) { Statements  }

while (  boolean  ) { Statements  }

do { Statements  } while ( boolean  )

switch ( variable  ) {
case label  : Statements;

break; ...
default : ... break;

}
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Classes and Objects
The encapsulation boundary is a class (not an object):

public class Point  {
private double x, y; // not accessible to other classes

// constructors:
public Point (double xCoord, double yCoord) { x = xCo
public Point (Point p) { x = p.x; y = p.y; } // c

// public methods:
public double getX ( ) { return x; }
public void setX (double xCoord){ x = xCoord; }
public double getY ( ) { return y; }
public void setY (double yCoord){ y = yCoord; }
public double distance ( ) { return Math.sqrt(x*x + y

}

In pure OOLs, (non-primitive) objects are passed by refere
int a = 3, b = 4; // a and b are primitive objects
Point p1 = new Point(a,b);// p1 is a reference to an object (

int c = a; //  c gets value of a
c = 8; // c gets new value; a is unchang

Point p2 = p1; // p2 refers to p1
Point p3 = new Point(p1); // p3 is a copy of p1
p2.setX(c); // The object p1 and p2 refer to is
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Garbage Collection

In Java (as in Smalltalk and Eiffel), objects no longer refer
garbage-collected:

❑ no need to explicitly delete  objects
❑ no destructors need to be defined
❑ no need to write reference-counting code
❑ no danger of accidentally deleting objects that ar

You can still exercise extra control:

❑ Cleanup activities can be specified in a finalize

☞ useful for freeing external resources (files, s
❑ Objects you no longer need can be explicitly “for

☞ you can explicitly forget objects by assigning
(this is the initial value of declared, but unas
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Inheritance

A subclass extends a superclass, inheriting all its features,
or adding its own:

public class Circle  extends Point {
private double r;

public Circle (double xCoord, double yCoord, double
super(xCoord, yCoord); // call Point constructor
r = radius;

}

public Circle (Circle c) {
super(c); // call Point constructor w
r = c.r;

}

public double getR ( ) { return r; }
public void setR (double radius){ r = radius; }
public double distance ( ) { return super.distance() 

}

Public superclass features can always be accessed, even
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Dynamic Binding

One of the key features of object-oriented programming is
method that will be executed in response to a request dep
target, not the static type of the reference:

Point p = new Circle(5, 12, 4);

System.out.println("p.distance() = " + p.distance());

yields:
p.distance() = 9

In pure OOLs, all methods are dynamically bound by defa
Static binding is the exception:

❑ static  methods belong to classes, so are static
❑ private  methods have purely local scope
❑ final  methods cannot be overridden, so are sta
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Downcasting

Dynamic binding can cause type information to be lost:

Point p = new Circle(5, 12, 4); // p refers to a Circle —
Circle c1 = p; // compile-time error! 

Type information can be recovered at run-time by explicit 

if (p instanceof Circle) { // run-time test
c1 = (Circle) p; // explicit run-time dow

}

An attempt to cast to an invalid type will raise an exceptio

p = new Point(3,4);
c1 = (Circle) p; // invalid downcast ra
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Feature Visibility

Features ( can be declared with different degrees of visibi

❑ private  — accessible only within the class bod

❑ public  — accessible everywhere

❑ protected  — accessible to subclasses and to m
☞ allows access to cooperating classes

❑ default (no modifier) — accessible throughout the
☞ allows package access but prevents all exte
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Modifiers

In addition to feature visibility, modifiers can specify severa
classes, methods and variables:

❑ abstract  — unimplemented method; class mus
☞ method signature is followed by semi-colon 

❑ final  — class/method/variable cannot be overr

❑ static  — method/variable belongs to class, no

❑ native  — method implemented in some other l
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Exceptions

A class must declare which exceptions it throws , or it mu
public class TryException  {

public static void main(String args[]) {
try  {

alwaysThrow(0); // NB: we never get p
alwaysThrow("hello");

} catch  (NumException e) {
System.out.println("Got NumException: " + e.getMessage(

} catch  (StringException e) {
System.out.println("Got StringException: " + e.getMessage

} finally  {
System.out.println("Cleaning up");

}
}

public static void alwaysThrow(int arg) throws  Nu
throw  new NumException("don't call me with an int arg!");

}

public static void alwaysThrow(String arg) throws
throw  new StringException("don't call me with a String arg!");

}
}
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Defining Exceptions

You can define your own exception classes that inherit fro
Typically, you will only define constructors:

// Most exception classes look like this:
public class NumException  extends Exception {

public NumException() { super(); }
public NumException(String s) { super(s); }

}

public class StringException  extends Exception {
public StringException() { super(); }
public StringException(String s) { super(s); }

}
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Multiple Inheritance
Although conceptually elegant, multiple inheritance poses
problems for language designers:

Which version of distance() should be inherited by Named

Circle

-r : double

+Circle
+getR
+setR
+distance

Point

- x, y

+Point
+setX
+getX
+setY
+getY
+distance

Na

- n

+Na
+se
+ge

NamedCircle

+NamedCircle
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Interfaces
An interface declares methods but provides no implement

interface Named {
public void setName (String name);
public String getName ( );

}

A Java class can extend at most one superclass, but may 
public class NamedCircle  extends Circle implements Named {

private NamedObject n; // object composition vs. inheritan
public NamedCircle (double xCoord, double yCoord, do

super(xCoord, yCoord, radius); // call Circle const
n = new NamedObject(name); // compose a Nam

}
public void setName (String name) { n.setName(name); }
public String getName ( ) { return n.getName(); }

}

Reusable behaviour can be encapsulated as a separate c
public class NamedObject  implements Named {

private String n;
public NamedObject (String name) { n = name; }
public void setName (String name) { n = name; }
public String getName ( ) { return n; }

}
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Overriding and Overloading
Overridden methods have the same name and argument 
Overloaded methods have the same name but different ar

public class A {
public void f (float x) { System.out.println("A.f(float)"); 
public void g (float x) { System.out.println("A.g(float)");

}

public class B extends A {
public void f (float x) { System.out.println("B.f(float)"); 
public void g (int x) { System.out.println("B.g(int)"); }

}

Overloaded methods are disambiguated by their argumen
B b = new B(); // both dynamic and static type B
A a = b; // static type is A but dynamic type is B

b.f(3.14f); // B.f(float) -- overridden
b.f(3); // B.f(float) -- 3 is converted to 3.0
b.g(3.14f); // A.g(float) -- not overridden
b.g(3); // B.g(int) -- overloaded

a.f(3.14f); // B.f(float) -- overridden
a.f(3); // B.f(float) -- 3 is converted to 3.0
a.g(3.14f); // A.g(float) -- not overridden
a.g(3); // A.g(float) -- g(int) does not exist in SuperCl
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Arrays
Arrays are polymorphic objects:

❑ Can declare arrays of any type
int[] array1;

MyObject s[];

❑ Can build array of arrays
int a[][] = new int[10][3];

a.length --> 10

a[0].length --> 3

Creating arrays
❑ An empty array:

int list[] = new int [50];

❑ Pre-initialized:
String names[] = { “Marc”, “Tom”, “Pete” };

❑ Cannot create static compile time arrays
int nogood[20]; // compile time error
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Arrays and Generics

Arrays are the only polymorphic containers in Java:

Point [] pa = new Point[3];
pa[0] = new Point(3,4);
pa[1] = new Point(5,12);
Point p = pa[0]; // ok -- pa is an array of Point

It is not possible to program other kinds of polymorphic co

Stack s = new Stack(); // defined in package java.util
s.push(pa[0]);
s.push(pa[1]);
// p = s.pop(); // compile-time error -- s.pop(
p = (Point) s.pop(); // ok -- run-time cast
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Summary

You Should Know The Answers To These Questions:
❑ What are the similarities and differences between
❑ What role do packages play in Java?
❑ When can an object access a private  instance
❑ Why should a super  constructor be called when

instance?
❑ What is dynamic binding? Why are static  meth
❑ What is the difference between protected  and
❑ What is the difference between overriding and ov

Can You Answer The Following Questions?
✎ What are the similarities between Java and Eiffel?
✎ How can an object gain access to a private  instanc
✎ What exactly is the difference between a pointer and 
✎ Why does Java (need to) support explicit type-casting
✎ What is the difference between an interface  and a
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2. Java Applets and Threads

Overview
❑ The Java API
❑ Applets and events
❑ Creating and synchronizing threads

Texts:
❑ David Flanagan, Java in a Nutshell, O’Reilly, 199
❑ Mary Campione and Kathy Walrath, The Java Tu

Addison-Wesley, 1996
❑ Doug Lea, Concurrent Programming in Java — D

The Java Series, Addison-Wesley, 1996
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The Java API
java.lang contains essential Java classes, including num

compiler, runtime, security, and threads. This is t
automatically imported into every Java program.

java.awt Abstract Windowing Toolkit

java.applet enables the creation of applets through the A

java.io provides classes to manage input and output stre
and write data to files, strings, and other sources

java.util contains miscellaneous utility classes, including 
bit sets, time, date, string manipulation, etc.

java.net provides network support, including URLs, TCP
IP addresses, and a binary-to-text converter.

java.awt.image classes for managing image data.

java.awt.peer connects AWT components to their platfo
implementations (such as Motif widgets or Micro
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Applets
Client

API Classes

Applet
Instance

other classes ...

Java Applet classes can be
HTTP server and instantiat
When instantiated, the App
and start ed by client.
The Applet instance may m
either standard API classe
classes to be downloaded 
NB: objects are not downlo
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The Hello World Applet

The simplest Applet:
// From Java in a Nutshell, by David Flanagan.

import java.applet.*; // To extended Applet
import java.awt.*; // Abstract windowing toolkit

public class HelloApplet  extends Applet {
// This method displays the applet.
// The Graphics class is how you do all drawing in Java.
public void paint(Graphics g) {

g.drawString("Hello World", 25, 50);
}

} // NB: there is no main() method!

HTML applet inclusion:
<title>Hello Applet</title>
<hr>
<applet codebase="HelloApplet.out" code="HelloApplet.class" width=2
</applet>
<hr>
<a href="HelloApplet.java">The source.</a>
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Frameworks vs. Libraries

In traditional application architectures, user applications m
in the form of procedures or classes:

A framework reverses the usual relationship between gen
Frameworks provide both generic functionality and applica

Essentially, a framework says: “Don’t call me — I’ll call yo

User Application

main()

Framework Application

main()
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Standalone Applets
An Applet is just a user object instantiated by the Applet fr

// Adapted from Java in a Nutshell, by David Flanagan.
// A simple example of directly instantiating an Applet.

import java.applet.*;
import java.awt.*;

public class HelloStandalone  {
public static void main(String args[]) {

Applet applet = new HelloApplet();
Frame frame = new AppletFrame("Hello Applet", applet, 300, 

}
}

class AppletFrame  extends Frame {
public AppletFrame(String title, Applet applet, int

super(title); // Create the Frame w

this.add("Center", applet); // Add the applet to th
this.resize(width, height); // Set the window size
this.show(); // Pop it up.

applet.init(); // Initialize and start th
applet.start();

}
}
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Events

Instead of actively checking for GUI events, you can define
invoked when your GUI objects receive events:

Component  is the superclass of all GUI components (inclu
defines all the callback methods that components must im

AWT Framework

Hardware events ...
(mouseUp,
mouseDown, ...)
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The Scribble Applet

Scribble  is a simple Applet that supports drawing by dra

// Adapted from Java in a Nutshell, by David Flanagan.

import java.applet.*;
import java.awt.*;

public class Scribble  extends Applet {
private int last_x = 0;
private int last_y = 0;
private Button clear_button;

// Called to initialize the applet.
public void init() {

this.setBackground(Color.white); //
clear_button = new Button("Clear"); //
clear_button.setForeground(Color.black);
clear_button.setBackground(Color.lightGray);
this.add(clear_button); //

}
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Responding to Events
// Called when the user clicks the mouse to start a scribble
public boolean mouseDown(Event e, int x, int y) {

last_x = x; last_y = y; return true; // Always r
}

// Called when the user scribbles with the mouse button down
public boolean mouseDrag (Event e, int x, int y) {

Graphics g = this.getGraphics();
g.setColor(Color.black); g.drawLine(last_x, last_y, x, y);
last_x = x; last_y = y; return true;

}

// Called when the user clicks the button
public boolean action (Event event, Object arg) {

// If the Clear button was clicked on, handle it.
if (event.target == clear_button) {

Graphics g = this.getGraphics();
Rectangle r = this.bounds();
g.setColor(this.getBackground());
g.fillRect(r.x, r.y, r.width, r.height);
return true;

} // Otherwise, let the superclass handle it.
else return super.action(event, arg) ;

}
}
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Running the Scribble Applet
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Threads
A Thread  defines its behaviour in its run  method, but is s

// Copyright (c) 1995, 1996 Sun Microsystems, Inc. All Rights Reser

class TwoThreadsTest  {
public static void main (String[] args) {

new SimpleThread("Jamaica").start(); // Inst
new SimpleThread("Fiji").start();

}
}

class SimpleThread  extends Thread {
public SimpleThread(String str) {

super(str); // Call
}
public void run () { // Wha

for (int i = 0; i < 10; i++) {
System.out.println(i + " " + getName());
try {

sleep((int)(Math.random() * 1000));
} catch (InterruptedException e) { }

}
System.out.println("DONE! " + getName());

}
}
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Running the TwoThreadsTest
0 Jamaica
0 Fiji
1 Jamaica
1 Fiji
2 Jamaica
2 Fiji
3 Jamaica
3 Fiji
4 Jamaica
4 Fiji
5 Jamaica
6 Jamaica
5 Fiji
6 Fiji
7 Fiji
7 Jamaica
8 Jamaica
9 Jamaica
8 Fiji
DONE! Jamaica
9 Fiji
DONE! Fiji

In this implementation 
of the two threads is in

This is not guaranteed 

✎ Why are the outpu

E.g.
00 JaFimajicai

...
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java.lang.Thread
The Thread class encapsulates all information concerning

public class java.lang.Thread
extends java.lang.Object implements java.lang.Runnable

{
public Thread(); // Public cons
public Thread(Runnable target);
public Thread(Runnable target, String name);
public Thread(String name);

...

public static void sleep(long millis)// Current thre
throws InterruptedException;

public static void yield(); // Yield contro
...

public final String getName();
public void run (); // “main()” me
public synchronized void start (); // Starts a thre
public final void suspend (); // Temporarily
public final void resume (); // Allow to res
public final void stop (); // Throws a Th
public final void join () // Waits for th

throws InterruptedException;
...
}
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e elapsed

me()

 or notifyAll()
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Not Runnable
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Universität Bern

Transitions between Thread Sta

Runnable→ ← N

sleep() tim

suspend() resu

wait() notify()

blocked on I/O I/O

New Thread Runnable

Dead

yield()

start()

stop()

stop() , or
run()  exits
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le to inherit from both Thread
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ents the Runnable interface,
 class as a parameter:
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java.lang.Runnable

Since multiple inheritance is not supported, it is not possib
and from another class providing useful behaviour (like Ap

In these cases it is sufficient to define a class that implem
and to call the Thread constructor with an instance of that

public interface java.lang.Runnable
{

public abstract void run ();
}
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wn Thread :
c. All Rights Reserved.

reates its own thread

(), 5, 10);
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Creating Threads
A Clock  object updates the time as an Applet  with its o
import java.awt.Graphics; // Copyright (c) 1995, 1996 Sun Microsystems, In
import java.util.Date;

public class Clock  extends java.applet.Applet implements Runnable {

Thread clockThread = null;

public void start() {
if (clockThread == null) {

clockThread = new Thread(this, "Clock"); // NB: c
clockThread.start();

}
}

public void run () {
// loop terminates when clockThread is set to null in stop()
while (Thread.currentThread() == clockThread) {

repaint();
try { clockThread.sleep(1000); }
catch (InterruptedException e){ }

}
}

public void paint(Graphics g) {
Date now = new Date();
g.drawString(now.getHours() + ":" + now.getMinutes() + ":" + now.getSeconds

}

public void stop() { clockThread = null; }
}



An Introduction to Java 43.

Java Applets and Threads

ay be running at any time

ed with other synchronized

y one may run at a time

d with respect to some object:
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Synchronization

Without synchronization, an arbitrary number of threads m
within the methods of an object.

One can either declare an entire method to be synchroniz
methods of an object:

public class PrintStream  extends FilterOutputStream {
...
public synchronized  void println(String s);// Onl
public synchronized  void println(char c);
...

}

or an individual block within a method may be synchronize
synchronized  (resource) { // Lock resource before using it

...
}
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n variable

, if available
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alue, if there is room

re is room to put()

 consumer
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wait and notify
Sometimes threads must be delayed until a resource is in

class Slot  { // Implements
private int contents;
private boolean available = false; // the conditio

public synchronized  int get() { // put contents
while (available == false) {

try { wait (); } // wait until the
catch (InterruptedException e) { }

}
available = false;
notify (); // wake up the
return contents;

}

public synchronized  void put(int value) { // put v
while (available == true) {

try { wait (); } // wait until the
catch (InterruptedException e) { }

}
contents = value;
available = true;
notify (); // wake up the

}
}
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java.lang.Object
Unlike synchronized , wait()  and notify()  are meth

public class java.lang.Object
{

public Object();
public boolean equals(Object obj);
public final Class getClass();
public int hashCode();
public String toString();
public final void wait ()

throws InterruptedException, IllegalMonitorStateExcep
public final void wait(long timeout)

throws InterruptedException, IllegalMonitorStateExcep
public final void wait(long timeout, int nanos)

throws InterruptedException, IllegalMonitorStateExcep
public final void notify () throws IllegalMonitorStateExcep
public final void notifyAll () throws IllegalMonitorStateE
protected Object clone()

throws CloneNotSupportedException, OutOfMemoryEx
protected void finalize() throws Throwable;

}
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ncurrent and distributed

s Pipe  classes.

e with lower priority.

can be manipulated together.

d” and are only allowed to

-dependent way).

d socket connections.
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Other Facilities

Java provides a large number of additional facilities for co
programming:

Pipes: Data-flow between threads is supported by variou

Thread Priorities: Higher priority threads pre-empt thos

Thread Groups: Threads belonging to the same group 

Security Managers: Downloaded Applets are “untruste
perform restricted sets of actions.

Processes: New processes can be started (in a platform

Sockets: Standard classes in java.net.* support URL an
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nload objects?
()  if it fails to handle the

d instead of start() ?
n’t synchronized ?
Universität Bern

Summary

You Should Know The Answers To These Questions:
❑ What are Applets and how are they instantiated?
❑ Why doesn’t an Applet need a main()  method?
❑ What are events and callbacks?
❑ How can you define and start your own threads?
❑ How does a thread become Runnable?
❑ Why do we need a separate Runnable  interface
❑ Why do we need wait()  and notify()  in add

Can You Answer The Following Questions?
✎ Why doesn’t the Java language provide a way to dow
✎ Why should an event handler eh  always call super.eh

event passed to it?
✎ What happens if we call the run()  method of a threa
✎ What might happen if java.io.PrintStream.println were
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