
An Introduction to Java 1.

ava

oup
M)

scg
Universität Bern

An Introduction to J

A pre-tutorial

Prof. Oscar Nierstrasz

Software Composition Gr
Institut für Informatik (IA

Universität Bern

oscar@iam.unibe.ch
http://iamwww.unibe.ch/~

An Introduction to Java 2.

nd Threads 27
28
29

 Applet 30
 Libraries 31
plets 32

33
plet 34
Events 35
ribble Applet 36

37
oThreadsTest 38
d 39
een Thread States 40

able 41
ds 42

43
44

ct 45
46
47
Universität Bern

Contents
1. Object-Oriented Programming and Java 3

The Evolution of OOP 4
Dimensions of Object-Oriented Languages 5
Java 6
Java and C++ — Similarities and Extensions 7
Java and C++ — Simplifications 8
The “Hello World” Program 9
Packages 10
Java Basics 11
Classes and Objects 12
Garbage Collection 13
Inheritance 14
Dynamic Binding 15
Downcasting 16
Feature Visibility 17
Modifiers 18
Exceptions 19
Defining Exceptions 20
Multiple Inheritance 21
Interfaces 22
Overriding and Overloading 23
Arrays 24
Arrays and Generics 25
Summary 26

2. Java Applets a
The Java API
Applets
The Hello World
Frameworks vs.
Standalone Ap
Events
The Scribble Ap
Responding to
Running the Sc
Threads
Running the Tw
java.lang.Threa
Transitions betw
java.lang.Runn
Creating Threa
Synchronization
wait and notify
java.lang.Obje
Other Facilities
Summary

An Introduction to Java 3.

Object-Oriented Programming and Java

ing and Java

6

language spec, etc):

Swiss mirror):
Universität Bern

1. Object-Oriented Programm

Overview
❑ Dimensions of Object-Oriented Languages
❑ Objects and Dynamic Binding
❑ Inheritance and Subtyping
❑ Generics and Type Casting

Text:
❑ David Flanagan, Java in a Nutshell, O’Reilly, 199

On-line resources:
❑ Locally installed Java resources (on-line tutorial,

http://iamwww.unibe.ch/~scg/Java/

❑ Free Java implementations and documentation (
ftp://sunsite.cnlab-switch.ch/mirror/javasoft/

An Introduction to Java 4.

Object-Oriented Programming and Java

OBOL

da

Lisp

Prolog

Modula-2

Modula-3

Oberon

da 95
Universität Bern

The Evolution of OOP

1960

1970

1980

1990

FORTRAN
Algol 60

C

PL/1
Simula 67

Smalltalk 72

Smalltalk 80

Objective C

C

C++ A

Pascal

ANSI C++

Self
Eiffel

Algol 68

Clu

Java A

An Introduction to Java 5.

Object-Oriented Programming and Java

 Languages

apsulation of behaviour and

ntiation of objects from object

upport inheritance between

k) model all data types as

, Eiffel) guarantee that all

a) allow multiple objects to
n schedule and synchronize

jects whose lifetime may span

senger, Vol. 1, #1, 1990
Universität Bern

Dimensions of Object-Oriented

❑ Object-Based languages (e.g., Ada) support enc
state (objects)

❑ Class-Based languages (e.g., Clu) support insta
classes

❑ Object-Oriented languages (e.g., Objective C) s
classes

❑ Pure Object-Oriented languages (e.g., Smalltal
objects (vs. Hybrid OOLs like C++)

❑ Strongly-Typed object-oriented languages (e.g.
expressions are type-consistent

❑ Concurrent object-oriented languages (e.g., Jav
serve requests concurrently; individual objects ca
concurrent requests

❑ Persistent object-oriented languages support ob
multiple user sessions

— Wegner, OOPS Mes

An Introduction to Java 6.

Object-Oriented Programming and Java

++, Smalltalk ...):
language

O, concurrency, network
stract machine

jects

ed by users
Universität Bern

Java

Language design influenced by existing OO languages (C
❑ Strongly-typed, concurrent, pure object-oriented
❑ Syntax, type model influenced by C++
❑ Single-inheritance but multiple subtyping
❑ Garbage collection

Innovation in support for network applications:
❑ Standard API for language features, basic GUI, I
❑ Compiled to bytecode; interpreted by portable ab
❑ Support for native methods
❑ Classes can be dynamically loaded over network
❑ Security model protects clients from malicious ob

Java applications do not have to be installed and maintain

An Introduction to Java 7.

Object-Oriented Programming and Java

d Extensions

nt)

)

Universität Bern

Java and C++ — Similarities an

Java resembles C++ only superficially:

Similarities:
❑ primitive data types (in Java, platform independe
❑ syntax: control structures, exceptions ...
❑ classes, visibility declarations (public , private

❑ multiple constructors, this , new

❑ types, type casting

Extensions:
❑ garbage collection
❑ standard classes (Strings, collections ...)
❑ packages
❑ standard abstract machine
❑ final classes

An Introduction to Java 8.

Object-Oriented Programming and Java

s

oriented language that

 variables
 methods

ing
or can be called
nd automatic inlining
 interfaces

 ...
Universität Bern

Java and C++ — Simplification

Whereas C++ is a hybrid language, Java is a pure object-
eliminates many of the complex features of C++:

Simplifications:
❑ no pointers — just references
❑ no functions — can declare static methods
❑ no global variables — can declare public static

❑ no destructors — garbage collection and finalize

❑ no linking — dynamic class loading
❑ no header files — can define interface

❑ no operator overloading — only method overload
❑ no member initialization lists — super construct
❑ no preprocessor — static final constants a
❑ no multiple inheritance — can implement multiple
❑ no structs, unions, enums — typically not needed
❑ no templates — but generics will likely be added

An Introduction to Java 9.

Object-Oriented Programming and Java

argv[]) {

lobal functions

ust have a main
 in some class

g is a standard class

riable a public method
Universität Bern

The “Hello World” Program

// My first Java program!

public class helloWorld {
public static void main (String

System.out.println(“Hello World”);
}

}

helloWorld objects can be instantiated by any client

only classes can be declared (pure OO)

class methods behave like g

Every program m
method declared

Strin

a class in the package java.lang a public class va

An Introduction to Java 10.

Object-Oriented Programming and Java

ackages
main() method
he package name:

to bytecode files (e.g.,

sponding to the package

e must be given:

rted by default

ty:
Universität Bern

Packages

A Java program is a collection of classes organized into p
❑ At least one class must have a public static void

❑ The first statement of a source file may declare t
package games.tetris;

❑ Source files (e.g., helloWorld.java) are compiled
helloWorld.class), one for each target class

❑ Class files must be stored in subdirectories corre
hierarchy

❑ When using classes, either the full package nam
java.lang.System.out.println(“Hello World”);

or classes from the package may be imported:
import java.lang.*; // this package is always impo

❑ Class names are usually capitalized for readabili
a.b.c.d.e.f(); // which is the name of the class?!

An Introduction to Java 11.

Object-Oriented Programming and Java

le those of C/C++:
Universität Bern

Java Basics
Java’s primitive data types and control statements resemb

Primitive Data Types:
boolean byte char double float int long short void

Literals:
false null true

Control flow:
if (boolean) { Statements } else { Statements }

for (boolean) { Statements }

while (boolean) { Statements }

do { Statements } while (boolean)

switch (variable) {
case label : Statements;

break; ...
default : ... break;

}

An Introduction to Java 12.

Object-Oriented Programming and Java

 (even subclasses)

ord; y = yCoord; }
an access private data here

*y); }

nce, not by value:

NB: a & b coerced!)

ed

 modified
Universität Bern

Classes and Objects
The encapsulation boundary is a class (not an object):

public class Point {
private double x, y; // not accessible to other classes

// constructors:
public Point (double xCoord, double yCoord) { x = xCo
public Point (Point p) { x = p.x; y = p.y; } // c

// public methods:
public double getX () { return x; }
public void setX (double xCoord){ x = xCoord; }
public double getY () { return y; }
public void setY (double yCoord){ y = yCoord; }
public double distance () { return Math.sqrt(x*x + y

}

In pure OOLs, (non-primitive) objects are passed by refere
int a = 3, b = 4; // a and b are primitive objects
Point p1 = new Point(a,b);// p1 is a reference to an object (

int c = a; // c gets value of a
c = 8; // c gets new value; a is unchang

Point p2 = p1; // p2 refers to p1
Point p3 = new Point(p1); // p3 is a copy of p1
p2.setX(c); // The object p1 and p2 refer to is

An Introduction to Java 13.

Object-Oriented Programming and Java

red to are automatically

e still in use

 method
ockets etc.)
gotten”
 the value null to a variable
signed variables)
Universität Bern

Garbage Collection

In Java (as in Smalltalk and Eiffel), objects no longer refer
garbage-collected:

❑ no need to explicitly delete objects
❑ no destructors need to be defined
❑ no need to write reference-counting code
❑ no danger of accidentally deleting objects that ar

You can still exercise extra control:

❑ Cleanup activities can be specified in a finalize

☞ useful for freeing external resources (files, s
❑ Objects you no longer need can be explicitly “for

☞ you can explicitly forget objects by assigning
(this is the initial value of declared, but unas

An Introduction to Java 14.

Object-Oriented Programming and Java

 and possibly overriding some

radius) {

ith c as Point

- r; }

 if overridden.
Universität Bern

Inheritance

A subclass extends a superclass, inheriting all its features,
or adding its own:

public class Circle extends Point {
private double r;

public Circle (double xCoord, double yCoord, double
super(xCoord, yCoord); // call Point constructor
r = radius;

}

public Circle (Circle c) {
super(c); // call Point constructor w
r = c.r;

}

public double getR () { return r; }
public void setR (double radius){ r = radius; }
public double distance () { return super.distance()

}

Public superclass features can always be accessed, even

An Introduction to Java 15.

Object-Oriented Programming and Java

dynamic binding — the actual
ends on the dynamic type of

ult.

ally bound

tically bound
Universität Bern

Dynamic Binding

One of the key features of object-oriented programming is
method that will be executed in response to a request dep
target, not the static type of the reference:

Point p = new Circle(5, 12, 4);

System.out.println("p.distance() = " + p.distance());

yields:
p.distance() = 9

In pure OOLs, all methods are dynamically bound by defa
Static binding is the exception:

❑ static methods belong to classes, so are static
❑ private methods have purely local scope
❑ final methods cannot be overridden, so are sta

An Introduction to Java 16.

Object-Oriented Programming and Java

 upcast ok
— can’t downcast

tests and casts:

ncast ok

n at run-time:

ises run-time exception
Universität Bern

Downcasting

Dynamic binding can cause type information to be lost:

Point p = new Circle(5, 12, 4); // p refers to a Circle —
Circle c1 = p; // compile-time error!

Type information can be recovered at run-time by explicit

if (p instanceof Circle) { // run-time test
c1 = (Circle) p; // explicit run-time dow

}

An attempt to cast to an invalid type will raise an exceptio

p = new Point(3,4);
c1 = (Circle) p; // invalid downcast ra

An Introduction to Java 17.

Object-Oriented Programming and Java

lity:

y

embers of the same package

 package only
rnal access
Universität Bern

Feature Visibility

Features (can be declared with different degrees of visibi

❑ private — accessible only within the class bod

❑ public — accessible everywhere

❑ protected — accessible to subclasses and to m
☞ allows access to cooperating classes

❑ default (no modifier) — accessible throughout the
☞ allows package access but prevents all exte

An Introduction to Java 18.

Object-Oriented Programming and Java

l other important attributes of

t also be declared abstract
instead of body

idden by subclass

t instances; implicitly final

anguage, usually C
Universität Bern

Modifiers

In addition to feature visibility, modifiers can specify severa
classes, methods and variables:

❑ abstract — unimplemented method; class mus
☞ method signature is followed by semi-colon

❑ final — class/method/variable cannot be overr

❑ static — method/variable belongs to class, no

❑ native — method implemented in some other l

An Introduction to Java 19.

Object-Oriented Programming and Java

st catch them:

ast this point

));

());

mException {

 StringException {
Universität Bern

Exceptions

A class must declare which exceptions it throws , or it mu
public class TryException {

public static void main(String args[]) {
try {

alwaysThrow(0); // NB: we never get p
alwaysThrow("hello");

} catch (NumException e) {
System.out.println("Got NumException: " + e.getMessage(

} catch (StringException e) {
System.out.println("Got StringException: " + e.getMessage

} finally {
System.out.println("Cleaning up");

}
}

public static void alwaysThrow(int arg) throws Nu
throw new NumException("don't call me with an int arg!");

}

public static void alwaysThrow(String arg) throws
throw new StringException("don't call me with a String arg!");

}
}

An Introduction to Java 20.

Object-Oriented Programming and Java

m Exception
Universität Bern

Defining Exceptions

You can define your own exception classes that inherit fro
Typically, you will only define constructors:

// Most exception classes look like this:
public class NumException extends Exception {

public NumException() { super(); }
public NumException(String s) { super(s); }

}

public class StringException extends Exception {
public StringException() { super(); }
public StringException(String s) { super(s); }

}

An Introduction to Java 21.

Object-Oriented Programming and Java

 significant pragmatic

Circle?

medPoint

medPoint
tName
tName
Universität Bern

Multiple Inheritance
Although conceptually elegant, multiple inheritance poses
problems for language designers:

Which version of distance() should be inherited by Named

Circle

-r : double

+Circle
+getR
+setR
+distance

Point

- x, y

+Point
+setX
+getX
+setY
+getY
+distance

Na

- n

+Na
+se
+ge

NamedCircle

+NamedCircle

An Introduction to Java 22.

Object-Oriented Programming and Java

ation:

implement multiple interfaces:

ce
uble radius, String name) {
ructor
edObject instance

 // forwarding

lass:
Universität Bern

Interfaces
An interface declares methods but provides no implement

interface Named {
public void setName (String name);
public String getName ();

}

A Java class can extend at most one superclass, but may
public class NamedCircle extends Circle implements Named {

private NamedObject n; // object composition vs. inheritan
public NamedCircle (double xCoord, double yCoord, do

super(xCoord, yCoord, radius); // call Circle const
n = new NamedObject(name); // compose a Nam

}
public void setName (String name) { n.setName(name); }
public String getName () { return n.getName(); }

}

Reusable behaviour can be encapsulated as a separate c
public class NamedObject implements Named {

private String n;
public NamedObject (String name) { n = name; }
public void setName (String name) { n = name; }
public String getName () { return n; }

}

An Introduction to Java 23.

Object-Oriented Programming and Java

types
gument types

}
 }

}

ts:

ass!
Universität Bern

Overriding and Overloading
Overridden methods have the same name and argument
Overloaded methods have the same name but different ar

public class A {
public void f (float x) { System.out.println("A.f(float)");
public void g (float x) { System.out.println("A.g(float)");

}

public class B extends A {
public void f (float x) { System.out.println("B.f(float)");
public void g (int x) { System.out.println("B.g(int)"); }

}

Overloaded methods are disambiguated by their argumen
B b = new B(); // both dynamic and static type B
A a = b; // static type is A but dynamic type is B

b.f(3.14f); // B.f(float) -- overridden
b.f(3); // B.f(float) -- 3 is converted to 3.0
b.g(3.14f); // A.g(float) -- not overridden
b.g(3); // B.g(int) -- overloaded

a.f(3.14f); // B.f(float) -- overridden
a.f(3); // B.f(float) -- 3 is converted to 3.0
a.g(3.14f); // A.g(float) -- not overridden
a.g(3); // A.g(float) -- g(int) does not exist in SuperCl

An Introduction to Java 24.

Object-Oriented Programming and Java
Universität Bern

Arrays
Arrays are polymorphic objects:

❑ Can declare arrays of any type
int[] array1;

MyObject s[];

❑ Can build array of arrays
int a[][] = new int[10][3];

a.length --> 10

a[0].length --> 3

Creating arrays
❑ An empty array:

int list[] = new int [50];

❑ Pre-initialized:
String names[] = { “Marc”, “Tom”, “Pete” };

❑ Cannot create static compile time arrays
int nogood[20]; // compile time error

An Introduction to Java 25.

Object-Oriented Programming and Java

s

ntainers:

) returns an Object
Universität Bern

Arrays and Generics

Arrays are the only polymorphic containers in Java:

Point [] pa = new Point[3];
pa[0] = new Point(3,4);
pa[1] = new Point(5,12);
Point p = pa[0]; // ok -- pa is an array of Point

It is not possible to program other kinds of polymorphic co

Stack s = new Stack(); // defined in package java.util
s.push(pa[0]);
s.push(pa[1]);
// p = s.pop(); // compile-time error -- s.pop(
p = (Point) s.pop(); // ok -- run-time cast

An Introduction to Java 26.

Object-Oriented Programming and Java

 Java and C++?

 variable of another object?
 constructing a subclass

ods not dynamically bound?
private protected ?
erloading?

e variable of another object?
a reference?
?
n abstract class?
Universität Bern

Summary

You Should Know The Answers To These Questions:
❑ What are the similarities and differences between
❑ What role do packages play in Java?
❑ When can an object access a private instance
❑ Why should a super constructor be called when

instance?
❑ What is dynamic binding? Why are static meth
❑ What is the difference between protected and
❑ What is the difference between overriding and ov

Can You Answer The Following Questions?
✎ What are the similarities between Java and Eiffel?
✎ How can an object gain access to a private instanc
✎ What exactly is the difference between a pointer and
✎ Why does Java (need to) support explicit type-casting
✎ What is the difference between an interface and a

An Introduction to Java 27.

Java Applets and Threads

6
torial , The Java Series,

esign principles and Patterns,
Universität Bern

2. Java Applets and Threads

Overview
❑ The Java API
❑ Applets and events
❑ Creating and synchronizing threads

Texts:
❑ David Flanagan, Java in a Nutshell, O’Reilly, 199
❑ Mary Campione and Kathy Walrath, The Java Tu

Addison-Wesley, 1996
❑ Doug Lea, Concurrent Programming in Java — D

The Java Series, Addison-Wesley, 1996

An Introduction to Java 28.

Java Applets and Threads

erics, strings, objects,
he only package that is

pplet class.

ams to read data from
.

generic data structures,

 sockets, UDP sockets,

rm-specific
soft Windows controls).
Universität Bern

The Java API
java.lang contains essential Java classes, including num

compiler, runtime, security, and threads. This is t
automatically imported into every Java program.

java.awt Abstract Windowing Toolkit

java.applet enables the creation of applets through the A

java.io provides classes to manage input and output stre
and write data to files, strings, and other sources

java.util contains miscellaneous utility classes, including
bit sets, time, date, string manipulation, etc.

java.net provides network support, including URLs, TCP
IP addresses, and a binary-to-text converter.

java.awt.image classes for managing image data.

java.awt.peer connects AWT components to their platfo
implementations (such as Motif widgets or Micro

An Introduction to Java 29.

Java Applets and Threads

Server

Applet Class

 downloaded from an
ed by an HTTP client.
let will be init ialized

ake (restricted) use of
s or other Server
dynamically.
aded, only classes!
Universität Bern

Applets
Client

API Classes

Applet
Instance

other classes ...

Java Applet classes can be
HTTP server and instantiat
When instantiated, the App
and start ed by client.
The Applet instance may m
either standard API classe
classes to be downloaded
NB: objects are not downlo

An Introduction to Java 30.

Java Applets and Threads

00 height=200>
Universität Bern

The Hello World Applet

The simplest Applet:
// From Java in a Nutshell, by David Flanagan.

import java.applet.*; // To extended Applet
import java.awt.*; // Abstract windowing toolkit

public class HelloApplet extends Applet {
// This method displays the applet.
// The Graphics class is how you do all drawing in Java.
public void paint(Graphics g) {

g.drawString("Hello World", 25, 50);
}

} // NB: there is no main() method!

HTML applet inclusion:
<title>Hello Applet</title>
<hr>
<applet codebase="HelloApplet.out" code="HelloApplet.class" width=2
</applet>
<hr>
The source.

An Introduction to Java 31.

Java Applets and Threads

ake use of library functionality

eric and application code.
tion architecture:

u.”

Library classes

User classes
Universität Bern

Frameworks vs. Libraries

In traditional application architectures, user applications m
in the form of procedures or classes:

A framework reverses the usual relationship between gen
Frameworks provide both generic functionality and applica

Essentially, a framework says: “Don’t call me — I’ll call yo

User Application

main()

Framework Application

main()

An Introduction to Java 32.

Java Applets and Threads

amework:

300);

width, int height) {
ith the specified title.

e window.
.

e applet.
Universität Bern

Standalone Applets
An Applet is just a user object instantiated by the Applet fr

// Adapted from Java in a Nutshell, by David Flanagan.
// A simple example of directly instantiating an Applet.

import java.applet.*;
import java.awt.*;

public class HelloStandalone {
public static void main(String args[]) {

Applet applet = new HelloApplet();
Frame frame = new AppletFrame("Hello Applet", applet, 300,

}
}

class AppletFrame extends Frame {
public AppletFrame(String title, Applet applet, int

super(title); // Create the Frame w

this.add("Center", applet); // Add the applet to th
this.resize(width, height); // Set the window size
this.show(); // Pop it up.

applet.init(); // Initialize and start th
applet.start();

}
}

An Introduction to Java 33.

Java Applets and Threads

 callback methods that will be

ding Frame and Applet) and
plement.

Callback methods

... are handled by
application objects
Universität Bern

Events

Instead of actively checking for GUI events, you can define
invoked when your GUI objects receive events:

Component is the superclass of all GUI components (inclu
defines all the callback methods that components must im

AWT Framework

Hardware events ...
(mouseUp,
mouseDown, ...)

An Introduction to Java 34.

Java Applets and Threads

gging the mouse:

Set the background colour
Create a Button

Add it to the Applet
Universität Bern

The Scribble Applet

Scribble is a simple Applet that supports drawing by dra

// Adapted from Java in a Nutshell, by David Flanagan.

import java.applet.*;
import java.awt.*;

public class Scribble extends Applet {
private int last_x = 0;
private int last_y = 0;
private Button clear_button;

// Called to initialize the applet.
public void init() {

this.setBackground(Color.white); //
clear_button = new Button("Clear"); //
clear_button.setForeground(Color.black);
clear_button.setBackground(Color.lightGray);
this.add(clear_button); //

}

An Introduction to Java 35.

Java Applets and Threads

eturn true if event handled
Universität Bern

Responding to Events
// Called when the user clicks the mouse to start a scribble
public boolean mouseDown(Event e, int x, int y) {

last_x = x; last_y = y; return true; // Always r
}

// Called when the user scribbles with the mouse button down
public boolean mouseDrag (Event e, int x, int y) {

Graphics g = this.getGraphics();
g.setColor(Color.black); g.drawLine(last_x, last_y, x, y);
last_x = x; last_y = y; return true;

}

// Called when the user clicks the button
public boolean action (Event event, Object arg) {

// If the Clear button was clicked on, handle it.
if (event.target == clear_button) {

Graphics g = this.getGraphics();
Rectangle r = this.bounds();
g.setColor(this.getBackground());
g.fillRect(r.x, r.y, r.width, r.height);
return true;

} // Otherwise, let the superclass handle it.
else return super.action(event, arg) ;

}
}

An Introduction to Java 36.

Java Applets and Threads
Universität Bern

Running the Scribble Applet

An Introduction to Java 37.

Java Applets and Threads

tarted by calling start() :
ved.

antiate, then start

 Thread constructor

t the thread does
Universität Bern

Threads
A Thread defines its behaviour in its run method, but is s

// Copyright (c) 1995, 1996 Sun Microsystems, Inc. All Rights Reser

class TwoThreadsTest {
public static void main (String[] args) {

new SimpleThread("Jamaica").start(); // Inst
new SimpleThread("Fiji").start();

}
}

class SimpleThread extends Thread {
public SimpleThread(String str) {

super(str); // Call
}
public void run () { // Wha

for (int i = 0; i < 10; i++) {
System.out.println(i + " " + getName());
try {

sleep((int)(Math.random() * 1000));
} catch (InterruptedException e) { }

}
System.out.println("DONE! " + getName());

}
}

An Introduction to Java 38.

Java Applets and Threads

of Java, the execution
terleaved.

for all implementations!

t lines never garbled?
Universität Bern

Running the TwoThreadsTest
0 Jamaica
0 Fiji
1 Jamaica
1 Fiji
2 Jamaica
2 Fiji
3 Jamaica
3 Fiji
4 Jamaica
4 Fiji
5 Jamaica
6 Jamaica
5 Fiji
6 Fiji
7 Fiji
7 Jamaica
8 Jamaica
9 Jamaica
8 Fiji
DONE! Jamaica
9 Fiji
DONE! Fiji

In this implementation
of the two threads is in

This is not guaranteed

✎ Why are the outpu

E.g.
00 JaFimajicai

...

An Introduction to Java 39.

Java Applets and Threads

 running threads of control:

tructors

ad sleeps

l (equal priority)

thod
ad running
 halts a thread
ume after suspend()
readDeath error

read to die
Universität Bern

java.lang.Thread
The Thread class encapsulates all information concerning

public class java.lang.Thread
extends java.lang.Object implements java.lang.Runnable

{
public Thread(); // Public cons
public Thread(Runnable target);
public Thread(Runnable target, String name);
public Thread(String name);

...

public static void sleep(long millis)// Current thre
throws InterruptedException;

public static void yield(); // Yield contro
...

public final String getName();
public void run (); // “main()” me
public synchronized void start (); // Starts a thre
public final void suspend (); // Temporarily
public final void resume (); // Allow to res
public final void stop (); // Throws a Th
public final void join () // Waits for th

throws InterruptedException;
...
}

An Introduction to Java 40.

Java Applets and Threads

tes

ot Runnable

e elapsed

me()

 or notifyAll()

 completed

Not Runnable

stop()
Universität Bern

Transitions between Thread Sta

Runnable→ ← N

sleep() tim

suspend() resu

wait() notify()

blocked on I/O I/O

New Thread Runnable

Dead

yield()

start()

stop()

stop() , or
run() exits

An Introduction to Java 41.

Java Applets and Threads

le to inherit from both Thread
plet).

ents the Runnable interface,
 class as a parameter:
Universität Bern

java.lang.Runnable

Since multiple inheritance is not supported, it is not possib
and from another class providing useful behaviour (like Ap

In these cases it is sufficient to define a class that implem
and to call the Thread constructor with an instance of that

public interface java.lang.Runnable
{

public abstract void run ();
}

An Introduction to Java 42.

Java Applets and Threads

wn Thread :
c. All Rights Reserved.

reates its own thread

(), 5, 10);
Universität Bern

Creating Threads
A Clock object updates the time as an Applet with its o
import java.awt.Graphics; // Copyright (c) 1995, 1996 Sun Microsystems, In
import java.util.Date;

public class Clock extends java.applet.Applet implements Runnable {

Thread clockThread = null;

public void start() {
if (clockThread == null) {

clockThread = new Thread(this, "Clock"); // NB: c
clockThread.start();

}
}

public void run () {
// loop terminates when clockThread is set to null in stop()
while (Thread.currentThread() == clockThread) {

repaint();
try { clockThread.sleep(1000); }
catch (InterruptedException e){ }

}
}

public void paint(Graphics g) {
Date now = new Date();
g.drawString(now.getHours() + ":" + now.getMinutes() + ":" + now.getSeconds

}

public void stop() { clockThread = null; }
}

An Introduction to Java 43.

Java Applets and Threads

ay be running at any time

ed with other synchronized

y one may run at a time

d with respect to some object:
Universität Bern

Synchronization

Without synchronization, an arbitrary number of threads m
within the methods of an object.

One can either declare an entire method to be synchroniz
methods of an object:

public class PrintStream extends FilterOutputStream {
...
public synchronized void println(String s);// Onl
public synchronized void println(char c);
...

}

or an individual block within a method may be synchronize
synchronized (resource) { // Lock resource before using it

...
}

An Introduction to Java 44.

Java Applets and Threads

 a suitable state:
 a one-slot buffer

n variable

, if available

re is something to get()

 producer

alue, if there is room

re is room to put()

 consumer
Universität Bern

wait and notify
Sometimes threads must be delayed until a resource is in

class Slot { // Implements
private int contents;
private boolean available = false; // the conditio

public synchronized int get() { // put contents
while (available == false) {

try { wait (); } // wait until the
catch (InterruptedException e) { }

}
available = false;
notify (); // wake up the
return contents;

}

public synchronized void put(int value) { // put v
while (available == true) {

try { wait (); } // wait until the
catch (InterruptedException e) { }

}
contents = value;
available = true;
notify (); // wake up the

}
}

An Introduction to Java 45.

Java Applets and Threads

ods rather than keywords:

tion;

tion;

tion;
tion;

xception;

ception;
Universität Bern

java.lang.Object
Unlike synchronized , wait() and notify() are meth

public class java.lang.Object
{

public Object();
public boolean equals(Object obj);
public final Class getClass();
public int hashCode();
public String toString();
public final void wait ()

throws InterruptedException, IllegalMonitorStateExcep
public final void wait(long timeout)

throws InterruptedException, IllegalMonitorStateExcep
public final void wait(long timeout, int nanos)

throws InterruptedException, IllegalMonitorStateExcep
public final void notify () throws IllegalMonitorStateExcep
public final void notifyAll () throws IllegalMonitorStateE
protected Object clone()

throws CloneNotSupportedException, OutOfMemoryEx
protected void finalize() throws Throwable;

}

An Introduction to Java 46.

Java Applets and Threads

ncurrent and distributed

s Pipe classes.

e with lower priority.

can be manipulated together.

d” and are only allowed to

-dependent way).

d socket connections.
Universität Bern

Other Facilities

Java provides a large number of additional facilities for co
programming:

Pipes: Data-flow between threads is supported by variou

Thread Priorities: Higher priority threads pre-empt thos

Thread Groups: Threads belonging to the same group

Security Managers: Downloaded Applets are “untruste
perform restricted sets of actions.

Processes: New processes can be started (in a platform

Sockets: Standard classes in java.net.* support URL an

An Introduction to Java 47.

Java Applets and Threads

?
ition to synchronized ?

nload objects?
() if it fails to handle the

d instead of start() ?
n’t synchronized ?
Universität Bern

Summary

You Should Know The Answers To These Questions:
❑ What are Applets and how are they instantiated?
❑ Why doesn’t an Applet need a main() method?
❑ What are events and callbacks?
❑ How can you define and start your own threads?
❑ How does a thread become Runnable?
❑ Why do we need a separate Runnable interface
❑ Why do we need wait() and notify() in add

Can You Answer The Following Questions?
✎ Why doesn’t the Java language provide a way to dow
✎ Why should an event handler eh always call super.eh

event passed to it?
✎ What happens if we call the run() method of a threa
✎ What might happen if java.io.PrintStream.println were

	An Introduction to Java
	Contents
	1. Object-Oriented Programming and Java
	Overview
	Text:
	On-line resources:
	The Evolution of OOP
	Dimensions of Object-Oriented Languages
	Java
	Java and C++ — Similarities and Extensions
	Java and C++ — Simplifications
	The “Hello World” Program
	Packages
	Java Basics
	Classes and Objects
	Garbage Collection
	Inheritance
	Dynamic Binding
	Downcasting
	Feature Visibility
	Modifiers
	Exceptions
	Defining Exceptions
	Multiple Inheritance
	Interfaces
	Overriding and Overloading
	Arrays
	Arrays and Generics
	Summary
	You Should Know The Answers To These Questions:
	Can You Answer The Following Questions?

	2. Java Applets and Threads
	Overview
	Texts:
	The Java API
	Applets
	The Hello World Applet
	Frameworks vs. Libraries
	Standalone Applets
	Events
	The Scribble Applet
	Responding to Events
	Running the Scribble Applet
	Threads
	Running the TwoThreadsTest
	java.lang.Thread
	Transitions between Thread States
	java.lang.Runnable
	Creating Threads
	Synchronization
	wait and notify
	java.lang.Object
	Other Facilities
	Summary
	You Should Know The Answers To These Questions:
	Can You Answer The Following Questions?

