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Abstract

Understanding the evolution of an object-oriented system based on various versions
of source code requires analyzing a vast amount of data since an object-oriented
system is a complex structure rather than a collection of classes.

Our work provides an approach to understand such an evolution by detecting
and visualizing phases in the evolution,i.e., abstractions of time spans where the
encapsulated versions all comply with an expression. Our approach is applicable
on any level,i.e.,not only on system level, but for example also on class level. Our
approach furthermore contains a set of measurements on phases that characterize
them.

Phases help understand an evolution because on the one hand because they
enable studying an evolution on a higher level. On the other hand, phases can
be detected with multiple expressions at the same time. This results in concurrent
phases which enables studying an evolution from different perspectives at the same
time.
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Chapter 1

Introduction

Software systems are now ubiquitous. Virtually all electrical equipment now in-
cludes some kind of software; software is used to help manufacturing industry,
schools and universities, health care, finance and government; many people use
software of different kinds for entertainment and education [Som00].

A typical software system is modified and extended a number of times during
its lifetime to keep it operational. In fact, the majority of software engineers today
are not involved with the production of new systems but are busy with changing
and extending existing software systems [Jon98]. Lehman et al. stated in the first
of their laws of program evolution dynamicsthat a software system that is used in
a real-world environment necessarily must change or it becomes progressively less
useful in that environment [LB85,Leh96,LPR+97]. There are mainly two reasons
why software has to change: On the one hand the software must evolve to meet
changing customer needs and on the other hand to fit in changing environments.

Software therefore has to be developed in a way that it can evolve after its
initial development. But what are the characteristics that make software easier or
harder to change? To answer this question, we first have to be able to gain an
understanding of the evolution of a software system. Therefore, means are needed
to analyze the history of a system,i.e., the development of a software system and
its changes. Various kinds of information can be used, for example results from
interviewing developers, feedback from customers such as bug reports, the source
code, etc. We however restrict ourselves to analyzing source code,i.e., the source
code of multiple versions. Furthermore, we restrict ourselves to object-oriented
systems. Thus, the problem addressed in this work isunderstanding how an
object-oriented system evolved into its current state based on the source code
of its versions.

The main problem that arises is the vast amount of data that has to be ana-
lyzed. Research results must scale up to industrial applications for them to be use-
ful [JH99]. A case study of 50 versions of code of a certain software system, each
consisting of about 500 classes would call for analyzing and comparing 250’000
classes. Furthermore, an object-oriented software system is a complex structure

1



2 CHAPTER 1. INTRODUCTION

consisting of classes, methods, attributes and different kinds of relationships be-
tween them rather than simply a set of classes. Understanding its evolution thus
requires analyzing the change of such a complex structures over time. Analyzing
discrete changes are only of little help because in general a vast amount of changes
are made at the same time.

Two techniques which can be used to reduce complexity are software metrics
and software visualization. The latter technique helps in terms of essentially sim-
plifying the study of multiple aspects in parallel by visually displaying them (“one
picture conveys a thousand words”). Metrics can help to assess the complexity of
software entities and to discover artifacts with unusual measurement values.

We use both software metrics and visualization techniques. Based on software
metrics we detect abstractions of time intervals in a history of a software entity
which we namephasesand in which, from a certain perspective, all encapsulated
versions have an identical evolution. These phases are then displayed so the ob-
server can visually and interactively get a quick understanding of the analyzed
history. Our approach is not based on filtering out information. Instead, we define
means to create abstractions which help to quickly get a coarse understanding of
the analyzed history and which can be used as a vantage point for further inspec-
tions on a more detailed level.

Furthermore, we define various kinds of measurements on the created abstrac-
tions. On the one hand, we define general measurements such as the duration of
a phase in hours, the number of encapsulated versions, etc. On the other hand we
define measurements that are based on the kind of the abstracted changes such as
the amplitude of a phase or the certainty of a phase. The same mechanism can then
be used to define measurements to further classify the changes.

Document structure

• In Chapter2 we present several different approaches to tackle software evo-
lution.

• In Chapter3 we present our approach of detecting phases with phase de-
scriptions. We start by presenting our approach in short, then introduce its
prerequisites FAMIX , HISMO, software metrics, and detection strategies, and
finally present our approach. Therefore we first introduce the notions phase
and phase description, then measurements on phases and phase descriptions
and finally a way to visualize the evolution with detected phases. This chap-
ter includes a template to define phase descriptions.

• This template is then used in Chapter4 and5 to define two catalogs of phase
descriptions. The first one is applicable on system level,i.e.,on the evolution
of a system. The second catalog is applicable on class level.

• In Chapter6 we validate our approach on the evolution of two systems, Jun
and SmallWiki. First, we present the visualization of detected phases in a
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part of Jun’s evolution and explain how this visualization can be read. Then
we analyze the entire life cycle of SmallWiki on three levels. First, we ana-
lyze the measurements based on phases and phase descriptions, then visually
discern stages in SmallWiki’s evolution and finally demonstrate how phases
can be used interactively to get a detailed understanding of the changes.

• In Chapter7 we use phases on the class level by analyzing the visualization
of five classes that evolved differently.

• In Chapter8 we close this work by presenting a summary and possible future
work.

• In AppendixA we describe the tool we developed in the context of this work.

• AppendixB contains the definitions of all applied detection strategies.

• AppendixC contains the description of the software metrics we applied.
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Chapter 2

State of the Art

In this chapter we present some developments in the field of software evolution.
We start with a brief summary of the pioneering work of Lehman et al. and then a
set of newer approaches grouped by their research goal. First, we present different
approaches that define quality-related measurements based on history information,
then approaches that use the history information to detect error prone items in soft-
ware systems, and finally approaches that define ways to use software visualization
to understand software evolution.

2.1 Metrics and Laws of Software Evolution

Since the 1970’s research has been spent on building a theory of evolution by
formulating laws based on empirical observations. The observations are based
on interpreting evolution charts which represent some property on the vertical
(e.g., the number of modules or the number of changed modules) and time on
the horizontal axis. The major work in this area was carried out by Lehman et.
al [LB85,LPR+97,LPR98]. Their studies were captured in a series of laws of soft-
ware evolution that are presented in Table2.1. From the point of view of software
engineering, such statements must be accepted as an external regulating and con-
straining force. To overcome them requires expertise in organizational dynamics,
management, sociology, etc., not just software technology [LPR+97]. The laws
all relate specifically to E-type systems, that is, to software systems that solve a
problem or implement a computer application in the real world [Leh96].

This approach has recently been applied on a case study on the kernel of
Linux1, an open source operating system. Godfrey et. al studied the evolution of
the Linux kernel at both the system level as well as within each of the major sub-
systems and compared the results to Lehman’s laws of software evolution [GT00].
They found that at the system level the growth of the Linux kernel has been super-
linear which is a violation of Lehman’s fifth law.

1http://www.linux.org

5



6 CHAPTER 2. STATE OF THE ART

Name Description
1 Continuing Change E-type systems must be continually adapted else they become

progressively less satisfactory.
2 Increasing Complexity As an E-type evolves its complexity increases unless work is

done to maintain or reduce it.
3 Self Regulation The E-type system evolution process is self regulating with dis-

tribution of product and process measures close to normal.
4 Conservation of Organiza-

tional Stability
The average effective global activity rate in an evolving E-type
system is invariant over product lifetime.

5 Conservation of Familiar-
ity

As an E-type system evolves all associated with it, developers,
sales personnel, users, for example, must maintain mastery of
its content and behavior to achieve satisfactory evolution. Ex-
cessive growth diminishes that mastery. Hence the average in-
cremental growth remains invariant as the system evolves.

6 Continuing Growth The functional content of an E-type systems must be continu-
ally increased to maintain user satisfaction over their lifetime.

7 Declining Quality The quality of E-type systems will appear to be declining un-
less they are rigorously maintained and adapted to operational
environment changes.

8 Feedback System E-type evolution processes constitute multi-level, multi-loop,
multi-agent feedback systems and must be treated as such to
achieve significant improvement over any reasonable base.

Table 2.1: Laws of Software Evolution

2.2 Time Based, Quality-Related Measurements

In this section, we briefly present five approaches that define ways to extract quality
related measurements from the history of a software. These approaches address a
different objective than our work.

Metrics to Assess the Maintainability Based On the Calling Structure

Burd and Munro present a number of metrics to assess themaintainability of
code [BM99]. The availability of such metrics has the potential to assess if and
how maintenance changes have effected thecomprehensibility of the code. Fur-
thermore they claim that the metrics could potentially allow an initial assessment
of a number of proposed maintenance changes and thus allow the selection of a
strategy that offers the best overall evolutionary path.

The proposed metrics are based on so calleddominance treeswhich provide
an abstraction to a standard call graph reducing the calls to a single link between
functions within a code module. The proposed metrics are based on identifying
those instances in the dominance tree where more than a single call is present and
therefore a number of functions need to be included within a mental model during a
maintenance intervention. It is then investigated what effect software evolution has
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on the relations in a dominance tree that are present within specific code modules.
Changes to these relations are then tracked over time to give an indication of the
changing complexity of the code.

Assessing the Evidence of Code Decay from Change Management Data

Eick et al. present a number of measurements that index code decay [EGK+01].
Code is defined as beingdecayed if it is more difficult to change than it should
be. It is stressed that decay is distinct from the ability of the software to meet
requirements and that software that is decaying may nevertheless be increasing in
value. Eick et al. then present so calledcode decay indices, that are both quantified
and observable in a version management data base and represent symptoms, risk
factors and prognoses of code decay. They are based on a version management sys-
tem that tracks changes at multiple levels,e.g.,on module and file level. Examples
for such indices are the number of changes to a module in a certain time interval
or the span of a change (the number of files the change touches). Applying these
measurements on the entire change management history of a large, fifteen-year old
real-time software system for telephone switches, they found strongevidence that
code does decay, i.e., their analysis demonstrates 1) the increase over time in the
span of the changes (number of files touched per change), 2) the decline in modu-
larity of subsystems, 3) contributions of several factors to fault rates in modules of
the code, and 4) that span and size of changes are important predictors of the effort
to implement a change. Eick et al. anticipate that all projects of sufficiently large
scale will exhibit decay to some extent:code decay is a generic phenomenon.

Understanding Conceptual Changes in Evolving Source Code

Gold and Mohan defined a framework to understand the conceptual changes in an
evolving system [GM03]. Their approach is based onconceptswhich are “defined
as descriptive terms at a higher level of abstraction than the source code, nomi-
nated by the maintainer to describe some abstractions of interest”. The authors
then characterize changes to concepts based on a framework to describe the possi-
ble changes to concepts. For example, the concept change typeSplit occurs when
a concept becomes separated into two or more other concepts. These concepts
changes are then related to actions on the part of the maintainer and to compre-
hensibility issues in the future. The goal is to allow the development of methods to
automatically assess comprehensibility and guide the maintainer to improving code
quality. Furthermore, the long-term aim of this project is to develop a predictive
model for code quality given the change type and changes made.

Software Evolvability

Stephen Cook et al. present an approach to understanding software evolution that
is based around thequantifiable concept of evolvability [CJH]. The authors de-
fine evolvability as the capability of software products to be evolved to continue to
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serve their customers in a cost effective way. The concept of evolvability brings
together factors from three main areas: software product quality, software evolu-
tion processes, and the organizational environment in which software is used. In
this approach, not only source code is considered, but also abstract representations,
architectures and designs of software products, which enables the measurement of
evolvability to be conducted as early as possible in the software life cycle process.

Predicting Software Stability using Case-Based Reasoning

An approach with a similar goal is presented by Grosser et al. [GSV02]. They
aim at assessing thestability in object-oriented systems which they define as the
ease with which a software system or a component can evolve while preserving
its design as much as possible. Their approach has thus a similar goal as software
evolvability but instead of defining a traditional model for their measurement, they
usecase-based reasoningbased on the hypothesis that two software items which
show same or similar characteristics will also evolve in a similar way. Software
entities are then, with the use of software metrics, represented as cases. To asses
the stability of a new case, a set of known cases is used to find the known cases that
match best. Those are then used to predict the stability of the new case.

2.3 Approaches Aiming at Identifying Specific Entities in
the Current Version

In this section, we briefly summarize four approaches that use history information
to detect entities in the current version. Three of the presented approaches detect,
based on heuristics or observations, entities that show flaws.

Detecting Refactorings via Change Metrics

Demeyer, Ducasse, and Nierstrasz use, in the context of reverse engineering, multi-
ple versions of a software to detect where the implementation has changed [DDN00].
They propose a set of heuristics to detect specific changes,i.e.,refactorings, by ap-
plying object-oriented metrics to successive versions of a software system. Those
detection heuristics are based on change metrics which are the difference of a met-
ric measurement between two successive versions. However, identifying which
refactorings have been applied when going from one version to another by itself
does not imply that we can actually deduce how and why the implementation has
drifted from its original design.

Yesterday’s Weather

Yesterday’s Weather [GDL04] is an analysis based on the retrospective empirical
observation that the classes which have changed most recently also suffer important
changes in the near future. It is thus an approach for identifying key classes for
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reverse engineering activities based on the assumption that the parts which change
are those that need to be understood first. The approach consists of identifying,
for each version of a subject system, the classes that were changed the most in
the recent history of a software system and checking if these are also among the
most changed classes in successive versions. The number of versions in which this
supposition holds is then divided by the total number of analyzed versions to obtain
the values of Yesterday’s Weather. It thus indicates the predictability which classes
will be changed in the future and thus are key classes for reverse engineering.

Time Based Detection Strategies

Marinescu detected flaws in object-oriented design by applying so-called detec-
tion strategies which are measurement-based rules on a single version of a sys-
tem [Mar01, Mar02]. Ratiu enlarged this concept by taking the history of the
detected design fragments into account to increase the accuracy of the problem
detection: If in the past the flaw proved not to be harmful then it is less danger-
ous. This enlarged concept is captured in so called time-based detection strate-
gies [Raţ03,RDGM04].

Product Release History

Another approach in understanding evolution is presented in [GJKT97]. It is based
on examining the structure of several major and minor releases of a large telecom-
munication switching system based on information stored in a database of prod-
uct releases. The historical evolution of the structure is tracked and the adaptions
made are related to the structure of the system. The goal of this work is to iden-
tify modules or subsystems that should be subject to restructuring or reengineering
activities.

The structural information in the data base is extracted and stored by preproces-
sors during compilation. It is then analyzed on a macro-level,i.e.,by investigation
of structural information about each release (such as version number of system
modules indicating major or minor releases).

2.4 Understanding Evolution using Visualization

In this section, we present three approaches that provide means to understand the
evolution of software with visualization techniques. First, we present the evolution
matrix which basically displays every single class in every version in an object-
oriented system. Then we present an approach to visualize the evolution of class
hierarchies based on rectangles, lines, and colors. Finally, we present the approach
of Jazayeri to use color to depict the amount of changes applied to a specific ver-
sion.
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The Evolution Matrix

The evolution matrix [Lan01,Lan03] combines software visualization and software
metrics to visualize the evolution of the classes of a software system in a matrix.
The evolution matrix displays multiple versions of a system at class level. Each col-
umn of the matrix represents one version of the software while each row represents
the different versions of the same class (two classes are considered the same if they
have the same name). Within the columns, the classes are sorted alphabetically in
case they appear the first time in the system. Otherwise they are placed at the same
vertical position as their predecessors. The classes themselves are represented with
rectangles. The size of the rectangles is given by different measurements applied
on the class version.

The evolution matrix allows one to read different kind of information: First,
the size of the system in a particular version (in terms of number of classes) is
the height of the corresponding column. Secondly, the added and removed classes
can easily be detected since added classes are displayed in a new row that starts at
the bottom of the column and removed classes leave empty spaces. And thirdly,
the overall shape of the evolution matrix is an indicator for the evolution of the
whole system. A growth phase is indicated by an increase in the height of the
matrix, while during a stabilization phase (no classes are being added or removed)
the height of the matrix remains the same.

Besides characterizing the evolution at system level, the evolution matrix pro-
vides based on the measurements that are used to determine the dimensions of the
rectangles information about the classes themselves. Based on this information, a
classification of different evolution patterns has been made.

Visualizing and Characterizing the Evolution of Class Hierarchies

Gı̂rba and Lanza present a visualization approach to understand the evolution of
class hierarchies [GL04]. Class hierarchies provide a grouping of classes based
on their similar semantics. Thus, understanding a hierarchy as a whole reduces
the complexity of understanding big systems. The authors introduce the notion
of a history as a first class entity and define measurements which summarize the
evolution of an entity or a set of entities. These measurements are then used to de-
fine polymetric views [LD03,Lan03], e.g.,theClass Hierarchy History Complexity
View. Two-dimensional nodes are used to represent entities, edges to represent re-
lationships. This simple visualization is enriched with up to 5 metrics on the node
characteristics and 2 metrics on the edge characteristics. In theClass Hierarchy
Complexity Viewfor example, the color of the class history nodes and the width of
the inheritance edges is used to display their age. The authors stress that polymetric
views are intrinsically interactive.
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Color Visualization

Jazayeri applied another approach using visualization to analyze evolution [JGR99,
Jaz02] which is based on color. A history of a release is displayed in a color per-
centage bar which contains different colors. The colors represent different version
numbers of certain parts of the release. This allows the observer to quickly ob-
serve the amount of changes form one release to the next. Large variations in color
indicate a release that is undergoing a big amount of change.
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Chapter 3

Detecting Phases

In this chapter we present our approach to support understanding the evolution of
software based on its source code. That is, we comparatively analyze source code
at different points in time focusing on the changes that have been made. We name
source code at one particular point in time aversion, and a sequence of versions
a history. Formulated with these terms, we present an approach to understand a
history based on comparatively analyzing the changes made from one version to
another. It is based on detecting phases where from one particular point of view the
same kind of changes have been made. That is, we detect sequences of versions
in a history where the versions have, from one particular point of view the same
characteristics.

A simple example is to detect growth phases in the history of a software system,
i.e.,phases where code has been added. Assuming that we have a measurement that
indicates the size of the system at one version, we can detect those phases where
the size measurement raised, as exemplified in Figure3.1.

Figure 3.1: Visualization of the concept of a phase. Each vertical line represents
one version while the line leading from the left to the right depicts the progression
of the size of the system.

Phases are detected with an expression we namephase description. This phase

13
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description is applied to every version of a history. If it evaluates to true for a
particular version, this version is part of a phase. In the previous example, we use
an expression that evaluates to true if a version has a bigger size than its predecessor
version.

In a history, we can detect phases with multiple phase descriptions at the same
time and hence study the relationship between different kind of phases,i.e.,phases
detected with different phase descriptions. For example, we can detect phases
where the system grew and phases where classes have been removed at the same
time. Studying the temporal relationship between the detected phases, we might for
example discover time spans where the system grew but at the same time classes
have been removed or time spans where the system grew and no classes have been
removed. To study such temporal relationships of phases, we use a way to visualize
detected phases described later on.

For further analysis of detected phases, we introduce a set of measurements
that characterize phases. First, we present measurements that characterize single
phases such as the duration of a phase. We then present measurements that are
dependent from the phase description a phase is detected with. Then, we present
measurements that give information of all phases detected by one phase descrip-
tion.

The source code however is not directly analyzed. Instead, we use the FAMIX

meta-model to build models of the source code at multiple points in time. These
FAMIX models are then used to build a historical model with the HISMO meta-
model. To analyze such a model, we use software metrics which characterize a
model and its contained entities with numbers or other symbols. We also use de-
tection strategies, which are expressions to detect fragments of a model based on
measurements. The FAMIX and the HISMO meta-model, software metrics and de-
tection strategies are thus prerequisites for our approach. We therefore present
them in the next sections before we then come to our approach of detecting and
visualizing phases.

3.1 TheFAMIX Meta-Model

FAMIX [DTD01,TDDN00] is a meta-model for a language independent represen-
tation of object-oriented source code. It is an entity-relationship model that models
object-oriented code at program entity level,i.e.,entities and relationships such as
classes, methods, invocations and accesses are being modeled, but not complete
abstract syntax trees. Additional to the entities themselves, FAMIX defines a set
of well defined attributes for every entity. Figure3.2 shows the core entities and
relations of the FAMIX model which is set up as an object-oriented hierarchy. The
complete model consists of more entities and relationships such as invocations and
formal parameters.

FAMIX has been design to fulfill the following requirements [TDD00]:

• Language independence- FAMIX is a meta-model to model object-oriented
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Figure 3.2: Core of the FAMIX meta-model

source code in a language independent way. This opens up the possibility to
reason about languages on a more abstract level.

• Extensibility - FAMIX allows for adding new abstractions and specific at-
tributes to existing abstractions. This extensibility is for example needed to
model language-specific information.

• Information Exchange - The information is stored in a flat, streaming-
friendly way and it uses a unique naming scheme that is valid over multiple
transfers.

3.2 The History Meta-Model HISMO

The FAMIX meta-model provides a way to model object-oriented source code at
a single point in time. To study software evolution, we need to analyze multiple
FAMIX models which represent source code at different points in time. Therefore,
we model sequences of multiple FAMIX models and their temporal relationships
with the the history meta-model HISMO [DGF04].

The history meta-model is a meta-model which treats historical information
just like any other kind of information. It is centered around the two notions of a
version and a history which are defined as follows:
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Definition 3.1 (Version) A version is a snapshot of an entity at a certain point in
time [GDL04].

Definition 3.2 (History) History is a sequence of versions and encapsulates know-
ledge about evolution and version information [DGF04].

According to these definitions, a history encapsulates a sequence of versions
of the same kind of entity. Also, the relationship at version level has a correspon-
dent at history level (e.g.,as aClasshas moreMethods, a ClassHistoryhas more
MethodHistories). A history does not have a direct relation with a version entity.
Instead, it has a direct relation with multiple versions which then each have a direct
relation with a model entity.

The meta-model HISMO can be applied on any meta-model. In our work, we
base it on the source code meta-model FAMIX . A version encapsulates thus a
FAMIX entity and a history accordingly a sequence of versions of this entity. A
reduced schema of the HISMO structure is depicted in Figure3.3.

Figure 3.3: The History Meta-Model based on FAMIX

With HISMO, we can study a history as a whole, but we can also compare two
distinct versions. Furthermore, HISMO provides change information at different
levels of abstraction,e.g.,at system level, package level, class level, method level,
etc.

In this work, we present an approach to detect phases in the evolution of a
software entity. Formulated with the notion of a history, we present an approach to
detect phases in the history of a software entity.
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3.3 Software Metrics

In the previous sections, we presented how we use the meta-models FAMIX and
HISMO to build a model of object-oriented source code at multiple points in time.
In order to achieve our goal, detecting phases in a history, we need means to further
analyze such a model. For that, we do not directly analyze source code and instead
use software metrics.

Software metrics measure certain properties of software entities by mapping
them to numbers (or to other symbols) according to well-defined, objective mea-
surement rules. The measurement results are used to describe, judge, or predict
characteristics of the software system with respect to the property that has been
measured.

Software metrics can be divided into structural metrics and historical metrics.
Structural metrics measure characteristics on software entities, in our case FAMIX

entities, while historical measurements measure differences of structural measure-
ments of different versions of a software entity.

3.3.1 Structural Software Metrics

Generally, structural software metrics can be divided into two categories [LK94]:

1. Design Metricsare measurements of the static state of the project’s design.
Design metrics are used to assess the size and in some cases the quality and
complexity of software. They tend to be more locally focused and more
specific, thereby allowing them to be used effectively to directly examine
and improve the quality of the product’s components.

2. Project Metrics deal with the dynamics of a project, with what it takes to
get to a certain point in the development life cycle and how to know to be
there. They can be used in a predictive manner for example to estimate
staffing requirements. Being at a higher level of abstraction, they are less
prescriptive and more fuzzy but are more important from an overall project
perspective.

In this work, we restrict ourself to design metrics. Furthermore, we focus on
metrics that can be computed from the source code.

We define and use ametrics as a function of an entity. As an example,
NOM(ClassA) stands for thenumberof methods in ClassA. In the past, a vast
amount of structural metrics have been defined. In our work, we use only a small
set of relatively simple metrics. They are presented in AppendixC.

3.3.2 Historical Software Metrics

In this work, we restrict ourselves to change metrics. A change metric is the dif-
ference of a measurement of two consecutive versions:
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Definition 3.3 (Change Metric) The change metricδM of a metricM of a ver-
sionVi is defined as

δM(Vi) :=
{

M(Vi)−M(Vi−1) if Vi has a predecessor version Vi−1

0 else

whereVi−1 is the predecessor version ofVi.

A change metric thus indexes the change of a measurement of an entity. It
can be positive if the measurement in the new version is higher or negative if it is
lower. It is 0 if the measurement in both versions is identical or the version has no
predecessor.

3.4 Detection Strategies

In our work, we use detection strategies to select entities in a model which comply
with a certain characteristic which is expressed with software metrics. Detection
strategies are defined as follows:

Definition 3.4 (Detection Strategy)A detection strategy is the quantifiable ex-
pression of a rule by which design fragments that are conforming to that rule can
be detected in the source code [Mar02].

The term “quantifiable expression of a rule” means that the rule must be prop-
erly expressible by software metrics. Hence, a detection strategy is a generic mech-
anism for detecting a set of design fragments based on metrics.

Detection Strategies as Functions

We define a detection strategy as a function which returns, based on the input set of
entities, the set of entities with which the underlying expression evaluates to true.
As an example, the set of data classes among the set of classesS detected by the
detection strategyDataClass can be expressed asDataClass(S).

Furthermore, we use the notion of|S| to denote the size of the setS, i.e., the
number of elements in the setS. For example, the number of data classes among
the set of classesS is |DataClass(S)|.

Detection Mechanism

The detection mechanism of detection strategies is based on the principle of data
filters and composition operators.

Definition 3.5 (Data Filter) A data filter is a mechanism (a set operator) through
which a subset of data is retained from an initial set of measurement results, based
on the particular focus of the measurement [Mar02].



3.4. DETECTION STRATEGIES 19

Data filters can be classified in two main categories: marginal and interval fil-
ters. Marginal Filters can be further divided into semantical and statistical filters
where the threshold value is determined with statistical methods. Semantical fil-
ters contain a threshold value and a direction. They can be further divided into
absolute semantical filters (e.g.,HigherThan, LowerThan) and relative semantical
filters (e.g.,TopValues, BottomValues). Statistical filters also use a threshold value
but it is derived with statistical methods from the initial data set. The classification
of filters made in [Mar02] is shown in Table3.4.

Type of Filter Limit Specifiers Filter Examples

Marginal
Semantical

Relative
TopValues(10)
BottomValues(5%)

Absolute
HigherThan(20)
LowerThan(6)

Statistical BoxPlot
Type of Filter Specification Filter Example
Interval Composition of two marginal filters

with semantical limit specifiers of
opposite polarities

Between(20,30) :=
HigherThan(20) ∧
LowerThan(30)

Table 3.1: Classification of Data Filters

The key issue in filtering data is to reduce the initial data set in order to detect
those design fragments that have special properties captured by the metric. Since
a detection strategy is the “quantifiable expression of a design rule”, it must be
able to quantify entire design rules. A data filter only supports the interpretation
of individual metric results. To quantify entire design rules, a mechanism which
provides a correlated interpretation of multiple result sets is needed:

Definition 3.6 (Composition Operators) The operators used to compose a set of
metrics into an “articulated rule” are called composition operators [Mar02].

Composition operators can be seen from a logical and from a set point of view.
From the logical, a composition operator reflects a “joint-point” of sub-expressions
of the representation of a design rule. The set point of view helps understanding
how the final result set is built since a composition operator combines filtered sets
with common set operators. In Marinescu [Mar02], three composition operators
are presented: AND, OR, and BUTNOT. We enriched this set with the XOR oper-
ator.

Thus, a detection strategy first filters sets of design fragments using data filters.
The resulting filtered sets are then combined with composition operators. This
combination results then in a new set of design fragments which can again be
filtered and combined with other sets.

Detection strategies are mainly used to detect design flaws which violate cer-
tain design rules [JF88] or design heuristics [Rie96]) or correspond to bad smells
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[FBB+99]. But their usage is not restricted to detecting design problems. They
are a generic mechanism for analyzing a source code model using metrics [Mar02,
RDGM04] and can actually be used to detect any kind of design fragments.E.g.,
in this work, detection strategies are used to detect added leaf classes, removed
super classes and classes where certain refactorings have been applied. The list of
detection strategies we applied is presented in AppendixB.

Example - Detecting Extended Classes

Let us assume we want to detect classes that have been extended,i.e.,where meth-
ods or attributes have been added. Thus, we are looking for classesC where
δNOM(C) > 0 or δNOA(C) > 0, whereNOM andNOA are the metrics that
measure the number of methods respectively the number of attributes of a class.
The detection strategyExtendedClass which detects such classes can be defined
as follows:

ExtendedClass(S) := S′
∣∣∣∣ S′ ⊆ S, ∀C ∈ S′

δNOM(C) > 0 ∨ δNOA(C) > 0

It is thus a function that detects the subset of classesS′ out of the set of classes
S which all have an increased number of methods or attributes.

3.5 Phase and Phase Description

After presenting the prerequisites, we now define our approach of detecting phases
in a history. The core of it is the two notions of a phase description and a phase:

Definition 3.7 (Phase Description)A phase description is an expression to detect
sequences of consecutive versions which all comply with it.

Definition 3.8 (Phase)A phase is a sub-history that encapsulates a non-empty set
of consecutive versions which all comply with a phase description.

Definition of Phase Descriptions

The definition of a phase description is like a detection strategy based on data filters
and composition operators. The applied filters and composition operators are the
same as presented in Section3.4.

Phase descriptions are defined as mathematical functions, taking a history,i.e.,
a set of versions as their input. They compute a set of phases, that is, a set of
coherent parts of the input history.
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Example

An exemplary problem is to detect growth phases in the historyH of a system. For
that, we assume that the system grows from versionvi−1 to its successor versionvi

if there are more classes in versionvi, that is, ifδNOCL(vi) > 0. Thus, the growth
phases in the historyH can be detected with the following phase description.

Growth(H) :=
{
H ′ ∣∣ H ′ ⊆ H,∀v ∈ H ′ δNOCL(v) > 0

}
In words, this phase description is a function that takes the historyH as its input

and returns all phasesH ′ that encapsulate versionsv that contain more classes than
their predecessor.

Discussion of the Terms

A phase is, according to its definition, an abstraction of multiple consecutive ver-
sions and thus represents a coherent part in a history. Since a phase encapsulates
multiple versions of a history into a new entity, it enables regarding part of a history
with the same characteristic as a unit and thus enables analyzing histories on a more
abstract level. For example, a phase in a system history might encapsulate a time
span where the system has been growing, certain flaws have been introduced, bugs
have been corrected, etc. A phase might be a complete history,i.e.,encapsulate all
versions, but at the minimum it consists of one version.

A phase is the detection result of a phase description. However, if a phase
description detects a sequence of more than one consecutive versions, there are
several alternative ways to encapsulate those versions in phases. For example, if
two consecutive versions are detected, they might be summarized into one single
phase or into two phases with each containing one single version. In this work,
we use phases to encapsulate the longest coherent sequence unless we mention it
otherwise.

From the conceptual point of view, a phase is a regular history: Neither the
fact that the encapsulated versions are consecutive nor that they all comply with a
phase description is a contradiction to the notion of history. Nevertheless the phase
description a phase is detected with has a specific detection goal. The detected
phase can be regarded as a suspect that, with a certain probability, conforms to this
goal. This view, a phase as a suspect of the detection goal of a phase description,
has lead us to the definition of a phase. Considering phases, we always refer to their
underlying detection goal. For example, if we talk about growth phases, we refer to
a suspect time interval which is detected with a specific growth phase description.

Measurements on Phases

For further inspections on obtained phases, we define a set of measurements on a
history. Since a phase is a history, these measurements are thus also defined on
phases.



22 CHAPTER 3. DETECTING PHASES

Phase Measurement Description
Length Number of versions a history encapsulates
Duration Duration of a history in hours
Density Duration divided through the length. The density thus

indicates how many hours the encapsulated versions
are in average apart from each other

The measurement length is identical with the age of a history which is defined
in [GL04]. We gave this measurement a different name to avoid confusions with
duration.

Measurements on Phase Descriptions

For further analysis on the applied phase descriptions we define a set of measure-
ments that are based on the set of phases detected by a certain phase description.
They are therefore defined as a function that takes a phase descriptionPD applied
on a historyH as its input.

NOP (PD(H)) := |PD(H)|

PD(H) is the set of phases detected by the phase descriptionPD in the history
H). NOP (PD(H)) indicates the size of this set. In other words, it is thenumber
of phases detected by the phase descriptionPD in the historyH. Note that this
measurement is dependent on the way phases are built out of the byPD detected
versions.

V ersionCoverage(PD(H)) :=

∑
P∈PD(H) Length(P )

Length(H)

The version coverage of a phase descriptionPD applied on a historyH is thus
the fraction of the number of versions that are encapsulated by any of the phases
PD(H) and the length of the historyH. It is thus a value between 0 and 1 that
indicates proportionally to what extent the phases detected byPD cover a history
H. A value of 0.5 for example indicates that every second version ofH is part of
a phase detected byPD.

TimeCoverage(PD(H)) :=

∑
P∈PD(H) Duration(P )

Duration(H)

The time coverage is a similar measurement as the version coverage. It indicates
proportionally to what extent the time span encapsulated by the entire historyH is
covered by any of the phasesPD(H).
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AverageM(PD(H)) :=

∑
P∈PD(H) M(P )

NOP (PD(H))

AverageM(PD(H)) is a generic measurement that is defined as the average of the
measurementM of all phasesPD(H). For example,AverageLength(PD(H))
is the average length of all phasesPD(H) detected by the phase descriptionPD
in the historyH .

Attributes on Phase Descriptions

We define two optional attributes of a phase description that have the same seman-
tics across all phase descriptions:certainty andamplitude. That is, the meaning
and the range of these measurements is defined independently of the description of
a phase, but the way it is computed is based on the underlying phase description.

The definition of the certainty and amplitude is shown in Table3.5.

Name Range Description
Certainty [0 - 1] The certainty is a measurement that indicates how

clear it is that a detected phase corresponds to the de-
tection goal of its phase description.

Amplitude [0 - ∞] The amplitude is a positive measurement that indicates
the extent of the changes the underlying phase descrip-
tion captures .

Table 3.2: Attributes of a Phase Description

Let us consider the previous example of the growth phase description again.
A useful definition of theamplitudeof a phase is the amount the system grew in
the time span the phase encapsulates, that is, the sum of theδSize(V ) over all
versionsV the phase encapsulates. Thecertaintycould be defined as a fraction
which divides the amount of removed code through the amount of added code.
A high value would thus indicate that almost the same amount of code has been
removed and added and that it is thus not clear whether the system really grew.

Equally to the certainty and the amplitude, further additional measurements
on phase descriptions can be defined. For example, we could define a classifica-
tion number attribute which gives further information about the characteristics of
a phase. This classification number could be either a single number or a multi-
dimensional vector. In the example of the growth phases, we could define a mea-
surement that indicates to what extent the added classes are subclasses of a frame-
work.
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Combining Phase Descriptions

For further investigations, multiple phase descriptions can be combined with com-
position operators since they are like detection strategies expressions. For example,
one might be interested in phases that comply with two or more or to one of mul-
tiple phase descriptions. For that, a new phase description has to be created which
uses a composition operator to combine phase descriptions. In this work, we use
the composition operator AND, OR, XOR and NOT as presented in Section3.4.

Comparison of the concepts phase description and detection strategy

A phase description is basically similar to a detection strategy: Both are expression
to detect a set of entities that comply with it. But there are differences between the
two concepts:

1. A detection strategy aims at detecting design fragments,i.e., parts in the
design in one version. In contrast, a phase description detects versions in the
history of one design fragment.

2. In contrast to a phase description, the result of a detection strategy is the
computed set of entities. A phase description uses the resulting set of ver-
sions to create phases summarizing consecutive versions.

3.6 Visualization of Phases

Up to now, we presented how phases can be detected using phase descriptions and
how they can be further described with measurements of phases. To get a quick
understanding of the computed data and thus recover the evolution at a higher ab-
straction level, we visualize phases using software visualization. Visualizing sim-
plifies studying relationships between phases respectively their phase descriptions
and enables filtering out phases that visually stand out since good visual display
allows the human brain to study multiple aspects of complex problems in paral-
lel. Our visualization allows us to visually detect when phases of different phase
descriptions arise in parallel and when phases have striking measurements.

Building on the concept of polymetric views [LD03,Lan03], we chose to visu-
alize phases with rectangles. Theposition of the left side indicates at what point
in time the underlying phase starts - the right side when it ends. A phase that is
positioned left to another phase encapsulates thus earlier versions. The vertical po-
sition of a phase corresponds to its phase description. All phases detected with one
phase description are aligned horizontally; in the beginning of each line we put the
name of the corresponding phase description.

Thewidth of a phase’s rectangle displays the phase’s duration. If the amplitude
is defined in a phase’s underlying phase description, it is used to determine the
height of a rectangle. Otherwise, a default value is used. In this case, all the
rectangles that correspond to this phase description have the same height.
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Thus, the width has for all phases the same definition while the height may
be defined differently for every phase description. However, phases with the same
phase description can be compared.

Thecolorsare used to display the certainty and an additional measurement, for
example a classification number, if defined. If both are defined, the corresponding
figures have two stripes. The color of the upper stripe shows the certainty while
the lower one shows the classification number. Both of these measurements must
be defined as values between 0 and 1. This range is proportionally mapped into a
shade of gray: White corresponds to 0 and black to 1. If only one of those mea-
surements is defined, the rectangle only has one color stripe of which the defined
measurement determines the color. If none is defined, the rectangle is simply filled
black.

A phase encapsulates conceptually a time-interval where the versions with a
phase description. The phase description detects sequences of versions that com-
ply with it, generally based on change metrics. A phase with length one indicates a
specific change from one initial version to the detected version. The initial version
of the change is however conceptually not included in the phase. For the visualiza-
tion, we include the initial version of the change,i.e., the preceding version of the
first detected version of a phase. Thus, a phase with length one is displayed as a
rectangle which leads from the initial, not detected version to the detected version.

Figure3.4, which shows the visualization of a single phase, exemplifies this
principle.

Figure 3.4: Visualization of One Phase

The entire visualization displays the complete history from left to right: The
left border represents the earliest version while the right border stands for the lat-
est. Every version of that history is represented with a vertical line of which the
horizontal position is determined by the point in time of the version. The distance
between two lines thus indicates how much time passed between the two corre-
sponding versions. Note that we consider real time stamps instead of numbering
the versions. An example of an entire visualization is provided in Figure3.5.

Note that this visualization technique is, as it is implemented, interactive. Just
by looking at the resulting picture, it is of limited use. Indeed, the viewer must
interact with the visualization to get finer grained and more detailed information of
the displayed phases. How the user can do so is described in AppendixA.
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Example

Figure3.5 shows the visualization of the phases of three different phase descrip-
tions in the history of a system. Each vertical line represents one system version.
We can already see that there are areas where the lines are closer together which
means that less time passed from one version to another.

Figure 3.5: Example Visualization of Phases

The ‘Growth’ phase description detects phases where the size of the system
increased. Two of its phases are marked with numbers. The amplitude of the
phase marked with ‘1’ is about three times higher than the amplitude of the one
marked with ‘2’ since its figure is about three times higher. This means that the
phase ‘1’ encapsulates a much stronger growth. The duration of both phases is
however about the same since the corresponding rectangles have about the same
width. Their density is considerably different, because the phase ‘1’ encapsulates
more versions. Both phases have a certainty value close to one since the color of
the upper stripe is in both phases almost black. It is thus in both phases clear that
the system really grew, even though the phase ‘2’ encapsulates only small growth.

The ‘Class Addition’ phase description detects phases where classes have been
added while the third phase description, the ‘Class Extension’ phase description
detects phases where classes have been extended,i.e.,where methods or attributes
have beed added. On the visualization, we can now visually discover time spans
where classes have been added but no classes have been extended if a version is
part of a ‘class addition phase’ but not of a ’class extension’ phase. Explicitly,
these phases could be detected by combining the ‘class addition‘ with the ‘class
extension’ phase descriptions with aBUTNOTcomposition operator. By analogy
we can discover phases where classes have been added but no classes extended,
phases where ‘class addition’ and ‘class extension’ phases arise at the same time.

In those time spans where ‘class addition’ and ‘class extension’ phases arise in
parallel, we can discover phases where the amplitude of one phase is considerably
higher than the other one. For example, if there is a class addition phase with a
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high amplitude and a class extension phase with a low amplitude in parallel, we
know that the encapsulated change consisted mostly of the addition of new classes
but also a few classes have been extended.

3.7 A Template to Describe Phase Descriptions

In the following two chapters, we define two catalogs of phase descriptions. In
Chapter4 we present a catalog of phase descriptions that is applicable on system
level and in Chapter5 one applicable on class level. These catalogs contain phase
descriptions that have been useful in our analyzes.

We describe the provided phase descriptions with a template that consists of the
three paragraphs motivation, definition, and discussion which are explained below.

Motivation. This paragraph describes the motivation for the definition of the un-
derlying phase description and what information a detected phases offers.

Definition. The paragraph definition first contains a textual explanation of the ap-
plied detection mechanism and possibly defined measurements and then the formal
definition.

Discussion. The discussion paragraph contains a list of various points. The most
often listed points are:

• Concurrent Phases- Phases of another phase description that are necessar-
ily detected in the same time interval.

• Asynchronous Phases- Phases of another phase description that can not be
detected in the same time interval.

• False Positives- A description of situations that may be detected as part of
a phase but are not.

• False Negatives- A description of situations that a phase description does
not detect but conform to its detection goal.

The discussion paragraph provided only in the catalog applicable the system
level and not in the one applicable on class level. The mentioned points are listed in
most phase descriptions,i.e.,where they are relevant. Additionally, the discussion
paragraph contains in some phase descriptions additional points.

3.8 Discussion

Summarizing, we presented an approach to detect phases,i.e., time intervals where
the versions match with the same phase description and thus, from a certain point



28 CHAPTER 3. DETECTING PHASES

of view, show the same kind of changes. This detection mechanism was enriched
with several kind of measurements,i.e., 1) general measurements on phases such
as the length of a phase, 2) phase description specific measurements on phases,
and 3) measurements on phase descriptions such as the time coverage. Then, we
introduced a way to visualize the phases based on their point in time and multiple
measurements.

The detection of phases can be used in various ways and can be used in follow-
ing tasks:

• Interpreting measurements. The provided measurements can be used to
gain overall information of the analyzed history. This information can be
used as an initial assessment of a specific system or to categorize histories of
different software entities. Note that our approach can be used on different
levels,e.g.,on the system level, subsystem level, class level, etc. Thus, we
can use phases to analyze the history of an entire system, of a subsystem, of
a single class, etc.

• Visually analyze correlations between phases. The presented way to visu-
alize phases lets us visually analyze when phases appear concurrently. Since
the measurements of the phases are displayed as well, we can visually com-
pare the measurements of different phases. This technique can be used to
describe the analyzed history,e.g.,one could say “here we can see growth
accompanied by refactoring activities while... ”.

• Get the details analyzing single phases. Single phases are an abstraction of
a time span with specific changes. To understand the exact changes, one can
analyze single phases. The phase indicates when and with a certain proba-
bility (depending on the definition of the underlying phase description) how
certain changes where made. What exactly changed can then be made out
by inspecting the phase. This technique is especially useful when different
concurrent phases are inspected at the same time.

The presented approach thus bridges the gap between high level analysis of
entire histories and low-level analysis that aim at understanding single changes.
Furthermore, it is applicable on any kind of history. For example, it can be used to
analyze the history of a class or of a subsystem.



Chapter 4

Phase Description on System
Histories

This chapter contains a catalog of phase descriptions that detect phases in a system
history. A detected phase encapsulates a set of consecutive versions of a complete
system (or subsystem). The presented phase descriptions are grouped in three cat-
egories: The growth and reduction, maintenance and refactoring phase description
categories.

The first category aims at describing growth and reduction in a system history.
On these phase descriptions, we define the certainty and the amplitude measure-
ments. Furthermore, we define an additional measurement named classification
number that further characterizes the changes made in the time span encapsulated
in a phase. We define these three measurements in a way they can be used to
compare phases with different phase descriptions.

The second category, named maintenance, contains phase descriptions that aim
at detecting small changes. The first phase description aims at detecting the cor-
rection of bugs, the second the cleaning of methods, and the third changes that do
not appear in the applied measurements. In the maintenance phase descriptions we
do not define the amplitude, the certainty or other measurements.

The last category contains the refactoring phase descriptions. In this category,
we present 7 phase descriptions that aim at detecting phases where specific refac-
torings [FBB+99] have been applied. In all of them, we define the amplitude but
we forgo the definition of the certainty measurement and any additional measure-
ments.

4.1 Growth and Reduction Phase Descriptions

In this section we present three phase descriptions to describe growth in a history
of a system. A simple way to measure growth from one version to another is to
only take the change of the number of classes into account,i.e., to define that a
system grows from one version to another if it contains more classes than before.

29
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There can also be growth without new classes having been added, that is, if classes
have been extended with new methods and possibly also new attributes. In this
work we apply an empirical formula to determine growth in a system history.

We consider that functionality has been added if there were new classes added
or existing classes extended. We consider a class as extended if there were methods
or attributes added to it (or both). To measure the amount of the added functionality
we define the measurementAdditionof a versionV of a system as follows:

Addition(V) := |NewClass(V )|+ 1
2
|ExtendedClass(V )| (4.1)

It is thus the sum of the number of added classes and half of the number of
extended classes (from one version to another). The number of added and ex-
tended classes is determined by the detection strategiesNewClassandExtended-
Classwhich are defined in AppendixB.7 andB.1. The number of the extended
classes is weighted half to the number of new classes based on the assumption
that if the amount of functionality of one new class is added by extending existing
classes, it requires extending more than one class.

By analogy to the measurement Addition, we define measurement Reduction:

Reduction(V) := |RemovedClass(V )|+ 1
2
|ReducedClass(V )| (4.2)

This definition is based on the detection strategiesRemovedClassandReduced-
Classwhich are defined in AppendixB.8andB.2. The detection strategyReduced-
Classdetects a class version if it contains less methods, attributes or both.

Based on these two definitions we define a measurement to measure the growth
between two versions of a system:

Growth(V) := Addition(V )−Reduction(V ) (4.3)

According to this definition, we define that a system grows from one version to
another ifGrowth(V ) > 0, shrinks ifGrowth(V ) < 0 and remains the same size
if Growth(V ) = 0. Based on that we present thesystem growthand thesystem
reduction phase descriptions that indicate when and to what extent a system grows
respectively has been reduced.

There might be functionality added to a system versionV even if the system
does not grow,i.e., if Addition(V ) > 0 but Reduction(V ) > Addition(V ).
To detect these phases we provide the next phase description, thegeneral growth
phase description. It aims at detecting when and to what extent functionality has
been added to a system. It thus, compared to the system growth phase descrip-
tion, disregards the amount of removed functionality. By analogy, we present the
general reduction phase description which detects the removal of functionality
disregarding the amount of added functionality.
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Additionally we present thenew hierarchies growth and thehieraries re-
moval phase descriptions which aim at detecting the addition respectively the re-
moval of complete inheritance hierarchies.

For all growth and reduction phase descriptions we define the amplitude and
the certainty measurement. Furthermore, we define an extra measurement named
classification number. The certainty and the classification number are defined iden-
tically in all growth and reduction phase descriptions and thus offer means to com-
pare phases of different phase descriptions.

The classification number splits the growth into addition and extension of
classes, that is, it indicates with a proportional value to what extent the growth
respectively the reduction consists of each. Thecertainty indicates how clear it is
that the system really grew in a phase. For that it compares the amount of removed
and added functionality. Theamplitude is defined slightly differently in the system
growth and system reduction phase descriptions than in the others: It is the sum
of Growth(v) over all versionsv in a phase while in the other phase descriptions
it is the sum ofAddition(v) in all versionsv in a phase. Note that although the
definition of the amplitude is not equal in all growth phase descriptions, it can still
be used in comparisons.

The presented formulas use the detection of new and removed classes. Instead,
they could also use the less exact possibility of using the change metricδNOCL.
But in that case, we would not discover any changes in a situation where at the
same time an identical amount of classes has been added and removed. With our
approach, we would receive a positiveAddition measurement and therefore de-
tect ageneral growthphase in this situation. We would also receive a positive
Reduction measurement and hence detect a concurrentgeneral reductionphase.
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4.1.1 System Growth Phase Descriptions

Motivation. The system growth phase description aims at detecting phases in
the history of a system where the system has been growing based on the defini-
tion of theGrowth measurement. We define the amplitude of a system growth
phase as the size of the growth. A system growth phase with a larger amplitude
thus encapsulates a bigger growth of the system than one with a smaller ampli-
tude. Furthermore we compare the amount of added and removed functionality to
determine the certainty of a phase. A similar amount of removed and added code
results in a low certainty value while a certainty values close to 1 indicates that the
amount of removed functionality is negligible compared to the amount of added
functionality in a system growth phase. If in a system growth phase no function-
ality is removed at all,i.e.,no classes have been removed or reduced, the certainty
is 1. In this case It is thus clear that the size of the system has been increased.
To further characterize system growth phases, we define the classification number
which is a measurement to proportionally indicate to what percentage the added
functionality consists of added or extended classes. A value of 0 means that new
classes have been added but no existing classes have been extended. A value of 1
in contrast means that existing classes have been extended but no new classes have
been added.

Definition. The detection of system growth phases is based on the formula4.3
only: A versionv belongs to a system growth phase ifGrowth(v) > 0.

The amplitude of a system growth and a system reduction phaseP is defined
as the sum of the growth measurement of every versionv encapsulated in phaseP .

The certainty basically compares the amount of added and removed function-
ality summed up over a phase. It is the ratio of the amplitude of a phaseP and
the sum of theAddition(v) measurement for each of its versionsv. The certainty
value of a system growth phase is between1

2 and 1, sinceGrowth(v) is higher
than0 but does not exceedAddition(v).

The classification number is the ratio of the amount of added classes in every
version of a phase divided throughAddition(v) of every versionv in a phase.

SystemGrowth(S) :=
{
S′ ∣∣ S′ ⊆ S, ∀v ∈ S′ Growth(v) > 0

}
Amplitude(P ) :=

∑
∀v∈P

|Growth(v)|

Certainty(P ) :=
∑
∀v∈P

Growth(v)
Addition(v)

ClassificationNumber(P ) :=
∑
∀v∈P

|NewClass(v)|
Addition(v)
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Discussion

• Concurrent Phases- General growth phase

• Asynchronous Phases- System reduction, code cleaning, code correction
and idle phases

Figure 4.1: Exemplification of System Growth Phases

Exemplification. In Figure4.1 we see the visualization of two different system
growth phases. The width indicates the duration in versions. Accordingly, the left
phase consists of 5 versions while the right one is one version shorter.

The height displays the amplitude,i.e.,how much the system grew in a phase.
Therefore the left phase encapsulates a stronger growth than the right one.

The certainty values of each phase is depicted in the color of the upper stripe.
The almost black upper stripe of the left figure displays thus a high certainty val-
ues which means that almost no functionality has been removed compared to the
amount of added functionality. The right phase in contrast has a brighter upper
stripe which means that it is less clear that the system grew in this phase because a
similar amount of functionality has been removed and added. Thus other changes
than the addition of new classes or methods are encapsulated in this phase.

The classification number is used to determine the lower color. According to
the definition of the characteristic, a dark shade of gray as in the left phase indicates
that the growth consists mostly of class addition while a light color as in the right
figure indicates mostly of class extension. Black would indicate pure class addition
(i.e., there are no classes extended but classes added) while white indicates pure
class extension.
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4.1.2 System Reduction

Motivation. This phase description contradicts the system growth phase descrip-
tion. It aims at detecting when and to what extent the overall system has been re-
duced. The amplitude of a system reduction phase indicates how much the system
has been reduced in this phase while the certainty value indicates how clear it is
that the system has been reduced by considering the amount of added functional-
ity. The classification number is a number that indicates to what extent the removed
functionality consisted of removed classes and the reduction of classes.

Definition. A system reduction phase is detected ifGrowth < 0.
The amplitude of a system reduction phaseP is defined as the sum of the

growth measurement of every versionv encapsulated in phaseP .
The certainty compares the amount of added and removed functionality summed

up over a phase. It is the ratio of the amplitude of a phaseP and the sum of the
Reduction(v) measurement for each of its versionsv. The certainty value of a
system reduction phase is therefore between1

2 and 1 (in a system reduction phase,
Reduction(v) > 0 and |Growth(v)| ≤ Reduction(v) for every encapsulated
versionv).

The classification number is the ratio of the amount of removed classes in every
version of a phase divided throughReduction(v) of every versionv in a phase.

SystemReduction(S) :=
{
S′ ∣∣ S′ ⊆ S, ∀v ∈ S′ Growth(v) < 0

}
Amplitude(P ) :=

∑
∀v∈P

|Growth(v)|

Certainty(P ) :=
∑
∀v∈P

|Growth(v)|
Reduction(v)

ClassificationNumber(P ) :=
∑
∀v∈P

|RemovedClass(v)|
Reduction(v)

Discussion

• Conjunct Phases- General reduction phase.

• Asynchronous Phases- System growth and all maintenance phases.
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4.1.3 General Growth

Motivation. The general growth phase description aims at detecting phases where
functionality has been added disregarding the change of the overall size of the sys-
tem. Its definition is based on the definition of theAddition measurement. Detect-
ing growth independently from the overall system size gives together with system
growth phases more detailed information about coding activities. General growth
phases may overlap one or more system growth phases or they can cover versions
that are not part of system growth phases. The latter case indicates that the system
did not grow, but yet new functionality has been added. The former case demands
further analysis of those versions that are part of the general but not of the sys-
tem growth phases. These can be detected with a combination of the two phase
descriptions.

The amplitude of a general growth phase indicates the amount of the added
functionality in the phase. It is defined slightly different than in the system growth
phase description,i.e., it disregards the amount of removed functionality and only
considers the amount of added functionality. The certainty and classification num-
ber are defined identically in all growth phases.

Definition. A phase is detected if there are classes added or extended. Extended
and added classes are detected with the appropriate detection strategiesExtend-
edClassand NewClassthat are described in AppendixB.1 and B.7. A class is
considered as extended if there have been methods or attributes added (or both).

The definition of the amplitude is basically equivalent to the system growth
phase description; It is the sum ofAddition(v) of all versionsv in a phase. The
certainty and the classification number are defined identically as in the system
growth phase description and are thus not further discussed here.

GeneralGrowth(S) :=

S′

∣∣∣∣∣∣
S′ ⊆ S, ∀v ∈ S′

(|NewClass(v)| > 0)∨
(|ExtendedClass(v)| > 0)


Amplitude(P ) :=

∑
∀v∈P

Addition(v)

Certainty(P ) :=
∑
∀v∈P

Growth(v)
Addition(v)

ClassificationNumber(P ) :=
∑
∀v∈P

|NewClass(v)|
Addition(v)

Discussion

• Concurrent Phases- None.
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• Asynchronous phases- All maintenance phases.

• False positives- Renaming of a classes, a methods or an attributes shows in
our model up as the removal the addition of entities. The general growth
phase description only considers the addition and thus detects renaming
changes.
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4.1.4 General Reduction

Motivation. This phase description contradicts the general growth phase descrip-
tion. It aims at detecting reduction in the system history disregarding the change
of the overall size. The amplitude measures the amount of removed functionality
while the certainty values indicates how clear it is that the system has been re-
duced by comparing the amount of removed and concurrently added functionality.
The classification number is a number that indicates to what extent the removed
functionality consisted of removed and reduced classes. A class is considered as
reduced if methods or attributes have been removed.

Definition. This phase description detects a phase if are any classes removed or
reduced. Removed and Reduced classes are detected with the appropriate detection
strategies (see AppendixB.2 andB.8).

The definitions of the amplitude, certainty and classification number are analog
to those of the general growth phase description. Instead of considering added and
extended classes, the numbers of removed and reduced classes are used.

GeneralReduction(S) :=

S′

∣∣∣∣∣∣
S′ ⊆ S, ∀v ∈ S′

(|RemovedClass(v)| > 0)∨
(|ReducedClass(v)| > 0)


Amplitude(P ) :=

∑
∀v∈P

Reduction(v)

Certainty(P ) :=
∑
∀v∈P

|Growth(v)|
Addition(v)

ClassificationNumber(P ) :=
∑
∀v∈P

|ReducedClass(v)|
Reduction(v)

Discussion

• Concurrent Phases- None.

• Asynchronous Phases- Maintenance phases.

• False positives- Renaming of a classes, a methods or an attributes shows
in our model up as the removal the addition of entities. The general reduc-
tion phase description only considers the addition and thus detects renaming
changes.
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4.1.5 New Hierarchies Growth

Motivation. With the two previous growth phase descriptions and the defined
measurements we could among other things tell when and and how many classes
were added to the system. But we could not tell yet what kind of classes have been
added. This phase description aims at detecting the addition of new inheritance
hierarchies,i.e., phases where new superclasses and inherited classes have been
added.

Definition. A new hierarchies phase is detected if there have been new super-
classes added and new leaf classes added. A new superclass is an added class
that has subclasses (see the corresponding detection strategyExtendedClassin Ap-
pendixB.5). Accordingly, a new leaf class is a class that does not have subclasses.
New leaf classes are detected with the detection strategyNewLeafClasswhich is
defined in AppendixB.6.

The amplitude, certainty and classification number are identically defined to
the general growth phase description and thus not further explained here.

NewHierarchiesGrowth(S) :=

S′

∣∣∣∣∣∣
S′ ⊆ S, ∀v ∈ S′

(|NewSuperclass(v)| > 0)∧
(|NewLeafClass(v)| > 0)


Amplitude(P ) :=

∑
∀v∈P

Addition(v)

Certainty(P ) :=
∑
∀v∈P

Growth(v)
Addition(v)

ClassificationNumber(P ) :=
∑
∀v∈P

|ExtendedClass(v)|
Addition(v)

Discussion

• Concurrent Phases- General growth phase.

• Asynchronous Phases- All maintenance phases.

• False Positives- False positives might appear if 1) an already existing su-
perclass is renamed and 2) if the added leaf classes are not subclasses of
the added superclasses. In the latter case, instead of adding a complete hi-
erarchy, an abstraction to already existing classes is created. This situation
is captured in the split into subclass and in the split into superclass phase
descriptions.
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• Improved certainty - A more informative way to define the certainty would
be to compare the number of added superclasses to the total number of added
classes.

• Detection Flaw - The detection mechanism of this phase description disre-
gards the inheritance relationships between the removed classes which is the
cause for one of the cases of false positives.
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4.1.6 Class Hierarchy Removal

Motivation. This phase description aims at detecting phases where entire inher-
itance hierarchies have been removed. It searches for versions where superclasses
and leaf classes have been removed. The amplitude of a system reduction phase
indicates how much the system has been reduced in this phase. The certainty
value indicates how clear it is that the system has been reduced by comparing
the amount of added and removed functionality. The classification number is a
measurement that indicates to what extent the removed functionality consisted of
removed classes and the reduction of classes. The amplitude, the certainty and
the classification number measurement are defined equal to the general reduction
phase description.

Definition. This phase description detects a phase if there were superclasses and
leaf classes removed in a version. Removed superclasses are detected with the
detection strategyRemovedSuperclasswhile the removed leave classes are discov-
ered with theRemovedLeafClassdetection strategy. The amplitude, certainty and
classification number are defined equally as in the general reduction phase and are
thus not discussed here.

HierarchiesRemoval(S) :=

S′

∣∣∣∣∣∣
S′ ⊆ S, ∀v ∈ S′

(|RemovedSuperclass(V )| > 0)∧
(|RemovedLeafClass(V )| > 0)


Amplitude(P ) :=

∑
∀v∈P

Reduction(v)

Certainty(P ) :=
∑
∀v∈P

|Growth(v)|
Reduction(v)

ClassificationNumber(P ) :=
∑
∀v∈P

|ReducedClass(v)|
Reduction(v)

Discussion

• Conjunct Phases- General reduction phase.

• Asynchronous Phases- Maintenance phases.

• False Positives- False Positives might appear if on the one hand complete hi-
erarchies have been renamed or if on the other hand the removed leaf classes
are not subclasses of the removed superclasses. The latter case indicates
that in one hierarchy one more superclasses but no leaf classes have been re-
moved. This situation is a sign for redesigning activities which is captured in
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themerge with superclassand in themerge with subclassrefactoring phase
description.

• Detection Flaw - The detection mechanism of this phase description disre-
gards the inheritance relationships between the removed classes what is the
cause for one of the cases of false positives.



42 CHAPTER 4. PHASE DESCRIPTION ON SYSTEM HISTORIES

4.2 Maintenance Phase Descriptions

The notion of maintenance generally covers the complete process of changing a
system after it has been deployed [Som00]. This notion thus corresponds rather to
a stage in the life cycle of a system than to a specific kind of changes. We however
use the term maintenance in the latter sense: Our maintenance phase descriptions
aim at detecting phases where only small and specific changes have been made or
when we could not detect any changes at all.

The detection mechanism of these phase descriptions are based on simple
heuristics. Generally, their detection expression excludes other, “bigger” changes
such as the addition of new classes. The maintenance phase descriptions aim at
detecting phases where only “maintenance changes” have been applied instead of
generally detecting “maintenance changes”.

Therefore, if a maintenance phase is detected, no “big” changes have been
applied, and the small changes,i.e., the reason for those small changes have to
be understood. These however can hardly be understood from analyzing software
measurements but only from reading source code. Detected maintenance phases
thus do not explain changes from one version to another. However, they tell us that
only certain small changes have been made and serve as a vantage point indicating
in which versions and in which classes and methods those changes have been made.
The reverse engineer can then compare the source code of single class versions and
understand the applied changes.

Note that the maintenance phase descriptions encapsulate the most extreme
shift from analyzing a large amount of versions of an entire system to single ver-
sions to single changes in a method.

We present the following three maintenance phase descriptions:

• Code Correctionphase description - to detect the correction of errors.

• Code Cleaningphase description - to detect the removal of superfluent code.

• Idle phase description - to detect phases where no changes are visible in the
applied software metrics.
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4.2.1 Code Correction

Motivation. This phase description aims at detecting phases where errors in
methods were corrected. It searches for versions where there were only a few
methods corrected and no other changes made based on the assumption that if
a class has the same amount of methods and attributes but statements have been
added, the change was correction of error. The amplitude indicates in how many
classes errors have been corrected.

Definition The detection is based on theMSGOnlyExtendedClassdetection strat-
egy (defined in AppendixB.3) which detects class versions that have more meth-
ods or attributes but more messages compared to its previous version. A code
correction phase is detected if there were no classes added, removed, extended
or reduced, but one or more classes are detected by theMSGOnlyExtendedClass
detection strategy.

CodeCorrection(S) :=


S′

∣∣∣∣∣∣∣∣∣∣∣∣

S′ ⊆ S, ∀v ∈ S′

(|MSGOnlyExtendedClass(v)| > 0)∧
(|ExtendedClass(v)| = 0)∧
(|ReducedClass(v)| = 0)∧
(|NewClass(v)| = 0)∧
(|RemovedClass(v)| = 0)


Amplitude(P ) :=

∑
∀v∈P

|MSGOnlyExtendedClass(v)|

Discussion

• Asynchronous Phases- All, i.e.,no other phases appear concurrently.

• False Positives- False positives may be detected if other changes have been
made to a particular class that in total only show up as a addition of state-
ments. An exemplary case is if one method is added and another smaller one
removed.

• False Negatives- Situations may not be discovered if other changes have
been applied at the same time. An example is the addition of one method.

• Detection Improvement - The detection mechanism works on the class
level, i.e., it detects classes where only a few messages have been removed.
The detection would be better on the method level,i.e., to detect classes
where there are methods where only a few statements have been removed.
With our definition a situation where in a class errors have been corrected
and other code has been removed would, in contrast to the improved expres-
sion, not be recognized.
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4.2.2 Code Cleaning

Motivation. This phase description also aims at phases where there were only
small changes in methods made. In contradiction to the code correction phase
description, it looks for classes where superfluous code has been removed. The
reason why the code has been removed is what actually leads to an understanding
of the applied changes. To understand that reason, the reverse engineer can use the
detected phases as vantage points for further inspections.

Definition. This phase description like the previous one implies that no classes
have been added, removed, extended or reduced. The detection is then based on
the detection strategyMSGOnlyReducedClass(defined in AppendixB.4) which
searches for classes that have not been extended or reduced in terms of NOA and
NOM but where some statements in one or more of its methods have been removed.

Detection Expression

CodeCleaning(S) :=


S′

∣∣∣∣∣∣∣∣∣∣∣∣

S′ ⊆ S, ∀v ∈ S′

(|MSGOnlyReducedClass(v)| > 0)∧
(|ExtendedClass(v)| = 0)∧
(|ReducedClass(v)| = 0)∧
(|NewClass(v)| = 0)∧
(|RemovedClass(v)| = 0)


Amplitude(P ) :=

∑
∀v∈P

|MSGOnlyReducedClass(v)|

Discussion

• Concurrent Phases- None.

• Asynchronous Phases- All.

• False Positives- False positives may be detected if other changes have been
made to a particular class that in total only show up as a removal of state-
ments. An exemplary case is if one method is added and another larger one
removed.

• False Negatives- Situations may not be discovered if other changes have
been applied at the same time. An example is the addition of one method.

• Detection Improvement - The detection mechanism works on the class
level. i.e., it detects classes where only a few messages have been removed.
The detection would be better on the method level,i.e., to detect classes
where there are methods where only a few statements have been removed.
With our definition, a situation where in a class errors have been corrected
and other code has been removed would, in contrast to the improved expres-
sion, not be recognized.
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4.2.3 Idle

Motivation. This phase description detects phases where there were no changes
made. Note that the detection is based on measurements only. This means that in
an idle phase some changes have been made but they do not show up in the applied
measurements.

Definition. This phase description detects a version as part of a phase if there
were no classes added or removed, no classes have been extended or reduced and
Growth = 0.

Idle(S) :=


S′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S′ ⊆ S, ∀v ∈ S′

(|NewClass(v)| = 0)∧
(|RemovedClass(v)| = 0)∧
(|ExtendedClass(v)| = 0)∧
(|ReducedClass(v)| = 0)∧
(|MSGOnlyExtendedClass(v)| = 0)∧
(|MSGOnlyReducedClass(v)| = 0)



Discussion

• Concurrent Phases- None.

• Asynchronous Phases- All.

• False positives- Situations may be discovered if several changes have been
applied that counter-balance in terms of measurements. This situation might
be visible in phases of other phase descriptions.
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4.3 Refactoring Phases Descriptions

In object-oriented development processes with their emphasis on iterative devel-
opment [GR95] change is an essential ingredient of system design. Demeyer,
Ducasse and Nierstrasz [DDN00] claim that to really understand evolving soft-
ware, the changes themselves are the critical factor. Changes are in object-oriented
development accomplished by means of so-called refactorings [Opd92,FBB+99].
Fowler defines refactoring as a noun as follows:

Refactoring (noun): a change made to the internal structure of
software to make it easier to understand and cheaper to modify without
changing its observable behavior [FBB+99].

Fowler stresses that refactoring 1) improves the design of software, 2) makes soft-
ware easier to understand, 3) helps finding bugs and 4) helps programming faster.
On a high level of abstraction, detecting refactorings in the evolution of a software
thus indicates when and how much effort has been spent on improving the soft-
ware’s design quality. On a lower level, identifying which refactorings have been
applied helps us understand how and - to a certain extent why - the system has
evolved [DDN00].

In this section, we present an exemplary set of phase descriptions to detect
when and to what extent specific refactorings have been applied in an evolution.
In contrast to the growth and reduction phase descriptions, the refactoring phase
descriptions detect specific changes using detection heuristics. Refactoring phase
descriptions serve basically in two different ways: On the one hand they offer the
possibility to discover and localize the application of specific changes and serve
as vantage points for further investigations. On the other hand they proved to be
helpful on a higher grained level: The frequency of the occurrence of specific refac-
toring phases already gives valuable information independent from the semantics
of the encapsulated changes.

The presented refactoring phase descriptions are all based on heuristics but
they vary in their level of exactitude. Some phase descriptions simply compare the
amount of added and removed classes while other phase descriptions use detection
strategies to detect specifically changed classes based on detection strategies that
detect certain methods of that class. The exact identification of the application of
specific refactorings is a research area of its own.

The detection mechanism is basically identical in all presented refactorings
phase descriptions: Classes where the refactoring has been applied are detected
with one or more detection strategies. A phase is then detected if the detection
strategy detected one or more entities. The size of the resulting set of detected
entities is then used to determine the amplitude of the phase.
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4.3.1 Class Renaming

Motivation. The renaming of classes is either a sign for the improvement of the
naming or for a better or a new understanding of the created key abstractions. Both
cases indicate that work has been done on improving the code.

Definition. The renaming of a class shows in our model up as the removal of
a class and the addition of a new one. The renaming of classes can therefore be
discovered if about the same amount of classes has been removed and added at the
same time. A phase is detected if the fraction of the amount of removed and added
classes is between two threshold values. We chose to use4

5 and 5
4 .

ClassesRenaming(S) :=

S′

∣∣∣∣∣∣∣∣∣
S′ ⊆ S, ∀v ∈ S′

(|NewClass(v)| > 0)∧
(|RemovedClass(v)| > 0)∧
4
5 < |NewClass(v)|

|RemovedClass(v)| < 5
4



Discussion

• Concurrent Phases- General growth and general reduction phases.

• Asynchronous Phases- All maintenance phases.

• False Positives- Situations might erroneously be discovered if the addition
and the removal of classes occurs but has another reason.

• False Negatives- Class renamings might not be discovered if at the same
time other classes are added or removed so that the threshold value is ex-
ceeded.

• Improved Detection - The detection of class renaming could be improved
by looking for the removing and adding of classes with (more or less) the
same measurements.
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4.3.2 Extract Method

Motivation. The extract method refactoring [FBB+99] is a common refactoring.
It consists of extracting a piece of code in one or more methods into a new well-
named method. The application of this refactoring results in fine-grained and well-
named methods which supports the understandability and maintainability of code
for several reasons. Firstly, it increases the chances that other methods can reuse a
method. Secondly, it allows higher-level methods to be read more like a series of
comments. And thirdly, it simplifies the overriding of methods.

The amplitude of a phase indicates in how many classes this refactoring has
been applied.

Definition. A system version is detected as part of an extract method phase if
there are classes where methods have been added others were reduced. The detec-
tion is based on the detection strategyExtractMethodwhich detects such classes
in a system version. This detection strategy is based on another detection strat-
egy, theReducedMethoddetection strategy, which filters reduced methodsM in
a class(δMSG(M) < 0). The mentioned detection strategies are defined in Ap-
pendixB.15andB.17.

The amplitude of a phase is defined as the amount of classes where the refac-
toring has been applied (in all versions).

ClassRefactoring(S) :=
{

S′
∣∣∣∣ S′ ⊆ S, ∀v ∈ S′

(|ExtractMethod(v)| > 0)

}
Amplitude(P ) :=

∑
∀v∈P

|ExtractMethod(v)|

Discussion

• Concurrent Phases- General growth phases.

• Asynchronous Phases- All maintenance phases.

• False Positives- This phase description may detect false positives if the
reduction of the methods is unrelated to the newly added methods.

• False Negatives- Situations may not be discovered if 1) the extract method
refactoring is countered by the removal of methods and 2) if the methods
where code has been extracted from were extended at the same time. The
first case can be caused by the refactoring itself if the extracted method could
be reused in a way that reduces the overall number of methods in the class.

• Complex Detection - The detection is time consuming even though this
phase description looks simple: TheReducedMethoddetection strategy is
applied on every method in every class version in every version.
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4.3.3 Split into Superclass

Motivation. This phase description searches for refactorings that optimize the
class hierarchy by splitting functionality from a class into a newly created super-
class. Thus, it looks for the creation of a superclass together with a number of
pull-ups of methods or attributes. The description of the refactoring and the detec-
tion heuristic is taken from Demeyer, Ducasse and Nierstrasz [DDN00].

Figure 4.2: Split into Superclass Refactoring

Definition. The detection is based on the detection strategySplitIntoSuperclass
(defined in AppendixB.9) that identifies class versions where a superclass has been
added and functionality has been pulled up,i.e., class versions which are nested
deeper in the inheritance hierarchy and have less methods, attributes or class vari-
ables compared to their previous version. A version is part of a split into superclass
phase if the detection strategySplitIntoSuperclassidentifies one or more classes for
that version.

SplitIntoSuperclass(S) :=
{

S′
∣∣∣∣ S′ ⊆ S, ∀v ∈ S′

(|SplitIntoSuperclass(v)| > 0)

}
Amplitude(P ) :=

∑
∀v∈P

|SplitIntoSuperclass(v)|

Discussion

• Concurrent Phases- General growth phases.

• Asynchronous Phases- Maintenance phases.

• False negatives- The heuristic may fail when the change in the hierachy
nesting level of a class is countered by an unrelated removal of a superclass,
or when the pull-ups is countered by an equal addition or removal of new
functionality. The former case will show up as false positives of themove to
other classphase description.

• False positives- The heuristic may discover situations that do not corre-
spond to a split if part of the class functionality has been rearranged, super-
imposed by an unrelated addition of a superclass.
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4.3.4 Merge With Superclass

Motivation. This phase description aims at detecting refactorings that optimize
the class hierarchy by merging a superclass and one or more subclasses. Thus, is
looks for the removal of a superclass, together with a push-downs of methods or
attributes. The description of the refactoring and the detection heuristic is taken
from Demeyer, Ducasse and Nierstrasz [DDN00].

Figure 4.3: Merge with Superclass Refactoring

Definition. The definition of this phase description is based on the detection
strategyMergeWithSuperclass(defined in AppendixB.10) which identifies classes
where a superclass has been removed and functionality has been pushed down.
More precisely it detects a class version if its hierarchy nesting level is lower and
it contains more methods, attributes or class variables than its previous version. A
phase is detected if the detection strategyMergeWithSuperclassidentifies one or
more suspects.

MergeWithSuperclass(S) :=
{

S′
∣∣∣∣ S′ ⊆ S, ∀v ∈ S′

(|MergeWithSuperclass(v)| > 0)

}
Amplitude(P ) :=

∑
∀v∈P

|MergeWithSuperclass(v)|

Discussion

• Concurrent Phases- General reduction phases.

• Asynchronous Phases- All maintenance phases.

• False negatives- This heuristic may fail to detect a split or merge, when the
change in HNL is countered by an inverse change higher up in the hierarchy,
or when the push-down is countered by an equal removal of functionality.

• False positives- This heuristic may discover situations that do not corre-
spond to a merge if part of the class functionality has been rearranged, su-
perimposed by an unrelated removal of a superclass.
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4.3.5 Split into Subclass

Motivation. This phase description aims at detecting optimizations of the class
hierarchy by splitting functionality from a class into one or more newly created
subclasses. Thus, it looks for the creation of new subclasses together with a num-
ber of pull-ups of methods and attributes. The split into subclass refactoring com-
plies partially with the extract method refactoring in [FBB+99]. The description
of the refactoring and the detection heuristic is taken from Demeyer, Ducasse and
Nierstrasz [DDN00].

Figure 4.4: Split into Subclass Refactoring

Definition. The detection is based on theSplitIntoSubclassdetection strategy
(defined in AppendixB.11) that identifies classes where one ore more subclasses
have been added and functionality has been pulled up. More precisely, it looks
for class versions that have more subclasses but less methods, attributes or class
variables than the previous version.

SplitIntoSubclass(S) :=
{

S′
∣∣∣∣ S′ ⊆ S, ∀V ∈ S′

(|SplitIntoSubclass(v)| > 0)

}
Amplitude(P ) :=

∑
∀v∈P

|SplitIntoSubclass(v)|

Discussion

• Concurrent Phases- General growth phases.

• Asynchronous Phases- All maintenance phases.

• False negatives.The heuristic may fail to detect a split or a merge, when
the refactoring did not involve a change in the number of children of a class,
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or when the pull-up is countered by an equal addition or removal of new
functionality. Sometimes, these cases show up as false positives of themove
to other classphase description.

• False negatives.The heuristic may discover classes that are not split or
merged, most often when class functionality has been added, moved or re-
moved and at the same time unrelated subclasses have been added. Thus,
sometimes the false positive does correspond with a false negative of the
move to other classphase description.
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4.3.6 Merge with Subclass

Motivation. This phase description aims at detecting changes that merge super-
class with one or more of its children. Thus, it searches removal of subclasses
together with a number of push-downs of methods or attributes. The description
of the refactoring and the detection heuristic is taken from Demeyer, Ducasse and
Nierstrasz [DDN00].

Figure 4.5: Merge with Subclass Refactoring

Definition. The detection of a Merge with Subclass phase is based on theMerge-
WithSubclassdetection strategy which is defined in AppendixB.12. This detection
strategy identifies class versions that have less or more children and more methods,
attributes or class variables compared to it previous version.

Detection Expression

MergeWithSubclass(S) :=
{

S′
∣∣∣∣ S′ ⊆ S, ∀v ∈ S′

(|MergeWithSubclass(v)| > 0)

}
Amplitude(P ) :=

∑
∀v∈P

|MergeWithSubclass(v)|

Discussion

• Concurrent Phases- General reduction phases.

• Asynchronous Phases- All maintenance phases.

• False negatives.The detection heuristic may fail to detect a merge, when
the refactoring did not involve a change in NOC, or when the push-down is
countered by an equal removal of functionality. These cases sometimes will
show up as false positives of themove to other classphase description.
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4.3.7 Move To Other Class

Motivation. This phase description searches for refactorings that move function-
ality from one class to another. This other class may be either a subclass, a super-
class, or a sibling class (i.e., a class which does not participate in an inheritance
relationship with the target class). Accordingly we look for classes where meth-
ods, instance variables or class variables have been removed and at the same time
for classes where functionally has been added. The detection mechanism for this
refactoring was basically taken from [DDN00] and slightly improved.

Definition. The detection is based on the detection strategiesMoveToOtherClass-
SourceandMoveToOtherClassDest(presented in AppendixB.13 andB.14). The
former identifies classes where functionality has been removed while the latter
identifies classes where functionality has been added. A version is considered as
part of amove to other classphase if both detection strategies detected some class
versions.

MoveToOtherClass(S) :=

S′

∣∣∣∣∣∣
S′ ⊆ S, ∀v ∈ S′

(|MoveToOtherClassSource(v)| > 0)∧
(|MoveToOtherClassDest(v)| > 0)


Amplitude(P ) :=

∑
∀v∈P

|MoveToOtherClass(v)|

Discussion

• Concurrent Phases- General growth and general reduction phases.

• Asynchronous Phases- All maintenance phases.

• False negatives- The heuristic may fail to detect a move when it was coun-
tered by an equal addition or removal of functionality.

• False positives- The heuristic may discover cases that do not correspond to
a move of functionality but then it detects symptoms of other refactorings.
The functionality may be removed instead of moved, or it may have ben
replaced.



Chapter 5

Phase Descriptions on Class
Histories

This chapter contains 7 basic phase descriptions that detect phases in the history of
a class. We present six phase descriptions to detect changes based on one single
metric only and one to detect idle phases:

• Themethod addition and removalphase descriptions detect phases where
methods have been added respectively removed.

• Theattribute addition and removal phase descriptions detect phases where
attributes have been added respectively removed in a class.

• The statements addition and removalphase descriptions detect phases
where the number of statements in a class increased respectively decreased.

• Theidle phase description detects phases where no changes have been made
in a class.

These phase descriptions do not aim at detecting specific changes on their own
but in combination with others they can be used for that. For example, the split
method refactoring would show up in a method addition phase and a concurrent
statements removal phase. The coevally occurrence of these phases could be de-
tected either visually or by combining the method addition and the statements re-
moval phase descriptions with an AND composition operator.

Except for the idle phase description, we define the amplitude for each phase
description.
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5.1 Method Addition and Removal Phase Descriptions

Motivation. The method addition respectively removal phase description detects
when and how many methods have been added respectively removed in the history
of a class.

Definition. A version is detected as part of a method addition phase if it con-
tains a higher amount of methods than its previous version. Analogical, a method
removal phase encapsulate class versions that contain less methods that their pre-
decessor. Note that class variables are disregarded.

The amplitude of a phase indicates how many methods have been added re-
spectively removed in all encapsulated versions.

MethodAddition(H) :=
{
H ′ ∣∣ H ′ ⊆ H, ∀v ∈ H ′ δNOM(v) > 0

}
MethodRemoval(H) :=

{
H ′ ∣∣ H ′ ⊆ H, ∀v ∈ H ′ δNOM(v) < 0

}
Amplitude(P ) :=

∑
∀v∈P

|δNOM(v)|

5.2 Attribute Addition and Removal Phase Descriptions

Motivation. The attribute addition and the attribute removal phase descriptions
detect when and how many attributes have been added respectively removed in the
history of a class. Note that the number of attributes includes both instance and
class variables.

Definition. A class version is detected by a attribute addition\ removal phase
description if it contains more\ less attributes than its preceding class version.

The amplitude of a phase indicates how many attributes have been removed
respectively added in all encapsulated versions.

AttributeAddition(H) :=
{
H ′ ∣∣ H ′ ⊆ H, ∀v ∈ H ′ δNOA(V ) > 0

}
AttributeRemoval(H) :=

{
H ′ ∣∣ H ′ ⊆ H, ∀v ∈ H ′ δNOA(V ) < 0

}
Amplitude(P ) :=

∑
∀v∈P

|δNOA(v)|
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5.3 Statement Addition and Removal Phase Descriptions

Motivation. These phase descriptions detects phases in the history of a class
where statements have been added respectively removed.

Definition. A class version is detected by this phase description if it contains
more respectively less statements than its predecessor. The number of statements
is the sum of all the statements in all methods of a class.

The amplitude of a phase indicates how many statements have been added\
removed in all encapsulated versions.

StatementAddition(H) :=
{
H ′ ∣∣ H ′ ⊆ H, ∀v ∈ H ′ δNOS(V ) > 0

}
StatementRemoval(H) :=

{
H ′ ∣∣ H ′ ⊆ H, ∀v ∈ H ′ δNOS(V ) < 0

}
Amplitude(P ) :=

∑
∀v∈P

|δNOS(v)|

5.4 Idle Phase Description

Motivation. The idle phase description aims at detecting phases where no changes
have been made to a class.

Definition. A version is detected as part of a phase if no methods, attributes of
statements have been added or removed in a class.

Idle(H) :=
{

H ′
∣∣∣∣ H ′ ⊆ H, ∀v ∈ H ′ δNOM(V ) = 0∧

δNOA(V ) = 0 & δMSG(V ) = 0

}
Amplitude(P ) :=

∑
∀v∈P

δNOM(v)
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Chapter 6

Detecting Phases in System
Histories

In this chapter, we apply the catalog of phase descriptions on system histories on
the evolution of two different applications: First on Jun and then on SmallWiki.
In Jun, we analyze 77 consecutive versions. We present the visualization of all
detected phases and then demonstrate how this visualization can be read and how
it can be used to understand the evolution. In the analysis of SmallWiki, we in-
spect almost all versions of SmallWiki from its beginning up to the start of the
development of SmallWiki2. We present three different usages of the detected
phases. First, we present the computed measurements and show how they can be
interpreted. Then we show the visualization of the entire evolution of SmallWiki.
Based on this visualization we then distinguish four different stages and character-
ize them. Finally, we use the detected phases as vantage points for more detailed
inspections. That is, we show how phases can be used to recover the formation of
the core hierarchies of SmallWiki.

6.1 Visualizing Phases in the Evolution of Jun

Jun1 is a large open source 3D-graphics framework written in VisualWorks2 Smalltalk.
Jun is open source software developed within a for-profit company. However, al-
most all of Jun was developed by a small group of three to five programmers at a
time [AHK+01]. The development of Jun is highly dependent of one chief pro-
grammer who is solely responsible for integrating added portions of code created
by team members or the community into an officially released Jun version upgrade.

Though the open source community did not provide much source code, it
did provide feedback, feature requests and bug notices. The evolution of Jun is
however not simply driven by feedback from the community. Several large-scale

1see http://www.sra.co.jp/people/aoki/Jun/Maine.htm for more information
2http://www.cincom.com/smalltalk
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projects using Jun identified new needs for it, which also guided the evolution of
Jun.

The Jun project was started in 1996 and is still under development. It has
mainly grown in small, incremental steps with more than one release a week. We
analyze Jun from version 40 to version 120 which corresponds to a time span of 8
months. In this time span, Jun grew from 106 to 239 classes.

Preparation Problems. The parsing and compiling of the source code was a
problem itself because it is written for obsolete versions of the VisualWorks envi-
ronment. As a consequence of that, there were faulty models which first had to be
identified and put out of consideration. The versions put out of consideration are
the versions 41, 42, 63, 68, and 73.

Another problem was caused by different line feeds in the source code. The
VisualWorks parser we applied created extra empty lines between every line of
code, but not in all methods. This caused faults in the measurements of the LOC
(lines of code) metrics. Thus, we set the LOC metric aside. Another solution to
this problem would have been to preprocess all the source files and replace all the
faulty line feed with one that would have been recognized properly.

The Visualization of Jun. Figure6.1depicts the detected phases in the analyzed
time span. We focus on three parts of this time span that show a different evolution
and demonstrate how the visualization can be used to understand the evolution in
these parts.

6.1.1 The Time Span From Version 40 to 44

In the time span from version 40 to 44 (depicted in detail in Figure6.2), we find
a system growth phase that has a length of two and thus encapsulates two version
shifts. Note that the versions 41 and 42 are taken out of consideration. Thus, the
phase encapsulates the version shifts from version 40 to 43 and from 43 to 44.
From the distances between the vertical lines that represent the versions, we can
see that the first version shift lasted much longer than the second. This system
growth phase has a black upper stripe which indicates a certainty value of 1.0
(the exact measurement value can be obtained by interacting with the visualized
phase). According to the definition of the certainty measurement of system growth
phases, this indicates that there was only code added and no code removed at all
in this phase. More exactly, there were no classes removed and no existing classes
reduced, but new classes added and existing ones extended. This is also visible in
the fact that there is no parallel general reduction phase which would be detected
if code had been removed. The color of the lower stripe of the phase displays the
classification number. It is a dark shade of gray which is hardly distinguishable
from color in the upper stripe. This indicates that in this phase, some classes have
been extended, but mostly new classes have been added. More exactly, it displays
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Figure 6.2: Growth phases from version 40 to 44

a classification number of 0.87 which means that the encapsulated growth consists
to 87% of the addition of new classes.

In parallel to the considered system growth phase, there is a general growth
phase which has identical measurement values. Because of the way these two
phase descriptions are defined, there is always a general growth phase parallel to a
system growth or a new hierarchies growth phase. That the general growth phase
has identical measurements is based on the fact that in this time span there is only
new code added and that the phases have the same length. If there was at the same
time code removed, the general growth phase would have a higher amplitude since
it does not consider the removal, but only the addition of code.

In parallel to the considered system growth phase, there is also a new hierar-
chies growth phase which indicates the addition of complete new hierarchies. The
length of this phase is however 1 smaller, but the amplitude is almost equal since
the two rectangles have almost the same height. This lets us conclude that the
growth has been made mostly in the first part of the system growth and consists
of the addition of at least one hierarchy (super- and leaf classes) and possibly the
addition and extension of classes that are not part of this hierarchy. The second ver-
sions shift encapsulated in the system and the general growth phase only captures
minor changes.

6.1.2 The Time Span form Version 48 to 84

The time span between the versions 48 and 84 (depicted in detail in Figure6.3) is
covered with one single general growth phase. This means that in every version
code has been added. But the system does not grow in every encapsulated version
since the general growth phase encapsulates time spans that are not covered by a
system growth phase. These system growth phases cover most of the depicted time
span which shows that the system mostly grows.

The first system growth phase has a length of two. In the first encapsulated
version shift, there is no other except the general growth phase in parallel. This
indicates that there were only classes extended and leaf classes added and no other
changes have been made. In the second encapsulated version shift, there is a par-
allel general reduction phase which indicates that in this time span there was some
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Figure 6.3: Phases in Jun from version 48 to 84

code removed. Additionally, there are three concurrent refactoring phases. With-
out interpreting the phases in detail, we can conclude that in this phase, the system
has been growing but also changes to existing structures have been made.

The first version shift that is not covered by a system growth phase is very short.
It is covered by a renaming classes phase and a general reduction phase. Renaming
classes shows in our model up as the removal and the addition of the same amount
of classes (with different names). Thus, a renaming classes phase always implicates
general reduction and a general growth phase in parallel. The fact that these are
the only parallel phases means that an exact equal amount of classes has been
removed and added which implies that the renaming has been the only change. The
renaming class phase has an amplitude of 1 which indicates that one single class has
been renamed. To find out what class has been renamed, we can apply the detection
strategiesNewClassandRemovedClasson the corresponding versions. Doing so,
we find out that the only change that has been made is the remaining of the class
JunBrowseEnhanceinto JunBrowserEnhancement. The renaming classes phase is
however longer than the considered time span,i.e., it overlaps with the next system
growth phase. It thus shows that in the next version shifts, more classes have been
renamed.

After the discussed renaming phase, there is again a system growth phase. In
parallel, there is an extract method and a merge with subclass phase. Thus, besides
adding new code, refactorings have been applied.

This system growth phase is again ended by a class renaming phase. This class
renaming phase has a concurrent general reduction phase with the same length and
duration. Its amplitude is identical and its classification number is 0 (visible in the
white lower stripe) which means that in this phase, only classes have been removed
and no classes have been reduced. We can thus conclude that in this phase, one
class has been added and one class has been removed.

After this renaming phase, there is again a system growth phase. It has a length
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of 9 and thus encapsulates 9 version shifts. The encapsulated version shifts how-
ever do not show identical changes. In the first version shift there was only code
added since there are no other concurrent phases. In the following version shift,
there are multiple phases with different phase descriptions in parallel. This indi-
cates that this version shift captures more complex changes than the previous one.
The following version shift shows again a pure addition of new code. The fourth
version shift however shows a parallel new hierarchies growth phase which indi-
cates that there was one or more superclasses and one or more leaf classes added.
The remaining version shifts in this system growth phase again consists of pure
code addition.

This system growth phase is ended by a short system reduction phase which
has a certainty value of 0.71. This shows that in this time span, there was also
functionality added but in total more removed. The classification number which
is displayed in the color of the lower stripe shows that mostly methods in classes
have been removed and only a few classes have been removed. In parallel to this
phase, there is a move to other class phase which implies that methods have been
moved between classes. These facts can be interpreted as follows: Methods have
been moved so that duplicated code could be removed. To understand the changes
in detail and to prove our interpretation, we had to compare the source code of
the encapsulated versions. The phases and the underlying detection strategies help
finding out where to start,i.e., pointing to the methods that have been removed
respectively added.

The rest of the discussed general growth phase is covered by another system
growth phase from version 71 to 84 . It shows a similar characteristic as the previ-
ous system growth phase,i.e., version shifts with pure addition and version shifts
with more complex changes.

6.1.3 The Time Span from Version 97 to 120

The time span between the versions 97 and 120 is shown in detail in Figure6.4.
We see that this time span is almost entirely covered by system growth and general
growth phases. The high amplitudes of these phases indicates that a lot of code has
been added. In numbers, 159 classes and in total 1541 methods have been added.
In this time span, there are however also several concurrent phases of different
refactoring and reduction phase descriptions. This means that concurrently to the
addition of new code, existing structures have been modified indicating that the
addition of the new code caused changes in existing code.

For example, parallel to the new hierarchies growth phase between version 104
and 106, there are among others a split into superclass and a merge with subclass
phase. This indicates that parallel to the addition of new classes, there were the
one hand classes removed in one hierarchy and on the other hand added to another
hierarchy. The removing of the classes triggers the general reduction phase.

Between the versions 107 and 110, we find concurrent to the new hierarchies
growth phase among others a merge with superclass phase that has a notably high
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Figure 6.4: Phases in Jun from Version 97 to 120
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amplitude. The merge with superclass refactoring detects situations where code
has been moved from a superclass into a subclass and the superclass then has been
removed. This phase has an amplitude of 16 which implies that the superclass of 16
classes has been removed, showing up in a concurrent hierarchies removal phase.
Additional, there is a move to other class what indicates that functionality has been
moved between classes. Furthermore, there are a split into subclass and a merge
with subclass phase in parallel.

We can conclude that in this time span, many different changes have been made
concurrently. We can use the detected phases to quickly find out what parts of the
system have been affected in the changes. For that we basically have to “grab”
a phase and “look inside”. For example, we can find out what hierarchies have
been added in the new hierarchies growth phase between version 97 and 99 by
applying the detection strategiesNewSuperclassandNewLeafClasson the version
99. With theNewSuperclassdetection strategy, we obtain that 8 superclasses have
been added. The name of all of them starts with “JunVrml”. Additionally, there
were 20 leaf classes added. The name of 18 of them starts with “JunVrml”. This
lets us conclude that the main change in this time span was the addition of “Vrml”-
functionality3. Inspecting in a similar way the entire time span from version 97 to
120, we find out that almost all changes in this time span correspond to this “Vrml”-
functionality. This lets us conclude that in the time span from version 97 to 120,
a major part of jun has been added and that this addition caused the application of
refactorings, that is, changes to existing classes.

6.1.4 Conclusion

We demonstrated how the visualization of phases can be used to get an under-
standing of the evolution of software system, in this case of Jun. We showed the
visualization of a set of versions and explained three parts of this visualization in
more detail. We however stayed on a high level and did not aim at understanding
the changes in detail.

3TheVirtual Reality ModellingLanguage is a file format for describing interacting 3D objects
and worlds to be experienced on the world wide web
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6.2 Analyzing the Evolution of SmallWiki

SmallWiki [Ren03] is a fully object-oriented and open source Wiki4 framework
written in VisualWorks Smalltalk. SmallWiki is unlike most other Wiki imple-
mentations designed for extensibility. It mainly attains this goal by 1) providing
an object-oriented domain model,e.g.,the content of a page is stored in a tree of
different entities, 2) the possibility to extend this domain model with plug-ins that
can be shared and loaded independently, and 3) a high coverage of unit tests.

SmallWiki was mainly created by one single developer; only a few versions
have been committed by others. Originally, it has been initiated as a student project
at the Software Composition Group of the University of Bern, but was then success-
fully deployed and moved to a broader scope. Currently, the successor SmallWiki2
is under development, which provides an improved model. We however analyzed
the almost complete life cycle of SmallWiki1.

Basic parameters. For this case study, we looked at the almost complete life cy-
cle of SmallWiki1. We analyzed every single version from version 1.1 to 1.313 of,
in total 310 versions. This corresponds to a time span of 18 months (from Novem-
ber 6th 2002 to May 18th 2004) in which SmallWiki grew from 8 to 238 classes.
The average time span between two versions is about 43 hours. We loaded each
of the analyzed versions from the store repository of the Software Composition
Group. Based on the loaded and compiled source code we created a FAMIX model
for each version. The resulting models are then used to create the HISMO model,
that is, a history containing all versions.

Preparation Problems. SmallWiki is based on the libraries Swazoo and Sixx. In
early versions, these libraries were included in SmallWiki. At some point in time,
these libraries were taken out of SmallWiki and became prerequisites. But since
our goal is to analyze the evolution of SmallWiki and not the one of its underlying
libraries, we had to disregard those libraries in our models. Concretely, we only
considered those classes which are in the name space of SmallWiki since Swazoo
and Sixx have their own name space.

Creating the FAMIX models required loading and compiling every single ver-
sion. This however caused in some of the early versions dependency problems
which impact the correctness of the corresponding models. For our analysis, these
impacts however do not depict a relevant limitation.

Structure of the case study. In this case study, we demonstrate how phase de-
scriptions can be used to analyze the evolution of an object-oriented system on
different levels. First we analyze the defined measurements on phase descriptions
on the complete history. This gives us overall information about the evolution of

4A Wiki is a collaborative software used to create, edit and manage hypertext pages on a network.
It enables the users to author their documents using a simple markup language within a web browser
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SmallWiki. Then we present the visualization. By viewing this visualization on a
high level, we then detect stages in the evolution of SmallWiki. On the finest level,
we demonstrate how the detected phases can be used to get detailed information,
i.e.,we show how phases can be used to extract the formation of the architecture.

6.2.1 Properties of Phase Descriptions

In a first step, we analyze the measurements we defined based on phases respec-
tively on phase descriptions. Thus, we detect all phases in the complete history
and then compute the measurements. These measurements, presented in Table6.1,
could be used to get information about the phase descriptions themselves. We
however restrict ourselves to demonstrate what information is revealed about the
evolution of SmallWiki:

Growth outspread over most versions. The system growth phases cover more
than half of the versions and more than 62% of the analyzed time span. This is not
surprising since SmallWiki grew from 8 to 238 classes in the analyzed time span.
However, it tells us that the growth is outspread over most of its versions and is
not concentrated in only a few. The coverage values of the general growth phases
are even higher: in almost 70% of the versions and about 80% of the analyzed
time span there was functionality added. The difference of the coverage values of
these two phase descriptions tells us that there are time spans where code has been
added but the system shrunk. These phases could be detected with the following
combination:GeneralGrowth AND NOT (SystemGrowth).

Growth phases last longer than other phases. The growth phases coverage
in time are higher than the coverage in versions. Since the time coverage is a
relative measurement, this means that growth phases generally last longer than
other phases. Outstanding is the big difference of the coverage values of the new
hierarchies growth phase description,i.e.,the time coverage is about 4 times higher
than the version coverage. This tells us that phases where new hierarchies have
been introduced capture particular time consuming implementation tasks. This is
backed up with the high average density and average duration measurements.

New hierarchy growth phases capture time consuming, big changes.New hi-
erarchies growth phases have in average the highest amplitude than all other growth
phases and thus capture the biggest addition of code. But they have an average
length of slightly more than 2 which is shorter than any other growth phases. That
is, they capture the biggest changes of all growth phases in the smallest amount of
versions. The new hierarchies growth phases however have the longest duration
and the highest density. Thus, in those phases, the time between two versions was
the longest.
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The shape of this addition is further characterized with the classification num-
ber. which is higher than in any other growth phase description. This reveals that
in new hierarchy growth phases the class addition proportion of the added func-
tionally is higher than in other growth phases. The other growth phase descriptions
have much higher classification numbers and thus have a much higher “degree of
class extension”. Thus, new hierarchy growth phases encapsulate a big addition
of functionality, which comprises only a small amount of versions but a long time
span and captures mostly the addition of new classes.

Hierarchy removal phases differ from new hierarchies phases. The hierarchy
removal phase description is opposed to the new hierarchy growth phase descrip-
tion, that is, it captures the removal instead of the addition of entire inheritance
hierarchies. However, the measurements are considerably different. Hierarchy re-
moval phases in average have about the same length (i.e.,, last the same amount of
versions), but have a density which is almost five times lower (and accordingly have
a lower duration). Thus, the time between two versions is almost 5 times shorter
than in the new hierarchies growth phase. The amplitude of the hierarchy removal
phases however is in average approximately the same. Hierarchy removal phases
thus represent big subtraction of functionality which lasted only a fraction of the
time needed to implement. Subtracting functionality however implied adjusting
remaining parts and moving code between classes. This is shown by the fact that
the average certainty of the hierarchy removal phases is considerably lower than
in the new hierarchies phases. The big difference of the version coverage and the
time coverage in the new hierarchies growth phase description is furthermore not
present in the hierarchies removal phase description. Note that the comparison
between new hierarchy phases and hierarchy removal phases is based on the ad-
equate definitions of the amplitude, certainty and classification number, which is
not implied by the concept of phases and phase descriptions.

System reduction phases differ from system growth phases.System Reduc-
tion phases only cover 16% of the analzed time, but there are more than 40 phases.
This means that in about 16% of the analyzed time span, SmallWiki has been re-
duced. However, the reduction phases last compared to system growth phases short
and have a lower amplitude and density. This reveals that the removing of parts has
been done often, but in average, there was not much removed.

Further information of the shape of the encapsulated change is revealed by the
classification number which is lower than in the system growth phases. The def-
inition of the classification number is in both phase descriptions equivalent. We
can thus conclude that the class removal portion is lower in the system reduction
phases than the class addition portion in the system growth phases. The classifica-
tion number of the system reduction phases, which is the lowest at all, reveals that
mostly classes have been reduced, that is, methods in classes have been removed.
Concluding, we can say that the system reduction phases cover short but intensive
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removing of superfluent code.

System reduction phases differ from hierarchies removal phases.The system
reduction and the hierarchies removal phases have approximately the same length
which means that they encapsulate in average approximately the same amount of
versions. The hierarchies removal phases however have an amplitude which is in
average about 5 times higher and thus capture bigger changes. The classification
number of the hierarchies removal phase is 0.88 which means that mostly classes
have been removed in these phases and that the amount of reduced classes is small.
The classification number of the system reduction phase is however more than 2
times smaller which means that the amount of removed classes is small compared
to the amount of reduced classes in these phases. Thus, the hierarchies removal
phases capture not only bigger changes but also different kind of changes than
system reduction phases.

Removal essential. The general reduction phases cover almost 60% of the ana-
lyzed time span,i.e., in almost 60% of the life cycle (40% of the versions). This in-
dicates that the removing of functionality,i.e.,methods, attributes or entire classes,
enfolds the bigger part of the evolution of SmallWiki and is not concentrated in a
few versions. It is an essential part of the evolution of SmallWiki even though it
grew in the analyzed time span. General reduction must often overlap with system
growth and general growth phases, since the time coverage values of all three phase
descriptions is higher than 50%.

General reduction and general growth as opposites. The general growth and
the general reduction phase description are defined oppositional to each other.
However, general growth phases last considerably longer (in terms of version and
in terms of time) and also have a higher average density. This is a sign for the
dominance of the growth in the analyzed time span.

Short maintenance phases. Maintenance Phases have compared to other phases
a short duration and also a low density. Generally, they have a lower time coverage
than version coverage. Thus, the captured small changes could be done relatively
quick. Remarkable are the idle and the code cleaning phase description. There are
many detected idle phases (40) with a low time coverage. The idle phases encapsu-
late the application of small changes that did not show up in our measurements at
all. The low time coverage and the small duration now indicate that these changes
were not time consuming. The code cleaning phases stick out because of their
low average density and low average duration measurements. Phases where only
superfluous statements in methods have been removed are in fact the shortest we
detected in the evolution of SmallWiki.
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Refactoring Phases. Refactoring phases aim at detecting the occurrence of spe-
cific changes. We see that most refactoring phases cover only a small amount of
time and versions but some stick out. Especially the extract method refactoring
phases cover the bigger part of the analyzed evolution. The split into superclass
refactoring phases cover only a small amount of versions but a much bigger amount
of time, which is backed up by the very high average density. These phases thus
represent especially time consuming activities. The same shows up in the merge
with subclass phases, but to a lower extent. The move to other class phases cover
like the extract method phases an outstanding percentage of the analyzed time and
versions.

Generally, Table6.1 reveals that the move to other class and especially the
extract method capture a bigger amount of versions and of the analyzed time span
than the other refactorings. The split into superclass and the merge with subclass
have a notably higher coverage in time than in versions which indicates that they
capture more time consuming changes. The extract method phases which cover
more than 75% of the analyzed time span have however a low amplitude which
means that the underlying refactoring has been applied in most version shifts but
in average only a few times.

6.2.2 Visualizing Phases in SmallWiki

After analyzing the evolution of SmallWiki by interpreting measurements based
on phases and phase descriptions, we now show the visualization of the detected
phases in Figure6.5 as described in Section3.6. This figure shows the entire
analyzed time span in two parts: the lower part is the continuation of the upper
part. Based on this visualization we can study

• when how much time passed between two versions,

• where phases of different phase descriptions arise,

• when they have high amplitudes (visible in the height of the rectangles),

• when they have high certainty values (visible in a dark color),

• when they have high density values (and thus include many version in a short
time),

• when they arise concurrent to phases of other phase descriptions,

• what relationships they have to other phase descriptions,

• etc...

We see that the versions,i.e., the vertical lines representing the single versions,
are in the beginning much closer together than towards the end. Especially one
phase where there are no versions in a long time span stands out. This time span
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is covered with several phases. It is however most likely that SmallWiki was left
unchanged over most of this time span and that the changes have been made only
at the end of it.

By looking closer at the visualization, we visually make out four stages: the
initial development stage, the completion and maturation stage, a redesign stage,
and a maintenance stage. The next sections present how we detected these stages
and characterize them.

Initial Development Stage

The upper part of part Figure6.5 lets us distinguish two distinct stages by the
density of the versions which is depicted by the distances between the vertical lines
(the distance between two vertical lines is proportional to the time span between
the two corresponding versions): In the first stage the versions are closer together
than in the latter. Furthermore, there are generally much more phases detected in
the first part that in the next part.

Comparing these two stages, we make the following observations:

• Strong growth solely in the left part - Both areas are mostly covered by
general and system growth phases, but in the left area, the growth phases
have a much higher amplitude which indicates a stronger growth. New hier-
archies growth phases, which as previously mentioned capture big changes,
are almost solely on the left side. Thus, we can conclude that the growth is
primarily concentrated in the left area.

• Refactoring Phases restricted to the left part- Apart from the phases
of the more general refactoring phase descriptions extract method, move
to other class, and renaming classes phases, refactoring phases are almost
restricted to the left part of the visualization. They thus seem to appear to-
gether with growth. Assuming that the detection of refactorings is correct,
we conclude that the activity of refactoring has been an essential part of the
former stage, but not of the latter.

• Reduction Phases primarily in the early stage- Like growth phases, we
find reduction phases in both time intervals. However, the occurrence of the
general reduction phase and the hierarchies growth phase differs in the two
areas: There are much more of them and they have higher amplitudes. This
lets us conclude that the removal of code primarily occurred in the left area
and thus belongs mostly to growth.

• Development and fixation of the architecture in the former time span-
The formation of new hierarchies is captured by three different phase de-
scriptions: Primarily by the new hierarchies growth, but also by the split
into superclass and the split into subclass phase description. The first one
captures the addition of complete new hierarchies,i.e.,base classes and leaf
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classes at the same time, while the others capture the change from a single
class into a complete hierarchy. On the left side we find much more and
higher new hierarchy growth phases. Phases from the two other phase de-
scriptions are exclusively on the right side. Thus, we can conclude that new
hierarchies are (almost) exclusively introduced in the first time span.

Further investigations on the inheritance hierarchies can be detected by study-
ing multiple phases in parallel. For example, the renaming of complete hier-
archies would show up as removing and adding complete hierarchies at the
same time and thus would show up in a hierarchies removal and a concur-
rent new hierarchies growth phase. Additionally, there might be a concurrent
classes renaming phase if the amount of added classes does not differ much
from the amount of the removed classes. We can detect further development
activities on hierarchies, but they are restricted to the left area. How we can
use our approach recover the evolution of concrete hierarchies is shown later.
For now, we conclude that the core hierarchies have been developed and up
to a certain degree stabilized in the first stage.

Interpreting this first stage in the evolution of SmallWiki, we assume that in this
first stage, a first running version of SmallWiki was developed. This first version
might still lack features and have flaws but it already possesses the architecture.
We therefore call this stage the initial development stage of SmallWiki. There are
different possible ways to verify our assumptions. One possibility would be to uses
the detected phases to analyze the exact changes to get a detailed understanding of
the applied changes. This technique is demonstrated later in Section6.2.3when
we show how phases can be used to extract the formation of the architecture from
the history. For the verification of our assumptions, we however chose another
way: we simply confirmed with the main developer. We found out that there was
never an official release, but that users “suddenly” just started to use SmallWiki
professionally. First installations have been made starting from the end of the de-
tected initial development phase which is a confirmation for our assumption. Also
verified is that the formation and especially the stabilization of the architecture (re-
spectively of the core of SmallWiki) took place in this stage. Two parts however
have been completely re-implemented in a later stage.

Summarizing, we can say that in this initial development stage a first versions
of SmallWiki was developed that started to be used professionally. In the next stage
we thus expect the completion of SmallWiki,i.e., the addition of new features or
improvement of existing features, and the improvement of flaws. This stage is
described in the next section.

Completion and Maturation Stage

This stage is practically covered with general and system growth phases with
low amplitudes. This means that there was continually code added, but never
much. There was also continually little amounts of code removed (visible in the
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“small” general reduction phases). The removal of code has almost exclusively
been made while concurrently code has been added since parallel to general reduc-
tion phases there are almost always general growth phases. Sometimes the removal
was stronger which results in a system reduction phase and sometimes the addition
was stronger what shows up in a system growth phase. The addition of code how-
ever appears also without a concurrent general reduction phase. It however does
not seem to affect the inheritance hierarchies since there are almost no new hierar-
chies growth, extract hierarchy, split into subclass or split into superclass phases.
We conclude that in this stage, existing functionality was improved and completed.
We thus call this stage completion and maturation stage.

The described behavior changes again in the lower part of the visualization.
Thus, another stage begins which is described in the next section.

Redesign Stage

After the completion stage, we find again a stage where the versions are closer to-
gether. Also, in contrast to the completion stage, there are again considerably more
and more different refactoring and reduction phases. This stage is mostly covered
by general growth, but not by system growth phases. The system is thus in this
stage not growing. Instead, the reduction phases are overwhelming. Striking are
especially the high general reduction phase and the one version lasting hierarchy
removal phase. In parallel to this phase, there are also a new hierarchies growth
phase, a system reduction phase and several refactoring phases. By looking at the
system reduction phase or the change of the number of classes, we would conclude
that the system was reduced. But by considering the detected phases, we see that
other changes than removing code have been made. Coming along with the reduc-
tion phases, there is one new hierarchy growth and several refactoring phases with
partly high amplitudes. This lets us assume that this stage captures the redesign of
a part of SmallWiki. This redesign results in a smaller size of the overall system -
but the functionality of the system might even have been enhanced. To verify our
claim and to clearly understand the changes, we had to further analyze the con-
sidered phases. How this could be done is demonstrated in the next Section. We
confirmed again with the main developer of SmallWiki and found out that indeed
a major part of SmallWiki was redesigned, and another part was improved which
confirms our assumptions.

Maintenance stage

It the last stage shown in Figure6.5, the versions are generally far apart, which
means that a lot of time passed between two versions. Outstanding is mainly one
time span where there has no version been made for a long time,i.e., for more
than 4 months. This time span is covered by many phases with different phase
descriptions in parallel which all cover the same versions. Some of these phases,
especially the growth phases, have high amplitudes. This lets us conclude that
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some major changes have been made in this phase. However, most likely in most
of this time span, SmallWiki has been left unchanged and the changes have been
made only at the end of this stage.

The rest of the maintenance stage is mainly covered by maintenance phases,
i.e.,by idle and code correction phases. These phases capture either only minimal
changes or no changes at all. As the completion and maturation stage, this stage
shows compared to the initial development and the redesign stage only a small
amount of phases with a high density. Summarizing, we can say that the mainte-
nance stage covers a big amount of the analyzed time span in which only a small
amount of versions have been made and in which in only one time span relevant
changes have been made.

6.2.3 Recovering the formation of the architecture

Up to now we analyzed the evolution of SmallWiki by interpreting measurements
and the visualization of the phases. We compared the shape of the phases and
looked for the occurrence of concurrent phases. This gives us a coarse understand-
ing of the evolution. However, phases can also be used as pointers to analyze
changes in detail. The applied phase descriptions mostly use detection strategies
as high level metrics to detect the occurrence of specific changes. Outgoing from
a single phase or certain concurrent phases, we can now apply the underlying de-
tection strategies on the versions the phase encapsulates. Like that, we obtain a
set of suspect entities,e.g.,classes that we can manually examine. Since the used
detection strategies mainly detect entities based on the way they changed, this tech-
nique helps us recover the changes in the system. Note that with this technique,
we first step from the entire evolution (more than 300 versions) to single versions
and from there to single design changes. To do this in an efficient manner, we need
the support by a software tool. The tool we implemented and used is described in
AppendixA.

To demonstrate how phases can be used to gain an understanding of discrete
changes, we focus on the evolution of the architecture, which is mainly captured in
inheritance hierarchies. Thus, we focus on phases that indicate changes in super-
class and possibly also leaf classes,i.e.,we mostly focus on new hierarchy growth,
hierarchy removal and extract hierarchy phases. Additionally, we take the split into
superclass and split into subclass phases into consideration. In the following, we
present a number of different shifts from one version to the next and describe then
how the architecture was changed and how we obtained the changes. The analyzed
version shifts are all part of the initial development stage which is depicted in detail
in Figure6.6.

• Version 1.5 - 1.6.There is a small new hierarchies growth phase which in-
dicates that the amount of added hierarchies is low. Furthermore, this phase
has a certainty value of 1.0 and a classification number of 0.2 which says that
the change to version 1.6 consisted of the addition of a few added methods,
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Figure 6.6: The Initial Development Stage of SmallWiki in Detail



6.2. ANALYZING THE EVOLUTION OF SMALLWIKI 79

no removal of classes or methods at all but mostly of the addition of new
classes. To know which hierarchy was introduced, we apply the detection
strategiesNewSuperclassandNewLeafClasson the version 1.6. We see that
the abstract classStructureand its leaf classesBook, PageandShelf were
added.

• Version 1.14 - 1.15.Between these versions, there is again a new hierar-
chies growth phase which this time has a higher amplitude. Concurrently,
there is a general reduction and a move to other class phase. We thus expect
that functionality has been moved from one or more classes into an newly
created inheritance hierarchy. Applying the detection strategiesNewSuper-
classandNewLeafClasswe find out that the base classActionand its direct
and indirect subclasses are newly implemented (totally 12 classes). Three
of the direct subclasses are named accordingly to the subclasses of the class
Structure: the classBookAction, PageActionandShelfAction. Applying the
detection strategyMoveToOtherClassSourceor ReducedClasson the version
2.15 we get out that functionality has been moved away from the subclasses
of the classStructure(Book, Page, andShelf). Where the functionality was
moved to is harder to determine by applying detection strategies. However,
comparing the names of the removed methods with the method names of the
added classes, we find out that the classes of the hierarchyAction represent
operations that can be applied on (sub-) classes of theStructurehierarchy.

• Version 1.25 - 1.26.We are again looking at a new hierarchy growth phase.
This time there are hierarchies removal, classes renaming and a general re-
duction phase in parallel. We thus presume that one or more complete hier-
archies were renamed - what in our model shows up as removing and addi-
tion of the same amount of classes. The concurrent classes renaming phase
backs our presumption up. By applying the detection strategiesRemovedSu-
perclass, NewSuperclass, RemovedLeafClassandNewLeafClasswe confirm
our expectation: The classesPageVisitorand all its subclasses were renamed
into WikiVisitor (accordingly the subclasses).

The names of those classes give us an idea about their responsibility; they
seem to conform to theVisitor design pattern [GHVJ93] and thus repre-
sent an operation to be performed on the elements of an object structure.
Their change of name lets us assume that their responsibility changed from
traversing an object structure that consists of instances of the classPageinto
traversingWikiItems(which seem to be more abstract thanPages). Applying
the NewSuperclassdetection strategy on version 1.26 we find out that new
superclassWikiItemhas been introduced, which is an abstraction of the exist-
ing hierarchiesPageComponent, PageLeafandStructure. Additionally, this
complete hierarchy was enhanced with multiple leaf classes. This verifies
our previous assumption.

• Version 1.27 - 1.28.In the version shift from version 1.27 to 1.28, the sys-
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tem has been reduced since this version shift is encapsulated in a system
reduction phase. Concurrently, there are a merge with subclass and a merge
with superclass phase. The merge with superclass phase captures the move
of functionality from a removed superclass into one of its subclasss while
the merge with subclass captures the oppositional change,i.e., the move of
functionality from a removed subclass into its superclass. Applying the de-
tection strategyMergeWithSubclasson version 1.29, we find out that the
classPreformattedis no longer a subclass of the classTextand that the class
Texthas grown. With the detection strategyMergeWithSuperclass, we dis-
cover that the merge with superclass refactoring captures the same change
from another direction: it reveals that the classPreformattedhas changed
from being a subclass of the classTextinto a subclass of the classPageCom-
posit. Since the classPreformattedwas detected by the detection strategy
MergeWithSuperclass, it also has has been extended.

We demonstrated how the detection of phases can be used as a tool to get a
detailed understanding. Generally, we studied phases that appear concurrently and
made an assumption about the change based on the semantics of the underlying
phase description. Our assumption then had to be verified by applying single de-
tection strategies on single versions. Applied in this way, the detection of phases is
an aid to filter out and understand relevant changes. What changes are relevant is
dependent on the addressed problem.
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6.3 SmallWiki Coarse Grained

In this section, we again analyze the same time span of the evolution of SmallWiki.
But this time, we only consider every fifth versions. More precisely, we analyze
every version of which the number is divisible through 5 plus the first and the last
one, i.e., version 2.1, 2.5, 2.10, 2.15, 2.20, ... , 1.305, 1.310, and 1.313. In this
case study, we forgo an analysis of the computed measurements. Instead we only
present the visualization of the detected phases and compare it to the visualization
of the fine grained case study. We however present two different ways of detecting
the phases. In Chapter3 we mentioned that there are different ways of forming
phases out of the versions a phase description detected. Up to now, we always
formed the maximal phases,i.e., phases that encapsulate the maximal amount of
consecutive versions. On the other extreme, we can form phases that all have the
length of one. Thus, if a phase description detected two consecutive versions,
we build two phases. In this section, we present both mentioned ways, first the
maximal phases and then the minimal.

Visualizing Maximal Phases

Figure Figure6.7 shows the coarse grained visualization of the history of Small-
Wiki. Based on that, we can make the following observations:

One Instead of 65 Extract Method Phase. The visualization shows one single
extract method phase that encapsulates the entire history. In the previous case
study, we found 65 single extract method phases and accordingly time spans in-
between that were not covered with extract method phases. The most probable
reason for this is that the extract method refactoring has been applied at least once
in five versions and thus is detected in every considered version in this case study.
In the visualization of the fine grained case study, we can indeed not discover five
consecutive versions where there is no extract method phase. This does however
not necessarily imply that those refactorings are also detected in this coarse grained
case study: It could for example be that the refactoring has been applied on a class
from version 1 to version 2 and that from version 3 to version 4, another change
has been made to the same class which ‘hides’ the refactoring. Considering only
the version 1 and 5, the application of the refactoring can then not be detected. We
can thus assume that the extract method refactoring has generally not been ‘hidden’
by other changes, that is, the detected classes where the extract method refactoring
has been applied are up to a certain degree stable. But we can not exclude is that
the phase description is not precise enough and that misclassifications occurred.
The extract method refactoring however only detects a version as part of a phase
if there is a class that at the same time has more methods than before and some
methods have been reduced. False positives are restricted to the situation where
both changes occur but are unrelated. Therefore, we conclude that this reason is
most likely not the cause for the notably different detection in the two case studies.
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Similar differences between the fine grained and the coarse grained case study
arise in other phase descriptions, for example in the general growth, the move to
other class and the general reduction phase descriptions. The cause for the differ-
ence is the same as in the extract method refactoring although the phase descrip-
tions are defined differently: If there are less than five consecutive versions that
are not covered with a phase in the fine grained case study, they are covered by
a phase with one of the mentioned phase descriptions in the coarse grained. The
maintenance phase descriptions however show a different change, as shown in the
next paragraph:

No Maintenance Phases Discovered.Except for one single ‘idle’ phase which
is so short that it is not even visible in the visualization, there are no maintenance
phases detected. In the fine grained case study in contrast, we found 40 idle, 19
code correction and 5 code cleaning phases. Maintenance phases thus in contrast
to growth phases have much lower coverage values compared to the previous case
study. For that, we found mainly two reasons:

• The first reason lies in the way the phase descriptions are defined: The main-
tenance phase descriptions in contrast to most other phase descriptions ex-
clude most kind of changes. For example, they exclude the addition of new
classes. At least one of the excluded changes has been applied at least once
in five versions. If we analyze only every fifth version, the occurrence of this
change breaks the detection of the maintenance phase.

• The changes that the maintenance phase descriptions aim at detecting are
phases where only small changes in specific classes have been applied. If in
an interval of 5 versions where ‘maintenance changes’ have been applied to
a specific class, also other changes have been made on the same class, the
maintenance changes could not be detected anymore.

Evolutionary stages are hardly visible. In the previous case study, we could
discern several different stages in the analyze history,i.e., the initial development,
the completion and maturation stage, a redesign stage, and a maintenance stage.
Especially the initial development stage differed clearly from its successor.

One of the main differences that made us distinguish the stages was the density
of the versions,i.e., how much time passed between the versions. This difference
is still visible, but it is not so clear anymore. Other main differences were the
occurrence of the refactoring and the reduction phases and the amplitudes of the
growth phases. The amplitudes of the growth phases hardly reveals the stages since
we found very long phases which do not show differences of the amount of added
code in the encapsulated versions. The initial development and the succeeding
maturation stage both are covered with one single general growth phase which
stands out with a very high amplitude. This phase however does not show any
difference between the two stages. It just shows that code has mainly been added
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in the first half of the analyzed time span. The occurrence of the refactoring and
the reduction phases show the biggest differences between the detected stages: As
in the fine grained case study, they are mainly detected in the initial development
stage and in the redesign stage.

Summarizing, we can say the density of the versions and the occurrence of
refactoring and reduction still shows differences between the stages, but describing
them is hard in the coarse grained case study.

Conclusion

We found that the detected phases offer less information if we only consider every
fifth version. The phases of most applied phase descriptions are long and provide
information about the entire encapsulated time span. Maintenance phases how-
ever disappeared entirely. Furthermore, even the detection and description of the
detected stages got difficult with the reduction to every fifth version.

To get more information out of the considered versions, we can however build
minimal instead of maximal phases,i.e.,make phases that all encapsulate only one
single version. Like that we see for example a different amplitude in every single
version.

6.3.1 Visualizing Minimal Phases

In this section, we compare the visualization of minimal and maximal phases. We
restrict ourselves to a part of the entire history of SmallWiki,i.e.,on that part that
was covered by the first general growth phase in the previous case study (version
1.1 to 1.285). Furthermore we restrict ourselves to the growth and the reduction
phase descriptions. Figure6.8shows the visualization of the maximal and the mini-
mal growth and reduction phase descriptions. We now compare both visualizations
and study the effect of the way phases are built.

We see that the big general growth phase in the upper figure is split up into
many single general growth phases. The sum of the amplitudes of all of these
phases equals to amplitude of the general growth phase in the upper figure. In
contrast to the upper visualization, we discover time spans with a bigger amount
of added code and time spans where hardly any code has been added. We see
more detailed information not only in the amplitude measurement but also in the
certainty and the classification number measurements. That is, we can discover
phases with higher or lower certainty values or classification numbers.

The differences between maximal and minimal phases can exemplary be seen
in the general reduction phases between version 1.260 and 1.265. In the upper vi-
sualization, we see one single phase that shows information about the entire encap-
sulated time span. It has one amplitude which shows the total amount of removed
code, one certainty value which compares the amount of added and removed code
over the total length of the phase and one classification number which shows an
average property of the total time span. In the lower visualization we see 4 con-
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secutive phases, each having a different amplitude, different certainty value and
a different classification number. This indicates that each phases encapsulates a
different shape of change. For example, we discover that most functionality has
been removed in the first version shift and that each of theses phases has a lower
amplitude than its predecessor phase. We find the same in the concurrent general
growth phases. The amplitude of the concurrent general growth phase is however
in four phases smaller so that a system reduction phases is detected. In the last
version shift however, the amplitude of the general growth phases is bigger so that
a system growth phase is detected.

By looking at all growth phases we can discover the end of the initial devel-
opment stage in the evolution. In the growth phases, especially the system growth
and the new hierarchies growth phases, we see that most of the growth has been
made in the initial development phase. Also the reduction phases which we pri-
marily found in the initial development stage, have higher amplitudes than in the
succeeding state.

Conclusion

In the previous case study, we found that the maximal phases together with the con-
sideration of only every fifth version resulted in a not detailed enough information
content. By varying the construction of phases from version a phase description
detected, we gained a more detailed visualization of the evolution of SmallWiki.
Summarizing, we can say that the building of minimal phases seemed to be more
appropriate considering only every fifth version. Taking every single version into
consideration, we however found it more appropriate to build maximal phases since
the summarizing of versions lets us regard the evolution on a higher level.



Chapter 7

Detecting Phases in Class
Histories

In this chapter, we demonstrate the application of phase descriptions on the class
level, i.e., we detect phases in histories of classes. For that, we apply the catalog
of phases descriptions we defined in Chapter5 on three classes of Jun and on
two classes of SmallWiki. The case studies Jun and SmallWiki are introduced in
the previous chapter. Generally, we do not present the complete history of the
classes but furthermore selected a part of the history. We chose the classes and the
parts of their histories so that we ended up with five evolutions that have different
characteristics.

7.1 The Evolution of the Class JunTopologicalElement

Figure 7.1: The Evolution of the class JunTopologicalElement

The evolution from version 5 to version 25 of the class JunTopologicalElement
is depicted in Figure7.1. The entire evolution is covered by phases which means
that the class has been part of every single version. Except for one version shift, the
history is covered byidle phases. This indicates that the classJunTopologicalEle-
menthas been changed once, from version 9 to 10. This change is captured by
themethod additionphase. By interacting with the this phase, we discover that the
amplitude of this class is 1 which means in this phase, one single method has been
added. But there have however no messages been added to this class since there is
no concurrentstatements additionphase. This lets us assume that some code has
been extracted from one method into a newly created one and that no functionality
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has been added to this class. By reading the source code of the versions 9 and 10
we however discover that the code in the added method has been commented and
thus does not contain any statements. We therefore conclude that this class has
been extended with an “empty” method in version 10 and remained unchanged in
the rest of the analyzed time span.

7.2 The Evolution of the Class JunOpenGL3dPolylineLoop

Figure 7.2: The Evolution of the class JunOpenGL3dPolylineLoop

Figure7.2depicts the evolution of the class JunOpenGL3dPolylineLoop from
version 5 to 25. The class was introduced in version 10 since the time span between
version 5 an ten is not covered by any phases. In the following version shift, one or
more methods have been extended but no new ones have been added since there is a
statements additionphase but nomethod additionphase. Thisstatements addition
phase has an amplitude of 1 which means that one single statement has been added
to one method of the class. In this version shift, no methods or attributes have been
added since there is nomethod additionor attribute additionphase. The following
silent phase indicates that the class has not been changed from version 11 to 16.
From version 16 to 17, there is amethod removalphase with an amplitude of 4,
anattribute removalphase with an amplitude of 1, and astatements removalphase
in parallel. This indicates that 4 methods and one attribute have been removed. In
the following version shift, the class grew again since there is amethod addition,
a attribute additionand astatement additionphase in parallel. The amplitudes of
those phases reveal that in total, one attribute and two methods have been added.
After this version shift, the class has not been changed anymore.

7.3 The Evolution of the Short-Living Class JunBrowserEn-
hance

Figure7.3 depicts the class JunBrowserEnhance which was introduced in version
49, remained unchanged til version 50 and then was removed again in version 51.
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Figure 7.3: The Evolution of the class JunBrowserEnhance

7.4 The Evolution of the Unstable Class Structure

Figure7.4shows SmallWiki’s classStructurefrom version 1.66 to 1.174. Most of
the depicted time span is covered by silent phases. But there are many addition
and removal phases distributed on the entire visualization. This indicates, that this
class is constantly enlarged and belittled in the depicted time span. For example,
we find several attribute addition and attribute removal phases. This indicates that
the amount of attributes in this class is not stable. The same is true for the number
of methods and the number of statements. Thus, this class undergoes constant
changes which means that it is unstable. Note that we are considering more than
100 versions of this class,i.e., this class is unstable in more than 100 versions.

Generally, there are more of the phases that capture the addition of code than
of those phases that capture the removal. The addition phases also have higher
amplitudes which lets us conclude that the classStructurewas in average growing
in the depicted time span.

Figure 7.4: The Evolution of the class Structure

In the time span from version 1.77 to 1.78, there is only a statement addition
phase and no other concurrent phase. This means that no methods or attributes
have been added or removed, but that existing methods have been extended. This
could be a sign for the correction of bugs: The additional statements in methods
fulfill missing requirements in the methods they have been added to.

An oppositional change is depicted in the statements removal phase from ver-
sion 1.92 to version 1.93. It also has no other concurrent phases. Thus, no methods
or attributes have been added or removed but statements have been deleted in ex-
isting methods. The phase however only considers the total amount of statements,
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i.e., the total amount of statements has been reduced. This could be a sign that
some methods have been implemented in a more elegant way. Since the state-
ments removal phase description only considers the overall amount of statements
of a class, it could however be that some methods have been extended while others
have been reduced.

In the time span from version 1.168 to 1.169, there are a method addition and a
concurrent statement removal phase. This indicates that the total amount of meth-
ods grew, but the total amount of statements in this class was reduced. This could
be a sign that common code in several methods has been factored out into new
methods so that the total amount of statements has been reduced. This change
refers to the extract method refactoring [FBB+99].

7.5 Class VisitorRendererHtml

Figure 7.5: The Evolution of the class VisitorRendererHtml

Figure7.5 depicts the introduction of SmallWiki’s classVisitorRendererHtml
from version 1.160 to 1.200. In the first depicted versions, the class did no exists
since there are no phases detected. In the beginning, this class shows an unstable
behavior like the classStructure. But then, apart from version 1.172 on, this class
is stable. Thus, the classWikiVisitorRendererhas been introduced, then changed
in five version shifts until it reached its final state.

The shift from version 1.167 to version 1.168 shows a method addition and an
attribute addition phase in parallel. In this time span, there is however no concur-
rent statement addition phase. Thus, methods have been added but the total amount
of statements remained the same.

7.6 Conclusion

In this chapter we analyzed the evolution of five different classes with 7 phase de-
scriptions. The phase descriptions itself were, except the idle phase description
based on a single metrics only. They indicated us when and to what extent this
metric changed in a class. For example a method addition phase with an ampli-
tude of seven indicates that seven methods have been added in the encapsulated
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time span. The concurrent occurance of the detected phases lets us understand the
changes on a more exact level and lets us make assumptions about the reasons of
those changes. For example, a method addition and a concurrent statements re-
moval phases let us assume that the extract method refactoring had been applied to
the analyzed class. In our analysis, we analyzed the concurrent occurance of phases
visually. For that, we could however also use composition operators to combine
two or more phase descriptions.
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Chapter 8

Conclusion

8.1 Summary

In this work, we presented an approach to understand the evolution of software by
detecting phases. We introduced our approach step by step. First we introduced its
prerequisites starting with FAMIX which is a meta-model for a language indepen-
dent representation of object-oriented source code at a single point in time. Then
we presented the HISMO history meta-model which provides means to represent
a set of FAMIX models of different points in time as a history, and thus enables
analyzing evolution. Then we introduced software metrics which we divided into
structural and evolutionary software metrics. Based on software metrics, we pre-
sented detection strategies which are quantifiable expressions to detect specific de-
sign fragments. After introducing these prerequisites, we presented our approach
of detecting phases with phase descriptions. A phase is a set of consecutive ver-
sions that all comply with a phase description which is an expression to detect
phases. We introduced measurements on phases, namely the length, duration and
the density, and measurements on phase descriptions,i.e., on the set of phases a
phase description detects in a history. We also provided attributes of phase de-
scriptions. These are measurements that have a common meaning across all phase
descriptions but the computation is defined based on the specific phase description.
Then, we presented a way to visualize phases and like that study the concurrent
occurrence of phases with different phase descriptions.

We then applied the approach of detecting phases on the system and on the
class level. For that, we first presented two catalogs of phase descriptions, one
that is applicable on the system level, and a simpler one applicable on the class
level. We presented the visualization of a part of the evolution of the system Jun
and then analyzed the entire evolution of SmallWiki. We showed how the defined
measurements can be used to gain information about the entire time span. Then,
we discovered several stages in SmallWiki’s evolution by reading the visualization
of the detected phases. And finally, we demonstrated how phases can be used as
a tool to get a detailed understanding of the changes by using phases to recover
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the formation of SmallWiki’s architecture. Therefore we inspected the phases with
phase descriptions that indicate changes in the inheritance hierarchies. Then, we
applied our approach also on the class level, that is, we used the second catalog of
phase descriptions to discover phases in the history of five different classes from
Jun and SmallWiki.

8.2 Future Work

• Enhancement of the catalogs of phase descriptions- In this work, we
presented a set of phase descriptions that proved to be useful for our works.
Most of these phase descriptions are however simple and are based on heuris-
tics or assumptions. For example, system growth and the system reduction
phase descriptions are based on one single formula that defines how the size
of a system changes. Also the refactoring phase descriptions use simple
detection heuristics,e.g., the renaming classes phase description that only
considers the amount of removed and added classes but disregards if those
classes are identical. By improving the phase descriptions, we could get a
higher degree of correct detections and also get a better understanding of the
analyzed evolution. Improving the phase descriptions includes improving
the definition of the certainty and the amplitude of the phase descriptions.
Furthermore, we could define a classification number on more phase de-
scriptions and also define it as a multi-dimensional vector instead of a single
number.

• Use phases to indicate the introduction or improvement of flaws- To-
gether with detection strategies, phase descriptions could be used to detect
certain design flaws and with that also time spans in the evolution where
flaws have been introduced. Furthermore, with phases and the presented
visualization, we could detect the introduction of design flaws and visualize
with phases how they evolved. For example, we could detect the introduction
of a god class and discover in the visualization if the flaw has been corrected,
if the corresponding structure has been unstable, or if it stays stable to the
current version.

• Apply phase descriptions on more levels- In this work, we presented two
catalogs of phase descriptions, one applicable on the system level and one
on the class level. Phases could also be used on other levels, for example
to study the history of subsystems, single methods, attributes, etc. For that,
we had to define new catalogs of phase descriptions on the appropriate level.
For example, phases could be used to concurrently study the evolution of
two subsystems of a system. Like that, we might discover subsystems that
evolve similarly or in an oppositional way.

• Relate to quality related issues- In this work, we always focused on using
phases to understand the evolution of software. We are however convinced
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that phases can support the assessment of quality of a system using its his-
tory. For example, we might detect phases that indicate that each functional
enhancement of a system caused major redesigns, which would be a bad sign
for the maintainability of a system.

• Use phases to find patterns in software evolution- Comparing the evolu-
tion of different systems, we could detect patters of how software evolves.
Such patterns could be found on various levels, for example on comparing
the measurements based on phase descriptions (as presented in the Small-
Wiki case study), or by comparing the visualization. For example, we might
discover that in some software, first single classes have been introduced that
later on were subclasses and grew to core hierarchies. Also we might re-
late detected patters to the work flow of the developers: A software that
has been developed with extreme programming most likely shows a differ-
ent evolution than a software that has been developed with a strict waterfall
model [Som00]. That is, in the extreme programming project, we might
discover patterns that are not present in the later project and vice versa.
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Appendix A

Tool Support

In this chapter, we describe the softwareQuala which we developed and found
useful in the context of detecting phases. We focus on describing the functionality
of it and forgo a description of the implementation.

Quala includes the mechanism of the detection of phases with phase descrip-
tions and a set of tools to inspect detected phases. It provides a main window
(depicted in FigureA.1) that groups the single tools ofQuala in tabs. Quala is
based onMoose[DLT00] and Van1.

To work with phases, the user has to first import a set of FAMIX models, then
create a history out of a selection of the imported models, choose a set of active
phase descriptions and then detect phases with these active phase descriptions. The
importing of the FAMIX models and the creation of a history from a selection of
the imported models are implemented inMooserespectively inVan. The active
phase descriptions are shown in the “Phase Detection” tab of the main window
of Quala. In this tab, the user can select a phase description, view its detection
expression and detect phases with it. The phases a phase description detected are
cached. They thus do not have to be re-detected if the user chooses to inspect them
a second time. This caching is important since detecting phases in a large history
might take several hours. The cached phases can however be deleted by choosing
Utils >> Remove Cached Phases from the menu bar.

To visualize phases, the user can simply click onor which visualize the
phases either with identical distance between the single version respectively with
distances proportional to the time differences between the versions.Quala then
detects phases with all active phase descriptions if they are not cached and opens
the visualization. The visualization is implemented inCodeCrawlerwhich is a
language-independent software visualization tool [Lan00,LD04]. A screenshot of
CodeCrawler visualizing phases is shown in FigureA.2.

The user can choose the phase descriptions to apply in the appropriate dialog
which is shown in FigureA.1. This dialog shows in the left list all defined phase
descriptions. The user can select phase descriptions in this list and put them in the

1see http://www.iam.unibe.ch/ scg/Research/Van/index.html for more information
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Figure A.1: The main window ofQualawith the opened phase description selec-
tion dialog.
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Figure A.2: CodeCrawler Visualizing Phases

right list which contains those phase descriptions that are currently active. Further-
more, the user can change the order of the active phase descriptions. This order
is relevant for the visualizations and for the “Phase Description” tab of the main
window. This dialog also offers the possibility to combine phase descriptions with
composition operators. The user can do so by selecting a set of phase descriptions
in the right list and choose a composition operator in the right-click menu.

Besides its core of detecting and visualizing phases,Quala contains a set of
tools to study histories,i.e., entire histories or single phases. These tools are ap-
plicable on any kind of a history, for example on a system history or on a class
history. They are presented in the next sections.

A.1 Version Property Viewer

The version property vieweris a tool to graphically display the graph of one or
more measurements over a set of versions. A screenshot of this tool is presented
in FigureA.3. It basically consists of two selectable lists and a diagram part. The
first selectable list contains a set of versions while the other list contains the set
of measurements defined on the kind of versions that the tool is applied on. The
selected measurements of the selected versions are then graphically displayed in
the diagram part. This part gets automatically updated if the user changes the
selection.
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Additionally, theversion property viewerprovides a set of buttons to change
the selection in the two lists. For both lists, it provides buttons to select all or no
elements of the list. On the versions lists, there are furthermore buttons to move
the upper or the lower bound of the selection or the entire selection. If the user
moves the entire selection down, the lower and the upper bound of the selection
are moved down. After applying this change to the screenshot in FigureA.3, the
versions Jun011 to Jun015 would thus be selected.

Figure A.3: Version Property Viewer

In the context of phases, this tool is helpful to understand the evolution of mea-
surements inside a phase. For example, if we detected a general growth phase with
the length of 5 and a high amplitude, we know that in each of the 5 encapsulated
phases code has been added, but we do not know how much code in which version
has been added. Applying theversion property vieweron all encapsulated ver-
sions of the detected phase shows for example the graph of the number of added
and removed classes and thus offers the desired information. We implemented the
opening of theversion property vieweron the versions encapsulated in a phase so
that automatically the graph of those measurements that are relevant for the phase
are shown. Which measurements are relevant is declared in the definition of the
phase description of the phase.

Note that we also use detection strategies as measurements. The situation de-
picted in FigureA.3 for example shows the graph of the number of new leaf classes.
The number of new leaf classes in a version is the size of the set that results by ap-
plying the detection strategyNewLeafClasson this version. In our implementation,
the detection strategy as a measurement is available as soon as the detection strat-
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egy is defined.

A.2 Detection Strategy Version Browser

Thedetection strategy version browseris a tool to apply detection strategies on a
set of versions. Like theversion property viewerit provides two selectable lists:
One to select a set of versions and one to select one or more detection strategies.
Thedetection strategy version browserapplies the selected detection strategies on
every selected version. In the list below, it then either displays the set of those
entities that are

• detected in any of the selected versions, or

• detected in all of the selected versions, or

• not detected in the first but in a succeeding versions of the selection.

Figure A.4: Detection Strategy Version Browser

In the context of phases, this tool is helpful to further inspect phases of which
the phase description is based on one or more detection strategies. For example,
the new hierarchies growth phase description is based on the detection strategy
NewSuperclass. In a further inspection of a detected new hierarchies growth phase,
we might want to know which superclasses have been added to the system. This
information can be gained by applying the “detection strategy version browser”
on all versions that are encapsulated in the phase. In our implementation, the tool
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automatically selects those detection strategies that are relevant for a phase. In
the example, the tool automatically selects the detection strategyNewSuperclass.
Which detection strategies are relevant is declared in the phase description of a
phase.

A.3 Phase Inspector

The phase inspector is a tool to numerically inspect a set of phases, normally the
set of phases detected by one phase description. On the left side, it provides a
list of phases of which the user can select one. Each line in this list represents
one phase textually by indicating the first and the last version and the length of a
phase in brackets. On the right side, the selected phase is then displayed with two
tables. The left table has a column that contains a list with the versions a phase
encapsulates. To this table, the user can add measurement columns of which the
measurement values of each version are then displayed. On the right side of this
table, there is another table which displays the defined measurement values of the
entire phase,e.g.,the duration of phase.

Figure A.5: The Phases Inspector
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Detection Strategies

In this Chapter we present the list of detection strategies [Mar02] used to define
phase descriptions. For each detection strategy, we first present a paragraph that
contains a description. The detection strategies are defined as mathematical func-
tions in the paragraph definition. As defined by Marinescu, the input is part of the
detection strategy. It is described in the input paragraph of each definition. In this
work, we however also apply detection strategies on various inputs. For example,
we use theReducedMethoddetection strategy to detect reduced methods in single
classes and even in all methods included in a system version.

In some detection strategies, we use as their input a set of added or removed
classes. This set is in our implementation computed by selecting those class ver-
sions in a system versions that do not have a successor respectively a predecessor
version. The detection strategies themselves do not enforce that the input classes
are newly added to the system or removed but instead presume that.

B.1 Extended Class

Description. This detection strategy detects all classesS′ in a certain system
versionS where at least one method or one attribute has been added. New classes
are not detected.

Input: A set of class versionsS

Definition

ExtendedClass(S) := S′
∣∣∣∣ S′ ⊆ S, ∀C ∈ S′

(δNOM(C) > 0) ∨ (δNOA(C) > 0)

B.2 Reduced Class

Description. This detection strategy detects all classesS′ in a certain system
versionS where at least one method or one attribute has been removed. New
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classes are not detected.

Input: A set of class versionsS

Definition

ReducedClass(S) := S′
∣∣∣∣ S′ ⊆ S, ∀C ∈ S′

(δNOM(C) < 0) ∨ (δNOA(C) < 0)

B.3 MSGOnly-Extended Class

Description. This detection strategy detects classes all classesS′ in a certain
system versionS that have the same number of methods and the same number
of attributes but a higher number of messages sent or contain a higher number of
statements.

Input: A set of class versionsS

Definition

MSGOnlyExtendedClass(S) := S′

∣∣∣∣∣∣
S′ ⊆ S, ∀C ∈ S′

(δNOM(C) = 0) ∧ (δNOA(C) = 0)∧
(δMSG(C) > 0) ∧ (δNOS(C) > 0)

B.4 MSGOnly-Reduced Class

Description. This detection strategy detects classes all classesS′ in a certain
system versionS that have the same number of methods ant the same number of
attributes but a reduced number of messages sent contain a reduced number of
statements.

Input: A set of class versionsS

Definition

MSGOnlyReducedClass(S) := S′

∣∣∣∣∣∣
S′ ⊆ S, ∀C ∈ S′

(δNOM(C) = 0) ∧ (δNOA(C) = 0)∧
(δMSG(C) < 0) ∧ (δNOS(C) < 0)

B.5 New Superclass

Description. This detection strategy detects all newly added superclassesS′ in a
certain system versionS, i.e.,added classes that have one or more subclasses. The
subclasses might be added at same time or already exist.
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Input := A set of added class versionsS

Definition

Superclass(S) := S′
∣∣∣∣ S′ ⊆ S, ∀C ∈ S′

NOC(C) > 0

B.6 New Leaf Class

Description. This detection strategy detects all newly added leaf classeesS′ in a
certain system versionS, i.e.,added classes that have no subclasses.

Input := A set of added class versionsS

Definition

Superclass(S) := S′
∣∣∣∣ S′ ⊆ S, ∀C ∈ S′

NOC(C) = 0

B.7 New Class

Description This detection strategy detects all newly added classes in a system
version. Since the input already contains newly added classes only, this detection
strategy simply returns the input. This detection strategy provides means to use the
number of new classes as a metric.

A class version is considered as new if in the predecessor version there is no
class version with the same name.

Input := A set of added classes in a version.

Definition

NewClass(C) := True

B.8 Removed Class

Description This detection strategy detects all removed classes in a system ver-
sion. Since the input already contains removed classes only, this detection strategy
simply returns the input. This detection strategy provides means to use the number
of removed classes as a metric.

A class version is considered as removed if there is no class with the same
name in the successor version.
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Input := A set of removed classes in a system version.

Definition

RemovedClass(C) := True

B.9 Split into Superclass

Description. This detection strategy detects classesS′ that have a higher class
hierarchy nesting level and a lower number of methods, attributes or class variables.
It aims at detecting situations where functionality of a class has been pushed down
into a newly created superclass.

Input := A set of class versionsS

Definition

SplitIntoSuperclass(S) := S′

∣∣∣∣∣∣
S′ ⊆ S, ∀C ∈ S′

(δHNL(C) > 0) ∧ ((δNOM(C) < 0)∨
(δNOA(C) < 0) ∨ (δNCV (C) < 0))

B.10 Merge with superclass

Description. This pd detects classes that have a lower nesting level in the hier-
archy but more methods, attributs or class variables. It aims at detecting situations
where a superclass has been removed and part of it’s functionality has been moved
into one or more of its subclases.

Input := A set of class versionsS

Definition

MergeWithSuperclass(S) := S′

∣∣∣∣∣∣
S′ ⊆ S, ∀C ∈ S′

(δHNL(C) < 0) ∧ ((δNOM(C) > 0)∨
(δNOA(C) > 0) ∨ (δNCV (C) > 0))

B.11 Split into Subclass

Description. This detection strategy detects class versions that have a higher
amount of subclasses and a lower amount of methods, attributes or class variables.
It aims at detecting situations where functionality was moved from one class into
one or more newly created subclasses.
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Input := A set of class versionsS

Definition

SplitIntoSuperclass(S) := S′

∣∣∣∣∣∣
S′ ⊆ S, ∀C ∈ S′

(δNOC(C) > 0) ∧ ((δNOM(C) < 0)∨
(δNOA(C) < 0) ∨ (δNCV (C) < 0))

B.12 Merge with Subclass

Description. This detection strategy detects the set of class versionsS′ that have
a lower count of subclasses but a higher amount of methods, attributes or class
variables.

Input := A set of class versionsS

Definition

MergeWithSubclass(S) := S′

∣∣∣∣∣∣
S′ ⊆ S, ∀C ∈ S′

(δNOC(C) < 0) ∧ ((δNOM(C) > 0)∨
(δNOA(C) > 0) ∨ (δNCV (C) > 0))

B.13 Move to Other Class Source

Description. This detection strategy aims at detecting class versions where func-
tionality has been moved away from,i.e.,where functionality has been removed. It
detects class versions that do not change their hierarchy nesting level or their num-
ber of subclasses (children) but have less methods, attributes or class variables.

Input := A set of class versionsS

Definition

MoveToOtherClassSource(S) := S′

∣∣∣∣∣∣∣∣
S′ ⊆ S, ∀C ∈ S′

((δNOM(C) < 0) ∨ (δNOA(C) < 0)∨
(δNCV (C) < 0)) ∧ (δHNL(C) = 0)∧
(δNOC(C) = 0)

B.14 Move to Other Class Destination

Description. This detection strategy aims at detecting class versions where func-
tionality has been moved to,i.e., where functionality has been added. It detects
class versions that do not change their hierarchy nesting level or their number of
subclasses (children) but have a higher amount of methods, attributes or class vari-
ables.



108 APPENDIX B. DETECTION STRATEGIES

Input := A set of class versionsS

Definition

MoveToOtherClassDst(S) := S′

∣∣∣∣∣∣∣∣
S′ ⊆ S, ∀C ∈ S′

((δNOM(C) > 0) ∨ (δNOA(C) > 0)∨
(δNCV (C) > 0)) ∧ (δHNL(C) = 0)∧
(δNOC(C) = 0)

B.15 Extract Method

Description. This detection strategy aims at detecting class versions where the
refactoringsplit methodhas been applied,i.e., where one or more methods have
been split up into multiple methods. It detects class versions that have a higher
amount of methods and a lower amount of messages sent (summed up over all
methods) and where one or more methods have been reduced. Reduced methods
are detected by applying theReducedMethoddetection strategy (AppendixB.17)
on all method versions of a class version.

Input := A set of class versionsS

Definition

ExtractMethod(S) := S′

∣∣∣∣∣∣
S′ ⊆ S, ∀C ∈ S′

(|ReducedMethod(C)| > 0) ∧ (δNOM(C) > 0)∧
(δMSG(C) < 0)

B.16 Extended Method

Description. This detection strategy detects all method version in a set of method
versions that have a higher count of messages sent and a higher count of statements
compared to the previous version.

Input := A set of method versions S; for example all method versions of one
class version or all method versions in an entire system version.

Definition

ExtendedMethod(S) := S′
∣∣∣∣ S′ ⊆ S, ∀M ∈ S′

(δMSG(M) > 0) ∧ δNOS(M) > 0)
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B.17 Reduced Method

Description. This detection strategy detects all method version in a set of method
versions that have a lower count of messages sent and a lower count of statements
compared to the previous version.

Input := A set of method versions S; for example all method versions of one
class version or all method versions in an entire system version.

Definition

ExtendedMethod(S) := S′
∣∣∣∣ S′ ⊆ S, ∀M ∈ S′

(δMSG(M) < 0) ∧ δNOS(M) < 0)

B.18 Removed Leaf Class

Description. This detection strategy detects all classesS′ that have been re-
moved and that have been leaf clases,i.e.,had no subclasses.

Input: A set of class versionsS that have been removed

Definition

RemovedLeafClass(S) := S′
∣∣∣∣ S′ ⊆ S, ∀C ∈ S′

NOC(C) = 0

B.19 Removed Superclass

Description. This detection strategy detects all classesS′ that have been re-
moved and that have been superclasses,i.e.,had one or more subclasses.

Input: A set of class versionsS that have been removed

Definition

RemovedLeafClass(S) := S′
∣∣∣∣ S′ ⊆ S, ∀C ∈ S′

NOC(C) > 0

B.20 Shrunk and Subclases Class

Description. This detection strategy aims at detecting situations where function-
ality has been moved away from a class into a newly created subclass. It detects
all class versionsS′ that have less attributes or methods and a higher number of
subclasses.
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Input: A set of class versionsS

Definition

RemovedLeafClass(S) := S′

∣∣∣∣∣∣
S′ ⊆ S, ∀C ∈ S′

(δNOA(C) > 0 ∨ δNOM(C) > 0)∧
δNOC(C) > 0



Appendix C

Applied Metrics

In the following three tables we present the structural metrics we applied in this
work. TableC.1 contains the metrics on the system level, TableC.2 the ones on
class level and TableC.3contains the applied method level metrics.

Acronym Name Description
NOCL Number of classes The total number of classes in the system
NOM Number of methods The sum of the number of methods of every class

in a system version

Table C.1: Applied System Metrics

Acronym Name Description
NOM Number of methods The number of methods defined in a class
NOA Number of attributes The number of instance variables defined in a class
NCV Number of class variables The number of class instance variables defined in

a class
NOS Number of statements The sum of the number of statements of every

method of a class
MSG Number of messages sent The number of messages sent in all methods of a

class
NOC Number of children The number of direct subclasses of a class
HNL Hierarchy nesting level The nesting level of a class in it’s inheritance tree,

i.e., the number of superclasses

Table C.2: Applied Class Metrics
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Acronym Name Description
MSG Number of messages sent The number of messages sent in a method
NOS Number of statements The number of statements in a method

Table C.3: Applied Method Metrics
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