
Scripting	Browsers	with	Glamour

Masterarbeit
der	Philosophisch-naturwissenschaftlichen	Fakultät

der	Universität	Bern

vorgelegt	von

Philipp	Bunge
April	2009

Leiter	der	Arbeit
Prof. Dr. Oscar	Nierstrasz

Dr. Tudor	Gîrba
Lukas	Renggli

Institut	für	Informatik	und	angewandte	Mathematik

glam·our /'glæmər/ noun
the attractive and exciting quality
that makes a person, a job or a
place seem special, often beacause
of wealth or status. [Hornby, 2000]

Copyright © 2009 by Philipp Bunge

is thesis is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported
License. See http://creativecommons.org/licenses/by-sa/3.0/ for more informa-
tion.
Figures 4.1(a), 4.2(a) and 4.3(a) are screenshots of products copyrighted by Microsoft,
Apple and omas Leonard et al. respectively. e rst two were created by myself,
the latter was retrieved under free license from: http://en.wikipedia.org/wiki/File:
ROX-Filer.png

http://creativecommons.org/licenses/by-sa/3.0/
http://en.wikipedia.org/wiki/File:ROX-Filer.png
http://en.wikipedia.org/wiki/File:ROX-Filer.png

Abstract

Browsers are a crucial instrument to understand complex systems or models. Each problem
domain is accompanied by an abundance of browsers that are created to help analyze and
interpret the underlying elements. e issue with these browsers is that they are frequently
rewritten from scratch, making them expensive to create and burdensome to maintain.
While many frameworks exist to ease the development of user interfaces in general, they
provide only limited support to simplifying the creation of browsers.

In this thesis we present a dedicated model to describe browsers that equally emphasizes
the control of navigation ow within the browser. Our approach is designed to support
arbitrary domain models allowing researchers to quickly de ne new browsers for their data.
To validate our model we have implemented the framework Glamour which additionally
offers a declarative language to simplify the de nition of browsers. We have used Glamour
to re-implement several existing browsers and to explore the creation of new browsers.

v

vi

Acknowledgements

First and foremost I thank Tudor Gîrba without whom this thesis would not have been
possible. His unalterable con dence, resolute support, and seemingly persistent aspiration
have managed what they tried to achieve—that I am proud of the work I present in this
thesis. Doru, you did much more than “just your job.” In equal measure, I wish to thank
Lukas Renggli for his pervading support, both technical and general. Your door was always
open to me when I had a question and I have learned a great amount from you.

My sincerest gratitude goes to Prof. Oscar Nierstrasz. I must thank him not only—like
many have done before me—for permitting me to write my thesis at the Software Com-
position Group, but much more for the dedication and care he committed to me and my
work, to the lectures he holds and to all of his students in general. It is this disposition that
nurtured my motivation and interest for the eld of computer science from the rst lecture
I had with him.

My appreciation extends to the entire SCG (regardlessly of whether you supported me or
encouraged me by questioning my work) and to my professors, tutors and colleagues from
whom I have learned so much in the past years.

I am deeply indebted to my friends. You know who you are and I would do you no justice
by attempting to enumerate all of you. Without you I would not have studied, would not
have nished, and—most importantly—would not have had such an incredibly enjoyable
time doing either.

To my parents, my sister, Rahel and my entire family, both here and abroad—I have no
words that could express my appreciation for the love and unconditional support you have
given me. Not only in my studies, but as long as I have known you.

ank you.

vii

viii

Contents

1. Introduction 1
1.1. A Historical Introduction to Browsers 1
1.2. Challenges . 4
1.3. Our Approach . 5
1.4. Contributions . 6

2. Tutorial	on	Glamour 7
2.1. Running example . 7
2.2. Starting the Browser . 8
2.3. Using Transmissions . 8
2.4. Another Presentation . 10
2.5. Multiple Origins . 12
2.6. Ports . 13
2.7. Reusing Browsers . 14
2.8. Actions . 16
2.9. Multiple Presentations . 17
2.10. Other Browsers . 18
2.11. Tutorial Conclusion . 19

3. Inside	Glamour 21
3.1. Browsers, Panes and Transmissions . 23
3.2. Presentations . 25
3.3. Actions . 26
3.4. Composition . 26
3.5. Browser Implementations . 28
3.6. Rendering . 28
3.7. Smalltalk Implementation . 29
3.8. Model Implementations . 32

4. Constructing	Common	Browsers 33
4.1. Filesystem Navigation . 33
4.2. Source Code Navigation . 38
4.3. Software Dependency-Analysis . 42

5. Related	Work 47
5.1. Exposing Domain Objects . 47

ix

Contents

5.2. Software Composition . 53

6. Conclusions 55
6.1. Our Goals Revisited . 55
6.2. Flow based Browsers vs. Side-Effect based Browsers 56
6.3. Declarative Scripting Language . 57
6.4. Browser Notation . 57
6.5. Future Work . 58
6.6. Concluding Remarks . 59

A. Installation 61
A.1. Glamour for VisualWorks Smalltalk . 61
A.2. Glamour for Pharo . 62

B. Browser	Notation 65

List	of	Figures 69

Bibliography 71

x

Chapter	1

Introduction

Browsers are important tools to understanding complex systems or models. Browsers allow
us to interact with a system, to inspect its elements and to learn its structure. What distin-
guishes browsers from other user interfaces is the structure of the underlying data and how
it is mapped to the visual representation shown to the user.

e models behind browsers can be seen as graphs. e nodes represent the entities that
are apparent in the browser and the edges the relationships between these. In the case
of a lesystem manager for example, the les and folders are the nodes of the browser
and their hierarchical relationship—which can be queried using a set of messages on the
objects—gives us the edges.

What is interesting is that there is a variety of methods that can be used to represent a model
in a user interface. Some browsers may decide to show a tree like structure, where nodes can
be expanded and collapsed. Other browsers may show just one folder at a time, allowing
the user to descend into subfolders and return to parent folders. Yet other browsers may
use other methods to allow the user to interact with the objects. We de ne methods by the
navigation ow that they impose in a browser. Which navigation ow is most appropriate
for a browser is speci c to the application—certain browsers may favor speci c types of
interaction and different use-cases for the same model may require distinct navigational
ows.

1.1. A Historical	Introduction	to	Browsers

When object-oriented systems were rst conceived, objects were thought of as self-contained
processes, encapsulating all their required state as well as their behavior in single entity
[Dahl and Nygaard, 1966]. In Smalltalk-76, this concept not only applied to the behavior
of objects in solitude and their interaction in a larger system, but also in their responsibility
to represent themselves to the user. In 1978, Daniel H. H. Ingalls described this as “the
reactive principal,” stating that

1

Chapter 1. Introduction

the salient feature of Smalltalk is that all objects are active, ready to perform
in full capacity at any time. Nothing of this aliveness should be lost at the
interface to the human user of the system. In other words, all components of
the system must be able to present themselves to the user in an effective way,
and must moreover present a set of simple tools for their meaningful alteration.
[Ingalls, 1978]

is concept related to the apparent disposition of “objects” in nature. An animal, plant or
inert item simply represents itself, visually or otherwise, and does not require the interpre-
tation of its inner processes by an outer entity to do so.

is restriction however, proved too limiting for visually presenting the same objects within
different scenarios or contexts. While working as a visiting scientist at the Xerox Palo Alto
Research Center between 1978 and 1979, Trygve Reenskaug wished to use Smalltalk-76
as the basis for a system for production control in shipbuilding [Reenskaug, 1996a]. He
needed to represent the production schedule in multiple ways—depending on its intended
usage—and found the generic representation of the objects to be insufficient. As a result,
he tore each of the original objects apart, separating the original into three objects: an
object responsible for the information, one for presenting the information, and one for
capturing input from the user viewing the information in order to manipulate it accordingly.

is work would later be integrated into Smalltalk-80 [Goldberg and Robson, 1989] and
become widely known as the Model-View-Controller (MVC) pattern [Reenskaug, 1979].

Reenskaug, however, never intended for the breaking of encapsulation that the pattern pro-
motes. He wrote later that the “top level goal was to support the user’s mental model of
the relevant information space and to enable the user to inspect and edit this information.”
[Reenskaug, 2003] and noted his exposure to Douglas Engelbart’s work on computer aug-
mentation—an approach to improving the intellectual effectiveness of the individual human
being through the aid of computers [Reenskaug, 1996b; Engelbart, 1962]. In fact, the at-
tempt to entitle the user to view and manipulate the domain objects directly is hampered
by the model-view-controller when the view and controller become an instrument to the
developer to abstract the model as much as possible before presenting it to the user.

Furthermore, the separation of responsibility also results in tighter coupling between the
view and controller and the model. In their discussion of the model-view-controller pattern
in Pattern-Oriented Software Architecture — A System of Patterns, Buschmann et al. note that

both view and controller components make direct calls to the model. is
implies that changes to the model’s interface are likely to break the code of both
view and controller. is problem is magni ed if the system uses a multitude
of views and controllers. [Buschmann et al., 1996, pg. 142]

One possibility to mitigate this issue is to automatically generate a view and controller from
a given model. An example of a framework that provides such a self-generative approach
is the Naked Objects framework by Richard Pawson. e framework presents objects in

2

1.1. A Historical Introduction to Browsers

a consistent way to the user and presents standardized input methods to manipulate these
objects [Pawson, 2004]. In this sense, Naked Objects promotes the presentation of the
domain objects in an unadorned fashion—or, strictly naked.

is approach not only resolves the coupling issue but also returns control to the end user
who can now understand and manipulate the underlying objects directly. Pawson also ar-
gues that this leads to improved development cycles as developers and end-users can share
a common language. e framework furthermore promotes the behavioral completeness of
objects and although Daniel Ingall’s “reactive principal” is not followed in the strictest of
senses, we can extend the above analogy on the relation to “objects” in nature by comparing
the generic view to the processing of light by our retina that gives us a visual presenta-
tion of an entity’s form. e mechanism with which we visually interpret objects using the
re ective properties of light is generic and cares not about the speci c entity in question.

A downside of this approach is that it sacri ces the use-case speci c presentation for the
sake of generality and simplicity. In fact, it is this generality that motivated Trygve Reen-
skaug to separate objects using the Model-View-Controller pattern.1 Richard Pawson and
Robert Mathews suggest that domain objects can be wrapped with a facade to adapt them
to the needs of speci c use-cases and further suggest that “capable progammers can extend
the framework themselves to add new kinds of generic views” [Pawson and Matthews,
2002, pg. 66]. As a consequence, the generality imposes an expensive additional cost on
the developer who wishes to optimize the presentation of the model to the end-user. Not
only must the developer be an expert of the domain model, but to extend the presentation
he must become an expert of the framework as well.

e importance of presenting the subject model unaltered to the user while providing suf-
cient exibility for a wide range of use-cases becomes particularly important in the do-

main of browsers. With each emerging problem domain, a plethora of browsers are cre-
ated to analyze and interpret the underlying elements. Alone for the purpose of navi-
gating source code in Smalltalk based systems several new browsers have been developed
over the years such as the Refactoring Browser [Roberts et al., 1996; Roberts et al., 1997;
Fowler et al., 1999], the StarBrowser [Wuyts and Ducasse, 2004], and Whisker [Way, 2005]
that complement or displace the existing browsers built into the respective environment.

e issue with these browsers is that they are in exible, hard to extend, often tied to a
particular use-case and tightly coupled with their model. e navigation ow is inter-
twined with the rendering—we cannot use the rendering mechanism in the context of a
different browser. is is a real advantage of the Naked Objects framework in that the ren-
dering mechanism can be reused—it is entirely independent of the context. Furthermore,
the navigation and interaction are frequently hardcoded, which may result in the browsers
breaking when the underlying model changes, and makes them hard to maintain. is leads
to browsers being rewritten from scratch—a time intensive and costly endeavor due to the

1It should be noted that Reenskaug was an external expert to Pawson’s Ph.D. defense and speaks favorably of
the “user-empowerment” that the Naked Objects framework provides.

3

Chapter 1. Introduction

lack of frameworks for building such browsers.

In our research, we focus strictly on browsers rather than on user interfaces in general as is
the case with the Model-View-Controller or the Naked Objects framework. e reasons
for this are twofold— rst, there is no indication whether a generic system that tackles the
aforementioned problems can even exist for all problem domains and secondly, there is a
lot of opportunity to be gained from being able to easily construct browsers.

For example in the eld of engineering—be it forward, reverse or re-engineering—the un-
derstanding of complex software systems is an important task. is has promoted some
of the browsers mentioned above and tools such as the Moose reengineering environment
[Ducasse et al., 2005], as well as a multitude of metric measurement and visualization tools
such as CodeCrawler [Lanza, 2004] and Mondrian [Meyer et al., 2006]. But static analysis
is often insufficient. Answering the question whether metrics and visualizations provide
a sufficiently profound understanding for reengineering, Demeyer et al. write in Object-
Oriented Reengineering Patterns that

measurements alone cannot determine whether a entity is truly problematic:
some human assessment is always necessary. Metrics are a great aid in quickly
identifying entities that are potential problems but code browsing is necessary
for confirmation. [Demeyer et al., 2008]

Much can be gained from a framework that simpli es the construction of browsers. Re-
searchers can create browsers to gain a better understanding of their models and end users
can be permittedx direct access to the underlying objects. We propose a solution that pro-
vides these bene ts while remaining exible enough to adapt the presentation in a generic
fashion for speci c use-cases.

1.2. Challenges

With this introduction in mind we can present a requirements catalog of what we believe
a modern browser framework should ful ll:

e browser should accommodate arbitrary domain models. To allow users and researchers to
use the browsers to understand and inspect the underlying models, the browser should
support arbitrary models and should not impose any requirements on a specialized
model other than that the data can be queried by a simple meta-model.

e navigation ow needs to be completely controllable. Different use-cases require a different
ow of information within the browser—independently of the domain model. For

this the developer needs to be able customize and control the ow of navigation
within the browser.

4

1.3. Our Approach

e presentation should be exible. Implementors of the browsers need the exibility to dis-
play the domain model in a use-case speci c way. e browser model should there-
fore allow for both ow-control and rendering-control at the discretion of the devel-
oper, while providing reasonable defaults.

1.3. Our	Approach

e challenge in our work lies in the difficulty to nd a model that can comprehensively
and exibly transform a given domain model into a dedicated browser user interface.

We propose to map the entities of the domain models onto panes, which have a xed po-
sition within a browser and take arbitrary presentations which can be changed on the y.

e navigation within the domain model is complemented by specifying the ow of data
between the panes. Since the ow is triggered by actions performed upon a pane, the con-
nections between panes are called transmissions. In this sense, our model is again a directed
and possibly cyclic graph—albeit of a different abstraction than the domain model. e
actual rendering then requires only a model consisting of these components and is entirely
independent of the underlying domain model.

e framework puts the user in charge by using and presenting the underlying domain
objects directly. When creating the browser model, the developer simply states with which
instruments the objects should be displayed and how to get from one object to another.

us, the browser model is simply a use-case speci c representation of the data. More
importantly, this approach enforces a strict separation between the navigational ow of a
browser and its representation. e same navigational ow can be displayed using a variety
of representations. e same representation can be applied to arbitrary navigation ows.

While we discuss related work in detail in chapter 5, it is worthwhile to note here that
our framework has a resemblance to that of Vicki de Mey which she uses for visual com-
position of software applications [de Mey, 1995]. Despite the similarity between the two
frameworks, the motivation and intent differ. De Mey’s work serves the purpose of com-
posing smaller software components into larger applications by ensuring plug-compatable
interfaces between the components and facilitates this with a visual composition system.
Our framework, on the other hand, aims to provide an infrastructure with which browsers
for domain speci c models can be easily created.

Another important contribution to simplifying the construction of browsers is the Om-
niBrowser framework, which mediates the de nition of browsers using an explicit meta-
model [Bergel et al., 2007]. is browser framework is strongly in uenced by the function-
ality of the Smalltalk style source code browsers and aspires to be a framework that supports
the construction of such user interfaces. A disadvantage of the OmniBrowser framework
this is that the ow is hardcoded—the framework mainly supports a style of navigation

5

Chapter 1. Introduction

that follows a left-to-right list display pattern (the selection of an item in one pane cre-
ates a new pane to the right). Furthermore, the meta-model works at the type-level of the
model, making it difficult to follow a different information ow or a different presentation
depending on the actual object in the model, rather than its type.

It may not be immediately apparent why the operation at the type-level can be a restraint.
In practice however, models frequently have types which do not match the structure of the
browser one wants to de ne or might even be inherently broken. An actual example is a le
library where various types of les are exposed such as directories, symbolic links, device
les, named pipes, and regular les. e model may not necessarily expose these different
le types as different object types but only make the differences apparent through a set of

query methods. Regardless of how the objects are implemented in the model, the browser
must be able to accommodate these le types and be able to integrate new types without
modifying the meta-model. Models which require a browser model which operates on the
instance-level to adequately map them to a work ow occur frequently.

is is sufficient motivation to add a fourth item to the list of requirements:

e browser framework should work at the instance level of the model. Flow decisions need to
occur at the instance level rather than at the type level as models might provide only
limited reasoning from only their types.

1.4. Contributions

From the description and discussion we provide in the following chapters we can summarize
these contributions which are at the core of our work:

1. Based on our analysis of existing browsers and browsing frameworks we identify a
number of factors that are essential for a exible browser model.

2. We implement a full- edged reference implementation including a declarative lan-
guage and multiple renderers that display the browsers using different graphical or
web user-interface toolkits.

3. We show how existing browsers can be expressed with our approach and how our
approach may be used to explore new paradigms for navigation.

We provide a tutorial for the declarative language in chapter 2, delving into the technical
discussion of the model in chapter 3. We also show how our framework can be used to
easily implement existing browsers in chapter 4. We compare our model with related work
in chapter 5 and nally revisit the challenges in chapter 6 to assess whether Glamour ful lls
these.

6

Chapter	2

Tutorial	on	Glamour

is chapter serves as a motivation for specifying custom browsers and as a hands-on intro-
duction to our reference implementation. e screen images in this tutorial represent the
appearance of the Adobe Flex [Adobe, 2006] graphical user interface for which a Glamour
renderer is available in the VisualWorks implementation.

e chapter provides working examples. See appendix A on how to install the reference
implementation in order to evaluate them.

2.1. Running	example

In the following tutorial we will be creating a simple Smalltalk class navigator. Such nav-
igators are used in many Smalltalk browsers and usually consist of four panes, which are
abstractly depicted in gure 2.1.

1 2 3 4

Figure 2.1. Wireframe representation of a Smalltalk class navigator.

e class navigator functions as follows: Pane 1 shows a list or a tree of packages (containing
classes) and bundles (containing other bundles or packages) which make up the organiza-
tional structure of the environment and are collectively known as pundles. When a package
is selected, pane 2 shows a list of all classes in the selected package. When a class is selected,
pane 3 shows all method categories (a construct to group methods) and all methods of the
class are shown on pane 4. When a method category is selected in pane 3, only the subset
of methods that belong to that category are displayed on pane 4.

7

Chapter 2. Tutorial on Glamour

2.2. Starting	the	Browser

We build the browser iteratively and gradually introduce new constructs of Glamour. To
start with, we simply want to open a new browser on this list of packages. e listing below
shows how to create a new, simple browser and to open it on a given object. Since this
object is a collection, Glamour uses a list for the presentation if nothing else is speci ed.
Figure 2.2 shows the browser that is displayed by evaluating the script.

browser := TableLayoutBrowser new.

browser openOn: self model allPundles

Figure 2.2. Basic browser construct, displaying a list of packages and bundles

2.3. Using	Transmissions

In Glamour browsers are composed in terms of panes and the ow of data between them.
e ow is speci ed by means of transmissions. ese are triggered when certain changes

occur, such as the change of the selection in a list.

To exemplify this, we add the second pane to display a list of classes for the currently selected
package. Pane 1 can contain both packages and bundles, but only packages contain classes.

erefore, we should only attempt to display the list of classes on pane 2 when the selected
item is actually a package.

e browser created by the following listing is displayed in gure 2.3. e lines marked in
bold show the additions to the previous listing.

browser := TableLayoutBrowser new.

browser

column: #pundles;

column: #classes.

8

2.3. Using Transmissions

browser showOn: #classes; from: #pundles; using: [

browser list

display: [:pundle | pundle containedClasses];

when: [:pundle | pundle isPackage]

].

browser openOn: self model allPundles

Figure 2.3. Two pane browser. When a package is selected in the left pane, the containing
classes are shown on the right pane.

e listing above shows almost all of the core language constructs of Glamour. Since we
want to be able to reference the panes later, we give them the distinct names “pundles”
and “classes” and arrange them in columns using the column: keyword. Similarly, a row:

keyword exists with which panes can be organized in rows.

e showOn: and from: keywords create a transmission—a directed connection that de nes
the ow of information from one pane to another. In this case, we create a link from
the pundles pane to the classes pane. e from: signi es the origin of the transmission and
showOn: the destination. If nothing more speci c is stated, Glamour assumes that the origin
refers to the selection of the speci ed pane. We show how to specify other aspects of the
origin pane and how to use multiple origins below.

Finally, the using: speci es what to display on the destination pane when the connection
is activated or transmitted. In our example, we want to show a list of the classes that are
contained in the selected package. e condition in when: ensures that we only attempt to
show this list when the selected item is a package and not a bundle.

Both when: and display: simply store the supplied block within the presentation. e
blocks will only be evaluated later, when the presentation should be displayed on-screen.
If no explicit display block is speci ed, Glamour will attempt to display the object in some
generic way. In the case of list presentations, this means that the displayString message
will be sent to the object to retrieve a standard string representation.

9

Chapter 2. Tutorial on Glamour

2.4. Another	Presentation

Up to now, we have been displaying the pundles as a list. e pundles in Smalltalk, how-
erver, are actually organized in a hierarchy and we have only been looking at the rst level
of this structure. To mend this, we specify that a tree presentation should be used instead:

browser := TableLayoutBrowser new.

browser

column: #pundles;

column: #classes.

browser showOn: #pundles; using: [

browser tree

children: #childPundles

].

browser showOn: #classes; from: #pundles; using: [

browser list

display: [:pundle | pundle containedClasses];

when: [:pundle | pundle isPackage]

].

browser openOn: self model pundleRoot allPundles.

Since the registry of pundles is speci ed in openOn: and not on a explicit pane, we use the
keyword showOn:—without any from:—to create a transmission in which we can specify
what to display on the pundles pane. e tree presentation uses a children: argument rather
than display: that takes a selector or a block which speci es how to retrieve the children
of a given item in the tree. In the example, the message childPundles will be sent to each
pundle expanded in the view to retrieve its children. Since the children of each pundle are
now selected by our tree presentation, we have to replace the selector for all pundles with
just the root of the pundle hierarchy in the openOn: argument on the last line.

At this point, we can also add pane 3 that shows the method categories as shown in g-
ure 2.1. e listing below introduces no new elements that we have not already discussed:

browser := TableLayoutBrowser new.

browser

column: #pundles;

column: #classes;

column: #categories.

10

2.4. Another Presentation

browser showOn: #pundles; using: [

browser tree

children: #childPundles

].

browser showOn: #classes; from: #pundles; using: [

browser list

display: [:pundle | pundle containedClasses];

when: [:pundle | pundle isPackage]

].

browser showOn: #categories; from: #classes; using: [

browser list

display: [:class | class categoryNames]

].

browser openOn: self model pundleRoot.

Notice that we have not speci ed a when: condition for the list of methods. By default, the
only condition is that an item is in fact selected, i.e. that the display variable argument is
not nil.

e browser resulting from the above changes is shown in gure 2.4.

Figure 2.4. Improved class navigator including a tree to display the pundles and a list of
method categories for the selected class.

11

Chapter 2. Tutorial on Glamour

2.5. Multiple	Origins

e mechanism to show the methods is slightly more complicated. When a method cat-
egory is selected we want to show only the methods that belong to that category. If no
category is selected, we want to show all methods that belong to the current class.

is leads to our methods pane depending on the selection of two other panes. Multiple
origins can simply be de ned using multiple from: keywords as shown below.

browser := TableLayoutBrowser new.

browser

column: #pundles;

column: #classes;

column: #categories;

column: #methods.

browser showOn: #pundles; using: [

browser tree

children: #childPundles

].

browser showOn: #classes; from: #pundles; using: [

browser list

display: [:pundle | pundle containedClasses];

when: [:pundle | pundle isPackage]

].

browser showOn: #categories; from: #classes; using: [

browser list

display: [:class | class categoryNames]

].

browser showOn: #methods; from: #classes; from: #categories; using: [

browser list

display: [:class :category | class methodNamesIn: category].

browser list

display: [:class | class allMethodNames];

when: [:class :category | category isNil]

].

browser openOn: self model pundleRoot.

12

2.6. Ports

e listing shows a couple of properties we have not seen before. First, the multiple ori-
gins are re ected in the number of arguments of the blocks that are used in the display:

and when: clauses. Secondly, we are using more than one presentation—Glamour shows
all presentations whose conditions match in the order that they were de ned when the
corresponding transmission is red.

In the rst presentation, we do not explicitly specify a condition so Glamour uses the default
condition that all arguments must not be nil. e second condition matches only when the
category is unde ned but the class is not. We can therefore omit the category from the
display block.

e completed class navigator is displayed in gure 2.5.

Figure 2.5. Complete code navigator. If no method category is selected, all methods of the
class are displayed. Otherwise, only the methods that belong to that category
are shown.

2.6. Ports

When we stated that transmissions connect panes this was not entirely correct. More pre-
cisely, transmissions are connected to properties of panes called ports. Such ports consist
of a name and a value which accommodates a particular aspect of state of the pane or its
contained presentations. If the port is not explicitly speci ed by the user, Glamour uses the
selection port by default. As a result, the following two statements are equivalent:

browser showOn: #categories; from: #classes; using: [...]

browser showOn: #categories; from: #classes -> #selection; using: [...]

Other ports exist and may be used depending on the presentation. For example, the list
presentation also populates the hover port when the user hovers over an item over a list and
a text presentation updates the text port to re ect its contents as a user types within it. For
a full reference, see the documentation of the presentations being used.

13

Chapter 2. Tutorial on Glamour

2.7. Reusing	Browsers

On of the strengths of Glamour lies in the ability to use browsers in place of primitive
presentations such as lists and trees. is allows us to reuse browsers and nest them within
each other.

In the next example we want to create a class editor as shown in gure 2.6. Panes 1 through
4 are equivalent with those described in the class navigator in section 2.1. Pane 5 shows
the source code of the method that is currently selected in pane 4.

1 2 3 4

5

Figure 2.6. Wireframe representation of a Smalltalk class editor.

As panes 1 through 4 are the same as in the class navigator it would be convenient to reuse
the class navigator rather than duplicating its code. To achieve this, we make the class
navigator available through a method named codeNavigator which returns the browser,
rather than opening it. We can then use the browser as shown in the listing for the class
editor below.

browser := TableLayoutBrowser new.

browser

row: #navigator;

row: #source.

browser showOn: #navigator; using: [

browser show: self codeNavigator

].

browser openOn: self model pundleRoot.

e listing shows how the browser is used exactly like we would use a list or other type of
presentation. In fact, browsers are a type of presentation.

14

2.7. Reusing Browsers

When evaluating the code, a new browser is opened that shows the navigator embedded in
the top pane and an empty pane at the bottom. No source code will be displayed because
we have not yet created any connections between the panes. To get to the source, we need
both the name of the selected method as well as the class in which it is de ned. Since
this information is de ned only within the navigator browser, we must rst export it to
the outside world by using the sendToOutside:from: message. For this we append the
following lines to codeNavigator:

browser

sendToOutside: #selectedClass from: #classes -> #selection;

sendToOutside: #selectedMethod from: #methods -> #selection.

is will send the selection within classes and methods to the selectedClass and selectedMethod
ports of the containing pane. Alternatively, we could have added these lines to the self

codeNavigator instruction in the code editor—it makes no difference to Glamour at what
point these are added. However, we consider it sensible to clearly de ne the interface on
the side of the code navigator rather than within the code editor in order to promote the
reuse of this interface as well.

Note that a message for achieving the reverse—importing a port from the outside pane and
storing its value on one of the browser’s panes also exists and is known as sendTo:fromOutside:.

We extend our code editor example as follows:

browser := TableLayoutBrowser new.

browser

row: #navigator;

row: #source.

browser showOn: #navigator; using: [

browser show: self codeNavigator

].

browser

showOn: #source;

from: #navigator -> #selectedClass;

from: #navigator -> #selectedMethod; using: [

browser text

display: [:class :method | class sourceCodeAt: method]

].

browser openOn: self model pundleRoot.

15

Chapter 2. Tutorial on Glamour

We can now view the source code of any selected method and have created a modular
browser by reusing the class navigator that we had already written earlier. e composed
browser described by the listing is shown in gure 2.7.

Figure 2.7. Composed browser that reuses the previously described class navigator to show
the source of a selected method.

2.8. Actions

Browsers generally rely on actions— rst-class behavioral objects that are executed when
a keyboard shortcut is pressed or when an entry in a context menu is clicked. Glamour
supports such actions through the act:on: message sent to a presentation:

browser := TableLayoutBrowser new.

browser

row: #navigator;

row: #source.

browser showOn: #navigator; using: [

browser custom: self codeNavigator

].

browser

showOn: #source;

from: #navigator -> #selectedClass;

from: #navigator -> #selectedMethod; using: [

browser text

16

2.9. Multiple Presentations

display: [:class :method | class sourceCodeAt: method];

act: [:presentation :class :method |

class installCode: presentation text at: method

] on: $s

].

browser openOn: self model pundleRoot.

e argument passed to on: is a character that speci es the keyboard shortcut that should
be used to trigger the action when the corresponding presentation has the focus. Whether
the character needs to be combined with a meta-key—such as command, control or alt—is
platform speci c and need not be speci ed. e act: block provides the corresponding
presentation as its rst argument which can be used to poll its various properties such as the
contained text or the current selection. e other arguments to the block are the incoming
origins as de ned by from: and are equivalent to the arguments of display: and when:.

Actions can also be displayed as context menus. For this purpose, Glamour provides the
messages act:on:entitled: and act:entitled: where the last argument is a string that
should be displayed as the entry in the menu. For example, the following snippet extends
the above example to provide a context menu entry to “save” the current method back to
the class:

...

act: [:presentation :class :method |

class installCode: presentation text at: method

] on: $s entitled: 'Save'

2.9. Multiple	Presentations

Frequently, developers wish to provide more than one presentation of a speci c object. In
our code browser for example, we may wish to show the classes not only as a list but as
a visualization of their system complexity as well. Glamour includes support to display and
interact with visualizations created using the Mondrian visualization engine [Meyer, 2006].
To add a second presentation, we simply de ne it in the using: block as well:

browser showOn: #classes; from: #pundles; using: [

browser list

display: [:pundle | pundle containedClasses];

when: [:pundle | pundle isPackage].

browser mondrian painting: [:view :pundle |

17

Chapter 2. Tutorial on Glamour

view nodes: pundle item allDefinedClasses.

view edgesFrom: #superclass.

view treeLayout.

]

]

Glamour distinguishes multiple presentations on the same pane with the help of a tab lay-
out. e appearance of the Mondrian presentation as embedded in the code editor is shown
in gure 2.8.

Figure 2.8. Code editor sporting a Mondrian presentation in addition to a simple class
list.

2.10. Other	Browsers

Up to now in the tutorial, we have only used the TableLayoutBrowser which is named after
its ability to generate custom layouts using the aforementioned row: and column: keywords.
Additional browsers are provided in the reference implementation or can be written by the
user. Browser implementations can be subdivided into two categories: browsers that have
explicit panes i.e., they are declared explicitly by the user—and browsers that have implicit
panes.

e TableLayoutBrowser is an example of a browser that uses explicit panes. With im-
plicit browsers, we do not declare the panes directly but the browser creates them and the
connections between them internally. An example of such a browser is the Finder, which
implements a Miller Columns style browsing, and is named after Mac OS X’s nder, which

18

2.11. Tutorial Conclusion

also employs such a mode of operation. Since the panes are created for us, we need not use
the from:to: keywords but can simply specify our presentations:

browser := Finder new.

browser list

display: [:class | class subclasses];

whenKindOf: Class.

browser openOn: Collection

e listing above creates a browser (shown in gure 2.9) and opens to show a list of sub-
classes of Collection. Upon selecting an item from the list, the browser expands to the right
to show the subclasses of the selected item. is can continue inde nitely as long as some-
thing to select remains.

Figure 2.9. Subclasss navigator using Miller Columns style browsing.

2.11. Tutorial	Conclusion

is concludes our tutorial of Glamour. Please note that this tutorial is not meant to give an
exhaustive overview of Glamour, but is merely intended to introduce the reader to the usage
and to our intent for our approach. Additionally, we have only focussed on the language in
this chapter. In the next chapter Inside Glamour, we describe our model and the concepts
behind Glamour in more detail.

19

Chapter 2. Tutorial on Glamour

20

Chapter	3

Inside	Glamour

In this chapter we delve into the model of Glamour, the core contribution of our work. We
cover Glamour’s structure and the motivations behind our design. We also introduce our
Smalltalk based reference implementation from a technical perspective.

A coarse overview of Glamour’s structure can be seen in the UML class diagram depicted
in gure 3.1 [Object Management Group, 2007].

Browser

Pane

*

1

*

Object

1

Transmission
1 *

1
destination

*

1..*
origins

*

…

ListPresentation

TextPresentation

Presentation
* 1 1 *

Action

1

*

Port

…

TableLayoutBrowser

Finder

Figure 3.1. An overview of Glamour as a UML class diagram.

Pane de nes the basic building block for browsers. A pane consists of a number of named

21

Chapter 3. Inside Glamour

ports, which can store arbitrary data. Panes may also have one or more presentations.

Presentations declare a display strategy for a panes. With presentations, panes can change
their visual display on the y. A presentation may have units of behavior associated with
them called actions.

Transmissions transfer information between panes or—more accurately—their ports. When
triggered, transmissions take data from one or more origin ports and deposit the data at a
destination port. Two concrete subclasses of transmissions exist: SimpleTransmissions

which connect one origin to one destination and BundleTransmissions which may have
multiple origins and can set presentations on the destination pane when they are triggered.

Browsers manage panes and transmissions. ey are responsible for triggering transmis-
sions. Browsers are themselves presentations, thus allowing them to be reused in other
browsers in place of primitive presentations.

Not shown is the renderer which implements a visitor that transforms a composition of
panes, presentations and browsers into user interface elements that are speci c to the plat-
form and that can be rendered on-screen or on a different medium as desired by the user.

e medium–speci c transformations are speci ed by a concrete subclass of Renderer such
as a WidgetryRenderer for on–screen GUI elements or a GlareRenderer to stream user
interfaces to an Adobe Flex client over a network.

While class diagrams are useful for showing the relationship between types, there is a neces-
sity for describing instances of browsers and their current state. Rather than using standard
UML object diagrams, we have developed our own graphical notation as a consequence of
our work. Our abstract notation—of which an example can be seen in gure 3.2—simpli-
es the description and reasoning about browsers created using the Glamour meta-model.

An extensive reference to the notation can be found in appendix B.

Figure 3.2 shows the abstract representation of the class editor which we created in the
tutorial chapter (cf. gure 2.8). e browser is used for navigating through classes and
their methods and consists of an outer browser (1), that contains one pane showing the
source of the currently selected class and another pane that contains a second browser (2)
which provides panes for the packages, classes, method categories and methods of a system.

e panes (or actually their ports) are connected using a set of directed transmissions that
describe the ow of information from one pane to another. We can see that the basic
structure of the notation resembles that of the actual rendering of the browser.

In the following section we describe the components of a browser in detail with the aid
of our abstract browser notation. In 3.1 we show how browsers are constructed and how
their components are interconnected; in 3.2 we describe how presentations are employed
as a strategy on how to represent an underlying entity; in 3.5 we discuss various browser
variants and the style of work ow they represent and in 3.6 we show how these browsers
are rendered. Finally, we discuss some speci cs of the our reference implementation in 3.7.

22

3.1. Browsers, Panes and Transmissions

2

1

Figure 3.2. e tutorial browser from gure 2.8 in abstract notation.

3.1. Browsers, Panes	and	Transmissions

At the core, Glamour’s model is a directed, possibly cyclic graph, consisting of panes that
are connected using transmissions. is graph is encapsulated by a browser.

e main responsibility of a pane is to store arbitrary values at named locations—its ports.
Ports have no enforced polarity or type—their interpretation depends entirely on the current
presentations of the pane which access and manipulate the pane’s ports. e names usually
re ect their intended use, however, such as selection being the current selection of a list, text
holding the content being inserted into a text input, etc.

e transmissions move data from one or more origin ports to one destination port. e
browser acts as a broker, determining when and under which conditions transmissions
should be triggered. In general, this occurs when a pane noti es its browser that one of
its ports has changed its value. e browser then determines all the transmissions that
originate at the port and triggers them sequentially in the order they were added to the
model.

Two concrete transmission classes exist in our reference implementation. e rst, Simple-
Transmission, has exactly one origin port and one destination. Simple transmissions are

23

Chapter 3. Inside Glamour

used whenever there is a requirement of simply copying a value from one port to another.
An example of such a case is when we want to update the highlighted entity in a pane when
the selection of another pane changes. When the selection of the rst pane is modi ed, the
pane noti es its containing browser which triggers the simple transmission originating at
the selection port of the rst pane, which then copies the value to the highlight port of the
destination pane, effectively updating the highlighted item.

Further use cases for simple transmissions include sending port values to the outside of
browsers by forwarding them and sending values to the inside of browsers by capturing
thems (described in section 3.4) as well as the setting of port values by presentations con-
tained within the pane (described in section 3.2).

e second type of transmission is a BundleTransmission which may have multiple origins
but still only one destination. Bundle transmissions are the standard transmission type
used between panes within a browser. ey may carry a payload of a set of presentations
which are inserted into the destination pane when the transmission is triggered. e use of
bundle transmissions permits the modi cation of the representation of the pane on the y.
By making it the transmissions’s responsibility to set the presentations, we maintain locality
between the port values being transmitted and the presentations that will display them.

e origins of bundle transmissions are distinguished between active origins and passive
origins. Both are speci ed by the developer creating the transmission. e browser will
trigger the transmission whenever one of its active origins changes but not when only the
port value of a passive origin changes. With passive origins, bundle transmissions are able
to “pull-in” additional values that are relevant to displaying information on the destination
pane.

Figure 3.3 focuses on a subset of the abstract notation diagram that highlights these com-
ponents. In the following sections we add to this sub-diagram.

Figure 3.3. Browsers contain panes and transmissions, which connect panes via their ports.

24

3.2. Presentations

3.2. Presentations

Presentations provide visual semantics to the state of panes. ey read and interpret the
values of selected ports—known as input ports—and, in turn, may choose to populate a set
of other ports with values—the output ports.

A pane can have no presentation, a single presentation or multiple presentations at any
given moment. Multiple presentations are usually displayed with the use of a tab panel. As
the state is encapsulated by the pane, multiple presentations on the same pane will share
that same state. In our abstract notation, presentations are displayed within their panes as
depicted in gure 3.4.

Figure 3.4. Presentations interpret and modify the state of their pane by reading from and
writing to its ports.

Various concrete subclasses of presentation exist and are usually named after their recom-
mended visual representation. For example, ListPresentation is rendered as a list user
interface widget, TextPresentation as a text input. e concrete representation is not
encoded within the presentation class due to the intentional separation of widget-toolkit
speci c behavior from our model. However, the renderers which create the user interface
elements heed the suggested representation and render the presentation accordingly. In re-
turn, presentations provide a well-de ned and extensive interface to the rendering client to
avoid that renderers directly access or manipulate the pane and its ports to re ect changes
of the user interface. is prevents coupling as the renderers do not have to access the state
of the presentations directly but rely solely on a higher-level and well de ned interface.

e presentations implement a strategy pattern [Gamma et al., 1995] that uses a pane as its
context object as is shown in gure 3.5. It allows us to change the behavior of the pane on
the y and dynamically apply a new lter. is has the advantage that the communication
structure determined by the panes and components can be statically de ned for a particular
browser, but the representation can be dynamically changed depending on the particular
instance in the domain model that is currently being displayed.

25

Chapter 3. Inside Glamour

Pane Presentation
1 *

renderGlamorouslyOn:

ListPresentation

renderGlamorouslyOn:

TextPresentation

renderGlamorouslyOn:

…

renderGlamorouslyOn: aRenderer
 ^ aRenderer renderListPresentation: self

renderGlamorouslyOn: aRenderer
 ^ aRenderer renderTextPresentation: self

Figure 3.5. UML displaying how presentation strategies are employed by panes.

3.3. Actions

All presentations can be con gured with a number of actions. Actions encapsulate units of
behavior that can be executed upon the presentation or its corresponding panes. ey may
also be associated with a string name or a keyboard shortcut. e concrete representation
of the actions lies in the responsibility of the renderer which may choose to simply trigger
them when a key-combination is pressed on the keyboard or display them as a context menu
to the widget that the presentation is associated with.

A frequent application for actions is to create a menu item or a keyboard shortcut that
triggers a navigation, much like clicking on an item in a list may results in a navigation. e
solution is to create an action that populates a port which is then connected to a destination
pane using a normal transmission. When the action is executed, the port value changes,
thus causing a navigation.

3.4. Composition

Browsers in Glamour can be composed by treating presentations and browsers equally. In
fact, browser are presentations as one can see from our class diagram in gure 3.1. is
means that, anywhere a list presentation or other type of primitive presentation may be
used, a browser can be substituted instead. is simpli es the declaration of browsers in
Glamour and promotes their reuse.

26

3.4. Composition

One major difference to a typical composition pattern rests in the use of the strategy pat-
tern for presentations as discussed above. Since panes contain presentations and browsers
contain panes (which are themselves presentations), the composition of browsers results in
an indirect nesting as exempli ed in the alternating chain shown in gure 3.6.

:Presentation :Pane :Browser :Pane :Pane:Browser…

Figure 3.6. UML object diagram showing how components are composed.

With composed browsers, it is often a requirement to access port values of panes that are
within browsers from outside that browser. e motivation for such behavior in our class
editor was discussed in the tutorial chapter (see gure 2.7). To meet this requirement, the
value of a port can be forwarded to another port. e usage of such forwarding to export
values to the outside of a browser is shown in gure 3.7

Figure 3.7. A browser forwards a port of one of its panes to its containing pane so that its
value can be accessed from outside.

It is noteworthy that this forwarding of information is implemented as a standard sim-
ple transmission, managed by the inner browser. Whenever the origin port changes, the
pane will inform the browser of this, triggering the transmissions originating at the port.
As the browser’s outer pane—and with it the destination port of the forwarding transmis-
sions—may vary at runtime as the browser is deployed and removed from various panes, the
destination port of a forwarding transmission is a lazily evaluated port. A lazily evaluated
port is resolved to an actual port at the point where the transmission is red.

Just as port values can be forwarded to an outside pane, browsers can also capture port value
changes on the encapsulating pane and forward these to an inner port. is would essen-
tially be the reversal of the direction of the arrows to the outside shown in gure 3.7. e
purpose of this type of capturing would be to allow certain properties of a browser—such as
the selection or the highlighted item of a speci c pane—to be modi ed from the outside.

27

Chapter 3. Inside Glamour

3.5. Browser	Implementations

e exact handling of panes and transmissions depends on a concrete subclass of browser.
Several types of browsers exist but we can differentiate between two general categories:
browsers with explicit pane con gurations and browser with implicit pane con gurations.
In the rst case, panes must be declared and con gured by the user and usually remain
static at runtime. In the second case, the browser creates and destroys panes as needed. We
provide an example for each.

e TableLayoutBrowser requires its panes to be explicitly declared and is named after the
ability to customize the layout of its panes. e browser is con gured with a number of
rows or columns which then may be subdivided in columns or rows respectively. Each cell
that is de ned in this way represents a pane and is given a unique name.

An example of a browser which uses implicit pane con gurations is the nder which im-
plements a Miller Columns style browsing. e browser starts by displaying only one pane.
When the selection changes within this pane, the browser will create a new pane to the
right, connect the two panes using a transmission and re the transmission to populate the
new pane. is process is always repeated for the rightmost pane. When the selection
changes for a pane that is not the last one in the list, all panes to the right will rst be
destroyed before creating a new pane.

3.6. Rendering

In our reference implementation we have created two concrete renderers: WidgetryRen-

derer builds a representation of browsers using the Widgetry GUI library in VisualWorks
and GlareRenderer registers a Glare application [Bunge et al., 2008] that streams the user
interface to an Adobe Flex client over a network connection.

A renderer acts as a visitor [Gamma et al., 1995] that traverses the component tree of
browsers, panes and presentations, creating appropriate user interface elements for the com-
ponents it encounters. As these elements are created, the renderer is also responsible for
connecting the appropriate library-dependent callbacks to populate panes and their ports
with the appropriate values when actions are performed or the state of the user interface
components changes.

In GlareRenderer for example, selecting an item within a list widget triggers a callback that
sets the value of the selection port of the corresponding pane. Double clicking populates the
execution port and hovering over an item sets the value of the hover port. Different widgets
might set other port values and some renderer implementations may choose not to support
hovering or other operatives at all. Nevertheless, renderers do not communicate with the
pane directly and use only the interface given to them by the presentation. is helps

28

3.7. Smalltalk Implementation

renderers to work in a consistent and predictable way. A user writing a browser would not
expect that in one rendition of a model the selection of an item in the list would result in
the setting of selection and in another in the setting of choice.

Developers wishing to create user interface elements for other environments need only cre-
ate a new subclass of Renderer and implement the appropriate methods. An incomplete
list of these is shown in gure 3.8. Due to their similarity, the existing renderers may serve
as a guide in determining the expected behavior of new implementations.

WidgetryRenderer

Renderer

renderPane:
renderFinder:
renderTableLayoutBrowser:
renderListPresentation:
renderTextPresentation:
renderTreePresentation:
etc.

Figure 3.8. A subclass of renderer and some of the implemented methods.

3.7. Smalltalk	Implementation

While our core contribution is the meta-model, we have also developed a declarative lan-
guage in our reference implementation to construct speci c browser models. e declara-
tive language of Glamour is implemented as an internal domain speci c language [Fowler,
2007] (also known as an embedded DSL [Hudak, 1998]) that uses Smalltalk as its host
language.

In our language implementation, we make heavy use of Smalltalk’s features such as block
closures and cascades. Take for example the following code snippet:

browser showOn: #classes; from: #pundles; using: [

browser list

display: [:pundle | pundle containedClasses];

when: [:pundle | pundle isPackage].

browser mondrian painting: [...]

].

29

Chapter 3. Inside Glamour

e block closure argument passed to using: ensures that the contained list of presentations
belong to the same transmission. We use cascades as with display: and when: to pass
multiple options to the same object—a presentation in this example. Block closures are
also used to de ne anonymous callbacks for these arguments, such as the lter condition in
when or the display block.

Rather than building an intermediate representation our declarative language works directly
on the Glamour model. When we call browser list for example, our script tells the browser
to add a new list presentation to the latest transmission and returns that presentation so
that display: and when: can be sent to it. To facilitate this, our scripting language is
implemented as a set of class extensions to the core model. We use extensions rather than
implementing the methods in the classes directly to provide some separation between the
programmatic and the scripting interfaces, and thus to improve maintainability. Figure 3.9
shows a selection of the class extensions introduced by the scripting implementation.

Browser

custom:
list
mondrian
text
tree
openOn:
openOn:with:
openWith:
startOn:

ImplicitBrowser Finder

custom:

ExplicitBrowser

custom:
from:
passivelyFrom:
sendTo:fromOutside:
sentToOutside:from:
showOn:
using:

TableLayoutBrowser

column:
column:span:
row:
row:span:

Presentation

act:on:
act:entitled:
act:on:entitled:
display:
update:on:with:
when:
whenKindOf:

Figure 3.9. Class extensions made by the scripting language implementation.

e most interesting method shown above is the custom: message. Sending this message
adds a custom presentation to the current context of the browser. e list, text, tree, and
mondrian messages are just convenience messages that call custom: with an appropriate
presentation instance. For example, the list message is implemented as follows:

list

^ self custom: ListPresentation new.

30

3.7. Smalltalk Implementation

Most of the extensions are quite straightforward, simply calling their programatic equiva-
lent on the model. To add an action to a presentation for example, the act:on: message is
implemented as:

act: aBlock on: aCharacter

self addAction: (Action new

action: aBlock;

shortcut: aCharacter;

yourself)

e list of messages is evolving and some are added simply for convenience to the developer.
An example is the navigate-upon-action mechanism described in 3.3 where the pressing
of a keyboard shortcut or the clicking of a menu item triggers a navigation within the
browser. Since this is such a common requirement, our reference implementation provides
the dedicated message:

update: aPortSymbol on: aCharacter with: aBlock

Whenever the shortcut key de ned by aCharacter is pressed, the message causes the port
named by aPortSymbol to be updated with the result of evaluating aBlock, whose arguments
are described in 2.8. Similar messages with entitled: are available for de ning menu
entries.

e following example shows how this mechanism is used to navigate to either the sub-
classes or the superclass of a selected class when a particular shortcut is pressed:

browser showOn: #classes; using: [

browser list

update: #relatedClass on: $b with: [:list |

list selection subclasses].

update: #relatedClass on: $p with: [:list |

Array with: list selection superclass]

].

browser showOn: #relatedClasses;

from: #classes -> #relatedClass; using: [

browser list

].

31

Chapter 3. Inside Glamour

3.8. Model	Implementations

In addition to our VisualWorks reference implementation, Glamour has attracted the in-
terest of other researchers who work on other platforms. Tudor Gîrba, Lukas Renggli and
David Röthlisberger have successfully ported Glamour to the Pharo Smalltalk dialect. e
code base is taken largely from the reference implementation but other renderers have been
implemented to t the environment. As Pharo primarily uses the direct-manipulation user
interface Morphic to represent its widgets, building a corresponding visitor for Glamour
was required. Additionally, a renderer for the Seaside web application framework has been
written which renders Glamour models using a combination of basic HTML components
and asynchronous Javascript (AJAX).

Probably the most important result of this work for us is that the researchers found it easy
to write additional renderers. It provides additional justi cation for separating the render-
ing from our model and shows that the added complexity arising from this separation is
reasonable.

32

Chapter	4

Constructing	Common	Browsers

ere is a necessity to validate the applicability and effectiveness of our core contribution:
the meta-model. In order to achieve this, we have created the reference implementation
Glamour and used it to implement various browsers.

As an initial validation of Glamour’s expressiveness, we have used our framework to re-
implement several browsers which are valuable in their domain. Although these browsers
are generally hardcoded, they prove to be valuable as they provide a work ow that is tested
and effective for the navigation and interaction with their domain model. is makes them
an interesting case-study for the validation of Glamour as we can investigate if these work-
ows can be adequately replicated using our model.

4.1. Filesystem	Navigation

Almost every desktop environment provides a tool to navigate and manipulate the lesys-
tem. Common functions of such le managers or le browsers are the creation, editing,
viewing and opening of les and folders. While many different methods for displaying
the lesystem exist, we have focussed on three navigational models that are used in many
graphical le managers. Furthermore, while the prototypes displayed here focus more on
the actual navigation of the lesystem, it is easy to add functions such as the creation and
editing of les and folders with the use of Glamour’s actions.

Tree navigation. A prominent style of a navigational manager is the use of two panes, one
displaying the directories of the system in a tree layout and another displaying the content
of the currently selected directory or just the contained les. is is the style used also by
the Explorer on Microsoft’s Windows operating system. Figure 4.1 shows an explorer win-
dow and an equivalent Glamour implementation. e Glamour implementation—albeit
a simpli cation of the Windows Explorer—is shown below. e script contains two key-
words that we have not yet encountered: the span: argument de nes how much the column

33

Chapter 4. Constructing Common Browsers

should span in the table layout and the format: argument tells the tree presentation how
to display each item (we only want the “tail”, or the last part of the le path).

fileExplorer

| browser |

browser := TableLayoutBrowser new.

browser

column: #folders;

column: #files span: 2.

browser showOn: #folders; using: [

browser tree

title: 'Folders';

children: [:each | each files select: #isDirectory];

format: #tail.

].

browser showOn: #files; from: #folders; using: [

browser list

format: #tail;

display: [:folder | folder files reject: #isDirectory];

when: [:folder | folder asFilename isDirectory].

].

^ browser

Finder navigation. Another well known example is the Miller Columns style navigation
used by the Finder on Apple’s OS X platform. Here, each column represents a folder or a
le and shows the contents of that item. Folders display a list of their content and create a

new column to the right if an item is selected. In Glamour, such left-to-right navigation is
provided by the Finder browser implementation which—unlike its namesake—can be used
to navigate over other types of objects as well in the same manner. e original nder and
its Glamour correspondent are shown in gure 4.2, of which the latter is implemented in
less than ten lines of code.

fileFinder

| browser |

browser := Finder new.

34

4.1. Filesystem Navigation

(a) Original

(b) Glamour

Figure 4.1. File Explorer in the original and as a Glamour implementation.

35

Chapter 4. Constructing Common Browsers

(a) Original

(b) Glamour

Figure 4.2. File nder in the original and as a Glamour implementation.

browser list

display: #files;

format: #tail;

when: #isDirectory.

browser text

display: #yourself;

when: [:file | file isDirectory not].

^ browser

Spatial navigation. e nal type of le system navigation we demonstrate is that of the
spatial navigation in which folders are represented as windows, presenting their contents
as a list or a grid of les and folders. is model was used in older versions of Windows
and OS X and remains popular even today in le managers such as GNOME’s Nautilus

36

4.1. Filesystem Navigation

(a) Original (b) Glamour

Figure 4.3. Spatial le browser in the original and as a Glamour implementation.

or the ROX File Manager. Proponents of this style of le manager stress that the objects
on screen have a stronger apparent spatial relationship. e obvious disadvantage is that
navigation quickly clutters the screen with a multitude of windows. A possible alternative
is to replace the current window—or actually its contents—with the folder into which the
user just descended. is is, in fact, a behavior supported by Nautilus as shown in gure
4.3. e corresponding Glamour implementation is also quite simple with around ten lines
of code.

fileWindow

| browser |

browser := TableLayoutBrowser new.

browser column: #files.

browser showOn: #files; using: [

browser list

display: #files;

format: #tail.

].

browser showOn: #files; from: #files -> #executed; using: [

browser list

display: #files;

format: #tail.

].

^ browser

37

Chapter 4. Constructing Common Browsers

e lesystem navigation browsers provide a full coverage of the aspects under which we
wish to validate our model. Considering the challenges we enumerated in chapter 1, the
lesystem navigation is a good example on how our browser can accommodate arbitrary do-

main models—there is no need to adapt the lesystem model, we simply de ne the message
sends that should be performed on the model.

Furthermore, the example shows how both the navigation ow and the presentation can be
independently customized. e three browsers each use a navigation ow which is quite
distinct from one another. e folders are shown both as lists and as tree widgets.

Finally, the lesystem navigation shows how Glamour works at the instance-level of the
domain model. We are provided not with distinct types for the folders and les but simply
with messages such as isDirectory that allow us to infer the type of the object. e browser
could also easily be extended with the navigation with other types of les, such as symbolic
links and device descriptors in the same manner.

4.2. Source	Code	Navigation

A second usecase that is extensively shown in this thesis is the Smalltalk style class browser.
Figure 4.4 shows the class browser in VisualWorks and a Glamour implementation. An
important attribute of our implementation of the class browser is that we are re-using an
existing browser component within another browser. e code navigation at the top is en-
capsulated in a separate browser, allowing the work ow to be reused within other browsers
as well.

Additionally to how Glamour promotes the reuse of existing browsers, the source code
navigation shows a further mechanism with which our model promotes the exibility of
the presentations. Simple usecases can be accommodated in parallel within one pane by
simply de ning multiple presentations. e multiple presentations can then show the same
data in more than one way, such as—in the example—a list or a hierarchical representation.

e code editor combines the code navigator and a pane with the source code:

codeEditor

| browser |

browser := TableLayoutBrowser new.

browser row: #navigation; row: #sourceCode.

browser showOn: #navigation; using: [

browser custom: self stCodeNavigator.

].

38

4.2. Source Code Navigation

browser

showOn: #sourceCode;

from: #navigation->#selectedClass;

from: #navigation->#selectedMethod;

from: #navigation->#selectedPundle;

using: [

browser text

title: 'Method source';

display: [:class :method | class sourceCodeAt: method];

when: [:class :method | class notNil & method notNil].

act: [:presentation :class :method |

class installCode: presentation text at: method

] on: $s;

browser text

title: 'Class definition';

display: [:class | class definition];

when: [:class | class notNil].

browser text

title: 'Class comment';

display: [:class | class comment];

when: [:class | class notNil].

browser mondrian

title: 'Pundle System Complexity';

painting: [:view :class :method :pundle |

view nodes: pundle containedClasses.

view edgesFrom: #superclass.

view treeLayout.];

when: [:class :method :pundle | pundle isPackage].

].

^browser

e code navigator component used in the browser above:

codeNavigator

| browser |

browser := TableLayoutBrowser new.

browser

column: #pundles;

column: #classes;

column: #categories;

39

Chapter 4. Constructing Common Browsers

column: #methods.

browser showOn: #pundles; using: [

browser tree

children: #childPundles

].

browser showOn: #classes; from: #pundles; using: [

browser list

display: [:pundle | pundle containedClasses];

when: [:pundle | pundle isPackage]

].

browser showOn: #categories; from: #classes; using: [

browser list

display: [:class | class categoryNames]

].

browser showOn: #methods; from: #classes; from: #categories; using: [

browser list

display: [:class :category | class methodNamesIn: category].

browser list

display: [:class | class allMethodNames];

when: [:class :category | category isNil]

].

browser

sendToOutside: #selectedClass from: #classes -> #selection;

sendToOutside: #selectedMethod from: #methods -> #selection.

^ browser

| browser |

browser := TableLayoutBrowser new.

browser

column: #pundles;

column: #classes;

column: #methods span: 2.

browser showOn: #pundles; using: [

browser tree

children: #childPundles

].

40

4.2. Source Code Navigation

browser showOn: #classes; from: #pundles; using: [

browser list

display: [:pundle | pundle containedClasses];

when: [:pundle | pundle isPackage]

].

browser showOn: #methods; from: #classes; using: [

browser custom: (self stCodeMethods

display: #yourself;

title: 'Instance').

browser custom: (self stCodeMethods

display: #class;

title: 'Class').

].

browser sendToOutside: #selectedPundle from: #pundles.

browser sendToOutside: #selectedClass from: #classes.

browser

sendToOutside: #selectedMethod from: #methods -> #selectedMethod.

^browser

And nally the method sub-browser included above:

codeMessages

| browser |

browser := TableLayoutBrowser new.

browser

column: #categories;

column: #methods.

browser showOn: #categories; using: [

browser list display: [:class | class categoryNames].

].

browser

showOn: #methods; from: #outer -> #entity; from: #categories;

using: [

browser list

display: [:class :category |

class methodNamesIn: category].

browser list

41

Chapter 4. Constructing Common Browsers

display: [:class :category | class allMethodNames];

when: [:class :category | category isNil].

].

browser sendToOutside: #selectedMethod from: #methods.

^browser

4.3. Software	Dependency-Analysis

As a larger use-case we created an imitation of Softwarenaut, a tool used for the top-down
exploration of large software systems [Lungu and Lanza, 2006]. Softwarenaut promotes
the navigation of such systems by providing three views that interact with each other: the
exploration perspective shows a graph-like representation of the current focus of interest in
the system as nodes, with edges representing the interaction between those nodes; the detail
perspective provides further information on the currently selected element and the map per-
spective provides a grand overview of the system and highlights the position of the current
focus within that system.

To complement this structure, Softwarenaut provides three “navigation primitives:” expand
replaces a node with its children; collapse removes a node and all its siblings from the view
and replaces them with their parent and nally lter subselects the nodes according to some
arbitrary criterion.

Although the aforementioned navigation operations seem quite complex, this type of nav-
igational ow can quite easily be implemented in Glamour using panes and transmissions.

e expand and collapse operations are implemented using transmissions that use the same
pane as origin and destination, although the exact port is a different one. e ow of in-
formation between the panes is implemented using normal transmissions just like in other
browsers. Figure 4.5 shows the original Softwarenaut and the Glamour equivalent.

| browser |

browser := Glamour.TableLayoutBrowser new.

browser

row: [:r | r column: #main span: 3; column: #details];

row: #overview.

browser showOn: #overview; from: #outer->#entity; from: #main; using: [

browser mondrian

painting: [:view :originalNamespace :inFocus |

originalNamespace viewSubtreeOn: view

withSelection: inFocus].

42

4.3. Software Dependency-Analysis

(a) VisualWorks

(b) Glamour

Figure 4.4. Smalltalk code browser in VisualWorks and using Glamour.

43

Chapter 4. Constructing Common Browsers

].

browser showOn: #main; from: #outer->#entity; from: #overview; using: [

browser mondrian

painting: [:view :originalNamespace :selectedNamespace |

selectedNamespace isNil

ifTrue: [

originalNamespace viewInvocationCircleOn: view]

ifFalse: [

selectedNamespace viewInvocationCircleOn: view]

].

].

browser showOn: #details; from: #main; using: [

browser mondrian

painting: [:view :selectedNamespace |

selectedNamespace classGroup viewSystemComplexityOn: view.

];

when: [:selectedNamespace |

selectedNamespace classGroup notEmpty].

browser list

display: #classes.

].

^ browser

44

4.3. Software Dependency-Analysis

(a) Original

(b) Glamour

Figure 4.5. Original Softwarenaut and Glamour implementation.

45

Chapter 4. Constructing Common Browsers

46

Chapter	5

Related	Work

Our problem statement and the design decisions underlying or model have been in uenced
by a large amount of research which is directly or indirectly related to our work. In this
chapter, we compare our approach with some of this related work, showing both differences
and similarities that are either intentional or were discovered later.

We only list a small selection of technical research and publications that we have found to
have a signi cant relation to our work. We have divided these into two distinct categories.

e rst category includes research that has the underlying attempt to expose domain objects
in order to make them accessible and manipulable by the user as well as proposals that have
another similarity with our meta-model in terms of their approaches in user-interface con-
struction. e second category describes work that is concerned with software composition,
an attribute of Glamour that we have not yet explicitly mentioned in this thesis.

5.1. Exposing	Domain	Objects

With Glamour, we provide a method to create user interfaces on the basis of domain mod-
els. e emphasis lies in providing the users of the browser with direct access to the under-
lying model, enabling them to navigate and understand as well as to manipulate the model
objects.

at objects should be behaviorally complete and expose themselves directly to the user
had been an integral concept to object-oriented systems when it was rst envisioned. In
fact, the design principles in Smalltalk-76 required that all objects be capable of presenting
themselves to the user in an effective way [Ingalls, 1978]. is paradigm can be restrictive
however, when wishing to display objects differently in individual use-cases. In Glamour we
address this issue by providing a lightweight mechanism that allows a domain model to be
mapped to a browser. Others have taken different approaches to abstracting user-interfaces
from models of which we describe a few in the following sections.

47

Chapter 5. Related Work

5.1.1. Model-View-Controller

e Model-View-Controller (MVC) scheme was created by Trygve Reenskaug while work-
ing with Smalltalk-76 as a visiting scientist at the Xerox Palo Alto Research center between
1978 and 1979 [Reenskaug, 1996a; Reenskaug, 1979]. Reenskaug was attempting to use
Smalltalk to create a system for production control in shipbuilding and was confronted with
the dilemma that he wished to show objects speci c to different contexts such as in an ac-
tivity diagram or in an object editor. As a result, he started to pull the objects apart in a
“model” capturing the attributes and behavior of the domain object, a “view” representing
the object and a “controller” that propagated manipulations of the user to the model. is
concept was later adopted and extended in Smalltalk-80 [Goldberg and Robson, 1989].

Although Reenskaug intended the structure to be used to augment the user’s mental model
and enable the user to inspect and manipulate the underlying domain objects, the pattern
has become an instrument to shield the user from the model [Reenskaug, 2003]. is
is additionally promoted by views being manually constructed rather than having them
generated automatically or semi-automatically from the model—a factor that furthermore
leads to strong coupling between the model and the view and controller [Buschmann et al.,
1996].

As in Reenskaug’s original motivation, Glamour is able to present objects differently de-
pending on the use-case. A single object or collection may be shown with different widgets
such as lists, trees and other components. Furthermore, the navigational ow between
panes can be exibly de ned by the developer of the browser. Since these re nements are
declaratively speci ed, objects are still exposed to the user rather than being heavily shielded
as can be the case with a programatically de ned view and controller.

5.1.2. Naked	Objects

e Naked Objects framework was developed by Richard Pawson to provide a mechanism
that allows user interfaces to be automatically generated from a domain model, and directly
presents the objects to the user—in other words, they are presented strictly naked [Pawson
and Matthews, 2002; Pawson, 2004]. e framework therefore circumvents the coupling
issues present with the Model-View-Controller pattern by forcing the view mechanism to
be entirely independent of the actual model. Unfortunately, this generality comes at the
cost of speci ability, hindering the ability to display objects in a use-case speci c fashion
as was the original motivation for Trygve Reenskaug to create the Model-View-Controller
pattern.

In comparison, our objects can be considered to be “half-clothed.” Glamour’s presentation
mechanism can be re ned to allow for use-case speci c representation of the objects. Ex-
cessive coupling is mitigated by relying only on the model responding to the messages that
are de ned in the browser scripts. As long as these remain the same, there is no necessity

48

5.1. Exposing Domain Objects

to adapt the browsers when the model’s implementation changes.

5.1.3. OmniBrowser

OmniBrowser is a framework that supports the de nition of browsers based on an explicit
meta-model [Bergel et al., 2007]. OmniBrowser is implemented in Smalltalk and was
conceived to create Smalltalk style browsers, such as the typical code browser, and has been
readily adopted for many other such style browsers such as a coverage browser [Bergel et
al., 2008] or a browser to cope with scoped changes [Haldimann, 2005].

While Glamour provides a wide range of ow-control, OmniBrowser generally assumes an
implicit ow through lists that are constructed in a left-to-right fashion. When an item
in a list is selected, the meta-graph is traversed to display a new list to the right. Browsers
which require more ne-grained ow control or a different style of navigation are difficult
to create with the framework.

Furthermore, OmniBrowser’s ow control occurs at the typelevel of the domain model. It
is not possible to navigate at the instance level of the underlying objects. is can be an
issue when we want more ne-grained control over how we navigate through the domain
model as we have discussed in 1.3.

5.1.4. Hopscotch

Hopscotch [Bykov, 2008] is the application framework and development environment of
Newspeak, a programming language inspired by Smalltalk and others [Bracha et al., 2008].
As with a web browser, Hopscotch remembers the navigation path and provides a history
and a back-button for the user to retrieve his steps. e framework provides a “tool holder”
that consists mainly of a mechanism to navigate to a particular “page” or comparable object
in a hypermedia fashion. Navigation is achieved by “subjects” that combine a sense of
location of a domain object with a particular “viewpoint” re ecting the usecase for the
object.

e Hopscotch framework alleviates the issues present in many statically designed browsers
by providing a browser model that enforces a speci c, dynamic navigational ow. Browsers
are arranged and nested in a tree-like fashion. ey are registered to a particular subject
and display further subjects which, when expanded, open as new browsers. With this type
of pattern, Hopscotch works directly on a meta-description (the “subject”) which extends
the underlying objects with a usecase description (the “viewpoint”) and is therefore quite
comparable with Glamour’s approach of “half-clothed” objects.

e author of Hopscotch also emphasizes that the framework prevents “arbitrary display
constraints” as the representation does not impose any size restrictions to the browsers be-

49

Chapter 5. Related Work

fore they are displayed—they can simply expand to the size they require. While some of
Glamour’s browsers provide such restrictions, this is a simple issue of presenting the browser
in a different manner. e Finder already alleviates this partially and a custom browser that
imitates the behavior of Hopscotch could be easily written.

Finally, Glamour promotes reuse of browsers by allowing them to be nested within others,
very much like Hopscotch allows the nesting of browsers. is encourages developers to
build complex browsers from smaller components, effectively discouraging the construction
of monolithic tools.

It would be interesting to build a Hopscotch-like environment using Glamour, which could
be accomplished using a custom Browser implementation. is would also provide us with
an additional use-ase for the implementation of a history functionality in Glamour as we
discuss in 6.5.

5.1.5. Interface	Builder

Apple’s Interface Builder is a graphical interface builder for the OS X operating system. It
is the current instance of the NeXT Interface Builder [Webster, 1989], originally developed
as the SOS Interface by Jean-Marie Hullot at INRIA [Hullot, 1986].

Interface Builder strongly encourages a Model-View-Controller separation of concerns. It
allows the developer to drag and drop components to a user interface to compose the user
interface and then link the components to one another and to the controller using outlet
and action connections. For example, so that a controller may access the widgets of a view,
it de nes a set of named outlets. e interface designer can then interactively connect the
two by dragging a connection between the widget and the controller’s outlet. Out of the
perspective of the controller, the eld representing the outlet simply contains a reference to
the widget. e same applies for actions.

Actions allow a widget to call a controller’s method when it is acted upon by a user. For this,
the controller designates a callback method as an action. e interface designer can then
interactively hook up a widget by dragging a connection from the button or comparable
widget to the action.

e Interface Builder has recently been extended for use with mobile devices. Additionally
to the introduction of event connections to support multi-touch gestures, Apple also pro-
vides view controllers for implementing navigational patterns that are optimized for small
screens. e view controllers usually show one pane at a time which may be switched either
by a radio toggle of alternative views, by a navigational drill-down mechanism that provides
a back button, or with a modal overlay. e patterns may be combined to provide more
complex user interfaces. As with Glamour, the ow is de ned by connecting the views
with one another using connections within a particular view controller.

50

5.1. Exposing Domain Objects

e advantage of such a visual application builder is that it allows rapid development of
graphical interfaces and an immediate visual representation of what the user interface will
look like at runtime. Aside from that however, it provides no real additional bene ts to
a programatic or scripting based approach. In comparison to Glamour, the framework
provides no mechanism with which the view can be de ned generically. Furthermore, the
rendering of the user interface and the ow control are still entangled.

5.1.6. Mondrian

Mondrian is a domain independent, composable and declarative visualization framework
created by Michael Meyer [Meyer et al., 2006; Meyer, 2006]. Although more speci c to
the domain of visualization rather than browsers or user-interfaces, the experiences with
Mondrian have inspired many of the design decisions in Glamour. Like our approach,
Mondrian does not assume any speci c data structure of the model being studied. e
only requirement is that the data can be queried by a simple meta-model. e meta-model
is de ned through a simple declarative language implemented in Smalltalk and is later
rendered to an on-screen interactive graphic or to a different medium.

Mondrian provides a comprehensive set of default shapes and behavior, easing the compli-
cation of constructing visualizations. Visualizations can therefore be iteratively re ned to
produce more speci c presentations if so needed. is property has been shown to enable
the rapid prototyping of research tools and to improve development [Lienhard et al., 2007].

ese results also motivated the provision of comprehensive default behavior in Glamour,
in an attempt to make it easy for researchers and developers to create browsers to understand
and communicate their domain models.

5.1.7. ApplFLab

ApplFLab is a re ective application builder with an emphasis on promoting the reuse of
components [Steyaert et al., 1996]. e framework addresses the issue that, while most
visual application builders are more exible in comparison to domain-speci c component-
oriented development environments, the latter allow for more rapid application program-
ming and are more end-user oriented. Steyaert et al. proposed a solution that makes appli-
cation building itself the problem domain, leading to a re ective application builder—i.e.
an application builder used to build application builders. Reuse of components is achieved
by making them parameterizable, allowing the parameters to be bound to the domain model
when the components are integrated in an application. ApplFLab was used to create several
domain-speci c user interfaces including code and pattern browsers for software develop-
ment [Wuyts, 1996].

An important difference between ApplFLab and Glamour is that Glamour provides a more
comprehensive set of default behaviors. While in ApplFLab creating a simple application is

51

Chapter 5. Related Work

quite costly with the construction of new components and the ow of information between
these, several browser patterns are already provided by Glamour. Of course, ApplFLab is
not specialized on browsers as is Glamour and therefore supports a broader range of user-
interface applications.

5.1.8. Django	Admin	Site

Web development frameworks occasionally provide an automatically generated adminis-
trative interface for the creation and maintenance of the web application’s model. A well
known example is the the admin site of Django, a Python based rapid web development
framework. Django’s administrative interface inspects the application’s declared persistent
elds and creates appropriate user interface components for each. Since the types of the
elds are declared, Django can display custom widgets for each and provide input valida-

tion. Model elds that de ne database-style multiplicities between relations provide the
interconnection of the instances on the admin site.

Customizability is achieved by linking each domain model with a custom ModelAdmin class
that allows the developer to declaratively customize its visible elds, appearance properties
and navigation to other objects. Additional widgets can be de ned and integrated into the
administrative interface. Django’s admin site is a specialized and simple solution for web
applications. It does not support ow control as Glamour does and the decision on how to
present the objects is de ned at the type-level.

5.1.9. ThingLab	II

ingLab II is a re-implementation of ingLab [Borning, 1981], an object-oriented con-
straint-system built on top of Smalltalk [Freeman-Benson, 1989]. ingLab promotes
the direct manipulation of objects by exposing ings, user-manipulable objects that are
equivalent to the operations and data structures provided by high-level languages such as
numerical operations, points, strings, bitmaps, conversions, etc. Constraints can be de ned
between ings, and the composition of constraints and ings again constitute higher level

ings. Browser navigation can be de ned by employing constraints between the individual
components that constitute the browser. e use of constraints is a declarative description
of the ow of information in the browser but in ingLab there is no explicit distinction
between the domain and its navigation.

Glamour’s browser composition strongly resembles that of ingLab, but ingLabs’s com-
ponent connections employ a very different operation than those of Glamour. While

ingLab describes generic constraints that exist between components and the constraint
mechanism assures that these are ful lled, Glamour describes the ow between panes ex-
plicitly.

52

5.2. Software Composition

5.1.10. HyperCard

HyperCard is a hypermedia application which conceptually resembles a stack of cards [Good-
man, 1998]. A card contains texts and graphics and links to other cards through buttons,
which typically carry an icon representing the destination card. Only one card is displayed
at a time—clicking on the button navigates to the linked card. HyperCard provides a set
of simple components that can be manipulated interactively and, alternatively, cards may
be manipulated through the dedicated scripting language HyperTalk. HyperCard does not
provide means to represent and interact with an existing model, the domain is mixed in
with the navigation.

A browser that imitates the behavior of HyperCard could be implemented with Glamour
as well. Implicit browsers such as the Finder already implement a comparable behavior,
except that they show the complete history of visited “cards” rather than just the current.

e rendering could be adapted to display only the latest pane at a particular time. In
contrast to HyperCard, Glamour provides no mechanism to interactively manipulate the
cards. Presentations are usually modi ed via the scripting language at design time.

5.1.11. Curry

Hanus and Kluß have proposed a declarative description for user-interfaces that builds on
the functional logic language Curry [Hanus and Kluß, 2009; Hanus, 1997]. eir approach
is based on the separation of the structural, functional and layout aspects of the a user inter-
face. Like Glamour, their approach allows for user interfaces to be described independently
of the representation. e authors have implemented a renderer for desktop user interfaces
as well as for web user interfaces using a combination of standard HTML components and
asynchronous Javascript for communication with the server. Unlike Glamour, their ap-
proach serves to de ne user-interfaces in general and does not include default navigation
ow mechanisms.

5.2. Software	Composition

An interesting parallel can be drawn between the classi cation model and our work [Wuyts
and Ducasse, 2004]. e classi cation model is a lightweight mechanism to combine tools
that were not meant to be integrated with one another. e model was used to create
StarBrowser—a browser to integrate various tools in Smalltalk.

StarBrowser manages to consolidate tools by wrapping each as a service, which provides
an interface to process any type of item that it is passed. An item is anything that has
the notion of an object from a software development perspective such as a class, a method,
an image, etc. Items can further be statically or dynamically collected within classi cations

53

Chapter 5. Related Work

which are themselves items. When a service receives a request to display a certain item,
it translates that request in a manner that is understandable to the underlying tool and
delegates the request to it. If the service has no specialized behavior for the particular item,
it simply performs a default action. In Glamour, the presentations have a similar role to
that of the services in the classi cation model—they wrap the underlying components to
provide a consistent interface to the composition model. ere is no restriction in Glamour’s
presentations that prevent them to wrap more complex tools in addition to the generic
components that are currently implemented.

In contrast to Glamour, the StarBrowser has a static con guration of the ow of informa-
tion between the integrated components. StarBrowser displays two panes where the left
pane shows a tree of available classi cations and the right pane provides space for the tools
opened on these classi cations. New classi cations can be added by dragging items out of
the displayed tools.

e integration of components with one another to promote reuse is of particular focus of
component-oriented architectures and composition frameworks. Component oriented soft-
ware architectures allow for systems to evolve by viewing applications as compositions of
reusable and con gurable components [Nierstrasz and Dami, 1995]. To be able to inte-
grate a component in a composition system, the component must be designed to be able to
collaborate together with others. is means, that a component is usually not designed in
isolation but as part of a framework of collaborating components. Schneider and Nierstrasz
state that in order for components to be plugged together successfully

it is necessary that i) the interface of each component matches the expectations
of the other components and ii) that the “contracts” between the components
are well-de ned. [Schneider and Nierstrasz, 1999, pg. 3]

In cases like in the StarBrowser, where incompatible tools should be integrated with one
another, we need to adapt the interfaces to receive components with compatible interfaces.
StarBrowser’s service wrappers are typical example of such glue code. Similarly, Glam-
our accommodates components using presentations which can be interacted with using the
primitive port-based interface.

Glamour uses a declarative scripting language to construct browsers from individual parts.
It has been argued that scripting languages are richly suited for assembling applications
from individual components [Ousterhout, 1998]. Piccola is a language based on a formal
calculus [Milner, 1991] that has taken this concept a step further by providing an entire
composition system based on components and frameworks, software architectures, glue,
and scripting [Lumpe, 1999; Achermann and Nierstrasz, 2001]. In contrast, Glamour
is by no means designed to be a comprehensive composition language. Our port-based
communication only allows for very loose contracts to be de ned between components.
Further yet, our presentations—which form the glue to adapt existing components—need
to be programatically de ned.

54

Chapter	6

Conclusions

To conclude or work, we revisit our original goals and assess how our model was developed
to achieve these. We offer a short discussion on three aspects of our work that have not yet
been discussed: we show how our model de nes a new paradigm for constructing browsers,
we discuss the advantages and disadvantages of using an internal scripting language, and
we discuss our motivation for the abstract browser notation. Finally, we introduce some
prospective future work for Glamour.

6.1. Our	Goals	Revisited

e goal of this thesis was to develop a model with which dedicated browsers that ac-
commodate arbitrary data can be easily expressed. In the introduction we described four
requirements that our framework needs to ful ll. We revisit them here and determine in
which ways our model meets these goals.

e browser should accommodate arbitrary domain models. Our model imposes no restric-
tions on the underlying model that should be displayed in a browser apart from that it may
be queried by simple message sends. No speci c classes need to be implemented and which
messages are sent are speci ed through the use of block closures by the browser’s developer,
who has sufficient knowledge of the domain model.

e navigation ow needs to be completely controllable. e ow of information is completely
determined by the transmissions between panes, which can be freely speci ed by the devel-
oper. Some browsers provide an implicit ow—such as the nder—but the type of browser
and therefore the ow is also speci ed by the developer.

55

Chapter 6. Conclusions

e presentation should be exible. As with the ow of information, the developer needs
to be able to de ne how a particular domain object should be displayed. With Glamour,
presentations can be de ned that show an object as a list, a tree, a graphical visualization
or a wide range of other representations. In addition, objects can be displayed using nested
browsers that provide their own ow.

e browser framework should work at the instance level of the domain model. Developers de-
ne closures that are evaluated with the current domain instance in order to make ow and

presentation decisions. is allows the the ow and presentation decisions to be customized
for a particular instance instead of relying on the type of the object.

6.2. Flow	based	Browsers	vs. Side-Effect	based	Browsers

Glamour was not designed to be able to declaratively describe all possible browsers. Much
more, Glamour provides an alternative paradigm for describing browsers on the basis of
navigational ow rather than programatically de ned behavior.

is is apparent when trying to imitate the behavior of certain existing browsers. For ex-
ample, the integrated development environment Eclipse presents the structure of the source
code in a software project using a tree widget, showing the structure of projects, packages,
les, classes and methods. When the user double clicks on an item, a new tab is shown on

the right hand side with the le in which the item is contained. Tabs always represent on
distinct le and no le appears twice. Also, tabs are only removed when the user explicitly
closes them.

e opening of les in an Eclipse-style browser could still be implemented using normal
transmissions in Glamour but transmissions replace the value at the designated port rather
than appending to it. Using the default behavior, such user interface side effects could
therefore not be implemented using Glamour. A solution would be to implement a custom
browser in Glamour that supports this behavior, much in the way that the nder provides
a custom browser.

We believe that our paradigm is not in itself a restriction but that it requires developers to
think differently about how browsers are constructed. It is still open to further research
to investigate which paradigm more closely follows the user’s mental model of the domain
being investigated and whether Glamour promotes browsers that are more intuitive to use
than browsers that have implicit side-effects.

56

6.3. Declarative Scripting Language

6.3. Declarative	Scripting	Language

e current declarative language that we provide with Glamour is introduced in the tutorial
(chapter 2) and further described in section 3.7. e language is an internal declarative
language that builds on top of Smalltalk. Rather than having the declarative language
construct an intermediate representation which is then transformed into a browser model,
the language directly manipulates the model. e language is implemented as a set of class
extensions to the model and we make heavy use of Smalltalk speci c features such as block
closures and cascades.

While most of the extensions simply call the programatic interfaces of the model, there are
some that require state. is is particularly the case when we construct transmissions—the
showOn: message constructs a transmission that is then populated in the subsequent using:
block. is transmission needs to be temporarily stored somewhere for which we need an
instance variable. is—however—breaks the encapsulation of the model as we are adding
additional state to it.

A solution would be to provide a builder that contains the script state and constructs the
browser. is would also prevent the scripting methods from cluttering the model interface.
Such an external builder could also be combined with an external scripting language. An
advantage of developing an external scripting language would be that we could create a
language that intently matches the developer’s mental model of the browser he or she is
creating. A dedicated declarative script would also have the advantage that it is not strictly
bound to the grammar and semantics of the underlying language and therefore could be
ported to other platforms as well.

A clear disadvantage of such an external language is the added complexity by requiring
an explicit grammar and a dedicated parser and by introducing a new language that the
developer must learn, just to be able to de ne the browsers.

6.4. Browser	Notation

As introduced in chapter 3, we have developed an abstract notation in the course of our work
in order to describe and understand more complex browsers—especially ones that consist
of multiple, nested browsers. While the notation evolved as a natural way to describe our
browsers on a whiteboard or one paper, the question arises if there even is a need for a new
type of notation or if a representation such as with UML object diagrams would not suffice
[Object Management Group, 2007].

In order to justify our notation, consider the browser constructed in the tutorial which is
presented in abstract notation in gure 3.2. We have represented a simpli ed subset of this
browser in our abstract notation and as a UML object diagram in 6.1. e browsers consists

57

Chapter 6. Conclusions

of an outer browser (1) with two panes of which the rst contains yet another browser (2)
and the second just a simple presentation. e inner browser contains just a single pane
with a simple presentation. It also exports a port on this pane to a port on its parent pane,
which the outer browser connects to its second pane using a simple transmission.

1

2

(a) Abstract Notation

browser1:Browser browser2:Browser

:Pane :Pane:Pane

:Port :Port :Port :ParentPort

:Presentation

:Transmission

:Transmission

:Presentation

(b) UML Object diagram

Figure 6.1. A nested browser in our abstract notation and as a UML object diagram.

e browser described above is quite simple, but we can immediately recognize how com-
plex describing browsers in UML may become. Although the object diagram purveys a
better notion of the types involved in the browser model, the structure of the browser is
immediately recognizable from our notation in a manner that cannot be displayed by UML,
even if we had found a better layout. is property con rms the necessity of our notation,
which facilitates the discussion and reasoning about our browser models.

A reference of our notation can be found in appendix B.

6.5. Future	Work

One aspect which certainly should be followed and would provide an interesting research
topic is the capturing of the history of the state of the browsers. is would permit the
implementation of a “back button” allowing users to retrieve their steps, but possibly also a

58

6.6. Concluding Remarks

simpler method to enter the browser at a speci ed state. A possibility to implement such
history capturing would be to record to the triggering of the transmissions (see section 3.1)
and then replaying them or iterating them in reverse direction.

e question remains how sideeffects incited by actions can be captured with such a model.

Further related work includes the exploration of different scripting languages to de ne
browsers and the extension of supported presentations and browser models.

6.6. Concluding	Remarks

e success of Glamour will be determined by its adoption and advancement. Already,
developers have started using and enhancing our model for purposes outside of this thesis.

eir creativity and feedback will provide further insight on the capabilities and possible
issues with Glamour and will further the development of our approach.

59

Chapter 6. Conclusions

60

Appendix	A

Installation

At the point of writing, two implementations of Glamour exist—one for VisualWorks
Smalltalk and another for Pharo, created by Tudor Gîrba, Lukas Renggli and Daniel Röth-
lisberger. is appendix provides a brief introduction on how Glamour can be acquired and
installed.

A.1. Glamour	for	VisualWorks	Smalltalk

VisualWorks is a commercial Smalltalk product produced by Cincom and can be obtained as
a non-commercial version for private use from the company’s website.1 Currently, Glamour
is developed against VisualWorks 7.6 and will probably work most reliably with that version.

After downloading and installing the environment according to the accompanying instruc-
tions, we need to connect to the store of the Software Composition Group at the University
of Bern. To do so, select “Store” then “Connect to Repository” (see gure A.1) from the
VisualWorks main window and enter the following information:

Interface: PostgreSQLEXDIConnection
Environment: db.iam.unibe.ch:5432_scgStore
User: storeguest
Password: storeguest

You can save the store as “SCG” or under any name that you like.

Once you have successfully connected to the repository, select “Store” then “Published
Items” and search for Glamour by typing in the word under Bundles and Packages.

Select the Glamour bundle in the list and then right click and select “load” on the top most
version on the right hand side as shown in gure A.2. e necessary dependencies will be

1http://www.cincomsmalltalk.com/

61

http://www.cincomsmalltalk.com/

Appendix A. Installation

loaded for you.

Finally, you will also need to load a renderer implementation so you can actually display
the browsers on-screen. We recommend “Glamour-Widgetry” which uses the Widgetry
user-interface components. Simply load the corresponding package as you did for the core
Glamour bundle above.

A.2. Glamour	for	Pharo

Pharo is a fork of the Squeak open-source Smalltalk platform and is a port of our Visual-
Works reference implementation. e source base is mainly the same, with the exceptions
that Pharo currently has no notion of namespaces so all class names contain a pre x with
the string “GLM”, and that the implementation contains a different set of renderers.

To get started with Glamour for Pharo, start by downloading Pharo from the project’s
website.2

To load Glamour, start a Pharo image and click on the background to select the “Monticello
Browser” from the world menu as shown in gure A.3.

Click the “+Repository” button and then on “HTTP” to add a new HTTP-based repository
and then add the following information:

MCHttpRepository

location: 'http://www.squeaksource.com/Glamour'

user: ''

password: ''

Click “OK” to save the repository and return to the main Monticello screen where you may
click on “Open” to open the repository. Load Glamour by selecting “Glamour-All” and
then the newest version and nally clicking the “Load” button as shown in gure A.4.

Finally, you will need to load a renderer to be able to display your browsers. From the same
repository, load either “Glamour-Morphic” or “Glamour-Seaside.” e latter requires a full
installation of Seaside 2.9.

2http://pharo-project.org/download

62

http://pharo-project.org/download

A.2. Glamour for Pharo

Figure A.1. Adding a store account in VisualWorks.

Figure A.2. Loading a package in VisualWorks.

63

Appendix A. Installation

Figure A.3. Starting the Monticello Browser.

Figure A.4. Loading Glamour in Pharo.

64

Appendix	B

Browser	Notation

As an alternative to UML object diagrams we have developed an abstract notation to de-
scribe the current state of a browser. e abstract notation improves the understanding
of the browser by providing a spatial notion on the positioning of the components of the
browser as it would be rendered. is chapter provides a quick reference to our notation.

Panes. Panes are represented as gray rectangles with optional ports marked as “lollipops”
on the outside of the panes.

Figure B.1. Graphical representation of a pane in our abstract notation.

Presentations. Presentations are represented as green rounded rectangles and are displayed
within the pane to which they are applied. A presentation’s pane can be omitted if it is the
outermost pane and if it adds no value to the diagram.

Figure B.2. Graphical representation of a presentation in our abstract notation.

65

Appendix B. Browser Notation

Browsers. Browsers are presentations and are represented as such. Contained panes are
drawn within the presentation’s gure. Panes need only be drawn if they are relevant to the
information the diagram is trying to purvey. is means that there is no way to distinguish
between a browser and a primitive presentation in a diagram if no panes are drawn inside
the browser.

Figure B.3. A browser containing two panes in abstract notation.

Transmissions. e transmissions between panes are drawn as blue directed arrows con-
necting the ports to which they are connected. Bundle transmissions which have more
than one origin have more than one tail but only one arrow head. Transmission are gen-
erally contained within the browser that manages them. e only transmissions that cross
the browser boundary are port accesses to the browser’s outer pane as in the case of port
forwarding and capturing. In the case of transmissions which are not bound to a pane,
the origin of the transmission should attempt to best convey the spatial location of the ori-
gin. In the case where a presentation sets a port value due to interaction with the user, the
transmission should originate at the corresponding presentation.

Figure B.4. A browser with various types of transmissions in abstract notation.

Comments. Comments are displayed using the standard UML style note symbol and dot-
ted line.

66

selection port

Figure B.5. A comment in abstract notation.

67

Appendix B. Browser Notation

68

List	of	Figures

2.1. Wireframe representation of a Smalltalk class navigator. 7
2.2. Basic browser construct, displaying a list of packages and bundles 8
2.3. Two pane browser. When a package is selected in the left pane, the con-

taining classes are shown on the right pane. 9
2.4. Improved class navigator including a tree to display the pundles and a list

of method categories for the selected class. 11
2.5. Complete code navigator. If no method category is selected, all methods

of the class are displayed. Otherwise, only the methods that belong to that
category are shown. 13

2.6. Wireframe representation of a Smalltalk class editor. 14
2.7. Composed browser that reuses the previously described class navigator to

show the source of a selected method. 16
2.8. Code editor sporting a Mondrian presentation in addition to a simple class

list. 18
2.9. Subclasss navigator using Miller Columns style browsing. 19

3.1. An overview of Glamour as a UML class diagram. 21
3.2. e tutorial browser from gure 2.8 in abstract notation. 23
3.3. Browsers contain panes and transmissions, which connect panes via their

ports. 24
3.4. Presentations interpret and modify the state of their pane by reading from

and writing to its ports. 25
3.5. UML displaying how presentation strategies are employed by panes. . . . 26
3.6. UML object diagram showing how components are composed. 27
3.7. A browser forwards a port of one of its panes to its containing pane so that

its value can be accessed from outside. 27
3.8. A subclass of renderer and some of the implemented methods. 29
3.9. Class extensions made by the scripting language implementation. 30

4.1. File Explorer in the original and as a Glamour implementation. 35
4.2. File nder in the original and as a Glamour implementation. 36
4.3. Spatial le browser in the original and as a Glamour implementation. . . . 37
4.4. Smalltalk code browser in VisualWorks and using Glamour. 43
4.5. Original Softwarenaut and Glamour implementation. 45

6.1. A nested browser in our abstract notation and as a UML object diagram. . 58

69

List of Figures

A.1. Adding a store account in VisualWorks. 63
A.2. Loading a package in VisualWorks. 63
A.3. Starting the Monticello Browser. 64
A.4. Loading Glamour in Pharo. 64

B.1. Graphical representation of a pane in our abstract notation. 65
B.2. Graphical representation of a presentation in our abstract notation. 65
B.3. A browser containing two panes in abstract notation. 66
B.4. A browser with various types of transmissions in abstract notation. 66
B.5. A comment in abstract notation. 67

70

Bibliography

[Achermann and Nierstrasz, 2001] Franz Achermann and Oscar Nierstrasz. Applications
= components + scripts — a tour of Piccola. In Mehmet Aksit, editor, Software Archi-
tectures and Component Technology, pages 261–292. Kluwer, 2001.

[Adobe, 2006] Adobe. Flex 2 technical overview. Technical report, Adobe, 2006. http://
www.adobe.com/products/flex/whitepapers/pdfs/flex2wp_technicaloverview.pdf.

[Bergel et al., 2007] Alexandre Bergel, Stéphane Ducasse, Colin Putney, and Roel Wuyts.
Meta-driven browsers. In Advances in Smalltalk — Proceedings of 14th International
Smalltalk Conference (ISC 2006), volume 4406 of LNCS, pages 134–156. Springer, Au-
gust 2007.

[Bergel et al., 2008] Alexandre Bergel, Stéphane Ducasse, Colin Putney, and Roel Wuyts.
Creating sophisticated development tools with OmniBrowser. Journal of Computer Lan-
guages, Systems and Structures, 34(2-3):109–129, 2008.

[Borning, 1981] Alan Borning. e programming language aspects of ingLab, a
constraint-oriented simulation laboratory. ACM TOPLAS, 3(4):353–387, October
1981.

[Bracha et al., 2008] Gilad Bracha, Peter Ahe, Vassili Bykov, Yaron Kashai, and Eliot Mi-
randa. e Newspeak programming platform. http://bracha.org/newspeak.pdf, May
2008.

[Bunge et al., 2008] Philipp Bunge, Tudor Gîrba, and Lukas Renggli. Glare UI — ashing
user-interface with Smalltalk. European Smalltalk User Group Innovation Technology
Award, August 2008.

[Buschmann et al., 1996] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Som-
merlad, and Michael Stal. Pattern-Oriented Software Architecture — A System of Patterns.
John Wiley & Sons Ltd., West Sussex PO19 1UD, England, 1996.

[Bykov, 2008] Vassili Bykov. Hopscotch: Towards user interface composition. In Inter-
national Workshop on Advanced Software Development Tools and Techniques (WasDeTT),
July 2008.

71

http://www.adobe.com/products/flex/whitepapers/pdfs/flex2wp_technicaloverview.pdf
http://www.adobe.com/products/flex/whitepapers/pdfs/flex2wp_technicaloverview.pdf
http://bracha.org/newspeak.pdf

Bibliography

[Dahl and Nygaard, 1966] Ole-Johan Dahl and Kristen Nygaard. SIMULA: an
ALGOL-based simulation language. Communications of the ACM, 9(9):671–678, 1966.

[de Mey, 1995] Vicki de Mey. Visual composition of software applications. In Oscar Nier-
strasz and Dennis Tsichritzis, editors, Object-Oriented Software Composition, chapter 10,
pages 275–303. Prentice-Hall, 1995.

[Demeyer et al., 2008] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Object-
Oriented Reengineering Patterns. Square Bracket Associates, 2008.

[Ducasse et al., 2005] Stéphane Ducasse, Tudor Gîrba, and Oscar Nierstrasz. Moose: an
agile reengineering environment. In Proceedings of ESEC/FSE 2005, pages 99–102,
September 2005. Tool demo.

[Engelbart, 1962] Douglas C. Engelbart. Augmenting human intellect: A conceptural
framework. Technical report, Stanford Research Institute, Menlo Park, CA 94025,
October 1962.

[Fowler et al., 1999] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don
Roberts. Refactoring: Improving the Design of Existing Code. Addison Wesley, 1999.

[Fowler, 2007] Martin Fowler. Domain speci c languages, November 2007. http:

//martinfowler.com/dslwip/, Work In Progress.

[Freeman-Benson, 1989] Bjorn N. Freeman-Benson. A module mechanism for con-
straints in Smalltalk. In Proceedings OOPSLA ’89, ACM SIGPLAN Notices, volume 24,
pages 389–396, October 1989.

[Gamma et al., 1995] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software. Addison Wesley, Read-
ing, Mass., 1995.

[Goldberg and Robson, 1989] Adele Goldberg and Dave Robson. Smalltalk-80: e Lan-
guage. Addison Wesley, 1989.

[Goodman, 1998] Danny Goodman. e Complete HyperCard 2.2 Handbook. iUniverse,
1998.

[Haldimann, 2005] Niklaus Haldimann. A sophisticated programming environment to
cope with scoped changes. Informatikprojekt, University of Bern, December 2005.

[Hanus and Kluß, 2009] Michael Hanus and Christof Kluß. Declarative programming of
user interfaces. In Andy Gill and Terrance Swift, editors, Practical Aspects of Declara-
tive Languages, volume 5418 of LNCS, pages 16–30, Berlin Heidelberg, January 2009.
Springer-Verlag.

72

http://martinfowler.com/dslwip/
http://martinfowler.com/dslwip/

Bibliography

[Hanus, 1997] Michael Hanus. A uni ed computation model for functional and logic
programming. In Proc. 24st ACM Symposium on Principles of Programming Languages
(POPL’97), pages 80–93, 1997.

[Hornby, 2000] Albert Sydney Hornby. Oxford Advanced Learner’s Dictionary. Oxford
University Press, sixth edition, 2000.

[Hudak, 1998] Paul Hudak. Modular domain speci c languages and tools. In P. Devanbu
and J. Poulin, editors, Proceedings: Fifth International Conference on Software Reuse, pages
134–142. IEEE Computer Society Press, 1998.

[Hullot, 1986] Jean-Marie Hullot. SOS Interface: un generateur d’interfaces homme-
machine. In Actes des journees AFCET sur les Langages Orientes Objets, 1986.

[Ingalls, 1978] Daniel H.H. Ingalls. e Smalltalk-76 programming system design and
implementation. In POPL ’78: Proceedings of the 5th ACM SIGACT-SIGPLAN sympo-
sium on Principles of programming languages, pages 9–16, New York, NY, USA, 1978.
ACM.

[Lanza, 2004] Michele Lanza. Codecrawler — polymetric views in action. In Proceedings
of ASE 2004 (19th IEEE International Conference on Automated Software Engineering),
pages 394–395. IEEE CS Press, 2004.

[Lienhard et al., 2007] Adrian Lienhard, Adrian Kuhn, and Orla Greevy. Rapid proto-
typing of visualizations using mondrian. In Proceedings IEEE International Workshop
on Visualizing Software for Understanding (Vissoft’07), pages 67–70, Los Alamitos, CA,
USA, June 2007. IEEE Computer Society.

[Lumpe, 1999] Markus Lumpe. A Pi-Calculus Based Approach to Software Composition.
Ph.D. thesis, University of Bern, Institute of Computer Science and Applied Mathe-
matics, January 1999.

[Lungu and Lanza, 2006] Mircea Lungu and Michele Lanza. Softwarenaut: Exploring
hierarchical system decompositions. In Proceedings of CSMR 2006 (10th European Con-
ference on Software Maintenance and Reengineering), pages 351–354, Los Alamitos CA,
2006. IEEE Computer Society Press.

[Meyer et al., 2006] Michael Meyer, Tudor Gîrba, and Mircea Lungu. Mondrian: An
agile visualization framework. In ACM Symposium on Software Visualization (SoftVis’06),
pages 135–144, New York, NY, USA, 2006. ACM Press.

[Meyer, 2006] Michael Meyer. Scripting interactive visualizations. Master’s thesis, Uni-
versity of Bern, November 2006.

[Milner, 1991] Robin Milner. e polyadic π-calculus: a tutorial. ECS-LFCS-91-180,
Computer Science Dept., University of Edinburgh, October 1991.

73

Bibliography

[Nierstrasz and Dami, 1995] Oscar Nierstrasz and Laurent Dami. Component-oriented
software technology. In Oscar Nierstrasz and Dennis Tsichritzis, editors, Object-
Oriented Software Composition, pages 3–28. Prentice-Hall, 1995.

[Object Management Group, 2007] Object Management Group. Uni ed modeling lan-
guage superstructure v2.1.2. Technical report, Object Management Group, November
2007.

[Ousterhout, 1998] John K. Ousterhout. Scripting: Higher level programming for the
21st century. IEEE Computer, 31(3):23–30, March 1998.

[Pawson and Matthews, 2002] Richard Pawson and Robert Matthews. Naked Objects.
Wiley and Sons, 2002.

[Pawson, 2004] Richard Pawson. Naked Objects. Ph.D. thesis, Trinity College, Dublin,
2004.

[Reenskaug, 1979] Trygve M. H. Reenskaug. Models - views - controllers, December
1979.

[Reenskaug, 1996a] Trygve Reenskaug. Working with Objects — e OOram Software En-
gineering Method. Manning Publications, 1996.

[Reenskaug, 1996b] Trygve M. H. Reenskaug. Working with objects in the user interfaces.
ObjectEXPERT, July 1996.

[Reenskaug, 2003] Trygve M. H. Reenskaug. e model-view-controller (MVC) — its
past and present, 2003. JavaZONE, Oslo.

[Roberts et al., 1996] Don Roberts, John Brant, Ralph E. Johnson, and Bill Opdyke. An
automated refactoring tool. In Proceedings of ICAST ’96, Chicago, IL, April 1996.

[Roberts et al., 1997] Don Roberts, John Brant, and Ralph E. Johnson. A refactoring tool
for Smalltalk. eory and Practice of Object Systems (TAPOS), 3(4):253–263, 1997.

[Schneider and Nierstrasz, 1999] Jean-Guy Schneider and Oscar Nierstrasz. Compo-
nents, scripts and glue. In Leonor Barroca, Jon Hall, and Patrick Hall, editors, Software
Architectures — Advances and Applications, pages 13–25. Springer-Verlag, 1999.

[Steyaert et al., 1996] Patrick Steyaert, Koen De Hondt, Serge Demeyer, and Niels Boyen.
Re ective user interface builders. In Chris Zimmerman, editor, Advances in Object-
Oriented Metalevel Architectures and Re ection, pages 291–309. CRC Press — Boca Ra-
ton — Florida, 1996.

[Way, 2005] Doug Way. Whisker: e O-O stacking browser, December 2005. http:

//www.mindspring.com/~dway/smalltalk/whisker.html.

74

http://www.mindspring.com/~dway/smalltalk/whisker.html
http://www.mindspring.com/~dway/smalltalk/whisker.html

Bibliography

[Webster, 1989] Bruce F. Webster. e NeXT book. Addison-Wesley, 1989.

[Wuyts and Ducasse, 2004] Roel Wuyts and Stéphane Ducasse. Unanticipated integra-
tion of development tools using the classi cation model. Journal of Computer Languages,
Systems and Structures, 30(1-2):63–77, 2004.

[Wuyts, 1996] Roel Wuyts. Class-management using logical queries, application of a re-
ective user interface builder. In I. Polak, editor, Proceedings of GRONICS ’96, pages

61–67, 1996.

75

0x4c

	Introduction
	A Historical Introduction to Browsers
	Challenges
	Our Approach
	Contributions

	Tutorial on Glamour
	Running example
	Starting the Browser
	Using Transmissions
	Another Presentation
	Multiple Origins
	Ports
	Reusing Browsers
	Actions
	Multiple Presentations
	Other Browsers
	Tutorial Conclusion

	Inside Glamour
	Browsers, Panes and Transmissions
	Presentations
	Actions
	Composition
	Browser Implementations
	Rendering
	Smalltalk Implementation
	Model Implementations

	Constructing Common Browsers
	Filesystem Navigation
	Source Code Navigation
	Software Dependency-Analysis

	Related Work
	Exposing Domain Objects
	Software Composition

	Conclusions
	Our Goals Revisited
	Flow based Browsers vs. Side-Effect based Browsers
	Declarative Scripting Language
	Browser Notation
	Future Work
	Concluding Remarks

	Installation
	Glamour for VisualWorks Smalltalk
	Glamour for Pharo

	Browser Notation
	List of Figures
	Bibliography

