
Compiled Compiler
Templates for V8

or:
How I Learned to Stop Worrying and

Love JavaScript

Masterarbeit der
Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

Vorgelegt von

Olivier Flückiger
2014

Leiter der Arbeit

Prof. Dr. Oscar Nierstrasz
Dr. Mircea Lungu



Software Composition Group
University of Bern
Institute of Computer Science and Applied Mathematics
Neubrückstrasse 10
CH-3012 Bern
http://scg.unibe.ch/

Copyright ©2014 by Olivier Flückiger
Some Rights Reserved

This work is licensed under the Creative Commons Attribution – ShareAlike
3.0 License. The license is available at http://creativecommons.org/
licenses/by-sa/3.0/.

Attribution–ShareAlike

http://scg.unibe.ch/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/


Acknowledgments

I am very grateful for all the kind support I received over the last months –
most of it is probably not even mentioned here.
I’d like to thank Oscar Nierstrasz for supporting my ideas, pushing me forward
and the empowering supervision.
Toon Verwaest you have been an inspiration and I really enjoyed our long
evenings at the Isar.
I’m much obliged to the whole V8 team for making me feel so welcome and
providing me with endless riddles in C++. I thank Daniel Clifford for his ex-
ceptional mentoring. And Ben Titzer, Hannes Payer, Michael Stanton, Michael
Starzinger, Toon Verwaest, and all the others for the interesting time in Munich.
Merci to my good friend Marcel Härry for proofreading.
And of course babette who caught my fall.

ii



Abstract

The performance of JavaScript virtual machines (VM) improved by several or-
ders of magnitude in the last years, giving raise to ever more complex applica-
tions. Consequently there is a high demand for further compiler optimizations
and therefore short VM development cycles. V8 the JavaScript engine of the
Chrome web browser has a baseline compiler optimized for low compiler la-
tency and an optimizing compiler called Crankshaft to compile hot functions.
To achieve better maintainability and to improve robustness we aim at sharing
compiler infrastructure and code generating back end between the two compil-
ers. Our approach instruments Crankshaft to generate native code templates
for the baseline compiler. We show that our method is practical, reduces com-
plexity and maintains performance. As a case study to support our claims we
ported the assembly level implementation of binary operations for baseline code
to a version compiled by Crankshaft.

iii



Contents

1 Introduction 1

2 V8 in a Nutshell 3
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Canonical Example . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Hidden Classes and Object Layouts . . . . . . . . . . . . . . . . . 6
2.3 Baseline Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Inline Caches . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Crankshaft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Representations . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 Compile-Phases and Optimizations . . . . . . . . . . . . . 11
2.4.3 Deoptimizer . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 HydrogenCodeStubs . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Binary Operations 16
3.1 BinaryOpStub . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Results 20
4.1 Killed Lines of Code . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Reduced Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Implementation 25
5.1 ToBooleanStub . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 BinaryOpStub . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2.1 Minor Key . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Supporting Infrastructure . . . . . . . . . . . . . . . . . . . . . . 31

5.3.1 Back to the Future with X87 . . . . . . . . . . . . . . . . 31
5.3.2 To Integer Conversions . . . . . . . . . . . . . . . . . . . . 31

6 Related Work 33

7 Conclusions 34

iv



Chapter 1

Introduction

V8 is an open source JavaScript engine developed by Google. It is used by
several projects such as the Chrome web browser or the node.js platform. V8
features a state of the art JIT compiler to compile ECMAScript as specified
in ECMA-262, 5th edition [8] to native code. The officially supported CPU
architectures are IA-32, x68-64, ARM and MIPS.

The first released version of V8 featured a whole-method JIT with a simple
code generator, no register allocator and with complex instructions. Core lan-
guage semantics are realized by so called CodeStubs which can be understood as
drop-in machine code fragments providing an implementation for specific AST
nodes. They are generated by CodeStub builders, which are templates to gen-
erate a specific CodeStub variant e.g. specific to a certain register combination
or primitive input type. CodeStubs are shared, thus executed in their own call
frame.

Only later V8 was extended by an optimizing compiler called Crankshaft.
Still JavaScript programs are first compiled using the aforementioned baseline
compiler and only hot functions are optimized by Crankshaft.

Its high-level intermediate representation (HIR) is called Hydrogen. It is
lowered to the platform dependent low-level IR Lithium which has its own back
end to generate native code. Naturally Hydrogen instructions partially overlap
in functionality with CodeStub builders.

A recent effort incrementally tries to unify the redundancy in implementation
by (i) extending Crankshaft to support the full range of functionality as the
corresponding CodeStubs builders do and then (ii) instrumenting Crankshaft
to implement CodeStubs builders in Hydrogen. This approach was already
applied in practice to a couple of Stubs (like the ones for field access and object
allocation) by other V8 developers.

1



Thesis

We argue that implementing baseline compiler templates in high-level IR is
practical, simplifies the implementation and is better maintainable. To validate
our thesis we ported V8 CodeStubs for binary operations to Hydrogen. In
particular we claim,

• Avoiding platform specific code.

• Reducing overall complexity.

• Unifying implementations and avoiding danger of diverging behavior.

• Maintaining the same level of performance.

Outline

The next chapter 2 provides an overview over V8 with the intention of making
the reader familiar with the most important concepts, focusing on the parts cen-
tral to understanding the contributions presented in this thesis. Subsequently
chapter 3 focuses on binary operations in JavaScript and their existing hand-
assembled implementation in V8. Finally in chapter 4 and chapter 5 we present
our contributions – the former focusing on results and key figures for the hy-
drogenisation of binary operations whereas the later dwells in the details of
implementation. Later chapters discuss related work and present conclusions.

2



Chapter 2

V8 in a Nutshell

In this chapter we first provide a dense overview of the compilation pipeline and
then highlight the relevant parts independently.

2.1 Overview

JavaScript is a dynamic, object-oriented, prototype based language [8]. Defini-
tions and declarations are late-bound, functions first-class. In contrast to lan-
guages with e.g. static class declarations, structure and behavior of JavaScript
objects are not known at compile-time. In general it is hard to extract a mean-
ingful type-like structure for various reasons.

At most objects might be identified to behave alike by observing the pro-
totype chain. This would be practical in a limited number of simple situations
in well-behaving programs, e.g. if no leaf objects in the prototype chain have
methods and the prototype chain is never rewritten. In real world applications
anonymous objects alone account for a relevant part of all live objects [15].

Additionally properties (later also called fields) are declared implicitly the
first assignment. They can be declared in a dedicated constructor method1 by
a well-engineered program, but are found to be declared ad-hoc at a later point
in time in a significant number of real world situations [15]. This makes it a
hard problem for a compiler to define an efficient memory layout for objects.

V8 gathers information about properties and methods of objects at runtime
and captures it with hidden classes [17, 2], also called maps. As an example
the first step in Figure 2.1 shows the assignment of a new property x of type
t to an object with initial map m. The object transitions to the (lazy) map
m′, a subtype of m having a field named x prepended. The field has a certain
representation r capable of storing t.

Transitions and maps form the edges and vertices of the hidden class hierar-
chy, capturing state and structure of the emergent sub-type relations between

1A constructor in JavaScript is just a normal first-class JavaScript function having this
bound to the newly allocated object. The constructor is invoked by the new keyword.

3



JavaScript objects. Objects are grouped by the names of properties and meth-
ods, and their order of declaration as shown in Figure 2.1.

{}

{int: x}

m

m'

x

b = {};

b.x = 42;

a = {};

a.x = 13;

{int: x, func: f}

{int: x, int: y}

b.f = function() {};

a.y = 0;

y f

Figure 2.1: Hidden classes are adaptive models for JS objects. Two different
code paths (from top down) generate different maps for objects a and b.

Functions are lazily compiled by the baseline compiler. Its execution model
being a very simplistic stack machine, code can be generated fast and cheaply
keeping compiler latency minimal. In contrast to a virtual stack machine base-
line code runs on bare metal. Complex AST node functionality is provided by
so called CodeStubs – shared pieces of native code implementing functionality
as diverse as method invocation, string concatenation, math functions, object
construction, and so on.

In general CodeStubs of a certain kind exist in several variants e.g. they are
specific to the primitive type of arguments. A call site is specialized to a certain
CodeStub variant by an inline cache (IC). The different variants of a certain
CodeStub are generated by a common CodeStub builder.

After a warmup phase in baseline code functions worthwhile to optimize are
marked for recompilation in a background thread by the optimizing compiler.
This heuristic considers if the function is hot (i.e. a lot of time is spent in it),
the number of instructions, how much room for optimization there is, and so
on.

The baseline compiler described so far corresponds to the left hand code
generation path in Figure 2.2. Following the right hand compilation path the
optimizing compiler (Crankshaft) transforms AST into an IR called Hydrogen.
Several optimization and inference phases are applied and the resulting graph
is transformed into Lithium, a platform specific low-level IR. Then a modified
linear scan register allocator [13] assigns registers and a final code generation
phase assembles the code.

For this recompilation the AST is annotated with type feedback recorded

4



Figure 2.2: Overview over the V8 compiler architecture.

by the execution of baseline code. This e.g. includes maps of receiver for a
certain call site, primitive types for operators, or field representation for loads
and stores. The recorded types provide the basic assumptions for Crankshaft to
select specific instructions or instruction sequences [19]. For sites with specific
enough type feedback property access, function calls, array access, and other
common patterns are compiled to native load, store and call instructions.

All assumptions about values, their maps and representations which cannot
be proved at compile time2 must be guarded by runtime checks. If one of them
fails, the optimized code will jump through a jump table into the deoptimizer,
which will rewind to the last safe point, rewrite the current call frame into
baseline format and resume execution in unoptimized code.

2.1.1 Canonical Example

The following chapters will explain selected parts of V8 in more detail. Along the
way we will analyze an exemplary program shown in Listing 2.1 which exercises
the features of JavaScript we want to address.

2Some constraints can be asserted statically, e.g. by the semantics of the value producing
instruction, but in general only few static guarantees are given by JavaScript semantics

5



Listing 2.1: A constructor method called Duck creates objects featuring a height
property and a function to calculate the ducks wingspan.

1 function Duck(h) {
2 this.height = h;
3
4 this.wingspan = function() {
5 return this.height * 4;
6 }
7 }
8
9 var duck = new Duck(8.5);

2.2 Hidden Classes and Object Layouts

Hidden classes form a conservative approximation of the running JavaScript
program’s type structure. By ordering them using transitions as the order re-
lation we extract a type lattice defining sub-type relations. In V8 this lattice
defines the memory layout of objects.

JavaScript objects semantically behave like dictionaries but it would be very
inefficient if they were implemented in the naive way. A dictionary lookup re-
quires several indirections before the value can be retrieved, it is very inefficient
regarding memory usage (since growing the dictionary is expensive) and there-
fore also poor at exploiting cache locality. A compact structural representation
of objects is key to a fast dynamic language VM.

As mentioned before V8 objects are laid out in memory according to the
transitions of the hidden class hierarchy. Assume an object o has a hidden class
m2 (defining property p2) which has a parent class m1 (defining p1) rooting in
m0. Following the map transitions from the root class down we define the heap
layout of o to be [p1, p2].

The same definition is visualized in Figure 2.3 which also shows that V8 em-
ploys split object layouts. Objects corresponding to different leaves in a common
hidden class hierarchy share the same field offsets for common properties.

In baseline code objects are allocated with a certain amount of slack space
at the end, since they are expected to grow as more properties are defined and
their final size is unknown. In optimized code however we expect to capture
the system in a stable state thus allocations are performed to match the actual
depth of the hidden class chain.

2.3 Baseline Compiler

The baseline compiler is a simple one-pass compiler backed by an extensive
runtime infrastructure [21]. Primitive operations are delegated to CodeStubs
and runtime functions written in assembly, Hydrogen, C++, or JavaScript. The
target CPU is used solely as a stack machine, so no explicit register allocation

6



{}

{int: x}

m

m'

x

a 

{int: x, func: f}

{int: x, int: y}

b 

slack slack

13

0

42

func

y f

Figure 2.3: Objects as defined in Figure 2.1 are layed out in memory according
to the order of properties given by the hidden class hierarchy.

takes place. Most AST nodes corresponding to non-trivial functionality are
lowered to inline-cached calls to a corresponding CodeStub. As an example
considering the function in Listing 2.1 with its corresponding AST in Figure 2.4
we identify two interesting nodes: property access and binary operation.

The property access relies on the object layout of the variable this, therefore
the inline cache entries are selected according to the objects hidden class.

The binary operation is selected depending on the primitive type of operands.
In the given example it multiplies the float 8.5 with the integer constant 4,
producing an integer as result. The possible types for arguments and results of
binary operations include numbers fitting into a tagged3 or an unboxed integer,
floats, the global undefined object, generic objects, or (for addition) strings. In
the case of binary operations the CodeStub is selected from the space spanned

3Tagged integers in V8 have 31 bits of payload and the least significant bit set to 0.

7



by 〈left×right×result〉 according to the type of left, right operand and result.

wingspan

Stack check Body

ReturnStatement

ArithmeticExpression

Property

VariableProxy

Literal

Return sequence

Figure 2.4: AST of the wingspan function as defined in Listing 2.1 line 4.

2.3.1 Inline Caches

The baseline compiler translates many AST nodes to CodeStub calls. Almost
all of them are called through an inline cache which can contain entries for
several possible types. First of all this provides good performance for all Stubs
which can be specialized to certain maps. For example a Stub for a property
access consists of just one indirect memory access if the memory layout (i.e. the
map) of the receiver and the property offset are already known from a previous
lookup. Secondly in the case of operations which are specific to primitive types
(i.e. numbers, strings, floats) the inline cache ensures that the most specific (i.e.
efficient) implementation is chosen at runtime. Those ICs specific to primitive
types handle all cases up to the most generic one encountered so far. Thus
previous IC entries are overwritten and they stay monomorphic. This concept
is very similar to the idea of node rewriting [22] for interpreters.

Inline caches are implemented as small pieces of code separate from the call
site method. As an example we consider the wingspan function in Listing 2.1.
The baseline compiler emits a property access as a call to an instance of a
LOAD IC.

8



Listing 2.2: Loading a property in baseline code.

;; The VariableProxy 'this' was evaluated last,
;; therefore it's in the accumulator.
mov edx, eax

;; Then we load the property name.
mov ecx, 0x45b0a499 ;; object: <String[6]: height>

;; The actual call to the inline cache.
call 0x49d53e80 ;; debug: statement 63

;; debug: position 74
;; code: LOAD_IC, MONOMORPHIC,
;; FAST (id = 8)

Following this call generated for the property access in Listing 2.2 we get to
the load inline cache in Listing 2.3. We applied the wingspan function only to
Ducks, therefore the IC is monomorphic. It performs one type check and then
tail-calls a LoadFieldStub for the actual property access.

Listing 2.3: A monomorphic load IC.

;; Check for tagged integer.
test_b dl, 0x1
jz miss

;; Typeguard: check the hidden class of the receiver
mov ebx, [edx+0xff]
cmp ebx, 0x23b17699 ;; object: <Map(elements=3)>

;; The actual property access.
jz 0x49d53dc0 ;; code: HANDLER, LoadFieldStub,

;; minor: 65654

;; The ic miss handler.
miss: jmp LoadIC_Miss ;; code: BUILTIN

Every CodeStub has a so called minor key, a dense 32 bit encoding of the
Stub variant. In the case of the LoadFieldStub the minor key stores field type,
field index, the store properties (in-object or in a backing store) and whether
the field holds an unboxed double. This value is reused by the StubCache (a
hash table for code objects) as a hash code. This ensures that every variant
only has to be compiled once.

Inline caches are normal code objects on the V8 heap. They are cleared on
garbage collection to allow the return to a monomorphic state if possible. Un-
necessary polymorphic states can e.g. occur when a hidden class gets deprecated
and replaced by a field representation change.

9



2.4 Crankshaft

The optimizing compiler (Crankshaft) is triggered to recompile and optimize hot
methods in a background thread. Hot methods where most of the execution time
is spent in are detected by counter based heuristics. Metrics to detect functions
worthwhile to optimize include the number of invocations, the number of back
edges taken in the control flow graph, or the amount of type feedback available.

Crankshaft features two intermediate representations (IR), the high-level
Hydrogen and low-level, platform dependent Lithium [11]. Hydrogen is a graph
based IR in SSA form [1]. The instruction graph representing data flow depen-
dencies is superimposed on a control flow graph (CFG) [4]. Its nodes are basic
blocks with an ordered list of Hydrogen instructions.

The example AST from Listing 2.1 is transformed by multiple passes to
the Hydrogen graph in Listing 2.4. In the example the CFG consists of two
sequential basic blocks, the first representing the method preamble and the
second one the body. In BasicBlock 1 the CheckHeapObject and CheckMaps
(lines 12 and 13) are the typeguards for value t2 which is Parameter 0 (this).
If the typeguards succeed the double box is read out at the known offset (line
14) and then the double value is extracted from the box (line 15). The value is
multiplied with a constant (line 17) and then boxed again (line 18) since only
boxed values can be returned by a function.

Listing 2.4: Optimized Hydrogen graph produced by Crankshaft from the
wingspan function as defined in Listing 2.1 line 4. Listing generated by the
C1visualizer.

1 BasicBlock0 :
2 BlockEntry
3 t1 <- Context
4 t2 <- Parameter 0
5 Simulate id=2 var[1] = t1, var[0] = t2
6 Goto B1
7
8 BasicBlockB1 :
9 BlockEntry

10 Simulate id=3
11 StackCheck t1 changes[NewSpacePromotion]
12 CheckHeapObject t2 type:non-primitive
13 CheckMaps t2 [0x45617699]
14 t13 <- LoadNamedField t2.[in-object]@12 type:heap-number
15 d14 <- LoadNamedField t13.[in-object]@4
16 d21 <- Constant 4 range:4_4
17 d16 <- Mul d14 d21 !
18 t22 <- Change d16 d to t, changes[NewSpacePromotion]
19 type:heap-number
20 t23 <- Constant 0 range:0_0 type:smi
21 Return t22 (pop t23 values)

10



2.4.1 Representations

Hydrogen values each are associated with one of the following representations,
which form the lattice in Figure 2.5.

Smi A tagged integer (see [2]) with 31 bits of payload and the least significant
bit (LSB) unset.

Integer32 An integer with 32 bit precision.

Double An unboxed double precision float value.

HeapObject A tagged pointer p. LSB set, real pointer value is p Y 1

Tagged A tagged value, either a tagged pointer or a tagged integer.

Instructions can specify constraints on the required input representation and
adapt their output representation during compilation. Representations are not
to be confused with types as e.g. the number 3 has type float in JavaScript, is
stored as an integer inside V8 and can temporarily be kept in Smi, Integer32,
Double and Tagged representation depending on the context.

Smi

Integer32

Double

Tagged

HeapObject

Figure 2.5: Value representations of Crankshaft.

In Listing 2.4 the representations are marked by mnemonic prefixes to the
variable – t for tagged and d for double. Function parameters always have to be
tagged, other representations are only used locally. For example in this listing
the unboxed double result value has to be stored in a heap allocated number
before it can be returned. Effectively the Return instruction on line 21 requires
a tagged input value, necessitating the insertion of a Change instruction on line
18 to convert between the two representations.

2.4.2 Compile-Phases and Optimizations

When a function is to be recompiled by Crankshaft the first compilation step is
to gather type feedback. As explained in subsection 2.3.1 while baseline code is
executed, inline caches as a side-effect record the encountered maps of argument

11



objects and the primitive types of arguments. Crankshaft’s type oracle visits
the AST and enriches all nodes with type information extracted from the inline
caches of the corresponding baseline code.

Crankshaft builds a Hydrogen graph from the AST using this type feedback
for instruction selection, representation inference and so on. At graph building
time Crankshaft inlines functions if possible and considered advantageous by
heuristics. Also constant folding is done at construction time [14].

Several optimizations and transformations [20] are then applied to the Hy-
drogen graph in sequential order including:

Dead code elimination Basic blocks which cannot possibly be reached are
marked as unreachable and thus skipped on code generation.

Escape analysis Values never leaving the local context are detected. They do
not have to be allocated on the heap.

Infer representations A simple cost approximating heuristic considers all us-
ages of a certain value to determine the optimal representation. E.g. con-
verting integers to doubles and vice-versa is an expensive operation, but
subsequent operations with other integer/double operands might make it
favorable to convert a value early.

Inferring types Type inference phase consults several facts about values to
tighten the constraints on upper and lower bounds of possible types a value
could hold. This includes a-priori knowledge about the value producing
instruction, implicit and explicit type checks, and so on.

Representation changes Representation mismatch is fixed by inserting im-
plicit representation conversion nodes.

Global value numbering A GVN [16] phase which needs to keep track of
various side-effects certain JavaScript constructs exhibit.

Range analysis Possible numerical range of values is determined. The infor-
mation is e.g. used to omit redundant overflow and bounds checks.

Compute change undefined to nan The JavaScript undefined and nan be-
have semantically very similar in a number of situations. Most importantly
as argument of numerical operations they behave identical. Therefore it
is sometimes favorable to use nan as a double value in combination with
other double operands instead of the heap-object undefined.

Compute minus zero checks Since JavaScript only has a float number type
the internal conversion to integer arithmetic has to be fully transpar-
ent. One notorious case is the difference between minus and plus zero:
JavaScript on one hand deems them identical by means of any compar-
ison operation but nevertheless a difference can be observed by dividing
them by plus zero which results in either minus or plus infinity. Thus any
integer operation which might result in the sign bit for zero being lost
needs to check the condition at runtime.

12



Bounds checks elimination Bounds checks for array indices can be omitted
if we can statically prove that the index lies within the array size. For
example with loop unrolling it is possible to perform the array check in
batches by already checking the bounds for a certain future offset.

2.4.3 Deoptimizer

As discussed in the previous chapter Crankshaft optimistically compiles code
tailored to type-feedback from the warmup execution phase. At any point in
time those assumptions can break, e.g. a type check fails, a variable contains an
unexpected type. The optimized code becomes invalid and execution has to fall
back to baseline code. The translation from optimized to non-optimized code
is performed by a deoptimizer, which is an established mechanism [7, 9, 12] to
provide generic mapping of program states between different compiled versions
of the same program.

Every optimized code object contains meta-data (similar to debug data for-
mats like DWARF encountered in ELF binaries). It defines a mapping of values
to registers and stack slots. The meta-data contains safe-points within the func-
tion where the mapping between program counter (PC) values of optimized and
baseline code is known. To bail out of optimized code the failed type-check
calls into the deoptimizer, which will consult the meta-data to rewind to the
last safepoint. It collects all live values, tears down the current call frame, then
reconstructs the execution stack for the corresponding baseline code. Finally
control is returned to baseline code by jumping to the safepoint PC value.

Many Hydrogen instructions have side effects observable by JavaScript code
as defined in the ECMAScript standard. For example a property access might
call into a user-defined getter method, a binary operation can cause ToString
being called if non-primitive arguments are passed, or a certain operation might
be intercepted by Object.observe(). When Crankshaft performs certain opti-
mizations, like global value numbering (GVN ), dead code elimination, or loop
invariant code motion [10], it has to guarantee that the resulting program still
behaves as if it fully adheres to the procedurally and precisely defined semantics
of JavaScript.

Additionally the deoptimizer cannot rewind before an operation having ob-
servable side-effects as they would be observed twice in this case. Therefore
every such instruction has to be followed by a guarding safe point. In Hydrogen
the according instruction is called a Simulate. While building up the Hydrogen
graph a virtual environment stack is used to keep values. This stack identically
corresponds to the physical execution stack encountered in baseline code. A
simulate records the state of this virtual stack; thereby storing a mapping of
the actual values as they are represented in optimized code to the execution
stack of baseline code.

13



2.5 HydrogenCodeStubs

As shown in section 2.3 the baseline compiler emits CodeStubs which implement
the semantics of certain AST nodes. There are many ways to generate those
Stubs. A very common situation in V8 is that they are written in V8 platform
dependent macro assembly language.

On the other hand Crankshaft as noted in section 2.4 has its Lithium
back end to lower Hydrogen instructions to machine code. Functionality of
CodeStubs and the output of Hydrogen instructions partially overlap4 or CodeStubs
perform the equivalent of a sequence of Hydrogen instructions.

The same functionality being implemented several times poses problems.
First the obvious one of having to maintain it several times, more code in gen-
eral and similar artifacts in separate modules. Secondly the artifacts are in
concept tightly coupled in several ways: Obviously the disjoint implementations
have to agree on the semantics in all the corner cases – baseline and optimized
code must behave identically. More subtly, both components have to produce
matching meta-data for the deoptimizer or the stack state will be corrupted by
deoptimization.

The goal must therefore be to unify the two disjoint implementations, which
is exactly the idea of HydrogenCodeStubs: To instrument Crankshaft to gener-
ate CodeStubs for baseline code. The main advantages we hope to achieve with
this approach being:

Ease of development It is easier to maintain CodeStubs since they are writ-
ten in a higher level language.

Correctness CodeStubs are compiled – Crankshaft knows about object lay-
outs, primitive types, bounds check and so on. Bugs are less likely than
with unsafe assembly instructions.

Consistency Crankshaft can share the code between the CodeStub builder and
the normal compiler, thus reducing the possibility of diverging behavior
betweem baseline and optimized code.

Infrastructure Reuse HydrogenCodeStubs can reuse the deoptimizer infras-
tructure to handle IC failures: When a HydrogenCodeStub is not able to
handle a certain argument type, it calls into the deoptimizer. By sim-
ply including the correct meta-data the deoptimizer is able to restore the
initial Stub arguments from registers. It can then pass control to the IC
patching mechanism. This function will trigger Crankshaft to compile a
more generic Stub and patch the IC with it.

As an example consider the load IC in Listing 2.3 which delegates to Load-
FieldStub. As can be seen in Listing 2.4 Crankshaft is fully able to inline an

4Although some overly complex Lithium instructions do not yet have an implementation
of their own and therefore also emit a call to a CodeStub.

14



access to a field in the wingspan method. A LoadFieldStub can therefore be
implemented by the means of a couple of Hydrogen instructions.

The LoadFieldStub is indeed not handwritten but generated on the fly by
Crankshaft – the result is shown in Listing 2.5. It consists of the same instruc-
tions we can already see in Listing 2.4, but additionally boxes the result. This
is not necessary in the former case since the loading is inlined, thus the internal
double representation can be kept.

Listing 2.5: The full implementation of a LoadFieldStub called through an IC
in Listing 2.3 to load the height property in Listing 2.1.

1 major_key = LoadFieldStub
2
3 ; [Unboxing the number]
4 ;;; <@10,#9> load_named_field
5 mov eax, [edx+0xb]
6 ;;; <@12,#10> load_named_field
7 movsd xmm1, [eax+0x3]
8
9 ; [Allocating a new double box]

10 ;;; <@14,#13> number_tag_double
11 mov ecx, [0x96fc590]
12 mov eax, ecx
13 add eax, 0xc
14
15 ; [If pointer bump failed, need to grow heap or gc]
16 jc 59 (Deferred allocation)
17 cmp eax, [0x96fc594]
18 ja 59 (Deferred allocation)
19
20 mov [0x96fc590], eax
21 inc ecx
22
23 ; [populate the new double box]
24 mov [ecx+0xff], 0x29808149 ;; <Map(elements=3)>
25 movsd [ecx+0x3], xmm1
26
27 ; [Returning the result]
28 ;;; <@15,#13> gap
29 mov eax, ecx
30
31 ;;; <@16,#11> return
32 ret

15



Chapter 3

Binary Operations

Binary operations in JavaScript are: bitwise OR, XOR, and AND, left shift,
signed and unsigned right shift, plus, minus, multiplication, division, modulo [8].
The exact semantics for the different operations are defined in the ECMAScript
standard. On primitive types the operators behave more or less straightfor-
wardly.

The plus operator can either mean numerical addition or string concate-
nation – the latter being chosen if any of the two arguments evaluate to a
string. Note that ECMAScript defines the evaluation of a non-primitive object
operand o differently depending on the operation. In the case of binary plus the
evaluation is to be ToPrimitive(GetV alue(o)), where ToPrimitive is a global
function which converts JavaScript objects to primitive values and GetV alue
is a global function defined to call the objects valueOf method, which is user
definable and can return values of any type. Therefore except in the case where
all operands are primitive types it is not statically nor locally decidable if the
plus operator represents addition or string concatenation.

The following section provides a short overview over the existing implemen-
tation of binary operations. Our own implementation is discussed in chapter 5.

3.1 BinaryOpStub

CodeStubs for binary operations are specific to the type of input arguments.
In Figure 3.1 the state lattice of a binary operation IC can be seen. All states
include support for all the less generic ones. E.g. if an IC is in state Number
for the left hand operand the according CodeStub will be able to handle any
numeric value from Smi to HeapNumber as left hand operand1. Binop ICs are
always monomorphic, when a more generic type is encountered the IC is patched
to a more generic CodeStub, depending on the type of operand that triggered
the miss.

1See subsection 2.4.1 for an explanation of the different representations of numbers.

16



None

Smi

Int32

Number

Generic

(String)

Figure 3.1: State machine of the BinaryOpStub IC. The String state is only
recorded for addition, since a string argument changes the semantics of the plus
operator.

The existing implementation of BinaryOpStub in V8 was implemented in
V8 macro assembly using very few abstractions to perform the operations. It is
completely separate from the corresponding implementation in Crankshaft. As
an example the code shown in Listing 3.1 is responsible for generating the Smi
handling part of a shift left CodeStub builder. The complete function is 373
LOC. Overall the ia32 CodeStub builder implementation for binary operations
amounts to over 1200 LOC in this style.

Listing 3.1: Existing function to generate a shift left BinaryOpStub (Only rel-
evant parts included). Lines starting with are macro assembler instructions
and they emit native code accordingly.

1 static void BinaryOpStub_GenerateSmiCode(
2 MacroAssembler* masm,
3 Label* slow,
4 SmiCodeGenerateHeapNumberResults allow_heapnumber_results,
5 Token::Value op) {
6 // 1. Move arguments into edx, eax except for DIV and MOD. [...]
7 Register left = edx;
8 Register right = eax;
9 [...]

10
11 // 2. Prepare the smi check of both operands by oring them.
12 Label not_smis;
13 Register combined = ecx;
14 switch (op) {
15 [...]
16 case Token::SHL:
17 // Move the right operand into ecx for the shift
18 // operation, use eax for the smi check register.

17



19 __ mov(ecx, right);
20 __ or_(right, left);
21 combined = right;
22 break;
23 [...]
24 }
25
26 // 3. Perform the smi check of the operands.
27 __ JumpIfNotSmi(combined, &not_smis);
28
29 // 4. Operands are both smis, perform the operation leaving
30 // the result in eax and check the result if necessary.
31 Label use_fp_on_smis;
32 switch (op) {
33 [...]
34 case Token::SHL:
35 // Remove tags from operands (but keep sign).
36 __ SmiUntag(left);
37 __ SmiUntag(ecx);
38 // Perform the operation.
39 __ shl_cl(left);
40 // Check that the *signed* result fits in a smi.
41 __ cmp(left, 0xc0000000);
42 __ j(sign, &use_fp_on_smis);
43 // Tag the result and store it in register eax.
44 __ SmiTag(left);
45 __ mov(eax, left);
46 break;
47 [...]
48 }
49
50 // 5. Emit return of result in eax. [...]
51 switch (op) {
52 [...]
53 case Token::SHL:
54 __ ret(2 * kPointerSize);
55 break;
56 }
57
58 // 6. For some operations emit inline code to perform
59 // floating point operations on known smis (e.g., if the
60 // result of the operation overflowed the smi range).
61 [...]
62
63 // 7. Non-smi operands, fall out to the non-smi code with
64 // the operands in edx and eax.
65 __ bind(&not_smis);
66 switch (op) {
67 [...]
68 case Token::SHL:

18



69 // Right operand is saved in ecx and eax was destroyed by
70 // the smi check.
71 __ mov(eax, ecx);
72 break;
73 [...]
74 }
75 }

The implementation in Listing 3.1 performs the following steps: (1) Set
up a call frame for some operations or copy values to a backup register. (2,3)
Perform a Smi check on both input arguments. As this part of the Stub compiler
which only deals with Smi values, a jump target is provided for a later section
to be compiled to deal with other kind of types. (4) The actual operation is
performed. (5) The return statement if everything was successful. (6) Some
special fast cases if there was an overflow in (4) and finally (7) fallback code if
(2, 3) failed.

19



Chapter 4

Results

In this chapter we discuss the results and experience gained from implementing
the CodeStub builder for binary operations using Hydrogen, the HIR of V8. We
present this reimplementation as a representative case study of our approach.
Additional changes which enabled and facilitated the hydrogenisation of binary
operations, technical details, as well as the hydrogenisation of the ToBoolean
operation are discussed in chapter 5. The semantics of binary operations in
JavaScript and the previous assembly implementation of binop Stubs are dis-
cussed in chapter 3.

Results in this chapter are based on the Hydrogen BinaryOpStubs as they
were commited to V8 trunk in SVN revisions 17104 and 17108 and additional
bugfixes in 17143, 17144 and 17290. Benchmarks were performed using the
standalone CLI version of V8, called D8.

4.1 Killed Lines of Code

As already mentioned in chapter 3 just the ia32 code for generating the Bi-
naryOpStub was over 1200 LOC not counting some additional utility code for
handling double values with the floating point unit. The other architectures
had a bit less code (since historically more optimizations went into ia32): 1000
LOC for arm, 700 LOC for x64 and 949 LOC for mips.

Overall the hydrogenisation of binary operations removed 4726 LOC while
introducing 1008 LOC. The data is summarized in Figure 4.1. Only 39 lines of
platform dependent code used for declaring the calling conventions remain after
the rewrite.

Overall 4 platform specific implementations were removed and unified with
a single implementation which reuses for the most part the very same builder
function used by the normal Crankshaft pipeline to compile binary operations.

20



 595500

 596000

 596500

 597000

 597500

 598000

 598500

 599000

 599500

 600000

17110 17144 17290

LO
C

V8 trunk revision

Unrelated changes
Hydrogenisation of Binops

Figure 4.1: LOC in the src folder of V8 repository. Marked revisions are part
of Hydrogenisation of binary operations.

4.2 Reduced Complexity

The Crankshaft implementation of binary operations for optimized code and the
Hydrogen BinaryOpStubs implementation share most of the functionality. The
only special cases the Stub handles, which are not part of the normal compiler
pipeline are (i) a fast case for string concatenation in the generic add Stub and
(ii) the possibility to reuse double boxes.

For more details on the first special case see section 5.2. The other special
case covers chained operations. Consider the expression a ∗ b ∗ c where the
semantics of JavaScript guarantee the result of a ∗ b to be a number. Ad-hoc
escape analysis shows us that the result is only used locally. We can therefore
store the result of the second multiplication in the double box allocated by
the first multiplication. This case however is only relevant for baseline code
as in optimized code numbers are unboxed. For a detailed explanation of the
implementation see section 5.2.

Except for those two special cases the implementation is fully shared, thus
semantics of Stub code and the corresponding optimized code are guaranteed
to be (and stay) equivalent. This unification makes the code base more main-
tainable and will facilitate future refactoring, like the hydrogenisation of string
concatenation.

Though hard to measure the Hydrogen implementation seems to contain
fewer implicit assumptions about the rest of the system. There are several ex-
amples to support this claim: Hard coded offsets to manipulate double boxes are
replaced by Hydrogen field access instructions. Code generation for arithmetic

21



operations is not ad-hoc and implemented redundantly.
Also a bug was revealed where the Stub implementation had a specific slow

case to deal with a particular overflow flag situation, where the result would only
seemingly overflow the Smi range. Thus the Stub IC could stay in Smi state in
this situation – but of course the Lithium back end did not have the same be-
havior. This situation leads to a deopt-loop, where the baseline implementation
would never pick up new type information, since it could perform the operation
in Smi mode and the optimized code would always immediately deopt, since
the generated code cannot perform the operation in Smi mode. This kind of
diverging behavior is ruled out by sharing the code generation between baseline
and optimized code.

4.3 Performance

Performance of the existing binary operations were compared to the new Hy-
drogen implementation using industry standard benchmarks, namely Kraken
JavaScript Benchmark version 1.1 from Mozilla and Octane 1.0 from Google.
We see in Figure 4.2 that no significant regressions for the overall score of both
benchmarks exist. Additionally Figure 4.3 shows a breakdown of the Octane
score, where none of the partial scores show a significant regression.

Although we do not consider the SunSpider benchmark to be adequate to
measure the performance of modern JavaScript VMs1, we note that according to
Figure 4.2 no significant regression in SunSpider 1.0.2 overall score is observable.

An important property of Hydrogen CodeStubs is that they benefit from
future improvements in Crankshaft. Therefore achieving performance on par
with the assembly version (as we demonstrated it for BinaryOpStubs) only
reflects the current abilities of Crankshaft at optimizing and compiling a certain
Stub implementation and it is likely to improve over time.

1SunSpider consists of a collection of very short running micro benchmarks. Profiling the
execution of SunSpider in V8 reveals that a significant amount of time is spent in parts of the
system, which were not intent to be measured by the developers of SunSpider, e.g. parsing,
warmup, initial cache lookups. Additionally results are poorly verified, if used at all, which
makes the code to be benchmarked subject to dead code elimination. Since the benchmarks
are so short, most time is spent in unoptimized code, which is not representative of modern
JavaScript applications.

22



 0.96

 0.98

 1

 1.02

 1.04

17110 17144 17290

S
co

re

V8 trunk revision

Octane 1.0
Kraaken

SunSpider

Figure 4.2: Kraken JavaScript Benchmark version 1.1 from Mozilla, Octane 1.0
from Google and SunSpider 1.0.2 performance relative to trunk revision 17103
(higher is better). Results are averaged over 10 runs on a Intel Core i5 and 10
runs on a Intel Core 2 machine. Thin line segments represent trunk revisions
unrelated to BinaryOpStubs.

23



 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

17110 17144 17290

O
ct

a
n
e
 s

co
re

V8 trunk revision

Richards
DeltaBlue

PdfJS
NavierStokes
EarleyBoyer

Crypto
RegExp

CodeLoad
Gameboy
Mandreel

Box2D

Figure 4.3: Breakdown of Octane 1.0 scores (higher is better). Results averaged
over 10 runs on a Intel Core i5 machine. Thin line segments represent trunk
revisions unrelated to BinaryOpStubs.

24



Chapter 5

Implementation

We discuss the details of two hydrogenisations of CodeStubs in this chapter.
First the reimplementation of ToBoolean, a truth evaluating global function
defined by ECMAScript. It served as a proof of concept and allowed us to
explore different approaches on a simple test case. Secondly we present the
implementation details of the Hydrogen BinaryOpStub whose performance is
evaluated in depth in chapter 4 in support of our thesis.

5.1 ToBooleanStub

The global ToBoolean function is used when a JavaScript value is to be used in
a boolean context e.g. as predicate for a conditional statement. Baseline code
invokes a ToBooleanStub to evaluate the truth value. The Stub returns with 0
or 1 since it is mostly used for conditional jumps where the comparison against
a global object (true/false) is more expensive. If used in a value context the true
or false object must be explicitly loaded after the Stub call. The ToBooleanStub
is also an IC Stub, only ever covering the types encountered so far at a specific
call site. The types and values representing ToBooleanStub IC states cover the
full semantics of truth in JavaScript:

Boolean the global true/false objects,

Undefined the global undefined object is ⊥,

Null the global null object is ⊥,

Smi or HeapNumber a numerical value x is > iff x 6= 0,

Strings strings of any kind are > iff they are non-empty.

Object an object o is > unless it is undetectable1.

1A V8 specific internal notion to mark certain global objects defined to evaluate to ⊥ by
ECMAScript standard.

25



The ToBooleanStub in V8 used to be implemented by around 100 lines of
macro assembly per platform. In this particular example the almost literally
same code was produced by the HBranch Hydrogen control flow instruction
already. The instruction has an input value used as boolean predicate and two
output basic blocks as jump targets. HBranch in optimized code is type specific
and corresponds to a ToBooleanStub in baseline code which provides the type
feedback.

Using a simple helper class called IfBuilder containing some accounting code
to deal which control flow graphs we reimplemented the ToBooleanStub in Hy-
drogen with just seven lines of code, as shown in Listing 5.1. The Hydrogen
ToBooleanStub was committed to V8 trunk in revision 14886.

Listing 5.1: The Hydrogen implementation of the ToBooleanStub.

1 IfBuilder if_true(this);
2 if_true.If<HBranch>(GetParameter(0), stub->GetTypes());
3 if_true.Then();
4 if_true.Return(graph(->GetConstant1()));
5 if_true.Else();
6 if_true.Return(graph(->GetConstant0()));
7 if_true.End();

Note the second argument given to the HBranch instruction in Listing 5.1
line 2, the set of supported types. Peeking into the corresponding Lithium
LBranch back end in Listing 5.2 we notice the instruction ending in an uncon-
ditional deopt point. As the comment in this listing already states this point
is reached if none of the previous test and compare instructions were successful
and it is unreachable (thus omitted) if the instruction is generic meaning all
types are covered. Since in Hydrogen CodeStubs we use the deoptimizer for IC
miss handling (additionally to the normal fallback to baseline code story) this
LBranch implementation can be fully shared between Stub code and optimized
code.

In the ToBooleanStub the expected set of types passed to the HBranch in-
struction represents exactly the IC state. The corresponding set of types for
optimized code generation is gathered by the type oracle querying aforemen-
tioned baseline IC state.

26



Listing 5.2: Deoptimizer call in the implementation of the Lithium LBranch
instruction.

1 void LCodeGen::DoBranch(LBranch* instr) {
2 [· · ·]
3
4 ToBooleanStub::Types expected =
5 instr->hydrogen()->expected_input_types();
6
7 [· · ·]
8
9 if (expected.Contains(ToBooleanStub::BOOLEAN)) {

10 // true -> true.
11 __ cmp(reg, factory()->true_value());
12 __ j(equal, instr->TrueLabel(chunk_));
13 // false -> false.
14 __ cmp(reg, factory()->false_value());
15 __ j(equal, instr->FalseLabel(chunk_));
16 }
17 if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
18 // 'null' -> false.
19 __ cmp(reg, factory()->null_value());
20 __ j(equal, instr->FalseLabel(chunk_));
21 }
22
23 [· · ·]
24
25 if (!expected.IsGeneric()) {
26 // We've seen something for the first time -> deopt.
27 // This can only happen if we are not generic already.
28 DeoptimizeIf(no_condition, instr->environment());
29 }
30 }
31 }
32 }

Subsequently we did some experiments splitting the HBranch implementa-
tion into smaller instructions. The experimental builder function in Listing 5.3
implements the same functionality in Lithium as Listing 5.2 in assembly. We
completely replaced the usage of HBranch by this builder function and verified
correctness using the V8 test suite. Unfortunately we were not able to avoid all
performance regressions, thus the implementation was not committed.

The main reason is that Crankshaft architecture assumes primitive opera-
tions to be implemented by one Hydrogen instruction. E.g. representation infer-
ence, instruction selection and optimizations are performed on a per-instruction
basis. Thus having a single Hbranch instruction with a flexible representation
is more suitable for the current architecture than several instructions possibly
interfering with representation inference and causing boxing and unboxing op-
erations. The approach could be facilitated by supporting nodes which can be

27



expanded to a whole subgraph at a later compile phase.

Listing 5.3: Experimental HBranch split into smaller instructions.

1 void HGraphBuilder::BuildToBoolean(
2 HValue* value,
3 ToBooleanStub::Types types,
4 int position,
5 HIfContinuation* continuation) {
6
7 [· · ·]
8
9 if (types.Contains(ToBooleanStub::BOOLEAN)) {

10 test.TrueIf<HCompareObjectEqAndBranch>(
11 value, graph()->GetConstantTrue());
12 test.FalseIf<HCompareObjectEqAndBranch>(
13 value, graph()->GetConstantFalse());
14 }
15
16 if (types.Contains(ToBooleanStub::NULL_TYPE)) {
17 test.FalseIf<HCompareObjectEqAndBranch>(
18 value, graph()->GetConstantNull());
19 }
20
21 [· · ·]
22
23 test.CaptureContinuation(continuation);
24
25 end->FinishExitWithDeoptimization(HDeoptimize::kUseAll);
26 }

5.2 BinaryOpStub

As discussed in section 4.2 BinaryOpStub mainly delegates to BuildBinaryOp-
eration, the Crankshaft builder function for binary operations. In Listing 5.4
lines 11 to 26 we see that the Stub can handle one additional special case which
is not present in the Crankshaft builder yet. When the Stub is generic there are
two different branches generated: next to generic addition there is a fast case
for string concatenation.

The reason for the string fast case is the frequent occurrence of string con-
catenations where one of the operands is sometimes numeric. This case is only
generated in the CodeStub builder and not inlined in optimized code because
the additional branch increases code size causing performance regressions. At
the current state of development it is advantageous to isolate this special case in
the generic Stub. With the hydrogenisation of string concatenation the situation
is likely to change since concatenation will be decomposable and its instructions
accessible to Crankshaft’s optimizations.

28



Listing 5.4: HydrogenCodeStub implementation of BinaryOpStubs.

1
2 template <>
3 HValue* GraphBuilder<BinaryOpStub>::BuildCodeInitializedStub() {
4 [· · ·]
5
6 if (stub->operation() == Token::ADD &&
7 left_type->Maybe(Type::String()) &&
8 !right_type->Is(Type::String())) {
9 // For the generic add stub a fast case for String

10 // addition is performance critical.
11 IfBuilder if_leftisstring(this);
12 if_leftisstring.If<HIsStringAndBranch>(left);
13 if_leftisstring.Then();
14 Push(BuildBinaryOperation(
15 stub->operation(), left, right,
16 handle(Type::String(), isolate()), right_type,
17 result_type, stub->fixed_right_arg()));
18 if_leftisstring.Else();
19 Push(BuildBinaryOperation(
20 stub->operation(), left, right,
21 left_type, right_type, result_type,
22 stub->fixed_right_arg()));
23 if_leftisstring.End();
24 result = Pop();
25 } else if ([· · ·]) {
26 [· · ·]
27 } else {
28 result = BuildBinaryOperation(
29 stub->operation(), left, right,
30 left_type, right_type, result_type,
31 stub->fixed_right_arg());
32 }
33 [· · ·]
34
35 // Reuse the double box of one of the operands if we are
36 // allowed to (i.e. chained binops).
37 if (stub->CanReuseDoubleBox()) {
38 HValue* operand = (stub->mode() == OVERWRITE_LEFT)
39 ? left : right;
40 [· · ·]
41
42
43 return result;
44 }

The code generated from the Hydrogen implementation of BinaryOpStubs is
very similar to the old assembly version. Of course there are differences, e.g. the
Stub used to check if both operands l and r are Smis at once by testing the Smi

29



tag on l ˆ r. We abstained from teaching Crankshaft this micro optimization.

5.2.1 Minor Key

Compiled CodeStubs are stored an retrieved from a cache since they are shared
between call sites. CodeStubs have a major key designated to the type of
Stub (e.g. BinaryOp, Load, Store, . . . ) and a minor key encoding the variant.
Together they form the identity hash used for the StubCache hashmap.

L
e
ft

 S
ta

te

F
ix

e
d

 R
A

rg
 (

b
o
o
l)

F
ix

e
d

 R
A

rg
 (

in
t)

R
ig

h
t 

S
ta

te

R
e
s
u

lt
 S

ta
te

S
S

E
2
 (

b
o
o
l)

O
v
e
rw

ri
te

 M
o
d

e
 (

e
n

u
m

)

O
p

e
ra

ti
o
n

 (
e
n

u
m

)
Figure 5.1: The minor key of a BinaryOpStub from left to right: (i) left ar-
gument type according to Figure 3.1, (ii) boolean indicating whether the right
argument was constant so far (only for mod), (iii) the constant right argument
(only used if (ii) is true), (iv) the right argument type (only used if (ii) is false),
(v) the result argument type, (vi) whether the stub was compiled for an SSE
architecture, (vii) whether the left or right hand double box can be reused to
store the result, (iix) the binary operation.

As already hinted in chapter 3 there exist many variants of BinaryOpStubs.
In Figure 5.1 we show how the 19 bits in the minor key are used to encode
all possible variants. First of all the Stub is specific to the binary operation
of course – five bits are used to encode the 11 different operations. Then we
specialize according to both argument- and the result types – each being in one
of the states from Figure 3.1.

There is a catch: integer modulo arithmetic of the form a % 2n which is
often used e.g. in cryptographic functions, can be simplified to a & (2n − 1).
Since this expression is much less expensive it even pays off to check for constant
arguments in the form 2n at runtime. Thus there are special modulo Stubs to
capture and remember constant rvalues. Since the minor key bitfield size is
limited we use an ad-hoc compression: if the right hand argument was constant
so far we set bit 3 (Fixed RArg) and use bit 4 to 7 to encode the exponent n. We
do not need to store the type of the right argument, since we can recover it (Smi
or Integer32) from the precise numerical value 2n. If the right hand argument is
not constant we clear bit 3 and use bit 5 to 7 for the normal right-state encoding.

30



The remaining 3 bits are used as follows: bit 12 marks BinaryOpStubs com-
piled for architectures supporting the SSE2 instruction set. This is necessary so
we can safely include SSE2 stubs in the precompiled snapshot image. Bits 13/14
specify Stubs which can reuse the left/right argument double box to return the
result.

5.3 Supporting Infrastructure

Especially for the hydrogenisation of BinaryOpStubs several functional exten-
sions to Crankshaft had to be made. We discuss some of those in the following
sections.

5.3.1 Back to the Future with X87

The Chrome browser and V8 still officially support Intel CPUs without the
Streaming SIMD Extension (SSE) instruction set. For Crankshaft however the
design decision was made not to support those platforms; only the baseline
compiler does. Of course the problem for Hydrogen CodeStubs being that they
need to be available on all supported platforms, since they are called mainly
from baseline code.

For the hydrogenisation of arithmetic operations we therefore had to add the
necessary support in Crankshaft to emit non-SSE code for all required Hydrogen
instructions. In particular floating point arithmetic has to be performed using
the x87 floating point-related subset of the IA-32 instruction set. Due to the
very low number of affected users and the high complexity of precisely tracking
the x87 stack registers a very simple but practical approach was chosen. Two
virtual registers are given to the normal register allocator to store double values.
We keep track of those two registers in the Lithium backend and whenever the
order of the physical stack registers does not match the virtual registers we emit
an fxch instruction to swap stack position 0 and 1. This fits into the existing
architecture since Crankshaft already allocates gap inter-instructions to resolve
phi nodes by moving values between registers. The implementation is efficient
since the BinaryOpStubs in the fast case don’t have more than two double values
live at the same time, thus no values have to be spilled. Additionally fxch can
be paired with many fpu instructions or removed completely from the execution
pipeline thus its latency is significantly below 1 cycle [5, 3].

5.3.2 To Integer Conversions

Additionally to the introduction of x87 stack values discussed in subsection 5.3.1
we had to implement the various conversions of such values to and from integer
registers and boxed values. We support truncating conversions which round
down to the next integer value e.g. used for shift operations and non truncating
conversions which bail out if precision is lost due to the conversion.

31



Double to integer conversion is highly dependent on the CPU generation
for Intel architectures. E.g. with the introduction of the fisttp instruction
with SSE3 the truncating conversion has become much faster and easier to
implement. For older models its even cheaper to perform bit arithmetic than to
use the designated x87 instructions.

As a simplification we encapsulated the four possible conversions2 and the
existing SSE versions into macro assembly instructions and replaced all ad-hoc
occurrences of such conversions in V8 by them. Thereby we ensured that the
supported value ranges are always the same thus reducing a possible source of
diverging behavior. For simple conversions the macro assembler inlines them;
more lengthy ones are in deferred code or in their own CodeStub to increase
code density and reduce memory footprint.

We also applied instruction level optimizations to those conversions in the
Lithium back end, since they are performance critical to BinaryOpStubs. As an
example on x64 we made the following improvement to the unboxing operation.
The logical instruction ordering (in pseudocode) being

1 function UnboxHeapNumber(maybe_number, mmx_register)
2 deoptimize if IsSmi(maybe_number)
3 deoptimize unless IsHeapNumber(maybe_number)
4 mmx_register <-- maybe_number[HeapNumberValueOffset]
5 end

By reversing lines 3 and 4 producing

1 function UnboxHeapNumber(maybe_number, mmx_register)
2 deoptimize if IsSmi(maybe_number)
3 mmx_register <-- maybe_number[HeapNumberValueOffset]
4 deoptimize unless IsHeapNumber(maybe_number)
5 end

we remove a data dependency between the mmx register and the map check
IsHeapNumber and facilitate preloading. The reordered function is still correct
and safe since (i) maybe number is guaranteed to be an object on the heap after
the Smi check on line 2 and (ii) we know that there is no object smaller than a
HeapNumber, thus line 3 will never read out of bounds. In the case the following
map check fails it just produces a random value that can be discarded. There
is no harm in loading that value in vain since deoptimizing is the slow case.

2Tagged to double and vice-versa, double to integer and vice-versa.

32



Chapter 6

Related Work

The Maxine Java VM follows a similar approach for code generation. The base-
line compiler (T1X) is a template-based compiler optimized for fast compilation
time. The templates for each bytecode are specified in an annotated Java sub-
set and compiled ahead of time by the optimizing compiler. The approach is
explained by Wimmer et al. [18]. The template language is more coarse and
high-level than Hydrogen and provides less control over the generated code.
Maxine templates have uniform calling conventions; every bytecode fully loads
and restores its arguments from the stack. They provide more guarantees, e.g.
type safety for the compiled code.

Würthinger et al. present a high-level language-agnostic VM implementa-
tion [23], which uses similar concepts for baseline code performance and type-
feedback. Guest languages are implemented as AST interpreters. After an
interpreter warmup phase the host system compiles the user space program to-
gether with the guest language interpreter using partial evaluation [6]. The
interpreters feature node rewriting, i.e. the AST nodes are specialized to the
most specific arguments encountered so far and are transitioned in-place to a
more generic version if needed. Thus they provide a tailored implementation in
the interpreter and type-feedback for partial evaluation. The functionality of
node rewriting is the same as inline cache stubs in V8. However in their system
the baseline interpreter implementation is the template for the optimized code
and not the other way round. It is an open question if this design is able to
yield similar performance as a custom single language compiler.

33



Chapter 7

Conclusions

In conclusion we can say that implementing compiler templates for a baseline
compiler in the HIR of the optimizing compiler is a practical approach. In
our case study we successfully replaced the assembly implementation of binary
operations in the baseline compiler of V8 by an implementation in Hydrogen.
Our work is extensively evaluated and used in production Chrome.

We were able to show that our approach does not depend on platform spe-
cific code anymore. Complexity is reduced, we implement the same functionality
with 1/4th of the previous source code. We respect encapsulation by access-
ing values with Hydrogen instructions instead of manipulating them in unsafe
assembly. This makes the code easier to maintain as assumptions about types
and objects are localized and encapsulated.

Additionally we show that most code duplication between baseline and op-
timizing compiler can be avoided. The resulting unification is more robust as
the source for diverging behavior is drastically reduced.

Meanwhile we verify that there are no performance regressions with our
changes.

The approach depends on a feature complete and integrated compiler. The
refactoring itself is non-trivial and uncovered existing bugs in the system. We
therefore suggest when starting from scratch to pursue the approach from the
beginning and first implement a compiler with small and simple instructions to
generate templates.

34



List of Figures

2.1 Hidden classes are adaptive models for JS objects. Two different
code paths (from top down) generate different maps for objects
a and b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Overview over the V8 compiler architecture. . . . . . . . . . . . . 5
2.3 Objects as defined in Figure 2.1 are layed out in memory accord-

ing to the order of properties given by the hidden class hierarchy. 7
2.4 AST of the wingspan function as defined in Listing 2.1 line 4. . . 8
2.5 Value representations of Crankshaft. . . . . . . . . . . . . . . . . 11

3.1 State machine of the BinaryOpStub IC. The String state is only
recorded for addition, since a string argument changes the se-
mantics of the plus operator. . . . . . . . . . . . . . . . . . . . . 17

4.1 LOC in the src folder of V8 repository. Marked revisions are part
of Hydrogenisation of binary operations. . . . . . . . . . . . . . . 21

4.2 Kraken JavaScript Benchmark version 1.1 from Mozilla, Octane
1.0 from Google and SunSpider 1.0.2 performance relative to
trunk revision 17103 (higher is better). Results are averaged
over 10 runs on a Intel Core i5 and 10 runs on a Intel Core 2
machine. Thin line segments represent trunk revisions unrelated
to BinaryOpStubs. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Breakdown of Octane 1.0 scores (higher is better). Results aver-
aged over 10 runs on a Intel Core i5 machine. Thin line segments
represent trunk revisions unrelated to BinaryOpStubs. . . . . . . 24

5.1 The minor key of a BinaryOpStub from left to right: (i) left
argument type according to Figure 3.1, (ii) boolean indicating
whether the right argument was constant so far (only for mod),
(iii) the constant right argument (only used if (ii) is true), (iv)
the right argument type (only used if (ii) is false), (v) the result
argument type, (vi) whether the stub was compiled for an SSE
architecture, (vii) whether the left or right hand double box can
be reused to store the result, (iix) the binary operation. . . . . . 30

35



Bibliography

[1] Bowen Alpern, Mark. N. Wegman, and F. Kenneth Zadeck. Detecting
equality of variables in programs. In Conference Record of the Fifteenth
ACM Symposium on Principles of Programming Languages, pages 1–11,
January 1988.

[2] Craig Chambers, David Ungar, and Elgin Lee. An efficient implementation
of SELF — a dynamically-typed object-oriented language based on proto-
types. In Proceedings OOPSLA ’89, ACM SIGPLAN Notices, volume 24,
pages 49–70, October 1989.

[3] Intel Corporation. Intel 64 and IA-32 Architectures Op-
timization Reference Manual. http://www.intel.com/
content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-optimization-manual.pdf, 2013.
Version from July 2013.

[4] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Trans. Program. Lang. Syst., 13
(4):451–490, 1991. ISSN 0164-0925. doi: 10.1145/115372.115320.

[5] Agner Fog. Instruction tables: Lists of instruction latencies, throughputs
and micro-operation breakdowns for Intel, AMD and VIA CPUs. http:
//www.agner.org/optimize/, 2013. Version from 2013-10-07.

[6] Yoshihiko Futamura. Partial evaluation of computation process: An ap-
proach to a compiler-compiler. Higher Order Symbol. Comput., 12(4):381–
391, 1999. ISSN 1388-3690. doi: 10.1023/A:1010095604496.

[7] Urs Hölzle, Craig Chambers, and David Ungar. Debugging optimized code
with dynamic deoptimization. SIGPLAN Not., 27(7):32–43, July 1992.
ISSN 0362-1340. doi: 10.1145/143103.143114. URL http://doi.acm.
org/10.1145/143103.143114.

[8] Ecma International. ECMAScript Language Specification, 5.1 Edition,
2012.

36

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.agner.org/optimize/
http://www.agner.org/optimize/
http://doi.acm.org/10.1145/143103.143114
http://doi.acm.org/10.1145/143103.143114


[9] Thomas Kotzmann and Hanspeter Mössenböck. Escape analysis in the
context of dynamic compilation and deoptimization. In Proceedings of the
1st ACM/USENIX international conference on Virtual execution environ-
ments, VEE ’05, pages 111–120, New York, NY, USA, 2005. ACM. ISBN
1-59593-047-7. doi: 10.1145/1064979.1064996.

[10] Edward S. Lowry and C. W. Medlock. Object code optimization. Commun.
ACM, 12(1):13–22, January 1969. ISSN 0001-0782. doi: 10.1145/362835.
362838. URL http://doi.acm.org/10.1145/362835.362838.

[11] marja@google.com. Crankshafting from the ground
up. https://docs.google.com/document/d/
1hOaE7vbwdLLXWj3C8hTnnkpE0qSa2P--dtDvwXXEeD0/pub, 2013.
Accessed: 2014-01-06.

[12] Rei Odaira and Kei Hiraki. Sentinel pre: Hoisting beyond exception de-
pendency with dynamic deoptimization. In Proceedings of the International
Symposium on Code Generation and Optimization, CGO ’05, pages 328–
338, Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-
2298-X. doi: 10.1109/CGO.2005.32. URL http://dx.doi.org/10.
1109/CGO.2005.32.

[13] Massimiliano Poletto and Vivek Sarkar. Linear scan register allocation.
ACM Trans. Program. Lang. Syst., 21:895–913, sep 1999. ISSN 0164-0925.
doi: 10.1145/330249.330250.

[14] John H. Reif and Harry R. Lewis. Symbolic evaluation and the global value
graph. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, POPL ’77, pages 104–118, New
York, NY, USA, 1977. ACM. doi: 10.1145/512950.512961. URL http:
//doi.acm.org/10.1145/512950.512961.

[15] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An analysis
of the dynamic behavior of javascript programs. SIGPLAN Not., 45(6):1–
12, June 2010. ISSN 0362-1340. doi: 10.1145/1809028.1806598. URL
http://doi.acm.org/10.1145/1809028.1806598.

[16] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers
and redundant computations. In Proceedings of the 15th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’88,
pages 12–27, New York, NY, USA, 1988. ACM. ISBN 0-89791-252-7. doi:
10.1145/73560.73562. URL http://doi.acm.org/10.1145/73560.
73562.

[17] Google V8. V8 Design Elements. https://developers.google.com/
v8/design, 2014. Accessed: 2014-01-06.

[18] Christian Wimmer, Michael Haupt, Michael L. Van De Vanter, Mick Jor-
dan, Laurent Daynès, and Douglas Simon. Maxine: An approachable vir-
tual machine for, and in, java. ACM Trans. Archit. Code Optim., 9(4):

37

http://doi.acm.org/10.1145/362835.362838
https://docs.google.com/document/d/1hOaE7vbwdLLXWj3C8hTnnkpE0qSa2P--dtDvwXXEeD0/pub
https://docs.google.com/document/d/1hOaE7vbwdLLXWj3C8hTnnkpE0qSa2P--dtDvwXXEeD0/pub
http://dx.doi.org/10.1109/CGO.2005.32
http://dx.doi.org/10.1109/CGO.2005.32
http://doi.acm.org/10.1145/512950.512961
http://doi.acm.org/10.1145/512950.512961
http://doi.acm.org/10.1145/1809028.1806598
http://doi.acm.org/10.1145/73560.73562
http://doi.acm.org/10.1145/73560.73562
https://developers.google.com/v8/design
https://developers.google.com/v8/design


30:1–30:24, January 2013. ISSN 1544-3566. doi: 10.1145/2400682.2400689.
URL http://doi.acm.org/10.1145/2400682.2400689.

[19] Andy Wingo. v8: a tale of two compilers. http://wingolog.org/
archives/2011/07/05/v8-a-tale-of-two-compilers, 2011. Ac-
cessed: 2014-01-06.

[20] Andy Wingo. a closer look at crankshaft, v8’s optimizing
compiler. http://wingolog.org/archives/2011/08/02/
a-closer-look-at-crankshaft-v8s-optimizing-compiler,
2011. Accessed: 2014-01-06.

[21] Andy Wingo. inside full-codegen, v8’s baseline com-
piler. http://wingolog.org/archives/2013/04/18/
inside-full-codegen-v8s-baseline-compiler, 2013. Ac-
cessed: 2014-01-06.

[22] Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Doug
Simon, and Christian Wimmer. Self-optimizing ast interpreters. In Pro-
ceedings of the 8th Symposium on Dynamic Languages, DLS ’12, pages
73–82, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1564-7.
doi: 10.1145/2384577.2384587. URL http://doi.acm.org/10.1145/
2384577.2384587.

[23] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler,
Gilles Duboscq, Christian Humer, Gregor Richards, Doug Simon, and
Mario Wolczko. One vm to rule them all. In Proceedings of the 2013 ACM
International Symposium on New Ideas, New Paradigms, and Reflections
on Programming &#38; Software, Onward! ’13, pages 187–204, New York,
NY, USA, 2013. ACM. ISBN 978-1-4503-2472-4. doi: 10.1145/2509578.
2509581. URL http://doi.acm.org/10.1145/2509578.2509581.

38

http://doi.acm.org/10.1145/2400682.2400689
http://wingolog.org/archives/2011/07/05/v8-a-tale-of-two-compilers
http://wingolog.org/archives/2011/07/05/v8-a-tale-of-two-compilers
http://wingolog.org/archives/2011/08/02/a-closer-look-at-crankshaft-v8s-optimizing-compiler
http://wingolog.org/archives/2011/08/02/a-closer-look-at-crankshaft-v8s-optimizing-compiler
http://wingolog.org/archives/2013/04/18/inside-full-codegen-v8s-baseline-compiler
http://wingolog.org/archives/2013/04/18/inside-full-codegen-v8s-baseline-compiler
http://doi.acm.org/10.1145/2384577.2384587
http://doi.acm.org/10.1145/2384577.2384587
http://doi.acm.org/10.1145/2509578.2509581

	Introduction
	V8 in a Nutshell
	Overview
	Canonical Example

	Hidden Classes and Object Layouts
	Baseline Compiler
	Inline Caches

	Crankshaft
	Representations
	Compile-Phases and Optimizations
	Deoptimizer

	HydrogenCodeStubs

	Binary Operations
	BinaryOpStub

	Results
	Killed Lines of Code
	Reduced Complexity
	Performance

	Implementation
	ToBooleanStub
	BinaryOpStub
	Minor Key

	Supporting Infrastructure
	Back to the Future with X87
	To Integer Conversions


	Related Work
	Conclusions

