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Abstract

Debugging is the main activity to investigate software failures, identify their root causes,
and eventually fix them. Debugging distributed systems in particular is burdensome, due
to the challenges of managing numerous devices and concurrent operations, detecting the
problematic node, lengthy log files, and real-world data being inconsistent.

Apache Spark is a distributed framework which is used to run analyses on large-scale data.
Debugging Apache Spark applications is difficult as no tool, apart from log files, is available
on the market. However, an application may produce a lengthy log file, which is challenging
to examine.

In this thesis, we aim to investigate various techniques used by developers on a distributed
system. In order to achieve that, we interviewed Spark application developers, presented them
with buggy applications, and observed their debugging behaviors. We found that most of
the time, they formulate hypotheses to allay their suspicions and check the log files as the
first thing to do after obtaining an exception message. Afterwards, we use these findings to
compose a debugging flow that can help us to understand the way developers debug a project.

i



Contents

1 Introduction 1

2 Technical Background 4
2.1 Spark Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 How Does Spark Run an Application on the Cluster? . . . . . . . . . . . . . . . 5
2.1.2 Spark with YARN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 HDFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Our Experimental Spark Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Experimental Setup 7
3.1 Debugging Stories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Reproducing Bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2.1 The First Bug: Task Not Serializable . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.2 The Second Bug: 64 KB JVM Bytecode Limit Problem . . . . . . . . . . . . . 10
3.2.3 The Third Bug: Corrupted Data . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.4 The Fourth Bug: Excess Transformations Problem . . . . . . . . . . . . . . . . 10

3.3 Developer Interviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.1 Professional Information Questionnaire . . . . . . . . . . . . . . . . . . . . . . 11

4 Discovering Strategies 13
4.1 Correctness and Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Answering RQ1: Discovering Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2.1 Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.2 Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.3 Debugging Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Challenges and Missing Tooling 23
5.1 Post-Mortem Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Answering RQ2: Requirement Collection . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Answering RQ3: Missing Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Related Work 27

7 Conclusion and Future Work 32

A Setting Up an Apache Spark Cluster 34
A.1 Upgrading Operating Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
A.2 Installing Java and Scala . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
A.3 Installing and Setting Up an Apache Hadoop Cluster . . . . . . . . . . . . . . . . . . . 36
A.4 Installing Apache Spark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

ii



CONTENTS iii

B Implementation of Bugs 43
B.1 Implementation of the First Bug: Task Not Serializable . . . . . . . . . . . . . . . . . . 43
B.2 Implementation of the Second Bug: Stack Overflow . . . . . . . . . . . . . . . . . . . . 45
B.3 Implementation of the Third Bug: Corrupted Data . . . . . . . . . . . . . . . . . . . . . 47
B.4 Implementation of the Fourth Bug: Stack Overflow . . . . . . . . . . . . . . . . . . . . 48

C Debugging Flow 51



1
Introduction

A bug is an error in a system that results in a faulty operation or a system failure. Bugs can arise due to
various reasons, such as carelessly designed logical structures and typos. Software failures caused $1.7
trillion in financial losses in 2018 [12]. Software bugs are the most frequent cause of such failures [12].

Developers use debugging tools to analyze programs and investigate bugs in their code. Such tools
allow them to step in and step out of code to investigate its behavior, or to track value changes in variables.
Most integrated development environments (IDE), like IntelliJ IDEA or NetBeans IDE, come with their
own debugging tools.1 2

In 1997, Lieberman [15] claimed that many programmers are still using “print” statements to debug
their code despite the existence of debugging tools. 14 years after Lieberman’s paper was published, Yin
et al. [25] mention that we are facing “the next generation of debugging scandal” and debuggers are not
able to keep pace with the development of programming languages. 6 years later, Beller et al. [5] conduct
a survey and observe that 8 out of 15 programmers do not use the IDE-provided debugging infrastructure
and prefer using “print” statements instead.

There are several factors that make debugging a difficult task. First of all, the complexity of a program
plays an important role. As complexity increases, bugs become trickier to solve. Secondly, while it might
be easy to observe the consequences of a bug, it is often no small matter to identify its cause. If the root of
a problem is unknown, then it is harder to understand and reproduce than solve. Finally, problems might
occur not only in the program itself, but also in any of the dependencies used to implement it. When a
program is modified on a regular basis, it can become difficult to track which dependencies do not work
anymore and require updating. If a dependency is a crucial component of a system, its malfunction can
render the entire program useless.

In distributed systems, Debugging is even more challenging for four primary reasons:

1. In distributed systems, operations are executed concurrently. Deadlocks and race conditions might
occur while waiting for other members of the system to operate or to share resources [6, 14, 18].
Debugging becomes difficult due to the nondeterministic behavior of systems and the difficulty to
reproduce failures.

1https://www.jetbrains.com/help/idea/debugging-code.html
2https://netbeans.org/features/java/debugger.html
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2. By definition, distributed systems consist of many devices of different kinds (e.g., mobile devices,
servers, home electronics) which have different software and hardware properties [6]. It is challeng-
ing to design a system that can communicate with numerous different devices [2, 6, 16, 18, 20, 21].
A node crash is confusing to tackle and detect in a distributed system.

3. Logs are the only source of information allowing developers to solve problems that occur in their
application. However, logs can be quite lengthy, making it difficult for developers to investigate.

4. Real-world data is always “dirty”, i.e., it contains errors and inconsistencies. Developers of big data
applications prefer using distributed systems to process and analyze large-scale data. Thus they need
to handle such errors and inconsistencies in data.

In this thesis, we seek to understand the current state of debugging distributed systems and the tools
used in the process. More specifically, we want to investigate how distributed systems developers tackle
problems in their applications and to shed light on their bug-fixing techniques. As a subject distributed
system for our investigation, we choose Apache Spark for three main reasons:

1. It is one of the most widely-used distributed computing frameworks.3

2. Apache Spark provides support for a wide range of Apache solutions. In the scope of this thesis,
we used Apache Spark, Apache Yet Another Resource Negotiator (YARN), and Apache Hadoop
Distributed File System (HDFS). 4

3. Apache Spark supports many programming languages (e.g., Scala, Java, and Python).5

As an experimental environment, we set up an Apache Spark cluster, identified and reproduced the
four most common problems that developers encounter. Then, we held interviews with seven professional
Apache Spark developers in order to observe their debugging methodologies. With their consent, the
screen and audio were recorded during the interviews. We went through the recordings, analyzed the steps
taken to debug an application, and found patterns which we used to form a debugging workflow. Later, we
describe the tool ideas that are suggested by interviewees.

After analyzing the results, we observe that the most common steps to debug an application are making
hypotheses, reading exception messages, and checking logs. We observe that when the problem is related
to data:

• Three out of seven interviewees check the file on the cluster;

• Two out of seven interviewees check the file on the local machine.

Furthermore, six out of seven interviewees check the class (if the exception message explicitly states
its name), i.e., they find the line where the exception is thrown, trace the method call and try to identify the
problem.

Using these findings, we design a unified debugging flow and explain how developers debug their
applications. The flow consists of two main parts, namely: finding the root of the problem and solving the
problem. All of our interviewees have a way (e.g., using orchestration frameworks) to be acknowledged
that a job has failed. However, as supported by our findings in the Markov model and the most frequent
steps previously mentioned, developers find it challenging to read the logs and solve the problem. We find
that developers start with checking the logs and coming up with a hypothesis. There are also common

3https://github.com/thedataincubator/data-science-blogs/blob/master/output/DC_
packages_final_Rankings.csv

4https://hadoop.apache.org/old/
5https://spark.apache.org/docs/2.2.0/
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ways to solve problems. For instance, if the problem is related to the code, they try to solve the problem
using a local debugger; or they check the file properties when the problem is related to data.

In order to understand the debugging methodology of Spark applications, we pose the following
research questions (RQ) to guide our study:

RQ1: How do developers debug Spark applications?
We learn that developers prefer to debug their codes on a local environment whenever possible. To

achieve this, they use the IDE debugger. In addition, they prefer to use different interactive environments
such Jupyter Notebooks, in which they can check code one line at a time.6 They use logs to detect problems
by locating the exception messages.

RQ2: What are the challenges that developers face when they debug such applications?
We observe that developers agree that logs are not always enough to gain insight into the problem.

They believe that some problems occur only on the server cluster, thus debugging on a local environment
does not help.

RQ3: How can we overcome these challenges?
We enquire interviewees about the tools they need the most. They recommended tools that can be split

into three categories: code experience enhancements, log enhancements, and dashboard implementation.
We find it interesting that our interviewees use external tools to schedule jobs and to be notified

regarding submitted jobs. In the same way, we would expect them to use some debugging tools that are
developed by researchers. Instead of using such tools, our interviewees use various methods, such as print
statements, local tests and debuggers. This may be due to a lack of commercial debugging tools.

Outline
• In Chapter 2, we give insights about internal parts of Apache Spark and our experimental Spark

environment.

• In Chapter 3, we explain the four main bugs we chose and how we chose them. We introduce our
interviewees and display statistics based on the first questionnaire.

• In Chapter 4, we answer RQ1 by presenting the results, the Hidden Markov Model, and the unified
debugging model.

• In Chapter 5, we answer RQ2 and RQ3 by presenting difficulties our interviewees encountered as
well as their suggestions for tools that would make their life easier.

• In Chapter 6, we present and discuss various distributed debuggers that were implemented in related
works.

• In Chapter 7, we conclude the thesis and present future works.

6https://jupyter-notebook.readthedocs.io/en/stable/

https://jupyter-notebook.readthedocs.io/en/stable/


2
Technical Background

2.1 Spark Architecture
Spark is an open-source cluster-computing system.1 2 It is widely used in industry because of its scalability
and speed. It works in-memory whenever possible, which is faster than disks and thus represents a great
advantage for algorithms requiring intensive computation (e.g., machine learning algorithms). Spark
supports the Scala, Python, Java, and R languages.3 4 5 6 Moreover, Spark has high-level libraries that can
be used on top, such as the Machine Learning library (MLlib) and Spark Streaming.7 8 For these reasons,
we chose Spark as our subject distributed system to study.

Spark is based on the Resilient Distributed Dataset (RDD) abstraction. RDD is a collection of
immutable objects, which means the records cannot be changed. In Spark we can perform transformations
and actions on data. A transformation produces a new RDD from the existing RDDs after applying
operations such as map(), filter(), or union(). An action, on the other hand, can be performed on the actual
dataset, i.e., directly on the files themselves (with operations like count(), collect() or saveAsTextFile(path)).

As can be seen in Figure 2.1, a Spark cluster consists of a master node and worker nodes. The master
node controls the cluster and assigns tasks to workers. Worker nodes execute tasks on partitioned RDDs
and return the results to Spark Context. Spark Context is a significant part of any Spark application because
it serves as a connection between the application and the Spark cluster.

Spark provides event logs for its applications, which developers can review through a web User
Interface (UI). These logs are the only source of information to find exception messages.9 If YARN (which
will be introduced shortly hereafter) and Spark are configured together, YARN’s Resource Manager, as

1http://spark.apache.org/docs/latest/index.html
2For the sake of simplicity, we chose to refer to Apache Spark as Spark.
3https://www.scala-lang.org/
4https://www.python.org/
5https://www.java.com/en/download/whatis_java.jsp
6https://www.r-project.org/
7http://spark.apache.org/docs/latest/ml-guide.html
8http://spark.apache.org/docs/latest/streaming-programming-guide.html
9https://spark.apache.org/docs/latest/monitoring.html
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seen in Figure 2.2, can be used to go through the application logs.10

Figure 2.1: A basic Spark cluster architecture

Figure 2.2: Resource Manager UI of Hadoop. Using the dropdown menu on the left, we can check the
cluster specs as well as the list of applications and their status. When we click on an application ID, we
can observe that application’s logs, DAG, history, and output (if any).

2.1.1 How Does Spark Run an Application on the Cluster?
When a job is submitted to a Spark cluster, Spark creates a Spark context to serve as a gateway, as well as
a Directed Acyclic Graph (DAG), which is a logical graph representation of the Spark job. Spark then
applies some optimizations (e.g., a pipeline of transformations) and creates small execution plans known
as “tasks”. The tasks are sent to the Spark Cluster, which forwards them to the Driver Program. The driver

10For the sake of simplicity, we chose to refer to Apache Hadoop YARN as YARN, and Apache Hadoop as Hadoop.
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program manages resources and interacts with the Cluster Manager. Finally, the driver program launches
executors on worker nodes to perform the tasks. Once executions are completed, the results are sent to
the Cluster Manager, which forwards the results to the Driver Program. When the driver program exits, it
releases all the resources and terminates the executors.

2.1.2 Spark with YARN
YARN is a system designed to manage clusters, which includes job scheduling and resource management.
It has two essential components: a resource manager and a node manager. The resource manager is the
master node that communicates with YARN workers, manages cluster resources, orchestrates tasks, and
coordinates the application master, which is used for requesting resources, with the node manager. Node
managers are responsible for managing their own resources; they launch and keep track of processes
assigned to them.

2.1.3 HDFS
HDFS is a highly fault-tolerant distributed file system that can handle large data sets. It has two essential
components, namely the name node and data nodes. The name node is the master that manages the file
system and regulates access to files, e.g., to open a file in the system. Data nodes, on the other hand,
manage data storage on worker nodes.

2.2 Our Experimental Spark Cluster
Our Spark cluster is set up using four servers, which run on Debian 9.7, Ubuntu 18.08 and Ubuntu 16.04.

Spark works with Java, Scala, and Python. We choose to use Scala with Spark. Thus, we need to install
Scala 2.11, which also requires JDK 8. Appendix A.2 contains a brief tutorial on how to install both Java
and Scala.

The next step is to install Hadoop and Spark, which are configured to work together. We have Spark
2.0.2 installed on all servers. We describe the step-by-step installation and the configuration of a Spark
cluster with Hadoop from scratch in Appendices.

Besides a node manager and a data node, the master node contains a history server to the display
status of Spark jobs, a name node, and a resource manager. A presentation of the cluster can be seen in
Figure 2.1. The most important configuration files of the Hadoop system are core-site.xml, hdfs-site.xml,
mapred-site.xml, and yarn-site.xml. As for the Spark environment, the spark-defaults.conf file is essential.
These configuration files allow Hadoop and Spark to communicate with each other and with the operating
systems.



3
Experimental Setup

3.1 Debugging Stories
In order to observe the way a developer debugs a project, we need a set of simple applications that produce
failures. Thus, we search for the most frequently encountered problems in Spark that we can reproduce
during the interviews. To that end, we turn to Stack Overflow, one of the largest communities where
developers can discuss their questions and help each other.1

On Stack Overflow, there are more than 19 million questions. Since we want to obtain insight about
the most recurrent issues Spark developers face, we add a filter showing only questions tagged as [apache-
spark]. After the first filtering criteria, we end up with 57,494 questions, which we sort by the number
of votes in descending order. We go through the first 50 pages of 15 questions per page, which is 750
questions in total. We disregard “How to ...” and “What is ...” questions such as “What is the difference
between map and flatMap?”, because we are not interested in tutorial-type questions. After selecting four
questions, we talk to a Spark application developer to get their feedback; they recommend adding the
java.lang.StackOverflowError exception. We select an initial batch of questions regarding the following
common exceptions:

1. java.io.NotSerializableException: 118 questions asked on Stack Overflow, six of which are in the
top 750 questions.

2. java.lang.OutOfMemoryError: 150 questions asked on Stack Overflow, four of which are in the top
750 questions.

3. java.lang.ClassNotFoundException: 220 questions asked on Stack Overflow, three of which are in
the top 750 questions.

4. java.net.ConnectException: 31 questions asked on Stack Overflow, two of which are in the top 750
questions.

5. java.lang.StackOverflowError, which is recommended by a Spark application developer as one of
the hardest errors to debug.

1https://stackoverflow.com/
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A pilot interview with another Spark application developer reveals two important aspects about our
selection:

• Some exceptions are too simple, meaning that a developer who is new to the Spark environment
is likely to encounter them. For instance, the java.lang.ClassNotFoundException means that the
application cannot find the class given.

• Each code should be accompanied by a small scenario, meaning that we should tell an implementa-
tion story to a Spark application developer to make the purpose of the code more meaningful. The
variable should be explicitly named so that they fit the implementation story.

After reworking our examples, we keep the following four bugs:

1. Serialization problem, i.e., java.io.NotSerializableException: encountered when a class cannot be
serialized.

2. 64 KB JVM bytecode limit problem: encountered when a case class, which is used to model
immutable data, has too many fields and excessive nesting. This situation results in exceeding the
64 KB bytecode JVM limit and throws a java.lang.StackOverflowError exception.

3. Data problem, i.e., java.lang.NumberFormatException: encountered when part of the data is cor-
rupted or changed.

4. Excess transformations problem, i.e., java.lang.StackOverflowError: encountered when the stack
runs out of memory because too many operations are queued and Spark expects an action to be
performed.

3.2 Reproducing Bugs
Here, we explain the bugs we reproduce, the implementation of which can be found in Appendix B. We
briefly explain the simple story behind the implementation, why a bug occurs, where it occurs in the code,
and the possible solutions for it.

3.2.1 The First Bug: Task Not Serializable
Implementation Story: The application, adapted from a Stack Overflow post2, is called SalesReportApp,
and its purpose is to calculate the mean of high sales. Then, the application prints the result.

This application throws java.io.NotSerializable exception whenever a method of a non-serialized class
is called.

Bug Definition: In Spark, classes are expected to be serializable. As such, when the workers invoke
methods on a non-serializable class, then the application throws java.io.NotSerializable.

Possible Solutions: There are three solutions to solve this exception:

• In Scala, unlike a class, an object is serializable by default. Therefore, the first solution is to add
“extends Serializable” after the class definition as seen in the Listing 2. Thus, the class can be
serialized, and the bug can be solved.

2https://stackoverflow.com/questions/22592811/task%2Dnot%2Dserializable%2Djava%2Dio%
2Dnotserializableexception%2Dwhen%2Dcalling%2Dfunction%2Dou

https://stackoverflow.com/questions/22592811/task%2Dnot%2Dserializable%2Djava%2Dio%2Dnotserializableexception%2Dwhen%2Dcalling%2Dfunction%2Dou
https://stackoverflow.com/questions/22592811/task%2Dnot%2Dserializable%2Djava%2Dio%2Dnotserializableexception%2Dwhen%2Dcalling%2Dfunction%2Dou
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1 ...
2 class SalesCalculator(sales: RDD[Int]) {
3 ...
4 }
5

Listing 1: Old implementation of SalesCalculator.scala

1 ...
2 class SalesCalculator(sales: RDD[Int]) extends Serializable {
3 ...
4 }
5

Listing 2: New implementation of SalesCalculator.scala

• In Scala, a method is a part of a class. A function, on the other hand, is a complete object. Thus,
changing the problematic method to a function solves this problem. The change can be observed in
listings 3 and 4. However, this solution depends on our business solution. If it is not convenient, we
should not change the definition and keep it as a method.

1 ...
2 def meanOfHighSales(): Double = {
3 highSales().mean()
4 }
5 ...
6

Listing 3: Old implementation of meanOfHighSales() in SalesCalculator.scala

1 ...
2 val meanOfHighSales(): Double => {
3 highSales().mean()
4 }
5 ...
6

Listing 4: New implementation of meanOfHighSales() in SalesCalculator.scala

• The last solution is explained by the fifth interviewee “Spark tries to pull all the dependencies,
which is also the class in this case. I can use a conversion. I copy the value to a local variable, so
that it won’t pull the whole class.” See the changes in listings 5 and 6.

1 ...
2 class SalesCalculator(sales: RDD[Int]) {
3 val highSalesThreshold = 75
4 def highSales(): RDD[Int] = {
5 sales.filter(entry => entry => highSalesThreshold)
6 }
7 def meanOfHighSales(): Double = {
8 highSales().mean()
9 }

10 ...
11 }
12

Listing 5: Old implementation of variables in SalesCalculator.scala
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1 ...
2 class SalesCalculator(sales: RDD[Int]) {
3 val highSalesThreshold = 75
4 def highSales(): RDD[Int] = {
5 val tmp = highSalesThreshold
6 sales.filter(entry => entry >= tmp)
7 }
8 def meanOfHighSales(): Double = {
9 highSales().mean()

10 }
11 ...
12 }
13

Listing 6: New implementation of variables in SalesCalculator.scala (see the difference on line 5)

3.2.2 The Second Bug: 64 KB JVM Bytecode Limit Problem
Implementation Story: The application, adapted from an issue on Apache Spark’s Jira3, is called
GradeApp, and its purpose is to create grade reports. After reading the grades from a file on HDFS, the
application converts them to a Dataset, which is a type secure data collection in Spark, groups them by
report, and counts the reports.

We receive a java.lang.StackOverflowError exception when creating a nested structure and applying
some operations on it.

Bug Definition: The java.lang.StackOverflowError occurs because of too many variables and nesting
of constructors, which results in exceeding the 64 KB JVM bytecode limit.

Possible Solutions: There are two possible solutions to this problem. The first solution is to decrease
the number of fields and the second solution is to remove the nesting. The choice between both solutions
depends on our business problem and how we would like to solve it.

3.2.3 The Third Bug: Corrupted Data
Implementation Story: The application is called FindEmployeeApp, and the aim is to find the number of
employees in a department whose ID value is given.

In this bug, we simulate data corruption that occurs when files are sent to the cluster. When the unit
test is run on the local file, we do not encounter any problem, but when reading the distant file on the
HDFS, the exception java.lang.NumberFormatException is thrown.

Bug Definition: java.lang.NumberFormatException occurs when the type of the expected value does
not match the type of the current value. In this example code, a string value is found when an integer value
was expected.

Possible Solutions: Once the corrupted data is found, it can be either removed, changed or discarded.
This choice depends on the application developers’ access, authority on the data, and the business logic.

3.2.4 The Fourth Bug: Excess Transformations Problem
Implementation Story: The application, adapted from an issue on Apache Spark’s Jira4, is called
DanceChoreography. We read a file where each line contains a pair of dancing partners. The program

3https://issues.apache.org/jira/browse/SPARK-22523
4https://issues.apache.org/jira/browse/SPARK-5499?jql=project%20%3D%20SPARK%20AND%

20text%20˜%20"java.lang.StackOverflowError"

https://issues.apache.org/jira/browse/SPARK-22523
https://issues.apache.org/jira/browse/SPARK-5499?jql=project%20%3D%20SPARK%20AND%20text%20~%20"java.lang.StackOverflowError"
https://issues.apache.org/jira/browse/SPARK-5499?jql=project%20%3D%20SPARK%20AND%20text%20~%20"java.lang.StackOverflowError"
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simulates a dance choreography where a woman and a man switch places in every iteration of the loop. For
instance, if a pair is woman1-man1, then on the next iteration of the loop, the pair will be man1-woman1.

Our second java.lang.StackOverflowError exception is thrown during a loop of 1000 iterations.
Bug Definition: In Spark, transformations are lazily evaluated. Lazy evaluation means that transfor-

mations are stored temporarily and not applied until an action is performed. After the action is performed,
Spark applies all transformations which might fill up the Java stack memory and cause the application to
throw a java.lang.StackOverflowError.

Possible Solutions: This exception can be solved in three different ways. The first of them is to
increase the stack memory so that it will not fill up. Secondly, it is possible to avoid this problem by
regularly caching the transformation results in the in-memory cache. Lastly, once in a while, we can
use a checkpoint to store an intermediate version of the RDD to the HDFS before applying subsequent
transformations.

3.3 Developer Interviews
After finishing the implementation, we prepare simple data files for each application and copy them to the
cluster. Also, we use Simple Build Tool (SBT) to create Java ARchive (JAR) files of each application and
upload them to the cluster and the IntelliJ IDE in order to show the code to the interviewees.5 We then
schedule interviews with seven professionals who are knowledgeable Spark application developers.

Before every interview, we explain to the participants the goal and steps of our research. With their
consent, both audio and screen are recorded for the duration of the interview. The interviews are semi-
structured, which means we are open to deviation from the interview plan. There are three people involved
in the interview: an interviewee, an interviewer, and an observer. An observer should follow the interview,
but can also ask and discuss questions.

The first part of the interview consists of a questionnaire about the interviewee’s professional experience,
which is explained in Section 3.3.1. Then, we run the sample applications one at a time. Finally, we
conduct a post-mortem survey, which is explained in Section 5.1.

3.3.1 Professional Information Questionnaire
The first four questions are aimed at gathering information about our interviewees, while the remaining
two relate to their experience while working on Spark applications:

1. How long is your professional experience in industry?

2. How long is your experience in Scala?

3. How long is your experience in Spark?

4. How many “different” projects that use Spark did you work on in your experience?

5. When you encounter a Spark job failure, what are your first steps to investigate?

We want to learn what our interviewees do right after they learn that their application has failed and
how they search for the problem.

6. What are your tools for debugging failed Spark jobs?

If they know there is a problem, how do they find it? Do they use any software applications?

5https://www.scala-sbt.org/

https://www.scala-sbt.org/
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In Figure 3.1, we see that the interviewees have at least three years of experience and are notably
well-versed in industry, Scala, and Spark. Also, they use Spark to develop applications in various major
projects.

Figure 3.1: Experience of our interviewees in industry, Scala, and Spark; number of “different” projects
that the interviewees worked on. Each column represents an interviewee. Each colored cell represents the
number of years or, in the case of the last row, the number of projects (red: one or less; orange: between
one and three; yellow: three; green three and above).



4
Discovering Strategies

In this chapter, we present the results of the interviews and address the first question (RQ1: How do
developers debug Spark applications?) introduced in Chapter 1. The findings discussed in this chapter are
based on our analysis of the collected data and notes during our interviews with Spark developers.

4.1 Correctness and Speed
We calculate how long each developer takes to fix each bug using the length of the recordings as in Figure
4.1. The durations vary from 2 minutes 26 seconds to 20 minutes 23 seconds. On average, interviewees
need 8 minutes 12 seconds to complete each challenge, which is quite reasonable in real-world applications.
We do not interfere with the interviewees as they work on the problems; however, we help them when they
need it.

Figure 4.1: Durations to solve bugs. Each row and column represent bugs and interviewees respectively.
The color code refers to cases where we explain the problem and its possible solutions (red) and those
where developers figure it out on their own (green). Each cell represents the duration of an interviewee to
solve a bug. In addition, we show average duration for each interviewee and for each bug as well as the
global average.

We introduce the notion of step, i.e., an action taken by the developer to solve a bug, and that belongs
to a specific category. For instance, when a developer runs a test before making any changes, sees an

13
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exception, makes changes in his code, then runs the test again with the new changes, we consider this
sequence to comprise four steps. In Figure 4.2, we count the number of steps, 3 being the lowest and 13
the highest. We also include the average number of steps per interviewee in order to derive the global
average (6.39).

Figure 4.2: Number of steps to solve a bug. Each row and column represent bugs and interviewees
respectively. The color code in this table refers to the scale of steps, from low (dark green) to high numbers
(red). Each cell contains the number of steps an interviewee takes to solve a bug. In addition, we show the
average number of steps for each interviewee and each bug as well as the global average.

In Figure 4.3, we compare the number of steps with the debugging duration per bug. We find out that,
in general, interviewees are faster in solving the third bug, java.lang.NumberFormatException, and quite
slow in solving the second bug (java.lang.StackOverflowError). We observe that we cannot generalize the
relationship between steps and duration. For instance, the seventh interviewee solves the second bug in 20
minutes 23 seconds (the highest duration) in only 7 steps, which is close to the average. On the other hand,
it take 11 minutes 42 seconds for the fourth interviewee to solve the first bug, but they do so in 13 steps
(the highest number of steps).

4.2 Answering RQ1: Discovering Strategies
In this section, we address our first research question (RQ1: How do developers debug Spark applications?)
by investigating our interviewees’ strategies as they debug the sample applications. More specifically,
we look for common patterns in their strategies in order to build a model, which ultimately allows us to
propose a debugging workflow.

4.2.1 Patterns
Based on the debugging steps that we identify manually with the help of the recordings, we create a
classification comprising of the following steps:

1. Checks the logs on the console (via terminal or command line): Tells us the interviewee uses
the console to see if anything has gone wrong.

2. Sees the exception message: An exception message refers to a message generated by the Java
Virtual Machine (JVM), such as, java.lang.StackOverflow. The interviewee might see the exception
message either on the console or on the Resource Manager.

3. Checks the logs on the Resource Manager: The interviewee uses the Resource Manager interface
to find the exception message.

4. Formulates a hypothesis: Once the bug is found, the interviewee formulates a hypothesis and tries
to find the cause of the problem and its possible solutions.
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Figure 4.3: Number of steps vs. time to solve a bug (per bug)

5. Inspects the class that threw the exception: The interviewee finds a class name in the log file and
checks the class.

6. Suggests to do something: After making a hypothesis, the interviewee suggests to make changes,
e.g., in the code.

7. Runs the test without making any changes in the code: The interviewee prefers to run a test (if
there is any) without making any changes.

8. Makes changes in the code: This category refers to any kind of changes done to the code.

9. Runs the test with the new changes: The interviewee runs the test after having made changes in
the code.

10. Runs the code with the new changes on the cluster: The interviewee runs the application on the
cluster after having made changes in the code.

11. Searches the exception on the internet: The interviewee searches for possible causes on the
internet if they cannot think of any.

12. Checks the size of the input file on HDFS: The interviewee wants to see the size of the input file
on the cluster.

13. Checks the input file on the cluster: The interviewee takes a look at the contents of the remote
input file.



CHAPTER 4. DISCOVERING STRATEGIES 16

14. Inspects the deployment script: The interviewee investigates the script that is used to upload the
application to the cluster.

15. Checks the local input file: The interviewee takes a look at the contents of the local input file.

16. Writes tests: In the absence of tests, the interviewee prefers to write their own to verify whether the
application runs as expected locally.

17. Runs their own tests: The interviewee runs the test that they have written.

18. Changes the script: The interviewee changes the script that is used to run the application on the
cluster.

Each category is identified by a letter, ranging from A to R (see Figure 4.4). These letters and their
respective colors serve as the basis for the definition of patterns.

Figure 4.4: The guideline for patterns

In Figure 4.5, we lay out the debugging steps followed by interviewees for each bug. By looking at
the raw count for each category, we observe that some steps, such as checking the logs for exception
messages (A, B, C), modifying the code (H) or running tests (G, I), are more common than others. This is
not surprising because they are fundamental to application development and debugging. Another recurring
step is interviewees reporting that they suspect something (D); this is explained by the fact that we ask
them to describe their thought process out loud during the interviews.

While looking for patterns in the developers’ initial approach to tackling a problem, we notice that
their first intention is to find the exception (B) message in the logs. The way they do this varies from
one developer to another. Some are quite determined to always check the console first (A) and then the
Resource Manager (C), while others do the opposite or check only one source of information. The choice
between one tool or the other mostly depends on the length of the log file (it is easier to read long logs on
the Resource Manager).
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What they do next depends on the nature of the problem. In the case of the first bug, the class
name is explicitly given in the logs. This leads interviewees to check the line where the exception is
thrown. In the third bug, which is data-related, the logs explicitly indicate which data is corrupted. This
results in developers trying to locate it both in the local and remote files. For the second and last bugs,
a java.lang.StackOverflow exception is raised. This means no clear course of action is prompted by the
logs. This is highlighted by the fact that developers make several hypotheses (D) as to what the root of the
problem could be.

Figure 4.5: Debugging patterns grouped by each interviewee

In contrast to our previous findings, we observe that some steps are done only by a few interviewees
most likely because of personal preferences and debugging style. For instance, the last interviewee writes
their own test (P) and runs it (Q) because no tests are provided for that bug.

We are surprised to see that some operations are not more frequent. One example concerns checking
the file size (L). Since file size can cause the problems encountered in the sample applications related to
stack size, we would expect more developers to undertake this step. In addition to this, stack size can be
modified by editing the Spark submit script (R); it is therefore surprising not to see more developers try
this solution.

4.2.2 Hidden Markov Model
A Markov Model represents a stochastic process where each state depends only on the previous state. A
Hidden Markov Model (HMM) is a Markov model with probabilities of sequences of observable events.
However, some of the events might be hidden and thus cannot be observed directly. HMMs can capture
hidden information in a model using observable information. HMMs are used in many fields such as
computational biology, recommender systems, and handwriting. Although there are observable states,
such as reading the logs, making changes in the code and running tests, debugging is a dynamic process
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Figure 4.6: Debugging patterns grouped by each bug

and unpredictable events may occur. Thus, we believe that HMMs are a suitable way of presenting how
our interviewees debug thanks to their descriptive strength.

START-A 0.68 B-D 0.56 D-C 0.04 E-H 0.33 H-G 0.08 N-C 0.50
START-C 0.11 B-E 0.11 D-D 0.29 E-K 0.33 H-I 0.50 N-D 0.50
START-G 0.14 B-F 0.04 D-E 0.07 F-G 0.50 H-J 0.17 O-A 1.00
START-M 0.07 B-G 0.07 D-F 0.04 F-O 0.50 H-M 0.08 P-Q 1.00

A-B 0.38 B-H 0.04 D-H 0.25 G-A 0.20 J-A 1.00 R-J 1.00
A-C 0.35 B-M 0.04 D-K 0.07 G-B 0.30 K-D 0.50 D-END 0.43
A-D 0.08 C-B 0.59 D-L 0.04 G-C 0.10 K-H 0.50 G-END 0.04
A-G 0.08 C-D 0.27 D-M 0.11 G-D 0.10 L-D 1.00 H-END 0.11
A-M 0.04 C-E 0.05 D-N 0.04 G-H 0.2 M-A 0.17 I-END 0.21
A-N 0.04 C-G 0.05 D-P 0.04 G-M 0.10 M-C 0.33 J-END 0.07
A-R 0.04 C-H 0.05 E-C 0.17 H-A 0.08 M-D 0.33 M-END 0.11
B-C 0.15 D-B 0.04 E-D 0.17 H-D 0.08 M-O 0.17 Q-END 0.04

Table 4.1: Frequency table. Pairs are on the left-side whereas their probabilities are on the right-side.

Every developer has their own way of solving problems. Sometimes, they perform an operation which
is not preferred by others. In our HMM, we see that some pairs of steps have a probability of 1 (J-A,
L-D, P-Q and R-J). However, since they occur only once or twice, we cannot infer any general debugging
behavior from these observations.

Often, however, developers follow similar approaches to solve their problems. Here, we investigate
the next most frequent pairs, namely START-A (0.68), C-B (0.59), and B-D (0.56). The only source of
information provided by Spark is the logs. Therefore, we expect to see the interviewees choose to start their
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debugging by checking the logs on the console (START-A), which is the case in 19 out of 28 debugging
cases. Another way of locating the exception message is to check the Resource Manager, which explains
the relatively high probability of the C-B pair. Lastly, the B-D pair indicates that interviewees start making
hypotheses as soon as they have acknowledged the exception message.

Next, we observe that interviewees use the following pairs of operations with a 0.50 probability:

• The H-I pair (running the test cases after making changes) is one of the most common ways to see if
one’s code works or not.

• The K-D and K-H pairs (after checking an online source, a developer either comes up with a
possible solution or gains knowledge about the problem and makes a hypothesis). This finding is
not interesting to us because they are the only two possible outcomes after looking for information
on the internet.

• The other three pairs are used to solve specific problems:

– The F-G pair is useful if the problem is related to the code;

– The N-D pair can be used for configuration-related issues (e.g.,, stack memory size)

– The F-O pair can be seen when fixing data-related bugs.

Lastly, we notice in our HMM that the D-D pair is also frequent because developers tend to make
several hypotheses rather than just one. Although we only look for pairs using HMM, we should also
highlight the D-x-D triad , where x can be any step except D. It shows that the developer makes changes
to their initial hypothesis after having tried an operation. For instance, the D-H-D triad tells us that the
changes done by the interviewee were unsuccessful.

4.2.3 Debugging Flow
Using the results from sections 4.2.1 and 4.2.2, we generalize the Markov model to a debugging flow,
which presents one possible approach to debugging Spark applications. This overview can be especially
helpful for new developers or for those who are interested in improving debuggers. The complete graph
can be found in Appendix C. In this section, we focus on each part of the workflow and explain them.

Finding the Root of the Problem

The debugging adventure starts once the developer learns the job has failed. Then, the developer examines
the logs to find the exception message. In Figure 4.8, we present the beggining of debugging. We introduce
two subparts, learning the job has failed and checking the logs.

Learning the Job Has Failed: There are many ways to be informed about the status of jobs. Most
interviewees mention that they have an “monitoring system,” such as Grafana and Prometheus.1 2 In
such systems, a notification is sent to the developer whenever something happens, whether it is a piece
of bad news or good news from the job. Some of the interviewees also report using some “orchestration
frameworks,” such as Apache Airflow, which displays scheduled jobs and their DAGs, as well as their
status.3 In addition to these methods, most of them also said they have “scripts” that they write to check
their jobs. Others still prefer to check the job manually by inspecting the logs. The most unusual type of
the manual inspection we encounter comes from the third interviewee, who said: “I usually know how
much time I would expect for each cell to run in Jupyter. So, I have a kind of gut feeling.”

1https://prometheus.io/
2https://grafana.com/
3https://airflow.apache.org/

https://prometheus.io/
https://grafana.com/
https://airflow.apache.org/
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Figure 4.7: Hidden Markov Model of debugging pairs. The red circles represent the start and end points.
The shade of the edges refers to the scale, from a low probability (light gray) to a high probability (dark
gray).

Checking the Logs: Once the developer learns the job has failed, they move on to the next step, which
is checking the logs and tracing the exception message. In Spark, there are three possible ways to find
an exception message. In reality, developers prefer to use tools, e.g., schedulers, which also allows them
to take a look at the logs. During our interviews, most of the interviewees prefer to use the console as
their first step. However, we observe that if the logs are too long, they move on to the Resource Manager
instead. Some of them use search functions on a browser to find the exception message more easily. This
is especially useful when dealing with lengthy log files. However, if the log file is too long, the browser
might crash.



CHAPTER 4. DISCOVERING STRATEGIES 21

Figure 4.8: Finding the Root of the Problem

Figure 4.9: Solving the problem

Solving the Problem

In Figure 4.9, we present the flow of solving the problem once a developer comes up with a hypothesis.
The problem can be related to one or several of three main categories, namely the code, the data or the
configurations used to submit a job. It is not always clear to which category the problem belongs. This
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means that developers often come back to this part of the workflow.
Solving Code-Related Problems: If the problem is related to the code, developers prefer to use a

local debugger. However, it is not always convenient to use a local debugger since the problem might be
particular to the cluster. The second way is to write test cases to see where the application fails, but again
testing might not be enough to solve a problem. The second interviewee says: “... we don’t really have
test cases. Except for common functionalities...” The last way to debug an application, recommended by
some interviewees, is to use a notebook (e.g., Jupyter). A notebook consists of cells of code. One can
write each line of code to a separate cell then run the notebook one cell at a time to find the problematic
line. The second interviewee refers to notebooks as an “interactive” way to detect a problem. However,
although this approach can help developers to see which line is failing, the root of the problem might be
deeper. One creative way of debugging code that we observed in one of the interviewees is to use a binary
approach. They check the line in the middle of the code, and if it works, they move to the middle line of
the second part and so on. Whatever the approach, developers finally make all necessary changes to the
code and re-run the application.

Solving Data-Related Problems: When the problem is related to the data, we observe that our
interviewees follow one of two paths. The first one is to check the size of the data file. The second is
to check the data itself. For instance, developers use a Jupyter notebook to observe each stage of data
transformation. If they believe there is a problem, then they either reduce, re-create or ignore the data.
These solutions are also based on the developer’s permissions; they might not have the authorizations to
access or make changes to the data. After they make the changes, they re-run the application.

Solving Parameter-Related Problems: If the problem is related to the parameters, we observe that
there are three possible ways to find the problem. First, the developer can check the pipeline to see where
the problem has occurred. Secondly, one can examine the Spark metrics that contain the properties of the
Spark environment, such as driver heap usage, driver Java Virtual Machine (JVM) memory pools, and
executor HDFS reads. Lastly, we can investigate the script which is used to submit the job. Usually, the
script consists of different parameters such as the number of workers and the deploy mode. After the
problem is found, one can change the parameters and run the application again.

Figure 4.10: Verification

Verification (Figure 4.10): The developer can run the application again either locally (if possible) or
on the cluster. If running locally works, then they re-run the application on the cluster. If the application
still fails, then one must go back to the beginning of the debugging flow (see Figure 4.8).



5
Challenges and Missing Tooling

In this chapter, we present the post-mortem questionnaire that we ask after coding part of an interview and
interviewee’s replies. Also, we answer RQ2 and RQ3.

5.1 Post-Mortem Questionnaire
After the coding part of the interviews, we ask our interviewees some questions about their working habits
in a Spark environment. The answers to these questions, except for the first one, are discussed throughout
the rest of the thesis. The questions are as follows:

1. Have you seen these bugs before?

We would like to learn if the interviewees have experienced the problems we showed them during
the coding part of the interviews.

2. What do you do after you see the exception message?

We want to learn the first thing they do once they find the exception message.

3. How do you know if there is a job failure?

In contrast to the previous question, this question aims to discover which tools Spark developers use
to be acknowledged when an application finishes with failure.

4. What is the nastiest type of bugs you encountered in Spark applications?

We ask the developers to share the most challenging problems that they had while working on a
Spark project.

5. Would you describe a tool that you miss when debugging Spark applications? What does it do?
Why do you think it is not there?

We ask the developers to describe a tool that is needed to debug Spark applications and possible
challenges to implement such a tool.

23
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Figure 5.1: Experiences of our interviewees with our experimental bugs. Each row and column represent
bugs and interviewees respectively. Each cell states whether the interviewee has experienced the bug
before.

It is interesting that all of our interviewees except for one report to have never seen java.lang.StackOverflow
exceptions in a Spark environment. On the other hand, they all remarked that they had data-related prob-
lems before, e.g., java.io.NotSerializable in our sample bugs. This finding is not surprising because most
of the work in Spark revolves around data. java.io.NotSerializable is expected since it is among the most
popular questions on Stack Overflow.

5.2 Answering RQ2: Requirement Collection
To answer our second research question (RQ2: What are the challenges that developers face when they
debug Spark applications?), we examine interviewees’ answers to the two questionnaires as well as the
notes taken during the interviews.

When asked about the “nastiest” types of bugs that they have encountered, most of our interviewees
assert that Spark is not hard to deal with. In fact, Spark is difficult only when you are new to Spark. The
third interviewee more specifically mentions that “... everything in Spark took ages to figure out when
I was starting with Spark ... I was totally into the blue.” The fifth interviewee states that “... the other
components, which are used with Spark, are nastier ...” than Spark. Yet the first interviewee tells us about a
case where only half of the executors were used even though the number of partitions matched the number
of executors. The sixth interviewee solved a memory overhead problem by allocating more memory to the
application (e.g., 60GB per executor), but the parameters showed a memory usage of either 3KB or 6GB.

Judging from the kind of problems encountered by our interviewees, and based on our own experience,
we identify four main categories of challenges that developers are faced with when debugging Spark
applications. These categories are log file issues, data-related problems, remote-debugging challenges, and
access to the production environment.

In Section 4.2.3, we explain that debugging starts by finding the exception message in the logs.
However, most interviewees mention it is difficult to use the logs because they contain a lot of information.
The sixth interviewee says “... many output messages are completely useless, but then you also see the
useful one, but they are drowning in the sea of messages ...”. Or, as the sixth interviewee puts it, “... the
logs are too long, the browser can crash ...”. The other problem of log files is that they lack explicit useful
information, and thus can be misleading. Developers complain that, most of the time, logs are not actually
difficult to deal with.

The second category refers to challenges related to data. One interviewee points out that “most problems
are coming from the real data.” Sometimes, the root of the problem is that the data (or information about it)
cannot be accessed. As the third interviewee mentions, “especially, people who read the pipeline struggle
in our teams, they don’t really see the intermediate steps ...”. Spark does not show developers how the data
looks after each transformation, which makes it difficult to catch the problem either in the data or in the
code.

The next category is to have support for remote debugging. Most of our interviewees agree that
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debugging locally does not always help to solve problems because some problems only occur on the cluster.
The second interviewee mentions, “In general, it’s difficult to see what’s going on in the executor side.”
This is due to the number of devices in the cluster as well as network limitations. In the words of the first
interviewee, when it comes to distributed debugging, it is “not technically impossible to do it, it is just not
physically possible to do it. There is a limit of how many machines you can connect, how much data you
can use, how are you going to interact, and so on”.

The last challenge is pointed out by the seventh interviewee, who says they are unable to access
applications in the production environment. This choice to sever a developer from the environment that
actually matters may be justifiable from a security and data governance standpoint, but it makes the task of
debugging all the more difficult.

5.3 Answering RQ3: Missing Tools
In this section, we answer our third research question (RQ3: How can we overcome these challenges?) by
examining interviewees’ answers to the questionnaires, and discussing possible solutions for the debugging
problems used during the interviews.

Apart from the log files, interviewees mention three tools that they already use alongside Spark to help
them in debugging. These tools are Apache Airflow, Prometheus, and Grafana.1 2 3 Apache Airflow is
used for managing or scheduling the Directed Acyclic Graphs (DAG) of jobs. It allows the developer to
define workflows in the code. This tool is useful to inspect the pipeline and get more insights about the
submitted job. Also, in the workflow, developers can add or remove a task, which gives them flexibility.
They can also write tests in Apache Airflow environment. Prometheus and Grafana, on the other hand,
work on metrics like the Spark environment parameters or the job parameters. Grafana enables the analysis,
understanding and visualization of metrics in a dashboard, whereas Prometheus merges and stores the
metrics in the form of time series.

We classify the many solutions to the challenges faced by our interviewees into three categories,
namely coding experience enhancements, log enhancements, and dashboard implementation.

Coding Experience Enhancements Even though many debuggers exist, there is no remote debugger
where one can step in and out of the code to investigate its behavior. Interviewees say that they often use
local debuggers; however, local debuggers are not sufficient for the detection of bugs that occur only on a
cluster due to numerous reasons. For instance, if only one worker node in the cluster out of a thousand
causes problems like a memory overload due to array size, it will take a significant amount of time and
effort to find the problematic node. In the next chapter, we will discuss several studies that are being done
to implement a remote debugger, each of them proposing a different approach and solution.

A tool, such as a plugin, might be implemented to spit out the “last-seen data,” which refers to the last
successfully obtained data and its file path before corruption occurs. As the first interviewee suggests “You
should have the option in the API to catch the tables”, e.g., it finds the line of a CSV file that causes the
problem. Unlike our simple applications, real-world data contains many faults, and data scientists who
work on massive data sets struggle more to find corrupted records. Another functionality of this tool could
be to display some sample data after each transformation or after a pre-defined number of transformations.
Thus, developers can observe their data, its form, and the results.

Log Enhancements During the interviews, we discuss a “log parser” to improve Spark logs. First of all,
the parser should be developed using machine learning algorithms using a cluster of logs that corresponds

1https://airflow.apache.org/
2https://prometheus.io/
3https://grafana.com/

https://airflow.apache.org/
https://prometheus.io/
https://grafana.com/
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to a specific problem. Then, using the bug patterns learned, the parser should offer solutions based on the
exception message. The most challenging part of this approach is to create a beneficial recommendation
system that requires hundreds of thousands of logs, since it would take a considerable amount of time
for a team to train a cluster. The parser can also parse essential and useless parts of logs and highlight
unexpected lines. For instance, when we check the logs on the Resource Manager, we see that there are
many lines of messages, however, only few of them are exception messages. Therefore, it is tricky to
locate the exception message in the logs. Sometimes, developers use their browser’s search function to
trace the exception message, but if the log is too long, the browser cannot load it and crashes.

In Spark, exception messages come directly from the JVM and often do not provide enough information
about the root of the problem. We believe that Spark bears some responsibilities when the cause is related
to Spark. For instance, as mentioned in Section 3.2.4, applying an action after numerous transformations
causes a java.lang.StackOverflowError exception. Such exceptions are often not clear since the reasons
could be manifold. Also, as the second interviewee mentions: “In Java, you can usually see in which line
the code dies, but with Spark, you just have to guess.” Along the same line, another interviewee proposes
to have “a flag that enables logging into certain parts of Spark so that you don’t have to wonder which
classes you need to check.” The tool that both developers are outlining could track down the classes visited
and print a warning when an exception occurs.

The last recommendation is to print log entries after each operation so that each part can be examined
instead of the whole application. This solution would aid developers in understanding each part of their
code better as well as making it easier to find exception messages.

Dashboard Implementation Some developers work on their client’s data and support them with data
analytics. They say that they lack the proper authorization to access the production environment and
have to work on a simulated environment, which causes problems if the properties of the environments
are different. To remediate this, they suggest a dashboard that can compare their environment and their
clients’ environment, i.e., resources of both environments like memory. Similarly, the sixth interviewee
recommends a tool that would display all the configurations of both the cluster and the local environment
and compare the environments with the resources used by the application.



6
Related Work

Every debugging tool proposes a different way of helping developers. In this section, we introduce six
different approaches, some of which are inspired by the work of Beschastnikh [6] et al. and Cheung et
al. [7], to debug applications: log analysis, model checking, record and replay, predicate testing, tracing,
and visualization. We explain each category briefly and introduce some work done in each of them, the
results of their respective experiments, and their advantages and drawbacks. Before we go further, we want
to highlight that the Theia debugger was especially introduced for the Hadoop environment, which we
choose in the scope of this review.

Log Analysis Spark produces logs for every application. Using logs, a developer can reason about many
things like the root of the problem, the used resources, e.g., memory, and the run time of the application
[6]. Log analysis can parse lengthy logs to ease navigation for developers. There are several log analysis
tools such as D3S [16], ShiViz [6], MACEDB [11], Aguilera et al. [3], Pip [21], Theia [9], and Recon [13].
In MACEDB, Killian et al. filter the logs using regular expressions [11]. In Theia, Garduno et al. and in
Recon, Lee and Eugster introduce a way to browse and analyze logs [9, 13]. In these works, applications
separate important messages in logs or analyze them, which corresponds to some of our interviewees’
suggestions.

Model Checking A model checking approach requires producing the model of a system, e.g., a finite-
state model, and verifying whether it supports certain properties, e.g., liveness, [6]. There are many model
checking tools proposed by researchers such as CMC [19], MACEDB [11], and MODIST [24]. Model
checking is not suggested by our interviewees; however, it is useful to analyze code before running it.
Model checking requires to write the model, which might be more challenging than writing the code itself.

Record and Replay Record and Replay tools capture and store the execution of a system [6, 7]. Using
the recorded capture, a developer can simulate the execution anytime and control it. Friday [10], MACEDB
[11], MaceODB [8], Recon [13], and WiDS [17] are examples of record and replay tools proposed in the
literature. To the best of our knowledge, our interviewees neither use any record and replay tools nor
do they suggest them when asked about any tool that might be useful to them. The Record and Replay
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approach is challenging when the number of recordings is either too small or too big. In addition, building
a time machine to replay and managing the records might raise issues.

Predicate Testing Testing ensures that a system works as expected using conditions, which are the
boolean results of functions or boolean statements known as predicates, e.g., Assert of JUnit [16, 17]. 1

Tests can catch exceptions and other faults in a system. These tools use predicate checking to test some
properties to catch violations, which is, as our interviewees suggest, a way to test the system. Research
works that implement predicate testing tools are: D3S [16], Friday [10], MaceODB [8], and WiDS [17].

Tracing Tracing means tracking the flow of code or data in an application. Using tracing, developers can
examine, alter, and control software applications [1, 6, 7, 23]. Tracing tools are also known as step-through
debuggers, which allow developers to step in and out of code blocks. The tracing approach is very similar
to what interviewees suggest, namely a remote debugger. Although the tools we find are not exactly like
local step-through debuggers, a developer can still control the execution. Research works that implement
tracing debuggers are: Pharo Promise Debugger [14], EXDAMS [4], GoTcha [1], and P2 [22].

Visualization Visualization tools capture the current resources of a system and display their performance
[7]. For instance, using the user interface, a developer can track how much RAM an application uses.
ShiViz [6], MACEDB [11], and Theia [9] are examples of visualization tools.

Tracing Tools Leske et al. propose a debugger interface that can be used to investigate the call stack
when an exception rises [14]. The debugger interface fuses call stacks of two processes, one of which is
remote. Their implementation aims to solve debugging problems of remote processes as well as promises.
They chose the Pharo language because it is a reflective language and can manipulate processes directly.
They encountered two supplementary costs, which are performance and memory overhead. The authors
state that generally these costs do not decrease performance.

Balzer develops EXDAMS, which traces the events of execution [4]. EXDAMS fetches and displays
information from a history tape, which contains required information of the executions and obtained by
monitoring the program. The EXDAMS system has static and motion-picture debugging and monitoring
help types. Unlike motion-picture help, static help presents information that does not vary with each
execution. For instance, if a piece of information is displayed using motion-picture help, then the
information may be different when executed in a different time. Balzer states that EXDAMS is not efficient
because replaying records from a history tape requires many I/O operations.

Achar et al. implement a browser-based interactive debugger, namely GoTcha [1]. As the authors state,
GoTcha is designed for Global Object Tracker programming models, which synchronize object states
across distributed nodes in a similar way to Git, a distributed version controlling system. Using GoTcha, a
developer can observe state changes and control the flow of execution. GoTcha is tested in a distributed
environment on a simple word count application, which outputs wrong count values. GoTcha succeeds
when the developer observes the version history and sees the mistake. Achar et al. state that GoTcha still
needs to improve in terms of scalability of the user interface and the debugger.

Model Checking Tools Musuvathi et al. implement a model checker for C and C++ [19]. The model
checker performs tests to ensure that an application will work as expected and detect bugs in the imple-
mentation. It uses a hash table to record states. Using C Model Checking (CMC), 34 unique bugs out of
40 bugs are detected. Such bugs include memory leaks, assertion failures, and routing loops. Musuvathi et
al. find that most of the bugs are discovered in a few minutes.

1https://junit.org/junit4/javadoc/4.12/org/junit/Assert.html

https://junit.org/junit4/javadoc/4.12/org/junit/Assert.html
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Name of
the tool

Log
Analysis

Model
Checking

Record
and

Replay

Predicate
Testing Tracing Visualization

Pharo
Promise [14]

Debugger
X

EXDAMS [4] X

GoTcha [1] X

Aguilera
et al. [3] X X

Pip [21] X

ShiViz [6] X X

Theia [9] X X

MACEDB [11] X X X X

D3S [16] X X

Recon [13] X X

Friday [10] X X

WiDS [17] X X

MaceODB [8] X X

MODIST [24] X

CMC [19] X

Table 6.1: This table categorizes previous works in debugging distributed systems into six main categories.
Every line represents a distributed debugger.



CHAPTER 6. RELATED WORK 30

Yang et al. design a model checker, called MODIST for unmodified distributed systems [24]. MODIST
simulates executions and allows state exploration. MODIST is evaluated in three distributed environments,
and many bugs are found. When the performance of the system is tested, Yang et al. find that even in the
worst case, the overhead is still reasonable.

Log Analysis Tool Reynolds et al. introduce Pip, which traces performance bugs and unexpected
behaviors [21]. Pip provides logging and visualization. Behaviors are represented as a list of path instances
and written explicitly by developers. Pip is tested on four different systems, and many bugs are found. Most
of the bugs are related to performance, e.g., read latency, whereas other bugs are related to correctness.

Log Analysis and Predicate Testing Tool Liu et al. develop a tool for predicate checking, called D3S
([16]). A developer must declare the properties they want to check, and D3S checks the system during the
run time. Manually declaring states is a drawback of the system. A developer should order the states in a
DAG-form. D3S might have performance overhead due to exposing states, e.g., local states. Liu et al. find
that the overhead is at the maximum (7-8%) when there are two threads, and exposing frequency is 1000,
packet size is 512 or 1024 bytes.

Log Analysis and Visualization Tools Beschastnikh et al. introduce ShiViz, a visualization tool to
show distributed system executions interactively [6]. ShiVector introduces timestamps that are utilized
to construct happens-before relations of events. ShiViz parses logs with ShiVector and displays it to a
developer in a logical order not real time.

Garduno et al. present Theia, a visualization and log analysis tools especially developed for Hadoop
[9]. They introduce the notion of visual signatures that present patterns of unexpected behaviors to detect
application-level, infrastructural, and workload problems. Theia performs well when tested on 1373
Hadoop jobs. It finds 192 out of 204 problems; 157 application-level, 2 workload, and 45 infrastructural.
Garduno et al. state that Theia is not able to identify problems if the cluster is idle or if a node is blacklisted.

Record and Replay and Predicate Testing Tools Geels et al. introduce Friday, global predicate
monitoring, and a distributed replay system that helps developers to observe and understand states of an
application [10]. Friday can capture and replay the execution using a symbolic debugger. Geels et al. state
that Friday has a few limitations, such as slowing down the replay, starting from a middle point takes time
because it requires execution to that point, and predicates require debugging. Geels et al. experiment with
Friday and find that latency is higher for function calls than other watchpoint events, i.e., writing value.
They find their tool scales well as the number and percentage of watchpoints increase.

Dao et al. introduce their tool, MaceODB, to aid developers to debug distributed systems [8]. Mace is
a language extension of C++, and MaceODB inherits Mace’s properties and adds new properties, which
are liveness and safety. The tool reports violations to the properties upon execution. The authors describe
a debugger that is easy to use, powerful and has low overhead as the epitome of distributed debuggers.
Their results show that MaceOBD’s performance is lightweight on a decentralized topology, but not on
centralized topology. They were able to detect non-trivial errors using their methods.

Liu et al. introduce their predicate-based predicate checker, namely WiDS [17]. WiDS gathers logs
of execution and deterministically replays them. WiDS is tested on various systems, and different kinds
of bugs are found, such as deadlocks and livelocks. The performance of log collection is evaluated, and
an overhead of 2% is observed. The performance of the predicate decreases by 4 to 20 times when the
checker is used. However, Liu et al. state that this inefficiency is acceptable.

Log Analysis and Tracing Tool Aguilera et al. use message-level traces for performance debugging
of a system that can be used to separate performance issues to increase efficiency [3]. They achieve it
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by gathering traces of nodes and combining them. First, they experiment on millions of synthetically
generated traces using their trace generator. Then, they experiment on real-world applications. They add
delays to their messages to simulate network delays and test their algorithms, a nesting algorithm to inspect
traces, and a convolution algorithm to find causal relationships. They find that increasing parallelism
and delay variation decrease the performance of the system. Aguilera et al. test the accuracy of the
convolutional algorithm and find that it can detect frequent paths.

Log Analysis and Record and Replay Tool Lee et al. develop Recon, a debugging method that uses
logs and deterministic replay [13]. Recon does not use all logs; instead, it uses replay logs of each node.
Then, Recon debugs by replaying the logs. It is tested on four different distributed applications, and the
authors find that, except for one application, logging and replay overheads are reasonable.

Log Analysis, Model Checking, Record and Replay and Visualization Tool Killian et al. present
MACEMC, a model checker to detect liveness breaches, and MDB, a debugging tool [11]. MACEMC
uses MDB, which has various support for interactive execution, replay, log analysis, and visualization.
MACEMC is tested on four different systems, and 52 bugs, 31 liveness issues, and 21 safety issues are
found. Killian et al. state that using MACEMC and MDB perform better than existing approaches.



7
Conclusion and Future Work

In this section, we conclude our findings and present possible ideas for future work and implementations.

Conclusions
In this study, we examine how Spark developers debug their applications. We set up a Spark cluster, search
for the most common Spark exceptions and replicate them. We then hold a series of interviews with seven
Spark application developers, which are recorded with their consent.

Using the results of interviews, we observe the interviewees’ debugging strategies. We find that some
steps are more common than others; such steps are checking the logs for exception messages, modifying
the code, and running tests. We use Hidden Markov Models to find recurring debugging pairs, and we
find that interviewees most commonly start the debugging process by checking the logs on the console
and the Resource Manager to find the exception message, then make a hypothesis right afterward. Then,
we model a debugging flow consisting of two main parts; finding the root of the problem and solving the
problem. We find that once a developer comes up with a hypothesis about the problem, they perform
different operations depending on the cause of the problem (e.g., they use a local debugger if the problem
is related to their code). Tracking exception messages is done by checking logs either on the Resource
Manager or on other tools. Although there are many distributed debugging tools (see Chapter 6), we see
that most of the interviewees do not use such tools. Instead, they solely rely on logs or non-automated tests
to solve the problems (e.g., using a notebook to check the code line by line). When they do use external
tools, it is usually to receive notifications from submitted jobs, to schedule jobs, to display some properties
or the system status.

Future Work
During the interviews, we also ask the interviewees some open-ended questions. The resulting answers
point out the problems Spark developers have and indicate suggestions to improving coding experience,
improving logs, and implementing a dashboard. We discuss challenges and missing tools in Chapter 5 in
detail.
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Improving Coding Experience Interviewees state that there is no remote debugger that works like local
debuggers. Remote debuggers are difficult to implement and to use due to many reasons, such as the
number of nodes in an environment, network problems, and the size limit of data. In addition, interviewees
suggest that a plugin can be implemented to display some sample data after each operation. This plugin
would also display the last successfully obtained data, e.g., a row in a CSV file.

Improving Logs Interviewees suggest a log analyzer that prints logs after each operation and uses
machine learning algorithms to learn problems and suggest appropriate solutions. It is challenging to
implement such a system because it requires many logs to train an algorithm. Another type of log tool
might give more explicit messages about the exceptions instead of the basic JVM messages, which can
sometimes be laconic. This, in turn, would help to separate essential from useless messages.

Dashboard The last suggestion is to design a dashboard that can display an environment’s properties
and compare them with those of other environments. It is important for developers who work in different
environments to be able to compare their properties.



A
Setting Up an Apache Spark Cluster

A.1 Upgrading Operating Systems
Debian OS

1. Check your current version of Debian OS by typing the command below.

cat /etc/debian_version

2. Check if the system is up-to-date.

sudo apt-get update

3. Apply changes if there are any.

sudo apt-get upgrade

4. Change the jessie (the name of the Debian 8) to stretch (the name of the Debian 9).

sed -i ’s/jessie/stretch/g’ /etc/apt/sources.list

5. Repeat Step 2 and 3, so that the system can find new changes and apply them.

6. The command below will update all the installed packages.

sudo apt-get dist-upgrade
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7. Finally, reboot the system.

Ubuntu OS

1. Check the version of Ubuntu by typing the command below.

lsb_release -a

2. Check the updates.

sudo apt update

3. Apply changes if there are any.

sudo apt dist-upgrade

4. Start upgrading the system.

sudo apt install update-manager-core

do-release-upgrade

5. The terminal displays instructions. Follow the instructions to upgrade the OS.

6. Finally, reboot the system.

A.2 Installing Java and Scala
Install Java on both Debian and Ubuntu

1. Check if you have Java and JDK already installed, respectively.

java -version
javac -version

2. If you do not have them, install them using the scripts below.

sudo apt install default-jre
sudo apt install default-jdk

Install Scala on both Debian and Ubuntu

1. Check if you have Scala already installed.
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scala -version

2. Download Scala package.1

wget -c www.scala-lang.org/files/archive/scala-2.11.7.deb
sudo dpkg -i scala-2.11.7.deb

3. Check if there are any updates.

sudo apt-get update

4. Install Scala.

sudo apt-get install scala

A.3 Installing and Setting Up an Apache Hadoop Cluster
1. Add IPs of other nodes to /etc/hosts file, which should look like in Figure A.1.

Figure A.1: /etc/hosts file

2. The master node needs an SSH connection to connect to worker nodes. Thus, it is essential to set
SSH keys.

(a) Log in to the master node and generate an SSH key: (leave the password blank)

ssh-keygen {b 4096

(b) Copy the master node’s public key.
1https://www.scala-lang.org/files/archive/

https://www.scala-lang.org/files/archive/
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(c) For each worker node, create a new file, master.pub, in the /home/hadoop/.ssh
directory and paste the master node’s public key.

(d) Add the key to ˜/.ssh/authorized_keys file.

3. On the master node, download Apache Hadoop using the following script:

wget http://apache.cs.utah.edu/hadoop/common/current/
hadoop-3.1.2.tar.gz

tar -xzf hadoop-3.1.2.tar.gz

mv hadoop-3.1.2 /opt/hadoop-3.1.2

4. Set environment parameters for Apache Hadoop

(a) Update PATH. Go to /home/<user_name>/.profile and add the following line to the
file

PATH=/home/<user_name>/hadoop/bin:/home/<user_name>/
hadoop/sbin:$PATH

(b) Update PATH for the shell as well. Go to /home/<user_name>/.bashrc and add the
following line to the file

export HADOOP_HOME=/home/<user_name>/hadoop
export PATH=${PATH}:${HADOOP_HOME}/bin:${HADOOP_HOME}/sbin

5. NameNode location should look like as shown in Figure A.2, which is under
/opt/hadoop-3.1.2/etc/hadoop/core-site.xml on the master node.

6. The path of HDFS should look like as shown in Figure A.3 image, which is under
/opt/hadoop-3.1.2/etc/hadoop/hdfs-site.xml on the master node.

7. YARN settings should look like as shown in Figure A.4, which is under
/opt/hadoop-3.1.2/etc/hadoop/mapred-site.xml on the master node.

8. YARN settings should look like as shown in Figure A.5, which is under
/opt/hadoop-3.1.2/etc/hadoop/yarn-site.xml on the master node.

9. You should add the worker nodes as shown in Figure A.6, which is under /opt/hadoop-3.1.2/etc/hadoop/workers
on the master node.

10. Copy Apache Hadoop directory to other nodes (the workers).

11. Format HDFS on the master node using the following command.

hdfs namenode --format
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Figure A.2: core-site.xml file

A.4 Installing Apache Spark
1. Download Apache Spark

wget http://d3kbcqa49mib13.cloudfront.net/spark-2.0.2-bin-
hadoop2.7.tgz

2. Extract the packages

tar -xvf spark-2.0.2-bin-hadoop2.7.tgz

3. Copy the packages to a folder of your choice (here, it’s /opt/spark)

cp -rv spark-2.0.2-bin-hadoop2.7/* /opt/spark

4. Run Spark-shell to verify installation is successful. (in /opt/spark directory)

./bin/spark-shell -- master local[2]

5. Unite Apache Spark and Apache YARN Resource Manager

(a) Set up environment variables.
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Figure A.3: hdfs-site.xml file

(b) Rename the spark-defaults.conf.template under /opt/spark/conf as
spark-defaults.conf

(c) Edit the file as shown in the following image.
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Figure A.4: mapred-site.xml file
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Figure A.5: yarn-site.xml file
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Figure A.6: workers file

Figure A.7: spark-defaults.conf file



B
Implementation of Bugs

B.1 Implementation of the First Bug: Task Not Serializable

1 package ch.unibe.scg
2 object MainClass {
3 def main(args: Array[String]) {
4 if (args.length == 1) {
5 Spark.buildContext(Env.cluster)
6 val sales = SalesReader.read(args(0)) //"hdfs://leela.unibe.ch:9000//sales.txt"
7 println(new SalesCalculator(sales).meanOfHighSales())
8 Spark.sc.stop
9 } else {

10 println("There should be only one argument which is the file path.")
11 System.exit(-1)
12 }
13 }
14 }

Listing 7: Implementation of MainClass.scala

1 package ch.unibe.scg
2 import org.apache.spark.rdd.RDD
3 object SalesReader {
4 def read(filePath: String): RDD[Int] = {
5 Spark.sc.textFile(filePath).map(entry => entry.toInt)
6 }
7 }

Listing 8: Implementation of SalesReader.scala

1 package ch.unibe.scg
2 import org.apache.spark.rdd.RDD
3 class SalesCalculator(sales: RDD[Int]) {
4 val highSalesThreshold = 75
5 val lowSalesThreshold = 50
6 def highSales(): RDD[Int] = {
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7 sales.filter(entry => entry => highSalesThreshold)
8 }
9 def mediumSales(): RDD[Int] = {

10 sales.filter(entry => entry => lowSalesThreshold && entry < highSalesThreshold)
11 }
12 def lowSales(): RDD[Int] = {
13 sales.filter(entry => entry < lowSalesThreshold)
14 }
15 def meanOfHighSales(): Double = {
16 highSales().mean()
17 }
18 def meanOfMediumSales(): Double = {
19 mediumSales().mean()
20 }
21 def meanOfLowSales(): Double = {
22 lowSales().mean()
23 }
24 }

Listing 9: Implementation of SalesCalculator.scala

1 package ch.unibe.scg
2 import org.apache.spark.{SparkConf, SparkContext}
3 object Spark {
4 private var context: SparkContext}
5 def sc: SparkContext = if (context == null) {
6 throw new RuntimeException("you should build the context before calling it")
7 } else {
8 context
9 }

10 def buildContext(env: Env.value): SparkContext = {
11 if (context == null){
12 context = if (env == Env.cluster) {
13 new SparkContext(new SparkConf().set("spark.app.name", "SalesReportApp"))
14 } else {
15 val conf = new SparkConf()
16 .setAppName("SalesReportApp")
17 .setMaster("local[2]")
18 new SparkConf()
19 }
20 context
21 } else {
22 context
23 }
24 }
25 }

Listing 10: Implementation of Spark.scala

1 package ch.unibe.scg
2 object Env extends Enumeration {
3 type Level = Value
4 val test: Env.Value = Value("local")
5 val cluster: Env.Vale = Value("cluster")
6 }

Listing 11: Implementation of Env.scala

1 import ch.unibe.scg.{Env, SalesCalculator, SalesReader, Spark}
2 import org.apache.spark.rdd.RDD
3 import org.scalatest.{BeforeAndAfterAll, FunSuite, Matchers}
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4 class SalesTest extends FunSuite with BeforeAndAfterAll with Matchers {
5 Spark.buildContext(Env.test)
6 val path: String = getClass.getClassLoader.getResource("sales.txt").getPath
7 val salesRecords: RDD[Int] = SalesReader.read(path)
8 test("Reading the sales file produces the right number of records") {
9 salesRecords.count() shouldEqual 4

10 }
11 test("Average of the high sales should be calculated correctly") {
12 new SalesCalculator(salesRecords).meanOfHighSales() shouldEqual 118.0
13 }
14 }

Listing 12: Implementation of SalesTest.scala

B.2 Implementation of the Second Bug: Stack Overflow

1 package ch.unibe.scg
2 import org.apache.spark.sql._
3 object MainClass {
4 def main(args: Array[String]) {
5 if (args.length == 1) {
6 val spark: SparkSession = Spark.buildSparkSession(Env.cluster)
7 import spark.implicits._
8 val aJR = GradeFileReader.read(args(0))
9 //"hdfs://leela.unibe.ch:9000//grades.txt"

10 val reports = Seq.fill(10)(GradeReport(GradeReport(aJR)))
11 .toDS().groupByKey(identity).count.map(s => s).collect
12 } else {
13 println("There should be only one argument which is the file path")
14 System.exit(-1)
15 }
16 }
17 }

Listing 13: Implementation of MainClass.scala

1 package ch.unibe.scg
2 object GradeFileReader {
3 def reader(filePath: String): JuniorReport = {
4 val grades = Spark.sc.textFile(filePath).map(x => x.toInt).toLocalIterator.toArray
5 JuniorReport(grades(0), grades(1), grades(2), grades(3), grades(4), grades(5),
6 grades(6), grades(7), grades(8), grades(9), grades(10), grades(11),
7 grades(12), grades(13), grades(14), grades(15), grades(16), grades(17),
8 grades(18), grades(19), grades(20), grades(21), grades(22), grades(23))
9 }

10 }

Listing 14: Implementation of GradeFileReader.scala

1 package ch.unibe.scg
2 case class JuniorReport(
3 math01: Int, math02: Int, math03: Int, math04: Int, math05: Int, math06: Int,
4 chem01: Int, chem02: Int, chem03: Int, chem04: Int, chem05: Int, chem06: Int,
5 phys01: Int, phys02: Int, phys03: Int, phys04: Int, phys05: Int, phys06: Int,
6 bio01: Int, bio02: Int, bio03: Int, bio04: Int, bio05: Int, bio06: Int)
7 case class GradeReport[JuniorReport](aJR: JuniorReport, bJR: JuniorReport)
8 object GradeReport {
9 def apply[JuniorReport](aJR: JuniorReport): GradeReport[JuniorReport] =
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10 new GradeReport(aJR, bJR)
11 }

Listing 15: Implementation of GradeReport.scala

1 package ch.unibe.scg
2 import org.apache.spark.{SparkConf, SparkContext}
3 import org.apache.spark.sql.SparkSession
4 object Spark {
5 private var context: SparkContext = _
6 private var sparkSession: SparkSession = _
7 def sc: SparkContext = if (context == null) {
8 throw new RuntimeException("you should build the context before calling it")
9 } else {

10 context
11 }
12 def buildContext(env: Env.Value): SparkContext = {
13 if (context == null) {
14 context = if (env == Env.cluster) {
15 new SparkContext(new SparkConf().set("spark.app.name", "GradeApp"))
16 } else {
17 val conf = new SparkConf()
18 .setAppName("GradeApp")
19 .setMaster("local[1]")
20 new SparkConf(conf)
21 }
22 context
23 } else {
24 context
25 }
26 }
27 def ss: SparkSession = if (sparkSession == null) {
28 throw new RuntimeException("you should build the context before calling it")
29 } else {
30 sparkSession
31 }
32 def buildSparkSession(env: Env.Value): SparkSession = {
33 if (sparkSession == null) {
34 sparkSession = if (env == Env.cluster) {
35 SparkSession.builder()
36 .appName("GradeApp")
37 .getOrCreate()
38 } else {
39 SparkSession.builder()
40 .appName("GradeApp")
41 .master("local[1]")
42 .getOrCreate()
43 }
44 sparkSession
45 }
46 }
47 }

Listing 16: Implementation of Spark.scala

1 package ch.unibe.scg
2 object Env extends Enumeration {
3 type Level = Value
4 val test: Env.Value = Value("local")
5 val cluster: Env.Value = Value("cluster")
6 }
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Listing 17: Implementation of Env.scala

B.3 Implementation of the Third Bug: Corrupted Data

1 package ch.unibe.scg
2 object MainClass {
3 def main(args: Array[String]) {
4 if (args.length == 1) {
5 Spark.builderSparkSession(Env.cluster)
6 val filePath = args(0) //"hdfs://leela.unibe.ch:9000//employee_data.csv"
7 val employees = EmployeeReader.read(filePath)
8 println(EmployeeTransactions.findNumberOfEmployeesInDepartment(employees, 30))
9 } else {

10 println("There should be only one argument which is the file path.")
11 System.exit(-1)
12 }
13 }
14 }

Listing 18: Implementation of MainClass.scala

1 package ch.unibe.scg
2 import org.apache.spark.sql.{DataSet, SparkSession}
3 case class Employee(employeeNo: Int, employeeName: String, designation: String,
4 manager: Int, hireDate: String, salary: Int, departmentNo: Int)
5 object EmployeeReader {
6 def read(filePath: String): Dataset[Employee] = {
7 val spark: SparkSession = Spark.buildSparkSession(Env.cluster)
8 import spark.implicits._
9 val employees = spark.sparkContext.textFile(filePath).map(_.split(",))

10 .map(emp => new Employee(emp(0).toInt, emp(1), emp(2), emp(3).toInt, emp(4),
11 emp(5).toInt, emp(6).toInt)).toDS()
12 employees
13 }
14 }

Listing 19: Implementation of EmployeeReader.scala

1 package ch.unibe.scg
2 import org.apache.spark.sql.Dataset
3 object EmployeeTransactions {
4 def findNumberOfEmployeesInADepartment(employees: Dataset[Employee], dept: Int): Long = {
5 employees.filter(employees("departmentNo") == dept).count()
6 }
7 }

Listing 20: Implementation of EmployeeTransactions.scala

1 package ch.unibe.scg
2 import org.apache.spark.sql.SparkSession
3 object Spark {
4 private var session: SparkSession = _
5 def ss: SparkSession = if (sparkSession == null) {
6 throw new RuntimeException("you should build the context before calling it")
7 } else {
8 sparkSession
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9 }
10 def buildSparkSession(env: Env.Value): SparkSession = {
11 if (session == null) {
12 session = if (env == Env.cluster) {
13 SparkSession
14 .builder()
15 .appName("FindEmployeeApp")
16 .getOrCreate()
17 } else {
18 SparkSession
19 .builder()
20 .master("local")
21 .appName("FindEmployeeApp")
22 .getOrCreate()
23 }
24 session
25 } else {
26 session
27 }
28 }
29 }

Listing 21: Implementation of Spark.scala

1 package ch.unibe.scg
2 object Env extends Enumeration {
3 type Level = Value
4 val test: Env.Value = Value("local")
5 val cluster: Env.Value = Value("cluster")
6 }

Listing 22: Implementation of Env.scala

1 package ch.unibe.scg
2 import org.apache.spark.sql.Dataset
3 import org.scalatest.{BeforeAndAfterAll, FunSuite, Matchers}
4 class EmployeeFinderTest extends FunSuite with BeforeAndAfterAll with Matchers {
5 Spark.buildSparkSession(Env.test)
6 val path: String = getClass.getClassLoader.getResource("employee_data.csv").getPath
7 val employees: Dataset[Employee] = EmployeeReader.read(path)
8 test("Reading the employees file produces the right number of records") {
9 employees.count() shouldEqual 14

10 }
11 test("Number of employees in department 30 should be 6") {
12 EmployeeTransactions.findNumberOfEmployeesInADepartment(employees, 30) shouldEqual 6
13 }
14 }

Listing 23: Implementation of EmployeeFinderTest.scala

B.4 Implementation of the Fourth Bug: Stack Overflow

1 package ch.unibe.scg
2 object MainClass {
3 def main(args: Array[String]): Unit = {
4 if (args.length == 1) {
5 Spark.buildContext(Env.cluster)
6 var listOfDancers = DanceChoreography.start(args(0), Env.cluster)
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7000 SMITH CLERK 7902 12/17/1980 800 70
7499 ALLEN SALESMAN 7698 2/20/1981 1600 30
7521 WARD SALESMAN 7698 2/22/1981 1250 30
7566 TURNER MANAGER 7839 4/2/1981 2975 20
7654 MARTIN SALESMAN 7698 9/28/1981 1250 30
7698 MILLER MANAGER 7839 5/1/1981 1000 30
7782 CLARK MANAGER 7839 6/9/1981 2450 10
7788 SCOTT ANALYST 7566 12/9/1982 3000 20
7839 KING PRESIDENT 2000 11/17/1981 5000 10
7844 TURNER SALESMAN 7698 9/8/1981 1500 30
7876 ADAMS CLERK 7788 1/12/1983 1100 20
7900 JAMES CLERK 7698 12/3/1981 950 30
7902 FORD ANALYST 7566 12/3/1981 3000 20
7934 MILLER CLERK 7782 1/23/1982 1300 10

Table B.1: Data file (employee data.csv) on the local machine

7000 SMITH CLERK 7902 12/17/1980 800 70
7499 ALLEN SALESMAN 7698 2/20/1981 1600 30
7521 WARD SALESMAN 7698 2/22/1981 1250 30
7566 TURNER MANAGER 7839 4/2/1981 2975 20
7654 MARTIN SALESMAN 7698 9/28/1981 1250 30
7698 MILLER MANAGER 7839 5/1/1981 thousand 30
7782 CLARK MANAGER 7839 6/9/1981 2450 10
7788 SCOTT ANALYST 7566 12/9/1982 3000 20
7839 KING PRESIDENT 2000 11/17/1981 5000 10
7844 TURNER SALESMAN 7698 9/8/1981 1500 30
7876 ADAMS CLERK 7788 1/12/1983 1100 20
7900 JAMES CLERK 7698 12/3/1981 950 30
7902 FORD ANALYST 7566 12/3/1981 3000 20
7934 MILLER CLERK 7782 1/23/1982 1300 10

Table B.2: Data file (employee data.csv) on the cluster

7 //"hdfs://leela.unibe.ch:9000//dancersList.csv"
8 println("Count = " + listOfDancers.count())
9 Spark.sc.stop

10 } else {
11 println("There should be only one argument which is the file path")
12 System.exit(-1)
13 }
14 }
15 }

Listing 24: Implementation of MainClass.scala

1 package ch.unibe.scg
2 import org.apache.spark.rdd.RDD
3 object DancersReader {
4 def read(filePath: String, env: Env.Value, RDD[(String, String)] = {
5 Spark.buildContext(env).textFile(filePath)
6 .map(aLine => aLine.split(","))
7 .map(aPair => (aPair(0), aPair(1))
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8 }
9 }

Listing 25: Implementation of DancersReader.scala

1 package ch.unibe.scg
2 import org.apache.spark.rdd.RDD
3 object DanceChoreography {
4 def start(filepath: String, env: Env.Value): RDD[(String, String)] = {
5 var listOfDancers: RDD[(String, String)] = DancersReader.read(filepath, env)
6 var swappedDancersList: RDD[(String, String)] = null
7 for (i <- 1 to 1000) {
8 swappedDancersList = listOfDancers.map(_.swap)
9 listOfDancers = swappedDancersList

10 }
11 listOfDancers
12 }
13 }

Listing 26: Implementation of DanceChoreography.scala

1 package ch.unibe.scg
2 import org.apache.spark.{SparkConf, SparkContext}
3 object Spark {
4 private var context: SparkContext = _
5 def sc: SparkContext = if (context == null) {
6 throw new RuntimeException("you should build the context before calling it")
7 } else {
8 context
9 }

10 def buildContext(env: Env.Value): SparkContext = {
11 if (context == null) {
12 context = if (env == Env.cluster) {
13 new SparkContext(new SparkConf().set("spark.app.name", "DanceChoreography"))
14 } else {
15 val conf = new SparkConf()
16 .setAppName("DanceChoreography")
17 .setMaster("local[1]")
18 new SparkContext(conf)
19 }
20 context
21 } else {
22 context
23 }
24 }
25 }

Listing 27: Implementation of Spark.scala

1 package ch.unibe.scg
2 object Env extends Enumeration {
3 type Level = Value
4 val test: Env.Value = Value("local")
5 val cluster: Env.Value = Value("cluster")
6 }

Listing 28: Implementation of Env.scala
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Figure C.1: Debugging Flow (complete version)
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