
SUPREMO

A Scenario Based Approach
for Refactoring Duplicated Code

in Object Oriented Systems

Diploma Thesis
of the Faculty of Sciences

University of Bern

by

Georges Golomingi Koni-N’Sapu

2001

Supervisors:
Prof. Dr. Oscar Nierstrasz

Dr. St́ephane Ducasse
Matthias Rieger

Institute of Computer Science

ii

Abstract

Code duplication is one of the factors that severely complicates the maintenance and
evolution of large software systems. Tools exist that allow detection of duplicated
code. Technics to change, correct and improve code exist also. But it is difficult to find
programs that work between both domains.
In this work, we discuss a scenario based approach to analyze, categorize and remove
duplicated code in an object oriented context. The scenario is defined as the relation-
ship between classes containing methods where the duplications were found.
A prototype framework, SUPREMO, has been developed to validate our approach. It is
characterized by the following aspect:

• Visualization of the scenario in a graphical global context that gives the devel-
oper the possibility to see the impact of the duplication.

• Visualization of the source code in a textual viewer where a pop-up menu gives
the user the opportunity to refactor.

Nine case studies (seven written in Smalltalk, one in C++ and one in Java) are ana-
lyzed. A presentation of statistical results and a discussion about the qualitative aspect
of three applications developed in the SCG group are presented. The qualitative vali-
dation is illustrated with a list of examples that simulate the functioning of SUPREMO.

iii

Acknowledgements

I would like to thank people who helped me during this work:

• Antho, Davina and Murielle, my little family, for enduring my absences, my
nervosity, and for encouraging me to continue.

• Matthias Rieger, Stéphane Ducasse and Oscar Nierstrasz, my supervisors, for
their support.

• Thomas Hofmann and Michele Lanza for reading and pushing me during the
last sprint.

Georges Golomingi Koni-N’Sapu
June, 2001

Contents

1 Introduction 1
1.1 Our Contribution . 1
1.2 Structure of the Thesis. 2

2 Duplicated Code and Refactoring 3
2.1 The Problem of Duplicated Code. 3

2.1.1 Software Reuse and Origin of Clones. 3
2.1.2 The Problem. 4
2.1.3 Detection of Duplicated Code. 5

2.2 Refactoring . 5
2.2.1 A Survey of Refactoring. 5
2.2.2 How Refactoring Can Remedy Code Duplication. 6
2.2.3 Techniques of Refactoring. 6

3 Classifying Duplication in Refactorable Scenarios 8
3.1 Definition and Properties of Duplication. 9
3.2 Constraints . 9
3.3 Duplication in the Same Method. 10
3.4 Duplication in the Same Class. 13
3.5 Duplication between Sibling Classes. 18
3.6 Duplication with Superclass. 21
3.7 Duplication with Ancestor . 22
3.8 Duplication with First Cousin. 23
3.9 Duplication in Common Hierarchy. 24
3.10 Duplication in Unrelated Classes. 25
3.11 Summary . 26

4 SUPREMO: Tool Support for Duplication Elimination 27
4.1 Introduction. 27
4.2 Requirements and functionality. 27
4.3 Required Applications. 29

4.3.1 HotDraw . 29
4.3.2 Duploc . 29
4.3.3 FAMIX . 29

4.4 Tool Architecture. 30
4.4.1 Implementation. 31

CONTENTS v

Creation and Management of the Object DuplicationUnit. . . 31
User Interfaces. 32

4.4.2 Noise Filtering . 33
4.4.3 Duplications with Low Density 34
4.4.4 Duplications with Low Number of Matches. 34
4.4.5 Redundancies. 34

4.5 The Textual Viewer. 36
4.5.1 The Selection Part. 36
4.5.2 The Qualification Part. 37
4.5.3 The Information Part. 37
4.5.4 The Source Code Part. 38

4.6 The Graphical Viewer. 39

5 Validation: Statistical Analysis 40
5.1 Applications in Smalltalk. 40

5.1.1 Analyzed Applications. 40
5.1.2 Noise Filtration. 42

Distribution of Density. 42
Distribution of Number of Matches. 49

5.1.3 Metrics . 54
Scenario Distribution. 54

5.1.4 Distribution of Impact on Classes. 55
5.1.5 Distribution of Number of Matches. 56
5.1.6 Distribution of Length of Duplication. 57
5.1.7 Conclusion. 57

5.2 Applications in C++ and Java. 58

6 Validation: Qualitative Aspects 60
6.1 Case Studies Results. 60

6.1.1 Analysis of DUPLOC . 61
6.1.2 Analysis of CODECRAWLER 62
6.1.3 Analysis of MOOSE . 63

6.2 Scenario based Examples. 64
6.2.1 Ancestor Scenario. 65
6.2.2 Common Hierarchy Scenario. 67
6.2.3 First Cousin Scenario. 69
6.2.4 Same Method Scenario. 72
6.2.5 Sibling Classes Scenario. 74
6.2.6 Same Class Scenario. 77
6.2.7 Superclass Scenario. 81
6.2.8 Unrelated Classes Scenario. 82
6.2.9 Summary. 83

7 Conclusions and Perspectives 84
7.1 Conclusions. 84
7.2 Perspectives and Future Work. 85

7.2.1 Limits of the Approach. 85

vi CONTENTS

7.2.2 Future Work . 85

A Appendix 86
A.1 Refactorings . 86

A.1.1 Extract Method. 86
A.1.2 Pull Up Method. 87
A.1.3 Push Down Method. 88
A.1.4 Form Template Method. 88
A.1.5 Parameterize Method. 88
A.1.6 Collapse Hierarchy. 89
A.1.7 Extract Superclass. 90
A.1.8 Rename Method. 90
A.1.9 Replace Subclass with Field. 91
A.1.10 Substitute Algorithm. 91
A.1.11 Pull Up Field . 92
A.1.12 Replace Constructor with Factory Method. 92
A.1.13 Pull Up Constructor Body. 92
A.1.14 Inline Method. 93
A.1.15 Self Encapsulate Field. 93

A.2 Structure of the Smalltalk Applications. 94
A.2.1 SCG Group. 94

MOOSE . 94
CODECRAWLER . 95
DUPLOC . 96

A.2.2 Reference Group. 97
REFACTORINGBROWSER 97
V ISUALWORKS . 98

A.2.3 Industrial Group . 99
PDP. 99
MAF .100

A.3 Validation: Statistical Analysis. 101
A.3.1 Distribution of Scenarios. 101
A.3.2 Impact on Classes. 102
A.3.3 Number of Matches. 103
A.3.4 Length .104
A.3.5 Number of Matches before Filtering. 105

Chapter 1

Introduction

Duplicated code is a phenomenon that occurs frequently in large systems for several
reasons (see [31, 18]). Although code duplication can have its justifications, it is con-
sidered bad practice. During maintenance, which is estimated at 70% of the overall
effort for producing a software system [37], duplicated codes give the following prob-
lems [36]:

1. Hindrance to comprehension of the program.

2. Independent evolution of the clones.

3. Bad design.

In this thesis we investigate how duplication can be cured in software systems devel-
oped in object oriented programming languages.

1.1 Our Contribution

We present an approach characterized by its simplicity and a language independent
tool for analyzing and refactoring duplicated code in an object oriented context.

• We use the relationships between the software entities constrained by the object
oriented context to define different scenarios. Each of them determines a set of
applicable refactorings.

• To validate the approach, we implemented a program called SUPREMO that:

1. characterizes the detected duplication,

2. presents a textual view of the duplications,

3. draws the graphical overview of the situation,

4. proposes a set of applicable refactorings for each duplication.

2 1. Introduction

1.2 Structure of the Thesis

In Chapter2, we discuss the origins and detection of duplications and make a survey
of the applicable refactorings. Chapter3 deals with our approach and in Chapter4, we
present SUPREMO, the implemented tool.
The quantitative validation of the approach is presented in the Chapter5. The quali-
tative validation is discussed in Chapter6. In Chapter7 we present some conclusions
and discuss the perspectives of this work.

Chapter 2

Duplicated Code and Refactoring

In this chapter, we discuss the issues related to code duplication. First the origins,
problems and detection of duplicated code is investigated. Then we present refactoring
techniques to change, correct, and improve existing code.
At the end of the chapter, we present a specific list of refactorings we can use to
eliminate the clones from an object oriented system.

2.1 The Problem of Duplicated Code

Code duplication is one of the factors that severely complicates the maintenance and
evolution of large software systems. Techniques for detecting duplicated code exist
but rely mostly on parsers, a technology that has proven to be brittle in the face of
different languages and dialects.

2.1.1 Software Reuse and Origin of Clones

Software reuseis the process of creating software systems from existing software
rather than building everything from scratch. The kinds of artifacts that can be reused
are not limited to source code fragments. They may include design structures, module-
level implementation structures, specifications, documentation, transformations, and
more. Forms of code source reuse include loops, functions, procedures, subprograms,
subroutines, software component libraries, inheritance, application generators, generic
software templates [39]. The mechanisms of software reuse are well integrated in the
software development process.
Many programmers rather adopt an apparently simpler approach to reusing software
system designs and source code. They collect fragments from existing software sys-
tems and use them as part of new software by simply applying the well known practice
that we callcopy-and-paste programming. This occurs frequently during the develop-
ment phase when they reuse tried and tested code in a new context. Every developer
copies pieces of software. When encountering a familiar problem that has been solved
before, it’s a normal reflex to reuse the existing code. One does not have to reinvent
the wheel. This copy-and-paste programming style leads to duplicated code.

Duplication occurs also during the maintenance phase when the program must be

4 2. Duplicated Code and Refactoring

adapted to the new requirements of the users: a program that is used in a real-world
environment must be changed to add new functionality or to adapt to changes in the
environment [29]. Since the existing system already treats many problems of the do-
main, an obvious way to integrate the changes is to copy fragments with only small
modifications.

Duplicated code is therefore a phenomenon that occurs frequently in large systems.
The reasons why programmers duplicate code are widely discussed in [31, 18]. Some
of them are listed below:

• The following conditions in the development environment can increase the trend
to code duplication:

1. There is no time to design, implement, and test a newly developed com-
ponent. If a programmer cannot finish on time, it’s wiser to copy a piece
of code that runs properly than to persist in doing a very good design that
will not run.

2. Software systems have become more and more complex. One of the result
of a study says that:“as a program evolves, it becomes more complex, and
extra resources are needed to preserve and simplify its structure”[29]. It
becomes very difficult to keep the overview of the design and this leads to
plenty of opportunities for code duplication.

3. Efficiency considerations may make the cost of a procedure call or method
invocation seem too high a price.

4. The productivity of developers is sometimes measured in terms of number
of lines of code written. This rewards copy-and-paste rather than writing
new code.

• The programmer personality: we all have a natural laziness.

1. Making a copy of a code fragment is simpler and faster than writing the
code from scratch. In addition, the fragment may already have been tested
so the introduction of a bug seems less likely.

2. Making code reusable takes extra efforts.

3. Rethinking an implementation if you see similarities between different
parts of the implementation requires energy.

2.1.2 The Problem

Although copy-and-paste programming helps to meet short term goals (the code is
already designed, implemented and debugged), it involves a lot of problems in soft-
ware maintenance, which is estimated to cost 70% of the overall effort for producing
software system in average [37]:

1. It complicates the comprehension of the program.

2. Code duplication increases the size of the code, extending compile time and
expanding the size of the executable.

2.2 Refactoring 5

3. It uses more memory and complicates the error detection. Defects found in a
code segment that has possibly been copied involves searching the clones of the
segment and assessing the impact of the correction in each new context. If one
repairs a bug in a system with duplicated code, all possible duplications of that
bug must be checked.

4. Code duplication often indicates design problems like missing inheritance or
missing procedural abstraction. In turn, such a lack of abstraction hampers the
addition of functionality.

2.1.3 Detection of Duplicated Code

The analysis of code in order to identify duplication is a wide domain. Different tech-
niques are used: structural comparison using pattern matching, metrics or statistical
analysis of the code, code fingerprints.
In [32], clones are detected by identifying programming patterns. Statistical compar-
isons are used in [35, 34]. Jankowitz in [33] uses the static execution tree (the call
graph) of a program to determine a fingerprint of the program.
Visualization of duplicated code is used bydotplot[10] and by DUPLOC [11]. Johnson
[12] and Baker [1] do not have graphical support, but provide a report that presents an
overall similarity percentage between two files.
The tool of [18] transforms source code into abstract syntax trees and Kontogian-
nis [13] evaluates the use of five data and control flow related metrics for identifying
similar code fragments.

However, most of the approaches [31, 32, 13, 18] are based on parsing techniques
and thus rely on having theright parser for the right dialect foreverylanguage that
is used within an organization. The need for parsing hinders the application of these
techniques in an industrial context.

2.2 Refactoring

This section presents an overview of refactoring, and how it helps to remedy code
duplication. We mention also at the end a list of refactorings that could be useful to
remove duplicated code.

2.2.1 A Survey of Refactoring

Refactoring consists of changing a software system in such a way that is does not alter
the external behavior of the program. It is a disciplined way to clean up code [3].
Three of the most important advantages of refactoring are listed below:

1. It improves the design of software.
During its evolution, the design of the program deteriorates as people change
code. As programmers change code, for instance to realize short-term goals,
sometimes without a full comprehension of the design, the code loses its struc-
ture.

6 2. Duplicated Code and Refactoring

Refactoring is a way to restructure the code. In essence when you refactor you
are improving the design of the code.

2. It makes software easier to understand.
Someone (maybe yourself) will read your code later in order to make changes.
When you write code you don’t think of the other programmer who will modify
your code, you are preoccupied with the short-term goals that the program must
meet.
When you refactor, you describe the code better because you have to understand
first the code you are refactoring. Usually you write comments or/and rename
the methods with a more communicative name.

3. It helps you to avoid errors.
It is a way to clean up code that minimizes the chances of introducing defects.
If you better understand the code your are being refactoring, then you can also
find errors in the program more easily.

4. It helps you to maintain and modify a program with more accuracy and speed.
The three points mentioned before (Improving design, understandability and re-
ducing bugs) lead to the conclusion that refactoring improves the quality of de-
sign. Good design is essential for rapid software development. You don’t spend
time finding and fixing bugs instead of adding new function.

Refactoring helps you to develop software more rapidly, because it stops the design of
the system from decaying and can even improve a design. Refactorings are however
also risky because they require changes to working code.

2.2.2 How Refactoring Can Remedy Code Duplication

Several times during its life cycle, because of its evolution, software must be refac-
tored. We must take advantage of this process to reduce or better eliminate all clones
of the system.
There are two cases to distinguish:

1. A complete function is duplicated exactly.
For example functionsF 1, F 2, F 3, ..., Fn: in this case the solution is to change
the calls to the functionsF 2, F 3, ..., Fn into calls to the functionF 1, and then
remove all duplicates butF 1.

2. Only a piece of code is found as part of a number of functions.
The solution is to extract the piece of code and create a new function N from it.
The duplicated code is then replaced everywhere with calls to N.

By eliminating the duplicates, you ensure that the codesays everything once and only
once, which is a rule of good design [27].

2.2.3 Techniques of Refactoring

Refactoring must be done systematically to avoid or reduce the risk of introducing
bugs on the working code. From Fowlers catalog [3] of 72 refactorings, we list those

2.2 Refactoring 7

that are important for eliminating duplication. The details of the mechanics of each
refactoring are explained in appendixA.1.

1. Extract Method (see SectionA.1.1).
If a code fragment can be grouped together, turn it into a method whose name
explains the purpose of the method and replace the fragment with a call to the
new method.

2. Pull Up Method (see SectionA.1.2).
Methods with duplicated code in two subclasses of a common ancestor X can
be refactored as follows: extract a method (see 1.) in both classes and put it into
the superclass X.
OftenPull Up Methodcomes after other steps. You see two methods in different
classes that can be parameterized in such a way that they end up as essentially
being the same method. A special case of the need forPull Up Methodoccurs
when you have a subclass that overrides a method from the superclass yet does
the same thing.
The most awkward element ofPull Up Methodis that the body of the methods
may refer to features that are in the subclass but not in the superclass. If the
feature is a method, you can create an abstract method in the superclass.

3. Push Down Method (see SectionA.1.3).
Behavior on a superclass is relevant only for the subclass. Push Down Method
is the opposite ofPull Up Method.

4. Form Template Method (see SectionA.1.4).
Two methods in subclasses that seem to carry out broadly similar steps in the
same sequence, but the steps are not the same. Move the sequence to the super-
class and allow polymorphism to play its role, ensure that the different steps do
their things differently. This kind of method is called a template method [21].

5. Parameterization (see SectionA.1.5).
Several methods do similar things but with different values contained in the
method body, one method that uses a parameter for the different values can be
created.

6. Collapse Hierarchy (see SectionA.1.6).
Refactoring the hierarchy often involves pushing methods and fields up and
down the hierarchy. After you have done this , you can find you have a sub-
class that is not adding any value, so you need to merge the classes together.

7. Extract Superclass (see SectionA.1.7).
You have two classes with similar features.
Create a superclass and move the common features to the superclass.

Chapter 3

Classifying Duplication in
Refactorable Scenarios

In the previous chapter we mentioned the difficulty to find tools that work between the
detection and the refactoring of duplicated code. In this chapter we expose our ap-
proach for the removal of duplication and define the outlines of its application domain.

Refactoring in an object oriented context is constrained by the relationships be-
tween the software entities, principally between classes. We cannot apply any refac-
toring in any situation. Only a specific set of refactorings can be used in a given
context.

Our idea is to define such situations or “scenarios”, as we call them and to find out
the corresponding set of refactorings. Depending on the relationship between classes
containing the methods where the duplicated code was found, we have defined differ-
ent scenarios that characterize the situation and allow the definition of possible cures.
The list of defined scenarios is presented below:

1. In the Same Method (see Section3.3).

2. In the Same Class (see Section3.4).

3. With a Sibling Class (see Section3.5).

4. With the Superclass (see Section3.6).

5. With an Ancestor (see Section3.7).

6. With a First Cousin (see Section3.8).

7. In Common Hierarchy (see Section3.9).

8. In Unrelated Classes (see Section3.10).

The next section presents some definitions that we need in this work.

3.1 Definition and Properties of Duplication 9

3.1 Definition and Properties of Duplication

Duplication or Clones. In this work we define the notion of “duplication” or “clone”
as describing an association between two pieces of source code that are considered as
copied by the detection tool.

Impact on Classes. The definition of scenario infers that there are only two con-
cerned classes at maximum. The duplication however, could be repeated more than
one time and with different scenarios. It is difficult to anticipate all possible combi-
nations of situations. We define the notion of “impact on classes” as the number of
different classes participating on the duplication.

3.2 Constraints

The concept of scenario is the basis of our approach: . A set of applicable refactorings
is associated to a given scenario. The principle of our approach is to find for each
duplication the corresponding scenario and to propose a list of possible refactorings.
This is performed in two steps:

1. Duplication detection.
Given the difficulty to find a parser for each dialect (as mentioned in Chapter2),
we opt for the principle of language independence and decide, for the detection
of duplication, upon a tool named DUPLOC [11]. Its detection algorithm is based
on line comparison of source code using string matching.

2. Scenario definition.
For each detected duplication, we must find the information about the origin of
copied code (the method and the class) to establish the scenario. Here also, we
opt for language independence and decide, upon a framework named MOOSE

[38].

In the following sections, we describe the scenarios we defined. Each section
contains a figure to illustrate the relation between entities in the system, a paragraph
that describes the scenario and a list of proposed refactorings. This group of refactoring
might possibly be used by the developer. He decides if a duplication must be refactored
or not, and which refactoring will be used.

10 3. Classifying Duplication in Refactorable Scenarios

3.3 Duplication in the Same Method

Description. Two pieces of code (see Figure3.1) are duplicated in the same method.

aMethod2

aMethod1

aClass

Figure 3.1: Duplication in the same method.

Proposed Refactorings:

• Extract Method(see SectionA.1.1).

• Parameterization(see SectionA.1.5).

Discussion. This case represents the simplest scenario. We don’t have to take care
of side effects between classes. If an extract method is applied, the piece of code is
replaced by a call to the newly created method. The signature of the original methods
are not changed and a possible client does not see the difference.
If we don’t have local variable in the duplicated piece of code, we propose at first the
Extract Methodrefactoring for this scenario. In some circumstance (see below), the
Parameterizationcould be used or a combination of both refactorings.

3.3 Duplication in the Same Method 11

The biggest problem with our proposed refactoring,Extract Method, is dealing
with local and temporary variables. In the simplest case, there is no local variable
and the refactoring is trivially easy. Take the example of Figure3.2 which shows a
duplication in the same class found in CODECRAWLER.

Upper Class:CCGraphSubcanvas
Upper Method:changedEdges

changedEdges
self areEdgesChecked

ifFalse:
[self disable: #chkEdgesEnabled.
chkEdgesEnabled value: false.
self disable: #chkWeightedEdgesEnabled.
chkWeightedEdgesEnabled value: false]

ifTrue:
[self enable: #chkEdgesEnabled.
self enable: #chkWeightedEdgesEnabled]

postBuildWith: aBuilder
self changedCheckClasses;

changedCheckMethods;
changedCheckAttributes;
changedCheckFunctions.

self areEdgesChecked
ifFalse:

[self disable: #chkEdgesEnabled.
chkEdgesEnabled value: false.
self disable: #chkWeightedEdgesEnabled.
chkWeightedEdgesEnabled value: false]

Lower Class:CCGraphSubcanvas
Lower Method:postBuildWith:

Figure 3.2: Application of Extract Method.

It is easy to extract the code contained in the ifFalse: branch of the conditional. It
is just a cut, paste, name and put in a call:
CCGraphSubcanvas>>disableEdges

self disable: #chkEdgesEnabled.
chkEdgesEnabled value: false.
self disable: #chkWeightedEdgesEnabled.
chkWeightedEdgesEnabled value: false

12 3. Classifying Duplication in Refactorable Scenarios

Both methods are changed and the duplication is removed. A third method are
created.

Upper Class:CCGraphSubcanvas
Upper Method:changedEdges

changedEdges
self areEdgesChecked

ifFalse:
[self disableEdges]

ifTrue:
[self enable: #chkEdgesEnabled.
self enable: #chkWeightedEdgesEnabled]

postBuildWith: aBuilder
self changedCheckClasses;

changedCheckMethods;
changedCheckAttributes;
changedCheckFunctions.

self areEdgesChecked
ifFalse:

[self disableEdges]

Lower Class:CCGraphSubcanvas
Lower Method:postBuildWith:

Figure 3.3: Duplication refactored with Extract Method.

With Local Variable. The problem is that local variables are only in scope in that
method. The easiest case with local variable is when the variables are read but not
changed. In this case we can just pass them in as a parameter (see discussion in Sec-
tion 3.5).
If the local variable is assigned, the simplest case is that in which the variable is a
temporary variable used only within the extracted code. In this case you can move the
variable into the extracted code.
If the assigned local variable is used outside the extracted code, it is difficult to give a
general solution. The situation must be deeply checked.

3.4 Duplication in the Same Class 13

3.4 Duplication in the Same Class

Description. Two different methods of the same class contain the same piece of code
(see Figure3.4).

aMethod2

aMethod1

aClass

Figure 3.4: Duplication in the same class.

Proposed Refactorings:

• Extract Method(see SectionA.1.1).

• Insert Method Call.

• Parameterization(see SectionA.1.5).

• Form Template Method(see SectionA.1.4).

Discussion. We propose four refactorings which could be applied each alone or in
combination. TheExtract Methodwas discussed in the previous section, we present
below typical examples where we could applyInsert Method CallandParameteriza-
tion. Form Template Methodis discussed in Section3.5.

14 3. Classifying Duplication in Refactorable Scenarios

Insert Method Call could be applied when one method is entirely copied in the other
method or when an other method could be called with a special value (see Figure3.5).

Upper Class:LineByLineReader
Upper Method:getRecordUntilEmptyLine

getRecordUntilEmptyLine
"returns a collection of all lines up to the occurence
of an empty line (not returning this line if removeRecordDelimiter
is set to true) or it returns all the lines until the end of the input
if no empty line is found"

| lineColl found line |
lineColl := OrderedCollection new.
readStream isNil ifTrue: [ˆlineColl].

line := ’’.
found := false.
[line isNil | found]

whileFalse: [(line := self getNextLineFromBuffer) isNil
ifFalse:

[line = ’’ ifTrue: [found := true].
found not | removeRecordDelimiter not

ifTrue: [lineColl addLast: line]]].
ˆlineColl

getRecordDelimitedBy: aStringOrNil
"returns a collection of all lines up to the occurence
of a line prefixed by aString (including this line)
or it returns all the lines until the end of the input
if the

is nil"

| lineColl found line |
lineColl := OrderedCollection new.
readStream isNil ifTrue: [ˆlineColl].

line := ’’.
found := false.
[line isNil | found]

whileFalse: [(line := self getNextLineFromBuffer) isNil
ifFalse:

[aStringOrNil notNil
ifTrue: [found :=

(line indexOfSubCollection: aStringOrNil
startingAt: 1) == 1].

aStringOrNil isNil | (found not | removeRecordDelimiter not)
ifTrue: [lineColl addLast: line]]].

ˆlineColl

Lower Class:LineByLineReader
Lower Method:getRecordDelimitedBy:

Figure 3.5: Application of Insert Method Call.

3.4 Duplication in the Same Class 15

The method#getRecordUntilEmptyLine could be replaced by the follow-
ing code:
LineByLineReader>>#getRecordUntilEmptyLine

"...comment..."
self getRecordDelimitedBy: ’ ’

The duplication is then eliminated and the code becomes:

Upper Class:LineByLineReader
Upper Method:getRecordUntilEmptyLine

getRecordUntilEmptyLine
"returns a collection of all lines up to the occurence
of an empty line (not returning this line if removeRecordDelimiter
is set to true) or it returns all the lines until the end of the input
if no empty line is found"

ˆself getRecordDelimitedBy: ’ ’

getRecordDelimitedBy: aStringOrNil
"returns a collection of all lines up to the occurence
of a line prefixed by aString (including this line)
or it returns all the lines until the end of the input
if the

is nil"

| lineColl found line |
lineColl := OrderedCollection new.
readStream isNil ifTrue: [ˆlineColl].

line := ’’.
found := false.
[line isNil | found]

whileFalse: [(line := self getNextLineFromBuffer) isNil
ifFalse:

[aStringOrNil notNil
ifTrue: [found :=

(line indexOfSubCollection: aStringOrNil
startingAt: 1) == 1].

aStringOrNil isNil | (found not | removeRecordDelimiter not)
ifTrue: [lineColl addLast: line]]].

ˆlineColl

Lower Class:LineByLineReader
Lower Method:getRecordDelimitedBy:

Figure 3.6: Duplication refactored with Insert Method Call.

16 3. Classifying Duplication in Refactorable Scenarios

Parameterization This refactoring is applied if methods that do similar things but
vary depending on few values. Since we are in the same method scenario, we can
not use polymorphism, in this case we can replace the separate methods with a single
method that handles the variation by parameters.
The parts of code corresponding to the difference are the assignments of local vari-

Upper Class:CodeParticle
Upper Method:mergeUsingOr:

mergeUsingOr: aCodeParticle
(self safetyCheckWith: aCodeParticle)

ifTrue:
[| start end trueVal falseVal newCFun |
start := lowerBound min: aCodeParticle lowerBound.
end := upperBound max: aCodeParticle upperBound.
trueVal := self nonHoleSymbol.
falseVal := self holeSymbol.
newCFun := self createEmptyCharactFun.
start to: end do: [:pos | (self charactFunAt: pos) = trueVal
| ((aCodeParticle charactFunAt: pos) = trueVal)

ifTrue: [newCFun addLast: trueVal]
ifFalse: [newCFun addLast: falseVal]].

charactFun := newCFun.
lowerBound := start.
upperBound := end]

ifFalse: [self sourceObject = aCodeParticle sourceObject
& self isEmpty ifTrue: [self copyFrom: aCodeParticle]]

mergeUsingAnd: aCodeParticle
(self safetyCheckWith: aCodeParticle)

ifTrue: [(self boundariesOverlapWith: aCodeParticle)
ifTrue:

[| start end trueVal falseVal newCFun |
start := lowerBound max: aCodeParticle lowerBound.
end := upperBound min: aCodeParticle upperBound.
trueVal := self nonHoleSymbol.
falseVal := self holeSymbol.
newCFun := self createEmptyCharactFun.
start to: end do: [:pos | (self charactFunAt: pos) = trueVal

& ((aCodeParticle charactFunAt: pos) = trueVal)
ifTrue: [newCFun addLast: trueVal]
ifFalse: [newCFun addLast: falseVal]].

charactFun := newCFun.
lowerBound := start.
upperBound := end]]

ifFalse: [self sourceObject = aCodeParticle sourceObject
& aCodeParticle isEmpty ifTrue: [self makeEmptyParticle]]

Lower Class:CodeParticle
Lower Method:mergeUsingAnd:

Figure 3.7: Application of Parameterization.

ablesstart andend , and the conditional:(self charactFunAt: pos) =
trueVal & ((aCodeParticle charactFunAt: pos) = trueVal) and
(self charactFunAt: pos) = trueVal | ((aCodeParticle char-
actFunAt: pos) = trueVal) . We can create one method that uses a param-
eter for the different values. For example:

3.4 Duplication in the Same Class 17

merge: aCodeParticle usingOperation: aSymbol

| start end trueVal falseVal newCFun aBoolean result|
aBoolean := aSymbol = #And.
aBoolean ifTrue: [start := lowerBound max: aCodeParticle lowerBound.

end := upperBound min: aCodeParticle upperBound]
ifFalse:[start := lowerBound min: aCodeParticle lowerBound.

end := upperBound max: aCodeParticle upperBound]
trueVal := self nonHoleSymbol.
falseVal := self holeSymbol.
newCFun := self createEmptyCharactFun.
start to: end do: [:pos |
aBoolean ifTrue: [result:= (self charactFunAt: pos) = trueVal

& ((aCodeParticle charactFunAt: pos) = trueVal)]
ifFalse:[result:= (self charactFunAt: pos) = trueVal

| ((aCodeParticle charactFunAt: pos) = trueVal)].
result ifTrue: [newCFun addLast: trueVal]

ifFalse: [newCFun addLast: falseVal].
charactFun := newCFun.
lowerBound := start.
upperBound := end

This method could be used in the original methods:

Upper Class:CodeParticle
Upper Method:mergeUsingOr:

mergeUsingOr: aCodeParticle
(self safetyCheckWith: aCodeParticle)

ifTrue:
[self merge: aCodeParticle usingOperation: #Or]

ifFalse: [self sourceObject = aCodeParticle sourceObject
& self isEmpty ifTrue: [self copyFrom: aCodeParticle]]

mergeUsingAnd: aCodeParticle
(self safetyCheckWith: aCodeParticle)

ifTrue: [(self boundariesOverlapWith: aCodeParticle)
ifTrue:

[self merge: aCodeParticle usingOperation: #And]
ifFalse: [self sourceObject = aCodeParticle sourceObject
& aCodeParticle isEmpty ifTrue: [self makeEmptyParticle]]

Lower Class:CodeParticle
Lower Method:mergeUsingAnd:

Figure 3.8: Duplication refactored with Parameterization.

18 3. Classifying Duplication in Refactorable Scenarios

3.5 Duplication between Sibling Classes

Description. By sibling classes (see Figure3.9) we refer to all classes with the same
direct superclass and with the same hierarchical level. The highlighted rectangles rep-
resent the classes in which the methods containing duplicated code were found.

Figure 3.9: Duplication between sibling classes.

Proposed Refactorings:

• Pull Up Method(see SectionA.1.2).

• Parameterization(see SectionA.1.5).

• Extract Method(see SectionA.1.1).

• Substitute Algorithm(see SectionA.1.10).

• Form Template Method(see SectionA.1.4).

• Replace Subclass with Field(see SectionA.1.9).

• Extract Superclass(see SectionA.1.7).

Discussion. The experiments leads in this work (see Section6.1)show the trend to
pull up into the superclass the extracted duplication by usingForm Template Method
andPull Up Method.

3.5 Duplication between Sibling Classes 19

We illustrate theForm Template Methodrefactoring with the following example:

import
"self importMyself"

| class |
class := [

self startUIProgressFeedback: ’Import (by querying Smalltalk
repository)’ maxProgressMeasure: smalltalkClasses size.

classCounter := 0.
smalltalkClasses

collect:
[:clss |

classCounter := classCounter + 1.
self nextUIProgressFeedback: clss name

progressMeasure: classCounter.
self perform: classCreatorMessage with: clss class with: true.
self perform: classCreatorMessage with: clss with: false]]

valueNowOrOnUnwindDo: [self terminateUIProgressFeedback].
self optimize.
ˆclass

import
"self importMyself"

| classEntities |
classEntities := [

self startUIProgressFeedback: ’Import (by parsing
method-sources)’ maxProgressMeasure: smalltalkClasses size.

classCounter := 0.
smalltalkClasses

collect:
[:clss |

classCounter := classCounter + 1.
self nextUIProgressFeedback: clss name
progressMeasure: classCounter.

self buildEntitiesFromSmalltalkClass: clss]]
valueNowOrOnUnwindDo: [self terminateUIProgressFeedback].
self optimize.
ˆclassEntities

Figure 3.10: Application of Form Template Method.

The duplication in Figure3.10, wich is a duplication in sibling classes, is a good
candidate for the creation of a template method: both methods in subclasses perform
similar steps in the same order, yet the steps are different. We must get the steps into
methods with the same signature, so that the original methods become the same.

20 3. Classifying Duplication in Refactorable Scenarios

import
"self importMyself"

| classEntities |
classEntities := [

self startUIProgressFeedback: self myComment
maxProgressMeasure: smalltalkClasses size.

classCounter := 0.
smalltalkClasses

collect:
[:clss |

classCounter := classCounter + 1.
self nextUIProgressFeedback: clss name
progressMeasure: classCounter.

self buildEntitiesFrom: clss]]
valueNowOrOnUnwindDo: [self terminateUIProgressFeedback].
self optimize.
ˆclassEntities

Figure 3.11: Duplication refactored with Form Template Method.

We create in each subclass the methods#myCommentand#buildEntities-
From: which are as follow defined:

MSEVisualWorksImporter>>#myComment

’̂Import (by querying Smalltalk repository)’

MSEVisualWorksImporter>>#buildEntitiesFrom: clss

self perform: classCreatorMessage with: clss class with: true.

self perform: classCreatorMessage with: clss with: false

MSEVisualWorksParsingImporter>>#myComment

’̂Import (by parsing method-sources)’

MSEVisualWorksParsingImporter>>#buildEntitiesFrom: clss

self buildEntitiesFromSmalltalkClass: clss

In both subclasses, we have now exactly the same method. We can allow inheritence
and polymorphism to play their role by pulling up the common method.

3.6 Duplication with Superclass 21

3.6 Duplication with Superclass

Description. This scenario describes a duplication between a class and its direct
superclass.

Figure 3.12: Duplication with Superclass.

Proposed Refactorings:

• Insert Super Call

• Parameterization(see SectionA.1.5).

• Pull Up Method(see SectionA.1.2).

• Push Down Method(see SectionA.1.3).

• Form Template Method(see SectionA.1.4).

Discussion. If both methods have the same name, we can think on a template method
for the refactoring or the duplication could also be eliminated by extracting method
from both classes and then by putting it into the superclass.

22 3. Classifying Duplication in Refactorable Scenarios

3.7 Duplication with Ancestor

Description. This scenario describes the case where one class inherits from the other
but not directly (see Figure3.13).

Figure 3.13: Duplication with Ancestor.

Proposed Refactorings:

• Extract Method(see SectionA.1.1).

• Parameterization(see SectionA.1.5).

• Pull Up Method(see SectionA.1.2).

• Form Template Method(see SectionA.1.4).

Discussion. The difference to the previous scenario (with superclass) is that if we
modify something in the ancestor, all classes between the ancestor and the concerned
subclass are also affected by the change. We must be more vigilant for where we define
the new created method. If we put it into the ancestor class, more classes are affected
than in the case of superclass scenario.

3.8 Duplication with First Cousin 23

3.8 Duplication with First Cousin

Description. This scenario describes the case where both classes have the same hi-
erarchical level and their superclasses are sibling classes (see Figure3.14).

Figure 3.14: Duplication with First Cousin.

Proposed Refactorings:

• Pull Up Method(see SectionA.1.2).

• Form Template Method(see SectionA.1.4).

• Extract Method(see SectionA.1.1).

• Parameterization(see SectionA.1.5).

• Extract Superclass(see SectionA.1.7).

Discussion. Using inheritance we can also pull up the extracted method two levels
upper in the hierarchy. We must check if there are other classes with the same an-
cestor involved in the duplication. If yes, “a flawed design” is a probability. May all
subclasses containing the same code need a common superclass (Extract Superclass).
One possibility is to extract a new superclass up to all concerned class and to put into
it the new created component.

24 3. Classifying Duplication in Refactorable Scenarios

3.9 Duplication in Common Hierarchy

Description. In this scenario, both classes have the same root or in languages that
have multiple inheritance, the sets of ancestors of each class are not disjoint.

Figure 3.15: Duplication in Common Hierarchy.

Discussion. The classes in this scenario generally have different hierarchical levels.
The consequences of a refactoring is more complicated to predict because more classes
are involved. It is difficult to say which refactoring is appropriate for this scenario.
A graphical representation of the hierarchical inheritance tree where the concerned
classes are indicated is a good help for the decision.

Proposed Refactorings:

• Pull Up Method(see SectionA.1.2).

• Parameterization(see SectionA.1.5).

• Extract Method(see SectionA.1.1).

• Form Template Method(see SectionA.1.4).

• Extract Superclass(see SectionA.1.7).

3.10 Duplication in Unrelated Classes 25

3.10 Duplication in Unrelated Classes

Description. This scenario describes the case where both classes do not have any
common ancestor (see Figure3.16).

Figure 3.16: Duplication in Unrelated Classes.

Proposed Refactorings: Proposing a solution for this situation is the most difficult
one. If you have duplicated code in two unrelated classes, consider extracting a class
from one class and then use the new component. If the method really belongs only
in one of the classes, the other class should invoke it. You have to decide where the
method makes sense and ensure it is there and nowhere else.

26 3. Classifying Duplication in Refactorable Scenarios

3.11 Summary

In the table3.1are grouped the refactorings we propose pro scenario.

A
nc

es
to

r

C
om

m
on

H
ie

ra
rc

hy

F
irs

tC
ou

si
n

S
am

e
M

et
ho

d

S
ib

lin
g

S
in

gl
e

C
la

ss

S
up

er
cl

as
s

U
nr

el
at

ed

Extract Method
√ √ √ √ √ √

Insert Method Call
√ √

Insert Super Call
√

Parameterization
√ √ √ √ √ √ √

Pull Up Method
√ √ √ √ √

Form Template Method
√ √ √ √ √ √ √

Push Down Method
√

Extract Superclass
√ √ √

Table 3.1: Proposition of Refactoring depending on Scenario.

Chapter 4

SUPREMO: Tool Support for
Duplication Elimination

4.1 Introduction

SUPREMO (SUPport for REfactoring Method Objects) is the prototype implemented
during this work. It has been written entirely in Smalltalk VISUALWORKS in the Envy
4.0 environment. The tool, based on the scenario approach, can:

1. analyze and categorize duplications

2. compute the impact of duplications

3. navigate between duplications

4. display the structure of a system

5. localize in this view the duplications

6. compute metrics

7. propose refactorings and apply them for some cases

There are two main user interfaces: the textual viewer and the graphical viewer,
which are described in Section4.5and in Section4.6. When the analyzed application
is written in Smalltalk, from the textual viewer the REFACTORINGBROWSERcan be
called directly opened on the method the developer want to refactor. He has thus the
possibility to extract, push up, push down, remove methods. He can also move the
methods to an other class or see the senders of the method.

4.2 Requirements and functionality

Recall: In this work we define the duplication or clone as an association between
two pieces of code that are considered as copied by the detection tool. The scenario
characterize the relationship between the classes where the copied code was found.

28 4. SUPREMO: Tool Support for Duplication Elimination

When we began the implementation of SUPREMO, we had some requirements and
functionality in mind which we thought would be necessary for the program to have:

Language Independence. Techniques for detecting and removing duplicated code
exist but are only applicable for a given language or dialect. For example Balazinska
in [17] proposes a tool that works only with Java programs.
Legacy systems, however, often have a number of different languages. In industrial
software development contexts, resources are finite and one does not have the luxury
to choose the development platform. Consequently any maintenance tool must inte-
grate well with whatever program language already in place.
We wanted to circumvent this hindrance by applying a language independent and vi-
sual approach; a tool that requires no parsing.

Information access. The user interface of SUPREMO should provide the developer
the following properties of the duplications:

• He should see the origin of each duplicated code: the class, the name of the
method. Was the method entirely copied or not ? How many lines of code were
exactly the same in the concerned pieces of code?

• Each duplication should be classified in term of scenarios. The user should have
the relationship between the entities of the system.

• The duplication could be repeated more than one time (see Section3.1). He
must be able to find all copied code that form clusters. The refactoring of a
duplication in a cluster must take in account the other clones. The developer
should have the impact of each duplication on the other classes.

Interactivity. Through means of direct-manipulation interfaces, we wanted to give
the user of SUPREMO the possibilities listed below. He should be able

• to navigate through the duplicated code, to remove from the list of clones to be
refactored, those that stay in the program.

• to select the duplications with a given scenario. He could want to work with
only the scenario in the same method, for example.

• to choose the length and/or the density of duplications he wants to see.

• to visualize, in a global view, all the hierarchical relationships between classes.
This representation should convey, in a overview fashion, information about the
duplication found.

• to refactor directly from the main window where the duplicated code is dis-
played.

4.3 Required Applications 29

4.3 Required Applications

The frameworks that SUPREMOneeds to run are presented bellow:

4.3.1 HotDraw

HOTDRAW is a two-dimensional graphics framework for structured drawing editors. A
HOTDRAW application edits drawings that are made up of figures. Figures are graphics
elements such as lines, boxes, and text, and they can represent other objects. A drawing
editor built from HOTDRAW contains a set of tools that are used to manipulate the
drawing. When a figure is selected by the selection tool. it presents a set of handles.
Manipulating a handle changes the properties of its figure or performs some action.
For further information on the HOTDRAW framework, which is still being maintained,
see also [9, 25, 26]

4.3.2 Duploc

DUPLOC [11] is a language independent approach for detecting duplicated code. The
approach is based on (1)simpleline-based string matching, (2)visual presentationof
the duplicated code and (3) detailedtextual reportsfrom which overview data can be
synthesized.
DUPLOC transforms the source code slightly using string manipulation operations into
an internal format, and to compare the transformed lines, it uses basic string matching.
The transformation reduces the entire source code file to an ordered collection of ef-
fective lines that will be compared against itself and line collections from other files.
The comparison of two lines is done by string matching. The result is a booleantrue
for an exact match and afalse otherwise. This value is stored in a matrix, taking the
coordinates that the two compared entities have in their respective ordered collections
as the matrix coordinates for the comparison result. Comparison sequences, e.g. se-
quences of matched lines, are then extracted from the matrix in a separate pass.
The algorithm as stated above does not catch duplicated code that was changed inside
one line of code. In a sequence of copied code that is compared with the original se-
quence, a changed line shows up as a hole in the diagonal match pattern. To cope for
this weakness when extracting whole copied sequences, a pattern matcher is run over
the matrix which captures diagonal lines and allows holes up to a certain size in the
middle of the line.

4.3.3 FAMIX

The implementation of the FAMIX metamodel (see Figure4.1) written in Small talk
is called MOOSEand has been developed at the University of Bern. The model itself is
a language-independent database of Object Oriented entities. Once a model has been
built, we can make queries to the model and its entities. Suppose we have an entity
representing a class. We can now ask this class to give us all its methods. attributes
etc. We can build models out of systems written in other Object Oriented program-
ming languages than Small talk through an interface called CDIF.

30 4. SUPREMO: Tool Support for Duplication Elimination

InheritanceDefinition

Class
subclass

superclass

��AA
��AA

belongsToClass

Method
H�H�

Invocation

candidates

invokedBy

��AA
��AAaccessedIn

Access

accesses
Attribute

�H�H
belongsToClass

Figure 4.1: The FAMIX Data Model

The representation of Object Oriented source code named FAMIX (FAMoos Informa-
tion EXchange model [24]) is also defined in the context of the FAMOOS project and
exploits meta-modelling techniques to make the data model extensible.

4.4 Tool Architecture

Source Code

Moose

Supremo

Small talk

Duploc

6

-

�

-

-

�

�

-

SourceAnchors

Queries

Read

Queries

Source Code

Source Code

Duplications

1m
2m

3m

4m

5m6m 7m

Figure 4.2: Implementation of Supremo

In Figure 4.2we can see the process SUPREMO follows.

1. Create the model.
The source code is read by MOOSE, which creates and stores a model of the
system (for details see [38]).

2. Query the model.
SUPREMOcan now query the entities of the system to obtain the position of the
source code.

3. Read the sources.
With the positions in the source file, SUPREMOcollects the source code of each

4.4 Tool Architecture 31

method of the system. For the moment we analyze all methods without excep-
tion. In the future, we will give the user the possibility to choose which entities
he wants to investigate.

4. Read Smalltalk sources.
The programs written in Small talk can be read directly by SUPREMO without
passing through MOOSE. We use the metamodel of Small talk to obtain the
source code of the methods.

5. Feed DUPLOC.
The collected source code is given to DUPLOC for the duplication detection.
DUPLOC give as output a collection of sequences of lines of code (for details
see [11]). The sequences given by DUPLOC associate two different pieces of
code with a characteristic function which gives for each sequence the lines that
match in the two sources.

6. Analyze the duplications.
SUPREMOqueries the model (MOOSEor Smalltalk) to find the relationship be-
tween entities associated in the duplications given by DUPLOC and thus finds
which scenario corresponds to the duplication.

7. Reduce noise.
The output of DUPLOC contains noisy dates that we muss eliminate (see sec-
tion 4.4.2).

4.4.1 Implementation

This section deals with a few aspects regarding the implementation of SUPREMO. We
present below some of the most important classes of SUPREMO.

Creation and Management of the Object DuplicationUnit

DuplicationUnit is the most important class of the application (see Figure4.3). It
contains the information of the metamodel, the scenario, the source code and the status
of the duplication. It is the class that is connected with MOOSEand DUPLOC via its
instance variable metaModel and comparisonSequence.
DuplicationUnit computes the properties of duplication like: the length, the number of
matches and the density (see definition in Section4.4.2).

Metamodel is the connection with MOOSEor Smalltalk depending of the language
of analyzed application. MOOSE serves primarily as a database for the relation be-
tween entities and for the localization of the source code to analyze. If the application
is written in Smalltalk, we don’t need MOOSEand find directly the information from
the Smalltalk metamodel.

32 4. SUPREMO: Tool Support for Duplication Elimination

Metamodel Scenario ComparisonSequence

DuplicationUnit Active

6 6 6

�

Moose/Small talk Duploc

6

?

6

?

Figure 4.3: DuplicationUnit Class.

ComparisonSequence is the connection with DUPLOC, which gives its results as a
collection of sequences of code. SUPREMOgroups together all duplication concerning
the same source code and create a duplicationUnit.

Scenario With the comparisonSequence and the metaModel, SUPREMOfind the cor-
responding scenario and point out the other duplications that form a cluster with the
current duplication.

Active indicates if the duplication is disabled or not. We need this state for the
selection and navigation in the textual viewer(see Figure4.6).

DuplicationUnitsManager is the class that manages the duplicationUnits. It con-
tains three collections:

1. duplicationUnits contains the duplications (active or not) that the developer
wants to refactor.

2. removedcontains the duplication the developer decided to delete from the list.
Those duplications are not visible any more from the user interface.

3. analyzedClassescontains only the analyzed classes of the application. In Smalltalk
for instance, we must isolate the classes of the analyzed application from the
other classes of Smalltalk otherwise we could not find unrelated classes because
all classes inherit from the class Object.
This class is responsible for the operations with duplications: selection, remov-
ing from the list, computing metrics, etc.

User Interfaces

Textual Viewer displays only active duplications (which were selected by the devel-
oper) and is responsible for the navigation.

4.4 Tool Architecture 33

Graphical Viewer shows a global view of analyzed classes with the inheritance hier-
archy. The color of the class informs if the class contains duplications, if it participates
to a cluster of duplications with the current duplication displayed in the textual viewer.
The graphical viewer is the connection with HOTDRAW. SUPREMO subclasses three
classes of HOTDRAW:

1. DrawingEditor. This is done through the class SupremLayout which is the
main class of the graphical viewer.

2. RectangleFigure.The subclass is named ClassFigure and is the graphical repre-
sentation of a class and directly references it through its instance variablemodel.

3. Tool. The class SupremTool implements the method which is responsible for
displaying the class name in the lower left corner of the graphical viewer, when
the mouse pointer is floating above a ClassFigure.

4.4.2 Noise Filtering

The algorithm of duplication detection of DUPLOC allows the presence of holes in the
duplication. That means we have sequences with lines that do not match inside the
clone (see Figure4.4). If the ratio of matched lines to unmatched lines drops too low,
the sequence of duplicated code becomes uninteresting to refactor. We then consider
the sequence as noise.

Definitions: we define three parameters we will need to filter out the noise.

• The length of a duplication is the number of lines forming the sequence DU-
PLOC has considered as duplication. In Figure4.4 the sequence begins at the
line containingmb line. and terminate with the line containingmb. The length
of duplication in this example is 6.

• Thenumber of matches is the number of lines that match inside a duplication.
In Figure4.4the number of matches is 2.

• Thedensity of duplication is the number of matches divided by the length of
duplication. In Figure4.4the density is 0.3333.

We classified the noise in three categories:

1. Low density

2. Low number of matches

3. Redundancy

In the next subsections we discuss how SUPREMOmanages this problem.

34 4. SUPREMO: Tool Support for Duplication Elimination

4.4.3 Duplications with Low Density

The Figure4.4presents an example of duplication with low density. This duplication
has no signification, it could be considered as a false positive. It is a coincidence that
the lines that match are separated with the same number of line and be considered as
duplication by the detection tool. This kind of duplication should be filtered out by
SUPREMO.

addColorsSubMenuTo: mb
...
mb line.
mb add: ’Progressive Weighted Edges Coloring’ -> [draw-

ing progressiveEdgeColoring].
mb line.
mb add: ’Color Settings’ -> [self openColorSettings].
mb endSubMenu.
ˆmb

addTransformationSubMenuTo: mb
...
mb line.
mb add: ’Translate All Items To Origin’ -> [drawing translateToOrigin].
mb add: ’Translate All Items...’ -> [drawing translateAllByValue].
mb add: ’Translate Selected Nodes...’ -> [drawing translateSelectedByValue].
mb endIndexSubMenu.
ˆmb

Figure 4.4: Example of noise: a duplication with low density.

4.4.4 Duplications with Low Number of Matches

Depending on the programming language, some idioms are repeated along in the
source code (see Figure4.5) and are not considered as duplication.

aMethod
...

aCollection
inject: 0
into:

...

Figure 4.5: Example of noise: a duplication with low number of matches.

4.4.5 Redundancies

The duplication detection tool we use matches all lines versus all. This imply that
if a piece of code of an entity A is copied in B and C, the output of DUPLOC will
contain three different duplication: (A,B), (A,C), (B,C). The third duplication (B,C) is
redundant and SUPREMOremoves it from the collection of duplications.

4.4 Tool Architecture 35

��
��
��
��

��
��

A B

C

-�

6

?
���

��	

@
@@I

@@

will be removed

��
��

D -�

To remove redundancy, we collect from the list of detected duplication all entities
associated in a duplication. In our case, the result is{A, B, C, D}. For each element,
we apply the following algorithm:

• Let be A the first candidate. We select all duplications that contain A→ {(A,B),
(A,C), (A,D)}

• From the obtained collection we collect all entities associated with A in a dupli-
cation→ {B, C, D}

• We select from the list of duplications, those having both associated entities in
the collection{B, C, D} → {(B,C)}. Those duplications are the candidates for
redundancy.

• We select in{(A,B), (A,C), (A,D)} the duplications that overlap with (B, C)→
{(A,B), (A,C)}.

• {(A,B), (A,C), (B,C)} forms a cluster with redundant duplication. We select the
duplication having the smallest length and remove it from the original list of
duplications

• We repeat the operation with the following candidate and the new list of dupli-
cations

36 4. SUPREMO: Tool Support for Duplication Elimination

4.5 The Textual Viewer

The textual viewer is the interface where the source code is displayed. The Figure

Figure 4.6: The Supremo Textual Viewer

4.6shows a view of the main window. In the following sections, we explain the main
window from the top to the bottom.

4.5.1 The Selection Part

This part is designed to select and navigate between duplications.

It includes seven functional zones

1. a drop down list for the selection of the scenario of the duplications (item # 1).
The user can select the duplications with a given scenario.

2. a widget for the selection of the minimum of number of matches (item # 2).

3. a widget for the selection of the minimal density (item # 3).

4. remove-Button: the duplication is removed from the system (item # 4).

5. select-Button: starts the selection of the duplications depending on the selected
values (item # 6).

4.5 The Textual Viewer 37

6. six buttons for the navigation between the duplications (item # 5).

7. the number of selected duplications (item # 8).

8. the position of the current displayed duplication in the selected duplications
(item # 7).

4.5.2 The Qualification Part

This part gives the characterization of the duplications. Three parameters are dis-
played:

1. the scenario (item # 9),

2. the type (item # 10). SUPREMOcan detect if a method is entirely duplicated or
not.

3. the impact (item # 11) of the current duplication expressed in number of classes.
The impact measures how many classes are affected by a duplication. All those
classes are involved if the user refactor the duplication.

4.5.3 The Information Part

The third part gives information concerning the two methods associated in the
duplication.
It includes four zones:

1. the class name (item # 12)

2. the method name (item # 13)

3. the occurrence of the copied code in all duplications (item # 14).
This is also a measure of impact of the duplication but on the methods level. The
user can see how many times a method is part of a clone.

4. navigation between all occurrences of the copied code (item # 15). The naviga-
tion gives the opportunity to see the other clones of which the method is part.

38 4. SUPREMO: Tool Support for Duplication Elimination

4.5.4 The Source Code Part

This last part displays the source code. To improve the visibility, the lines that
match are colored in red.

4.6 The Graphical Viewer 39

4.6 The Graphical Viewer

The graphical viewer displays the scenario in the context of the complete application.

Figure 4.7: The graphical viewer of SUPREMO

The essential idea is that visual representations helps make understanding software
easier [30]. The graphical viewer is a window that represents the inheritance tree of all
classes in the analyzed program.
To emphasize the visualization, the classes are colored. The classes containing clones
are colored in red, those implicated with the displayed duplication are blue and the two
classes associated in the displayed duplication are yellow.
It is necessary to see the hierarchy where the current displayed duplication is detected.
This guides the choice of the refactoring. The representation in Figure4.7 shows a
duplication with a first cousin scenario.
The current duplication has an impact of 10 (seeitem # 11). The two classes pointed
by the big arrows are those containing the methods with the current duplication. The
eight other classes that are implicated are pointed by the small arrows in the Figure
4.7.
In the presented example, one cannot envisage refactoring the current duplication with-
out considering the involved duplications in the other eight classes. The graphical
viewer helps to find out for instance which class is the common ancestor of the all 10
classes. A window at the bottom of the window display the class name of the class
where is positioned the mouse.

Chapter 5

Validation: Statistical Analysis

This chapter presents a statistical analysis of the case studies we have done to validate
our approach. To verify the language independence of SUPREMO, we analyzed

• seven applications written in Smalltalk

• one application in C++

• one application in Java

We discuss first the results of the analysis of the applications in Smalltalk, which
constitute the biggest part of the validation. In the second part of this chapter we
present the results of the C++ and Java case studies.

5.1 Applications in Smalltalk

This section presents

• the analyzed applications

• the noise filtration (see Subsection4.4.2)

• the duplication metrics

5.1.1 Analyzed Applications

In the table5.1, are listed the statistical dates of applications we have studied: number
of classes, methods and number of lines of code.
The applications are divided in tree groups:

• The first group is constituted of tree applications developed at the University of
Bern, in the SCG group.
Those applications are the most important of the validation. They were chosen
because the developers were available and we could discuss with them the qual-
itative assessment of the identified duplications and relevance of the scenarios.
The applications are:

5.1 Applications in Smalltalk 41

1. CODECRAWLER [20].
An application that combines metrics and graphs for Object Oriented Re-
verse Engineering.

2. DUPLOC [11] (see Section4.3.2).
Detects duplicated code and gives a matrix based representation of the
results.

3. MOOSE[24] (see Section4.3.3).
A framework that extracts structure information of Object Oriented sys-
tems.

• The second group is constituted of the VISUALWORKS application framework
and the REFACTORINGBROWSER. The good reputation of the two applications
incites us to consider them as reference applications.

• The last group contains PDP and MAF, which play the role of real world appli-
cations.

Application Number Number Lines
of Classes of Methods of Code

CODECRAWLER 2.912 82 1552 9745
DUPLOC 2.14g 269 4768 36526
MOOSE1.45 254 4592 36566

V ISUALWORKS 3.0 883 30689 278347
REFACTORINGBROWSER3.5 238 5693 39825

PDP 2.6 62 4147 45289
MAF 269 6076 55251

Table 5.1: Number of Classes, Methods, Lines of Code in the Smalltalk applications.

42 5. Validation: Statistical Analysis

5.1.2 Noise Filtration

In the Subsection4.4.2we discuss the reduction of noise in the data coming from the
duplication detection tool. The filtration is empirical by essence. We observed the kind
of duplications for different values of the density and number of matches (see definition
in Paragraph4.4.2). The distribution of those parameters in the seven applications are
presented in the following subsections.

Distribution of Density

Table5.2 shows the results of the analysis of the seven Smalltalk applications before
filtering of noise.
The decision of eliminating the duplication with low density was made from the ob-

C
od

eC
ra

w
le

r
2.

91
2

D
up

lo
c

2.
14

g

M
oo

se
1.

45

V
is

ua
lW

or
ks

3.
0

R
ef

ac
to

rin
gB

ro
w

se
r

3.
5

P
D

P
A

pp
2.

6

M
A

F

To
ta

l

P
er

ce
nt

Density

]0 , 0.1] 0 0 0 17 0 0 0 17 0
]0.1 , 0.2] 0 6 4 243 11 1 3 268 3
]0.2 , 0.3] 7 41 15 388 12 2 6 471 6
]0.3 , 0.4] 10 116 25 580 77 4 24 836 11
]0.4 , 0.5] 15 180 64 631 92 10 66 1058 14
]0.5 , 0.6] 14 41 21 213 68 5 23 385 5

]0.6 , 0.7] 30 123 134 658 198 8 68 1219 15
]0.7 , 0.8] 48 95 116 630 220 11 108 1228 15
]0.8 , 0.9] 18 25 25 270 31 4 45 418 5
]0.9 , 1.0] 71 170 330 820 494 26 136 2047 26

Total: 213 797 734 4450 1203 71 479 7947 100

Table 5.2: Distribution of Density before Filtering.

servation of the duplications in each range of density. In the following we presents
examples of duplication encountered in each range of density to show why we elimi-
nated them. All the presented example come from CODECRAWLER.

5.1 Applications in Smalltalk 43

Density between 0.2 and 0.3 This range of the density corresponds to 6 % of all
duplications.

Upper Class:CCHorizontalHistogramLayout
Upper Method:layout

layout
| posCollection yCoord xCoord min maxYPosMetric |
maxYPosMetric := self graph maxVerticalMetric.
posCollection := Array new: maxYPosMetric + 1 withAll: 0.
xCoord := position x.
yCoord := position y.
min := CCConstants minimumNodeWidth.
nodes

do:
[:each |
| xPos yPos |
yPos := each verticalMetric.
xPos := posCollection at: yPos + 1.
each layoutAt: xCoord + xPos @ (yCoord + (yPos + 1 * min)).
posCollection at: yPos + 1 put: (posCollection at: yPos + 1)

+ each width]

layout
| xCoord1 xCoord2 yCoord1 yCoord2 spacing |
xCoord1 := position x.
xCoord2 := position x + 200.
yCoord1 := position y.
yCoord2 := position y.
spacing := CCConstants nodeSpacing.
graph allAttributeNodes

do:
[:each |
each layoutAt: xCoord2 @ yCoord2.
yCoord2 := yCoord2 + each height + spacing].

graph allMethodNodes
do:

[:each |
each layoutAt: xCoord1 @ yCoord1.
yCoord1 := yCoord1 + each height + spacing]

Lower Class:CCVerticalConfrontationLayout
Lower Method:layout

Figure 5.1: Example of Density between 0.2 and 0.3.

Figure5.1 shows a duplication with a sibling classes scenario and a length of 10
with three lines that match. The density is 0.3. The two last that match are constituted
by keywords of the language (do:[:each). Such keyword appear frequently in the
program and give many noise during the duplication detection.

44 5. Validation: Statistical Analysis

Density between 0.3 and 0.4 11 % of the analyzed duplications have a density be-
tween 0.3 and 0.4.
Figure5.2 a duplication between unrelated classes with a length of 5 and a number

Upper Class:CCMethodTreeNodePlugin
Upper Method:computeLevel:

computeLevel: aLevel
| possibleRecursionCondition overlap reducedChildren |
children isEmpty

ifTrue: [ˆself level: aLevel]
ifFalse:

[overlap := children asSet intersection: fathers asSet.
possibleRecursionCondition := overlap notEmpty.
possibleRecursionCondition

ifFalse:
[self level: aLevel.
children do: [:each | each computeLevel: aLevel + 1].
ˆself].

self level: aLevel - 1.
reducedChildren := children.
overlap do: [:each | reducedChildren remove: each].
reducedChildren do: [:each | each computeLevel: aLevel + 1].
ˆself]

changedCheckClasses
| state |
state := chkClasses value.
state

ifFalse:
[| state1 |
state1 := self chkMethods value | self chkFunctions value.
state1

ifFalse:
[self disable: #chkInvocation.
chkInvocation value: false].

self disable: #chkInheritance.
chkInheritance value: false]

ifTrue:
[self enable: #chkInheritance.
self enable: #chkInvocation]

Lower Class:CCGraphSubcanvas
Lower Method:changedCheckClasses

Figure 5.2: Example of Density between 0.3 and 0.4.

of matches of 2. The two lines that match are only composed by a keyword of the
programming language. Keywords that match by accident have no signification.

5.1 Applications in Smalltalk 45

Density between 0.4 and 0.5 This range of density correspond to 14 % of the dupli-
cations, the most important that will be eliminated in the work. You only need to have
two keywords that match separated by two other lines and you have a duplication with
a density of 0.5.
Figure5.3illustrate a duplication in common hierarchy. The applications with graph-

Upper Class:CodeCrawler
Upper Method:addSelectSubMenuTo:

addSelectSubMenuTo: mb
mb beginSubMenuLabeled: ’&Selection’.
mb add: ’&Selection Manager’ -> [self openSelectionViewer].
mb line.
mb add: ’&Remove Selected Items’

-> [drawing removeSelectedEntitiesFromSelection].
mb line.
mb add: ’Select Highlighted &Nodes’ -> [drawing selectHighlightedNodes].
mb add: ’Select Highlighted &Edges’ -> [drawing selectHighlightedEdges].
mb line.
mb add: ’&Inverse Current Selection’ -> [drawing inverseCurrentSelection].
mb endSubMenu.
ˆmb

addPluginMenuTo: mb
super addPluginMenuTo: mb.
mb line.
mb add: ’Browse My Class’ -> [self browseOwner].
mb add: ’Browse Text’ -> [self browseText].
ˆmb

Lower Class:CCMethodNodePlugin
Lower Method:addPluginMenuTo:

Figure 5.3: Example of Density between 0.4 and 0.5.

ical user interface have many of such methods that handle menus. The same structure
is repeated along the method and give a lot of detected duplications that could not be
refactored.

46 5. Validation: Statistical Analysis

Density between 0.5 and 0.6 5 % of the duplication have a density between 0.5 and
0.6.

Upper Class:CCMethodInvocationTreeLayout
Upper Method:layoutAttributes

layoutAttributes
| xCoord1 wid attSpacing hei |
xCoord1 := position x.
wid := self widthOfMethodTree.
hei := self heightOfMethodTree.
attSpacing := wid / (graph allAttributeNodes size + 1).
graph allAttributeNodes

do:
[:each |
each layoutAt: xCoord1 @ (hei + 100).
each figure fillColor: ColorValue blue.
xCoord1 := xCoord1 + each width + attSpacing]

translateAccessors
| hei levelSpacing |
hei := self heightOfMethodTree.
levelSpacing := CCConstants levelSpacing.
graph allAccessorMethodNodes

do:
[:each |
| xTemp |
xTemp := each figure origin x.
each figure fillColor: ColorValue red.
each layoutAt: xTemp @ hei]

Lower Class:CCMethodInvocationTreeLayout
Lower Method:translateAccessors

Figure 5.4: Example of Density between 0.5 and 0.6.

Figure5.4shows an example of duplication in the same class. Like in Figure5.1,
we have the same keywords that match and we have a line that have the same method
call in both methods:#layoutAttributes and#translateAccessors . This
duplication can be considered noise.

5.1 Applications in Smalltalk 47

Density between 0.6 and 0.7 This range of density represents 15 % of all duplica-
tions in the seven applications.

Figure5.5 illustrate the fact that even in this high range of density we continue to

Upper Class:CCAbstractNodePlugin
Upper Method:menuAt:

menuAt: aPoint
| mb |
mb := MenuBuilder new.
self addPluginMenuTo: mb.
ˆmb menu

menuAt: aPoint
| mb m |
mb := MenuBuilder new. "mb beginSubMenuLabeled: ’Debug’.
m := super menuAt: aPoint.
mb addLabel: ’Do The Evolution! (at your own risk)’ value: #doTheEvolution.
m menuItems do: [:each | mb addLabel: each label value: each value].
mb endSubMenu."
ˆmb menu

Lower Class:CCDrawing
Lower Method:menuAt:

Figure 5.5: Example of Density between 0.6 and 0.7 (Noise).

have noise. But the difference with the duplications of lower density is that, now ap-
pear some duplications that give opportunities to refactor (see Figure5.6).

48 5. Validation: Statistical Analysis

Upper Class:CCMaximalBoundsLayout
Upper Method:layout

layout
| xCoord yCoord maxYSize spacing maxRecX xOffset |
xCoord := position x.
yCoord := position y.
spacing := CCConstants nodeSpacing.
maxYSize := 0.
xOffset := 0.
maxRecX := graph codeCrawler drawing bounds extent x.
nodes do: [:each | xCoord + each width < maxRecX

ifTrue:
[xCoord := xCoord + xOffset.
each layoutAt: xCoord @ yCoord.
xOffset := each width + spacing.
maxYSize := maxYSize max: each height]

ifFalse:
[xCoord := position x.
yCoord := yCoord + maxYSize + spacing.
each layoutAt: xCoord @ yCoord.
xOffset := each width + spacing.
maxYSize := maxYSize max: each height.
maxYSize := 0]]

layout
| side xCoord yCoord lineCounter maxYSize xOffset spacing |
side := nodes size sqrt rounded.
xCoord := position x.
yCoord := position y.
spacing := CCConstants nodeSpacing.
lineCounter := 0.
maxYSize := 0.
xOffset := 0.
nodes

do:
[:each |
lineCounter <= side

ifTrue:
[xCoord := xCoord + xOffset.
each layoutAt: xCoord @ yCoord.
xOffset := each width + spacing.
maxYSize := maxYSize max: each height]

ifFalse:
[xCoord := position x.
maxYSize := maxYSize max: each height.
yCoord := yCoord + maxYSize + spacing.
each layoutAt: xCoord @ yCoord.
xOffset := each width + spacing.
maxYSize := 0.
lineCounter := 0].

lineCounter := lineCounter + 1]

Lower Class:CCQuadraticLayout
Lower Method:layout

Figure 5.6: Example of Density between 0.6 and 0.7 (Refactorable).

The duplication of Figure5.6 is a good candidate for refactoring. We can imagine
extract methods from the first part of the method and from each part of#ifTrue:
and#ifFalse: branch.
This last example explain why we decided to consider only duplications with density

5.1 Applications in Smalltalk 49

greater than 0.6, which is represented by the dotted line in Figure5.7. By applying this
filtration, we eliminate about 40 % (see Figure5.2)of all duplications.

Figure 5.7: Noise reducing: density distribution.

Figure 5.7 is a graphical summery of measured density in the seven Smalltalk
applications. On the abscissa, the density of duplication is divided on intervals; on the
ordinate, are represented the percentage of duplication which are on the corresponding
intervals of density. For example, the coordinate pointed by the small arrow means:
about 22 % of the duplications detected in DUPLOC have a density between 0.4 and
0.5. The big arrow shows a point that means: 21 % of the duplications detected in
DUPLOC have a density between 0.9 and 1.
It is curious to see the drop in number of detected duplications for the density between
0.5 and 0.6, and for those with density between 0.8 and 0.9. This is probably due to
the idioms of Smalltalk and/or to the coding style.

Distribution of Number of Matches

We have seen in the previous chapter that only the density as filtration criterion is
not sufficient to eliminate efficiently the noise. Two matches of successive keywords
will be detected as a duplication with a density of 1. To improve the filtration, we
have combined the density with the number of matches. The distribution of number of
matches is presented in TableA.3.5.
We follow the same approach like in the previous chapter and present examples of
duplications with different number of matches we encountered during the analysis of
the seven applications.

50 5. Validation: Statistical Analysis

Number of Matches = 3 This category of duplication corresponds to 25 % of all
duplications.
This example of duplication in a sibling scenario (Figure5.8) with number of matches

Upper Class:CCCircleLayout
Upper Method:layout

layout
| angleTemp angle rad center |
rad := (Dialog

request: ’Radius:’
initialAnswer: ’300’
onCancel: [’300’]) asNumber.

center := Point x: rad y: rad.
angleTemp := 2 * Float pi / nodes size.
angle := 0.
nodes

do:
[:each |
| point |
point := center + (Point r: rad theta: angle).
angle := angle + angleTemp.
each layoutAt: point]

layout
| xCoord yCoord spacing yCoordBase |
xCoord := position x.
yCoord := position y.
yCoordBase := yCoord.
spacing := CCConstants nodeSpacing.
nodes

do:
[:each |
xCoord := xCoord + each width + spacing.
yCoord := yCoordBase + (each width * 20).
each layoutAt: xCoord @ yCoord]

Lower Class:CCHorizontalSequenceLayout
Lower Method:layout

Figure 5.8: Example of Number of Matches = 3.

equals 3 is trivial. We have two matches of keywords applied to a collection which is,
in this case, an instance variable.

5.1 Applications in Smalltalk 51

Number of Matches = 4 14 % of the duplications have a number of matches equals
4.

Upper Class:CCConfiguration
Upper Method:printOn:

printOn: aStream
super printOn: aStream.
aStream nextPut: $(.
graphName printOn: aStream.
aStream nextPut: $)

printOn: aStream
super printOn: aStream.
aStream nextPut: $(.
entity printOn: aStream.
aStream nextPut: $)

Lower Class:CCNode
Lower Method:printOn:

Figure 5.9: Example of Number of Matches = 4.

Figure 5.9 shows a typical example of duplications we found with number of
matches equals 4: a method with a supercall. Many observed duplications in this
category are also constituted of menu methods for graphical user interfaces (see Fig-
ure5.3).

52 5. Validation: Statistical Analysis

Upper Class:CodeCrawler
Upper Method:addSpecialSubMenuTo:

addSpecialSubMenuTo: mb
mb beginSubMenuLabeled: ’E&xtras’.
mb beginSubMenuLabeled: ’&Grouping...’.
mb add: ’&Collapse Selected Nodes’

-> [drawing selectedNodes isEmpty
ifFalse: [drawing collapseSelectedNodes]].

mb endSubMenu.
mb beginSubMenuLabeled: ’&Spring...’.
mb add: ’Start Spring &With Nodes’ -> [drawing startSpringWithNodes].
mb add: ’Start Spring With&out Nodes’ -> [drawing startSpringWithoutNodes].
mb line.
mb add: ’&Fix Selected Nodes’ -> [drawing fixSelectedNodes].
mb add: ’&Unfix Selected Nodes’ -> [drawing unfixSelectedNodes].
mb line.
mb add: ’&Spring Settings’ -> [self openSpringSettingsPanel].
mb endSubMenu.
mb line.
mb line.
mb beginSubMenuLabeled: ’Print on Transcript...’.
mb add: ’Displayed Node Names’ -> [drawing printDisplayedNodeNames].
mb add: ’Selected Node Names’ -> [drawing printSelectedNodeNames].
mb add: ’Metrics Table of Selected Nodes’

-> [drawing printMetricsTableOfSelected].
mb add: ’Metrics Table of Displayed Nodes’

-> [drawing printMetricsTableOfDisplayed].
mb endSubMenu.
mb endSubMenu.
ˆmb

addTransformationSubMenuTo: mb
mb beginSubMenuLabeled: ’&Transformation’.
mb add: ’Raise Nodes’ -> [drawing raiseNodes].
mb add: ’Raise Edges’ -> [drawing raiseEdges].
mb line.
mb add: ’Zoom by 2’ -> [drawing zoomByTwo].
mb add: ’Zoom by 0.5’ -> [drawing zoomByHalf].
mb add: ’Zoom by ...’ -> [drawing zoomByValue].
mb line.
mb add: ’Scale by 2’ -> [drawing scaleByTwo].
mb add: ’Scale by 0.5’ -> [drawing scaleByHalf].
mb add: ’Scale by ...’ -> [drawing scaleByValue].
mb line.
mb add: ’Translate All Items To Origin’ -> [drawing translateToOrigin].
mb add: ’Translate All Items...’ -> [drawing translateAllByValue].
mb add: ’Translate Selected Nodes...’ -> [drawing translateSelectedByValue].
mb endSubMenu.
ˆmb

Lower Class:CodeCrawler
Lower Method:addTransformationSubMenuTo:

Figure 5.10: Example of Number of Matches = 5 (Noise).

Number of Matches = 5 Duplications with number of matches equals 5, which cor-
respond to 8 % of all duplications constitute the turning point of our observations.
It is very difficult to say if we should eliminate those duplications or not. We con-
tinue to have noise like in Figure5.10but we have also refactorable duplications (see
Figure5.11).

5.1 Applications in Smalltalk 53

Upper Class:CCAttributeNodePlugin
Upper Method:browseOwner

browseOwner
| myClassName myClass |
myClassName := node entity belongsToClass.
myClass := MSEUtilities classOrMetaclassNameToClass: myClassName.
HierarchyBrowser newOnClass: myClass

browseOwner
| myClassName myClass |
myClassName := node entity belongsToClass.
myClass := MSEUtilities classOrMetaclassNameToClass: myClassName.
HierarchyBrowser newOnClass: myClass

Lower Class:CCMethodNodePlugin
Lower Method:browseOwner

Figure 5.11: Example of Number of Matches = 5 (Refactorable).

We decided however to eliminate duplications with number of matches equals 5
to improve the efficiency of filtration but we know that some duplications have not be
seen in the following of our work.

Figure 5.12: Number of Matches Distribution in Analyzed Applications.

Figure5.12is a graphical summery of measured number of matches in the seven
Smalltalk applications. The number of matches are on the abscissa, and the number of
corresponding duplications are represented on the ordinate. For example, the coordi-
nate pointed out by the arrow means: about 500 duplications detected in REFACTOR-
INGBROWSERhave a number of matches of 3.

54 5. Validation: Statistical Analysis

5.1.3 Metrics

After the elimination of the noise, we quantitatively analyzed the seven applications.
We computed the following metrics: the scenario, the impact on classes, the number
of matches and the length of duplication.
In the following subsections, we present graphically only the results of the three appli-
cation of the SCG group. For the details of all results see Appendix in SectionA.3.2.

Scenario Distribution

The scenario represented most (see Figure5.13) in all studied applications is the sin-
gle class scenario, representing a third of all duplications. It is followed by the sibling
scenario that represents a fourth of all duplications.

Figure 5.13: Distribution of Scenarios in Analyzed Applications.

We can say that by refactoring only two kinds of scenario, we remove the 50% of
the duplications. For the detailed numbers, see the SubsectionA.3.1.

5.1 Applications in Smalltalk 55

5.1.4 Distribution of Impact on Classes

The impact on classes measures how many classes contain a clone of a duplication.
The Figure5.14shows the distribution of this metrics in the three applications.
MOOSEhas the biggest average value of impact on classes: 4.2. The maximum value

Figure 5.14: Distribution of Impact on Classes in Analyzed Applications.

is 12 (see TableA.9). 75% of impact in MOOSEare smaller than 8 whereas in CODE-
CRAWLER 75% are smaller than 3 and for DUPLOC the value is 2. The value from the
reference group (VISUALWORKS and REFACTORINGBROWSER) is 2.

56 5. Validation: Statistical Analysis

5.1.5 Distribution of Number of Matches

In Figure5.15, the number of matches are on the abscissa, and on the ordinate, are
represented the number of duplications corresponding to this number of matches. This
is a continuation of Figure5.12(after elimination of noise).

Figure 5.15: Distribution of Number of Matches in Analyzed Application.

75% of the duplication has a number of matches smaller than 8 for MOOSEand 12
for CODECRAWLER and DUPLOC (see TableA.10). The preference’s values are 8 for
REFACTORINGBROWSERand 11 for VISUALWORKS.

5.1 Applications in Smalltalk 57

5.1.6 Distribution of Length of Duplication

In the Figure5.16, the lengths of duplication are on the abscissa, and on the ordinate,
are represented the corresponding number of duplications.
75% of the duplication has a length smaller than 10 for MOOSE and 14 for CODE-

Figure 5.16: Distribution of Length of Duplication in Analyzed Applications.

CRAWLER and DUPLOC (see TableA.11). The references values are 10 for REFAC-
TORINGBROWSERand 13 for VISUALWORKS.

5.1.7 Conclusion

In conclusion, the applications of SCG group contain very few duplications. In com-
parison with the reference group the values obtained are very good.

58 5. Validation: Statistical Analysis

5.2 Applications in C++ and Java

This section present the results of the C++ and Java case studies which are performed
to validate the language independence of SUPREMO. Table5.3lists the statistical dates
of the two applications: number of classes, methods and lines of code.
The first application, Jpeg, is an little application written in C++ developed by a stu-
dent to manipulate image files. The second, written in Java, is a part of the Swing
framework which was suggested as good candidate because of its great density of du-
plications per file.

Number Number Lines
Application Language of Classes of Methods of Code

Jpeg C++ 14 145 2954
Swing Java 30 387 6101

Table 5.3: Number of Classes, Methods, Lines of Code in the C++ and Java applica-
tions.

To compare with the results of Smalltalk applications, we first analyzed the distri-
bution of density (see Figure5.17).

Figure 5.17: Density distribution in the C++ and Java applications.

The two drops in number of detected duplications observed in Figure5.7 are not
anymore present in Figure5.17.

5.2 Applications in C++ and Java 59

Figure5.18shows the distribution of number of matches in both applications. The
two analyzed applications are too small to have enough cases of duplication. The num-
ber of classes in both programs does not allows abundance of scenarios. For the Swing
application we had only sibling classes scenarios. We must analyze more applications
to compare with the results of the previous chapter.

Figure 5.18: Number of Matches Distribution in the C++ and Java applications.

Chapter 6

Validation: Qualitative Aspects

This section describes the experiments we performed with the developers of the SCG
applications: CODECRAWLER, DUPLOC, and MOOSE. As we have already noted,
those applications were chosen because the developers were available. This constitutes
the quality part of the validation. It is important to discuss with the developers for the
qualitative assessment of the identified duplications. The process we followed is:

1. We analyzed the applications and presented the results to the developer.

2. He decided for each presented duplication, if it should be refactored or not.

3. We discussed then the kind of possible refactoring that would be applicable and
compared with the proposed solution in our approach.

4. When the developer decided not to remove the duplicated code, a discussion
of the reasons of this decision were reported (see Section6.1). We discussed
also to evaluate how such duplication could be automatically detected and thus
improve SUPREMO.

Presentation of the results. In Chapter3 we presented the refactorings we can use
depending on encountered scenario. For the presentation of the results, we need more
qualifiers for two cases:

• the actionNot changed
represents the case where the developer does not remove the duplication.

• the actionRemove
represents the case where dead code is found. There is no refactoring to do, we
have only to remove the not any more used code.

6.1 Case Studies Results

The next three subsections show in summary the results of our analysis on DUPLOC,
CODECRAWLER and MOOSE. We found the following five reasons to explain the
presence of duplications:

1. performance issues,

6.1 Case Studies Results 61

2. readability of the program,

3. bad design,

4. V ISUALWORKS specific GUI issues,

5. simulation of multiple inheritance.

6.1.1 Analysis ofDUPLOC

A
nc

es
to

r

C
om

m
on

H
ie

ra
rc

hy

F
irs

tC
ou

si
n

S
am

e
M

et
ho

d

S
ib

lin
g

S
in

gl
e

C
la

ss

S
up

er
cl

as
s

U
nr

el
at

ed

To
ta

l

Not changed 1 1 4 1 8 2 2 19

Remove 20 4 24

Template + Parameterization 1 1

Extract Method 2 6 8

Insert Method Call 2 2

Parameterization 4 4

Pull Up 1 1

Insert Super Call 1 1

Template + Hook 3 1 4

Extract Method + Pull Up 1 1 2

Total 1 2 1 6 25 25 4 2 66

Table 6.1: Analysis of DUPLOC.

The table 6.1presents the cases we found in DUPLOC. The developer decided to
refactor 71 % of the 66 duplications and to apply nine different refactorings.
36 % of all duplications were dead code that was then removed. Indeed, one class was
used in a student experiment, and was not properly subclassed. The developer decided
to not remove 29 % of duplications for the following reasons:

• 8 duplications stay for performance issues (see Figure6.14).

• 9 duplications stay because they increase the readability of the program (see
Figure6.8).

• 2 duplications stay for bad design reasons. The whole class should be re-
designed.

62 6. Validation: Qualitative Aspects

6.1.2 Analysis ofCODECRAWLER

A
nc

es
to

r

C
om

m
on

H
ie

ra
rc

hy

F
irs

tC
ou

si
n

S
am

e
M

et
ho

d

S
ib

lin
g

S
in

gl
e

C
la

ss

S
up

er
cl

as
s

U
nr

el
at

ed

To
ta

l

Not changed 1 10 5 4 3 1 24

Remove 1 1 1 2 1 6

Extract Method 4 4

Parameterization 1 1

Extract Method + Pull Up 3 3

Total 1 1 11 0 9 11 3 2 38

Table 6.2: Analysis of CODECRAWLER.

The table6.2presents the cases we found in CODECRAWLER. The developer decided
to refactor only 37 % of the 38 duplications and to apply four different refactorings.
16 % of all duplications was dead code.
He decided to not remove 63 % of duplications for the following reasons:

• 1 due to VisualWorks specific GUI issues.

• 9 multiple inheritance simulations (see Figure6.6).

• 2 false positives.

• 6 for performance issues.

• 6 bad design, must be modified

6.1 Case Studies Results 63

6.1.3 Analysis ofMOOSE

A
nc

es
to

r

C
om

m
on

H
ie

ra
rc

hy

F
irs

tC
ou

si
n

S
am

e
M

et
ho

d

S
ib

lin
g

S
in

gl
e

C
la

ss

S
up

er
cl

as
s

U
nr

el
at

ed

To
ta

l

Not changed 1 20 13 2 4 6 1 47

Remove 1 2 3

Template + Hook 4 1 4

Parameterization 1 1 8 2 12

Extract Method 2 2

Pull Up 3 3

Extract Method + Pull Up 1 1

Total 1 26 14 2 8 18 3 0 72

Table 6.3: Analysis of MOOSE.

The table 6.3 presents the cases we found in MOOSE. The developer decided to
refactor only 35 % of the 72 duplications and to apply six different refactorings.
4 % of the duplications was dead code.
He decided to not remove 65 % of duplications for the following reasons:

• 2 due to VisualWorks specific GUI issues.

• 1 bad design.

• 9 multiple inheritance simulations.

• 35 super calls (see Figure6.4).

We continue with a list of scenario based examples of duplication we found during the
analysis of the three applications.

64 6. Validation: Qualitative Aspects

6.2 Scenario based Examples

This section shows a list of examples of duplications encountered during the analysis
of the SCG applications grouped by scenario. The refactorings the developer decided
to apply is also described.
The refactorings presented in those examples are:

• Template + Hook (see for example Section6.2.2).

• Extract Method + Pull Up (see for example Section6.2.3).

• Extract Method (see for example Section6.2.6).

• Pull Up (see for example Section6.2.5).

• Template + Parameterization (see for example Section6.2.6).

• Insert Method Call (see for example Section6.2.4).

• Insert Super Call (see for example Section6.2.7).

In fact, this section simulates the functioning of SUPREMO. The displayed source
code is shown and the available information for the refactoring phase is also presented
if necessary.

Recall. In this thesis the duplication is an association of two pieces of code. Each of
them is a sequence of lines of code that matches or not with a line in the other piece of
code. The lines that matches are represented with a bold font.

To represent the duplication as displayed in the SUPREMO textual viewer, the two
compared pieces of source code are shown in two superposed boxes. The class and the
method name of the concerned source code are also noted.

6.2 Scenario based Examples 65

6.2.1 Ancestor Scenario

Upper Class:AbstractRawSubMatrix
Upper Method:abstractInitializeAt:

abstractInitializeAt: aRectangle
"returns true if successfull, else it releases itself and returns false"
"Before calling this method assure the access to rawMatrix and call
initializeAttributes."

"Verify argument"
| tmpRegion |
aRectangle isNil

ifTrue:
[self release.
ˆfalse].

self topology rawMatrix size extent < (1 @ 1)
ifTrue:

[self release.
ˆfalse].

tmpRegion := self topology rawMatrix size intersect: aRectangle.
tmpRegion origin > tmpRegion corner

ifTrue:
[self release.
ˆfalse].

region := tmpRegion.
interestInFilteredContents := true.
ˆtrue

Figure 6.1: Upper part of: Ancestor Scenario.

66 6. Validation: Qualitative Aspects

abstractInitializeAsNthOV: aInteger At: aPoint FilteringContents: aBoolean
"Verify, if only one OV is necessary. Therefore only if this is the first,
it will be successfully instantiated."
"returns true if successfull, else false"

"Verify argument"
| tmpRegion |
aPoint isNil

ifTrue:
[self release.
ˆfalse].

aInteger isNil
ifTrue:

[self release.
ˆfalse]. "begin to initialize"

"Prepare the RSM region - this works for both cases - if SOV is
necessary or not."
tmpRegion := Rectangle origin: 1 @ 1 extent: (AbstractOverView RSM-

size: self topology rawMatrix).
(AbstractOverView forTwoLevel: self topology rawMatrix)

ifTrue: ["Is a SOV needed and if true is the value of aInteger valid?"
"Now, we have a valid rectangle for the RSM - aPoint is

ignored, because the RSM must cover the whole RM."
aInteger ˜= 1

ifTrue:
[self release. "see comments above"
ˆfalse]]

ifFalse: ["A SOV is necessary. Therefore tmpRegion with an already
valid extent must be positioned at aPoint"
tmpRegion moveTo: aPoint]. "Make necessary abstract initializations"

ˆsuper
abstractInitializeAt: tmpRegion
WithBinLen: (self class RSMbinSize: self topology rawMatrix) x
FilteringContents: aBoolean

Lower Class:AbstractOverView
Lower Method:abstractInitializeAsNthOV:At:FilteringContents:

Figure 6.2: Ancestor Scenario.

Not changed. In the duplication of the Figure6.2, the upper class AbstractRawSub-
Matrix (Figure6.1) is the ancestor class. The impact of the duplication is 6 classes.
That means there are clones in other classes with different configurations of scenarios.
The developer must take in to account all duplications to make a common refactoring.
The other involved scenarios are sibling, superclass, and unrelated scenario.
After discussion with the developer, we found out that this is an idiom of the program-
mer! There are different conditions, and the same ’ifTrue:’ branch. The conditions
could eventually be united with OR. Ultimately, since readability would suffer from
the proposed refactoring, the developer decided to leave the duplication unchanged..

6.2 Scenario based Examples 67

6.2.2 Common Hierarchy Scenario

Upper Class:MSESTParseTreeAnnotator
Upper Method:doMethod:selector:primitive:block:

doMethod: aNode selector: sel primitive: prim block: block
currentMethod isPureAccessor isNil

ifTrue:
[self assessIsAccessorOf: currentMethod basedOn: aNode].

ˆsuper
doMethod: aNode
selector: sel
primitive: prim
block: block

doMethod: aNode selector: sel primitive: prim block: block
self assessIsAccessorOf: currentMethod basedOn: aNode.
ˆsuper

doMethod: aNode
selector: sel
primitive: prim
block: block

Lower Class:MSESTParseTreeBuildingEnumerator
Lower Method:doMethod:selector:primitive:block:

Figure 6.3: Common Hierarchy Scenario.

Template + Hook. We represent below the class structure of the concerned dupli-
cation. The upper class MSESTParseTreeAnnotator corresponds to the number 5 and
the class MSESTParseTreeBuildingEnumerator to the number 3.

4 5 6

2 3

1

In each of the classes with number 2, 3, 4, 5, 6 a method is implemented with
the same name:#doMethod:selector:primitive:block: . The impact is 4
classes. That means the duplicated code is present in 4 classes (those with number 3,
4, 5, 6). The proposed refactoring is to create a template and hook methods in the class
with number 1 which is root of the hierarchy.

68 6. Validation: Qualitative Aspects

Upper Class:MSEMethod
Upper Method:printVerboseOn:verbosityLevel:indentation:

printVerboseOn: aStream verbosityLevel: level indentation: indentation
super

printVerboseOn: aStream
verbosityLevel: level
indentation: indentation.

level = 0 ifTrue: [ˆself].
aStream crtab: indentation; nextPutAll: ’ className = ’.
belongsToClass printOn: aStream.
aStream crtab: indentation; nextPutAll: ’ classRef = ’.
belongsToClassRef printOn: aStream.
aStream crtab: indentation; nextPutAll: ’ hasClassScope = ’.
hasClassScope printOn: aStream.
aStream crtab: indentation; nextPutAll: ’ isAbstract = ’.
self isAbstract printOn: aStream.
aStream crtab: indentation; nextPutAll: ’ isConstructor = ’.
isConstructor printOn: aStream

printVerboseOn: aStream verbosityLevel: level indentation: indentation
super

printVerboseOn: aStream
verbosityLevel: level
indentation: indentation.

level = 0 ifTrue: [ˆself].
aStream crtab: indentation; nextPutAll: ’ Name = ’.
name printOn: aStream.
aStream crtab: indentation; nextPutAll: ’ Value = ’.
value printOn: aStream.
aStream crtab: indentation; nextPutAll: ’ belongsToID = ’.
belongsToID printOn: aStream

Lower Class:MSEProperty
Lower Method:printVerboseOn:verbosityLevel:indentation:

Figure 6.4: Common Hierarchy Scenario.

Not changed. The duplication of the Figure6.4could be considered as a false posi-
tive. In fact the duplication concerns only one function that is a super call. The method
call was distributed over multiple lines by the automatic code formatter. If it would
have been put on one line, the duplication would be filtered out.
As our duplication detection is based on line comparison matching, one method gives
three lines of code and was not filtered by DUPLOC.
That is the drawback of the choice of our approach. We wanted to remain simple but
simplicity comes at a certain cost.

6.2 Scenario based Examples 69

6.2.3 First Cousin Scenario

Upper Class:OverView
Upper Method:initialize:AsNthOV:OutOf:FilteringContents:ListeningTo:

initialize: aRawMatrix AsNthOV: aIntegerPosition OutOf: aIntegerSize
FilteringContents: aBoolean ListeningTo: aPt

aRawMatrix isNil
ifTrue:

[self release.
ˆnil].

aPt isNil
ifTrue:

[self release.
ˆnil].

protocolTransformer isNil ifFalse: ["release possible previous dependency"
protocolTransformer removeDependent: self]. "begin to initialize"

self initializeAttributes. "setup topology"
rawMatrix := aRawMatrix.
protocolTransformer := aPt.
protocolTransformer addDependent: self.
(super

abstractInitializeAsNthOV: aIntegerPosition
OutOf: aIntegerSize
FilteringContents: aBoolean)
ifTrue: [ˆself].

self release.
ˆnil

initialize: aRawMatrix WithFilteredContents: aBoolean ListeningTo: aPt

aRawMatrix isNil
ifTrue:

[self release.
ˆnil].

aPt isNil
ifTrue:

[self release.
ˆnil].

protocolTransformer isNil ifFalse: ["release possible previous dependency"
protocolTransformer removeDependent: self]. "begin to initialize"

self initializeAttributes. "setup topology"
rawMatrix := aRawMatrix.
protocolTransformer := aPt.
protocolTransformer addDependent: self.
(super abstractInitializeWithFilteredContents: aBoolean)

ifTrue: [ˆself].
self release.
ˆnil

Lower Class:SuperOverView
Lower Method:initialize:WithFilteredContents:ListeningTo:

Figure 6.5: First Cousin Scenario.

Extract Method + Pull Up. There are three methods forming a cluster that must be
refactored together. The inheritance hierachy contains 12 classes and is drawn below:

70 6. Validation: Qualitative Aspects

Overview SuperOverView

UserSelection

RawSubMatrix

- �

�

The arrows point to the three concerned classes. The new extracted method will
be pulled up into the class RawSubMatrix.
Four classes that are between RawSubMatrix and the leaf classes inherit a new method
they don’t need.

6.2 Scenario based Examples 71

Upper Class:CCClassTreeNodePlugin
Upper Method:computeLevel:

computeLevel: currLevel
"computes the level of a node using a recursive approach. If the level
is the same or greater we need not proceed down"

currLevel > 100
ifTrue:

[Dialog warn: ’Severe Problem: Infinite Loop!!! This layout is not
appropriate for the current selection!’.

self halt].
self level >= currLevel ifTrue: [ˆself].
self level: currLevel.
self isLeaf ifFalse: [children do:

[:child | child computeLevel: currLevel + 1]]

computeLevel: currLevel
"computes the level of a node using a recursive approach. If the level
is the same or greater we need not proceed down"

currLevel > 100
ifTrue:

[Dialog warn: ’Severe Problem: Infinite Loop!!! This layout is not
appropriate for the current selection!’.

self halt].
self level >= currLevel ifTrue: [ˆself].
self level: currLevel.
self isLeaf ifFalse: [children do:

[:child | child computeLevel: currLevel + 1]]

Lower Class:CCFunctionTreeNodePlugin
Lower Method:computeLevel:

Figure 6.6: First Cousin Scenario.

end of comment

Not changed. To simulate the multiple inheritance, which is not present in Smalltalk,
the developer of CODECRAWLER makes many copies to approach this behaviour.

72 6. Validation: Qualitative Aspects

6.2.4 Same Method Scenario

Upper Class:BatchJob
Upper Method:executeJobProcessingBuckets:logFile:

executeJobProcessingBuckets: aBucketRange logFile: aLogFile
"executes the job"

logFile := aLogFile.
self createComparisonCounter.
jobID setBucketRange: aBucketRange.
self isExecutable ifFalse: [ˆself reportFailureToLogFile].
bjParameters codeReader configureForLanguage: self sourceLanguage.
self openReportFile.
self reportStartInLogFile.
comparisonCounter openProgressMeter.
"process the entire matrix that is defined by the axes sections"
self

processHAxis: self symmetricAxis
vAxis: self symmetricAxis
forBuckets: aBucketRange.

self
processHAxis: self horizontalAxis
vAxis: self symmetricAxis
forBuckets: aBucketRange.

self
processHAxis: self symmetricAxis
vAxis: self verticalAxis
forBuckets: aBucketRange.

self
processHAxis: self horizontalAxis
vAxis: self verticalAxis
forBuckets: aBucketRange.

comparisonCounter closeProgressMeter.
self closeReportFile.
self reportEndInLogFile

Figure 6.7: Upper part of: Same Method Scenario.

6.2 Scenario based Examples 73

executeJobProcessingBuckets: aBucketRange logFile: aLogFile
"executes the job"

logFile := aLogFile.
self createComparisonCounter.
jobID setBucketRange: aBucketRange.
self isExecutable ifFalse: [ˆself reportFailureToLogFile].
bjParameters codeReader configureForLanguage: self sourceLanguage.
self openReportFile.
self reportStartInLogFile.
comparisonCounter openProgressMeter.
"process the entire matrix that is defined by the axes sections"
self

processHAxis: self symmetricAxis
vAxis: self symmetricAxis
forBuckets: aBucketRange.

self
processHAxis: self horizontalAxis
vAxis: self symmetricAxis
forBuckets: aBucketRange.

self
processHAxis: self symmetricAxis
vAxis: self verticalAxis
forBuckets: aBucketRange.

self
processHAxis: self horizontalAxis
vAxis: self verticalAxis
forBuckets: aBucketRange.

comparisonCounter closeProgressMeter.
self closeReportFile.
self reportEndInLogFile

Lower Class:BatchJob
Lower Method:executeJobProcessingBuckets:logFile:

Figure 6.8: Same Method Scenario.

Not changed. Theoretically, a loop would be possible, but then the complexity of the
data structure to hold the input to the different loop executions would be much more
complex than the simplicity gained by the loop-abstraction. The code in its current
form is also quite readable, and since there are only four iterations in this loop, it’s
bearable

74 6. Validation: Qualitative Aspects

6.2.5 Sibling Classes Scenario

Upper Class:PMCSnormalMode
Upper Method:moveCursor:

moveCursor: aPosition
"this method changes the Cursor into a cross
if the cursor is over the diagram in the view
and into a bulls eye if the cursor is over a dot."

| aMatrixPosition |
aMatrixPosition := self viewState viewToMatrix: aPosition.
(self viewState overMatrixArea: aPosition)

ifTrue:
[self controller cursorOverDiagram

ifFalse: [self cursorEntersDiagram].
self view cursorPosition

changeCursorposColIndex: aMatrixPosition x
rowIndex: aMatrixPosition y.

self view cursorPosition booleanMatchValue
ifTrue: [Cursor bull show]
ifFalse: [Cursor crossHair show]]

ifFalse: [self controller cursorOverDiagram
ifTrue: [self cursorLeftDiagram]].

self configureMenu

moveCursor: aPosition
"this method changes the Cursor into a cross
if the cursor is over the diagram in the view
and into a bulls eye if the cursor is over a dot."

| aMatrixPosition |
aMatrixPosition := self viewState viewToMatrix: aPosition.
(self viewState overMatrixArea: aPosition)

ifTrue:
[self controller cursorOverDiagram

ifFalse: [self cursorEntersDiagram].
self view cursorPosition

changeCursorposColIndex: aMatrixPosition x
rowIndex: aMatrixPosition y.

self view cursorPosition booleanMatchValue
ifTrue: [Cursor bull show]
ifFalse: [Cursor crossHair show]]

ifFalse: [self controller cursorOverDiagram
ifTrue: [self cursorLeftDiagram]].

self configureMenu

Lower Class:PMCSpositioningMode
Lower Method:moveCursor:

Figure 6.9: Sibling Class Scenario.

Pull Up. The Figure6.9 presents a total copy-and-paste duplication without any
change. The scenario is a sibling classes scenario and the solution is easy: a sim-
ple Pull Up refactoring. In this case however, the upper method is also duplicated with
a method of a other sibling class (see next page).

6.2 Scenario based Examples 75

Upper Class:PMCSnormalMode
Upper Method:moveCursor:

moveCursor: aPosition
"this method changes the Cursor into a cross
if the cursor is over the diagram in the view
and into a bulls eye if the cursor is over a dot."

| aMatrixPosition |
aMatrixPosition := self viewState viewToMatrix: aPosition.
(self viewState overMatrixArea: aPosition)

ifTrue:
[self controller cursorOverDiagram

ifFalse: [self cursorEntersDiagram].
self view cursorPosition

changeCursorposColIndex: aMatrixPosition x
rowIndex: aMatrixPosition y.

self view cursorPosition booleanMatchValue
ifTrue: [Cursor bull show]
ifFalse: [Cursor crossHair show]]

ifFalse: [self controller cursorOverDiagram
ifTrue: [self cursorLeftDiagram]].

self configureMenu

moveCursor: aPosition
"this method changes the Cursor into a hand
if the cursor is over the diagram in the view.
If the movement is engaged, then the underlying object is moved."

| aMatrixPosition |
(self viewState overMatrixArea: aPosition)

ifTrue:
[self controller cursorOverDiagram

ifFalse: [self cursorEntersDiagram].
"update cursor with new position"

aMatrixPosition := self viewState viewToMatrix: aPosition.
self view cursorPosition

changeCursorposColIndex: aMatrixPosition x
rowIndex: aMatrixPosition y.

self view cursorPosition booleanMatchValue
ifTrue: [Cursor bull show]
ifFalse: [Cursor crossHair show].

spying & (prevPosition ˜= self view cursorPosition position)
ifTrue:

["if spying, then invalidate view"
prevPosition := self view cursorPosition position copy.
ˆself view invalidate]]

ifFalse: [self controller cursorOverDiagram
ifTrue: [self cursorLeftDiagram]]

Lower Class:PMCSspyingMode
Lower Method:moveCursor:

Figure 6.10: Sibling Class Scenario.

Extract Method + Pull Up. The upper method is the same as the upper method of
the precedent example. The new, third class in the cluster is also a direct sibling of the
two others.

76 6. Validation: Qualitative Aspects

PMCSpositioningMode PMCSnormalMode PMCSspyingMode X Y

PMCS

6 6 6

A check in the hierarchic view tell us that there are 5 sibling classes and all of
them implement the method#moveCursor but only three contain the duplicated
code. Our proposition is to extract the copied code into a new method and to pull it up
in the superclass (#PMCS).
This example is good to describe the need of some functionalities that would be use-
full in SUPREMO. For example, we have the number of sibling classes and we know
in which class we found the duplication. But we can not know if the other siblings (X
and Y) also implements a method with a given name. We used the REFACTORING-
BROWSERto find out this information.
The next version of SUPREMOshould provide utilities like senders of method, imple-
mentors of methods, ...

6.2 Scenario based Examples 77

6.2.6 Same Class Scenario

Upper Class:CodeParticle
Upper Method:mergeUsingOr:

mergeUsingOr: aCodeParticle
(self safetyCheckWith: aCodeParticle)

ifTrue:
[| start end trueVal falseVal newCFun |
start := lowerBound min: aCodeParticle lowerBound.
end := upperBound max: aCodeParticle upperBound.
trueVal := self nonHoleSymbol.
falseVal := self holeSymbol.
newCFun := self createEmptyCharactFun.
start to: end do: [:pos | (self charactFunAt: pos) = trueVal
| ((aCodeParticle charactFunAt: pos) = trueVal)

ifTrue: [newCFun addLast: trueVal]
ifFalse: [newCFun addLast: falseVal]].

charactFun := newCFun.
lowerBound := start.
upperBound := end]

ifFalse: [self sourceObject = aCodeParticle sourceObject
& self isEmpty ifTrue: [self copyFrom: aCodeParticle]]

mergeUsingAnd: aCodeParticle
(self safetyCheckWith: aCodeParticle)

ifTrue: [(self boundariesOverlapWith: aCodeParticle)
ifTrue:

[| start end trueVal falseVal newCFun |
start := lowerBound max: aCodeParticle lowerBound.
end := upperBound min: aCodeParticle upperBound.
trueVal := self nonHoleSymbol.
falseVal := self holeSymbol.
newCFun := self createEmptyCharactFun.
start to: end do: [:pos | (self charactFunAt: pos) = trueVal

& ((aCodeParticle charactFunAt: pos) = trueVal)
ifTrue: [newCFun addLast: trueVal]
ifFalse: [newCFun addLast: falseVal]].

charactFun := newCFun.
lowerBound := start.
upperBound := end]]

ifFalse: [self sourceObject = aCodeParticle sourceObject
& aCodeParticle isEmpty ifTrue: [self makeEmptyParticle]]

Lower Class:CodeParticle
Lower Method:mergeUsingAnd:

Figure 6.11: Same Class Scenario.

Template + Parameterization. We have the same algorithm, once for an AND
merge, once for an OR merge. Common parts can go into the template methods, and
differences can be extracted into paramererized methods. Since we are in the same
class, we cannot use polymorphism.

78 6. Validation: Qualitative Aspects

Upper Class:BinValueColorerView
Upper Method:verticalAxeFrom:To:On:

verticalAxeFrom: aRelStartPosition To: aRelEndPosition
On: aGraphicsContext
"draw a vertical axe line with: an open arrow at 10%
after the end point a 2.5% tail and the start and
a big horizontal marker at the start and at the end."
| tmpStart tmpEnd |
tmpStart := (self absolutePosition: aRelStartPosition)

+ (self percentYtranslation: self twoHalfPercent).
tmpEnd := (self absolutePosition: aRelEndPosition)

- (self percentYtranslation: self tenPercent). "draw axe line"
self

displayLineFrom: tmpStart
To: tmpEnd

On: aGraphicsContext. "add open arrow"
self

absVerticalUpArrow: tmpEnd
closed: false
withTail: false
on: aGraphicsContext. "add markers"

self bigHorizontalMarker: (self absolutePosition: aRelStartPosition)
On: aGraphicsContext.

self bigHorizontalMarker: (self absolutePosition: aRelEndPosition)
On: aGraphicsContext

horizontalReferenceLineFrom: aRelStartPosition To: aRelEndPosition
On: aGraphicsContext
"draw a horizontal reference line with:
a 5% tail at the start and the end."
| tmpStart tmpEnd |
tmpStart := (self absolutePosition: aRelStartPosition)

- (self percentXtranslation: self fivePercent).
tmpEnd := (self absolutePosition: aRelEndPosition)

+ (self percentXtranslation: self fivePercent). "draw line"
self

displayLineFrom: tmpStart
To: tmpEnd

On: aGraphicsContext

Lower Class:BinValueColorerView
Lower Method:horizontalReferenceLineFrom:To:On:

Figure 6.12: Same Class Scenario.

Extract Method. The entire copied sequence can be extracted as a new method with
three parameters. To achieve that, it is necessary to change two other methods (#per-
centXtranslation:,#percentYtranslation:) by combining them and
giving them an additional parameter (percent: aFloat translation: aDirection).
There is a cluster of four methods participating in this cloning. The other two cluster-
participants involved in this match are#verticalReferenceLineFrom:To:On:
and#horizontalAxeFrom:To:On: .

6.2 Scenario based Examples 79

Upper Class:LineByLineReader
Upper Method:getRecordUntilEmptyLine

getRecordUntilEmptyLine
"returns a collection of all lines up to the occurence
of an empty line (not returning this line if removeRecordDelimiter
is set to true) or it returns all the lines until the end of the input
if no empty line is found"

| lineColl found line |
lineColl := OrderedCollection new.
readStream isNil ifTrue: [ˆlineColl].

line := ’’.
found := false.
[line isNil | found]

whileFalse: [(line := self getNextLineFromBuffer) isNil
ifFalse:

[line = ’’ ifTrue: [found := true].
found not | removeRecordDelimiter not

ifTrue: [lineColl addLast: line]]].
ˆlineColl

getRecordDelimitedBy: aStringOrNil
"returns a collection of all lines up to the occurence
of a line prefixed by aString (including this line)
or it returns all the lines until the end of the input
if the

is nil"

| lineColl found line |
lineColl := OrderedCollection new.
readStream isNil ifTrue: [ˆlineColl].

line := ’’.
found := false.
[line isNil | found]

whileFalse: [(line := self getNextLineFromBuffer) isNil
ifFalse:

[aStringOrNil notNil
ifTrue: [found :=

(line indexOfSubCollection: aStringOrNil
startingAt: 1) == 1].

aStringOrNil isNil | (found not | removeRecordDelimiter not)
ifTrue: [lineColl addLast: line]]].

ˆlineColl

Lower Class:LineByLineReader
Lower Method:getRecordDelimitedBy:

Figure 6.13: Same Class Scenario.

Insert Method Call. The upper method could call the lower method with a special
parameter value. The lower method would not have to be changed at all.

80 6. Validation: Qualitative Aspects

Upper Class:FastSparseMatrix
Upper Method:numOfMatchesWithoutDiagonal:

numOfMatchesWithoutDiagonal: aBoolean

| sum xLink yLink xIndex yIndex noCount
leftDeletedIndices rightDeletedIndices |
matrix isEmpty ifTrue: [ˆ0].
sum := 0.
noCount := symmetricMatrix & aBoolean.

leftDeletedIndices := self leftDeletedIndices.
rightDeletedIndices := self rightDeletedIndices.
xLink := matrix first.

yLink := nil.
[xLink notNil]

whileTrue:
[xIndex := xLink index.
(rightDeletedIndices at: xIndex) isZero

ifFalse:
[yLink := xLink value first.
[yLink notNil]

whileTrue:
[yIndex := yLink index.
(leftDeletedIndices at: yIndex) isZero
| (xIndex = yIndex & noCount)

ifFalse: [sum := sum + 1].
yLink := yLink nextLink].

xLink := xLink nextLink]].
ˆsum

forAllDotsPerform: aSymbol with: aDiagramView

| leftDeletedIndices rightDeletedIndices xLink yLink |
matrix isEmpty ifTrue: [ˆself].

leftDeletedIndices := self leftDeletedIndices.
rightDeletedIndices := self rightDeletedIndices.
xLink := matrix first.

[xLink notNil]
whileTrue:

[(rightDeletedIndices at: xLink index) isZero
ifFalse:

[yLink := xLink value first.
[yLink notNil]

whileTrue:
[(leftDeletedIndices at: yLink index) isZero

ifFalse:
[actElValue := yLink value.
actElIndexX := rightDeletedIndices at: xLink index.
actElIndexY := leftDeletedIndices at: yLink index.
aDiagramView perform: aSymbol with: self].

yLink := yLink nextLink]].
xLink := xLink nextLink]

Lower Class:FastSparseMatrix
Lower Method:forAllDotsPerform:with:

Figure 6.14: Same Class Scenario.

Not changed. This duplication is included in a cluster of five clones and is not re-
moved because of performance issues. The first part of the duplication concerns the
storing of an often used object in a local variable to have a fast access (method must be

6.2 Scenario based Examples 81

fast!). The second part of the code shows a structure to iterate over the data structure.
The duplicated code could be abstracted into an iterator if performance would not
suffer. However, it is not clear by quickly browsing over the code, if the redesigned
system (iteration abstracted into iterators) would have significantly less code than the
current solution. However, to find that out, the experiment should be carried out low-
level, i.e. the code should really be refactored.
This would also help to find out, if the support of Supremo is enough, can be signifi-
cantly improved, or if our approach is missing semantic infornation about the code.

6.2.7 Superclass Scenario

Upper Class:PMVSOverViewNormalMode
Upper Method:displayObjectsOn:

displayObjectsOn: aGraphicsContext
self

displayOn: aGraphicsContext
ContainedObject: self model userSelection
WithColor: ColorValue orange
WithRegionCoding: true
Movable: true

displayObjectsOn: aGraphicsContext
self

displayOn: aGraphicsContext
ContainedObject: self model userSelection
WithColor: ColorValue orange
WithRegionCoding: true
Movable: false.

self
displayOn: aGraphicsContext
ContainedObject: self model overview
WithColor: ColorValue blue

WithRegionCoding: true
Movable: true

Lower Class:PMVSSuperOverViewNormalMode
Lower Method:displayObjectsOn:

Figure 6.15: Superclass Scenario.

Insert Super Call. The upper method is the same as the lower one, only in the su-
perclass. The subclass method could replace half of its code by a call to the superclass
method. There might be an additional parameter needed, or this could be solved by
implementing polymorphic hooks.

82 6. Validation: Qualitative Aspects

6.2.8 Unrelated Classes Scenario

Upper Class:DuplocSmalltalkBrowser
Upper Method:requestForWindowClose

requestForWindowClose
ˆsuper requestForWindowClose ifFalse: [false]

ifTrue:
["remove the reference in the main application model"
self changed: #browserCloses.
true]

requestForWindowClose
ˆsuper requestForWindowClose ifFalse: [false]

ifTrue:
["remove the reference in the main application model"
self changed: #browserCloses.
true]

Lower Class:DuplocFileBrowser
Lower Method:requestForWindowClose

Figure 6.16: Unrelated Class Scenario.

Not changed. With a lot of knowledge about Duploc, one sees the possibility to cre-
ate an abstract superclass. In this case, it would be a ’DuplocTool’ class. This class
would define certain relationships between tools and the main Duploc window. For a
person that is not familiar with the application, it would not be possible to infer this
conclusion from just this single copied method. However, by looking at the hierarchy
view, one can see that the two classes in question do not have a superclass in the Duploc
hierarchy. By looking at the code, one can see that they are subclasses of Application-
Model and of FileBrowser. I.e., to really make a common superclass, one would have
to give up the superclass dependency to Filebrowser and write a DuplocFilebrowser
from scratch.

6.2 Scenario based Examples 83

6.2.9 Summary

The Table6.4 contain a summary of the examples we presented in this section. For
each scenario and refactoring, we gave at least an example of code found in the SCG
applications.

A
nc

es
to

r

C
om

m
on

H
ie

ra
rc

hy

F
irs

tC
ou

si
n

S
am

e
M

et
ho

d

S
ib

lin
g

S
in

gl
e

C
la

ss

S
up

er
cl

as
s

U
nr

el
at

ed

Not changed
√ √ √ √ √ √

Template + Hook
√

Extract Method + Pull Up
√ √

Pull Up
√

Extract Method
√

Template + Parameterization
√

Insert Method Call
√

Insert Super Call
√

Table 6.4: Examples of duplications found in SCG applications.

Chapter 7

Conclusions and Perspectives

7.1 Conclusions

Code duplication is one of the factors that severely complicates the maintenance and
evolution of large software systems. In this work, we presented a simple scenario
based approach to analyze, categorize and remove duplications. The scenario is de-
fined as the relationship between classes containing methods where the duplications
were found.
Our approach is based strongly on the concept ofhuman in the loop, i.e. the bal-
ance between automation of, and human involvement in the process of reengineering
duplication is inclined to the side of the human.

We implemented a tool named SUPREMO to validate our approach. It is character-
ized by the following aspects:

• The tool analyzes the instances of detected duplications, clusters them and presents
these clusters to the user.

• The visualization of the source code in a textual viewer where a pop-up menu
gives the user the opportunity to refactor.

• The visualization of the scenario in a graphical global context gives the devel-
oper the possibility to see the impact of the duplication.

We analyzed seven applications written in Smalltalk, one written in Java and one,
in C++. We presented a statistical analysis and discussed the qualitative aspect of three
applications developed in the SCG group. The qualitative validation was illustrated
with a list of examples that simulate the functioning of SUPREMO.

As a result of our experiments we claim that scenarios provide useful information
for the reengineer and help to guide her in the process of removing duplication. We
believe that the refactorings, necessary to remove duplication, is very complex. It will
not easily be possible to completely automate the process and thus the support for the
human reengineer is the important focus of further research in the area.

7.2 Perspectives and Future Work 85

7.2 Perspectives and Future Work

7.2.1 Limits of the Approach

Human involvement is costly and slow. An approach that is based on this premise is
thus immediately limited to smaller systems, if one envisions reengineering an entire
system at once. However, if duplication removal is integrated into the software devel-
opment process, problems like a high number of duplicates that need attention can be
ameliorated.

7.2.2 Future Work

When investigating the possible refactorings, we started from an existing catalogue
of known refactorings [3]. We, however, have seen during our discussions with the
developers, that the range of refactorings needed in a certain situation is much larger
than this catalogue.

• We need to conduct further controlled experiments in order to broaden our
knowledge of refactorings applicable for a certain scenario.

The work presented is based on investigations of programs written mainly in Smalltalk.
We think that the range of applicable refactorings in a certain scenario is also con-
strained by the programming language.

• We need to conduct experiments with programming languages other than Smalltalk
to an increasing degree.

In investigating duplication present in a system, we have focussed on the granu-
larity of methods. We believe, that further analysis is possible if one looks at classes
instead of methods.

• We need to combine the information gathered about duplicated methods to start
an analysis of duplicated classes.

Improvements of the Tool As noted before, we believe that duplication removal
should be integrated into the normal software development process in the same way
as, for example, refactorings in general are part of the Extreme Programming [28]
software development process. In order to support this, SUPREMOshould be integrated
into the normal development environment, like the Smalltalk Refactoring Browser [8]
is integrated into the Smalltalk IDE.

• It should be possible to use IDE features like senders and implementors (cross
reference tools in Smalltalk)

• It should be possible to execute refactorings directly in the textual viewer of
SUPREMO.

• SUPREMO should be capable to incrementally adapt its duplication database to
the changes effectuated by refactorings that the reengineer performs.

Appendix A

Appendix

A.1 Refactorings

Refactoring must be done systematically to avoid or reduce the risk of introducing
bugs on the working code. Martin Fowler wrote a catalog of 72 refactorings [3]. This
Section is an extract of that catalog. We list in this appendix those that are important
for eliminating duplication. Each refactoring describes the motivation and mechanics
of the code transformation.

A.1.1 Extract Method

If a code fragment can be grouped together, turn it into a method whose name explains
the purpose of the method and replace the fragment with a call to the new method.

Mechanics:

1. Create a new method, and name it after the intention of the method (name it by
what it does, not by how it does it).

2. Copy the extracted code from the source method into the new target method.

3. Scan the extracted code for references to any variables that are local in scope to
the source method. These are local variables and parameters to the method.

4. See whether any temporary variables are used only within this extracted code.
If so, declare them in the target method as temporary variables.

5. Look to see whether any of these local-scope variables are modified by the ex-
tracted code. If one variable is modified, see whether you can treat the extracted
code as a query and assign the result to the variable concerned. If this is awk-
ward, or if there is more than one such variable, you can’t extract the method as
it stands.

6. Pass into the target method as parameters local-scope variables that are read
from the extracted code.

A.1 Refactorings 87

7. Compile when you have dealt with all the locally-scoped variables.

8. Replace the extracted code in the source method with a call to the target method.

9. Compile and test.

A.1.2 Pull Up Method

You have methods with duplicated code on subclasses.
You can eliminate the duplication by extracting method from both classes and then by
putting it into a upper class in hierarchy.
Often Pull Up Methodcomes after other steps. You see two methods in different
classes that can be parameterized in such a way that they end up as essentially the
same method. A special case of the need forPull Up Methodoccurs when you have a
subclass that overrides a superclass method yet does the same thing.
The most awkward element ofPull Up Methodis that the body of the methods may
refer to features that are on the subclass but not on the superclass. If the feature is a
method, you can create an abstract method in the superclass.

Mechanics:

1. Inspect the methods to ensure they are identical.

2. Create a new method in the superclass, copy the body of one of the methods to
it, adjust, and compile.

3. Delete one subclass method.

4. Compile and test.

5. Keep deleting subclass methods and testing until only the superclass method
remains.

6. Take a look at the callers of this method to see whether you can change a required
type to the superclass.

88 A. Appendix

A.1.3 Push Down Method

Behavior on a superclass is relevant only for the subclass. Push Down Method is the
opposite ofPull Up Method(see SectionA.1.2).

Mechanics:

1. Declare the method in the subclasses and copy the body.

2. Remove method from superclass.

3. Compile and test.

A.1.4 Form Template Method

You have two methods in subclasses that seem to carry out broadly similar steps in the
same sequence, but the steps are not the same.
Move the sequence to the superclass and allow polymorphism to play its role in en-
suring the different steps do their things differently. This kind of method is called a
template method [21].

Mechanics:

1. Decompose the methods so that all the extracted methods are either identical or
completely different.

2. UsePull Up Method(see SectionA.1.2) to pull the identical methods into the
superclass.

3. For the different methods useRename Method(see SectionA.1.8) so the signa-
tures for all the methods at each step are the same.
This makes the original methods the same in that they all issue the same set of
method calls, but the subclasses handle the calls differently.

4. Compile and test after each signature change.

5. UsePull Up Methodon one of the original methods. Define the signatures of
the different methods as abstract methods on the superclass.

6. Compile and test.

7. Remove the other methods, compile, and test after each removal.

A.1.5 Parameterize Method

Several methods do similar things but with different values contained in the method
body.
We can create one method that uses a parameter for the different values.

A.1 Refactorings 89

Mechanics:

1. Create a parameterized method that can be substituted for each repetitive method.

2. Compile.

3. Replace one old method with a call to the new method.

4. Compile and test.

5. Repeat far all the methods, testing after each one.

A.1.6 Collapse Hierarchy

Refactoring the hierarchy often involves pushing methods and fields up and down the
hierarchy. After you have done this , you can find you have a subclass that is not
adding any value, so you need to merge the classes together.

Mechanics:

1. Choose which class is going to be removed: the superclass or the subclasses.

2. UsePull Up Method(see SectionA.1.2) or Push Down Method(see Section
A.1.3) to move all the behavior of the removed class to the class with which it is
being merged.

3. Compile and test with each move.

4. Adjust references to the class that will be removed to use the merged class. This
will affect variable declarations, parameter types and constructors.

5. Remove the empty class.

6. Compile and test.

90 A. Appendix

A.1.7 Extract Superclass

You have two classes with similar features.
Create a superclass and move the common features to the superclass.

Mechanics:

1. Create a blank abstract superclass; make the original classes subclasses of this
superclass.

2. One by one, usePull Up Field(see SectionA.1.11), Pull Up Method(see Section
A.1.2) andPull Up Constructor Body(see SectionA.1.13) to move common
elements to the superclass.

3. Compile and test after each pull.

4. Examine the methods left on the subclasses. See if there are common parts, if
there are you can useExtract Method(see SectionA.1.1) followed byPull Up
Methodon the common parts. If the overall flow is similar, you may be able to
useForm Template Method(see SectionA.1.4).

5. After pulling up all the common elements, check each client of the subclasses.
If they use only the common interface you can change the required type to the
superclass.

A.1.8 Rename Method

This refactoring is not directly related with the duplication removal but it is used after
an extraction in order to name the newly extracted method.
Methods should be named in a way that communicates their intention. A good way to
do this is to think what the comment for the method would be and turn that comment
into the name of the method.

Mechanics:

1. Find a name for the new method you extract.

2. Check to see whether the method signature is implemented by a superclass or
subclass. If it is, find an other name.8

3. Declare a new method with the new name. Copy the old body of code over to
the new name and make any alterations to fit.

4. Compile

5. Change the body of the old method so that a call to the new created one replaces
the extracted code.

6. Compile and test.

A.1 Refactorings 91

A.1.9 Replace Subclass with Field

You have subclasses that vary only in methods that return constant data.
Change the methods to superclass fields and eliminate the subclasses.

Mechanics:

1. UseReplace Constructor with Factory Method(see SectionA.1.12) on the sub-
classes.

2. If any code refers to the subclasses, replace the reference with one to the super-
class.

3. Declare final fields for each constant method on the superclass.

4. Declare a protected superclass constructor to initialize the field.

5. Add or modify subclass constructors to call the new superclas constructor.

6. Compile and test.

7. Implement each constant method in the superclass to return the field and remove
the method from the subclass.

8. Compile and test after each removal.

9. When all the subclass methods have been removed, useInline Method(see Sec-
tion A.1.14) to inline the constructor into the factory method of the superclass.

10. Compile and test.

11. Remove the subclass.

12. Compile and test.

13. Repeat inlining the constructor and eliminating each subclass until they are all
gone.

A.1.10 Substitute Algorithm

You want to replace an algorithm with one that is clearer.
Replace the body of the method with the new algorithm.

Mechanics:

1. Prepare your alternative algorithm. Get it so that it compiles.

2. Run the new algorithm against your tests. If the results are the same, you are
finished.

3. If the results are not the same, use the old algorithm for comparison in testing
and debugging. Run each test case with old and new algorithms and watch both
results. That will help you see which test cases are causing trouble, and how.

92 A. Appendix

A.1.11 Pull Up Field

Two subclasses have the same field.
Move the field to the superclass.

Mechanics:

1. Inspect all uses of the candidate fields to ensure they are used in the same way.

2. If the fields do not have the same name, rename the fields so that they have the
name you want to use for the superclass field.

3. Compile and test.

4. Create a new field in the superclass.

5. Delete the subclass fields.

6. Compile and test.

7. Consider usingSelf Encapsulate Field(see SectionA.1.15) on the field.

A.1.12 Replace Constructor with Factory Method

You want to do more than simple constructon when you create an object.
Replace the constructor with a factory method.

Mechanics:

1. Create a factory method. Make its body a call to the current constructor.

2. Replace all calls to the constructor with calls to the factory method.

3. Compile and test after each replacement.

4. Declare the constructor private.

5. Compile.

A.1.13 Pull Up Constructor Body

You have constructors on subclasses with mostly identical bodies.
Create a superclass constructor; call this from the subclass methods.

Mechanics:

1. Define a superclass constructor.

2. Move the common code at the beginning from the subclass to the superclass
constructor.

3. Call the superclass constructor as the first step in the subclass constructor.

4. Compile and test.

A.1 Refactorings 93

A.1.14 Inline Method

A method’s body is just as clear as its name.
Put the method’s body into the body of its callers and remove the method.

Mechanics:

1. Check that the method is not polymorphic.

2. Find all calls to the method.

3. Replace each call with the method body.

4. Compile and test.

5. Remove the method definition.

A.1.15 Self Encapsulate Field

You are accessing a field directly, but the coupling to the field is becoming awkward.
Create getting and setting methods for the field and use only those to access the field.

Mechanics:

1. Create a getting and setting method for the field.

2. Find all references to the field and replace them with a getting or setting method.

3. Make the field private.

4. Double check that you have caught all references.

5. Compile and test.

94 A. Appendix

A.2 Structure of the Smalltalk Applications

A.2.1 SCGGroup

MOOSE

Application Number Number Lines
of Classes of Methods of Code

MooseAbstractBase 1.21 5 60 491
MooseCDIFReader 1.24 4 77 675
MooseDocSupport 1.2 3 25 165
MooseEnvyImporter 1.10 2 93 579
MooseExternalOperators 1.5 2 11 67
MooseFinder 1.13 12 164 1771
MooseGroups 1.7 4 23 75
MooseImporters 1.40 9 244 1667
MooseLoaderUI 1.14 4 68 534
MooseMetrics 1.29 12 257 1790
MooseModel 1.76 33 900 7356
MooseOperators 1.33 12 99 777
MooseOperatorsUI 1.2 2 18 185
MooseParseTree 1.13 6 104 902
MooseQueries 1.24 16 184 979
MooseStorage 1.25 13 160 2319
MooseUUIDGenerator 1.5 3 82 629
MooseWidgets 1.0 3 32 238
MooseExplorerApp 2.7u 1 4 25
MEX AuxiliaryRelationships 0.6d 46 272 2100
MEX AuxiliaryStructures 0.2b 6 109 455
MEX FunctionProfiles 0.2b 8 102 574
MEX Functions 0.4r 18 671 7905
MEX Interfaces 2.2u 5 178 1590
MEX InterfaceSupport 2.4n 35 969 6893

Total 264 4906 40741

Table A.1: Number of Classes, Methods, Lines of Code in MOOSE

A.2 Structure of the Smalltalk Applications 95

CODECRAWLER

Application Number Number Lines
of Classes of Methods of Code

CodeCrawlerApp 2.912 12 448 2139
CCAlgorithms 1.9 4 45 240
CCExtensions 2.001 3 162 1637
CCFamixPlugins 1.1 8 108 413
CCGraphComposer 1.014 5 106 1383
CCHotDraw 2.058 15 261 957
CCLayouts 1.022 18 71 495
CCPlayground 1.2 2 7 45
CCWidgets 2.017 7 88 857

Total 74 1296 8166

Table A.2: Number of Classes, Methods, Lines of Code in CODECRAWLER

96 A. Appendix

DUPLOC

Application Number Number Lines
of Classes of Methods of Code

Duploc API 0.4 2 23 96
Duploc Base 2.14g 3 94 579
Duploc ComparisonMatrix 2.14l 20 315 3072
Duploc ComparisonProcess 1.5 9 89 820
Duploc Experiments 2.14b 4 7 42
Duploc MatchPatterns 1.2 9 122 1109
Duploc MatrixAnalysis 0.4 5 52 308
Duploc NotesSupport 0.3a 5 31 181
Duploc RawMatrix 2.14h 13 415 3600
Duploc Report 2.14g 19 341 2517
Duploc Sandbox 0.1 2 2 7
Duploc SystemExtensions 2.14c 9 66 365
Duploc SystemInfo 0.2 5 216 1616
Duploc Utilities 2.14f 19 377 3610
Duploc GUI 2.14k 19 680 5891
Duploc GUISupport 1.1 18 180 1034
Duploc SourceInterface 2.14k 48 844 5955
Duploc InformationMural 2.14c 60 919 5763

Total 269 4773 36565

Table A.3: Number of Classes, Methods, Lines of Code in DUPLOC

A.2 Structure of the Smalltalk Applications 97

A.2.2 Reference Group

REFACTORINGBROWSER

Application Number Number Lines
of Classes of Methods of Code

RBBaseUIApp R3.5.0 7 283 1926
RBBaseUIVWApp R3.5.0 9 287 1962
RBChangeObjectsApp R3.5.0 22 246 1093
RBChangeObjectsVWApp R3.5.0 5 95 427
RBEnvironmentsApp R3.5.0 11 245 1290
RBEnvironmentsVWApp R3.5.0 2 67 298
RBRefactoringUI R3.5.0 9 228 1218
RBRefactoringVWUI R3.5.0 6 115 737
RBBrowserUIApp R3.5.0+PDP2.5x 30 920 7606
RBBrowserUIVWApp R3.5.0 27 913 8068
RBBrowserUIVW30App R3.5.0 3 217 1883
RBParserApp R3.5.1 41 959 5256
RBRefactoringsApp R3.5.1 59 968 6910
RBRefactoringsVWApp R3.5.0 3 102 881
RBRefactoringsVW30App R3.5.0 4 53 309

Total 238 5698 39864

Table A.4: Number of Classes, Methods, Lines of Code in REFACTORINGBROWSER

98 A. Appendix

V ISUALWORKS

ENVY Developer 4.00

Application Number Number Lines
of Classes of Methods of Code

ColorEditing 1.0.0 11 386 4807
Compilation R4.00 + PDP-2.5 63 1781 17310
EmClassDevelopment R4.00 + PDP-2.5 19 1419 14762
EmClassDevelopment80 R4.00 18 1235 11621
EmImageSupport R4.00 15 1152 12712
EmImageSupport80 R4.00 16 1435 14794
EmLibraryInterface R4.00 + PDP-2.5 17 1189 13610
EmLibraryAccess R4.00 5 171 177
EmLibraryAccess80 R4.00 6 93 177
EmLibraryInterface80 R4.00 + PDP-2.5 13 1123 12730
EmLibraryObjects R4.00 6 630 7464
EmLibraryObjects80 R4.00 7 630 7464
EmLibrarySchema R4.00 34 753 71
EmLibrarySchema80 R4.00 10 411 1231
DragAndDrop R4.00 17 460 2901
EmMethodDecoding R4.00 7 280 2770
EmMethodDecoding80 R4.00 25 1170 7869
EtConfigurationManagement80 R4.00 5 436 5515
EtDevelopment80 R4.00 + PDP-2.5 14 905 15623
EtTools80 R4.00 + PDP-2.5 19 956 9213
EtWindowSystemExtensions R4.00 23 486 4689
ExternalIPC R4.00 6 99 666
FileSystem R4.00 29 574 4914
FileSystemTools R4.00 4 238 2357
ExternalIPC R4.00 6 99 666
FileSystem R4.00 29 574 4914
Events R4.00 98 2181 15052
Graphics R4.00 + PDP-2.5 112 2863 24459

The table continues on the next page...

A.2 Structure of the Smalltalk Applications 99

Application Number Number Lines
of Classes of Methods of Code

UIBuilderSpecifications R4.00 45 1423 10822
UIBuilderSupport R4.00 14 448 3238
UIInterfaceBuilding R4.00 57 2044 15284
VisualWorksEnhancements R4.00 + PDP-2.5 10 528 4322
UIBasicComponents R4.00 + PDP-2.5 45 1054 7093
UIBasicSupport R4.00 38 688 4319
UIModels R4.00 12 199 1531
Printing R4.00 14 458 3859
Sockets R4.00 5 145 1461
SUnit 2.6.3 5 90 355
SUnitSCG 1.0b 2 22 196
UnixIPC R4.00 4 51 512
JBWidgets R1.08 2 29 213
JBWidgetsVisualWorksSpecific R1.06 8 237 2221
JBWidgetsVisualWorksSpecific30 R1.00 1 3 16
WindowSystemCompatibility R4.00 21 284 2261

Total 917 31432 278241

Table A.5: Number of Classes, Methods, Lines of Code in VISUALWORKS (contin-
ued)

A.2.3 Industrial Group

PDP

Application Number Number Lines
of Classes of Methods of Code

PDPAppInspector 2.6 14 833 7830
PDPAppTools 2.5 14 1160 17527
PDPAppMiscSupport 2.5 31 1847 16231
PDPAppRB 2.6+RB3.5.1 3 311 3736

Total 62 4151 45324

Table A.6: Number of Classes, Methods, Lines of Code in PDP

100 A. Appendix

MAF

Application Number Number Lines
of Classes of Methods of Code

MAF Button 1.0 2 3 23
MAF ComboBox 1.5 11 93 814
MAF CompositePart 1.2 5 8 81
MAF InputField 1.14 4 77 915
MAF List DisplayDefinition 1.11 12 204 1678
MAF List Model 1.15 10 207 1637
MAF MenuButton 1.3 3 23 287
MAF Notebook 1.17 1 3 23
MAF DynamicSubCanvasWidget 1.2 4 244 2288
MAF NotebookModel 1.8 4 133 1116
MAF NotebookWidget 1.11 12 443 4446
MAF PassiveLabel 1.1 2 3 23
MAF ProgressBar 1.0 4 207 2163
MAF Resizer 1.5 10 262 2704
MAF TextEditor 1.7 3 23 194
MAF Window 1.2 2 86 544
MAF Basics 1.39 15 417 4254
MAF Commands 1.18 21 514 4433
MAF Labels 1.9 12 302 2177
MAF Menus 1.12 12 180 1375
MAF Models 1.1 2 12 104
MAF OnlineHelp 1.3 9 59 530
MAF ToolBar 1.11 9 259 2469
MAF Tooltips 1.3 2 23 222
MAF Win4Look 1.32 30 364 3391
MAF CompositeComponents 2.0 3 193 1971
MAF DateSelector 1.4 4 337 3366
MAF SelectionEditor 1.17 15 403 3789
MAF SpinBox 2.0 18 652 5937
MAF TaskBasedEditor 1.12 10 86 797
MAF DragAndDrop 1.2 2 13 71
MAF EnablingAndDisabling 1.7 15 243 1429

Total 269 6076 55251

Table A.7: Number of Classes, Methods, Lines of Code in MAF

A.3 Validation: Statistical Analysis 101

A.3 Validation: Statistical Analysis

A.3.1 Distribution of Scenarios

C
od

eC
ra

w
le

r
2.

91
2

D
up

lo
c

2.
14

g

M
oo

se
1.

45

V
is

ua
lW

or
ks

3.
0

R
ef

ac
to

rin
gB

ro
w

se
r

3.
5

P
D

P
A

pp
2.

6

M
A

F

Scenarios

Ancestor Scenario 1 1 1 18 2 0 1
Common Hierarchy Scenario 1 2 26 15 6 0 0
First Cousin Scenario 11 1 14 17 2 0 4
Same Class Scenario 11 25 18 202 26 7 33
Same Method Scenario 0 6 2 24 3 0 2
Sibling Scenario 9 26 8 27 17 0 3
Superclass Scenario 3 4 3 42 4 6 5
Unrelated Class Scenario 2 1 0 44 2 0 24

Total 38 66 72 389 62 72 13

Result in Percent
Ancestor Scenario 3 2 1 5 3 0 1
Common Hierarchy Scenario 3 3 36 4 10 0 0
First Cousin Scenario 29 2 19 4 3 0 6
Same Class Scenario 29 38 25 52 42 54 46
Same Method Scenario 0 9 3 6 5 0 3
Sibling Scenario 24 39 11 7 27 0 4
Superclass Scenario 8 6 4 11 6 46 7
Unrelated Class Scenario 5 2 0 11 3 0 33

Table A.8: Number of Duplications in Analyzed applications.

102 A. Appendix

A.3.2 Impact on Classes

C
od

eC
ra

w
le

r
2.

91
2

D
up

lo
c

2.
14

g

M
oo

se
1.

45

V
is

ua
lW

or
ks

3.
0

R
ef

ac
to

rin
gB

ro
w

se
r

3.
5

P
D

P
A

pp
2.

6

M
A

F

Impact On Classes
1 8 28 18 187 27 4 34
2 10 29 19 134 22 9 13
3 12 5 9 39 8 0 14
4 6 4 2 25 3 0 9
5 2 0 1 3 2 0 2
6 0 0 1 0 0 0 0
7 0 0 1 0 0 0 0
8 0 0 5 0 0 0 0
9 0 0 8 0 0 0 0
10 0 0 6 0 0 0 0
11 0 0 1 0 0 0 0
12 0 0 1 0 0 0 0

Average 2.6 1.8 4.2 1.8 1.9 1.7 2.1
Maximum 5 4 12 2 5 5 5
75%-Quantil 3 2 8 2 2 2 3

Table A.9: Impact On Classes.

A.3 Validation: Statistical Analysis 103

A.3.3 Number of Matches

C
od

eC
ra

w
le

r
2.

91
2

D
up

lo
c

2.
14

g

M
oo

se
1.

45

V
is

ua
lW

or
ks

3.
0

R
ef

ac
to

rin
gB

ro
w

se
r

3.
5

P
D

P
A

pp
2.

6

M
A

F

6 7 15 36 101 31 0 23
7 7 10 15 57 14 2 7
8 3 10 7 59 7 3 10
9 5 4 3 37 2 0 2
10 3 5 2 26 1 1 6
11 0 5 3 17 6 0 2
12 4 5 2 16 0 0 8
13 3 3 1 10 0 2 0
14 5 2 0 13 0 1 1
15 0 2 0 7 0 2 2
16 0 0 1 5 0 0 1
17 0 1 0 4 0 0 0
18 0 0 0 7 1 0 4
19 0 0 0 3 0 1 1
20 0 0 2 1 0 0 2
21 0 1 0 2 0 0 0
22 0 0 0 3 0 0 0
23 0 1 0 3 0 0 0
24 0 0 0 4 0 0 2
25 0 0 0 1 0 0 0
26 0 0 0 1 0 1 1
27 1 0 0 1 0 0 0
28 0 0 0 5 0 0 0
30 0 1 0 2 0 0 0
32 0 1 0 1 0 0 0
40 0 0 0 1 0 0 0
41 0 0 0 1 0 0 0
45 0 0 0 1 0 0 0

Average 9.8 10.0 7.6 10.0 7.3 12.5 10.1

Standard deviation 4.0 5.1 2.9 5.7 2.1 5.3 5.0

Maximum 27 32 20 45 18 26 26

75%-Quantil 12 12 8 11 8 15 12

Table A.10: Number of Matches.

104 A. Appendix

A.3.4 Length

C
od

eC
ra

w
le

r
2.

91
2

D
up

lo
c

2.
14

g

M
oo

se
1.

45

V
is

ua
lW

or
ks

3.
0

R
ef

ac
to

rin
gB

ro
w

se
r

3.
5

P
D

P
A

pp
2.

6

M
A

F

Length

6 3 6 28 35 10 0 13
7 6 8 10 42 13 2 4
8 3 9 7 74 19 2 9
9 8 9 8 49 4 1 12
10 3 5 7 33 3 0 4
11 1 2 2 30 8 0 4
12 1 7 3 16 1 0 5
13 1 3 1 18 0 1 2
14 6 3 0 9 1 0 0
15 1 1 1 7 0 0 2
16 1 1 1 8 1 1 1
17 0 4 0 8 1 2 1
18 1 2 0 3 1 0 2
19 0 1 1 12 0 1 3
20 1 0 0 7 0 1 1
21 1 0 0 2 0 0 1
22 0 1 1 1 0 0 2
23 0 2 0 3 0 1 1
24 0 0 1 5 0 0 2
25 0 0 0 4 0 0 2
26 0 0 0 2 0 0 0
27 0 0 0 1 0 0 1
28 0 0 0 3 0 0 0
29 1 0 0 1 0 0 0
30 0 0 1 0 0 0 0

continue on the next page...

A.3 Validation: Statistical Analysis 105

C
od

eC
ra

w
le

r
2.

91
2

D
up

lo
c

2.
14

g

M
oo

se
1.

45

V
is

ua
lW

or
ks

3.
0

R
ef

ac
to

rin
gB

ro
w

se
r

3.
5

P
D

P
A

pp
2.

6

M
A

F

31 0 1 0 3 0 1 0
32 0 0 0 1 0 0 0
33 0 0 0 2 0 0 0
34 0 0 0 0 0 0 0
35 0 1 0 0 0 0 0
36 0 0 0 1 0 0 0
37 0 0 0 1 0 0 0
38 0 0 0 0 0 0 0
39 0 0 0 1 0 0 0
40 0 0 0 2 0 0 0
41 0 0 0 1 0 0 0
42 0 0 0 0 0 0 0
43 0 0 0 0 0 0 0
44 0 0 0 1 0 0 0
45 0 0 0 0 0 0 0
46 0 0 0 1 0 0 0
47 0 0 0 0 0 0 0
48 0 0 0 0 0 0 0
49 0 0 0 0 0 0 0
50 0 0 0 1 0 0 0
51 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0
53 0 0 0 0 0 0 0
54 0 0 0 0 0 0 0
55 0 0 0 0 0 0 0
56 0 0 0 0 0 0 0
57 0 0 0 1 0 0 0

Average 11 12 9 12 9 15 12

Standard deviation 5 6 4 7 3 7 6

Maximum 29 35 30 57 18 31 27

75%-Quantil 14 14 10 13 10 19 15

Table A.11: Length of Duplications.

A.3.5 Number of Matches before Filtering

106 A. Appendix

C
od

eC
ra

w
le

r
2.

91
2

D
up

lo
c

2.
14

g

M
oo

se
1.

45

V
is

ua
lW

or
ks

3.
0

R
ef

ac
to

rin
gB

ro
w

se
r

3.
5

P
D

P
A

pp
2.

6

M
A

F

To
ta

l

P
er

ce
nt

Nb of Matches

2 29 357 199 1745 272 16 105 2723 34
3 70 193 160 948 496 17 118 2002 25
4 40 89 102 519 263 13 84 1110 14
5 32 42 84 354 87 5 22 626 8
6 11 32 138 275 45 2 59 562 7
7 9 13 20 138 18 3 11 212 3
8 5 14 7 125 10 3 23 187 2
9 7 7 5 83 3 0 10 115 1
10 4 6 3 59 2 1 10 85 1
11 3 8 6 32 6 2 2 59 1
12 3 15 2 24 0 0 14 58 1
13 0 7 1 25 0 4 0 37 0
14 0 3 0 30 0 1 3 37 0
15 0 3 1 13 0 2 3 22 0
16 0 0 2 11 0 0 1 14 0
17 0 1 0 12 0 0 0 13 0
18 0 2 0 9 1 0 7 19 0
19 0 0 0 6 0 1 1 8 0
20 0 0 2 3 0 0 2 7 0
21 0 2 0 2 0 0 0 4 0
22 0 0 0 4 0 0 0 4 0
23 0 1 0 5 0 0 1 7 0
24 0 0 2 5 0 0 2 9 0
25 0 0 0 1 0 0 0 1 0
26 0 0 0 2 0 1 1 4 0
27 0 0 0 2 0 0 0 2 0
28 0 0 0 6 0 0 0 6 0
29 0 0 0 3 0 0 0 3 0
30 0 1 0 1 0 0 0 2 0
31 0 0 0 2 0 0 0 2 0
32 0 1 0 1 0 0 0 2 0
35 0 0 0 1 0 0 0 1 0
40 0 0 0 1 0 0 0 1 0
41 0 0 0 1 0 0 0 1 0
45 0 0 0 1 0 0 0 1 0
48 0 0 0 1 0 0 0 1 0

Total: 213 797 734 4450 1203 71 479 7947 100

Table A.12: Distribution of Number of Matches before Filtering.

Bibliography

[1] Brenda S. Baker.
A program for Identifying Duplicated Code.
Computing Science and Statistics, 24:49-57, 1992.

[2] Brenda S. Baker.
Parameterized Duplication in Strings: Algorithms and an Application to Soft-
ware Maintenance.
SIAM Journal of Computing, October 1997.

[3] Martin Fowler.
Refactoring. Improving the Design of Existing Code.
Booch Jacobson Rumbaugh, 1999.

[4] W.Opdyke.
Refactorings Object-Oriented Frameworks.
PhD Thesis, University of Illinois, 1992.

[5] R. Johnson and W. Opdyke.
Refactoring and Aggregation.
Object Technologies for Advanced Software, LNCS, vol. 742, Springer-Verlag,
1993.

[6] W.Opdyke and R.Johnson .
Creating Abstract Superclasses by Refactoring.
Proceedings of the 1993, ACM Conference on Computer Science, ACM Press,
1993, pages 66-73.

[7] D. Robert, J. Brant and R. Johnson.
Using the Refactoring Browser Will it increase your efficiency ?.
The Smalltalk Report, Vol 6, Sep, 1997.

[8] D.Roberts, J. Brant and R. Johnson.
A Refactoring Tool for Smalltalk.
Theory and Practice of Object Systems special Issue on Software Reengineering,
1998.

[9] J.M. Brant.
HotDraw.
Master’s thesis, University of Illinois, (pp22, 28), 1995.

108 BIBLIOGRAPHY

[10] Brenda S. Baker.
On Finding Duplication and Near-Duplication in Large-Software-Systems.
In Proceedings Second Working Conference on Reverse Engineering, pages 86-
95, IEEE Computer Society, 1995.

[11] S. Ducasse, M. Rieger and S. Demeyer.
A Language independent approach for detecting duplicated code.
In Proceedings of the International Conference on Software Maintenance, pages
109-118, 1999.

[12] J. H. Johnson.
Identifying redundancy in source code using fingerprints.
CASCON’93, pages 171-183, October1993.

[13] K. Kontogiannis.
Evaluation experiments on the detection of programming pattern using software
metrics.
Proceedings of the 4th Working Conference on Reverse Engineering, Ira Baxter
and Alex Quilici and Chris Verhoef, IEEE Computer Society, pages 44-54, 1997.

[14] J. Mayrand, C. Leblanc and E. Merlo.
Experiment on the automatic detection of function clones in a software system
using metrics.
In Proceedings of the International Conference on Software Maintenance,
1996.w

[15] M. Balazinska, E. Merlo, M. Dagenais, B. Lagüe, and K. Kontogiannis.
Measuring clone based reengineering opportunities.
In International Symposium on Software metrics. METRICS’99. IEEE Computer
Society Press, November 1999.

[16] M. Balazinska, E. Merlo, M. Dagenais, B. Lagüe, and K. Kontogiannis.
Partial redesign of Java software systems based on clone analysis.
In Proceedings of the 6th Working Conference on Reverse Engineering, pages
326-336. IEEE Computer Society Press, October 1999.

[17] M. Balazinska.
Reconception de systèmes orient́es-object baśee sur l’analyse des clones.
Mémoire de dipl̂omeès Sciences Appliqúees, Novembre 1999.

[18] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna and L. Bier.
Clone detection using abstract syntax trees.
In Proceedings of the International Conference on Software Maintenance, pages
368-377. IEEE Computer Society Press, 1998.

[19] S. A. Alpert, K. Brown, B. Woolf.
The Design Patterns - Smalltalk Companion.
Addison Wesley, 1998.

BIBLIOGRAPHY 109

[20] Michele Lanza.
Combining Metrics and Graphs for Object Oriented Reverse Engineering.
Master Thesis University of Bern, 1999.

[21] E. Gamma, R. Helm, R. Johnson and J. Vlissides.
Design Patterns: Elements of Reusable Object Oriented Software.
Addison-Wesley, 1995

[22] Ivan Moore.
Automatic Inheritance Hierarchy Restructuring and Method Refactoring.
OOPSLA96 CA, USA. pages 235-250, 1996

[23] Demeyer & al.
The FAMOOS Object-Oriented Reengineering Handbook.
Version: October 15, 1999

[24] S. Tichelaar and S. Demeyer.
An Exchange Model for Reengineering Tools.
In Object-Oriented Technology (ECOOP’98 Workshop Reader), LNCS 1543.
Springer-Verlag, July 1998.

[25] Ralph. E. Johnson.
Documenting Frameworks using Patterns.
In Proceedings OOPSLA’92, ACM SIGPLAN Notices. pages 63-76, October
1992.

[26] K. Beck and R. Johnson.
Patterns Generate Architectures. In M. Tokoro and R. Pareschi, editors, Proceed-
ings ECOOP’94, LNCS 821, pages 139-149, Bologna, Italy, July 1994. Springer-
Verlag.

[27] Kent Beck.Smalltalk Best Practice Patterns.
Prentice Hall, 1997.

[28] Kent Beck.
Extreme Programming Explained: Embrace Change.
Addison-Wesley, 1999.

[29] M. M. Lehman and L. Belady.
Program Evolution - Processes of Software Change.
London Academic Press, 1985.

[30] T. Ball and S. E. Eick.
Software Visualization in the Large.
IEEE Computer. pages 33-43, April 1996.

[31] J Howard Johnson.
Substring Matching for Clone Detection and Change Tracking.
In Proceedings of the International Conference on Software Maintence (ICSM),
pages 120-126, 1994.

110 BIBLIOGRAPHY

[32] Santanu Paul and Atul Prakash.
A Framework for Source Code Search Using Program Patterns.
IEEE Transactions on Software Engineering, pages 463-475, 1994.

[33] H.T. Jankowitz.
Detecting Plagiarism in Student PASCAL Programs.
Computer Journal, pages 1-8, 1988.

[34] S. Grier.
A Tool that Detects Plagiarism in PASCAL Programs.
SIGSCE Bulletin, 1981.

[35] M.H. Halstead.
Elements of Software Science.
Elsevier North-Holland, 1977.

[36] St́ephane Ducasse, Matthias Rieger and Serge Demeyer.
A Language Independent Approach for Detecting Duplicated Code.
Proceedings ICSM’99 (International Conference on Software Maintenance)
pages 109-118. IEEE Computer Society Press, september, 1999.

[37] Ian Sommerville.
Software Engineering.
Addison-Wesley, 1996.

[38] St́ephane Ducasse, Michele Lanza and Sander Tichelaar.
Moose: an Extensible Language-Independent Environment for Reengineering
Object-Oriented Systems.
Proceedings of the Second International Symposium on Constructing Software
Engineering Tools (CoSET 2000), jun, 2000.

[39] Charles W. Krueger.
Software Reuse.
ACM Computing Surveys, pages 133-183, jun, 1992.

	Introduction
	Our Contribution
	Structure of the Thesis

	Duplicated Code and Refactoring
	The Problem of Duplicated Code
	Software Reuse and Origin of Clones
	The Problem
	Detection of Duplicated Code

	Refactoring
	A Survey of Refactoring
	How Refactoring Can Remedy Code Duplication
	Techniques of Refactoring

	Classifying Duplication in Refactorable Scenarios
	Definition and Properties of Duplication
	Constraints
	Duplication in the Same Method
	Duplication in the Same Class
	Duplication between Sibling Classes
	Duplication with Superclass
	Duplication with Ancestor
	Duplication with First Cousin
	Duplication in Common Hierarchy
	Duplication in Unrelated Classes
	Summary

	SUPREMO: Tool Support for Duplication Elimination
	Introduction
	Requirements and functionality
	Required Applications
	 HotDraw
	 Duploc
	 FAMIX

	Tool Architecture
	Implementation
	Creation and Management of the Object DuplicationUnit
	User Interfaces

	Noise Filtering
	Duplications with Low Density
	Duplications with Low Number of Matches
	Redundancies

	The Textual Viewer
	The Selection Part
	The Qualification Part
	The Information Part
	The Source Code Part

	The Graphical Viewer

	Validation: Statistical Analysis
	Applications in Smalltalk
	Analyzed Applications
	Noise Filtration
	Distribution of Density
	Distribution of Number of Matches

	Metrics
	Scenario Distribution

	Distribution of Impact on Classes
	Distribution of Number of Matches
	Distribution of Length of Duplication
	Conclusion

	Applications in C++ and Java

	Validation: Qualitative Aspects
	Case Studies Results
	Analysis of Duploc
	Analysis of CodeCrawler
	Analysis of Moose

	Scenario based Examples
	Ancestor Scenario
	Common Hierarchy Scenario
	First Cousin Scenario
	Same Method Scenario
	Sibling Classes Scenario
	Same Class Scenario
	Superclass Scenario
	Unrelated Classes Scenario
	Summary

	Conclusions and Perspectives
	Conclusions
	Perspectives and Future Work
	Limits of the Approach
	Future Work

	Appendix
	Refactorings
	Extract Method
	Pull Up Method
	Push Down Method
	Form Template Method
	Parameterize Method
	Collapse Hierarchy
	Extract Superclass
	Rename Method
	Replace Subclass with Field
	Substitute Algorithm
	Pull Up Field
	Replace Constructor with Factory Method
	Pull Up Constructor Body
	Inline Method
	Self Encapsulate Field

	Structure of the Smalltalk Applications
	SCG Group
	Moose
	CodeCrawler
	Duploc

	Reference Group
	RefactoringBrowser
	VisualWorks

	Industrial Group
	PDP
	MAF

	Validation: Statistical Analysis
	Distribution of Scenarios
	Impact on Classes
	Number of Matches
	Length
	Number of Matches before Filtering

