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Goal:  The FLO/c model allows object-orient
high-level multi-object coordination .
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1. Separation of Concerns

❑ Components vs connectors in software architectu
❑ Computation vs coordination in parallel programm
❑ Domain specific code vs synchronization code in c

Active Object
Connector

Actors
asynchronous messages
single thread
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2. Explicit Dynamic Connectors

❑ Run-time objects that implement interaction
☞ Therefore the ideal location for coordinat
☞ Run-time dynamics.

❑ Connectors connect components. A Connect
connected components plays roles in their co

❑ Independency  of components (and vice vers
❑ Monitor messages, react with messages an

☞ The connector can have states and meth
react.

☞ The reaction is defined by a set of user de
requests (messages).

❑ Can connect groups  of objects.
❑ Can collaborate with other connectors , ad

properties (e.g. fairness).
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3. Coordination Abstraction usi
Connectors react upon message sends of the objects 
The reaction is coded into rules .
Rule  = request message, operator, consequence mes
Coordination abstraction  = Synchronized multi-objec

Operators to compose joint actions:
implies push style computation ordering.
impliesBefore pull style computation ordering.
permittedIf balking style conditional synchronization.
waitUntil blocking style conditional synchronization
Operator to propagate requests (asynchronous & unprotec

Inconsistent group state

Synchronized multi-object joint act

Consistent group state 1

StateB1StateA1 StateA2 StateB1

[Multi-object constraints]

[Constraints[Constraints]

ComputationA



Explicit Connectors for Coordination of Active Objects 5.

U Coordination Abstraction using Rules
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An Example Connector Specification
MetaConnector new;

inheritsForm: AbstractConnector;

name: ‘JumpNCatchConnector’;

roles: ‘dancer1 dancer2’;

rules: ‘

dancer1jumps. implies  dancer2 catches. e

dancer2 catches. waitUntil  dancer2 armsAr

dancer1 jumps. impliesLater  dancer1 jum

Goal reached?  Rules compose multi-object joint actions.
Joint actions can model:

❑ Multi-object constraints (Synchronizers of Frolund
❑ Mutual exclusion on shared resources.
❑ Transactions.

✔
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