
Explicit Connectors for Coordination of Active Objects 1.

U

ation of

 & Operators

ed declaration of
niversität Bern 26.2.98

Explicit Connectors for Coordin
Active Objects

Author: Manuel Günter
Platform: Smalltalk (VisualWorks2.0)
Context: Diplomarbeit (~Masters Thesis) 1997/98

Presentation: 1 Title, Contents, Goal
2 Separation of Concerns
3 Explicit Connectors
4 Coordination Abstraction, Rules
5 Toy Example

Goal: The FLO/c model allows object-orient
high-level multi-object coordination .

Explicit Connectors for Coordination of Active Objects 2.

U Separation of Concerns

re design (Allen&Garlan).
ing (Carriero&Gelernter).
oncurrent progams (Bloom).

Active Object

Active Object
niversität Bern 26.2.98

1. Separation of Concerns

❑ Components vs connectors in software architectu
❑ Computation vs coordination in parallel programm
❑ Domain specific code vs synchronization code in c

Active Object
Connector

Actors
asynchronous messages
single thread
independent run-time

rules
coordination
interaction

role

Explicit Connectors for Coordination of Active Objects 3.

U Explicit Dynamic Connectors

 between active objects.
ion mechanisms.

or has roles. The
nnector
a).
d executions.
ods, and use them to

fined rules, that trigger on

ding additional global
niversität Bern 26.2.98

2. Explicit Dynamic Connectors

❑ Run-time objects that implement interaction
☞ Therefore the ideal location for coordinat
☞ Run-time dynamics.

❑ Connectors connect components. A Connect
connected components plays roles in their co

❑ Independency of components (and vice vers
❑ Monitor messages, react with messages an

☞ The connector can have states and meth
react.

☞ The reaction is defined by a set of user de
requests (messages).

❑ Can connect groups of objects.
❑ Can collaborate with other connectors , ad

properties (e.g. fairness).

Explicit Connectors for Coordination of Active Objects 4.

U Coordination Abstraction using Rules

ng Rules
they control.

sages.
t joint actions.

.
ted): impliesLater .

ions

Consistent group state 2

StateA2 StateB2

]
ComputationB
niversität Bern 26.2.98

3. Coordination Abstraction usi
Connectors react upon message sends of the objects
The reaction is coded into rules .
Rule = request message, operator, consequence mes
Coordination abstraction = Synchronized multi-objec

Operators to compose joint actions:
implies push style computation ordering.
impliesBefore pull style computation ordering.
permittedIf balking style conditional synchronization.
waitUntil blocking style conditional synchronization
Operator to propagate requests (asynchronous & unprotec

Inconsistent group state

Synchronized multi-object joint act

Consistent group state 1

StateB1StateA1 StateA2 StateB1

[Multi-object constraints]

[Constraints[Constraints]

ComputationA

Explicit Connectors for Coordination of Active Objects 5.

U Coordination Abstraction using Rules

ndRule

eFree. endRule

ps. endRule ‘

&Agha).
niversität Bern 26.2.98

An Example Connector Specification
MetaConnector new;

inheritsForm: AbstractConnector;

name: ‘JumpNCatchConnector’;

roles: ‘dancer1 dancer2’;

rules: ‘

dancer1jumps. implies dancer2 catches. e

dancer2 catches. waitUntil dancer2 armsAr

dancer1 jumps. impliesLater dancer1 jum

Goal reached? Rules compose multi-object joint actions.
Joint actions can model:

❑ Multi-object constraints (Synchronizers of Frolund
❑ Mutual exclusion on shared resources.
❑ Transactions.

✔

	Explicit Connectors for Coordination of Active Objects
	Author: Manuel Günter
	Platform: Smalltalk (VisualWorks2.0)
	Context: Diplomarbeit (~Masters Thesis) 1997/98
	Presentation: 1 Title, Contents, Goal
	2 Separation of Concerns
	3 Explicit Connectors
	4 Coordination Abstraction, Rules & Operators
	5 Toy Example
	Goal: The FLO/c model allows object-oriented declaration of
	high-level multi-object coordination.

	1. Separation of Concerns
	Components vs connectors in software architecture design (Allen&Garlan).
	Computation vs coordination in parallel programming (Carriero&Gelernter).
	Domain specific code vs synchronization code in concurrent progams (Bloom).

	2. Explicit Dynamic Connectors
	Run-time objects that implement interaction between active objects.
	Therefore the ideal location for coordination mechanisms.
	Run-time dynamics.

	Connectors connect components. A Connector has roles. The connected components plays roles in the...
	Independency of components (and vice versa).
	Monitor messages, react with messages and executions.
	The connector can have states and methods, and use them to react.
	The reaction is defined by a set of user defined rules, that trigger on requests (messages).

	Can connect groups of objects.
	Can collaborate with other connectors, adding additional global properties (e.g. fairness).

	3. Coordination Abstraction using Rules
	Connectors react upon message sends of the objects they control.
	The reaction is coded into rules.
	Rule = request message, operator, consequence messages.
	Coordination abstraction = Synchronized multi-object joint actions.
	Operators to compose joint actions:
	implies push style computation ordering.
	impliesBefore pull style computation ordering.
	permittedIf balking style conditional synchronization.
	waitUntil blocking style conditional synchronization.
	Operator to propagate requests (asynchronous & unprotected): impliesLater.
	An Example Connector Specification
	MetaConnector new;
	inheritsForm: AbstractConnector;
	name: ‘JumpNCatchConnector’;
	roles: ‘dancer1 dancer2’;
	rules: ‘
	dancer1jumps. implies dancer2 catches. endRule
	dancer2 catches. waitUntil dancer2 armsAreFree. endRule
	dancer1 jumps. impliesLater dancer1 jumps. endRule ‘

	Goal reached? Rules compose multi-object joint actions.
	Joint actions can model:
	Multi-object constraints (Synchronizers of Frolund&Agha).
	Mutual exclusion on shared resources.
	Transactions.

