Safe Dynamic Software Updates
in Multi-Threaded Systems with
ActiveContext

Masterarbeit
der Philosophisch-naturwissenschaftlichen Fakultat
der Universitat Bern

vorgelegt von

David Wendelin Gurtner

April 2011

Leiter der Arbeit

Prof. Dr. Oscar Nierstrasz
Erwann Wernli
Toon Verwaest

Institut fir Informatik und angewandte Mathematik

AAAAAA

CANTEXT

Copyright © 2011 by David Gurtner

This thesis is licensed under a Creative Commons Attribution-Share Alike 3.0
Unported License. See http://creativecommons.org/licenses/by-sa/3.0/
for more information.

http://creativecommons.org/licenses/by-sa/3.0/

Abstract

Applications need to be updated. The traditional approach to stop and conse-
quently restart an application for an update is not a valid scenario in the case of
high availability environments—they need to be updated at runtime. The reflec-
tive capabilities of dynamic languages offer a convenient way to install updates at
runtime, but do not provide adequate mechanisms to ensure safety. They suffer
from (a) the lack of a state transfer mechanism, and (b) possible inconsistent data
accesses from old code to new data structures.

Existing dynamic software update systems provide solutions for safe dynamic up-
dates but do not scale well to multi-threaded systems. To address these issues, we
propose ActiveContext, a programming model to enable dynamic software updates
in multi-threaded systems. ActiveContext builds on the reflective capabilities of
dynamic languages and adds first-class contexts to support the co-existence and
synchronization of multiple versions of objects in memory to ensure safety.

We implemented ActiveContext in Pinocchio, a variant of Smalltalk, and built a
proof-of-concept dynamic update system leveraging ActiveContext. We demon-
strate the viability of our approach with a running example.

vi

Acknowledgements

First and foremost I thank Erwann Wernli who made this thesis possible with his
ideas, his work, and his continued support. I enjoyed the many pair programming
sessions and the discussions held over many a cup of coffee—you not only helped
me realize this project, but you made it fun. I thank Toon Verwaest, who holds an
equal part in making this thesis possible. You always had an open door for me and
were always ready to help me with your amazing technical knowledge.

I wish to thank Prof. Oscar Nierstrasz as much for giving me the opportunity to
write this thesis at the Software Composition Group as for the support I received
throughout my studies. His inspirational lectures are the reason for my ongoing
interest in software engineering and programming languages.

My gratitude extends to the entire SCG and all my colleagues, you all contributed
to this work with your knowledge, advice and help. I would like to specifically
thank Philipp Bunge for his help with grammar and on style.

To my friends, I am deeply grateful and happy to call you my friends. Without you
I would have never been able to make it through uni. You are what made my life
on and off campus a great experience and incredibly fun.

To my parents, my siblings, Seul and all of my family. There is no way to adequately
express my gratitude for the love and unconditional support I received not only in
my studies but my entire life.

Thank you!

vii

viii

Contents

1. Introduction 1
1.1. Problem Statement oo 1
1.2. Contributions and Thesis Structure 2

2. Dynamic Software Update 3
2.1. Motivating Dynamic Software Update 3
2.2. An Introduction to Dynamic Software Update 4

3. Related Work 7
3.1. Approachesin C 7
3.2. Approachesin Java oL 8
3.3. Approaches in Smalltalk, 11

4. ActiveContext in a Nutshell 15
4.1. A Motivational Exampleo 15
4.2. A Step by Step Update 16

5. The ActiveContext Model 19
5.1. Identity, State and Contexts, 19
5.2. State Synchronization 0L 20
5.3. Reflective Hook 21

6. Implementation 23
6.1. Pinocchio 24
6.2. Implementation L L L L 25

7. Validation 35
7.1. A Running Example: Telnet Server 35
7.2. The Code of the Telnet Server 38

8. Discussion 43
8.1. Analysis of ActiveContext 43
8.2. Limitations of the Implementation 45

9. Conclusion 47
9.1. Future Work 47

ix

Contents

9.2. Final Remarks

A. Installation
A.1l. Prerequisites
A2, ActiveContext

List of Tables
List of Figures

Bibliography

49
49
50

53

55

57

Chapter 1

Introduction

1.1. Problem Statement

Software needs to be updated: Apart from the need to continuously evolve to
support new and possibly unanticipated features, there is also a need to fix existing
bugs.

The process of updating software consists of two parts. First the update is im-
plemented, and then the update is installed. Typically such updates are installed
while the application is not running, i.e. the application is stopped, the update is
deployed and the application is then restarted.

For certain applications this is not a viable scenario. For ISPs, banks, online stores,
online news outlets and others, downtime creates an immediate financial loss. In
the case of life-support systems or air traffic control it might even lead to a danger
for human life [Segal and Frieder, 1993]. Hence, changes have to be rolled out at
runtime.

While reflective languages like Smalltalk give the programmer capabilities to change
a program on the fly by changing the meta-level, these techniques are not appro-
priate for production systems. The two main shortcomings are:

e Fields can be added or removed from existing classes, but corresponding ob-
jects need to be updated accordingly. So the old state needs to transition into
a new, valid state. This lack of support for state transfer prevents arbitrary
software evolution.

e Old code on the stack might get out of sync with updated data structures,
leading to inconsistent data access. This can result in unsafe program execu-
tion.

There is a lot of existing research in the field of dynamic update systems which

Chapter 1. Introduction

solves these issues for non-reflective systems. These solutions usually revolve around
creating tools that provide a way to replace behavior (methods, functions or pro-
cedures depending on the language), and then finding update points where it is
safe to update the program. From a high level perspective, these systems work
according to the following scheme [Ebraert et al., 2005]: (1) preparation of the
change, (2) dynamic addition of new code, (3) deactivation of impacted entities,
(4) transformation to new behaviour and transformation of state, (5) verification
and (6) reactivation of the entities concerned.

Because of this general approach to finding update points where the impacted enti-
ties could be deactivated, most of these systems are ill suited to support updates for
multi-threaded applications, as it becomes incrementally harder to find a common
update point for all the running threads.

In this work we present ActiveContext, a reflective approach to safe dynamic soft-
ware updates in multi-threaded systems. Key to our approach is the scoping of
updates on a per-thread level which alleviates the need to find update points, and
the clear separation of identity and state with built-in support for state transition.
ActiveContext is a generic framework providing scoping and state transition.

1.2. Contributions and Thesis Structure

The main contributions of this thesis are as follows:

1. An Introduction to dynamic software update systems and a review of existing
research.

2. The presentation of ActiveContext, an approach to dynamic software updates
in multi-threaded environments.

3. A proof-of-concept implementation of ActiveContext together with a running
example to show the viability of ActiveContext.

4. The discussion and an outlook for further research around ActiveContext

We will start with an in-depth look at dynamic update systems in Chapter 2 and
review existing research in Chapter 3. We will give a motivational example how
ActiveContext enables dynamic software updates, by going through a step by step
dynamic software update, in Chapter 4. Following in Chapter 5 will be a more
formal introduction to ActiveContext and its model. The implementation of Ac-
tiveContext will be presented in Chapter 6. Next, we continue with a validation of
our approach, based on a running example in Chapter 7. In the following Chapter 8
we discuss our approach. Finally we conclude in Chapter 9.

Chapter 2

Dynamic Software Update

After sketching out the idea of dynamic software update systems in the introduction,
we present an in depth look at dynamic software systems. We motivate the use of
dynamic software update systems by looking at where they can be used and what
the alternatives are. We present the different possible features of such dynamic
update systems, together with resulting drawbacks and considerations.

2.1. Motivating Dynamic Software Update

Software is not a static product. Software constantly changes, new features are
implemented as well as bugs fixed. New versions of software containing new features
or bug-fixes need to be installed to leverage those features.

Installed software is a static artifact residing on a hard disk, while the running
application is held in memory. To gain the benefit of a new version of the software,
it is not enough to install the update and replace the static artifact on the hard disk.
The application running in memory needs to be updated too. Traditionally this
is achieved by stopping and restarting the application, which reloads the software
from the hard disk into the memory, loading the newest version.

While this is a valid scenario for many use cases there exist at least two kinds of
systems where this is not viable: (1) software available over the internet, possibly
being used by a multitude of different users simultaneously such as in search engines,
banking software, online news outlets or the software of an internet service provider
itself, (2) critical steering or guidance systems like life support systems, air traffic
control, power plant steering and similar systems, where downtime could even pose
a threat to human life [Segal and Frieder, 1993].

Such systems are in need of updates too, possibly even more so than other software
systems, and a possible way to deploy updates is necessary. One possible solution

Chapter 2. Dynamic Software Update

is a hardware based approach where multiple hardware systems run the same soft-
ware, offering the same service in parallel. In such a scenario it is possible to take
part of the hardware off-line, install the update and turn it back on, without having
a downtime in the overall system. This solution is not always feasible because not
all software is designed to be distributed over multiple machines. Specifically if
the application depends on shared memory which needs to be synchronized among
multiple instances, as opposed to having a transaction based, hierarchical archi-
tecture where no memory is directly shared among parallel instances of a system.
Another downside of this approach is the increased cost of hardware as well as elec-
trical power, together with increased cost for additional hardware operation staff.
The second solution is to change software systems, or on a more basic level, pro-
gramming languages, to support dynamic update of software, where the update can
be loaded directly into memory and the already running system can be updated
without a need for a restart.

2.2. An Introduction to Dynamic Software Update

The minimal requirement for dynamic software update is the ability of the host
programming language to load new code at runtime. Such a feature is available in
most modern programming languages. In C/C++ this is done via the d1 library in
UNIX-like operating systems like Mac OS X, Linux and Solaris, while the Windows
operating system provides dynamic loading through the Windows API. Java allows
programmers to dynamically load classes via the ClassLoader object. Fully reflective
languages like Smalltalk provide an integrated development environment (IDE) as
part of every running instance and adding code dynamically is the default way to
introduce changes.

In dynamic software updates there exist different degrees of possible behavior change.
The simplest way of adapting an application is to change the implementation of a
method body, i.e., updating the method body to a new version without changing
the overall application, for example if a bug inside a single method gets fixed, or
a faster algorithm with the same functionality gets deployed. A next step towards
arbitrary updates is the ability to change the method signature, where not only
the internals of a method, but also the method signature itself, i.e., the number
and types of parameters, the return type or the method name get changed. The
last step towards arbitrary changes and fully dynamically updateable systems is
the support for changing global fields and fields inside of structures, for example in
the case of class-based systems the fields of objects as defined by their respective
classes.

If fields are added or removed from existing classes, corresponding objects need
to be updated accordingly. Otherwise the existing fields of the object in memory

2.2. An Introduction to Dynamic Software Update

might differ from the fields the application expects upon checking the definition of
fields in the class. As a result, it might come to inconsistent data access, where
objects might end up in a state which violates the class invariant. To keep this from
occurring, the old state needs to transition into a new, valid state. This is called
state transfer. The two possible levels of state transfer are basic state transfer and
custom state transfer. Basic state transfer means that new fields get initialized to
nil, to prevent access to undefined memory. This might be sufficient for changes
where new fields get added and the fields can have nil values, but basic state
transfer does not generally ensure the class invariant. Custom state transfer allows
the program to have arbitrary, possibly user provided functionality to initialize new
fields. This makes changes like a merge, split, or a renaming of a field between two
versions of an application possible and guarantees the class invariant to hold. In
non-class-based systems a similar mechanism is needed if global fields or fields in
structures like structs in the C programming language are changed.

Another issue resulting from the possibility to change the shape of methods and
objects is unsafe access. If there is code on the call stack corresponding to methods
or objects which get updated, this code might point to methods which no longer
exist or have different names and signatures, incompatible return types, or try to
access fields which no longer exist. This can lead to program failure in the worst
case. This is even more of a problem in multi-threaded systems, where all threads
have their respective call stacks and the chances for unsafe access are much higher.
Dynamic software update systems provide different solutions to solve the issue of
unsafe access.

The most simple one is to wait until none of the code to be updated is on the
call stack, a so called update point, and then pause the application, deploy the
update and transfer the state, before continuing program execution. A drawback
of this approach is that such an update point might never be reached because some
methods are always on the call stack, for example if the code contains long running
loops which are never exited. As a consequence the update might fail to deploy
altogether, because it is waiting for an update point infinitely. This approach is
also not optimal for multi-threaded applications, because the chances for code to
be on the call stack of any of the threads is much higher.

An alternative approach is to make the update atomic and do an immediate activa-
tion, where all code, including the one on the call stack, gets replaced at once and
the call stack is reconstructed to represent a valid program state of the updated
software system. The drawback here is the high complexity to generate a valid
program state.

Some systems also allow for reflective activation, where the update is triggered
from inside the application, rather than by an outside modification. Reflective
activation is a kind of white box approach, where the update system knows the

Chapter 2. Dynamic Software Update

running application and can anticipate possible update points and ensure safety
and consistent data access. A variation of this strategy is the manual reflective
activation of the update by the programmer at a point in the application where he
knows the update to be safe, because he has intimate knowledge of the internals of
the application.

It is also possible to use scoping to permit changes to parts of the application as
opposed to only allow for changes to the application as a whole, which can be used
to leverage the previous approaches.

We will look at existing research next and discuss it with regard to the concepts
introduced above.

Chapter 3

Related Work

In this chapter we present an overview of what we believe to be the most influential
research in the field of dynamic software update. We give a short overview of
the different approaches, introducing their core concepts and discuss what kind of
dynamic software updates they support. Table 3.1 and Table 3.2 present a full
comparison.

Different programming languages provide a rather different set of features and in-
frastructure, which leads to different requirements for dynamic update systems. We
will therefore introduce the existing research separated by programming language.

3.1. Approaches in C

Ginseng

Ginseng [Neamtiu et al., 2006] is an approach to dynamically update single threaded
C programs, and consists of three parts: a runtime, a compiler and a patch genera-
tor. The compiler generates a special updateable executable which will run on top
of the runtime. The patch generator can compare the currently running version of
the program with the next version, and output a special patch. The compiler com-
piles this into a dynamic patch which the runtime can load dynamically to update
the application it is running.

The Ginseng compiler analyses the program to discover changes of type definitions
and constrains the updates to certain specific update points, when none of these
definitions are in use. The runtime updates the program at the next available
update point.

Ginseng allows for arbitrary method and signature change. Furthermore, custom
type transformations can be specified by programmers. Updates on the other hand

Chapter 3. Related Work

are not immediate.

UpStare

UpStare [Makris and Bazzi, 2009] is geared towards updating single and multi-
threaded C programs. Similar to Ginseng, UpStare consists of a runtime, a compiler
and a patch generator. Additionally UpStare provides an update control tool, to
initiate the update.

UpStare is based on stack reconstruction: it allows applications to unroll the call
stack when an update is triggered and reconstitute it by replacing functions with
their updated versions.

The stack reconstruction approach allows for updates to be immediately active, with
no possible activation failure. Updates also allow for arbitrary updates of method
code and signatures and support custom transformation functions for state.

POLUS

The focus of POLUS [Chen et al., 2007)] is to support updates to multi-threaded
systems, where the changes involve state. POLUS achieves this by not having
update points, but by allowing the coexistence of old and new state and calling
synchronization functions on the state whenever a write access happens.

POLUS uses a patch constructor to generate a patch out of the current and new
version, and compiles it with a standard compiler. Furthermore it uses a patch
injector to insert the patch into the running system. Patches contain the necessary
code to maintain state consistency among threads when they manipulate shared
data.

POLUS allows for immediate updates, by allowing the coexistence of old and new
versions after an update, possibly using custom state transformation functions to
ensure consistency. It is possible to update method implementations and signatures.

3.2. Approaches in Java

Hotswap

HotSwap [Dmitriev, 2001] allows programmers to hot swap currently executing
classes with new ones. The new version of a class is developed as usual. The source

3.2. Approaches in Java

code is edited and then compiled by an ordinary Java compiler. A GUI client allows
the developer to upload the new class files and the necessary code to perform the
hot swap via a socket connection. A Java Virtual Machine (JVM) internal call
RedefineClasses() switches the byte-codes with the new versions.

HotSwap is the initial step towards a dynamic update system for the HotSpot JVM,
the primary virtual machine for Java. HotSwap only allows to change method
bodies. Everything else in the updated class needs to stay exactly the same, and
as a result there is no need for any state transfer. Because there is no change in
state the activation can happen instantly. All new calls go to new methods, while
currently active calls to old methods complete normally.

Iguana/J

Iguana/J [Redmond and Cahill, 2002] introduces adaptation classes to redefine
application behavior. In Iguana/J the original application is considered to be the
base level, and adaptation classes make up a meta-level. Calls to a method in the
original application get intercepted and redirected to the meta-level.

Classes in the meta-level do not redefine method behaviour on a per method ba-
sis, but allow additional code to hook into different parts of the original method
execution in an Aspect Oriented Programming (AOP) way. The MExecute meta-
class for example defines an execute method which is invoked on method execution
and could introduce logging functionality before returning the result of the original
method execution.

In Iguana/J the association between application classes and adaptation classes can
be statically defined via an association declarations file or dynamically via associa-
tion method calls which allow to change the behavior of an application reflectively
from within the application.

Iguana/J is geared towards AOP support and therefore only concerned with chang-
ing the method behavior. It does not support modifications to the external in-
terface, i.e., the method signatures. Furthermore the handling of state and state
transformations are of no concern in Iguana/J.

Dusc

Dusc [Orso et al., 2002] enables dynamic updates through a system of proxy classes.
The original class gets replaced with a proxy, containing an equivalent interface to
the original class and a pointer to the current implementation. The proxy delegates
all calls to the current version of the implementation. The proxy class also keeps

Chapter 3. Related Work

track which of its methods are active, and only allows updates of the corresponding
implementation class when none of its methods are on the call stack.

Dusc is a somewhat limited approach, as the proxy class itself cannot be updated
dynamically, forcing the method signature to stay the same and allowing only be-
havioral changes. Dusc does not address safety during an update and expects the
developer to only deploy updates which lead to a safe state. Another drawback is
that the initial application needs to be adapted and proxy classes need to be pro-
vided for all classes that should support dynamic software updates in the future.

DVM

In DVM [Malabarba et al., 2000] a dynamic class loader is introduced. The dynamic
class loader is an extension of the default JVM class loader. In addition to the
default methods for class loading, the dynamic class loader allows programmers
to reload an active class and replace it with a new version. Classes loaded by
this dynamic class loader are called dynamic classes. The dynamic class loader
was implemented as a custom VM, the dynamic-classes enabled virtual machine

(DVM).

DVM uses an algorithm similar to garbage collection mark-and-sweep algorithms
to find and transform object instances which need updating. This algorithm does
not allow for custom state transformation and initializes new fields to nil.

DVM uses a rather aggressive approach towards active methods: if a method will
be updated and is found on the call stack of a thread, an exception is raised and
the thread aborted. While this prevents inconsistent data access, the abortion of
threads can lead to overall program failure and makes DVM ill-suited for multi-
threaded applications where the chances for such an event to occur are higher.

JVolve

JVolve [Subramanian et al., 2009] provides an Update Preparation Tool (UPT),
which generates mappings for classes and objects between different versions. The
UPT also identifies safe update points in the running application by restricting
which methods are allowed to reside on the call stack if an update were to take place.
The application is stopped and the modified classes are loaded and JIT compiled,
effectively replacing the old classes. The mappings, so called state transformers
generated by the UPT, get applied to return to a valid state before the application
is reactivated. The state transformers can also be customized beforehand to allow
custom state transformations.

10

3.3. Approaches in Smalltalk

With the replacement of classes and the state transformers, JVolve allows method
body and signature changes as well as transforming state. Updates require safe
update points, which might defer them indefinitely. JVolve requires a special virtual
machine and does not run on the default JVM.

3.3. Approaches in Smalltalk

Smalltalk

Smalltalk [Rivard, 1996] is a fully reflective language where the entire meta-level is
reified in the language itself. All changes are done from within the running applica-
tion. Naturally, the Smalltalk language allows for arbitrary changes to methods and
method signatures, as this is the default way to introduce changes in the language.
On the other hand, only basic state transfer is supported, as all newly created
objects are initialized with ni1.

It is important to note that updates in Smalltalk do not prohibit inconsistent data
access and it is the programmers’ responsibility to ensure that no changes to cur-
rently active code are made.

ChangeBoxes

ChangeBoxes [Denker et al., 2007b] are a mechanism to scope changes in a Smalltalk
application by making them first-class, i.e., exposing the changes as normal objects
to the application. ChangeBoxes allow programmers to provide multiple, possibly
incompatible changes for an application and to switch between them at runtime.
Changes get compiled into a change set, and the lookup is redirected to the desired
change set at runtime.

The reflective approach of ChangeBoxes allows for changes in the behavior of an
application from within the application itself, and it also allows changes to the
method signature. ChangeBoxes do not tackle the issue of state transfer and do
not allow the shape of classes to change dynamically. The issue of safety and safe
access is not discussed in the work about ChangeBoxes.

11

Chapter 3. Related Work

‘SW9YSAS papeaIy)

-IJMW 10J POYNS
- st Ajores 0y
yoeoirdde [enury

‘SW9)SAS papealy)

-I)[NW I0] PoyIns
- st Ajores 0y
yorordde penuepy

"OpOd MOU M
SpeaIy} MU ‘9pod
PIO [IIM SNUIIUOD
SpeaIy) p[O ‘Sure)
-SAs poproIyj-T}nu
10] y1oddns poox)

*SUI9)SAS
popeaIy}-13nul

105 1oddns poo3
sopraoxd syoRYS
meo jo oyepdn
oroge ‘quelsuy

"STI9)SAS papealy)
“hnu 10§ pojms-[t
sy} sesfewr sjutod
orepdn jo osn

‘oduryd jouuRd

‘o3uRYD jouURd
SpPeY ®ejep osned
-9q ‘sseooe ejep
JUS)SISUOOUT oN

‘poxIur 398 jo0u
op 1mq [oqrered ur
1SIXO 9pOd MAU pue
pIO se ‘ssedoe eyep
JUO)SISUOIUL ON

"§S900% RJRD
JU)SISUODUT OU DINS
-uo soyepdn orwoje
pue ojerpouru]

"800
-0® RJep JUI)SISUOD
-UI OU 2INSUa SUOI}
-ounj Iejsuery o9je)s
pue sjurod ojepdn)

SpeY ®RJRpP AsnNRD
-9q ‘ssoooe ejep
JUS)SISUOOUT ON

“Kyoyes

suumsus A[renuewt
pue sojepdn ojea
-130® A[OATISINOSI 0}
Jowwrerdoxd soxmb

‘squtod 99ep
-dn ayes je sejepdn
SuryeArjor A[PAISIND
-01 Aq Kjofes oInsuo
A[renuewt ued IoW
-TRISOIJ "9pPO0d PO
M gstuy spotjot
QAI)OR Se dfes A[mj

"MAU pUR P[O UdoM)
-9(UOI)RZIUOIYDUAS
91e9s ‘Opod PIo YHM
stug spoyjeur oA}
-oe ‘sojepdn oje

‘sogepdn

‘syurod
orepdn UMD
Aefop SosTuIIuIu
‘syurod orepdn
Ayoads 01 Iowr
-trerdoxd sexmbax

-1 ‘ojerpowImi] J0U N OJRIPOWIWI] -IPpOWIWII pPUR dJeS djeIPOWIWI puk ojeq Inq ‘sejepdn oFeg

‘popraoid resn ‘popraoid 1esn ‘popraoid 1osn

‘poanbou ‘poambor se [[om se pojeld Sse [[oM Se pojRId Se [[oM Se pPojeIo

IoJsueI) 9JR)S OU I9JSURI) 9jeIS OU -UeS A[[edrjewiojne -ue A[[edsrjewiome -usg A[[edIjemojne

‘spey Jo Suiduryd ‘SpEY Jo IJuisueyd ‘I9jsuri) o1e)s ‘Iojsuery o1e)s ‘IoJsuery PULEATS

105 qroddns oN 10} yoddns oN epm uorpeorddy epm uoneorddy epm uoryeorddy
“uorysej “JuaTeAmbs

dOVY ue ur siseq ‘posueyod aq ‘SP[eY [RIOIARYD(d(JSnul ‘SpIeYy

poylewr 1od e UWO jouUURD SOINJRUSIS [RCO[S SR [[(M Sk SoFURYD g ‘SPEY [eqO[3 SB [[om Se

A17RUOI)OUN] [RUOTY
-Ippe QOTIPOIUL
09 sIowrmIeIs
-oxd smofe A[uQ

poyjewr pue Spey
199[q0 'SoIpoq
poyjeowr o) Jul
-gueyp smoqe A[uQ

‘SeInjRUSIS POyl
pur sepoq poyjeur
0} sofueyd 9qIS
-sod (e sjroddng

[eQO[3 se [om se
‘soIn)eusts porjow
pue SeIpoq poyjour
0} SoFuRYD SMO[[Y

‘soInjeudis poyjout
pue seIpoq poyjem
01 soZueyd O[qIS
-sod (e sjroddng

r/euen3d]y

demgioyg

SNTOd

arejgdn

Suosurx)

Suipeoay)
- 10}
j11oddng

ALouogsis
-U0D SS90V

uoljeA
-190e 9gepdn)

sol}
-iqeded 19j
-sueI) 9e)s

soSueyd
pojroddng

Table 3.1. Comparison of dynamic software update systems 1/2

12

3.3. Approaches in Smalltalk

"SWOSAS popeaIy)

"SWOISAS popeaIy)

"SWO)SAS PopeaI)
- 10y jroddns

"SWOISAS popraIy}

-IJMW 10J POMNS -I)NUI 10J PONNS-[[I prq 01 Speo[-IyNW IO} Ppoyns
‘Nrejrewis s -[[I ST Ajoyes 03 SIY} soyewl sjurod Opod PAIRR M -[[I ST AjoJes 0}
s3uImo01Ioys owreg yoeoridde [enuely ojepdn Jo 9S() SpeLaIU) JO UONIOQY Yoroldde [enue]y
"sonyeA
piea 03 pozifen}
Ul 308 Sp[oy Mmou
pue ‘perioqe sj03
proIyy oAryoodsor
"s3ururod SS90 O} 10 ‘or)s [[ed "$892

-}I01[S duIes 9} sey
pue y[ejews wolj
sorprodoxd Aouagsts
-TI0D SS909® SYLIOYU]

-o[qrssod ssador
RIJRP JUIISISUOOU]

-0B ®BIRD JUDISISUOD
-Ul OU 9INSUd SUOI}
-OUNJ IOJSURI) 9)e)S
pue syurod oyepdn

9} UO dq jou Ued

spotjeut porep
-dn -sseooe eyep
JUD)SISTODUT ON

-0® BJep JUI)SISUOD
-UI OU 9INSUd SUOI}
-ounj IoJsuel) oje)s
pue syurod ogepdn

"S8UT02310Ys
ouwres oY) Sey pue
AreHBWS woig
sorprodoxd uory
~RATIOR SYLIOYUT

“A[renuewt
Ajojes aInsue pur
sorepdn [rejsut
ATOATSINDDL 09
Jowrreidoxd soxmb
-1 ‘ogerpouII]

‘payoeal
st gquiod ojepdn
pIeA [1Un Ajrugur
Arqssod sogepdn
sfefop Inq ‘oyeg

"SPOTJoUl DAIJOR
)M SpeaIl) S1I0qR
pue Spoylouw oOAI}
-oe jo ojepdn oy}
syuoraxd ‘ores jou
mq ojerpouru]

‘payoeal st
qutod ojepdn pipea
' [un Apejuygep
-ur soyepdn sAefop
Arqussod Jnq ‘eyeg

“IoJsuRI} 9)els
10] gjroddns oN

*ITU 07 198 193
SPOY MO\ ISJSURI)
9je)s oI)RIIOIN Y

"SISR(Q SSR[D
d e uo IoJSURI}
a9e)s papraoid 1osn
pue PpojeIouar)

“ITU 0} 10S 1938
Sp[OY MON] IoJsueI}
93e)s oI)RIOIN Y

"SISe(Q SSB[D
ad ® UO IoJSURI}
99e)s pepraoid Iesn
pue PpojeIoULN)

‘SPIPY
[eqO[3 Se [[om se
‘sodnjeudis poyjour
pue so1poq poyleu
01 sodueyo 9IS
-sod (e sjroddng

SPIPY
[eqO[3 se [[Pem se
‘seInyeusdrs poyjeu
pue saIpoq potjeur
0] sodueyo 9qIS
-sod (e sjroddng

SPIPY
[eqO[38 Se [[Pm se
‘seInyeusdIs poyjeu
pue sarpoq potjeuwa
01 sofueyd 9qIS
-sod (e sjroddng

‘SPIPY
[BqO[3 Se [[Pm se
‘soIn)eusdis porjowt
pue soIpoq poyjew
0} so3ueyD OIS
-sod (e sjroddng

‘Sp[eY ssepo
oyearrd pue suorjel
-tewedwr poyjeur
Sursueyp A[UoO Smo|
-[e PuR SOORIISJUI
orqnd oY) sozoolq

xoqga8uey))

Areyrews

OAIOA T

INAd

osn(q

Suipeoay)
- 10
1roddng

ALouogsis
-U0D SS90V

uorjea
-110e ogepdn

sol}
-iqeded 19j
-sueI) 9e)s

se3uerd
pejroddng

Table 3.2. Comparison of dynamic software update systems 2/2

13

Chapter 3. Related Work

14

Chapter 4

ActiveContext in a Nutshell

In this chapter we motivate the research of ActiveContext, our approach to dy-
namic software updates. In Section 4.1 we show a common scenario for a dynamic
update, which we believe cannot be achieved satisfactorily with existing methods.
We propose how to update such a system by providing a step by step guide in
Section 4.2.

4.1. A Motivational Example

While there exist dynamic update systems which support updates in multi-threaded
environments, most of them are not designed specifically with support for multi-
threaded environments as a main goal. Furthermore all the promising approaches
are for the C programming language and there is a lack of good approaches for
class-based languages. We propose a novel approach for safe dynamic updates
in class-based systems, specifically tailored towards multi-threaded applications,
which we call ActiveContext.

ActiveContext is a programming model to facilitate the design of dynamically up-
dateable systems. In our model, different variations of a program can run in dif-
ferent execution contexts concurrently. An execution context is explicit: it can be
loaded, manipulated, and specified dynamically when a new thread is started. As
a consequence, threads can run different variants of the program.

To illustrate our approach for dynamic software updates, let’s consider a web based
address book like the Google Contacts application'. The main entity of the domain
model of such a system is the Contact which represents the entry of a person in the
address book. The domain model is held in memory, globally accessible, and shared
amongst all threads using the address book.

"Mttp://www.google.com/contacts

15

http://www.google.com/contacts

Chapter 4. ActiveContext in a Nutshell

'John Doe' ‘John'
4 N .

e N .
N L. 'Doe’

transformToAncestor B .
nar.ne firstname, .-
transformFromAncestor lastname
_—
Root context Updated context

Figure 4.1. An instance of a Contact object has different states in different contexts.
There are transformation functions between the two contexts.

Furthermore we consider the evolution shown in Figure 4.1. The Contact class is
refactored to not only store the name in a single field name, but allow for separate
fields firstname and lastname.

Such an evolution would not be easily achieved with the reflective facilities of a
dynamic language such as Smalltalk: it would require an “intermediate” version of
the class with all three fields name, firstname, lastname in order to allow the state
of the impacted object instances to be migrated incrementally, for instance with
Contact alllnstances do: [...]. Only then could the name field be removed. Such an
update is not only complicated to execute, but is also not atomic, possibly leading
to consistency issues.

Even with dynamic software update mechanisms such an update would still be hard
to achieve: they would either require that all requests complete prior to a global
update of the system state, or that all Contact instances be updated immediately
and face the risk that some existing thread running old code attempt to access the
name field which no longer exists.

4.2. A Step by Step Update

The following steps describe how such an update can be installed with ActiveCon-
text while avoiding these issues. First, the application must be adapted so that
we can “push” an update to the system and activate it. Here is how one would
typically adapt a server-side software such as an online address book or another
system serving requests to leverage the programming model.

0. Preparation. First, an administrative interface is added to the online address

book where an administrator can push updates into the system; the uploaded
code will be loaded dynamically. Second, a global variable latestContext is

16

4.2. A Step by Step Update

added to track the latest execution context that was loaded by the adminis-
trator. Third, the main loop that listens to incoming requests is modified so
that when a new thread is spawned to handle the incoming request, the latest
execution context is used.

After these preliminary modifications the system can be started, and now supports
dynamic updates. The life-cycle of the system is now the following:

1. Bootstrap. After the system bootstraps, the application runs in a default
context named the Root context. The global variable 1atestContext refers to
the Root context. At this stage, only one context exists and the system is
similar to a non-contextual system.

2. Offtine evolution. During development, the field name is replaced with the two
fields firstname and lastname. Figure 4.1 shows the impact on the state of a
contact.

3. Update preparation. The developer creates a class UpdatedContext that specifies
the variations in the program to be rolled out dynamically. This is done by
implementing a bidirectional transfer function which transforms the program
state between the Root context and the Updated context. Objects will be
transformed individually, one at a time.

In our case, the field name is split into firstname and lastname in one direction,
and the fields firstname and lastname are joined into name in the other direction.
The class of an object is considered part of the object’s state and the transfer
function also specifies that an updated version of the Contact class will be used
in the Updated context.

Contexts may co-exist at run-time for an arbitrary period of time. It is
therefore necessary that the object representations stay globally consistent
with one another, which explains the need for a bidirectional transformation.
If the state of an object is modified in one context, the effect propagates to
the representation in the other contexts as well. Only fields that make sense
must be updated though; fields that have been added or removed and have
no counterpart in another context can be omitted from the transformations.

4. Update push. Using the administrative web interface, the developer uploads
the updated Contact class and the UpdatedContext class. The application loads
the code dynamically. It detects that one class is a context and instantiates it.
This results in the generation of the new representation of all contact objects
in the system. Objects now have two representations in memory. The global
variable latestContext is finally updated and now refers to the newly created
instance of the Updated context.

17

Chapter 4. ActiveContext in a Nutshell

transformFromAncestor transformFromAncestor
ancestor ancestor
Root k>—— Updated [|K>—— Update'
successof successor
transformToAncestor transformToAncestor

Figure 4.2. Context instances form a list

5. Update activation. When a new incoming request is accepted, the application

spawns a new thread to serve the request whose execution context will be the
context referenced in latestContext, which is now the Updated context.

. Stabilization. Since the execution context can be changed per thread, exist-

ing threads serving ongoing requests will finish their execution in the Root
context, while new threads will use the Updated context. Assuming that re-
quests always terminate, the system will eventually stabilize. A contact can
always be accessed safely from one execution context or another as the pro-
gramming model maintains the consistency of various representations with
each other using the bidirectional transformation. This alleviates the need
for global, temporally synchronized update points which are hard to reach in
multi-threaded systems.

Subsequent updates will be rolled out following the same scheme. For each update,
a context class is created, loaded and instantiated dynamically. Contexts are related
to each other with an ancestor/successor relationship. They form a list, with the
Root context as the oldest ancestor, as shown in Figure 4.2.

We presented existing dynamic software systems and showed why we decided to
design our own system. We gave a step by step walk-through of how we plan
to model updates with our system, ActiveContext. We will give a more formal
overview of ActiveContext by introducing the model and the implementation in
the next chapters.

18

Chapter 5

The ActiveContext Model

In this chapter we would like to introduce ActiveContext formally by presenting a
detailed view of the model.

As illustrated in the previous chapter, ActiveContext makes a clear distinction be-
tween the identity and the state of an object. An object can have several represen-
tations which remain consistent with one another thanks to state transformations.
Behavior can change as well, since the class of an object is part of its state. Ac-
tiveContext is a programming model that supports scoping of state and migration
of state between contexts.

We will discuss an implementation of the model in the following chapters, and
evaluate it by providing a running example of an updateable system.

5.1. Identity, State and Contexts

The identity of an object is an identifier that unambiguously references an object
in the system. The state of an object is comprised of (i) a set of fields and their
corresponding values, and (ii) the class of the object. The fields of the object must
of course match the fields declared in the class description.

An object can have as many states as there are contexts. A context can be seen as
a mapping between the objects’ global identity and the corresponding state that is
relevant for that context. A thread has one active context at a time, which defines
the state to be used for this specific thread of execution. This is illustrated in
Figure 5.1.

19

Chapter 5. The ActiveContext Model

Root context

[aContact->name: John Doe &
aContact->class: Contact] N

Thread 1 active L

Updated context e

[aContact->firstname: John [,~
aContact->lastname: Doe
aContact->class: Contactl]

Figure 5.1. In Thread 1 Updated context is active, aContact has fields firstname
and lastname and is of class Contact1

5.1.1. Contextual Objects

The interpreter or virtual machine has intimate knowledge of contexts, like classes
or other internal abstractions. Contexts are however explicit in our model and
reified as first-class entities at the application level. Contexts can be instantiated
and manipulated dynamically like other objects. When a new thread is created, a
context can be specified dynamically. It will be the active context for that thread
of execution as soon as it starts running .

The class of an object is part of its state. Behavioral variations are therefore
achieved by changing the class of the object between contexts and scoping behav-
ioral changes is reduced to a special case of scoping state.

5.2. State Synchronization

Context instances have a special structure that the virtual machine or interpreter
expects. As shown in Figure 4.2 they form a list at run-time and contexts must
(i) have a field ancestor pointing to a valid context which realizes the ancestor/-
successor relationship, and (i) implement two methods transformFromAncestor and
transformToAncestor which realize the bidirectional transformation.

The role of the bidirectional transformation is to maintain the consistency between
several representations of an object in various contexts. A change to an object
in a context will “propagate” to its ancestor and successor—which in turn will
propagate it further—so as to keep the representations of an object consistent in
all contexts. This propagation happens upon the following events: (i) the state of

! Context switches per method call (aContext do: [...]) are not addressed in this work as their
exact implication deserves further research.

20

5.3. Reflective Hook

an object is changed in a context, (ii) a new object is instantiated, and (iii) a new
context is instantiated. The most frequent case is the first one, which corresponds
to a regular field write o.field := value.

The state of an object can only be changed once it is synchronized across all con-
texts. The same holds true when a new context is instantiated, so no objects can
be changed until the synchronization of objects to the new context is complete.
Therefore the state propagation following any of the operations (i) — (iii) have to
be mutually exclusive and a locking mechanism is needed to ensure safety during
the propagation. Reading object state also has to be mutual exclusive from state
propagation. On the other hand if the state is consistent and no propagation is
happening, read operations can happen in parallel.

As contexts are loaded dynamically in an un-anticipated fashion, the transforma-
tion is encoded in the newest context and expressed in terms of its ancestor, never
in terms of its successor. We have one method to transform from the ancestor to
the newest context, and one method to transform from the newest context to its
ancestor. The Root context is the only context that does not encode any transfor-
mation.

Such a sample one-way transformation is shown in Figure 5.2. It corresponds to
the transformation from the Root context to the Updated context of Figure 4.1:
self refers to the Updated context, and ancestor to the Root context. A change to
the name of an instance of Contact in the Root context would be propagated to the
Updated context and the fields firstname and lastname would be updated accordingly.

5.3. Reflective Hook

Contexts are reflective hooks which blend into the semantics of the programming
language. Field write and object instantiation will be evaluated differently depend-
ing on the set of such contexts and their corresponding transformations: context
instances become extension points of the interpreter itself.

While contexts are regular objects with state, their state is accessed by the inter-
preter or virtual machine itself (not only other application objects) which means
they cannot be contextual in the same way as other objects. A solution would be
to introduce meta-contexts, i.e., contexts at the meta-level, containing the state of
contexts. While this seems like an elegant solution, it does not fully solve the issue.
The meta-contexts themselves would still need to store their state in yet another
level of meta-contexts. To avoid dealing with such infinitive meta-regression issues,
we decided that code running at the interpreter level should run outside of any
context. As a consequence, some objects in the system must be primitive: they

21

Chapter 5. The ActiveContext Model

transformFromAncestor: id
| cls name firstname lastname |

cls := ancestor readClassFor: id.
(cls = Contact) ifTrue: [
name := ancestor readField: ’name’ for: id.

name isNil ifFalse: [
firstname:= name befor: ’ 7.
lastname:= name after: ’ ’.
1.
self writeClassFor: id value: Contactl.
self writeField: ’firstname’ for: id value: firstname.
self writeField: ’lastname’ for: id value: lastname.

(cls = AnotherClass) ifTrue: [

]

Figure 5.2. State transfer

have a unique state in the system and are not subject to contextual variations. This
is notably the case with context instances.

Transformations run at the interpreter level outside of any context. As a conse-
quence, during a transformation only primitive objects can be accessed and ma-
nipulated implicitly. Contextual objects must be manipulated reflectively with
readClassFor:, writeClassFor:value:, readField:for: and writeField:for:value: meta-
facilities as shown in Figure 5.2. These are not user methods, but special language
constructs. This way, the state of an object (class or fields) in an arbitrary context
can be updated without extra transformation(s) being triggered, and independently
of the active context. Obviously it is unsafe to access these meta-facilities from the
application level. To ensure safety, the meta-facilities are encapsulated in two kinds
of mirrors [Bracha and Ungar, 2004], which reify the state an object has in a par-
ticular context at the interpreter level and the application level respectively. The
interpreter level mirrors access the meta-facilities directly, while the application
level mirrors access them via reflective method calls on the interpreter and ensure
that transformations are triggered.

After this formal introduction to ActiveContext, the basis for our dynamic update
system, we will present the implementation thereof in the following chapter. This
will be followed up by the implementation of an example which will be the basis
for the discussion of our approach.

22

Chapter 6

Implementation

After having presented how to model dynamic software updates with ActiveCon-
text, we would like to go into some of the implementation specific details. First
we discuss the choice to use Pinocchio [Verwaest, 2009] as a platform, and give
an introduction to Pinocchio. Next we present the implementation of ActiveCon-
text, by showing some preliminary changes we did to Pinocchio, and then the full
implementation in detail.

ActiveContext changes the default way object state and behaviour is accessed in a
given programming language. To implement this, specific reflective functionality to
change the way the interpreter handles lookups is necessary. There are two possible
ways to implement such reflective capability: (i) complex program transformations
or (ii) a custom virtual machine [Verwaest et al., 2010]:

Reflective capabilities are typically fixed by the Virtual Machine (VM).
Unanticipated reflective features must either be simulated by complex

program transformations, or they require the development of a specially
tailored VM.

The second approach allows developers to leverage existing applications with Ac-
tiveContext without having to change their implementation or adapt them in any
way, and therefore we decided to implement ActiveContext as a specially tailored
VM. Another consideration in the choice of a language platform was the fact that we
wanted to be compatible with standard Smalltalk. We decided to use the Pinoc-
chio [Verwaest, 2009] programming language as a platform, as it is designed to
support easy development of custom VM features and has a Smalltalk syntax.

Pinocchio allows developers to provide custom interpreters by making them first-
class. Interpreters in Pinocchio are normal objects in the language, which can
be instantiated, inherited from and passed around like any other object in the
language. Applications freely flow from interpreter to interpreter depending on the
required semantics. Applications specify their own interpreters inside the runtime
as subclasses of the default Interpreter class, a reification of the core interpreter.

23

Chapter 6. Implementation

This is an easy and natural way to get custom behaviour into a VM.

6.1. Pinocchio

Instead of interpreting byte-codes, Pinocchio directly interprets abstract syntax
trees (ASTs) that more faithfully represent Smalltalk-80 code. The core inter-
preter is implemented in C, and is reified in the runtime as a first-class interpreter.
The interpreter provides a basic meta-object protocol (MOP) to support structural
reflection. Unlike most interpreters that are based on the assumption that the VM
is a black box isolated from the runtime system, Pinocchio supports behavioral
reflection by opening the interpretation of code to the runtime. Behavioral reflec-
tion is supported by explicitly instantiating first-class interpreters that subclass the
reified core interpreter. Extending interpreters is facilitated since AST nodes are
semantically closer to the original source code than byte-code [Denker et al., 2007a;
D’Hondt, 2008].

To construct a new variant of the Pinocchio interpreter it suffices to subclass
the Interpreter class and override a part of its interface (see Figure 6.1). The
Interpreter class defines a meta-circular interpreter implemented as an AST visitor
that manages its own environment but relies on recursion to automatically manage
the runtime stack. The meta-circular interpreter reifies the core interpreter written
in C, so its methods are actually implemented as native functions that hook into
the underlying C interpreter code. From the user’s point of view the Interpreter is
fully written in Pinocchio itself.

Interpreter extension
0) 0)

% overrides

Interpreter

environment

OO0 O O

' lmplements natlvely
l

BRI R

Figure 6.1. Native methods in the Interpreter and interpreter extension through
sub-classing

)

24

6.2. Implementation

Application code is evaluated by a new interpreter by sending the interpret: mes-
sage to the desired interpreter class with a closure representing the code as its
argument. For example, the expression

ActiveContextInterpreter interpret: [self runApplication J].

will cause the closure [self runApplication] to be evaluated by the ActiveContext
Interpreter interpreter.

As usual, closures encapsulate an environment and an expression object. When
starting up a specialized interpreter the continuation of the interpreted application
is empty. The interpreter installs the enclosed environment and starts evaluating
the expression in this environment. Since the expression passed to the default
interpreter is a closure, it is evaluated by sending the message value to the closure
on top of the interpreter:

Interpreter>>interpret: aClosure
1 self send: (Message new selector: #value)
to: aClosure.

Pinocchio provides the following core features for compatibility with Smalltalk:

e the object model and meta-model: Pinocchio uses the same object model as
Smalltalk.

e syntax: Pinocchio uses a Smalltalk compatible syntax for most parts. A main
difference is the syntax to define classes, which currently is not yet available
in Pinocchio.

e doesNotUnderstand: Pinocchio’s core interpreter sends the doesNotUnderstand:
message to any object that does not implement a method corresponding to the
selector of a message sent to it, as defined in the Smalltalk-80 specification.

6.2. Implementation

6.2.1. Adaptations of Pinocchio

The idea behind ActiveContext is to make dynamic software updates feasible in a
multi-threaded environment with concurrent access to the same objects. To create a
scenario with concurrent access, a way to asynchronously interact with applications
was necessary. This requires support for threads in the language, as well as an
interactive, non-blocking way for input and output. Pinocchio is still a rather new

25

Chapter 6. Implementation

platform and cannot be considered complete just yet. It was specifically missing
these features for asynchronous access, so we started our implementation by adding
them to Pinocchio. Apart from threads, we supplied support for non-blocking web-
sockets for asynchronous interaction.

Threads in Pinocchio

Threading support in Pinocchio is based around a scheduler thread. The scheduler
thread keeps a list of all other threads in the application, and schedules them in
a circular manner. Normal threads can voluntarily give up execution by yielding
or will automatically be preempted after a fixed number of method invocations.
Whenever a thread yields or is preempted, control is passed over to the scheduler
thread. This has to happen atomically and is therefore implemented as a primitive
function in Pinocchio, i.e., it is implemented as a C procedure invoked by a single
method call in a Pinocchio application.

Thread>>primYield
<pPrimitive: #primYield plugin: #’Runtime.Thread’>

The yield procedure backs up the state of the current thread together with the
program counter and switches control to the scheduler thread. The call stack of the
scheduler thread is reset every time control is passed to it, and only the method
to add the previous thread to the end of the queue of waiting threads and activate
the next is pushed onto the call stack.

void yield() {
thread->backup_pc = pc;
Thread previous = _thread_;
thread = _scheduler_thread_;
reset_thread(_scheduler_thread_);
Class_direct_dispatch((Optr)Thread_Class, HEADER(Thread_Class),
(Optr)SMB_yield_, 1, (Optr)previous);

The method performing the actual scheduling is implemented in Pinocchio, as all
the threads are native Pinocchio objects, and managing them from C code is very
cumbersome compared to the higher level functions available in Pinocchio. This is
possible due to the fact that the scheduler thread is active, and none of the states
of the previous or next thread are touched.

26

6.2. Implementation

Thread>>yield: previousThread
threads addFirst: previousThread.
self resumeNext.

T nil.

Thread>>resumeNext
threads removelast resume

The activation of the following thread on the other hand has to be a primitive
procedure once again, and restores the previously backed up state and program
counter of the following thread before passing control over to it.

static void NM_Thread_resume(Optr self, Class class, uns_int argc) {
Thread next_thread = (Thread) self;
thread->backup_pc = pc;
RETURN_FROM_NATIVE(nil);
pc = next_thread->backup_pc;
thread = next_thread;

All threads have their own interpreter instance. If new threads are spawned, their
interpreters need to be instantiated and initialized from the interpreter level as op-
posed to the application level from which the threads are spawned. Otherwise the
interpreters will run as subprocesses of the original interpreter and not indepen-
dent from it. Forking of new threads is implemented as a reflective procedure on
the interpreter. The fork method on BlockClosure invokes a reflective method call
installed on the interpreter level.

BlockClosure>>fork
<pinocchioReflective: #blockClosureFork:message:>

Interpreter>>blockClosureFork: aBlockClosure message: aMsg
| interpreter |
interpreter := Interpreter new.
1 Thread primFor: [i interpret: [aBlockClosure value]].

Sockets

The support for sockets in Pinocchio is very similar to Smalltalk. The Pinocchio
classes for Socket and SocketStream are a direct port of the Smalltalk implementation,
with minimal adaptations as not all of the used String manipulation functions were
available in Pinocchio yet.

We implemented the C level primitive functions to connect to UNIX sockets accord-
ing to the Linux Programmer’s Manual on socket and select to enable non-bocking
system calls.

27

Chapter 6. Implementation

Interpreter

environment

interpret:
send:to:class:
visitSend:
visit...

lﬁ

ActiveContextInterpreter

activeContext

assignClass:to:
assignSlot:to:
classOf:
lookupSelector:in:
visitSlot:
visitSuper:

lﬁ

DynamicUpdateInterpreter

blockClosureFork:msg:

Figure 6.2. The interpreter hierarchy of the ActiveContext implementation.

6.2.2. Implementation Details

We implemented our ActiveContext dynamic software update system as two differ-
ent interpreters. First we created the ActiveContextInterpreter and implemented the
base ActiveContext model, which could also be reused for purposes other than dy-
namic software update. We added the DynamicUpdateInterpreter to add the features
specifically needed for dynamic software updates. The relationship between the
interpreters can be seen in Figure 6.2. The DynamicUpdateInterpreter is actually very
lightweight and only provides the functionality to set the newest updated context
as active if a new thread is forked, by setting the activeContext of the interpreter of
that thread to the latestContext:

DynamicUpdateInterpreter>>blockClosureFork: aBlockClosure message: aMsg
| interpreter |
interpreter := DynamicUpdatelnterpreter new.
interpreter activeContext: DynamicUpdate latestContext.
1 Thread primFor: [i interpret: [aBlockClosure value]].

28

6.2. Implementation

Contextual Objects

The ActiveContextInterpreter changes the way state and memory are managed, in
particular the treatment of object fields. The read and write access to object fields
needs to be changed away from the default way in which it is handled in Pinocchio
to a contextual model.

Pinocchio knows two different kinds of object fields: slots and arrayed fields. Slots
are “normal” fields in that they have a fixed name by which they can be accessed.
The number of slots an object has is statically defined. Arrayed fields on the
other hand do not have a name and are accessed instead by a number representing
their position inside of an object. The number of arrayed fields an object has is
dynamically defined at object instantiation. Objects can contain slots as well as
arrayed fields.

All the visitor methods that access slots or arrayed fields have been modified to
check the object type (primitive or contextual) and access the object accordingly.

It was decided that primitive objects would “delegate” to the native memory man-
agement of Pinocchio. The set of primitive objects was adapted to match the
reality of a fully reflective system. Object, Behaviour, Class, Metaclass and other spe-
cial classes needed during bootstrapping cannot be contextual, as they need to exist
in order for the ActiveContext classes to be defined, so for them to be contextual
would lead to a chicken-and-egg problem. The same also holds true for the basic,
immutable objects nil, true and false, as well as for numbers, characters, strings
and symbols.

To distinguish between primitive and contextual objects, we implemented a method
isPrimitive on Object which returns if an object is primitive. This method looks
up the object in two pools of object references we maintain internally on the root
context as Sets, one for primitive and one for contextual objects. This approach is
rather naive—tagging the pointer would be much more efficient, for instance.

Object>>isPrimitive
1T Context root primitives includes: self.

To be able to change the access to slots, the ActiveContextInterpreter overrides
the visit method for slots, visitSlot:, and assignSlot:to:, the method to assign
values to slots. The methods delegate to the meta-facilities for reading and writing
implemented on the context and indicate that a locking mechanism is in place. Both
will be explained in more detail further down. The assignSlot:to: method has a call
to propagate:interpreter: after writing the value, which triggers the synchronization
with the other contexts available in the system.

29

Chapter 6. Implementation

ActiveContextInterpreter>>visitSlot: aSlot
| res |
(self currentSelf isPrimitive) ifTrue: [
1 super visitSlot: aSlot

1.
self class lock critical: [
res := self activeContext read: aSlot name for: self currentSelf.
1.
T res.

ActiveContextInterpreter>>assignSlot: aSlot to: value
self class lock critical: [
self activeContext write: aSlot name for: self currentSelf value: value.
self activeContext propagate: self currentSelf interpreter: self.

1.

T value

For the arrayed fields the ActiveContextInterpreter intercepts the at: and at:put: na-
tive method calls which implement the read and write access in default Pinocchio, by
overrhjhlg the invokeNativeMethod:on:message:alternative: message send which dis-
patches all native methods on the standard meta-circular Interpreter. The calls
get redirected to the methods invokeAtPut:on:message:alternative: and invokeAt::-
on:message:alternative, which trigger a contextual lookup or delegate back to the
native memory model for primitive objects:

ActiveContextInterpreter>>invokeNativeMethod: aClosure on: receiver message: <—
aMessage alternative: aBlock

(aMessage selector = #’at:put:’) ifTrue: [
T self invokeAtPut: aClosure on: receiver message: alMessage alternative: -
aBlock

(aMessage selector = #’at:’) ifTrue: [
1 self invokeAt: aClosure on: receiver message: aMessage alternative: <«—
aBlock

To access the class in a contextual way, the special field class is used. Method
calls to the native accessor for classes get also intercepted in invokeNativeMethod:: >
on:message:alternative:. T'he class0f: on ActiveContextInterpreter Switches between
primitive and contextual objects and the class0f: on Context does the lookup using
the class field.

30

6.2. Implementation

ActiveContextInterpreter>>invokeNativeMethod: aClosure on: receiver message: <—
aMessage alternative: aBlock
(aMessage selector = #’class’) ifTrue: [
T self class0f: receiver .
1.
[...]

ActiveContextInterpreter>>class0Of: anObject
(anObject isPrimitive) ifTrue: [
T anObject class.
1.

1T self activeContext class0f: anObject.

Context>>class0f: anObject
T self read: #’class’ for: anObject

The visitor method that implements the method lookup inside a class’ method
dictionary, lookupSelector:in: has been modified to access the class contextually via
the special ciass field.

Similarly to class, a special field superclass has been introduced because the super-
class and super message sends have been changed to access the superclass contex-
tually via this field.

ActiveContextInterpreter>>visitSuper: aSuper
[...]
T self
send: message
to: receiver
class: (self superclass0f: self currentClass)
for: aSuper

ActiveContextInterpreter>>superclass0f: aClass
(aClass isPrimitive) ifTrue: [
T aClass superclass.
1.

T self activeContext superClass0f: aClass.

Context>>superClass0f: aClass
T self read: #’superclass’ for: aClass.

To summarise which methods the ActiveContextInterpreter overrides, Table 6.1 shows
the relevant visitor methods of the default Pinocchio Interpreter, and indicates
which ones were overridden by the ActiveContextInterpreter.

Objects are instantiated by sending new to a class as usual. The default implemen-
tation of the new command in Pinocchio calls the native method basicInstantiate to
create objects. This native call gets intercepted by the ActiveContextInterpreter in
the invokeNativeMethod:on:message:alternative: similar to the at: and at:put: before.

31

Chapter 6. Implementation

Visitor method Overridden
assignVariable: aVariable to: value
assignSlot: aSlot to: value

classOf: anObject

invokeNativeMethod: aClosure on: receiver
message: aMessage alternative: aBlock
lookupSelector: selector in: class v
visitAssign: anAssign

visitConstant: aConstant

visitClassReference: aClassReference

visitVariable: aVariable

visitSlot: aSlot v
visitSelf: aSelf

visitSend: aSend

visitSuper: aSuper v

SNENENE

Table 6.1. The visit methods of the interpreter

ActiveContextInterpreter>>invokeNativeMethod: aClosure on: receiver message: <
aMessage alternative: aBlock

(aMessage selector = #’basicInstantiate:’) ifTrue: [
T self invokeBasicInstantiate: aClosure on: receiver message: allessage <
alternative: aBlock

(aMessage selector = #’basiclnstantiate:sized:’) ifTrue: [
1 self invokeBasicInstantiateWithSize: aClosure on: receiver message: -
aMessage alternative: aBlock

The invokeBasicInstantiate:on:message:alternative: method for objects with slots
only, or the alternative invokeBasicInstantiateWithSize:on:message:alternative: for
objects with arrayed fields decides if a contextual or primitive object is instantiated.

Context and Meta-Facilities

Internally, the interpreter uses several Dictionary instances to implement the mem-
ory model for contextual objects: one dictionary per context instance is created
and maps (object identity, field) to the corresponding value. This implies one level
of indirection to access the state of a contextual object.

The keywords readField:for:, writeField:for:value: for meta-facilities to access the
state dictionary as introduced in the code example Figure 5.2 have been imple-
mented with regular message sends on the context instances. They have been re-
named to the simpler read:for: and write:for:value:. NO keyword for readClassFor:

32

6.2. Implementation

and writeClassFor:value: was required as we use read:for: and write:for:value: with
the special class field.

All context classes must inherit from the context class, which implements the meth-
ods for meta-facilities, and the Dictionary to store the contextual objects. Context
also implements the default identity transformation. Because the transformation
function needs to provide code to transform every single object, this is a convenience
function making it possible to delegate to the superclass with the super keyword at
the end of the transformation function as a catch-all for objects which do not need
custom transformation code because they did not change between two contexts.

Transformation

In the case of a write access, the interpreter propagates the change and executes the
necessary transformation to keep the object representation consistent in the other
contexts.

To access objects reflectively from the interpreter level as stated in Section 5.3,
two object representation classes were introduced to interact with the objects in
a convenient way during transformation. ObjectState for the interpreter level, and
ReifiedObjectState for the application level. Both classes encapsulate the meta-
facilities to access the state as implemented on contexts and provide a simple at:
and at:put: interface to access the fields of the object.

The read and write methods of ReifiedObjectState, the representation of object state
in the application level, are implemented as reflective method calls:

at: instVarName
<pinocchioReflective: #objectStateAt:message:>

at: instVarName put: value
<pinocchioReflective: #objectStateAtPut:message:>

The reflective procedures then access an object of type ObjectState, which mirrors
the state of the ReifiedObjectState at the interpreter level.

As mentioned in Section 5.2, access to objects needs to be mutually exclusive no
matter whether they trigger a transformation or not. To implement this constraint,
a unique global lock is used for reads, writes and the state transformations by
protecting them in a critical block of a global Mutex. The Mutex allows reentrant
access to a context from within a single thread and blocks access from other threads.
Other threads enter a Spin-Lock until they are granted access.

33

Chapter 6. Implementation

Bootstrapping

The system bootstraps initially in the Root context. It was decided that when this
context is active the interpreter would delegate to the native memory management
of Pinocchio for both primitive and contextual objects. This decision was taken
to (i) facilitate bootstrapping, (ii) ease early development, and (iii) emulate the
original programming model for applications which do not leverage ActiveContext.

34

Chapter 7

Validation

In this chapter we present an example application making use of the ActiveCon-
text dynamic update system we explained so far. The sources of the example are
available, and instructions on how to obtain and install them are available in Ap-
pendix A.

7.1. A Running Example: Telnet Server

To validate our approach, we adapted an application following the update scheme
presented Chapter 4. The application that was adapted is a Telnet server that
provides a simple command-line interface to manipulate a single user entry shared
between different, simultaneous connections. A client can connect to the server and
run a few simple commands to print and edit the name field(s) of a user. We provide
two different versions of the interface. The first only allows clients to manipulate a
single name field of the user, and the domain model used is a Contact object with a
single name field. The updated version provides the ability to enter the first and last
names individually and the updated Contact1 class contains the two fields firstname
and lastname.

Below is the interface of our simple telnet server, as displayed by the help function
of the updated version:

This is the example telnet server

Possible commands:
version —-- show version information
user show —-- show current user information
user set -- set current user information
help -- print this help
quit -- disconnect and close

While simpler than a full-fledged online address book as mentioned in Section 4.1,

35

Chapter 7. Validation

TelnetServer>>run: aPort
| interpreter |
DynamicUpdateInterpreter reset.
interpreter := DynamicUpdatelnterpreter new.
DynamicUpdateController updatelnterface: 5678 interpreter: interpreter.
interpreter interpret: [
TelnetServer runServer: aPort

1.

Figure 7.1. The adapted Telnet server interface to support dynamic software up-
dates with ActiveContext.

this system exhibits the same characteristics in terms of design and difficulties with
respect to dynamic updates.

To enable dynamic updates, the initialization of the Telnet server was adapted ac-
cording to step Preparation in Section 4.2. First, the Telnet server was made to run
on top of the DynamicUpdateInterpreter, so that the main loop that listens for incom-
ing TCP connections, spawns the connections in a thread using the latestContext as
active context as explained in the implementation details in Section 6.2. Second, a
controller interface was started on an alternative port, where a user can use special
commands to “push” an update. This controller should also be able to upload the
code of the update, but Pinocchio does not yet provide a syntax to define classes
and this is not possible in the current version of our example. The code for the
steps above can be seen in Figure 7.1.

Upon bootstrapping the system initially runs in the Root context. Connections to
the Telnet server get handled by the version 0 of the Telnet server as shown in Fig-
ure 7.2. An administrator can connect to the controller and use a special command
to activate the update. Further connections will get handled by the version 1 of
the Telnet server as shown in Figure 7.3. The user contact gets synchronized in
the background. The object is the same in both versions, but with a different state
representation, showing that the update is indeed safe.

A thread handling a specific client connection keeps running as long as the connec-
tion is established. Clients that are using the original version are not influenced by
the update and multiple clients connected to the server might see different versions
of the command-line interface at the same time.

Upon disconnection of a client, its server-side thread terminates. The system sta-
bilizes eventually when all clients have disconnected.

Early benchmarking showed a significant performance loss in the order of up to
a magnitude of 4, and this is one of our main concerns at the moment. The

36

7.1. A Running Example: Telnet Server

guru@plumeis: ~

(=)(5)(]

guru@plumeis:~$ telnet localhost 9898
Trying ::1...

Trying 127.8.8.1...

Connected to localhost.

Escape character is '*]'.

= version

This is the telnet server handler version ©
> user set

Enter user name

> John Doe

current user: John Doe
>[]

Figure 7.2. Version 0 of the Telnet server.

guru@plumeis: ~

(=)(5)(x]

guru@plumeis:~$ telnet localhost 9898
Trying ::1...

Trying 127.0.0.1...

Connected to localhost.

Escape character is '~]'.

> version

This is the telnet server handler version 1
> user show

Current user:

First name: John

Last name: Doe

> user set

Enter first name
> Jane

Enter last name
> Foo

Current user:
First name: Jane
Last name: Foo

> [

Figure 7.3. Version 1 of the Telnet server.

37

Chapter 7. Validation

performance loss and other concerns will be addressed in Chapter 8. This running
example nonetheless demonstrates the viability of our approach.

7.2. The Code of the Telnet Server

The two different versions of the Telnet server interface are implemented in two
versions of the handler classes Handler and Handleri. They both implement a run
method to which new requests to the interface get dispatched. To be able to
access the updated handler which has a different class name, a factory is needed to
instantiate the handlers indirectly.

TelnetServer>>runServer: aPort
| sock conn |

factory := HandlerFactory new.
user := Contact new.
[

sock := self new.

sock primListenOn: aPort.
true whileTrue: [

conn := sock accept.
L
handler := factory on: conn.
handler run.
] fork
1.
] fork.

The run method is a simple switch-case statement to handle different commands
entered. Both versions of the method support a user set and a user show command
to interact with the contact object stored in memory. The original version interacts
with a contact object of class Contact with only a single name field and correspond-
ing setter and getter methods, while the updated version in Handleri can interact
with the updated object with Contact1i class with setter and getter methods for

firstname and lastname:

Handler>>run
| data |
socket write: ’> 7.
self receiveDatalfAvailable.
data := self nextAllInBuffer.
[data size > O and: [data = (’quit’, String crlf)]] whileFalse: [
data = (’user show’, String crlf) ifTrue: [
socket write: ’Current user: ’, TelnetServer user name, String crlf,
> 7.
] ifFalse: [
data = (’user set’, String crlf) ifTrue: [

J

<=

38

7.2. The Code of the Telnet Server

socket write: ’Enter user name’, String crlf.

self receiveDatalfAvailable.

data := self nextAllInBuffer.

TelnetServer user name: (data before: Character cr).

socket write: ’current user: ’, TelnetServer user name, String crlf.

1]

Handler1>>run
| data |
socket write: ’> .
self receiveDatalfAvailable.
data := self nextAllInBuffer.

[data size > 0 and: [data = (’quit’, String crlf)]] whileFalse: [

data = (’user show’, String crlf) ifTrue: [
socket write: ’Current user: ’, String crlf,

’First name: ’, TelnetServer user firstname, String crlf,
’Last name: ’, TelnetServer user lastname, String crlf.

] ifFalse: [

data = (’user set’, String crlf) ifTrue: [
socket write: ’Enter first name’, String crlf, ’>
self receiveDatalfAvailable.
data := self nextAllInBuffer.
TelnetServer user firstname: (data before: Character cr).
socket write: ’Enter last name’, String crlf, ’> ’.
self receiveDatalfAvailable.
data := self nextAllInBuffer.
TelnetServer user lastname: (data before: Character cr).
socket write: ’Current user: ’, String crlf,

)

’First name: ’, TelnetServer user firstname, String crlf,
’Last name: ’, TelnetServer user lastname, String crlf.

1]

The ActiveContext model in the background ensures that the user information gets
synchronized and can be changed concurrently from both versions of the Telnet
server and from multiple concurrent connections. The user fields are kept synchro-
nized by the transformation functions of the Updatel context, where the name gets
split from the Root context to the Update1 context, and assembled from the Updatet
context to the Root context. The transformation functions also show how the han-
dler class gets updated to a newer version. The factory to instantiate the handler

is also updated to a version which can instantiate the new handler.

Updatel>>transformFrom: objStateFrom to: objStateTo
| cls |
cls := objStateFrom at: #’class’.
(cls = Contact) ifTrue: [

objStateTo at: #’firstname’ put: ((objStateFrom at: #’name’) before: $).
objStateTo at: #’lastname’ put: ((objStateFrom at: #’name’) after: $).

objStateTo at: #’class’ put: Contactl.

39

Chapter 7. Validation

] ifFalse: [
(cls = Handler) ifTrue: [
objStateTo at: #’class’ put: Handlerl.
] ifFalse: [
(cls = HandlerFactory) ifTrue: [
objStateTo at: #’class’ put: HandlerFactoryl.
] ifFalse: [
super transformFrom: objStateFrom to: objStateTo

Updatel>>transformTo: objStateTo from: objStateFrom
| cls |
cls := objStateTo at: #’class’.
(cls = Contactl) ifTrue: [
(((objStateTo at: #’firstname’) ~= nil)
and: [(objStateTo at: #’lastname’) ~“= nil]) ifTrue: [
objStateFrom at: #’name’ put: ((objStateTo at: #’firstname’) <
asString, ’ ’, (objStateTo at: #’lastname’)).
1.
] ifFalse: [
super transformTo: objStateTo from: objStateFrom.

The DynamicUpdateController first saves the existing context as oldctx by extracting
it from the main application, in this case the Telnet server. This needs to be done
from inside the interpreter running the main application, because the DynamicUpdate
Controller itself is not contextual and runs under a different interpreter. The
DynamicUpdateController is laid out similarly to the handler classes, except that it
contains the whole logic to listen for socket connection on a port. It uses a switch-
case statement to interpret the different commands entered. Upon calling install
Updatel the Updatel context gets instantiated inside the interpreter of the main ap-
plication. The Updatel context instance is then set as the latestContext so new
connections to the Telnet server will run on interpreters which have the Updatet
context set as the activeContext.

DynamicUpdateController>>updateInterface: aPort interpreter: interpreter
| sock 01dCtx ctxl |
interpreter interpret: [
0ldCtx := CurrentContext instance.
1.
sock := self new.
sock primListenOn: aPort.
[true whileTrue: [
| conn stream data |
conn := sock accept.
[
stream := SocketStream on: conn.
[

conn write: ’> 7.

40

7.2. The Code of the Telnet Server

stream receiveDatalfAvailable.
data := stream nextAllInBuffer.
[data size > O and: [data = (’quit’ , String crlf)]] whileFalse: <~
L
data = (’install Updatel’ , String crlf) ifTrue: [
self warn: ’Installing context: Updatel’ , String crlf.
interpreter interpret: [ctxl := Updatel newFrom: 0ldCtx. <
1.
DynamicUpdate latestContext: ctxl.
conn write: ’Installed Updatel’, String crlf.
1.
conn write: ’> 7.
stream receiveDatalfAvailable.
data := stream nextAllInBuffer
1] on: ConnectionClosed do: [:ignore | nil].
conn closeAndDestroy: O
] fork
11 fork

We showed the viability of ActiveContext by presenting a running application. We
also presented the whole code of the application showing that the different versions
really interface with two different versions of the user object. We also showed the
transformation functions as well as how the update is activated. We will discuss
ActiveContext in the next chapter, using this Telnet server example to highlight
features and shortcomings.

41

Chapter 7. Validation

42

Chapter 8

Discussion

This work presents a conceptual model for systems to support dynamic software
updates in multithreaded environments. After demonstrating our approach with
a running example in the previous chapter, we would like to discuss some general
points about ActiveContext, as well as what additionally needs to be considered
for a serious implementation.

8.1. Analysis of ActiveContext

If we recall the different features of dynamic software update systems introduced
in Chapter 2, we can classify ActiveContext as we did the approaches presented in
Chapter 3 in Table 3.1 and Table 3.2. ActiveContext supports arbitrary changes,
and it allows developers to change method implementations and method signatures
as well as the fields of objects. State transfer is a main feature of ActiveContext and
there is support for custom transformation functions as well as automatic transfor-
mation through the identity transformation functions provided in the Contact base
class. The updates are immediate for new threads, while old threads continue to
run on the old code, and safety is ensured because the active methods on the call
stack are not updated. There is also no inconsistent data access as the old and
new code do not get mixed, but state is kept in sync through the transformation
functions.

Following are some additional considerations on the approach with ActiveContext:

Class naming

Different versions of a class can coexist at run-time. While the link between an
object and its class is contextual in the current implementation of ActiveContext,
the link between a class reference and the implementation of a class is not yet

43

Chapter 8. Discussion

contextual. As a consequence the classes need to have different names as seen in
the example in the previous chapter where the updated version of the Contact class is
called Contact1. This is not very convenient and it would be interesting to have a true
support for class versioning. A consequence of having different names for versions
of a class, is the need for factory classes or a similar indirect way to instantiate
objects, because the name of the updated class cannot be easily anticipated.

Preparing applications for ActiveContext

Initially applications can be implemented without any special considerations to-
wards support for dynamic software updates with ActiveContext. Only at deploy-
time is there a need to include ActiveContext and to deploy the application on
top of the ActiveContextInterpreter. In the current implementation of ActiveCon-
text this is not fully correct though. Because of the class naming issue discussed
above, existing applications need to be adapted to instantiate objects indirectly via
a factory. This can also be seen in the Telnet server implementation discussed in
Section 7.2, where a factory is used to instantiate the two different handler versions.

Updates on the other hand need to be deployed via an updated context, which
requires the programmer to supply the state transformation functions and write the
update code specifically for ActiveContext. This could be improved by providing
tool support to auto generate the transformation functions by comparing the old
and new versions and only require the programmer to provide transformations
manually when custom behaviour is desired.

Support for long running threads

ActiveContext is designed to support dynamic updates in multi-threaded appli-
cations and only supports updates on a per thread level. Furthermore only new
threads can profit from an update. The main application thread which is started
initially cannot be updated with ActiveContext. A possibility to support updates to
the initial thread would be to allow the activation of an updated context via method
call and not only on thread initialization. This would require further research into
the consequences of such updates, and the safety of them.

Updates to primitive classes

The contexts in ActiveContext are designed as first-class entities and to instan-
tiate the first context, a set of primitive classes needs to be present. As a con-
sequence ActiveContext does not support updates to those primitive classes. To

44

8.2. Limitations of the Implementation

support updates to primitive classes a more advanced bootstrapping system could
be envisioned, where primitive classes can be loaded into the contextual model of
ActiveContext and the system would become fully contextual.

Alternatively the design of ActiveContext could be adapted to support contexts at
the meta-level, where the system would be fully contextual by design. This would
resolve the need for primitive classes altogether.

8.2. Limitations of the Implementation

The implementation presented in this work was intended as a proof of concept and
several further points would need to be considered in a serious implementation:

Support for class definition

As mentioned previously Pinocchio does not provide syntax for class definitions
yet. As a consequence, the code for the updates cannot be supplied at runtime. We
had to provide the code for the update of the Telnet server example presented in
Chapter 7 before initially starting the system, and could only show the dynamical
activation thereof. To have a fully working system the code for the updates needs
to be loadable at runtime. A system could be imagined where the programmer uses
an update controller interface similar to the one in the Telnet server example where
he could upload the code for updated classes as well as the code for the updated
context itself in a first step, and then activate it in a second step.

Performance overhead

The naive implementation of this paper entails a significant overhead. The slow-
down of four orders of magnitude makes the current implementation unusable for
productive environments. A set of performance optimizations to improve the speed
drastically would be needed to that end. While a minimal overhead resulting from
the indirect access to the object state will remain, other factors could be improved
or removed completely and even the indirect overhead could be compiled away with
a JIT compiler.

Rather than copying all non-primitive objects for each context, a copy-on-write
strategy could be envisioned, removing the overhead to synchronize objects which
are not edited. Also the overhead to synchronize state on each write could be
reduced by using time-stamps and lazy transformations on read. Assuming that
most objects “die young” and are accessed from one context only, the combination

45

Chapter 8. Discussion

of these optimizations could improve the performance significantly by reducing
transformation to only those objects which are actually accessed concurrently from
different versions of an application.

The lookup could also be improved by storing the information if an object is prim-
itive or contextual on the object itself, and not in a set as done in the current
implementation.

Long-term evolution

No matter how optimized the implementation is, the system would inevitably run
out of memory and performance would degrade over time as no context instance
is ever discarded. All context instances are indeed connected to each other in
a list which prevents them from being garbage collected. To support long-term
evolution, the model should be improved with a mechanism to discard unused
context instances either automatically or manually. For instance, after the system
has stabilized and runs entirely in the latest context, the old context could be
discarded completely to restore close-to-native performance.

46

Chapter 9

Conclusion

In this work we presented an overview of dynamic software update and existing
research. We detected a lack of systems supporting dynamic updates in multi-
threaded environments, especially for class based languages. We presented a pro-
gramming model and an approach for dynamic software updates in reflective, dy-
namic languages aimed specifically at multi-threaded systems.

We argue that scoping state between the old and new version of a program with
first-class execution contexts is an elegant way to solve two problems at once: (1)
scoping state solves the safety problem of inconsistent access to new data structures
from old code, and (2) first-class contexts provide an intuitive way to provide state
transfer capabilities in a language.

We demonstrated the viability of the approach with a proof-of-concept implemen-
tation of our system in the Pinocchio programming language, together with an in
depth tour of an example application which is dynamically updateable.

The main shortcoming of our current approach is the considerable overhead in
performance.

We have sketched implementation optimizations to alleviate the overhead in perfor-
mance, which should not impact the model as we have formalized it. We expect to
be able to reduce the performance overhead to a level that is viable for real world
applications.

09.1. Future Work

Further work could be done by implementing the suggested performance improve-
ments to show the feasibility for real world environments.

Another promising research direction would be to analyze the impact of switching

47

Chapter 9. Conclusion

context inside of a running thread and investigate possibilities to ensure safety in
such a scenario.

For ActiveContext to be broadly usable it should be ported to other programming
languages. Good candidates would be class based, dynamically typed languages.
Specifically Python would seem a good choice, as it uses a VM and is used broadly.
We believe ActiveContext could also be extended to statically-typed programming
languages, following an approach similar to DVM [Malabarba et al., 2000] or JVolve
[Subramanian et al., 2009] which support class replacement in Java, but rely on
update points. The main difficulty would be to store the type of a field while storing
the field itself in a container allowing to store all kind of types at the same time.

9.2. Final Remarks

Pinocchio proved to be a very good platform to quickly prototype the ActiveContext
model. Implementing a running example which leverages dynamic software updates
with ActiveContext on the other hand proved to be difficult, because much of the
base functionality needed was not available. Other than the telnet example we
presented in this work, we started to port a full fledged web server as a more complex
example, which would be closer to real world applications. The porting proved to be
a lot more time consuming than anticipated as not only the functionality discussed
in Section 6.2.1 but much of the String and Stream functionality is missing from
Pinocchio. Also missing was the complete set of Date, Time, DateAndTime and all
related classes which we have ported now. Once finished, the web server example
could make for a much more compelling demo of ActiveContext.

The current implementation of Pinocchio has a hard-coded layout for basic classes
like Object, which kept us from storing the information if a field is primitive or
contextual on the objects themselves and forced us to choose a much slower imple-
mentation and store this information in a set. This stands in contrast to the idea
behind Pinocchio to change the language without changing the C level VM code.

As a consequence, we conclude that Pinocchio is a good choice for prototyping and
for proof-of-concept implementations, but already reaches its limit when trying
to implement more complex examples for such prototypes. For implementations
aimed towards production systems we suggest to use a more mature programming
language.

48

Appendix A

Installation

This appendix provides the necessary information to obtain and install the imple-
mentation referenced in this work, together with the example from Chapter 7.

At the time of writing Pinocchio requires a 64-bit UNIX like operating system like
Linux or Mac OS X.

A.1. Prerequisites

The Pinocchio VM is developed in C, while the class library is developed in Pharo,
a fork of the Squeak open-source Smalltalk platform. To run Pinocchio the class
library needs to be exported to C sources from within a Pharo image. The exported
C sources together with the Pinocchio VM sources can be compiled into a running
Pinocchio instance.

To be able to compile the sources a C compiler, like the GNU Compiler Collec-
tion http://gcc.gnu.org/ is necessary. Furthermore the Boehm garbage col-
lector http://www.hpl.hp.com/personal/Hans_Boehm/gc/ and ncurses http://
www.gnu.org/software/ncurses/ need to be installed and the corresponding C
header files need to be available. Make sure to have them installed in the 64-bit
version.

To get started with Pinocchio download the VM sources. The sources are available
from github https://github.com/aldavud/p. If you have installed git, get the
sources from a shell with:

git clone git://github.com/aldavud/p.git

This will create a directory called p with the 3 subdirectories src, pharo and meta.

49

http://gcc.gnu.org/
http://www.hpl.hp.com/personal/Hans_Boehm/gc/
http://www.gnu.org/software/ncurses/
http://www.gnu.org/software/ncurses/
https://github.com/aldavud/p

Appendix A. Installation

Now to get started with Pharo, download the latest “OneClick” image from the
Pharo homepage http://www.pharo-project.org/pharo-download. Extract the
“OneClick” image to p/pharo/Pharo.app. Please make sure to use the “OneClick”
image and store it in the correct location, so the generated Pinocchio class library
sources will end up in the right place.

A.2. ActiveContext

To load ActiveContext and the Pinocchio class library, start Pharo and click on the
background to select the “Monticello Browser” from the world menu as shown in
Figure A.1.

Add a new HTTP-based repository by clicking the “+Repository” button and se-
lecting “HTTP”. Enter the following information:

MCHttpRepository
location: ’http://www.squeaksource.com/ActiveContextP’
user: ’’
password: ’’

Click “OK” to save the repository and return to the main Monticello screen where
you can click on “Open” to open the newly created repository. Load ActiveContext
by selecting ActiveContextP and the newest version and clicking “Load” as shown in
Figure A.2. Pinocchio will be pulled in as a dependency and loaded automatically.

The Pinocchio class library is available under the “Pinocchio” category, the Active-
Context sources reside under the “ActiveContexP” category.

To export the Pinocchio class library sources as well as the ActiveContext sources
open the world menu again by clicking on the Pharo background and selecting
“Pinocchio” and then “Export All” as shown in Figure A.3.

To compile Pinocchio navigate to the p/src directory in a shell and start the com-
pilation with make.

After the compilation is finished the example from Chapter 7 can be run with:

./pinocchio telnetServer.p

To connect to the server open a telnet connection on port 9090, to connect to the
controller open a telnet connection on port 5678. To install the updated context
type install Updatei, as seen in Figure A.4.

50

http://www.pharo-project.org/pharo-download

A.2. ActiveContext

o worldB
& System Browser
Elworkspace

%/ Test Runner

53 Tools
IWindows
& System
&'Help

(P Save

& save as..

S save and quit

S Quit

v v w

Figure A.1. Starting the Monticello Browser.

ActiveContextP p
PBenchmark ActiveContextP- Dadeurtner
PEG ActiveContextP-DavidGurtner.
Phexample ActiveContextP-DavidGurtner.
Pinocchio i
ActiveContextP-DavidGurtner.7
ActiveContextP-DavidGurtner.7
ActiveContextP-ewe.70.mcz
ActiveContextP-ewe.69.mcz
ActiveContextP-ewe.68.mcz
ActiveContextP-DavidGurtner.6
ActiveContextP-DavidGurtner.6
ActiveContextP-DavidGurtner.6
ActiveContextP-ewe.64.mcz
ActiveContextP-DavidGurtner.6

Name: ActiveContextP-DavidGurtner 77

Author: DavidGurtner

Time: 8 March 2011, 7:20:07 pm

UUID: 35bed0a3-ceca-4baa-8f78-8524c159db55
Ancestors: ActiveContextP-DavidGurtner 76
Dependencies: Pinocchio-DavidGurtner 607

Changing Pinocchio path for one click image

Figure A.2. Loading ActiveContext in Pharo.

o1

Appendix A. Installation

® World @
g System Browser

El Workspace

o Test Runner

(& Monticello Browser

3 Tools 3
IWindows 3

SR 50w
& System

2
Update
e s Update Merged

» Save Commit
F save as..

Sl save and quit

&M Quit

Figure A.3. Exporting the Pinocchio class library sources.

guru@plumeis: ~
guru@plumeis:~% telnet localhost 5678
Trying ::1...
Trying 127.0.0.1...
Connected to localhost.
Escape character is '~]'.
> install Updatel
Installed Updatel
> 1

Figure A.4. Installing the updated context.

52

List of Tables

3.1. Comparison of dynamic software update systems 1/2
3.2. Comparison of dynamic software update systems 2/2

6.1. The visit methods of the interpreter

53

List of Tables

o4

List of Figures

4.1. An instance of a Contact object has different states in different con-
texts. There are transformation functions between the two contexts.
4.2. Context instances form a list

5.1. In Thread 1 Updated context is active, aContact has fields firstname
and lastname and is of class Contactl
5.2. State transfer

6.1. Native methods in the Interpreter and interpreter extension through
sub-classing
6.2. The interpreter hierarchy of the ActiveContext implementation. . . .

7.1. The adapted Telnet server interface to support dynamic software
updates with ActiveContext.

7.2. Version 0 of the Telnet server.

7.3. Version 1 of the Telnet server.

A.1. Starting the Monticello Browser.
A.2. Loading ActiveContext in Pharo.
A.3. Exporting the Pinocchio class library sources.
A 4. Installing the updated context.

55

List of Figures

56

Bibliography

[Bracha and Ungar, 2004] Gilad Bracha and David Ungar. Mirrors: design prin-
ciples for meta-level facilities of object-oriented programming languages. In
Proceedings of the International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’04), ACM SIGPLAN Notices,
pages 331-344, New York, NY, USA, 2004. ACM Press.

[Chen et al., 2007] Haibo Chen, Jie Yu, Rong Chen, Binyu Zang, and Pen-Chung
Yew. Polus: A powerful live updating system. In ICSE ’07: Proceedings of the

29th international conference on Software Engineering, pages 271-281, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

[Denker et al., 2007a] Marcus Denker, Stéphane Ducasse, Adrian Lienhard, and
Philippe Marschall. Sub-method reflection. In Journal of Object Technology,
Special Issue. Proceedings of TOOLS Europe 2007, volume 6/9, pages 231-251.
ETH, October 2007.

[Denker et al., 2007b] Marcus Denker, Tudor Girba, Adrian Lienhard, Oscar Nier-
strasz, Lukas Renggli, and Pascal Zumkehr. Encapsulating and exploiting change
with Changeboxes. In Proceedings of the 2007 International Conference on Dy-
namic Languages (ICDL 2007), pages 25-49. ACM Digital Library, 2007.

[D’Hondt, 2008] Theo D’Hondt. Are bytecodes an atavism? In Self-Sustaining
Systems: First Workshop, S8 2008 Potsdam, Germany, May 15-16, 2008 Revised
Selected Papers, pages 140—-155. Springer-Verlag, Berlin, Heidelberg, 2008.

[Dmitriev, 2001] M. Dmitriev. Towards flexible and safe technology for runtime
evolution of Java language applications. In Proceedings of the Workshop on
Engineering Complex Object-Oriented Systems for Fvolution, in association with

OOPSLA 2001, October 2001.

[Ebraert et al., 2005] Peter Ebraert, Yves V, and E Berbers. Pitfalls in unantic-
ipated dynamic software evolution. In Cazolla W., Ed., In the proceedings of
the Workshop on Reflection, AOP and Meta-Data for Software Evolution in con-
junction with the 18th European Conference on Object-Oriented Programming,
pages 41-49, 2005.

o7

Bibliography

[Makris and Bazzi, 2009] Kristis Makris and Rida A. Bazzi. Immediate multi-
threaded dynamic software updates using stack reconstruction. In Proceedings of
the 2009 conference on USENIX Annual technical conference, USENIX’09, pages
31-31, Berkeley, CA, USA, 2009. USENIX Association.

[Malabarba et al., 2000] Scott Malabarba, Raju Pandey, Jeff Gragg, Earl Barr, and
J. Fritz Barnes. Runtime support for type-safe dynamic Java classes. In Proceed-
ings of the 14th Furopean Conference on Object-Oriented Programming, pages
337-361. Springer-Verlag, 2000.

[Neamtiu et al., 2006] Tulian Neamtiu, Michael Hicks, Gareth Stoyle, and Manuel
Oriol. Practical dynamic software updating for C. In Proceedings of the 2006

ACM SIGPLAN conference on Programming language design and implementa-
tion, PLDI ’06, pages 72-83, New York, NY, USA, 2006. ACM.

[Orso et al., 2002] A. Orso, A. Rao, and M. Harrold. A Technique for Dynamic Up-
dating of Java Software. Software Maintenance, IEEE International Conference
on, 0:06494-, 2002.

[Redmond and Cahill, 2002] Barry Redmond and Vinny Cahill. Supporting unan-
ticipated dynamic adaptation of application behaviour. In Proceedings of Euro-
pean Conference on Object-Oriented Programming, volume 2374, pages 205-230.
Springer-Verlag, 2002.

[Rivard, 1996] Fred Rivard. Smalltalk: a reflective language. In Proceedings of
REFLECTION ’96, pages 21-38, April 1996.

[Segal and Frieder, 1993] Mark E. Segal and Ophir Frieder. On-the-fly program
modification: Systems for dynamic updating. IEEE Softw., 10:53-65, 1993.

[Subramanian et al., 2009] Suriya Subramanian, Michael Hicks, and Kathryn S.
McKinley. Dynamic software updates: a VM-centric approach. In Proceedings
of the 2009 ACM SIGPLAN conference on Programming language design and
implementation, PLDI ’09, pages 1-12, New York, NY, USA, 2009. ACM.

[Verwaest et al., 2010] Toon Verwaest, Camillo Bruni, David Gurtner, Adrian Lien-
hard, and Oscar Nierstrasz. Pinocchio: Bringing reflection to life with first-class
interpreters. In OOPSLA Onward! ’10, 2010.

[Verwaest, 2009] Toon Verwaest. Pinocchio — an open system for language exper-
imentation, June 2009. http://scg.unibe.ch/pinocchio.

o8

	Introduction
	Problem Statement
	Contributions and Thesis Structure

	Dynamic Software Update
	Motivating Dynamic Software Update
	An Introduction to Dynamic Software Update

	Related Work
	Approaches in C
	Approaches in Java
	Approaches in Smalltalk

	ActiveContext in a Nutshell
	A Motivational Example
	A Step by Step Update

	The ActiveContext Model
	Identity, State and Contexts
	State Synchronization
	Reflective Hook

	Implementation
	Pinocchio
	Implementation

	Validation
	A Running Example: Telnet Server
	The Code of the Telnet Server

	Discussion
	Analysis of ActiveContext
	Limitations of the Implementation

	Conclusion
	Future Work
	Final Remarks

	Installation
	Prerequisites
	ActiveContext

	List of Tables
	List of Figures
	Bibliography

