
Vera
An extensible Eclipse Plug-In

for Java Enterprise Application Analysis

Masterarbeit
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Raffael Krebs
2012

Leiter der Arbeit:
Prof. Dr. Oscar Nierstrasz

Acknowledgements

First of all I would like to thank my mentor Fabrizio Perin for his support. And thanks
to professor Oscar Nierstrasz for giving me the possibility of writing my thesis under his
supervision. Further I am very grateful for the valuable advice by other members of the SCG
research group, namely Niko Schwarz, Toon Verwaest, Erwann Wernli, Mircea Lungu and
Jorge Ressia.

The quality of this text has been greatly improved thanks to the painfully thorough feedback
of Niko Schwarz, Toon Verwaest, Sandro De Zanet and Fabrizio Perin.

These past few months have been a personal challenge. My parents Elisabeth and Roland
helped me a lot by pushing me forward in times when I lost motivation. My dear friends
Sandro De Zanet, Toon Verwaest, Laura Sánchez Serrano, Miriam Hutter, Maria Iakovleva,
Sara Mahnig, Florian Gysin and Martti Nirkko all had their very own ways of supporting me.

Thank you all, I owe you one!

i

Abstract

Java Enterprise Applications (JEAs) are not Java applications.
Instead they are complex systems which integrate various technologies and programming
languages such as XML or SQL, also including Java source code. Many tools exist for
reverse engineering and quality assurance on purely object-oriented program code. JEAs are
heterogeneous in that they are composed using multiple languages, thus classical object-only
approaches are not expressive enough.
In this thesis, we present VERA, a framework that supports JEA analysis. We develop VERA
as a plug-in to Eclipse, one of the most widely used Java development environments. The tool
relies on an extended version of the FAMIX meta-model that accommodates the heterogeneous
nature of JEAs. Our FAMIX implementation supports multiple kinds of analysis on JEAs.
VERA features extension-points that make it easy to add custom analyses, with a focus on
visualizations.
We demonstrate the flexibility of VERA by implementing a well-known polymetric visualiza-
tion called System Complexity and an improved version of the Transaction Flow visualization.
We also present a model browser that provides an analytical view of the code at hand.

ii

Contents

1 Introduction 1
1.1 Heterogeneous Sources . 1
1.2 Extensibility . 2
1.3 Integration . 2
1.4 Vera . 3
1.5 Outline . 3

2 Background 5
2.1 Types of Software Analysis . 5
2.2 Software Understanding . 6
2.3 Java Enterprise Applications . 7

2.3.1 Annotations . 7
2.3.2 EJB . 8

2.4 Eclipse . 9
2.4.1 User Interface . 10
2.4.2 Extension Mechanism . 11

2.5 Capturing data . 12
2.5.1 The Fame Tower . 12

2.6 Summary . 15

3 Vera on the Surface 17
3.1 The Model Browser View . 17
3.2 The Visualizations View . 18
3.3 The Packages Visualization . 18
3.4 The System Complexity Visualization . 19
3.5 The Transaction Flow Visualization . 20
3.6 Further visualization features . 22
3.7 Summary . 22

4 Architecture 23
4.1 The Model Tower . 23

4.1.1 An improved Model Repository . 24
4.1.2 The FAMIX Meta-Model in Java . 24

4.2 Importers . 26
4.2.1 Extensibility . 27
4.2.2 The Java AST Importers . 27
4.2.3 Omnivore Importers . 29

4.3 Visualizers . 30
4.4 Plug-in Components . 31
4.5 Installable Features . 34

iii

CONTENTS iv

4.6 Summary . 35

5 Extension Example 37
5.1 Extending the meta-model . 38
5.2 Adding a custom importer . 39
5.3 Exposing the data . 39
5.4 Summary . 40

6 Related Work 43
6.1 Moose . 43
6.2 SHriMP Views . 44
6.3 Softwarenaut . 44
6.4 Architexa . 46
6.5 X-Ray . 46
6.6 inCode . 46
6.7 MoDisco . 48
6.8 Summary . 50

7 Discussion: Meta-Model Extensibility 51
7.1 Collaboration and Forking . 52
7.2 Patching existing entity definitions . 52
7.3 Parallel Class Hierarchies . 52
7.4 Horizontal Class Inheritance . 53
7.5 Parallel Interface Hierarchies and horizontal Class Inheritance 54
7.6 Purely declarative Meta-Model Definition . 55
7.7 Adapters for all Properties . 56
7.8 Using java.lang.reflect.Proxy . 57
7.9 Nesting Adapters: The Property Onion . 58
7.10 Summary . 59

8 Summary 61
8.1 Lessons learned . 61
8.2 Future Work . 62

8.2.1 User Interaction tweaks . 63

Appendices
A Quick Start Guide . 66
B Scaffold for the example importer . 67
C Licensing of Plug-ins and Features . 68

List of Figures

2.1 Eclipse screenshot . 10
2.2 FAMIX (the meta-model) . 14
2.3 FM3 (the meta-meta-model) . 15

3.1 The model browser . 18
3.2 The visualizations view . 19
3.3 Packages visualization . 19
3.4 System Complexity visualization . 20
3.5 Transaction Flow visualization . 21

4.1 Architecture of Vera . 24
4.2 Meta-model design . 25
4.3 Plug-ins and Features of Vera . 34

5.1 Annotation Constellation visualization . 41

6.1 Moose . 45
6.2 Creole: SHriMP for Eclipse . 45
6.3 Softwarenaut . 47
6.4 Architexa . 47
6.5 X-Ray . 49
6.6 inCode . 49
6.7 MoDisco . 49

7.1 Meta-Model Extensibility 3 . 53
7.2 Meta-Model Extensibility 4 . 54
7.3 Meta-Model Extensibility 5 . 55
7.4 Meta-Model Extensibility 7 . 56
7.5 Meta-Model Extensibility 8 . 58
7.6 Meta-Model Extensibility 9 . 59

v

List of Tables

4.1 List of Plug-in dependencies and extensions . 32

6.1 Overview of Analysis Tool Features . 50

vi

1
Introduction

Software analysis is the art of answering the question

“What does my program actually do?”

and comparing the answer to the functional and structural requirements for that program. This includes
finding the cause of a discovered bug, predicting reliability, identifying components of a system and
their interactions, and calculating manager-proof quality measures. While such analyses can be done
partly thorough manual inspection of the program code by a developer, humans often miss important
details, especially in highly technical, low-level tasks. Where quality indicators and requirements can be
formalized, they can be checked by computers. Accordingly, Ostermann [17] defines software analysis as

“Systematic, computer-aided examination of software to determine whether and why a (desired

or undesired) property holds.”

1.1 Heterogeneous Sources

In this thesis, we have a special interest in Java Enterprise Applications (JEAs). Analyzing JEAs poses a
particular challenge because they are built using multiple languages.

A typical J2EE application consists not only of Java source code, but is composed using multiple
technologies which entail various languages and file types. A JEA typically provides a web interface
written in, e.g., JSP or (X)HTML. Furthermore, a database is commonly used to store persistent data —

1

CHAPTER 1. INTRODUCTION 2

the connection to which might be configured in an XML file, and the accesses to which are written in
SQL. Additional XML or .properties files can contain configurations for frameworks that are used, as
well as for the server on which the application will run (ejb-jar.xml, log4j.xml, etc.). The application
may provide several web services which are also declared in the ejb-jar.xml. Finally, the application is
probably built using Ant or Maven, which require yet another configuration file. Furthermore, the number
of available technologies that can be used in a JEA grows over time.

An analysis tool can master that multi-language challenge by allowing its users to extend the tool, add
support for new languages and implement new analyses.

1.2 Extensibility

An analysis tool should of course analyze properties that are relevant to the program under consideration.
Analyses of properties that apply to several programs can be condensed into a general tool. For example, a
compiler analyses properties that apply to all programs written in a certain language, such as type safety
and liveness of variables. An example for a more elaborate general-purpose analysis is the detection of
potential design flaws.

Whereas general tools can cover language or technology specific properties, programs can also have
unique requirements. For example, when a program’s design defines constraints for communication
between the program’s components (e.g., when implementing the MVC pattern1), the developers certainly
are interested in whether those constraints are met. An analysis for that aspect of that program most likely
cannot be applied to another program without modification, because the communication constraints are
unique to the first program.

So besides general-purpose analyses, a tool should offer a way to add custom analyses or adapt existing
ones in order to address the very specific requirements of the program under consideration. We refer to
this characteristic of a tool as being extensible.

1.3 Integration

Software comprehension is an important aspect of software analysis. Software comprehension describes
the cognitive process of understanding what a program does and how it does it. Software developers,
before creating new features or improving existing ones, actually spend a fair share of their time reading
source code and understanding it [2, 3, 12, 21].

Software analysis tools can aid software comprehension; for example by giving a high-level view of the
program’s components, or by providing convenient means of browsing the program code. To aid software
comprehension most efficiently, a tool should be tightly integrated with the development environment.
Tools that are external to the develompent environment require the user to leave that environment, find
and start the external tool, recall how to use the tool and wait for the program code being imported and
analyzed. Even if the process is rather simple, it takes some time and it also forces the developer to perform

1Model-View-Controller, see for example http://de.wikipedia.org/wiki/Model_View_Controller

http://de.wikipedia.org/wiki/Model_View_Controller

CHAPTER 1. INTRODUCTION 3

a cognitive context switch. The developer might lose focus on the problem to investigate, or even refrain
from using the tool at all.

1.4 Vera

As an approach to extensible, cross-technology JEA analysis without context switch, we develop an Eclipse
plug-in called VERA.

By integrating our tool VERA with the Eclipse IDE we avoid the context switch and facilitate installation,
thus reducing cognitive and technical barriers that prevent its usage. For cross-technology analysis, we
use FAMIX [25], a language independent meta-model that describes the static structure of object-oriented
software systems. We adapt FAMIX to our specific context, i.e., to accommodate the heterogeneous nature
of JEAs [18]. We also use Fame [9], which allows us to programmatically reason about the FAMIX
meta-model itself. For extensibility we make VERA’s model visible and we provide extension-points where
other Eclipse plug-ins can hook in and include their own software visualizations or amend the model.

Now, why did we chose the name “Vera”? As we lay a base for software comprehension and analysis tools,
we help to bring forward the truth. Therefore, the name is an abbreviation of the word “veracity”.

1.5 Outline

The remainder of this thesis is structured as follows. In Chapter 2 we introduce terms and concepts that are
essential to the understanding of our work. Chapter 3 showcases VERA’s user interface and explains its
usage. Chapter 4 explains how VERA works internally. An example of how to extend VERA can be found
in Chapter 5. Chapter 6 mentions related work. Then we briefly discuss a few aspects of our solution in
Chapter 7, before we wrap up and list future work in Chapter 8.

2
Background

In this chapter, we explain the domain in which VERA operates as well as the technologies on which VERA

is built. Based thereon, we also explain what VERA does in more detail.

2.1 Types of Software Analysis

There are three types of automated software analysis: static analysis, dynamic analysis and formal
verification.

Static software analysis works on the source code of a program. Many compilers perform static
analyses such as static type checking, liveness analysis of variables and bytecode optimization. These
analyses need to be highly reliable (safe, sound) since they are automatically acted upon. Another family
of analyses just produces informative hints, based on which humans decide what to do. For example,
some tools search the program code for structural anti-patterns, which are likely to be the source of
maintainability issues, or compute software metrics.

Dynamic software analysis focuses on the runtime behaviour of a program. Here, we also have both
reliable and informative tools. Just-in-time compilers for example automatically optimize the parts of a
program that are used frequently at runtime. Profilers help to identify the source of performance issues,
i.e., which parts of a program use up a lot of processor cycles and/or memory. Looking at the runtime
interaction between different parts of the program can help to reveal dependencies, isolated components,
features, or candidates for dead code. With runtime data, one can also check whether design constraints

5

CHAPTER 2. BACKGROUND 6

are met. Software testing, in which a defined set of inputs is compared to the expected outputs, can also
be considered dynamic software analysis, as well as post-mortem analysis, in which specific information
about program execution is logged at runtime and analyzed after program termination.

The last and least frequently used type of software analysis is formal verification, where a mathematical
model of the whole program is built. Such a model allows for formal proof that a program conforms to its
specification. Examples of formal models of programs are finite state machines, Petri nets, process algebra,
and Hoare logic.

2.2 Software Understanding

An important research question is: How can tools support the developers in building a mental model of a
piece of software more efficiently?

Storey [23] compiles different strategies that developers use to explore the source code of a program.
The bottom-up (control-flow) strategy consists of reading code and then mentally chunking together
what is understood and thus forming a meaningful, higher-level abstraction. The top-down (functional)
strategy maps knowledge about the program domain to the source code. The developer starts with a
global hypothesis about the program which is then refined into a hierarchy of secondary hypotheses while
browsing the program code. The knowledge-based (guessing) strategy leverages the developer’s current
understanding of the program and programming skills for asking a question and conjecturing an answer.
The conjecture is then verified or falsified by looking at program code and documentation. Mayrhauser [26]
found that software developers leverage all three strategies, frequently switching between them, to build
up a mental model of the software concurrently at different levels of abstraction.

Most integrated development environments (IDEs) provide basic tools for browsing program code (file
browser, search, jumping to the definition of methods, showing documentation in pop-ups, etc.), which
support software comprehension to a certain degree. The top-down strategy can be specifically supported
with visual abstractions of the program components and their interaction, which we refer to as software

visualizations. Visualizations also have the special benefit that they allow to persist a mental model for
documentary purposes.

Many tools have been developed that create visualizations of programs1. However, only few of them
are integrated into an IDE. Such external tools require the developer to perform a cognitive context switch.
That means getting out of the familiar world of the development environment, finding/starting the analysis
tool, diving in, firing the analysis and waiting for the results. That context switch can result in a loss of
focus on the problem to investigate. DeMarco and Lister [4] observed that mental interruptions have a
severe impact on developer performance and can even lead to frustration. The impact is most severe when
the interruption occurs during high mental workload. So in the times when the developer could best use
a tool, i.e. to offload cognitive pressure to the tool, she should not use any that require a context switch.
Salvucci and Bogunovich [20] further observed that people tend to avoid interruptions in times of high
workload and defer them until the mental stress level drops. So, the mere prospect of an interruption will

1Webarchive: http://ruthmalan.com/ArchitectureResourcesLinks/VisualizationInSoftware.htm

http://ruthmalan.com/ArchitectureResourcesLinks/VisualizationInSoftware.htm

CHAPTER 2. BACKGROUND 7

cause a tool to not be used when most helpful. By the time the mental workload drops, the problem might
already be solved. To sum up, tools that aim at aiding program comprehension should try to avoid the
context switch.

We support the software developer by integrating our tool VERA with the Eclipse Java IDE. Together
with the Java and Java Enterprise development tools that are already available for that IDE, VERA supports
all three software comprehension strategies, as well as seamless switching between them. Integration with
the IDE also keeps the cognitive interruption at a minimum.

2.3 Java Enterprise Applications

Since the Java 2 Platform Enterprise Edition (J2EE) was introduced in 1999, it has become one of the
standard technologies for enterprise application development.

Maintaining a JEA, consisting of potentially many thousands of lines of Java code, a huge number of
web page definitions and several kinds of configuration files, is clearly a challenge. And so is writing an
analysis tool for JEAs. Computing analyses “just” for one programming language, namely Java, is not
good enough. Every technology that is used in a JEA adds its own semantics, i.e., adds new properties
that an analysis tool should be able to compute. When multiple technologies are combined in the same
application, that introduces even more properties to analyze, properties that describe the interaction of
the different technologies or their collective behaviour. Furthermore, there may be different ways how
a JEA can combine a given set of technologies, requiring different ways of computing cross-technology
properties. A tool can support a number of frequently used technologies, but not every single one of them,
let alone all the possible combinations.

Another approach is to develop multiple separate tools, each focused on analyzing a single aspect.
With this approach, a new analysis tool has to be developed for every new aspect of interaction between
the multiple components of a JEA. Creating a new analysis tool from scratch for every aspect is not very
appealing, though. Also, specialist tools cannot provide a general overview of the system.

We envision a common base for analysis tools, and that the tools can reuse each other’s analysis results.

2.3.1 Annotations

Java annotations2 are a language extension introduced in Java 5.0. They are tags that can be added
to method definitions, type definitions and variable declarations. Listing 1 shows an example of how
annotations are used in Java source code.

Some annotations are predefined and shipped with the Java SDK, e.g., @Deprecated and @Override.
They are evaluated at compile-time and they have no arguments. Additionally, custom annotations can be
defined. @Inject in Listing 1 exemplifies how an annotation with arguments looks like. The annotation
type for a custom annotation has to be defined somewhere on the classpath. Our example annotation
@Inject is supposed to be evaluated at runtime by some dependency injection mechanism.

2http://download.oracle.com/javase/tutorial/java/javaOO/annotations.html

http://download.oracle.com/javase/tutorial/java/javaOO/annotations.html

CHAPTER 2. BACKGROUND 8

@Deprecated

public class Foo implements IFoo {

@Inject(provider = "com.example.log.Injector")

private LoggerService log;

@Override

public String getName() {

return "Foo";

}

}

Listing 1: Examples of annotations.

2.3.2 EJB

Enterprise JavaBeans (EJB) is a technique peculiar to JEAs. Beans are objects a Java application makes
available for use by other applications. By using Beans, multiple JEAs can work together; they are the
public interface to JEA components. A common example is an implementation of a data access layer,
a collection of classes that provide functionality to access a database. A web front-end can access the
database through these Beans to modify the database based on user input. JEAs are deployed on specialized
Java Enterprise web servers. One of the special components of such a server is the EJB-container. It
manages the life-cycle of Beans3 and makes them available to other applications.

EJB also encompasses the notion of transactions to make certain functionality atomic, which is often
required when chaining together multiple steps of a business process. Transactions also include a notion
of roll-back, i.e. reverting already performed changes when an error occurs during execution, which is
important especially with regard to database manipulation. Transactions can be used in one of two different
ways: With the first way, the programmer starts, stops and rolls back transactions programmatically through
method calls. This is called bean-managed transaction demarcation. An alternative way is to configure
transaction scopes on a per-method basis. In this case, the EJB-container will manage the transaction
boundaries. This is called container-managed transaction demarcation.

The EJB-container can manage transaction demarcation on a Bean method in different ways. A strategy
can be chosen through the so-called transaction attribute, which can have one of the following values:

Required The method must be invoked with a valid transaction context. Its execution is wrapped in a new
transaction unless the method is invoked from within another transaction. This is the default value.

RequiresNew The method must be invoked with a new transaction context. If invoked inside a transaction,
that transaction context is suspended during execution of this method and a new transaction is started.

3Instantiation, deletion and persisting, see [1] or http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/
EJBConcepts9.html

http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/EJBConcepts9.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/EJBConcepts9.html

CHAPTER 2. BACKGROUND 9

Supports The method executes correctly regardless of whether it is invoked inside an existing transaction
or not. No transaction is created or suspended.

NotSupported The method must not run in a transaction context. If invoked inside a transaction, that
transaction context is suspended during execution of this method.

Mandatory Like with Required, must be invoked with a valid transaction context. No new transaction is
started. The caller must provide the transaction or else an exception is thrown.

Never Like with NotSupported, must not run in a transaction context. Throws an exception if invoked
with a transaction context.

More information on the semantics and configuration of transaction attributes can be found in the EJB
specification4.

Every JEA contains a central configuration file, called the EJB deployment descriptor. This is an XML
file, ejb-jar.xml, which defines how the application is deployed on the server. Through this file, the
programmer can register Java classes as Beans, configure which of them let the EJB-container manage
transactions, and specify transaction attributes on a per-method (or per-Bean) basis. The deployment
descriptor also contains other configuration elements, such as the application’s name, security restrictions
and resource allocation.

Since version 3.0 of EJB, many of the settings in the ejb-jar.xml can also be configured directly in
the Java source code through annotations. Changes in annotations require a re-build and re-deploy of
the whole application, whereas changes in the ejb-jar.xml can be applied directly on the server. Still,
annotations are easier to maintain than the XML configuration, since they are located right next to the
code they affect. Quickly checking whether there is an annotation on a given method simply is easier than
searching for the method’s name in some well hidden XML file. However, many old applications will never
be migrated. And also in EJB 3.0, transaction management can still be configured in the ejb-jar.xml.
Therefore the ability to integrate heterogeneous sources remains a key feature for analyzing EJB related
aspects of JEAs.

2.4 Eclipse

Eclipse5 is a development environment platform. It is built by a community of software developers, both
individuals and companies. The community builds various projects for the Eclipse platform, including
extensible frameworks, tools and runtimes for building, deploying and managing software across the
life-cycle. The Eclipse community’s most prominent flagship is a fully-fledged Java development environ-
ment. The Eclipse Java IDE is well-known and widely used among Java developers. Its capabilities are

4http://java.sun.com/products/ejb/docs.html
5http://www.eclipse.org/

http://java.sun.com/products/ejb/docs.html
http://www.eclipse.org/

CHAPTER 2. BACKGROUND 10

comparable to other big Java IDEs such as NetBeans6, JBuilder7, IBM Websphere8 and IntelliJ IDEA9.
Figure 2.1 gives an idea of what the Eclipse Java IDE looks like.

Figure 2.1: A screenshot of a running Eclipse application. The IDE has an editor and several tools, such as
a file browser (on the left), a code outline (on the right) and content assist (pop-up).

2.4.1 User Interface

In the following chapters, we use the terms project and view, which are two basic Eclipse concepts. In this
section, we introduce both of them shortly, along with related terms.

Every Eclipse instance runs in a so-called workspace, i.e., a folder which contains both Eclipse meta-
data and the source files (program code, configuration files, etc.) of the software under development. The
source files within a workspace are organized in so-called projects. Usually, every project has its own
folder in the workspace, containing project specific meta-data and source files. The /src/ directory in
the project folder contains the Java source code. Source code that lies somewhere in a folder outside the
Eclipse workspace can be included in a project, which is called linking sources to the project. Linked
sources are treated as if they were defined directly inside the project. Other directories inside the project
may contain other sources such as HTML files, Ant scripts, etc.. A project can be seen as a unit that
contains all source files that are required to compile the software. Build tools are usually configured on a

6http://netbeans.org/
7http://www.embarcadero.com/products/jbuilder
8http://www.ibm.com/software/awdtools/developer/application/
9http://www.jetbrains.com/idea/

http://netbeans.org/
http://www.embarcadero.com/products/jbuilder
http://www.ibm.com/software/awdtools/developer/application/
http://www.jetbrains.com/idea/

CHAPTER 2. BACKGROUND 11

per-project basis. Projects can also include other Eclipse projects in their build path, which allows one to
split the software into multiple parts.

The user interface of the Eclipse IDE consists of an editor for source files and a set of installed tools,
so-called views. Eclipse plug-ins can contribute new views to the user interface. The user can choose
which views she wants to display. Obviously, the usefulness of a given view depends on what the user is
currently doing. Eclipse embraces this by grouping the views into so-called perspectives. A plug-in can
define its own perspective with a set of predefined views in it. The user can customize the UI by adding
or removing views from a perspective. For example, the Java perspective is used for coding; the Debug
perspective for stepping through the program at runtime; and the SVN perspective for version control. A
view can appear on multiple perspectives.

2.4.2 Extension Mechanism

Extensibility in Eclipse is achieved with plug-ins that contribute new functionality to each other. Every
plug-in can define extension-points where other plug-ins can hook in by declaring extensions. In that
context, we call the plug-in that defines the extension-point the host plug-in and the plug-in that declares
an extension the guest plug-in.

Plug-in contributions commonly are code but can also be just data, e.g., help texts.
The contributions are evaluated by the host plug-in. The guest plug-in cannot change the code of

the host plug-in, just add new code. Due to this one-sided coupling, guest plug-ins can be developed
independently from the host plug-in without having to worry about breaking the host plug-in.

There is also a notion of plug-in fragments to refine plug-ins. A fragment is not a fully-fledged plug-in
but instead provides a slight variation of its host plug-in. Fragments are for example used wherever native
code is required. The host plug-in can then be offered for download in OS-specific variants. Furthermore,
tests are sometimes factored out to a fragment, which is not included in the installable version of the host
plug-in at all. This has the advantage of a smaller memory footprint and a faster plug-in load time. Since
tests for Eclipse plug-ins can require a complete Eclipse workspace filled with test data, this can make
quite a difference.

Before a plug-in can contribute anything to an Eclipse application, it has to be installed there. Every
Eclipse application has its individual set of functionalities, depending on which plug-ins are installed.
The Eclipse community offers various downloads of Eclipse which differ in the set of plug-ins that are
pre-installed. The user can easily install additional plug-ins at will. One of those downloads is the Plug-in
Development Environment, the “Eclipse PDE”. This is how Eclipse plug-ins are usually developed: with
Eclipse itself.

Additional plug-ins are usually installed from within the running Eclipse application. The Install wizard
lists all available plug-ins which can then be installed with only a few clicks. To find available plug-ins, the
installer scans a number of so-called update-sites, Eclipse’s plug-in repositories. In more recent versions
of Eclipse, update-sites are also called software sites. A newly downloaded Eclipse application already
includes URLs of many update-sites of community members. Official community membership is not
required to provide an update-site, though. Everyone who creates a plug-in can publish it on their own

CHAPTER 2. BACKGROUND 12

update-site. Internally, an update-site is simply a collection of files that must be served by a web server at a
public URL. The files include numerous compressed archives containing the plug-ins as well as meta-data
that aids installation. Creation of custom update-sites is facilitated by the Eclipse PDE.

When published on an update-site, plug-ins are commonly wrapped in so-called features. An Eclipse
feature includes one or more plug-ins that provide a coherent set of new functionalities to the user. It also
includes information about the publisher, copyright and licensing (see Appendix C). The same plug-in can
be used in multiple features. Finally, features can be grouped into categories for a better overview and
searchability.

For technical instructions on the realization of what we discussed here, please consult one of the Eclipse
books, e.g., Contributing to Eclipse by Gamma and Beck [5], or Eclipse’s on-line documentation10,11.

2.5 Capturing data

In order to carry out automated software analyses, we need a model that represents the application’s
low-level components. A model is a collection of Java objects that represent application entities and store
information about them. The process of creating a model of a program is called importing. During the
import, the program’s source code is read and model objects are instantiated. The extracted information
can be properties such as the name of a Java class, or relationships such as class inheritance.

But which properties are available on each object? What is the API of the model? This kind of
information resides in a model of the model, the so-called meta-model. The meta-model consists of
so-called entities, each of which describes the common behaviour of a certain type of model objects.

Finally, one should be able to programmatically reason about the meta-model. For example to list all
available properties of a meta-model entity. This can be solved by introducing an even higher level of
abstraction: a meta-meta-model.

2.5.1 The Fame Tower

Fame [9] provides these three levels of abstraction by means of a trinity of models, called the “Fame
Tower”: the FAMIX Model (FM), the FAMIX Meta-Model (FM2) and the Fame Meta-Meta-Model (FM3).

2.5.1.1 The FAMIX Model

The model objects that are created during the import phase are stored in in a so-called model repository.
Every model object is assigned a unique identifier, which can be used to retrieve that exact object from the
repository at a later time (i.e., when performing analyses on the model or collecting data for a visualization).

10http://www.eclipse.org/articles/Article-PDE-does-plugins/PDE-intro.html
11http://help.eclipse.org/indigo/index.jsp?nav=/4_1

http://www.eclipse.org/articles/Article-PDE-does-plugins/PDE-intro.html
http://help.eclipse.org/indigo/index.jsp?nav=/4_1

CHAPTER 2. BACKGROUND 13

2.5.1.2 The FAMIX Meta-Model

The FAMIX meta-model describes the static structure of object-oriented software systems. Its core is
language independent; with entity types such as Class and Method it can describe for example Smalltalk
or Java program code. Existing implementations are written in Smalltalk. For our Eclipse plug-in, we
needed to re-implement it in Java.

Figure 2.2 shows the core of the FAMIX meta-model as it is implemented in Smalltalk. The FAMIX
entities are represented by a hierarchy of classes. Various extensions to the FAMIX Core already exist and
further extensions can be easily added. For example, the Java extension to the Class entity adds a boolean
property isEnum.

2.5.1.3 FM3, Fame’s Meta-Meta-Model

Every entity in the FAMIX meta-model has a name. And each entity introduces some properties. Most types
inherit properties from another type. That kind of information is sometimes required when programming
in a more generic fashion. For example when we want to list the names of all properties of a given entity,
we would have to collect all properties of its type and supertypes. To that end, information about entities as
well as their properties and inheritance relationships needs to be formalized in a model of the meta-model.

FM3 operates with three types of elements: FM3.Class, FM3.Property and FM3.Package. The FM3

.Classes correspond to the FAMIX entities. Every FM3.Class is associated with multiple FM3.Pro-

perties, respective to the FAMIX entities’ properties. Finally, the FM3.Package introduces a notion of
scoping. A FM3.Package is intended to contain all entities of a meta-model, so all our entities declare
to be part of the “FAMIX” package. FM3 is a rather minimalistic meta-meta-model, yet expressive
enough for our needs. Figure 2.3 illustrates the different types of elements in FM3. And when we look at
Figure 2.2 from a different angle, it really just shows all FM3.Classes of FAMIX CORE, alongside their
FM3.Properties.

@FamePackage("FAMIX")

@FameDescription("NamedEntity")

public interface INamedEntity extends ISourcedEntity {

@FameProperty(name="name")

public String getName();

@FameProperty(name="belongsTo", derived=true)

public IContainerEntity belongsTo();

@FameProperty(name="parentPackage", opposite="childNamedEntities")

public IPackage getParentPackage();

}

Listing 2: FM3 annotations on a meta-model entity interface (Javadoc omitted for clarity).

CHAPTER 2. BACKGROUND 14

Figure 2.2: FAMIX Core 3.0, the base for Vera’s meta-model.

CHAPTER 2. BACKGROUND 15

Figure 2.3: FM3, Fame’s meta-meta-model.

The Fame tower, next to the model repository, also contains a meta-repository to store information such
as which entity provides which properties. It contains so-called meta-descriptions, one per meta-model
entity. Those meta-descriptions are instances of FM3.Class. They are built at runtime, based on Java
annotations on the FAMIX interfaces. Listing 2 illustrates the use of the Java annotations that are used to
attach meta-information to Java interfaces. The Java annotation types, as well as the meta-description class
definition, are provided by Kuhn’s Fame implementation [9].

2.6 Summary

In this chapter, we learned about a number of concepts that are important to understand why and how we
built VERA.

We have seen that there are three fundamentally different types of software analysis: static analysis,
dynamic analysis and formal verification. We also learned that a good software comprehension tool should
support top-down, bottom-up and knowledge-based comprehension strategies, as well as fast switching
between them; and that it should be integrated into the development environment, since switching to
an external tool requires a cognitive context switch, which a has negative impact on both developer
productivity and tool acceptance.

In the scope of this thesis, we operate on Java Enterprise Applications, which are a conglomerate of
different programming languages and frameworks. Therefore, a software analysis tool that operates on
a single programming language is not suited to JEA analysis. Furthermore, the numerous technologies
used in JEAs as well as the numerous ways of using/combining those technologies, all require dedicated
analysis capabilities — a near impossible task for a single analysis tool. But writing tools from scratch all
the time is also cumbersome.

With VERA, we provide a tool that improves Eclipse’s software comprehension support. We provide
visualizations, which mainly support the top-down strategy, and we allow for fast switching between
software comprehension strategies and avoid a context switch by integrating tightly with Eclipse’s user

CHAPTER 2. BACKGROUND 16

interface. Eclipse also makes installing and updating VERA very easy.
While VERA facilitates software comprehension, its main focus is on analyzing JEAs. VERA supports

mostly static software analysis, while post-mortem analysis of a program’s runtime behaviour is also
possible. We face the diversity of languages and technologies with a language-independent meta-model,
FAMIX, and by explicitly making VERA extensible, facilitated by Eclipse’s extension mechanism. VERA’s
extensibility also allows us to customize it to the specific needs of a program set-up or specific quality
assurance interests. Thus, VERA serves as a cross-language framework to build software analysis tools
upon.

And, to close the circle, extensions to the meta-model also allow for richer ways of navigating the
program’s source code, thus further improving software comprehension.

3
VERA on the Surface

In this chapter, we explain what VERA does and how it integrates with Eclipse’s user interface (UI).

VERA introduces two new Eclipse views which can be added to any perspective: one for the visualizations
and one for the model browser. In addition, VERA integrates with context menus and the help system.

3.1 The Model Browser View

After installing VERA (see appendix A), the user can open the view “Vera model browser”. As illustrated
in Figure 3.1, the model browser shows all properties of objects within the model, one at a time. A label at
the top shows the name of the object currently being shown. The browser’s body consists of two panels: In
the left panel, the names of the object’s properties are listed. When one of the property names is clicked,
the value of that property is shown in the right hand side panel. If that value is a collection, its elements
are listed.

The browser uses VERA’s meta-model both to find out what properties a given model entity has and to
fetch the value(s) of that property. Property values that are model entities themselves can be navigated
to by clicking on them. This reveals how much data is available in the model and allows one to quickly
browse that data. The model browser also integrates with Eclipse’s Java editor. When the current selection
in the source code corresponds to a model entity, the browser switches to that entity. Likewise, when
the user has browsed to a certain model entity, she can show the source code of that entity in the Java
editor by holding down the Ctrl key and clicking on that entity. This matches the key bindings in our

17

CHAPTER 3. VERA ON THE SURFACE 18

visualizations.

Figure 3.1: The model browser showing an entity named “SomeClass”.

3.2 The Visualizations View

Whereas the model browser presents raw data from the model repository, the view “Vera visualizations”
(see Figure 3.2) is used to render problem-centric pictures. This view allows the user to visualize a project
in the workspace. VERA is currently designed to work with Java projects only. However, support for other
types of projects could easily be added. In the view’s toolbar all available visualizations are presented by
icons (No. 1 in Figure 3.2). VERA provides three default visualizations which are explained in the next
sections. When the user clicks on a visualization icon, VERA will import the selected project’s source
code and render the respective visualization. To stop VERA from re-importing every time the user requests
a visualization, the import can be frozen (No. 2 in Figure 3.2), which causes Vera to reuse cached imports.
The generated visualization will be displayed in the view’s canvas (No. 3 in Figure 3.2).

3.3 The Packages Visualization

The first visualization provides a simple overview of the classes defined in a project, grouped by package.
Note that this includes classes that have been added to the classpath by linking them to the project (as
explained in Section 2.4.1 on page 10), if there are any.

Figure 3.3 shows an example of such a visualization. It consists of nested rectangles. The outermost
rectangles (black border, white area) represent packages. They contain black rectangles representing

CHAPTER 3. VERA ON THE SURFACE 19

Figure 3.2: VERA’s visualizations view

classes inside the package. Finally, a class contains a small gray rectangle for each method it defines.
The visualization only displays classes and methods that are defined inside the project (including linked
sources).

The visualization supports a rudimentary top-down software comprehension strategy. The user can
define her own guidelines concerning the number of classes per package or the number of methods per
class. The packages visualization can then help one to find disproportionate packages and classes. The
visualization gives an immediate impression of how big the packages of the application under analysis
tend to be.

Figure 3.3: The Packages visualization

3.4 The System Complexity Visualization

Figure 3.4 shows VERA’s System Complexity visualization, which is a classic polymetric software
visualization [10, 11]. It features both class inheritance and metrics on the classes. Every class is
represented by a rectangle. The classes are organized in trees that reflect the inheritance hierarchy of
classes; specialization increases downwards. The shape of a rectangle is determined by three metrics on
the underlying class as follows:

CHAPTER 3. VERA ON THE SURFACE 20

width: number of attributes (NOA)

height: number of methods (NOM)

color: number of lines of code (LOC), where the highest LOC is assigned the color black

Our implementation shows all classes that are defined within the project’s Java source files. Classes
from archives or external sources (such as the JDK) are omitted, even if they are a superclass of a shown
class. For example, if the project defines multiple direct subclasses of javax.swing.AbstractAction,
these will not be shown in a common inheritance tree. These subclasses will appear as inheritance roots
instead. This is mainly because some commonly used libraries contain huge classes which would then
appear very dark and all project classes would appear very bright, defeating the purpose of the LOC metric.

The System Complexity visualization allows the user to spot various system properties, patterns and
anti-patterns. For example, the developer might be interested in the general use of inheritance; dark, big
classes are an indication for bad separation of responsibilities; wide classes contain much data, but provide
only few ways of accessing it.

Figure 3.4: Excerpt from a System Complexity visualization by VERA

3.5 The Transaction Flow Visualization

The third visualization that Vera provides out of the box demonstrates its capabilities to combine infor-
mation from multiple sources. The Transaction Flow visualization [19] addresses two specific questions
of JEA developers: (1) Which methods are invoked directly or indirectly inside a transaction and how
are they dispersed? (2) Which methods might start unnecessary transactions? That second question is
especially interesting when related web pages or web services are experiencing performance issues.

CHAPTER 3. VERA ON THE SURFACE 21

The visualization gives an overview of the methods involved in a transaction (see Figure 3.5). It lays
out the methods in an invocation tree. The methods that start transactions are at the top, and below are
the methods that are invoked. For a better overview, the methods are grouped by class. This results in the
EJB classes being displayed at the top of the visualization. The classes are connected with lines which
indicate that a method in the top class invokes a method in the class below. In addition, the bean methods
are colored according to the transaction attribute which is configured for them. Blue methods start a
transaction (Requires or RequiresNew) and yellow methods may run inside one (Supports).

The question concerning unnecessary transactions is addressed by drawing candidate methods in a
magenta color. To be a candidate, a method must have a transaction attribute of RequiresNew and must
only be called by methods which are already part of a transaction. When a method is colored magenta, it
really is just a candidate. There are cases where the RequiresNew is appropriate. Other applications might
call the method, or the method might really do something that should not be done in an existing transaction
but rather always in a new, dedicated transaction.

Of course the developer also wants to know exactly which method invokes which other method, both
inside the same class and across classes. To this end, the developer can highlight the invocation tree of
a single method simply by hovering over it with the mouse, as illustrated in Figure 3.5. The figure only
shows a relatively small section of the visualization. In addition to scrolling, the view “Vera visualizations”
can be maximized for a better overview.

Figure 3.5: The Transaction Flow visualization: Hovering over a method with the mouse highlights its call
hierarchy. The highlighted methods, classes and connections are colored differently.

CHAPTER 3. VERA ON THE SURFACE 22

3.6 Further visualization features

The visualizations explained above all share the following user interaction features:

• When an entity is hovered over with the mouse, its name is displayed in a status label (see Figure 3.5).

• When an entity is clicked, it is shown in the Model Browser (see Section 3.1).

• The user can navigate to the source code by clicking on an entity while holding the Ctrl key.

• If the visualizer provides a legend and/or a caption, they can be displayed by clicking on the
visualization while holding the Shift key.

• Context sensitive help is available through the configured hot key.
The default hot key is F1 on Windows, Shift+F1 on Linux and Help on Mac.

3.7 Summary

In this chapter, we have seen VERA from the perspective of a user. We explained that VERA introduces
two new views to Eclipse’s user interface; one to display visualizations and another for a generic model
browser. In the next chapter, we will see how VERA works internally and how it can be extended.

4
Architecture

In this chapter we describe our solution, VERA, in more detail. We provide two views on the internals of
our tool by explaining the logical components as well as the decomposition into multiple Eclipse plug-ins.

VERA can be logically decomposed into three main parts: the model tower, the importers and the
analysis tools, as illustrated in Figure 4.1. The model tower provides an abstract representation of the
software at hand. The importers extract information from the source code or other sources and populate the
application model accordingly. The analysis tools currently consist of two software visualizations, called
System Complexity and Transaction Flow, as well as a model browser that aids software comprehension
and shows analytical information about the software entities.

VERA can be extended by writing a new Eclipse plug-in. As we explain VERA’s logical components
in the following sections, alongside we also introduce the extension-points that VERA offers to extending
parties. More details about VERA’s nature of being an Eclipse plug-in follow later in this chapter. For now,
just note that in order to use VERA’s extension-points, an Eclipse plug-in must specify a dependency to
VERA’s main plug-in, which has the identifier ch.unibe.scg.vera.

4.1 The Model Tower

VERA uses Kuhn’s Java implementation of the Fame tower [9]. It provides a repository for model objects,
meta-model entities and meta-meta-model entities (FM3); and it also connects these three levels of
abstraction. Every model object is assigned a unique identifier, which can be used to retrieve that exact

23

CHAPTER 4. ARCHITECTURE 24

JEA Source Code

Importers

Model Browser

FAME (FM3)
MODEL repository (FM) FAMIX (FM2)

SW Visualizations

VERA Eclipse Plug-in

Figure 4.1: Components of VERA: Based on the various JEA sources, the importers create a model which
is then presented to the user through software visualizations and a generic browser.

object from the repository at a later time (i.e., when performing analyses on the model or collecting data
for a visualization).

4.1.1 An improved Model Repository

Fame’s model repository provides most of the functionality we require. It is a container for model objects
and also links them to their meta-descriptions. In order to provide more convenience methods, we wrapped
a Fame model repository in our own implementation of a model repository.

One type of convenience method retrieves all objects that are instances of a certain entity. That comes
in handy when writing an analysis or collecting data for a visualization. We also introduced the notion of
collection filters. A filter has a method CollectionFilter<E>#matches(E), where E can be an arbitrary
type. Additional methods like select(Collection<? extends E>) allow the programmer to conveniently
apply a filter to a collection of model objects, or to combine multiple filters. The model repository’s
methods to retrieve model objects have variants that accept a filter as an additional argument.

4.1.2 The FAMIX Meta-Model in Java

Our aim was to make our Java implementation of the FAMIX meta-model as easy to extend as the original
Smalltalk implementation. As it turns out, this is all but trivial. The Java language simply does not provide
any way of patching existing class definitions. We considered various approaches to implementing our
meta-model in an extensible way. We detail these approaches in the discussion in Chapter 7.

The solution we finally chose for our Java meta-model works as follows: The entities of FM2 as shown
in Figure 2.2 are represented by a hierarchy of Java classes. These classes define getter and setter methods
for all the properties of the model objects, as well as some helper methods which allow to query the model
more conveniently. The model objects are instances of these classes. That class-instance relationship

CHAPTER 4. ARCHITECTURE 25

provides a natural mapping of model objects to meta-model entities.
On top of the FM2 classes we introduced a layer of interfaces with the purpose of separating the part of

FAMIX that models OO languages from the one that models Java language specific characteristics. Another
purpose is to facilitate understanding FAMIX by separating the gist of FAMIX from implementation details.
Also, completely independent implementations of FAMIX can be developed based on these interfaces. On
the downside, VERA’s program code is now implemented against the classes, not the interfaces. This could
be circumvented by introducing yet another set of interfaces that include all setter and helper methods.
But that would mainly add complexity instead of improving clarity, thus maintainability would not be
improved. Figure 4.2 illustrates the solution described here.

IEntity

IContainer

IClass

INamed IJavaContainer

IJavaClass

IAnnotationType

Entity

Container

Class

Named JavaContainer

JavaClass

AnnotationType

Figure 4.2: VERA’s meta-model design. Boxes represent classes; interfaces are depicted by italic names.
The boxes on the right demonstrate how an extension can specialize or add entities.

Following this solution, we implemented a Java port of FAMIX CORE which includes nearly all of
the entities and their properties. We also wrote a Java extension, again as classes and interfaces. This
extension includes entities to represent object-oriented code as well as other aspects peculiar to JEAs [19].

Whoever writes an Eclipse plug-in that extends VERA can add more entities to the meta-model.
Extending VERA’s meta-model involves three steps: First, the entity has to be defined, i.e., a new entity
interface and a corresponding class must be implemented. Second, the interface needs to be annotated
with Fame annotations as explained in Section 2.5.1.3. Lastly, the new entity must be registered. VERA

offers an Eclipse extension-point for that purpose. The full identifier of that extension-point is ch.unibe.
scg.vera.metamodel. In order to extend VERA at that point, the extending plug-in needs to add an entry
to its plugin.xml file, as shown in Listing 3.

<plugin>

...

<extension point="ch.unibe.scg.vera.metamodel">

<with class="com.example.ISomeNewMetamodelEntity" />

<with class="com.example.IAnotherEntity" />

...

</extension>

...

</plugin>

Listing 3: Declaration of a meta-model extension.

CHAPTER 4. ARCHITECTURE 26

Such an extension instructs VERA to process the Fame annotations in the listed entity interfaces and
enrich the meta-model accordingly, i.e., add a meta-description (an instance of an FM3.Class) for that
entity to the meta-repository. This is facilitated by Fame itself.

4.2 Importers

When the user chooses to analyze an Eclipse project, the importers are invoked, create model objects (the
FM, an instance of the FM2), and store them in the model repository. Importers gather the information
they need to populate a FAMIX model by looking at a program’s source files. Importers can either operate
on the Java source code or on any other file. That, together with a model to hold all extracted information,
is the key to analyze software with heterogeneous sources, such as JEAs.

We designed VERA in such a way that the scope for an analysis is always one Eclipse project. The
importers will focus on the software that is defined directly in this project. Every project knows its
classpath, which can consist of directories inside the project, system libraries, other Eclipse projects and
any other linked source. For example in a Java project all the classes defined inside that project’s source
folders are interesting; system libraries are only imported partially according to their use from within the
project’s source code.

Our strategy with importers is to invoke them on demand. That is, whenever the user requests a
visualization. Extending parties can alternatively invoke imports programmatically with a call to the
method Vera#getModel(IJavaProject, IProgressMonitor). The class Vera is a singleton; the instance
can be obtained with a call to the static method Vera.getDefault(). The IJavaProject parameter accepts
an object representing an Eclipse project, which can be obtained through Eclipse’s JDT API, i.e., use
JavaCore.create(). An IProgressMonitor to pass in as the second argument can be obtained by running
the code inside an Eclipse job.

Jobs are a notion of the Eclipse runtime to execute possibly long-running tasks in a background thread,
which prevents Eclipse’s user interface from being blocked. Instructions on how to use the Eclipse’s
concurrency infrastructure can be found in the on-line documentation1. Good examples can also be
found in VERA’s source code, as VERA consistently uses Eclipse jobs for importers (and for rendering
visualizations, as we will see shortly).

Since the importers can take some time to run, the user is given the option to freeze re-importing.
While VERA is frozen, existing models of Eclipse projects are reused. Freezing can also be thought of
as memoizing or caching imported models. This comes in handy when the user wants to create different
visualizations of the same project. Just rendering a visualization is much faster than importing the whole
project. When the sources of a project change, VERA should be unfrozen and the project re-imported to
reflect the changes.

An incremental re-import only of the changed sources is not supported at the time being. There are
two main reasons why we decided against that. First, even an incremental import takes some time. For

1http://help.eclipse.org/indigo/index.jsp?topic=/org.eclipse.platform.doc.isv/guide/
runtime_jobs.htm

http://help.eclipse.org/indigo/index.jsp?topic=/org.eclipse.platform.doc.isv/guide/runtime_jobs.htm
http://help.eclipse.org/indigo/index.jsp?topic=/org.eclipse.platform.doc.isv/guide/runtime_jobs.htm

CHAPTER 4. ARCHITECTURE 27

developers who are used to frequently hit the save button, even waiting one or two seconds more can get
tedious. Second, while Eclipse does provide a decent mechanism to determine which Java source files
changed since the last build, such a mechanism is missing for non-Java files. Thus the good solution would
be to implement a change tracking mechanism and not invoke an incremental import on every Java build
but only at times when a consistent model is required, e.g., when the user requests a visualization.

4.2.1 Extensibility

Since VERA is built to be extended, custom importers that extract additional information can be added.
To this end, VERA provides the two extension points ch.unibe.scg.vera.importers and ch.unibe.scg.

vera.AST_importers (subsequently referred to as importers and AST_importers, respectively). Whereas
the importers point is suited to any kind of importer, the AST_importers point is meant for importers
that operate exclusively on Java source files. The two extension points are explained in more detail in the
following subsections.

This does not make the individual importers extensible, though; an existing importer’s behaviour
cannot be changed by extending parties. But importers can work together by specifying dependencies on
each other, which influences the order in which the importers are executed. The dependency mechanism
allows extending parties (which add their own importers) to rely on a certain state of completeness of the
model.

Note that we do not allow replacing existing model objects in the model repository because doing so
could introduce compatibility issues with other VERA extensions that depend on the original entity. Also,
values that have been assigned to a property by an existing importer should not be touched by an extension.
Doing so can break existing analyses (implemented by VERA’s core or unknown third parties).

For the two visualizations we implemented so far, we required a representation of the Java source code as
well as some information from an XML file. We implemented multiple importers that work together to
provide that information.

4.2.2 The Java AST Importers

Since VERA operates within Eclipse, we do not have to parse the Java source files ourselves. VERA relies
on Eclipse’s Java parser to generate an Abstract Syntax Tree (AST) of the Java source code. An AST is a
very low-level model of the source code contained in one single Java source file. It essentially contains
everything that is written in that file, not as a sequence of characters but rather as a nested structure of Java
objects which represent the logical components of the source code. For example, every AST will contain a
type definition, therein some attribute and method definitions, and so on.

That AST is then consumed by VERA’s Java importer following a visitor pattern. The importer creates
FAMIX entities and stores them in the project’s model repository. Existing entities can be modified,
whereas replacing entities in the model repository is forbidden. It might look tempting at first to replace
an existing entity with a more specialized one that has more properties. But changing existing behaviour
(i.e., by overriding methods) would most certainly break existing clients. Furthermore, replacing an entity

CHAPTER 4. ARCHITECTURE 28

in the model repository does not replace existing references to it from other model objects, thus causing
inconsistency in the model.

VERA’s main importer creates a model that contains a nearly complete subset of all pure Java entities.
This includes packages, types (interfaces, classes, enums, member classes, anonymous classes; including
generics), methods (including generics) and inheritance relationships.

These elements are imported in one pass over each Java file’s AST. While traversing one AST, the
importer encounters objects that are not defined inside the same file and have not yet been imported. Just
using the current AST, resolving these objects requires extra work. VERA’s importers can conveniently
delegate that work to Eclipse’s parser. Given an AST object, Eclipse can usually resolve it and provide a
so-called binding. That binding can further be traversed. For example, the binding for a class definition
is an ITypeBinding which can be queried for its name, visibility modifiers, implemented interfaces and
superclass. When we retrieve the superclass of an ITypeBinding, we get another binding. Likewise, all
non-primitive members of bindings are bindings themselves. We create new model objects based on these
bindings. This allows us to combine the visitor pattern with a factory that creates model objects recursively.
For example when a class definition is encountered in the AST, the importer passes its binding to a factory
method. The factory creates a new JavaEEClass object. This includes, e.g., setting the containing package.
If the the model repository does not yet contain an object for that package, then the factory just creates one
on the fly. That requires that every object has a unique identifier, which is conveniently provided by the
bindings. The factory does not initialize all properties of an object, though. For example the creation of
methods is initiated from the importer’s visit(MethodDeclaration) method.

While this main Java importer does most of the work, some entities are still missing or incomplete (i.e.,
not yet implemented). That includes attribute access, local variables, method overriding, class and instance
initializer blocks, Javadoc comments and visibility of types and methods. Importing these is left to other
importers.

In some cases, bindings cannot be resolved. When the project has no compiler errors, these cases are
very rare. The importer can handle such unresolvable bindings by declaring the model object as stub of
a certain kind. As an example, let method B be called from within method A. But the class that defines
B is not yet on the classpath, so B cannot be resolved. The importer should then mark A as a stub. An
object can be marked as a stub for various reasons, thus every mark is accompanied with a short message
text. In our example this means that A is not just flagged as a stub but as “stub because not all invoked
methods could be resolved”. This way, whoever performs an analysis on the model can check whether all
required properties could be imported. For example, methods like A are rendered with a red border in our
Transaction Flow visualization.

Extending parties can add their own importer to leverage the ASTs through VERA’s AST_importers

extension-point. Listing 4 shows what needs to be added to the extending plug-in’s plugin.xml file in
order to register a new AST importer.

Next to the importer’s implementing class (which has to be a subclass of JavaASTImportVisitor), a
unique identifier (id) has to be given. The Listing also shows how to add a dependency to another AST
importer. The value of the after attribute must be the id of an existing AST importer. Note that only

CHAPTER 4. ARCHITECTURE 29

dependencies to other AST importers are possible (i.e., not on omnivore importers, see next section). At
the moment, after is the only kind of dependency VERA supports.

<plugin>

...

<extension point="ch.unibe.scg.vera.AST_importers">

<AST-importer

class="ch.unibe.scg.vera.importer.JavaASTMethodInvocationImporter"

id="Vera.Java-method-invocation-importer">

<dependency after="Vera.Java-basic-importer" />

</AST-importer>

</extension>

...

</plugin>

Listing 4: Registering the new importer through the AST_importers extension point.

The AST importer in Listing 4 has been implemented as a proof of concept. It analyses which Java
method invokes which other Java methods, creates instances of the meta-model entity MethodInvocation,
and adds the new model objects to the model repository. This importer requires that all methods are already
present in the model repository, so we specify that it has to run after VERA’s main Java importer.

4.2.3 Omnivore (non-Java) Importers

So far, we talked about importers that consume Java ASTs, but this is just a specialized form of importer.
There is another extension point that allows one to hook in a more general type of importers, which we
call omnivore importers. Instead of being fed an AST, they are supposed to find and treat the files they
need by themselves. Although we call these importers “omnivore”, they are not required to consume all

files inside a project. They can consider all kinds of file, but most of them will probably specialize on one
or two kinds. Since there is only one other type of importer, the omnivore importers can also be thought of
as the “non-Java” importers.

<extension point="ch.unibe.scg.vera.importers">

<importer

class="com.example.HtmlImporter"

id="html_importer">

<dependency after="id_of_some_other_omnivore_importer" />

</importer>

</extension>

Listing 5: Registering an omnivore (non-Java) source importer through the importers extension point.

The importers extension-point, through which omnivore importers for any kind of sources can be
registered, looks very similar to the AST_importers extension-point, as can be seen in Listing 5. The
main difference is that an omnivore importer does not need to extend a given class but instead must
implement the interface ch.unibe.scg.vera.extensions.VeraImporter. Also, omnivore importers can
only depend on other omnivore importers, not on AST importers.

CHAPTER 4. ARCHITECTURE 30

VERA ships with one omnivore importer that operates on an XML file. That file is the EJB deployment
descriptor, the ejb-jar.xml we already encountered in Section 2.3.2. It is located in the application’s
META-INF folder, for example at .../workspace/MyProject/WebContent/META-INF/ejb-jar.xml. The
importer uses an XML parsing library which allows one to traverse the XML structure of the document as
a tree. The XML document itself does not become part of VERA’s model, nor does its content. Instead,
the importer cherry picks parts of the content data, based on which it both creates new model objects
(JavaBeans) and modifies existing ones (adds transaction attributes to the Bean class’ methods).

As a special case, we implemented an omnivore importer that finds all Java source files and generates
ASTs for all of them. The AST of each file is passed on to all registered AST importers. The id of that
consolidating importer is "Vera.ASTImporter".

4.3 Visualizers

One way to present the model to the user is through software visualizations. VERA embraces this
with its visualizations view (see Section 3.2). That view relies on a number of so-called visualizers

to render visualizations. When the user requests a visualization, the imported model is passed to one
of the visualizers, which then uses that data to render a visualization. The visualizations view makes
available all visualizers that are registered through VERA’s ch.unibe.scg.vera.visualizers extension-
point (subsequently called visualizers for short). Listing 10 shows what an extending plug-in has to add
to its plugin.xml file to register a new visualizer.

<plugin>

...

<extension point="ch.unibe.scg.vera.visualizers">

<visualizer

title="Foo"

id="com.example.visualizers.foo"

class="com.example.FooVisualizer"

icon="icons/foo.png" />

</extension>

...

</plugin>

Listing 6: Declaration of a visualizer extension

Every visualizer is registered with a title and an optional icon to represent that visualizer in Eclipse’s UI.
The implementing class has to implement the interface ch.unibe.scg.vera.extensions.VeraVisualizer
which consists of two methods. The first method getSWTControl(Composite) : Control is invoked

during VERA’s initialization, i.e., when Eclipse starts. The visualizer is supposed to create its own SWT
Control (as a child of the passed SWT Composite) to display the visualization on. That control will
probably be (or contain) an SWT Canvas, which is suited for rendering. The visualizations view manages
those controls and, when the user requests a visualization, displays the control of the respective visualizer.
Right before the control is displayed, the second method of the VeraVisualizer interface, visualize

CHAPTER 4. ARCHITECTURE 31

(IProjectModelRepository, IProgressMonitor), is invoked on the corresponding visualizer. In this
method, the visualizer is supposed to render its visualization on its SWT Control (and report progress
through the passed monitor).

By allowing the visualizer to create its own SWT Control to render on, VERA allows the use of any
drawing framework that can be displayed on an SWT Control (this includes Swing graphics). An AWT
Frame can be embedded in SWT using an org.eclipse.swt.awt.SWT_AWT bridge.

We render the software visualizations presented in Chapter 3 using the Draw2d toolkit. Draw2d is also
part of other frameworks like Zest2 or GEF3 that can help the users to create more complex visualizations
by adding more layouts and by handling mouse and keyboard interaction. In an earlier development stage,
we also evaluated jMondrian [8], the Java implementation of Mondrian [15], a visualization scripting
framework originally written in Smalltalk. We found that jMondrian is less expressive and less powerful
than Draw2d, and it is not maintained. However, the model of jMondrian is simpler than the one of
Draw2d, so jMondrian is a good alternative when creating very simple visualizations.

For these two drawing frameworks there are abstract classes available that implement the interface
VeraVisualizer and simplify creation of visualizers for the respective drawing framework. So if you
intend to render a visualization using Draw2d or jMondrian, consider subclassing Draw2dVisualizer or
JMondrianVisualizer, respectively. The latter uses SWT_AWT bridging as mentioned above.

4.4 Plug-in Components

VERA is not just a single Eclipse plug-in, but really a set of different plug-ins that work together. We
decided to factor out components that have been developed by third parties, that are optional and/or that
can stand alone. In this section, we introduce each of the components and their dependencies. Table 4.1
on page 32 lists all dependencies between plug-ins, including the ones that are provided by the Eclipse
community (e.g., Eclipse runtime, JDT, JUnit, UI integration, Draw2d).

ch.akuhn.fame The Java implementation of Fame by Kuhn. The FM3 annotations which we use to
add the meta-level information to our entities are defined inside this plug-in, alongside with a parser that
evaluates the annotations and instantiates both the meta-model and meta-meta-model. Fame also provides
a rudimentary meta-model generator and has the capability of exporting a model to an MSE file. The
source code of this plug-in can be used outside Eclipse without modification.

ch.unibe.scg.famix This plug-in contains our own Java implementation of the FAMIX Core 3.0
meta-model. This includes the entity definitions both as interfaces and as classes. Note that our Java
extension to the FAMIX meta-model is not contained in this plug-in. Instead, the Java specific entities
are defined directly in VERA’s core plug-in. The entities are annotated with FM3 annotations, which
introduces a plug-in dependency to the Fame plug-in. This plug-in’s source code is completely independent
from Eclipse, too.

2http://www.eclipse.org/gef/zest
3http://www.eclipse.org/gef

http://www.eclipse.org/gef/zest
http://www.eclipse.org/gef

CHAPTER 4. ARCHITECTURE 32

List of Plug-in Dependencies and Extensions

Plug-in Dependens on plug-in Includes extensions to point

ch.akuhn.fame - -

ch.akuhn.fame.tests org.junit4 -

ch.unibe.scg.famix ch.akuhn.fame -

ch.unibe.scg.vera ch.akuhn.fame ch.unibe.scg.vera.AST_importers
ch.unibe.scg.famix ch.unibe.scg.vera.importers
org.eclipse.core.runtime ch.unibe.scg.vera.metamodel
org.eclipse.core.resources ch.unibe.scg.vera.visualizers
org.eclipse.core.expressions org.eclipse.ui.views
org.eclipse.draw2d org.eclipse.ui.commands
org.eclipse.equinox.common org.eclipse.ui.menus
org.eclipse.jdt.core
org.eclipse.jdt.ui
org.eclipse.jface.text
org.eclipse.ui
org.eclipse.ui.commands
org.eclipse.ui.menus
org.eclipse.ui.navigator
org.eclipse.ui.navigator.resources
org.eclipse.ui.views
org.eclipse.help

ch.unibe.scg.vera.core.tests org.junit4 -

ch.unibe.scg.vera.help ch.unibe.scg.vera org.eclipse.help.toc
org.eclipse.help.contexts

lrg.jMondrian - -

ch.unibe.scg.vera_jMondrian ch.unibe.scg.vera ch.unibe.scg.vera.visualizers
lrg.jMondrian
org.eclipse.core.runtime
org.eclipse.jdt.core
org.eclipse.jdt.ui
org.eclipse.ui

Table 4.1: Vera’s plug-ins, their dependencies to other plug-ins and which extension-points they use. The
gray plug-ins and extension-points are external to VERA.

ch.unibe.scg.vera This is VERA’s main plug-in. Extending plug-ins should specify a dependency
to this plug-in; it provides the infrastructure for adding meta-model entities, importers and visualizers,
including the visualizations view. It also includes the the model browser view, the Java extensions to the

CHAPTER 4. ARCHITECTURE 33

FAMIX Core, the Java importers, and the three Draw2d visualizers. It depends on the FAMIX Core and
Fame plug-ins, as well as on numerous plug-ins outside VERA. Eclipse’s UI plug-ins allow VERA to
register its two new views, use the typical command buttons in the view’s toolbar and add entries to pop-up
menus. Eclipse’s core plug-ins allow VERA to leverage Eclipse’s extension mechanism, i.e., VERA can
define its own extension-points and find all installed extensions to those points at runtime. The Draw2d
plug-in is obviously used by the three included visualizers. Lastly, Eclipse’s help plug-in allows VERA to
hook the correct help texts to the currently displayed visualization (and other parts of VERA).

ch.unibe.scg.vera.help We also factored out the help contents into a separate plug-in. The help
contents are quite independent from the rest, and they are just data, no code. (Note that we are talking
about help texts for a VERA user, not about code comments. The Java source code itself is quite thoroughly
documented with Javadoc.) Being in a separate plug-in, the help texts can be improved and then published
without re-publishing the code. Always increasing the version number on the code does not make any
sense when the code did not change at all. The help contents we provide are not very extensive, yet, so
there might be quite a few updates in the future. This plug-in depends on VERA’s main plug-in.

Extending parties can include help texts for their visualizations directly in their plug-in; there is no
need to specify a dependency to the ch.unibe.scg.vera.help plug-in. VERA’s help plug-in gives an
example of how to add help content through Eclipse’s help system. For further instructions, please refer to
Eclipse’s on-line documentation4.

ch.unibe.scg.vera.core.tests and ch.akuhn.fame.tests The unit tests for Vera
are not included in Vera’s main plug-in. Instead, we factored them out to a plug-in fragment. For the tests,
we use a testing workspace, but we do not include it in the test plug-in. Shipping the tests without the
necessary test data would not make any sense, so we keep them separate in this plug-in fragment, which
we do not ship with VERA. The tests as well as the workspace contents can still be downloaded directly
from the SVN repository (see Appendix A).

As we did for VERA, we also factored out the unit tests for Fame to a plug-in fragment.

lrg.jMondrian The Java implementation of Mondrian by the LOOSE Research Group5.

ch.unibe.scg.vera_jMondrian When evaluating drawing frameworks, jMondrian was a candi-
date. But since it is not stable, yet, and because Draw2d is more suited to our needs, we decided against
jMondrian. This plug-in provides the abandoned prototypes of the System Complexity and Packages
visualizations, written with jMondrian. It depends on VERA’s main plug-in and the jMondrian plug-in.
Extending parties can refer to this plug-in to see how visualizations generated by a visualzation framework
other than Draw2d can be embedded with VERA.

4http://help.eclipse.org/indigo/index.jsp?topic=/org.eclipse.platform.doc.isv/guide/
ua_help.htm

5http://loose.upt.ro/reengineering/research/jMondrian

http://help.eclipse.org/indigo/index.jsp?topic=/org.eclipse.platform.doc.isv/guide/ua_help.htm
http://help.eclipse.org/indigo/index.jsp?topic=/org.eclipse.platform.doc.isv/guide/ua_help.htm
http://loose.upt.ro/reengineering/research/jMondrian

CHAPTER 4. ARCHITECTURE 34

jMondrian visualizations for Vera

jMondrian drawing framework Java Enterprise Analysis

Fame FAMIX Core 3.0

ch.unibe.scg.vera

ch.akuhn.fame

ch.akuhn.fame.tests

ch.unibe.scg.vera.core.tests

ch.unibe.scg.vera.help

lrg.jMondrian

ch.unibe.scg.vera_jMondrian

ch.unibe.scg.famix

Figure 4.3: Overview of Vera’s Eclipse plug-ins and installable Eclipse features. The inner boxes and
thin arrows stand for the plug-ins and their dependencies. The outer boxes and grey arrows stand for the
features and their dependencies. The dotted boxes stand for plug-in fragments containing the tests.

4.5 Installable Features

We created an update-site for VERA (see Appendix A) on which we publish different combinations of
our plug-ins as separate Eclipse features. (The terms plug-in, feature and update-site are explained in
Section 2.4.2.) Figure 4.3 gives a graphical overview of VERA Eclipse features and their dependencies,
while the details are explained in the text below.

Java Enterprise Visualization. This is the main Eclipse feature, as it wraps VERA’s core plug-in. When
this feature is installed, the two features FAMIX Core and Fame will automatically be installed, too, as
they are prerequisites. Thus, this feature installs all one needs to get started with VERA. This feature is
published under a BSD 3-clause license.

For people who want to extend VERA or reuse parts of it, there are four more features that include
resources for plug-in development. Most of the features on that update-site wrap exactly one of the plug-
ins mentioned in the previous section. But some features depend on others (according to the dependencies
among the plug-ins they wrap), which ensures that all required plug-ins are installed. For example when
the jMondrian visualizers are installed, the jMondrian framework is automatically installed along with it.

Fame and jMondrian. We mainly publish Fame and jMondrian as separate downloads because we do
not know any other source that offers them for download on an Eclipse update-site. What we publish is
what we use for VERA, our forks of the original versions. We include bugfixes and adaptations to our
needs. Note that more recent versions of jMondrian might exist already, so you might want to contact its
original developers. Kuhn’s Fame is published under a GPL + LGPL dual license, jMondrian under a BSD
2-clause license.

CHAPTER 4. ARCHITECTURE 35

FAMIX Core. The FAMIX Core feature contains our Java implementation of the meta-model. This is
interesting for people who plan on using our Java implementation of the FAMIX core to analyze other
languages, e.g., for Eclipse’s C/C++ development environment. Our FAMIX implementation is published
under a BSD 3-clause license.

jMondrian visualizers. This feature ships the abandoned jMondrian visualizers. They are not intended to
be used any more. We publish that work as an example of how a different drawing framework can be used
for visualizations. It is also published under a BSD 3-clause license.

4.6 Summary

In this chapter we have seen that VERA provides a base to analyze JEAs within Eclipse. It exposes an
expressive meta-model of the source code and some JEA specifics, invokes information importers that
populate a model, and provides a small set of visualizations. All of the three, model, importers and
visualizers, are built to be extended. We also learned that VERA is composed of multiple Eclipse plug-ins
which can be installed following the standard Eclipse way.

In the following chapter we see how extending parties can leverage all of this.

5
Extension Example

This chapter exemplifies how VERA can be extended. In particular, we present a scenario in which we
enable VERA to analyze Java annotations.

Our scenario revolves around Cool Coders, Incorporated. This fictional software development com-
pany maintains an old Java web application which still uses EJB 2.1. With VERA’s Transaction Flow
visualization they were able to quickly identify several ways of improving the codebase. They would
very much like to have the same kind of analysis for more recent applications that use EJB 3.0. But in
that modern version of EJB, the information about transactions lies in Java annotations instead of the
ejb-jar.xml file.

The Cool Coders decide to extend VERA and enable it to process annotations in Java source code. If it
were just for the Transaction Flow visualization, all they would need is a new importer which interprets the
EJB specific annotations in the Java source code, creates JavaBean model objects, and sets the transaction
attributes on the Bean’s methods accordingly. The Cool Coders realize that annotations also appear in
other contexts in some of their projects. So they decide to add annotations as first-class objects to the
application model. VERA’s meta-model does not yet contain any entity that could represent annotation
instances. So the Cool Coders first need to extend the meta-model. They also need an importer which reads
the Java annotations, creates instances of the new meta-model entity and add these new model objects to
the repository. This same importer can also do the work of interpreting the EJB specific annotations.

With the application model so enriched, the Cool Coders can then reason about annotations in the
Java source code. They can run any analysis they like and display the results to the Eclipse user in an
appropriate way.

37

CHAPTER 5. EXTENSION EXAMPLE 38

In the remainder of this chapter, we show how the Cool Coders extend the meta-model, add a custom
importer and add a custom visualizer.

5.1 Extending the meta-model

In a first step the Cool Coders extend the meta-model of VERA. This scenario requires one additional class:
AnnotationInstance. As the name suggests, that new entity represents the Java annotation instances. A
new entity for the Java annotation types is not necessary. Although representing annotation types with
their own entity would be a natural thing to do, it turns out that annotation types must be represented
by the already existing meta-model class JavaEEClass. This is due to the fact that Eclipse’s Java parser
considers annotation types special cases of Java classes. Thus, VERA’s existing Java importer is oblivious
to the difference between a class definition and an annotation type definition; It just creates a JavaEEClass

model object whenever it encounters an annotation type definition. That object is then added to the model
repository and cannot be replaced by another object.

The Cool Coders embed our new entity AnnotationInstance in the existing FAMIX meta-model
as a subclass of SourcedEntity, since it can be related to a location in the Java source code but is not
similar to any existing subclass of SourcedEntity. The new entity implements a new entity interface
IAnnotationInstance which extends ISourcedEntity, following the same pattern as the rest of the
meta-model. The interface defines the getter methods for the information contained in the new entities,
i.e. references to the annotation’s type and the annotated entity. These methods are annotated with
@FameProperty, and the interface itself with @FameDescription and @FamePackage, as shown in Listing 7.

@FamePackage("FAMIX")

@FameDescription("AnnotationInstance")

public interface IAnnotationInstance extends ISourcedEntity {

@FameProperty(name="annotationType")

IClass getAnnotationType();

@FameProperty(name="annotatedEntity")

INamedEntity getAnnotatedEntity();

}

public class AnnotationInstance extends SourcedEntity implements IAnnotationInstance {

// implement the interface methods, add some helper methods

}

Listing 7: Definition of the meta-model entity for Java annotation instances.

The Cool Coders place the two definitions in the /src/ folder of their plug-in, in two separate files in
the ch.unibe.scg.vera.metamodel package. They register their new entity through VERA’s metamodel
extension-point as shown in Listing 8.

CHAPTER 5. EXTENSION EXAMPLE 39

<plugin>

...

<extension point="ch.unibe.scg.vera.metamodel">

<with class="com.example.AnnotationInstance" />

</extension>

...

</plugin>

Listing 8: Declaration of the meta-model extension.

With that addition to the meta-model set up, the Cool Coders can start enriching the model of an
Eclipse project with information about Java annotations.

5.2 Adding a custom importer

The Cool Coders need a new importer for the annotation instances. It will only look at Java source code, so
we declare an extension to VERA’s extension point AST_importers. The new annotation importer should
run after the Java importer, so it can verify that every annotation instance corresponds to a known annotation
type. The Cool Coders register the importer by adding the contents of Listing 9 to the plugin.xml file of
their plug-in.

<plugin>

...

<extension point="ch.unibe.scg.vera.AST_importers">

<AST-importer

class="ch.unibe.scg.vera.importer.AnnotationInstanceImporter"

id="Java-annotation-instance-importer">

<dependency after="Vera.Java-basic-importer" />

</AST-importer>

</extension>

...

</plugin>

Listing 9: Registering the new importer through the AST_importers extension point.

While visiting annotations of Java classes and methods, the importer creates instances of the new entity
AnnotationInstance and adds them to the model repository. The implementation of the new importer is
outlined in Appendix B.

5.3 Exposing the data

With the extensions for both the meta-model and the importers in place, the Cool Coders are ready to
expose the information to the developer.

CHAPTER 5. EXTENSION EXAMPLE 40

They decide to implement an Annotation Constellation1 visualization. That visualization shows the
names of all used annotations on Java classes. Labels for frequently used annotations are larger, and classes
that use the same annotations are placed closer together. The visualization helps in finding annotations
which are often used together, and finding out which technologies are used. Furthermore, it makes explicit
the fact that annotations introduce extra dependencies, which leads to extra complexity. Figure 5.1 shows
what that visualization looks like.

The Cool Coders implement such a visualization in Java and register it as shown in Listing 10.

<plugin>

...

<extension point="ch.unibe.scg.vera.visualizers">

<visualizer

title="Annotation Constellation"

id="com.example.visualizers.annotations"

class="com.example.AnnotationConstellation"

icon="icons/annotations.png" />

</extension>

...

</plugin>

Listing 10: Declaration of a visualizer extension

5.4 Summary

In this chapter, we followed the Cool Coders in their process of extending VERA with their own Eclipse
plug-in. We have seen a meta-model extension, accompanied by an AST importer extension, and a
visualizer extension.

1http://www.themoosebook.org/book/externals/visualizations/annotation-constellation

http://www.themoosebook.org/book/externals/visualizations/annotation-constellation

CHAPTER 5. EXTENSION EXAMPLE 41

Figure 5.1: Illustrative image for the Annotation Constellation visualization (in this case applied to a JEA).
The labels stand for annotation types, the small boxes for Java classes; the lines depict on which classes
there are annotations of which type. By courtesy of the Moose Book.

6
Related Work

In this chapter we present closely related existing software analysis tools for Java applications. We chose
tools that provide visualizations and meet some of the three goals we have for VERA. This is just a small
selection of all the tools that exist nowadays. Canfora and Di Penta [6] provide a more general overview.

6.1 Moose

Moose [16] is an extensive platform for software and data analysis developed in Smalltalk. It includes
various utilities and relies on several tools ranging from importing and parsing data, to modelling, to
scripting software visualizations with the drawing framework Mondrian1.

One core element of Moose is FAMIX [25], a language independent meta-model that describes the
static structure of object-oriented software systems. The FAMIX meta-model is extensible. Different
extensions exist that can describe a variety of different software systems, including JEAs. By using tools
such as VerveineJ2 or inFusion (a newer version of iPlasma [14]), it is possible to create a FAMIX model
from Java source code and export it to a file. The model can then be imported into Moose and analyzed
there. Thanks to meta-model extensibility, composable tools and scripting capabilities for visualizations,
the user can adapt Moose to fulfil a very wide range of analysis tasks.

However, in order to use the tools provided by Moose, the user should be familiar with the Smalltalk
language, the Smalltalk working environment, and the internals of Moose. For Java developers this means

1http://www.moosetechnology.org/tools/vw/mondrian
2http://www.moosetechnology.org/tools/verveinej

43

http://www.moosetechnology.org/tools/vw/mondrian
http://www.moosetechnology.org/tools/verveinej

CHAPTER 6. RELATED WORK 44

that they have to get to know a completely different world of software, which might keep them from
trying Moose in the first place. A related issue for Java developers is the cognitive context switch between
Smalltalk/Moose and Java/IDE during the development process.

VERA does not provide nearly as many different analyses and visualizations out of the box as Moose
does. Both VERA and Moose are extensible and, thanks to FAMIX, support cross-technology analysis.
Moose’s capability of scripting visualizations is something that we consider a missing feature in VERA.

6.2 SHriMP Views

The Simple Hierarchical Multi-Perspective tool (SHriMP) [22, 24], displays architectural diagrams of
software using nested graphs. Its user interface embeds source code inside the graph nodes and allows
the user to navigate the nodes following low-level dependencies. It supports animated panning, zooming,
and fisheye-view actions for viewing high-level structures. Compared to Moose, SHriMP also requires a
context switch but is very easy to learn and intuitive to use. SHriMP does not offer its users the possibility
to add custom visualizations or other types of analysis; it is not extensible.

There is an Eclipse plug-in called Creole that integrates SHriMP with older versions of the Eclipse
IDE, as shown in figure Figure 6.2. However this plug-in is no longer maintained and is incompatible with
recent versions of Eclipse (> 3.3). (This adds another criterion to the helpfulness of an analysis or software
comprehension tool: Whether it is actively maintained.)

6.3 Softwarenaut

Softwarenaut [13] is a static analysis tool that supports architecture recovery through visualization and
interactive exploration. Its focus is to support top-down code comprehension. The user can selectively
increase or decrease the level of detail from a coarse-grained to a very fine-grained view of the system,
while simultaneously being presented with a visualization and some metrics. This kind of code exploration
could also be implemented on top of VERA. The three visualizations VERA provides so far support the
top-down comprehension strategy mostly by giving a visual overview of the system.

As can be seen in Figure 6.3, Softwarenaut simultaneously presents the user with the browser and
complementary information such as a visualization and some metrics. Eclipse allows Vera to add its
visualization in a similar manner right next to the main focus of work. In Softwarenaut, the main panel
features the visualized software components. In Eclipse, the main panel is the Java editor.

Softwarenaut again is a tool external to the IDE, thus requires a context switch. It interoperates with
Moose and can therefore process different source languages.

In the remainder of this chapter, we focus on tools that are closer to the Java developer. They all integrate
with the Eclipse IDE, a widely used Java development environment.

CHAPTER 6. RELATED WORK 45

Figure 6.1: Three visualizations by Moose (drawn with Mondrian)

Figure 6.2: Screenshot of Creole, the SHriMP Eclipse plug-in.

CHAPTER 6. RELATED WORK 46

6.4 Architexa

Figure 6.4 shows three visualizations created with Architexa3, a commercial Eclipse plug-in that allows
the user to create UML-like diagrams of Java source code in an explorative manner.

By explorative we mean that the user is first presented with a very high-level view of a system and
then allowed to increase the level of detail on any component. This is similar to Softwarenaut in that both
mostly facilitate the top-down and knowledge-based comprehension strategies. This explorative way of
navigation allows the user to create many different views on a system that highlight different aspects of
the software design. It is useful to get to know the code and also for creating images for documentary
purposes.

VERA also differs from Architexa in the ambition to enable the analysis of JEAs. While Architexa
focuses on visualizing pure Java, we consider the ability to combine information from different sources vital.
Also, a single company can hardly think of and realize useful visualizations for all possible combinations
of technologies and frameworks. We should enable the developers to build their own tools, which are
tailored to their exact needs, on top of existing ones. Therefore the next tools we present are all built to be
extended.

6.5 X-Ray

X-Ray4 is an open-source Eclipse plug-in which provides a small set of interactive source code visualiza-
tions, such as the one shown in Figure 6.5. It has been developed as a Bachelor’s project at the University
of Lugano.

In contrast to VERA, X-Ray uses a very minimal model of the source code (just Java packages and
classes), which limits its analytical capabilities. That makes X-Ray ill-suited for analyzing JEAs. Also,
it does not allow the user to easily add custom visualizations like VERA does. Nonetheless it is a good
example that providing a reusable model is a good starting point for different kinds of analysis: There are
at least two other Eclipse plug-ins that create their own visualization based on that model: Citilyzer5 and
Proximity Alert6.

6.6 inCode

inCode [7] is another Eclipse plug-in that supports the user in software quality assessment. Its main features
are on-the-fly detection of design flaws, automated refactoring for correcting the flaws, architectural
assessment, and interactive code visualizations (see Figure 6.6). The functionality provided by inCode was
originally developed for inFusion (formerly iPlasma [14]), another stand-alone analysis program for Java,
C# and C++. inCode itself focuses purely on Java code.

3http://www.architexa.com/index_c.php
4http://xray.inf.usi.ch/
5http://atelier.inf.unisi.ch/~biaggia/citylyzer/
6http://atelier.inf.unisi.ch/~casarela/ProximityAlert/

http://www.architexa.com/index_c.php
http://xray.inf.usi.ch/
http://atelier.inf.unisi.ch/~biaggia/citylyzer/
http://atelier.inf.unisi.ch/~casarela/ProximityAlert/

CHAPTER 6. RELATED WORK 47

Figure 6.3: Screenshot of Softwarenaut, featuring the different parts of the user interface.

Figure 6.4: Visualizations by Architexa: Sequence (left), “layered” (center) and class (right) diagrams.
The components can be expanded at will, relationships between components are shown when a component
is hovered over with the mouse cursor.

CHAPTER 6. RELATED WORK 48

inCode does not expose its model for reuse. But the drawing framework that is used for the visualiza-
tions, jMondrian, is readily available.

While X-Ray provides a reusable model, inCode provides a reusable drawing framework. A tool that
supports JEA analysis should provide both an extensible model and an extensible set of visualizations.
With VERA we aim to produce a framework that supports the implementation of analyses comparable to
inCode’s.

6.7 MoDisco

MoDisco7 is an Eclipse plug-in that provides an extensible framework to develop model-driven tools
that support the modernization of legacy software. This includes quality assurance, documentation,
improvement and migration. Each of these tasks requires the user to write programs that use MoDisco’s
framework, i.e., in order to use MoDisco, one must get to know it in its whole complexity; There is no
default model or tools for, e.g., Java software. The general architecture of MoDisco is similar to that of
Vera and can be seen in Figure 6.7. MoDisco is a more general framework, within which Vera could have
been implemented, but was not.

In contrast to MoDisco, Vera includes default visualizations, whereas MoDisco provides none. Vera
can be used out of the box, without writing a single line of code, and is able to perform simple analyses on
source code. Furthermore, unlike MoDisco, VERA ships with a base meta-model that should be reasonably
close to the users’ needs. That is to say, when someone wants to add a custom analysis to VERA, she
will already find a lot of information in VERA’s existing meta-model, while MoDisco does not provide
anything by default.

7http://eclipse.org/MoDisco/

http://eclipse.org/MoDisco/

CHAPTER 6. RELATED WORK 49

Figure 6.5: System Complexity visualization by X-Ray. Additional information about the classes is shown
when the mouse is moved over them; the class figures can be dragged around; filters can be applied.

Figure 6.6: A System Complexity-like visualization by inCode. The boxes represent Java classes in the
software, colored according to detected possible design flaws.

Figure 6.7: Conceptual overview of MoDisco.

CHAPTER 6. RELATED WORK 50

6.8 Summary

In this chapter, we presented tools related to VERA with a focus on three properties: integration with the
development environment to avoid context switch, whether they offer to add custom analyses through
extensibility and their multi-language capabilities, which are essential to JEA analysis. In Table 6.1 we list
the tools and give qualitative estimates of those three properties, plus their visualization capabilities.

Overview of Analysis Tool Features

SW Visualizations IDE integration Extensible JEAs

Moose ++ ++ +
Softwarenaut ++
Shrimp / Creole ++
Architexa ++ ++
X-Ray + ++ +
inFusion / inCode + ++
MoDisco ++ + +
VERA + ++ ++ +

Table 6.1: Features of the most relevant applications that support software understanding and analysis.
(+: decent, ++: good)

7
Discussion: Meta-Model Extensibility

Implementing the FAMIX meta-model was one of the major challenges of this project. Our goal was
a meta-model that is easily usable, easily extensible and at the same performs well at runtime. In this
chapter, we describe different approaches to implementing a meta-model and discuss them with regard to
the following criteria:

Truly extensibile. We want VERA to be modular. A fork is not what we call an extension.

Can be realized in Java. The Smalltalk approach requires language features Java does not have.

Polymorphism in extensions. Extensions can put their new meta-model entities into a type hierarchy.

DRY (Don’t Repeat Yourself). A new meta-model entity can reuse the code of its super-entity.

Post-import specialization. Extensions can specialize objects created by existing importers.

Explicit API. Uses Java’s static typing to expose a model object’s API.

Runtime performance. Heavy use of reflection will slow down the model.

As an example, we again consider the use case where someone wants to add support for Java anno-
tations (see Chapter 5). In the example chapter we mentioned that introducing a new meta-model entity
AnnotationType would be a natural thing to do. In this chapter, we assume that there is just the FAMIX
CORE available and an extension wants to add Java specifics, including an AnnotationType entity as well

51

CHAPTER 7. DISCUSSION: META-MODEL EXTENSIBILITY 52

as an isEnum property for Java classes and also properties related to Java Generics. Both Java classes and
Java methods are parameterizable, so the Generics related properties should go to a common super-entity.
The first common super-entity of Class and Method in FAMIX CORE is ContainerEntity (see Figure 2.2
on page 14).

In the following sections, we discuss different approaches to meta-model extensibility.

7.1 Collaboration and Forking

As we are about to see in this chapter, extensibility is not easy to realize at all in Java. The pragmatic
programmer might just abandon meta-model extensions completely and instead choose to modify the
meta-model collaboratively in the community of all VERA developers. When people cannot agree on a
common model (e.g. a meta-model with totally different entities and properties might be required for a
C++ tool), someone can start an independent fork (copy the FAMIX Core implementation and thereafter
change the copy independently from the original, also referred to as clone and own). There is a high
chance that such forks will be incompatible with each other, i.e., only one fork could be installed in an
Eclipse instance at a time. Changing the original entities will most likely also require changes in the
original analyses. Furthermore, forks do not automatically share bug fixes and other improvements.

We do not want to force every extending party to maintain the code of the whole meta-model, but just
the parts they are interested in. Hence we consider this approach a zero option for meta-model extensibility
and do not adopt it in VERA.

7.2 Patching existing entity definitions

In the Smalltalk world, extensions to the meta-model can easily be realized by patching the original
FAMIX classes. New properties can be added to an existing meta-model entity by adding accessor methods
through a patch. Changes in the original entity are immediately reflected in the patched version. In Java
however, there is no way to change existing class definitions (at development time). Hence this is not an
option for VERA.

7.3 Parallel Class Hierarchies

A naive approach to approximating Smalltalk-like extensibility is to use parallel class hierarchies. The
meta-model entities of FAMIX build one huge inheritance tree. We picture that hierarchy vertically, as
illustrated in Figure 7.1. For our example extension (adding support for Java to the FAMIX CORE),
we might just subclass existing entities in order to specialize them. We add the property isEnum to
the Class entity by creating a new JavaClass entity. Similarly, we add new properties related to Java
Generics through a new entity JavaContainerEntity, a specialization of ContainerEntity. We picture
the extension’s entities to the right hand side, thus they introduce horizontal inheritance. This approach
has one major issue: Vertical inheritance is not possible among entities introduced by the extension. I. e.,

CHAPTER 7. DISCUSSION: META-MODEL EXTENSIBILITY 53

the JavaClass entity cannot inherit at the same time from Class and JavaContainerEntity. Java does
not support multiple-inheritance.

This approach also suffers from a difficulty which affects all approaches that involve horizontal class
inheritance: The extension cannot change how existing importers work. In the example from Figure 7.1,
the original importer will probably already create instances of the Class entity. The extension would
prefer instances of JavaClass, but it cannot change the original importer. Thus a custom importer has to
be added that migrates existing Class objects in the model repository to instances of the more specific
JavaClass. Alternatively, the core importers could be changed to use an abstract factory for model objects.
That would allow the extension to provide its own factory which produces instances of JavaClass from
the start. Still, in case there is another extension which has its own idea of how JavaClass should look
like, these two extensions cannot both replace the model objects without breaking each other. Multiple
independent extensions cannot coexist when they specialize the same core entities. We call this the
post-import specialization difficulty.

Entity

Structural Container

ClassAttribute

Named

JavaContainer

JavaClass

AnnotationType

Figure 7.1: Approximating Smalltalk’s patching with parallel class hierarchies. The boxes to the right
(with green shadows) demonstrate how classes are added by an extending party. This is not possible in
Java since it requires multiple-inheritance.

7.4 Horizontal Class Inheritance

As a single-inheritance variation of the first approach, we can leave out vertical inheritance in extensions,
as shown in Figure 7.2. Only the original meta-model forms a hierarchy of entities. Extensions then
specialize some of the original entities by subclassing them. There is no relation at all between the
extension’s new entities. With this approach, extensions can only specialize the leaves of the original
inheritance tree (and introduce new leaves); polymorphism in the extension’s new entities is restricted to
the inheritance relationships in the original meta-model. For example, suppose the two original entities
Class and Method are subclassed in the extension by JavaClass and JavaMethod, respectively. Now we
want to write an analysis that operates on all generic objects, i.e. on both classes and methods. But
with this approach, we cannot refer to “all generic objects”. We must write our analysis twice, once
for Java classes and once for Java methods. Since we have no multiple-inheritance, we cannot just
add the information about Java Generics to a common superclass of JavaClass and JavaMethod — the

CHAPTER 7. DISCUSSION: META-MODEL EXTENSIBILITY 54

original meta-model (i.e., the common superclass ContainerEntity) is untouchable for extensions. If we
introduced a new entity JavaContainerEntity and added the Generics related information there, neither
JavaClass nor JavaMethod could make use of it, since they are only subclasses of ContainerEntity

but not of JavaContainerEntity. When introducing a new entity (e.g., AnnotationType), it can either
horizontally specialize an existing entity (as seen in the figure) or use vertical inheritance to allow for
polymorphism. Furthermore, this approach suffers from the post-import specialization difficulty.

Entity

Structural Container

ClassAttribute

Named

JavaContainer

JavaClass

AnnotationType

Figure 7.2: Leaving out vertical inheritance in the extension as a single-inheritance variation to the first
approach. VERA’s core Java importers still create instances of the core classes on the left. Polymorphism
in the extension is lost.

7.5 Parallel Interface Hierarchies and horizontal Class Inheritance

This approach leverages the fact that the restriction of single-inheritance does not apply to Java interfaces.
The parallel entity hierarchies are built using interfaces. Compared to the first approach, this solution allows
for restricted subtype polymorphism. For example, let IClass be a sub-interface of IContainer in the
original meta-model. An extension now specializes these two entities with two new interfaces IJavaClass
and IJavaContainer. The IJavaClass can at the same time extend IJavaContainer, parallel to the
original entities. The implementing classes JavaClass and JavaContainer inherit (horizontally) from the
respective original meta-model entities. Figure 7.3 illustrates this example. A restriction of this approach
is that there is still no vertical class inheritance, i.e., while IJavaClass specializes IJavaContainer,
JavaClass does not specialize JavaContainer. As a consequence, new methods which are defined in
IJavaContainer have to be implemented in both JavaContainer and JavaClass (as well as in every other
sub-entity of JavaContainer, if any). Such code duplication can be reduced through composition: Create
a helper class which implements the new functionality and delegate to such a helper object from both
JavaContainer and JavaClass. Like this, only the delegation code is duplicated, while the actual new
functionality is implemented but once. This is WET (Write Everything Twice), the opposite of DRY.

This approach still suffers from the post-import specialization difficulty.
There is still no polymorphism among the concrete meta-model classes, but it allows us to implement

analyses against common super-interfaces of newly introduced entities. Something like this is what we
chose for our implementation of the FAMIX meta-model. Our implementation slightly differs from this

CHAPTER 7. DISCUSSION: META-MODEL EXTENSIBILITY 55

IEntity

IContainer

IClass

INamed IJavaContainer

IJavaClass

IAnnotationType

Entity

Container

Class

Named JavaContainer

JavaClass

AnnotationType

Figure 7.3: Multiple-inheritance is possible with interfaces. Though still no polymorphism (i.e., code
duplication) in the concrete extension classes. Interfaces are depicted by italic names.

approach in that we did not add setter or helper methods to the interfaces. Especially the helper methods
are helpful when writing analyses, though, which is why we ended up writing our visualizations against the
concrete meta-model classes, not the interfaces. Extensions might want to add more than just the property
getters to their interfaces. In the following approaches, we assume that meta-model entity interfaces
contain all methods.

7.6 Purely declarative Meta-Model Definition

We considered the possibility of specifying the meta-model completely declaratively. With this approach,
the meta-model entities are defined in XML in an extension-point configuration (or in an MSE file). The
concrete entity classes are generated at runtime and are a combination of all functionality defined in all
present extensions. There are two issues with this approach.

First, our meta-meta-model FM3 contains not enough information about how properties relate to
each other. For example the belongsTo property is marked as “derived” from other properties. But the
information about how it is derived lies solely in the meta-model source code; FM3 does not model different
kinds of derivation. (The belongsTo property is in fact aliased by other properties in several places near
the leaves of the meta-model inheritance tree.) We would need a more expressive meta-meta-model in
order to generate meta-model code. Also, the meta-model should provide helper methods (which are not
just plain getters and setters), which can hardly be generated. Maybe declaratively including static methods
on external classes as helper methods would be an option.

The second issue is that the meta-model API is implicit, i.e., not described by a Java class or interface
but only in XML. But we (and the compiler) need to know a model object’s API at development time. This
is required to program both importers and analyses, in fact in every place where model objects appear in
the source code. That issue can presumably be solved by generating a set of interfaces for the meta-model
entities for use at development time.

With such an approach, one can circumvent class inheritance related issues, i.e., restricted polymor-
phism and code duplication, and probably also post-import specialization. A major challenge with this
approach is implementing it in an easily understandable and usable fashion.

CHAPTER 7. DISCUSSION: META-MODEL EXTENSIBILITY 56

7.7 Adapters for all Properties

The next approach avoids class inheritance issues by means of a generic model object. This object itself
does not have any properties. Yet it can represent an instance of an arbitrary meta-model entity, both
of VERA’s base plug-in and all extensions. This is accomplished through stateful adapters. An adapter
provides methods specific to a certain meta-model entity, i.e., getter and setter methods for one or multiple
properties. It also stores those properties’ values, that is why we call the adapters stateful. Every model
object has its own set of adapter instances. Every extension can add its own adapter to a model object (at
runtime, through a method call). Everyone can retrieve an arbitrary adapter (think: an arbitrary property)
of a model object, as long as they know the adapter’s class. This provides great flexibility for extensibility.
Figure 7.4 gives a simplified class diagram of this approach.

Entity

Container
Class

Named

JavaContainer

JavaClass
AnnotationType

ModelObject
Properties

obj : ModelObject
+ as(Class<E>) : E

− guid : String
− adapters : Map<Class<T extends Properties>, T>
+ addAdapter(Properties) : V
+ as(Class<E extends Properties>) : E
+ is(Class<? extends Properties>) : boolean

Figure 7.4: No need for object migration or code duplication with this adapter solution. But the API of a
model object is not explicit and there is no polymorphism among entities at all.

Since this approach completely avoids inheritance, there are no issues concerning code duplication and
post-import specialization. But there is also no polymorphism among meta-model entities at all! In fact,
the meta-model is completely implicit with this approach. There might be a specification somewhere on
a sheet of paper, which defines the set of adapters that make up each meta-model entity. But there is no
guarantee that a given model object provides a well-defined set of adapters. Any adapters can be added
at any time. In other words: the benefits of static typing are lost with this approach. When developing
an analysis, people would “just have to know” which model objects refer to what kind of source code
artefacts (based on the model object’s unique identifier), and hope that the desired adapters have been
added. If a developer believes that all adapters are well set, she can just query the model repository for any
objects that have adapters of certain types. That might actually be a convenient way to write analyses. Still,
the fact that the documentation of the meta-model is external to the source code makes it cumbersome to
work with and maintain. The fact that there is no explicit meta-model, let alone a meta-meta-model, also
makes it much harder to programmatically reason about the model.

An interesting variation of this approach involves a declarative meta-model. The meta-model entities
are defined though an extension-point. The specification is written in XML in the plugin.xml file. Every
entity is assigned a String identifier and a collection of adapters its instances must provide. Model objects
are created by a factory which at the same time adds all adapters specified in VERA’s core plug-in as well as
in any installed extensions. After that, no further adapters can be added. Of course this cancels the runtime

CHAPTER 7. DISCUSSION: META-MODEL EXTENSIBILITY 57

flexibility of the adapters approach. But based on the declarative meta-model definition, programmatic
reasoning about the model is possible again. And the definition is at the same time a documentation
which is guaranteed not to become out of date. A meta-model browser can be used which combines such
documentation of all extensions that are available at development time. This would of course require
implementing such a meta-model browser, as well as significant changes to the Fame implementation
(which instantiates the FM3 meta-meta-model).

7.8 Using java.lang.reflect.Proxy

The Java reflection package offers a way of dynamically creating “proxy” classes whose instances can
be cast to a given set of interfaces. That set of interfaces does not have to be known at compile time, but
only when the proxy object is created. Adding more interfaces after creation is not possible, though. All
method invocations on a proxy instance are passed on to an invocation handler which then decides how to
proceed further.

With this approach, an extension can add an interface to the meta-model and specify that it should
contribute properties to an existing entity, i.e., that the new interface stands for the “same entity” as an
interface from the FAMIX Core. We can collect all “same entity” interfaces from all VERA extensions
that are installed in an Eclipse application and then use a generic invocation handler which delegates the
method calls. The delegation target for a new interface should be provided by the extension that introduced
it. Whenever model objects are created (e.g., by VERA’s original Java importer), they are proxies which
already know all properties specified by extensions. With this approach, we do not implement any class
that represents a “model object”, instead every meta-model entity has its own, dynamically generated
proxy class. The only concrete classes are the delegation targets. We call them “property handlers” since
their instances store the values of one or more properties as well as the methods to access them. See
Figure 7.5 for a class diagram.

The class of a proxy object is only available at runtime, yet we (and the compiler) need to know its
API in order to program against it. This is solved by casting proxy objects to one of the interfaces they
implement before calling any methods on them. In VERA’s core plug-in, the model object will be cast
to the core version of its meta-model entity. In a VERA extension, the same object will be cast to the
extension’s more specialized version.

Property handlers must be separated from the meta-model type hierarchy. If a property handler just
implemented an entity interface, it would have to implement all methods defined in all entity-super-
interfaces, too. We can avoid that by factoring out all method definitions of an entity interface to a new,
additional super-interface thereof. That property interface is then independent from the meta-model
type hierarchy. Like that, a property handler can implement just the property interface, which makes it
independent from entities. The property interface can also be split up into multiple property interfaces,
each representing exactly one property (including setter, getter and convenience methods for that property).
Property handlers can implement an arbitrary number of property interfaces. While this approach increases
complexity compared to other approaches, it also has its benefits. For example, it allows one to reuse

CHAPTER 7. DISCUSSION: META-MODEL EXTENSIBILITY 58

Entity

Container

Class

Named

Proxy for <E extends Entity>
− ih : DelegatingInvocationHandler

PropertyHandler
obj : Proxy for <E>

DelegatingInvocationHandler
− handlers : Collection<PropertyHandler>
+ invoke (obj, method, args) {
 1) toString(), equals(), hashCode()
 2) try all handlers of E
 }

Type

P_name
P_belongsTo

P_types

P_attributes
P_methods

P_inheritances

P_isInterface
P_isAbstract

P_isEnum
P_generics

H_Container

H_Class

H_Named

H_Type

H_JavaClass JavaClass
H_Generics JavaMethod

same
Entity<<abstract>>

Figure 7.5: By allowing an extension entity to explicitly specialize an existing entity (“same Entity” arrow
in the picture) and by the use of java.lang.reflect.Proxy, both polymorphism and an explicit API
are possible. This increases complexity (additional property interfaces). Only a simplified meta-model
structure is shown; superinterfaces of JavaMethod are omitted. It is a “same entity” as a Method core entity,
which indirectly extends Container. VERA’s core plug-in must consolidate all the “same entities” from
all installed extensions.

a single property (including its handler class) on multiple entity interfaces in separate branches of the
meta-model. No need to artificially put the property’s methods in a common super-entity and then throw
an OperationNotSupportedException from every subclass to which the property does not apply.

For all of this to work, the proxy approach also relies on a declaration of the meta-model extensions
in the plugin.xml. That declaration lists the entity interfaces (e.g., Class), interfaces which specialize
existing entities (e.g., JavaClass) and the property handler for each property interface.

Programming analyses with this approach is somewhat similar to using adapters. But instead of
retrieving an adapter for a property from the model object, it is cast to the meta-model entity interface that
includes the desired property (can be done by a convenience getter on the model repository: repo.get(
Method.class, "some_method_guid")). A major difference between the adapter approach and the proxy
approach is that only the latter allows for polymorphism among meta-model entities.

One issue with this approach is that performance problems may arise due to heavy use of reflection.

7.9 Nesting Adapters: The Property Onion

This approach organizes property handlers into a hierarchy of nested adapters, which are realized as
proxies. This is very similar to the proxy approach explained above, as we can see in Figure 7.6. This
approach also provides an explicit model API, and at the same time adds the runtime flexibility of the
adapters approach; there is no need for post-import specialization, and no need for a notion of “same
entity”. The property onion approach uses even more reflection and is more complicated in its internals.

CHAPTER 7. DISCUSSION: META-MODEL EXTENSIBILITY 59

Entity

Container

Class

Named

Proxy for <E extends Entity>
− ih : DelegatingInvocationHandler

PropertyHandler
− obj : ModelObject

DelegatingInvocationHandler
− handlers : Collection<PropertyHandler>
− parent : Proxy for <super entity of E>
+ invoke (obj, method, args) {
 1) toString(), equals(), hashCode()
 2) try all handlers of E
 3) try parent proxy
 }

Type

P_name
P_belongsTo

P_types

P_attributes
P_methods

P_inheritances

P_isInterface
P_isAbstract

P_isEnum
P_generics

H_Container

H_Class

H_Named

H_Type

H_JavaClass JavaClass
H_Generics JavaMethod

<<abstract>>

as(Class<T>) : T

− adapters : Map<Class<P extends Entity>, Proxy for P>
− guid : String
+ toString(), equals(), hashCode()
+ as(Class<T extends Entity>) : T
+ is(Class<? extends Entity>) : boolean

ProxyFactory

instanciates

Client

programs
against

FAMIX
interfaces

Figure 7.6: The property onion approach allows to add properties to existing entities without class
inheritance problems and at the same time provides an explicit API through the entity interfaces.

But the analysis developer does not have to know about its internals. She can just use modelObject.as(

MyNewEntityInterface.class) at any time to get a more specialized view on a model object. Just add a
new interface through a meta-model extension point, specify which handler classes should be used for its
property interfaces, and a new adapter is ready for use. There is also no need to migrate existing objects,
just adding an adapter (through a call to as()) is enough and does not affect the original behaviour of
the object at all. In comparison to the last two approaches, the Property Onion requires less declarative
programming inside the plugin.xml file. Only the connections from property interfaces to property
handlers have to be set up.

With this approach, a model object is not an instance of a meta-model entity class, similar to the adapter
approach. In order to find out whether a model object represents an instance of a certain meta-model entity,
one can call the test method is(Class<?>). This can also be embedded in a convenience method of the
repository repo.get(Method.class, "some_method_guid"), which takes as an additional argument the
class of an expected entity interface and returns the corresponding adapter (or raises an exception).

7.10 Summary

In this chapter, we discussed several approaches to implementing a meta-model. We have seen that Java’s
static typing in combination with the lack of facilities to change existing class definitions imposes very

CHAPTER 7. DISCUSSION: META-MODEL EXTENSIBILITY 60

particular constraints. Accordingly, VERA’s current meta-model implementation provides only restricted
extensibility.

With the last four approaches, we discussed ways of circumventing those constraints using either
code generation or reflection. Particularly the impact of using reflection on the meta-model’s runtime
performance would be interesting to investigate.

8
Summary

In this master’s thesis we lay a base for software comprehension and analysis tools based on Eclipse.
In the course of the work for this thesis we found many related tools. Among these, our tool VERA is
the only one that is at the same time integrated into the development environment, capable of handling
heterogeneous sources and extensible.

Using our tool, we implemented some basic analyses as well as one specific to Java Enterprise
Applications, and embedded our visualizations in Eclipse. From a user perspective, VERA is easy to install
and use. The import takes some time, but apart from that, usage is seamless. From the viewpoint of an
extending party, adding a custom visualization is very easy, too. The meta-model is not quite as easy to
extend as we would have liked it to be, therefore we discussed alternative approaches that might improve
this point.

Adding a custom visualization to Eclipse is indeed facilitated by VERA, but creation of that visualization
is still completely up to the extending party. We evaluated Draw2d and jMondrian as drawing frameworks
and found that Draw2d is quite usable.

8.1 Lessons learned

The most valuable lesson we take from the work for this thesis is that open source is not equal to modularity.
For example, we found many related analysis tools, but none of them provided a decent meta-model that
we could reuse. With jMondrian and Fame we did use some other open source projects, but that required

61

CHAPTER 8. SUMMARY 62

forking them. They were not specifically built to be reused/extended in the exact fashion we intended to
use them. While we still believe that modularity is worth striving for, we came to be a bit more pragmatic
about reusing existing software. Not everyone designs their software to be reused, so sometimes reusing
means forking.

Other things we learned are mainly technical details about implementing an Eclipse plug-in, a meta-
model and visualizations. From these things, we would like to stress one in particular, although it is not a
very novel insight at all: Writing informative Javadoc matters! Programming against an API is much more
productive when its Javadoc explains what the individual classes and methods do, how they integrate with
the rest of the API and gives (links to) explanations of technical terms.

Why use FAMIX as a meta-model when Eclipse maintains an internal model of the Java source code
already? There are several reasons not to use Eclipse’s Java model. First, it is very minimalistic concerning
cross-links. For example, a class knows its superclass but not its subclasses. That makes it fast to update,
but also slower to query. Also, the API is not intuitive at all and poorly documented. But the most important
point is that it is a model solely for Java; extending or changing it to accommodate the heterogeneous
nature of JEAs is not possible — simply because there is no way of patching class definitions in Java.
Therefore we decided to implement our own model. By using FAMIX, we can furthermore benefit from
the know-how in the research group and potential interoperability with other analysis tools developed by
the research group (i.e., Moose via MSE exchange).

Lastly, we would like to mention a point about work organization. Sometimes, we felt urged to justify
ourselves, which made writing the thesis very hard at some points. That is, when we realized that what we
implemented is not necessarily what is best, because we had not considered some points before. At the
time of writing, when we had to make our thoughts very explicit, sometimes we discovered a significant
point we had not thought of before. Or there was another related work which we suddenly discovered,
which forced us to re-interpret all of our work. When that happened, it was always very frustrating. When
beginning to work on a new field, one can of course not know all that is relevant. A critical analysis of a
more experienced peer could help at this point. But when no expert is around, one should mentally prepare
for significant setbacks.

8.2 Future Work

For the meta-model extensibility, it would certainly be interesting to compare our current implementation
to the “property onion” approach described above, considering both ease of extensibility and performance.

The VERA specific help contents for the Eclipse user should be improved.
Creating custom analyses for VERA still requires writing an Eclipse plug-in. We would like to further

ease the creation of visualizations by providing something like the visualization scripting capabilities
of Moose. Coding with the Java port of Mondrian, jMondrian [8], is much more verbose than with
the Smalltalk version due to the static type checking of Java. Therefore, it is not suitable as a scripting
language. A possible way of making visualizations scriptable in VERA would be to create an external
domain specific language (DSL), for example using the interpreted language JRuby.

CHAPTER 8. SUMMARY 63

8.2.1 User Interaction tweaks

In this section we discuss some ideas of how VERA and its extensions could choose to interact with the
user.

Problem Markers. We mentioned that displaying visualizations is one possible way of leveraging the
information in the model and/or analysis results. Another (complementary) way would be to use problem
markers. These are yellow or red icons which are displayed in the margin of the Eclipse’s source code
editor. They provide some text which explains why there is a marker. inCode for example uses them to
mark potential design flaws. Problem markers can be produced even for results that are not directly related
to a particular location somewhere in a source file. Such markers are added to the Eclipse project. Analysis
results do not always have to be reflected in the user interface. They can also be artefacts like files which
are then used outside Eclipse, possibly by an existing analysis tool or for documentation. Of course that
defies the benefits of IDE integration, but it is possible.

Improved user interaction in visualizations. As for the existing visualizations, we think that they
provide a decent user experience. Allowing the user to move visualized model objects around would
certainly be an improvement. In order to improve support for as-needed software comprehension strategies,
filtering capabilities could be added. This also applies to the model browser. Another helpful addition
would be a search field in which model objects can be located by name.

Import scope. Vera always imports exactly one Eclipse project at a time. This makes it easy to cache
imported models and to write visualizations for one project. But sometimes, people might want to analyze
code from multiple related Eclipse projects at once; or the code inside a single Java package. There
are work-arounds to circumvent the one-project-limitation. For multi-project import, one can create an
additional Eclipse project which combines multiple projects by including all their source folders. Reducing
the import scope to less than a project is not possible at the moment, but an analysis may always opt
to ignore parts of the imported model. Just importing a part of the sources would speed up the import
process, making VERA even more attractive as an analysis and software comprehension platform. It would
probably help to add Eclipse specific entities to the meta-model, which represent, e.g., projects and their
dependencies, source folders, libraries, and so on.

Appendices

65

66

A Quick Start Guide

You can obtain VERA by installing it like any other Eclipse plug-in. There are two update sites available:

• Stable releases:
http://scg.unibe.ch/download/Vera/

• Development snapshots:
https://www.iam.unibe.ch/scg/svn_repos/Students/krebs/Vera_Update_Site/

We recommend that regular users install VERA through the stable update site. Just install “Java Enterprise
Visualization” and you are ready to use VERA. All the other installable options are mainly useful for
people who intend to extend VERA. Developers may want to install the latest development snapshots
instead of the stable version. All plug-ins include the sources, too (except for tests). Alternatively, you can
obtain the sources from our

• Subversion repository:
https://www.iam.unibe.ch/scg/svn_repos/Students/krebs/

As soon as VERA is installed, go to the menu

Window -> Show view -> Other...

and select the following (type “vera” in the search field to find it faster):

Software Analysis -> Vera visualizations

The visualizations view will appear as shown in Figure 3.2 on page 19. Now select a Java project,
for example in the Project Explorer or Package Explorer view. Then click on one of the icons in the
visualizations view. Vera will now import the selected project and visualize it.

http://scg.unibe.ch/download/Vera/
https://www.iam.unibe.ch/scg/svn_repos/Students/krebs/Vera_Update_Site/
https://www.iam.unibe.ch/scg/svn_repos/Students/krebs/

67

B Scaffold for the example importer

In the extension example in Chapter 5 we introduce a new importer. Here is a scaffold of its implementation.

public class AnnotationInstanceImporter extends JavaASTImportVisitor {

/** The model repository to which we add newly created model objects. */

private IProjectModelRepository repo;

/** A non-argument constructor, required for automated instantiation by Eclipse */

public AnnotationInstanceImporter() {}

/** Invoked by Vera every time before an AST is visited. */

@Override

public void setWorkingModel(IProjectModelRepository modelRepository) {

this.repo = modelRepository;

}

@Override

public boolean visit(NormalAnnotation node) {

createAnnotation(node);

return true;

}

@Override

public boolean visit(MarkerAnnotation node) {

createAnnotation(node);

return true;

}

@Override

public boolean visit(SingleMemberAnnotation node) {

createAnnotation(node);

return true;

}

private void createAnnotation(Annotation node) {

// create a new instance of AnnotationInstance and add it to this.repo

}

}

Listing 11: An example scaffold for the annotation instance importer from the example chapter.

68

C Licensing of Plug-ins and Features

All our sources are subject to an open-source license. Vera itself we put under a BSD 3-clause license.
The drawing framework jMondrian remains under its original BSD 2-clause license. Fame also keeps its
dual license (GPL + LGPL). Of course every one who uses Vera should be informed of these licenses.
Eclipse gives a plug-in developer the possibility to include a license text which will be displayed to the
user during the installation process. Installation can only be completed when the user agrees to the licenses
of all plug-ins that are to be installed. This includes licenses of plug-ins that are automatically installed
due to plug-in dependencies. There are four steps to publishing a plug-in in a properly licensed fashion.

1. Wrap your plug-in in a feature. There is no way of attaching license text directly to a plug-in. Of
course a file containing the license text should be included in the plug-in. But that will not be shown
to the user during the installation process. Only features can do that.

2. Add your license text to the feature. A fresh feature project contains exactly two files: the build.

properties and the feature.xml, where the latter contains all the meta-information. The Eclipse
PDE provides a dedicated editor for this special file, so you do not have to know its XML structure
at all. Copy the license text into Information -> License Agreement and you are done. Consider
filling in all the other fields of the feature configuration for a good end user experience.

3. Make sure that your plug-in can only be installed through the feature containing the license agree-
ment. This is only an issue when you have multiple features on the same update-site. When another
feature requires your plug-in, you should specify this by configuring that other feature to depend or
include your feature. If you just added your plug-in directly to the other feature, the plug-in would
be published under that feature’s license agreement. But when a feature depends on or includes
other features, the license agreement of all involved features are respected, i.e., shown to the user
during installation.

4. When you change license texts or dependencies between features, you should always increase their
version number. Only then is the update-site’s meta-data updated properly. When you are just
experimenting during development, constantly increasing the version numbers can get really tedious.
In that case you might want to create the update-site from scratch instead. Keep a backup copy of
the site.xml as it was before the first build of the update-site. In this initial state, the site.xml

does not yet contain timestamps in the version numbers of plug-ins and features, but a “.qualifier”
postfix instead. That placeholder causes Eclipse to build the corresponding feature as if it was the
first time ever it is built. When you change the site.xml at a later point, copy over the backup
version, then modify, then back it up again, then build the update-site.

Also think of a good strategy of how you increase the version numbers of all your plug-ins and features.
We like to keep the version number of a feature synchronized with its plug-ins. As a guideline, keep in
mind that changes will only be fetched by users who installed something from your update-site when you
increase the version numbers of all involved plug-ins and features.

Bibliography

[1] Eric Armstrong, Jennifer Ball, Stephanie Bodoff, Debbie Bode Carson, Ian Evans, Dale Green, Kim
Haase, and Eric Jendrock. The J2EE 1.4 tutorial, December 2005.

[2] M. Cherubini, G. Venolia, and R. DeLine. Building an ecologically valid, large-scale diagram to
help developers stay oriented in their code. In Visual Languages and Human-Centric Computing,

2007. VL/HCC 2007. IEEE Symposium on, pages 157–162, 2007. Available from: http://dx.
doi.org/10.1109/VLHCC.2007.19, doi:10.1109/VLHCC.2007.19.

[3] Joseph W. Davison, Dennis M. Mancl, and William F. Opdyke. Understanding and addressing the
essential costs of evolving systems. Bell Labs Technical Journal, pages 44–54, 2000.

[4] Tom DeMarco and Tim Lister. Programmer performance and the effects of the workplace. In
Proceedings of the 8th international conference on Software engineering, ICSE ’85, pages 268–
272, Los Alamitos, CA, USA, 1985. IEEE Computer Society Press. Available from: http:

//dl.acm.org/citation.cfm?id=319568.319651.

[5] Erich Gamma and Kent Beck. Contributing to Eclipse. Addison Wesley, 2003.

[6] Canfora Gerardo and Di Penta Massimiliano. New frontiers of reverse engineering. In FOSE ’07:

2007 Future of Software Engineering, pages 326–341, Washington, DC, USA, 2007. IEEE Computer
Society. doi:10.1109/FOSE.2007.15.

[7] inCode. inCode — eclipse plugin for code analysis, 2009. http://www.intooitus.com/inCode.html.
Available from: http://www.intooitus.com/inCode.html.

[8] JMondrian. JMondrian — Java implementation of the Mondrian information visualization framework,
2009. http://loose.upt.ro/reengineering/research/jMondrian. Available from: http://loose.upt.
ro/reengineering/research/jMondrian.

[9] Adrian Kuhn and Toon Verwaest. FAME, a polyglot library for metamodeling at
runtime. In Workshop on Models at Runtime, pages 57–66, 2008. Available
from: http://scg.unibe.ch/archive/papers/Kuhn08cFame.pdfhttp://www.

comp.lancs.ac.uk/~bencomo/MRT/MRT2008Proceedings.pdf.

II

http://dx.doi.org/10.1109/VLHCC.2007.19
http://dx.doi.org/10.1109/VLHCC.2007.19
http://dx.doi.org/10.1109/VLHCC.2007.19
http://dl.acm.org/citation.cfm?id=319568.319651
http://dl.acm.org/citation.cfm?id=319568.319651
http://dx.doi.org/10.1109/FOSE.2007.15
http://www.intooitus.com/inCode.html
http://loose.upt.ro/reengineering/research/jMondrian
http://loose.upt.ro/reengineering/research/jMondrian
http://scg.unibe.ch/archive/papers/Kuhn08cFame.pdf http://www.comp.lancs.ac.uk/~bencomo/MRT/MRT2008Proceedings.pdf
http://scg.unibe.ch/archive/papers/Kuhn08cFame.pdf http://www.comp.lancs.ac.uk/~bencomo/MRT/MRT2008Proceedings.pdf

BIBLIOGRAPHY III

[10] Michele Lanza and Stéphane Ducasse. Polymetric views—a lightweight visual approach to re-
verse engineering. Transactions on Software Engineering (TSE), 29(9):782–795, September 2003.
Available from: http://scg.unibe.ch/archive/papers/Lanz03dTSEPolymetric.
pdf, doi:10.1109/TSE.2003.1232284.

[11] Michele Lanza and Radu Marinescu. Object-Oriented Metrics in Practice. Springer-Verlag, 2006.
Available from: http://www.springer.com/alert/urltracking.do?id=5907042.

[12] Thomas D. LaToza, Gina Venolia, and Robert DeLine. Maintaining mental models: a study of
developer work habits. In ICSE ’06: Proceedings of the 28th international conference on Software

engineering, pages 492–501, New York, NY, USA, 2006. ACM. doi:10.1145/1134285.

1134355.

[13] Mircea Lungu and Michele Lanza. Softwarenaut: Exploring hierarchical system decomposi-
tions. In Proceedings of CSMR 2006 (10th European Conference on Software Maintenance

and Reengineering), pages 351–354, Los Alamitos CA, 2006. IEEE Computer Society Press.
doi:10.1109/CSMR.2006.52.

[14] Cristina Marinescu, Radu Marinescu, Petru Mihancea, Daniel Ratiu, and Richard Wettel. iPlasma:
An integrated platform for quality assessment of object-oriented design. In Proceedings of the 21st

IEEE International Conference on Software Maintenance (ICSM 2005), pages 77–80, 2005. Tool
demo.

[15] Michael Meyer, Tudor Gîrba, and Mircea Lungu. Mondrian: An agile visualization frame-
work. In ACM Symposium on Software Visualization (SoftVis’06), pages 135–144, New York,
NY, USA, 2006. ACM Press. Available from: http://scg.unibe.ch/archive/papers/
Meye06aMondrian.pdf, doi:10.1145/1148493.1148513.

[16] Oscar Nierstrasz, Stéphane Ducasse, and Tudor Gîrba. The story of Moose: an agile reengi-
neering environment. In Proceedings of the European Software Engineering Conference (ES-

EC/FSE’05), pages 1–10, New York, NY, USA, 2005. ACM Press. Invited paper. Avail-
able from: http://scg.unibe.ch/archive/papers/Nier05cStoryOfMoose.pdf,
doi:10.1145/1095430.1081707.

[17] Klaus Ostermann. personal communication, 2012.

[18] Fabrizio Perin. Enabling the evolution of J2EE applications through reverse engineer-
ing and quality assurance. In Proceedings of the PhD Symposium at the Working Con-

ference on Reverse Engineering (WCRE 2009), pages 291–294. IEEE Computer Society
Press, October 2009. Available from: http://scg.unibe.ch/archive/papers/

Peri09aEnablingevolutionOfJEAs.pdf, doi:10.1109/WCRE.2009.45.

[19] Fabrizio Perin, Tudor Gîrba, and Oscar Nierstrasz. Recovery and analysis of transac-
tion scope from scattered information in Java enterprise applications. In Proceedings

http://scg.unibe.ch/archive/papers/Lanz03dTSEPolymetric.pdf
http://scg.unibe.ch/archive/papers/Lanz03dTSEPolymetric.pdf
http://dx.doi.org/10.1109/TSE.2003.1232284
http://www.springer.com/alert/urltracking.do?id=5907042
http://dx.doi.org/10.1145/1134285.1134355
http://dx.doi.org/10.1145/1134285.1134355
http://dx.doi.org/10.1109/CSMR.2006.52
http://scg.unibe.ch/archive/papers/Meye06aMondrian.pdf
http://scg.unibe.ch/archive/papers/Meye06aMondrian.pdf
http://dx.doi.org/10.1145/1148493.1148513
http://scg.unibe.ch/archive/papers/Nier05cStoryOfMoose.pdf
http://dx.doi.org/10.1145/1095430.1081707
http://scg.unibe.ch/archive/papers/Peri09aEnablingevolutionOfJEAs.pdf
http://scg.unibe.ch/archive/papers/Peri09aEnablingevolutionOfJEAs.pdf
http://dx.doi.org/10.1109/WCRE.2009.45

BIBLIOGRAPHY IV

of International Conference on Software Maintenance 2010, September 2010. Available
from: http://scg.unibe.ch/archive/papers/Peri10aTransactionRecovery.

pdf, doi:10.1109/ICSM.2010.5609572.

[20] Dario D. Salvucci and Peter Bogunovich. Multitasking and monotasking: the effects of mental
workload on deferred task interruptions. In Proceedings of the 28th international conference on

Human factors in computing systems, CHI ’10, pages 85–88, New York, NY, USA, 2010. ACM.
Available from: http://doi.acm.org/10.1145/1753326.1753340, doi:10.1145/
1753326.1753340.

[21] Janice Singer, Timothy Lethbridge, Norman Vinson, and Nicolas Anquetil. An examination of
software engineering work practices. In Proceedings of the 1997 conference of the Centre for

Advanced Studies on Collaborative research, CASCON ’97, pages 21–. IBM Press, 1997. Available
from: http://dl.acm.org/citation.cfm?id=782010.782031.

[22] Margaret-Anne Storey, Casey Best, and Jeff Michaud. SHriMP Views: An interactive and customiz-
able environment for software exploration. In Proceedings of International Workshop on Program

Comprehension (IWPC ’2001), 2001.

[23] Margaret-Anne D. Storey, F. David Fracchia, and Hausi A. Müller. Cognitive design elements to
support the construction of a mental model during software exploration. Journal of Software Systems,
44:171–185, 1999.

[24] Margaret-Anne D. Storey and Hausi A. Müller. Manipulating and documenting software struc-
tures using SHriMP Views. In Proceedings of ICSM ’95 (International Conference on Software

Maintenance), pages 275–284. IEEE Computer Society Press, 1995.

[25] Sander Tichelaar, Stéphane Ducasse, Serge Demeyer, and Oscar Nierstrasz. A meta-
model for language-independent refactoring. In Proceedings of International Sympo-

sium on Principles of Software Evolution (ISPSE ’00), pages 157–167. IEEE Computer
Society Press, 2000. Available from: http://scg.unibe.ch/archive/papers/

Tich00bRefactoringMetamodel.pdf, doi:10.1109/ISPSE.2000.913233.

[26] A. von Mayrhauser and A.M. Vans. From code understanding needs to reverse engineering tool
capabilities. In Computer-Aided Software Engineering, 1993. CASE ’93., Proceeding of the Sixth

International Workshop on, pages 230 –239, July 1993. doi:10.1109/CASE.1993.634824.

http://scg.unibe.ch/archive/papers/Peri10aTransactionRecovery.pdf
http://scg.unibe.ch/archive/papers/Peri10aTransactionRecovery.pdf
http://dx.doi.org/10.1109/ICSM.2010.5609572
http://doi.acm.org/10.1145/1753326.1753340
http://dx.doi.org/10.1145/1753326.1753340
http://dx.doi.org/10.1145/1753326.1753340
http://dl.acm.org/citation.cfm?id=782010.782031
http://scg.unibe.ch/archive/papers/Tich00bRefactoringMetamodel.pdf
http://scg.unibe.ch/archive/papers/Tich00bRefactoringMetamodel.pdf
http://dx.doi.org/10.1109/ISPSE.2000.913233
http://dx.doi.org/10.1109/CASE.1993.634824

	1 Introduction
	1.1 Heterogeneous Sources
	1.2 Extensibility
	1.3 Integration
	1.4 Vera
	1.5 Outline

	2 Background
	2.1 Types of Software Analysis
	2.2 Software Understanding
	2.3 Java Enterprise Applications
	2.3.1 Annotations
	2.3.2 EJB

	2.4 Eclipse
	2.4.1 User Interface
	2.4.2 Extension Mechanism

	2.5 Capturing data
	2.5.1 The Fame Tower

	2.6 Summary

	3 Vera on the Surface
	3.1 The Model Browser View
	3.2 The Visualizations View
	3.3 The Packages Visualization
	3.4 The System Complexity Visualization
	3.5 The Transaction Flow Visualization
	3.6 Further visualization features
	3.7 Summary

	4 Architecture
	4.1 The Model Tower
	4.1.1 An improved Model Repository
	4.1.2 The FAMIX Meta-Model in Java

	4.2 Importers
	4.2.1 Extensibility
	4.2.2 The Java AST Importers
	4.2.3 Omnivore Importers

	4.3 Visualizers
	4.4 Plug-in Components
	4.5 Installable Features
	4.6 Summary

	5 Extension Example
	5.1 Extending the meta-model
	5.2 Adding a custom importer
	5.3 Exposing the data
	5.4 Summary

	6 Related Work
	6.1 Moose
	6.2 SHriMP Views
	6.3 Softwarenaut
	6.4 Architexa
	6.5 X-Ray
	6.6 inCode
	6.7 MoDisco
	6.8 Summary

	7 Discussion: Meta-Model Extensibility
	7.1 Collaboration and Forking
	7.2 Patching existing entity definitions
	7.3 Parallel Class Hierarchies
	7.4 Horizontal Class Inheritance
	7.5 Parallel Interface Hierarchies and horizontal Class Inheritance
	7.6 Purely declarative Meta-Model Definition
	7.7 Adapters for all Properties
	7.8 Using java.lang.reflect.Proxy
	7.9 Nesting Adapters: The Property Onion
	7.10 Summary

	8 Summary
	8.1 Lessons learned
	8.2 Future Work
	8.2.1 User Interaction tweaks

	A Quick Start Guide
	B Scaffold for the example importer
	C Licensing of Plug-ins and Features

