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Abstract

Many approaches have been developed to comprehend software source
code, most of them focusing on program structural information. How-
ever, in doing so we are missing a crucial information, namely, the domain
semantics information contained in the text or symbols of the source code.
When we are to understand software as a whole, we need to enrich these
approaches with conceptual insights gained from the domain semantics.
This paper proposes the use of information retrieval techniques to exploit
linguistic information, such as identifier names and comments in source
code, to gain insights into how the domain is mapped to the code. We in-
troduce Semantic Clustering, an algorithm to group source artifacts based
on how they use similar terms. The algorithm uses Latent Semantic In-
dexing. After detecting the clusters, we provide an automatic labeling and
then we visually explore how the clusters are spread over the system. Our
approach works at the source code textual level which makes it language
independent. Nevertheless, we correlate the semantics with structural in-
formation and we apply it at different levels of abstraction (for example
packages, classes, methods). To validate our approach we applied it on
several case studies.
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Chapter 1

Introduction

“What’s in a name? That which we call a rose
By any other word would smell as sweet.”

— Shakespeare

Many approaches have been developed to comprehend software systems,
most of them focusing on structural information. Other approaches using
methods such as dynamic data or history information have also proven
valuable. However, if we are to understand software as a whole we need to
enrich these approaches with conceptual insight into the domain semantics
of the software system.

The informal linguistic information that the software engineer deals with
is not simply supplemental information that can be ignored because auto-
mated tools do not use it. Rather, this information is fundamental. [. . . ]
If we are to use this informal information in design recovery tools, we
must propose a form for it, suggest how that form relates to the formal
information captured in program source code or in formal specifications,
and propose a set of operations on these structures that implements the
design recovery process [Big89].

This work proposes to use a combination of information retrieval (IR) and
clustering to exploit linguistic information, such as identifier names and
comments, to gain insight into the domain semantics of a software system.
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The underlying assumption is that developers use meaningful names for
code items, for example names that convey their domain knowledge.

Developers use meaningful identifier names as mnemonics to remember
the purpose of code items, to document the code, and to communicate
the meaning of their code with other team members or even other teams.
These names are a human readable description conveying the meaning and
purpose of code items.

Source code is a twofold means of communication1: on the formal level of
syntax it is communication between developer and machine, but – much
more important – on an informal level it is about communication between
developers. Code is not written for machines – that is what executables
are for – code is written for humans. Consider, for example, a short testing
method telling whether a time value is in the morning:

/** Return true if the given 24-hour time is in the morning and false otherwise. */
public boolean isMorning(int hours,int minutes,int seconds){

if (!isDate(hours, minutes, seconds))
throw Exception(”Invalid input: not a time value.”)

return hours < 12 && minutes < 60 && seconds < 60;
}

Stripping away all identifiers and comments, the functionality remains the
same, but the meaning becomes obfuscated and almost impossible to tell.
In our example, removing informal information yields:

public type 1 method 1(type 2 a, type 2 b, type 2 c) {
if (!method˙2(a, b ,c)) throw Exception(literal 1).
return (a op 1 A) op 2 (b op 1 B) op 2 (c op 1 C);

}

On the other hand, retaining only the informal information yields the
following. And even though the vocabulary is presented in random order,
the domain of the method is still recognizable without doubt.

is int hours minutes int < minutes input hours is
seconds && boolean morning false 24 time minutes not
60 invalid && value seconds time < seconds hour
given hours 60 12 < morning date int is otherwise

This representation of documents as bag-of-terms is a well-established

1Source code also contains communication between developer and user: for example
text snippets in the source code displayed to the user. But for the purpose this disserta-
tion, this can be subsumed under developer communication without loss of generality.
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technique in information retrieval (IR), and is used to model documents
in a text corpus. Information retrieval provides means to analyze, clas-
sify and characterize text documents based on their content. There are
approaches in the field of software analysis that apply IR on external doc-
umentation [MBK91, ACC+02], but only few work has been focused on
treating the source code itself as data source.

Caprile and Tonella analyzed the lexical, syntactical and semantical struc-
ture of function identifiers in [CT99]. The main difficulty they found is
that source code has a quite scarce and ambiguous vocabulary compared
to natural langauge documents. Marcus et al proposed Latent Semantic
Indexing (LSI), a information retrieval technique that takes synonymy and
polysemy into account, as a means to locate concepts [MM00, MSRM04].
Recently Kawaguchi et al used LSI and clustering to categorize software
projects at the level of entire projects [KGMI04].

This work is based on both of these approaches, and goes beyond them. It
decomposes the system into its main semantic concepts, and characterizes
each concept with automatically retrieved labels. It is applicable at any
level of abstraction, such as: packages, classes and methods, or even pro-
gramm slices like execution traces [KGG05]. Additionally, it introduces
two visualizations: one focused on the correlation among semantics and
one focused the relation between semantics and structure.

1.1 Semantic Clustering

This work introduces Semantic Clustering , a novel technique to charac-
terize the semantics of a software system. Semantic clustering offers a
high-level view on the domain concepts of a system, abstracting concepts
from software artifacts. It takes software comprehension from a low-level
view, lost in the complex structure of thousands of artifacts, to a high-
level view that characterizes the system by a handful of abstract domain
concepts.

Semantic clustering is a non-interactive and unsupervised technique. La-
tent semantic indexing (LSI) is used to exploit linguistic information from
the source code contained in the names of identifiers and the content of
comments. This results in a search index on software artifacts (more de-
tails on LSI see Chapter 2). With that index at hand, the software system
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is grouped into clusters. A semantic cluster is a group of artifacts that use
the same vocabulary. Therefore each cluster reveals a different concept
found in the system.

Finally, the inherently unnamed concepts are named with labels taken
from the vocabulary of the source code. An automatic algorithm labels
each cluster with is most related terms, and provides in this way a human
readable description of the main concepts in a software system.

To present the semantic clustering to the reverse engineer, we employ
two visualizations. The Correlation Matrix illustrates the relation among
concepts. The Distribution Map illustrates the between concepts and the
structure of the system.

We implemented this approach in a tool called Hapax2, which is built on
top of the Moose reengineering environment [DGLD05], and we applied it
to several case studies.

The contributions of this work are:

• combining the structure of software systems with semantical infor-
mation [KDG05],

• defining two visualizations to illustrate the result: the correlation
matrix [KDG05] and the distribution map [DGK06],

• an automatic labeling of the clusters [KDG05, KDG06],

• interpretation of the system at different level of abstraction [KGG05,
LKGL05].

1.2 Structure of the Thesis

Chapter 2 introduces Latent Semantic Indexing (LSI), which is the infor-
mation retrieval (IR) technique used in this work. It covers the mathe-
matical background, and describes how to measure similarity and how to
search for documents. Chapter 3 browses the state-of-the-art in semantic
driven software comprehension. In Chapter 4 we show how we use LSI to

2The name is derived from the term hapax legomenon, which refers to a word oc-
curring only once a given body of text.
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analyze the semantics of the system and how we can apply the analysis at
different levels of abstraction. In Chapter 5 we show how to visualize the
distribution of concepts over the structure, and propose a terminology to
describe common distribution patterns. In Chapter 6 we exemplify the re-
sults on five case studies emphasizing the different aspects of the approach.
We discuss different variation points in Chapter 7, and in Chapter 8 we
conclude and present future work.
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Chapter 2

Latent Semantic Indexing

“Ach, wie gut ist, da niemand weiß
Daß ich Rumpelstilzchen heiß!”

— Rumpelstilzchen

This chapter covers Latent Semantic Indexing (LSI), a technique com-
mon in information retrieval to index, analyze and classify text documents
[DDL+90]. LSI analyzes how terms are spread over the documents of a
text corpus and creates a search space with document vectors: similar doc-
uments are located near each other in this sapce and unrelated documents
far apart of each other. Since source code is basically composed of text
documents as well, we use LSI to analyze the linguistic information of a
software system.

2.1 Overview

As most information retrieval (IR) techniques, Latent Semantic Index-
ing (LSI) is based on the vector space model (VSM) approach. This ap-
proach models documents as bag-of-words and arranges them in a Term-
Document Matrix A, such that ai,j equals the number of times term ti
occurs in document dj.
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LSI has been developed to overcome problems with synonymy and poly-
semy that occurred in prior vectorial approaches, and thus it improves the
basic vector space model by replacing the original term-document matrix
with an approximation. This is done using singular value decomposition
(SVD), a kind of principal components analysis originally used in signal
processing to reduce noise while preserving the original singal. Assuming
that the original term-document matrix is noisy (the aforementioned syn-
onymy and polysemy), the approximation is interpreted as a noise reduced
– and thus better – model of the text corpus.

As an example: a typical text corpus with millions of documents, contain-
ing some ten thousands of terms, is reduced to a vector space with 200-500
dimensions only.

Even though search engines are the most common usage of LSI [BDO95],
there is a wide range of applications, such as: automatic essay grading
[FLL99], automatic assignment of reviewers to submitted conference pa-
pers [DN92], cross-language search engines, thesauri, spell checkers and
many more. Furthermore LSI has proved useful in psychology to simulate
language understanding of the human brain, including processes such as
the language acquisition of children and other high-level comprehension
phenomena [LD91].

In the field of software engineering LSI has been successfully applied to:
categorized source files [MM00] and open-source projects [KGMI04], de-
tect high-level conceptual clones [MM01], recover links between external
documentation and source code [LFOT04, MP05] and to compute class
cohesion [MP05]. See Chapter 3 for more details.

2.2 Vectorial Semantics

The vector space model dates back to Luhn, who observed that “the fre-
quency of word occurrence in a document furnishes a useful measurement
of its content” [Luh58]. Vectorial approaches represent documents as bag-
of-words and arrange them in a Term-Document Matrix A, where ai,j is
the number of times term ti appears in document dj.

This bag-of-words representation summarizes documents by their term
histograms, ignoring the ordering of terms or any other collocation infor-
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mation. An advantage of this reduction is that it is easily automated and
needs minimal intervention beyond filtering of the term list. In Section 2.4
is explained how LSI enhances this basic model using noise reduction.

The name “vector space model” is used due to the geometrically interpre-
tation of the term-document-matrix. From a geometrical point of view,
the columns of the matrix A are vectors representing the documents in an
n-dimensional term space. Two documents are considered similar if their
corresponding vectors point in the same direction, and the similarity is
defined as the cosine or inner product between the corresponding vectors
(see Section 2.5).

2.3 Data Normalization

Not all words are equally significant as some words are more likely to
discriminate documents than others. Words with a high frequency are
considered to be too common and those with low frequency too rare, and
therefore both of them are not contributing significantly to the content
of a document. Words with medium frequency have the highest ability
to discriminate content [Luh58]. Thus all words above an upper and all
words below a lower threshold are excluded from the term list.

The removal of high frequency words is usually done excluding a list of
common words, called stopwords. As the distribution of word frequen-
cies follows the power law [Zip49], this removal reduces the size of a text
corpus by about 30 to 50 percent. In case of an English text corpus, the
SMART stopword list is well-established: it contains about 500 common
non-discriminative words like the, of, to, a, is [Buc85]. The removal of
low frequency words is usually done by excluding all words that occur in
only one document.

Furthermore the same term may appear in different grammatical inflec-
tions. Most words are composed of a stem, which bears the meaning of
the word, and a suffix that bears grammatical information. If two words
have the same stem then they refer to the same concept and should be
indexed as one term. The process of removing the grammatics is called
stemming, and a standard approach is to have a list of suffixes and to
remove the longest possible one. For example, train, trained and training
are all reduced the common stem train. In case of an English text corpus
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the Porter Stemming Algorithm is well-established [Por80].

Research in information retrieval (IR) has shown that normalization leads
to more effective retrieval than if the raw term frequencies were used
[Dum91]. The goal of a weighting function is to balance out very rare and
very common terms. Typically a combination of two weighting schemes is
applied, a local weighting and a global weighting. The first puts a term
occurrence in relation to its document, and the latter in relation to the
whole text corpus.

xi,j = local(ti, dj)× global(ti)

When applied on textual data LSI achieves best results with the entropy
weighting [Nak01]. Nevertheless we present here the tf-idf -weighting as it
is more popular in both information retrieval and software analysis (see
Section 4.1).

Td-ifd stands for “term frequency – inverted document frequency”, and
divides the frequency of a term by the number of documents that contain
this term, that is locally used terms weight more then globally used terms.
After tf-idf normalization the resulting elements of A become:

atfidf
i,j = log(ai,j + 1)× log

|D|
df i

where df i is the number of documents that contain term ti and |D| is the
total number of documents. Furthermore, the length of the documents
vectors is usually normalized too, using the Euclidian norm.

2.4 Singular Value Decomposition

LSI enhances vectorial semantics with singular value decomposition (SVD)
to overcome problems with synonymy and polysemy. Synonymy denotes
multiple words have the same meaning and polysemy denotes a single
word has multiple meanings. This causes problems when using the vector
space model (VSM) to build search engines. It can happen that a desired
document is missed because the user of a search engine uses a different
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word in his query than the author of a document in the document, even
though both words have the same meaning. In the same way might the
search return unwanted documents due to alternate usages of an ambigu-
ous word.

LSI solves this problems replacing the full term-document matrix A with
a low-rank1 approximation Ak. The downsizing is achieved using singu-
lar value decomposition (SVD), a kind of principal component analysis
originally used signal processing to reduce noise while preserving the ac-
tual signal. Assuming that the original term-document matrix is noisy
(the aforementioned synonymy and polysemy), the approximation Ak is
interpreted as a noise reduced – and thus better – model of the text cor-
pus.

A = U × S × V T

Singular value decomposition transforms the matrix A into three matrices,
using eigenvalue decomposition. This yields three matrices: U × S × V T.
The two outer matrices contain the singular vectors: U is the term matrix,
it contains the left singular vectors and each of its row corresponds to a
term. The same goes for V , the document matrix, which contains the right
singular vectors and whose rows correspond to documents. The middle
matrix S is a diagonal matrix with the singular values, which are a kind
of eigenvalue, of A in descending order.

When multiplying all three matrices together to reconstruct the original
matrix, the singular values act as weights of the singular vectors. A singu-
lar vector with a large corresponding singular vectors has a large impact
on the reconstruction, while a small value indicates a singular vector with
almost no impact on the result. Thus small values and their vectors may
be discarded without affecting the result noticeably. Keeping the k largest
singular values only yields a low-rank approximation of A, that is the best
rank k approximation of A under the least-square-error criterion:

A′
n×m = Un×k × Sk×k × V T

k×m

1In LSI the rank k of matrix Ak is equivalent the dimension of the corresponding
vector space. Thus, in the context of LSI, the terms “dimension” and “rank” are
synonymous.
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Applying SVD on natural data (such as signals, images or text documents)
yields a distribution of singular values that follows the power law: a few
large values, and a long tail with very small values [Zip49]. Thus, even
if the dimension of matrix A goes into millions, there are typically only
about k = 200 − 500 relevant singular values. That is why a text corpus
with millions of documents can be approximated with such a low-ranked
matrix. This is illustrated on Figure 2.1 considering an image, instead of
text, as example. If this image would be a text corpus, the columns would
be the documents and the lines would be the terms.

© Copytight 2005 Adrian Kuhn
akuhn@iam.unibe.ch

imageCompression.pdf

Figure 2.1: The same image at different SVD approximations. From top
left to bottom right: the original image with rank 200, an approximation
with rank 20, rank 10, rank 5, rank 2 and finally rank 1. For the purpose
of LSI, the rank 5 approximation would be sufficient.

2.5 Term and Documents Similarity

To interpret the SVD factors geometrically, the rows of the truncated
matrices Uk and Vk are taken as coordinates of points representing the
documents and terms in a k dimensional space. The nearer one points to
the other, the more similar are their corresponding documents or terms
(see Figure 2.2). Similarity is typically defined as the cosine between the
corresponding vectors:
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sim(di, dj) = cos(vi,vj)

Computing the similarity between document di and dj is done taking the
cosine between the i-th and j-th row of the matrix V S, (that is between
the vectors of the corresponding points scaled by the singular values). The
same goes for terms, but with rows of the matrix V Σ.

Computing the similarity between term ti and document dj differs. It is

done taking the cosine between the i-th row of the matrix UΣ
1
2 and the

j-row of the matrix V Σ
1
2 , that is, between the vectors of the corresponding

points scaled by the square-root of the singular values.

Being cosine values, similarity values range from 1 for similar vectors with
the same direction to 0 for dissimilar, orthogonal vectors. Theoretically
cosine values can go all the way to −1, but because there are no negative
term occurrences, similarity values never stray much below zero.

2.6 Searching for Terms or Documents

Searching is typically done comparing each document with a search query
and returns the most similar documents (see Figure 2.2). In the same way,
it is possible to search for terms using a set of documents as query. We
use this “reverse-search” in Section 4.6 to obtain labels for the concept
clusters.

© Copyright 2005 Adrian Kuhn

Similarity

Figure 2.2: On the left: An LSI-Space with terms and documents, similar
elements are placed near each other. On the right: the grey cone is a search
for documents related to term point, the red cone is a reverse-search for
terms related to document #2.
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A query is a set of words and is thus, in the same way as documents,
represented as bag-of-words. This pseudo-document is projected into the
k dimensional LSI space as follows:

qk = q × Uk × S−1
k

where q is a vector with the word occurrences of the search query, nor-
malized in the same way as the original term-document matrix A. This
projection places the pseudo-document at the location of the weighted sum
of its constituent term vectors. The query is then compared to all existing
documents vectors, and the documents are returned in a list ordered by
their similarity to the query.
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Chapter 3

Taking Software Analysis
Beyond Mere Structure

“The primary purpose of the Data statement is to give names to
constants. Instead of referring to pi as 3.141592653589793 at every

appearance, the variable PI can be given that value. This also simplifies
modifying the program, should the value of pi change.”

— Fortran manual for Xerox Computers

This dissertation presents an approach using information retrieval (IR)
techniques and clustering to analyze the domain semantics of a software
system. Early work applying IR dates back to the eighties, however these
approaches had been restricted to external documentation written in nat-
ural language. But, the last ten years saw two developments that lifted
this restriction: First the development of superior IR techniques that are
able to cope with the scarce and ambiguous vocabulary of source code,
more see Chapter 2 about Latent Semantic Indexing (LSI). And secondly
a shift in the culture of software development, moving away from short
and abbreviated identifiers towards verbose Naming Conventions using
meaningful names (see for example the Java naming convention [Jav]).
/AKrephrase
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3.1 Linguistic Information

Biggerstaff advocates linguistic information as a being fundamental to soft-
ware analysis [Big89]. He states that linguistic information is not just sup-
plemental and ignorable, but rather fundamental and thus worth focusing
on. As a striking example he removes any linguistic information from a
piece of source code, and presents it once without and once with linguistic
information to illustrate the difference. Eventually he proposes as one of
the major challenges in software analysis tools that deal with linguistic
information and relate it to formal information.

The first work that presents techniques to analyze linguistic information
is “Nomen est Omen” by Caprile and Tonella. They analyze the lex-
ical, syntactical and semantical structure of function identifiers [CT99].
First a segmentation technique is presented to split identifier names into
lexical parts, that is into single words. The segmentation works even if
the parts are compound without delimiters such as spaces, underscores or
camel case. Then they present an informal grammar for the syntactical
structure of identifier names that covers the most common patterns used
by developers when choosing identifier names. Formal Concept Analysis
(FCA) is applied to build a concepts lattice of the domain semantics of a
software systems, which uses the functions as objects and the lexical parts
of their names as attributes.

3.2 Software Reuse

The use of information retrieval (IR) techniques in software analysis dates
back to the late eighties, originating from the software reuse community.
Frakes and Nejmeh proposed to apply information retrieval (IR) on source
code as if it would be a natural language text corpus [FN87]. They ap-
plied an IR system based on keyword matching, which allowed to perform
simple searches using wildcards and set expressions. Back then leading IR
technology, this is commonplace nowadays: advanced search abilities such
as regular expressions are found in any IDE environment.

Even though Merlo et al propose to cluster files according to function
names and the content of comments [MMD93], it was not until the cur-
rent decade that more research into this direction was conducted. All the
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approaches presented in this section apply IR on external documentation.
This is due to the use of information retrieval (IR) techniques that are less
powerful than Latent Semantic Indexing (LSI), and thus not capable of
dealing with the vocabulary used in source code.

To automatically detect reusable software libraries Maarek et al apply
information retrieval (IR) on external documentation [MBK91]. They ar-
gue that linguistic information found in source code is too ambiguous and
they argue further that it is too complex to relate comments to the por-
tion of code they concern. Their retrieval is based on an improved vector
space model (VSM), which does not use single words but rather word co-
occurrences as index terms. In a second step, the software artifacts are
cluster based on the similarity of the corresponding documentation, and
eventually the maintainer is provided with navigation means to browse the
resulting categories. As a case study they categorize Unix tools based on
their manual pages.

Merkl uses self organizing maps (SOM) to categorize MSDOS commands
based on external documentation [Mer95]. Self organizing maps are an
artificial intelligence (AI) technique based on neutral networks. SOMs
are good at producing planar visualizations of high-dimensional data. A
self organizing map is a planar grid of artificial neutrons, that able to
reorganize its nodes based on an some strategy and feature vectors. Similar
to the vector space model (VSM) this approach uses term frequencies as
feature vectors and associates documents with points on the self organizing
map.

Anquetil and Lethbridge rely on filenames as primary source of linguistic
information [AL98]. They report that in the experiments conducted on
their case study, a large legacy system written in the seventies, file names
were a much better clustering criterion than function names or comments.
The retrieval is based on a plain vector space model (VSM) approach with
file names as document set. The authors use a combination of approaches
to split up compound file names into terms, such as: external dictionaries,
abbreviation detection strategies, and even looking at functions names in
the source code.

Maletic and Marcus propose using Latent Semantic Indexing (LSI) to
analyze software, which allows them to focus on source code as main
source of linguistic information. In a first work they categorized the source
files of the Mosaic web browser[MM00], and present in several follow-ups
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other applications of Latent Semantic Indexing (LSI) in software analysis
[MM01, MM03, MSRM04, MP05].

3.3 Traceability Recovery

In recent years information retrieval (IR) techniques haven been used to
recover traceability links between documentation and software. Establish-
ing links between natural language text documentation and source code is
helpful in numerous tasks, such as navigating between documentation and
source code in software comprehension and maintenance. In particular,
traceability links between requirement specification and code are helpful
to measure the completeness of an implementation with respect to stated
requirements, and to infer requirement coverage of given source code.

Antoniol et al have published a series of papers on recovering code to doc-
umentation traceability [ACCL00, ACC+02]. They use two different infor-
mation retrieval (IR) techniques, one based on a probabilistic model and
one using a plain vector space model (VSM), which perform equally well.
Both approaches rely on external documentation as text corpus. They ar-
gue that natural text has a richer vocabulary than source code and is thus
more suitable as document set. The text corpus is then queried with iden-
tifiers taken from source code to get matching external documents.

Marcus and Maletic use Latent Semantic Indexing (LSI) to recover trace-
ability links between source code and documentation [MM03]. They form
the text corpus out of both documentation and source code, using identi-
fier names and comments found in the source code as document content.
In that way they do not query the text corpus with identifiers, but rather
compute directly the similarity between external documents and source
files. Each similarity higher than 0.7 is considered as a recovered link
between source and documentation. They use the same case study as An-
toniol et al and compare their results, which to some extent outperform
the previous approach.

De Lucia et al introduce strategies to improve LSI-based traceability de-
tection [LFOT04]. They use three techniques of link classification: taking
the top-n search results, using a fix threshold of 0.75 or a variable thresh-
old; of which the last performs best. Furthermore they create separate
LSI spaces for different document categories and observe better results
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that way, with best on pure natural language spaces and worst on pure
source code spaces.

Cleland et al introduce strategies for improving the performance of a prob-
abilistic traceability detection [CHSDZ05]. The retrieval is based on prob-
abilistic network model, which is a directed acyclic graph with both doc-
uments and terms as nodes and term concurrencies as edges. It assumes
a probability distribution of term concurrencies, and thus performs search
queries by computing the probability that a query might appear in a doc-
ument. On the one hand they present strategies that add additional edges
to the model: They populate the graph with additional edges modeling hi-
erarchy relationships among both document or term, or rather they enrich
the model with edges between nodes which are known to belong to the
same group or which are siblings. On the other hand, they remove edges
based on user feedback. They apply the strategies on three case studies
with varying performance gain.

Settimi et al find that recovering links from requirements to UML diagrams
performs better than from requirements to source code [SCHK+04]. This
due to the differences in the vocabulary: requirements and UML diagrams
are both documentation and use a more abstract vocabulary than source
code. Furthermore it is written from a different perspective, for example
“the user views” compared to “the system displays”, which can make it
hard to recover traceability links.

Natt et al ’s focus on external documentation only. They apply informa-
tion retrieval (IR) techniques to detect duplication and interdependencies
in requirements document [oDRC+02]. The retrieval is based on an im-
proved vector space model (VSM), which exploits the specific structure of
requirements documents. They experiment with different similarity mea-
surements and thresholds, and plot for each precision and recall.

Di Lucca et al focus on external documents, doing automatic assignment
of maintenance requests to teams [LPG02]. They compare approaches
based on pattern matching and clustering to information retrieval (IR)
techniques, of which clustering performs best. The information retrieval
is done using a plain vector space model (VSM), which does not use any
Latent Semantic Indexing (LSI).

Finally Huffman-Hayes et al compare the results of several information
retrieval (IR) techniques in recovering links between document and source
code to the results of a senior analyst [HHDO03]. The results suggest
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that automatic recovery performs better than analysts, both in terms of
precision and recall and with comparable signal-to-noise ratio.

3.4 Feature Location

Maintenance tasks are often centered around features, a usual maintenance
task is about changing or adding functionalities related to the same feature.
Therefore a basic and very helpful step in reverse engineering is to locate
interesting features in the source code. Feature location can be formulated
as identifying the relationship between the users view and the programmers
view of the system. Most approaches addressing this problem rely on
dynamic execution traces to locate the features.

Test-cases are commonly used to trace the features based on the assump-
tion that each test-case covers one feature, whereas Zhao et al use infor-
mation retrieval (IR) technology to detect the initial starting point of the
feature traces [ZZL+04]. The retrieval is based on a plain vector space
model (VSM) which does not use any Latent Semantic Indexing (LSI):
external feature descriptions, given in natural language text, form the
document set and tf-idf is applied as weighting scheme. The space is then
queried with function signatures and the results arranged in a table and
transposed such that we get ranked lists of functions. The authors apply
this to avoid common functions being specific to all features.

Marcus and Maletic use Latent Semantic Indexing (LSI) to locate concepts
in software, using LSI as a search engine and searching the source code
for concepts formulated as search queries [MSRM04]. The retrieval is an
interactive search process with relevance feedback from the user, and works
on source code as text corpus. They compare the approach to regular
expressions and program dependence graphs, and get better performance
than with these approaches.

Even though Latent Semantic Indexing (LSI) is applicable at any level
of granularity Marcus et al remained at the level of files and procedu-
ral systems. It is Kawaguchi et al that take it on a much larger scale.
They categorize whole software projects in open-source software reposito-
ries [KGMI04]. For each project they group together all source files into
one retrieval document, and use the identifier names as terms, skipping
comments. Then they exploit LSIs capability to compare between terms
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as well as documents: they cluster the terms and categorize the docu-
ments based on these clusters. The approach performs better, in terms of
precision and recall, than leading approaches based on external documen-
tation.

Furthermore they present MUDABlue, a tool that categorizes the projects
and describes the categories with automatically retrieved labels. The
tool uses cluster maps to visualize the categories and software projects
[FSvH03].

3.5 Other Application of LSI

In [MM01] the authors use LSI to detect high-level conceptual clones, go-
ing beyond string based clone detection using LSIs capability to cope with
synonymy and polysemy. They split the source files into procedures us-
ing these as retrieval documents. Then they cluster the procedures based
on their similarity, and detect in a supervised process possible clones be-
tween files. Supervised meaning that their approach requires user inter-
vention.

They argue that further automation would be to expensive and difficult,
and thus human interaction is unavoidable. In their approach the user
has first to select a set of documents as template, and then to examine the
returned list of the possible clone candidates. Alas they do not support any
user guidance to these process beyond lists with mere numbers: neither
visualizations nor labels are used to guide the user.

Marcus et al use LSI to compute the cohesion of a class based on the
semantic similarity of its methods [MP05]. In a case study they compare
their semantic cohesion with several structure based cohesion measure-
ments.

3.6 Software Clustering

A common way to reduce the complexity of a software system is to split
it up into modules. But as a system evolves its structure decays due to
architecture violations introduced by maintenance tasks [Par94, EGK+01].
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Thus reengineering techniques are required to (re)modularize a system.

Clustering methods are a good starting point for the remodularization of
software system, because the goal of clustering methods is to group related
entities together. A general overview of clustering and its application
in software reengineering is given in [Wig97] and a detailed overview of
clustering algorithms themselves in [JMF99]. Another popular approach
is Formal Concept Analysis (FCA).

Wu et al observe the stability of clustering approaches as a software sys-
tem evolves [WHH05]. They apply six different approaches on subsequent
versions of five open source systems, and log three criteria: stability, au-
thoritativeness and the extremity of cluster distribution. The studied al-
gorithms show distinct characteristics, for example the most stable is the
least authoritative and vice versa. The authors conclude that current
algorithms need significant improvement to support continuous monitor-
ing.

Lindig et al modularize legacy systems based on the usage of global vari-
ables by procedures [LY97]. They use Formal Concept Analysis (FCA) to
build a lattice with groups of procedures that use the same set of vari-
ables. They conduct three case studies, each written in a different proce-
dural languages. The quality of the results correlate with the amount of
modularization supported by the language of the system, hence the au-
thors conclude with Wittgenstein’s “Die Grenzen meiner Sprache sind die
Grenzen meiner Welt”.

Deursen et al investigate the usage of data records to port procedural
systems to object orientation [vDK99]. Based on the observation that
records in data structures are often not related to each other, they do not
rely on the given structures but rather break them up and re-structure
the records based on co-occurent usage. They use both a hierarchical
clustering as well as Formal Concept Analysis (FCA), and provide in the
conclusion a general discussion of dendrograms, which are the result of a
clustering, and lattices, which are the result of FCA, in relation to software
re-modularization.

Siff et al extend the previous approach including negative information as
well [SR99]. They model both if a procedure uses a record as well as if a
procedure does not use a record. Then they introduce the notion of concept
partition, and present an algorithm to compute all possible partitions of
the system given by the concept lattice. They prove the formal correctness
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of the algorithm.

Tonella introduces a distance measurement between partitions to estimate
the cost of restructuring the system [Ton01]. The distance is defined as the
minimal number of elementary operation required to transform the first
partition into the second partition. This is similar to the Mojo distance
[TH99], but with another set of operations. The measurement is applied on
twenty case studies using an approach based on Formal Concept Analysis
(FCA) and a coupling-cohesion measurement. The authors verify some
of the results by actually carrying out the proposed restructuring of the
system. They conclude that such a refactoring is not a trivial task, but
that the proposed partition has been a very useful suggestion.

Li et al try to exploit ownership by discriminating different coding styles
[LY01]. Their assumption is that each author uses a distinct code format-
ting and dictinst naming conventions. An assumption which, of course,
falls if a team adheres to a binding style convention. They sell their ap-
proach as a possibilty to split large projects into conceptual subsystems,
making another assumption that each author is responsible for one module
of the whole software only and explicitly.
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Chapter 4

Semantic Clustering

“The second error is that of Lewis Carroll’s Walrus who grouped
shoes with ships and sealing wax, and cabbages with kings. . . ”

— Reuben Abel

This chapter introduces Semantic Clustering , a novel technique to analyze
the semantics of a software system. Semantic clustering offers a high-
level view on the domain concepts of a system, abstracting concepts from
software artifacts.

Semantic clustering is a non-interactive and unsupervised technique. First
Latent Semantic Indexing (LSI) is used to extract linguistic information
from the source code and then clustering is applied to group related soft-
ware artifacts into clusters. A cluster is a group of artifacts that use the
same vocabulary. Therefore each cluster reveals a different concept of
the system. Most of these are domain concepts, some are implementa-
tion concepts. The actual ratio depends on the naming convention of the
system.

Finally, the inherently unnamed concepts are labeled with terms taken
from the vocabulary of the source code. An automatic algorithm labels
each cluster with is most related terms, and provides in this way a human
readable description of the main concepts in a software system.
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Additionally, the clustering is visualized as a shaded Correlation Matrix
that illustrates:

• the semantic similarity between elements of the system, the darker
a dot the more similar its artifacts,

• a partition of the system into clusters with high semantic cohesion,
which reveals groups of software artifacts that implement the same
domain concept,

• and semantic links between these clusters, which emphasize single
software artifacts that interconnect the above domain concepts.

The following sections of this chapter explain Semantic Clustering step by
step (see Figure 4.1). The “LAN-Simulation” [DVRG+05] is considered as
an example to exemplify the explanations.
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Figure 4.1: From left to right: unordered correlation matrix, then sorted by
similarity, then grouped by clusters, and finally including semantic links.

4.1 Building the Text Corpus

Semantic clustering uses Latent Semantic Indexing (LSI) to build a seman-
tic model of source code. LSI is an information retrieval (IR) technique
that analyzes the distribution of terms over a text corpus (see Chapter 2).
When applying LSI on a software system we break its source code into
documents and we use the vocabulary found therein as terms. The system
can be split into documents at any level of granularity, such as modules,
classes or methods, it is even possible to use entire projects as documents
[KGMI04].

We extract the vocabulary of source both from the content of comments
and from the identifier names. Comments are parsed as natural language
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text and compound identifier names split into their parts. As most modern
naming conventions use camel case it is straight forward to split identifiers:
for example FooBar becomes foo and bar. In case of legacy code that uses
other naming conventions, or even none at all, more advanced algorithms
and heuristics are required [CT99, AL98].

As proposed in Section 2.3 we exclude common stopwords from the vocab-
ulary, as they do not help to discriminate documents, and use a stemming
algorithm to reduce all words to their morphological root. An finally the
term-document matrix is weighted with tf-idf (seeSection 2.3), to balance
out the influence of very rare and very common terms.

4.2 Semantic Similarity

In the previous section we used Latent Semantic Indexing (LSI) to extract
linguistic information from the source code. The result of this process
is an LSI index L with similarities between software artifacts as well as
terms. Based on the index we can determine the similarity between these
elements.

Software artifacts are more similar if they cover the same concept, terms
are more similar if they denote related concepts. Since similarity is defined
as cosine between element vectors (see Section 2.5) its values range between
0 and 1. The similarities between elements are arranged in a square matrix
A called the Correlation Matrix .

To visualize the similarity values we map them to gray values: the darker,
the more similar. In that way the matrix becomes a raster-graphic with
gray dots: each dot ai,j shows the similarity between element di and el-
ement dj. In short, the elements are arranged on the diagonal and the
dots in the off-diagonal show the relationship between them—see the first
matrix in Figure 4.1.

4.3 Semantic Clustering

Without proper ordering, the correlation matrix looks like television tuned
to a dead channel. An unordered matrix does not reveal any patterns:
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arbitrary ordering, such as the names of the elements, is generally as useful
as random ordering [Ber81]—therefore, we cluster the matrix such that
similar elements are put near each other and dissimilar elements far apart
of each other.

Furthermore applying a clustering algorithm groups similar elements to-
gether and aggregates them into concepts. Hence, a concept is character-
ized as a set of elements that use the same vocabulary.

Hierarchical clustering yields a tree, called dendrogram, that imposes both
a sort order and a grouping on its leaf elements, see Figure 4.2 [JMF99].
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Figure 4.2: Hierarchical clustering yields a tree, called “dendrogram”, that
imposes both a sort order and a grouping on its leaf elements

Sort order. Traversing the dendrogram we collect its leaves and return
them sorted by similarity, in that way we place similar elements near
each other and dissimilar elements far apart of each other. Docu-
ments that are not related to any concept usually end up in singleton
clusters in the middle or in the bottom right of the correlation ma-
trix. The correlation matrices in this paper are ordered using average
linkage clustering, and traversing the tree large-clusters-first.

Clustering. To actually break down the system into a hard partition of
clusters, the dendrogram tree is cut off at a given threshold and all
remaining leaves taken as clusters, as illustrated by the dotted line
on Figure 4.2. Since both sort order and grouping are taken from the
same dendrogram, it is guaranteed that the elements of each clusters
are in a row.

Using these two results we reorder the matrix, group the dots by clusters
and color them with their average cluster similarity—as illustrated on the
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second and third matrices on Figure 4.1.

As with the element similarities in the previous section, the similarities
between clusters are arranged in a square matrix A. When visualized,
this matrix becomes a raster-graphic with gray rectangles: each rectangle
ri,j shows the similarity between cluster Ri and cluster Rj, and has the
size (|Ri|, |Rj|). In short, the clusters are arranged on the diagonal and
the rectangles in the off-diagonal show the relationship between them—see
the third matrix on Figure 4.1.

4.4 Semantic Links
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Figure 4.3: A semantic link is a one-to-many relation: A document in
cluster A that is more similar to those in cluster B than all its siblings in
A.

The tradeoff of the clustering is, as with any abstraction, that some valu-
able detail information is lost. We use semantic linking to pick out rela-
tions at the level of elements, and plot them on top of a clustered correla-
tion matrix.

Our experiments showed that the most valuable patterns are one-to-many
relationships between an element and an entire cluster. If the similarity
between an element dn and a cluster differs significantly from the average
cluster similarity, we plot dn on top of the clustered matrix: as a bright
line if dn is less similar then average, and as a dark line if dn is more similar
then average. Figure 4.3 gives an example of a semantic link.

The case-study in Section 6.1 uses a variation of this technique to re-
veal high-level conceptual clones [MM01] instead of “semantic links”. The
setup of the correlation matrix in that case-study is basically the same as
presented in this chapter, with the difference that the elements are first
grouped by top-level modules and then clustered within these modules
only.
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4.5 Correlation Matrix

This section summarizes the previous steps: We use a shaded correlation
matrix to illustrate the semantic clustering of a system. A correlation
matrix is gray-scale raster-graphic: each dot ai,j shows the similarity be-
tween element1 di and element dj—the darker, the more similar. In other
words, the elements are arranged on the diagonal while the dots in the
off-diagonal show the relationship between them, see Figure 4.4.

Alas, an unordered matrix does not reveal any patterns, therefore we clus-
ter the elements and sort the matrix: all dots in a cluster are grouped
together and are colored with their average similarity, that is the semantic
cohesion [MP05]. This offers a high-level view on that system, abstracting
from elements to concepts.

A sample Correlation Matrix is shown in Figure 4.4. There are three
annotated clusters: A, B and C. On the visualization we can see:
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Figure 4.4: A sample Correlation Matrix : Cluster A and B are similar,
cluster C is very cohesive, two elements in B are related to C.

Semantic Similarity. The colors in the off-diagonal shows the similarity
between clusters. Cluster A has much in common with Cluster B
as there is a gray area between them, but nothing at all in common
with Cluster C since the area between the two is plain white.

1In the scope of this chapter the term element refers to software artifacts, such
as for example classes, methods or functions. But due to the interchangeability of
documents and terms in the vector space model (VSM), see Section 2.2, anything said
about elements holds true for both documents and terms.
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Semantic Cohesion. The color inside a cluster shows the similarity among
its elements, that is the “semantic cohesion” of its concept. Cluster
C is nearly black and thus very cohesive, cluster A and B are lighter
and but still of acceptable cohesion.

Semantic Links. If the similarity between an element dn and a cluster
differs significantly from the average we mark it either with a bright
or a dark line. A bright line if dn is less similar then average, and
a dark line if dn is more similar then average. On Figure 4.4, there
are two elements in cluster B that are more similar than average
regarding cluster C.

The Correlation Matrix illustrates the semantics of a software system,
that is how the semantic concepts are related to each other. The relation
between the semantics and the structure on the other hand is discussed
and visualized in Chapter 5.

4.6 Labeling the Clusters

Just visualizing clusters is not enough, we want to have an interpretation
of their of semantic concepts. We need a written description of the con-
cept covered by a cluster, that is we need labels that describe the cluster.
Often just enumerating the names of the software artifacts in a cluster (for
example displaying the class names) gives a sufficient interpretation. But,
if the names are badly chosen or in case of analyzing unnamed software
artifacts, we need an automatic way to identify labels. Figure 4.5 shows
the labels for the concepts found in the LAN example.

The labeling works as follows: As we already have an LSI-index at hand,
we use this index as a search engine [BDO95]. We reverse the usual search
process where a search query of terms is used to find documents, and
instead, we use the documents in a cluster as search query to find the
most similar terms. To obtain the most relevant labels we compare the
similar terms of the current cluster with the similar terms of all other
clusters.

Term t0 is relevant to cluster A0, if it has a high similarity to the current
cluster A0 but not to the remaining clusters A ∈ A. Given the similarity
between a term t and a cluster A as sim(t, A), we define the relevance of
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Figure 4.5: Automatically retrieved labels describe the concepts. The
labels were retrieved using the documents in a concept cluster as query to
search the LSI space for related terms.

term t0 according to cluster A0 as follows:

rel(t0, A0) = sim(t0, A0)−
1

|A|
∑

An∈A

sim(t0, An)

This raises better results than just retrieving the top most similar terms
[KDG05]. It emphasizes terms that are specific to the current cluster over
common terms.
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Chapter 5

Distribution of Concepts

“A man without a name is but a shell.
It is the name to which his soul is tied.”

— a shamanist saying

The semantic clusters help us grasp the concepts implemented in the source
code. However, the clustering does not take the structure of the system
into account. As such, an important question is: How are these concepts
distributed over the system?

To answer this question, we use the metaphor of a distribution map [Ber73].
In this chapter we discuss how the semantic concepts are related to the sys-
tems structure. The semantic partition of a system, as obtained by Seman-
tic Clustering , does generally not correspond one-on-one to its structural
modularization. In any system we find both, concepts that correspond to
the structure as well as concepts that cross-cut it.
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5.1 The Distribution Map

To illustrate the correlation between the semantic clustering and the struc-
tural modularization of a system we introduce the Distribution Map1, see
Figure 5.1. It is composed of large rectangles containing small squares in
different colors. For each structural module there is a large rectangle and
within those for each software artifact a small square. The color of the
squares refers to the semantic concepts implements by these artifacts.

The Distribution View

Module B
2 artifacts

1 x Red

1 x  Blue

Module A
5 artifacts

4 x Blue

1 x Yellow

Module C
14 artifacts

9 x Red

3 x Blue

2 x Yellow

a module

an artifact with

concept color

Figure 5.1: The Distribution Map shows how semantic concepts are dis-
tributed over the structural modularization of a system. Boxes denote
modules and software artifacts, colors refer to concepts.

The choice of colors is crucial to the readability of the Distribution Map.
We need to pay attention to the characteristic of human vision to make
sure that the visualization easy to read and to avoid wrong conclusions
[?]. First, scattered squares are easier to spot if they are shown in distinct
colors than if they are shown in colors similar to the well-encapsulated
colors. Therefore light colors are a good choice for cross-cutting concerns
and dark colors a good choice for well encapsulated concepts. Second,
a human reader will draw conclusions concerning the similarity between
concepts based on the similarity of the colors that denote these concepts.
For example, green and dark green suggests that two concepts are related,
while green and red suggest that the same two concepts are unrelated.
Therefore the similarity between the semantic concepts is taken into ac-
count when choosing the colors, such that more similar concepts use more
similar colors and vice versa.

1This visualization is by no means restricted to semantics and structure, it is gen-
erally applicable on any set of entities with two different partitions [DGK06].
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5.2 Distribution Patterns

The semantic partition of a system, as obtained by Semantic Clustering ,
does generally not correspond one-on-one to its structural modularization.
In most systems we find both, concepts that correspond to the structure as
well as concepts that cross-cut it. In this section we propose a vocabulary
to describe the most common distribution patterns (see Figure 5.2):

Figure 5.2: From top left to bottom right: a well-encapsulated concept
that corresponds to the modularization, a cross-cutting concept, a design
smell scattered across the system without much purpose, and finally an
octopus concept which touches all modules.

Well-encapsulated Concept – if a concept corresponds to the struc-
ture, we call this a well-encapsulated concept. Such a concept is
spread over one or multiple modules, and includes almost all arti-
facts within those modules. If a well-encapsulated concept covers
only one module we might prefer to speak of a solitary concept. In
Figure 5.2 the red concept illustrates this pattern, but not the orange
one.

Cross-Cutting Concepts – if a concept cross-cuts the structure, we call
this a cross-cutting concept. Such a concept spreads across multiple
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modules, but includes only one or very few artifacts within each
module. In Figure 5.2 the green example illustrates this pattern.
Whether a cross-cutting concept has to be considered a design smell
or not depends on the particular circumstances. Consider for ex-
ample the popular three-tier architecture: It takes the concepts ac-
cessing, processing and presenting data and puts each on a separate
layer; while application specific concepts – such as for example ac-
counts, transactions or customers – are deliberately designated to
cross-cut the layers. That is, it picks out some concepts, empha-
sizes them and deliberately designates the others as cross-cutting
concerns.

Octopus Concept – if a concept dominates one module, as a solitary
does, but also spreads across other modules, as a cross-cutter does,
we call this an octopus concept. In Figure 5.2 the blue example illus-
trates that pattern. Imagine for example a framework or a library:
there is a core module with the implementation and scattered across
other modules there are artifacts that plug into the core, and hence
using the same vocabulary as the core.

Black Sheep – if there is a concept that consists only of few separate
artifacts, we call this a black sheep. Each black sheep deserves closer
inspection, as these artifact are sometimes a severe design smell. Yet
as often, a black sheep is just an unrelated helper classes and thus
not similar enough to any other concept of the system.

5.3 Case-Study

This section discusses the concept distribution considering a three-tiered
application as example. Outsight is a web based business application writ-
ten in Java and about 200 classes large. It is a web-based job market, a
search engine where graduate students enter their CV and business com-
panies submit profiles. The package structure splits the system into three
layers and some separate modules. The layers are named database, logic
and presentation, furthermore there are three migration and two utility
packages.

We analysed the system at class level, used an tf-idf weighting, applied
LSI with a rank of k = 12 and clustered the documents using a threshold of
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ϑ = 0.5, which resulted in nine distinct concept clusters. Figure 5.4 lists
all the concepts and their labels, and Figure 5.3 shows the Distribution
Map of the system.
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Figure 5.3: This Distribution Map illustrates the distribution of semantic
concepts over packages and classes of the Outsight case-study. There are
both encapsulated and cross-cutting concepts.

Concept Main Module Top 7 Labels
Red businesslogic logic node ID user state admin login
Blue matching language match profile create content store candidate
Cyan database data set create fail database row equal define
Darkcyan massfiller company mass region math store random perform
Black TreeFactory logic node child remove trigger tree set children
Green util filename number size file stream system param
Yellow util time run equal date number end main
Magenta data debug driver delay pool connection runtime SQL
Darkgreen candidate document written presentation add output candidate PDF

Figure 5.4: All semantic concepts of the Outsight case-study: the top
seven labels column lists the most relevant terms of each concept, and
main module column lists the package that contains most of its classes.

Self-contained Concepts – the system has two main concepts: Red and
Blue are the largest concepts of the application. Together they make
up 80% of the business logic layer, clearly predominating not only
this part but the whole system. Both show good encapsulation: Blue
coincides with one package and Red with four.

Noteworthy are the appearances of Red and Blue in the migration
packages. In this case, linguistic information reveals details the evo-
lution of the system: each of the packages contains scripts to move
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from one version of the system to the next. For example, because
we find concepts Red and Blue in the package of the first migration,
we can conclude that these concepts changed significantly from the
first to the second version of the system.

Concept Red implements the main structure of the business logic,
and its labels and vocabulary indicate that the applications uses a
generic tree based data structure. It has an alarming number of
outliers in the utility package, a manual check has to show if this
is a structural flaw or not. Maybe it is not, as it is inevitable that
some utility classes, which are almost exclusively used by the main
concept, end up in the main concept even if a human expert would
categorize them apart. But in this case the utility package is divided
into equals parts of Red and Green, which indicates that it should
be split into two packages.

Concept Blue implements the search engine that matches profiles
against candidates. There are three outliers on the database layer,
which shows that this concept is more deeply involved on that low
level layer than the more general Red concept. Moreover, there are
no outliers of Blue on the presentation layer one level above.

Solitary Concepts – Beside the main concepts the system has two other
well-encapsulated concepts. Darkgreen and Darkcyan are almost
perfect instances of a solitary concept: both are well encapsulated
by one package.

Concept Darkgreen is a part of the presentation layer and gener-
ates, as its labels convey, PDF documents instead of web pages. Its
package should be renamed, as candidate is a misleading name for a
PDF engine.

Concept Darkcyan is called massfiller and is involved on the database
layer, as the three Cyan outliers indicate. It is likely to be a tool to
fill the database with random data.

Cross-Cutting Concept – the system has one clear cross-cutting con-
cept, which is Yellow.

Concept Yellow is a meta concept. Its first label is time, standing
out of the list with a similarity of δ1 = 0.92 compared to the remain-
ing labels with δ2 = 0.83 and below. In fact all its classes deal with
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time handling, but each class provides distinct functionality specific
to its package. Moving these classes into their own package therefore
does not make much sense.

Octopus Concepts – the system has two octopus concepts: concept
Cyan and Green, which are both badly designed. The base pack-
ages of Cyan should be merged, the base package of Green should
be split.

Concept Cyan is, as the labels reveal, the database concept. Most
of its classes are on that layer, yet they are spread across several
package: this layer should be cleaned up. But otherwise it is a well
designed octopus concept: it is used on the business logic layer and
by the massfiller solitary, but not on the presentation layer.

Concept Green is, as the labels reveal, the file and IO concept. It is
mainly used on the presentation layer, but has outliers on all layers.
It shares its base package with concept Red, which indicates that
this package should be split into two.

Design Smells – some design smells have already been addressed, re-
maining are two packages: Magenta and Black. The first is a badly
encapsulated solitary concept, and the latter a “Black Sheep”.

Concept Magenta provides, as the labels convey, very low level
database functionality. Its classes are distributed over two packages,
and should be merged into one package to make it onto a solitary
concept.

Concept Black is restricted to one single class, this smells. Its struc-
ture and its evolution confirm this assumption: it is not only the class
with most lines of code but also the class with most CVS revisions.
In fact the class is named TreeFactory and is used to create all data
objects of the business logic layer. Every time the business model or
process changes this class has to change also.

To summarize our findings: We showed how to use the Distribution Map
to gain insight into the main concepts of the system. Furthermore the lin-
guistic analysis pointed out several design flaws, and proposed refactorings
to solve them: rearrange the modularization of the database layer, split
the utility package into two halves and tackle the TreeFactory class to find
a better solution for object creation.
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Chapter 6

Experiments

“Stat rosa pristina nomine, nomina nuda tenemus.1”
— Umberto Eco, in The Name of the Rose

To show the generic nature of the approach we apply it at different levels
of abstraction and on case studies of different sizes and written in two
different languages:

1. In the first case-study we analyze the core and the plug-ins of a
framework, the Moose reengineering environment [DGLD05]. This
experiment focuses on the relation between architecture and seman-
tics. It reveals four cases of duplicated code and a core functionality
misplaced in one of the plug-ins.

2. The second case-study is the class MSEModel, which is one of the
largest classes in Moose. In this experiment we analyze the relation-
ship among the methods of MSEModel. The experiment reveals that
the class should be split as it serves at least two different purposes.

3. In the third case-study, the JBoss open-source Java application server,
we focus on the distribution of concepts over classes and show the

1The ancient rose continues to exist through its name, yet its name is all that remains
to us.
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strength of our approach in identifying and labeling domain concepts.

4. In the fourth case-study we analyze the distribution of the semantic
concepts over the package structure of Azureus, a popular file sharing
client. The experiment presents a software system with very well-
encapsulated concepts.

The following table summarizes the problem size of each case study. It
lists the number of documents and terms in the vector-space-model, and
the rank to which the vector space has been broken down with LSI (see
Chapter 2). In the case of Moose, JEdit and Azureus we use classes as
input documents, while in MSEModel we use methods.

Case-study Language Type Documents Terms LSI-Rank Threshold
Moose Smalltalk Classes 726 11785 27 N/A
MSEModel2 Smalltalk Methods 4324 2600 32 0.75
JBoss Java Classes 660 1379 16 0.5
Azureus Java Classes 2184 1980 22 0.4
JEdit Java Classes 394 1603 15 0.5
Ant Java Classes 665 1787 17 0.4

Figure 6.1: The case studies and their characteristics.

6.1 Semantic Links between a Framework
and its Plug-ins

This case-study shows the application of our approach to analyze how
modules are semantically related to each other. The granularity of the
correlation matrix are classes, grouped by modules and ordered inside
modules by semantic similarity. The goal here is to detect relationships
between the plug-ins and the framework. One would expect to find for each
plug-in a large part of classes that are not similar to the framework or other
plug-ins, since each plug-in extends the framework with new functionality.
One would also expect to find some classes that share semantic content
with the framework, since each plug-in hooks into the core.

Figure 6.2 shows the correlation matrix. There are five blocks on the
main diagonal, one for each module. They are, from top-left to bottom-
right: Hapax, Van, Moose, ConAn and CodeCrawler. Moose is the core

2This case-study focuses on 164 out of its 4342 methods, for example those methods
that belong to the MSEModel class (see Section 6.2).
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framework, all other module are plug-ins built on top of Moose [DGLD05];
CodeCrawler extends Moose with visualization capabilities [LD05].

© Copytight 2005 Adrian Kuhn
akuhn@iam.unibe.ch
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Figure 6.2: The correlation matrix of the Moose environment and four
plug-ins.

The background color of a cluster shows its density given by the average
similarity between all its classes. The background colors of the off-diagonal
rectangles show the relationships between clusters (that is the average sim-
ilarity between all classes of one cluster to all classes of the other cluster).
If the background color is white two clusters are not related, if it is gray
they are related – the darker the gray the stronger the relationship.

The lines indicate semantic links which are single classes in one cluster that
stand out as its similarity to all classes in another cluster is significantly
above or below the average similarity.

Hapax. The background color shows that Hapax is slightly related to the
core, but not related to the other plug-ins. A noteworthy semantic link
is the line parallel to the core which indicates a class in Hapax strongly
related to the core as a whole. Another semantic link is shown by the
line orthogonal to Van indicates a class in Van strongly related to Hapax.
Closer inspection reveals that:

• the first is a generic visitor class missing in the core that got imple-
mented in Hapax, and
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• the second is an implementation of a matrix data structure in Van
duplicating code in Hapax.

Although Hapax implements several visualizations (for example the one in
this article) it does not share any semantics with CodeCrawler which is a
generic visualization tool. This is an indicator that its visualizations are
not based on CodeCrawler, and that it could become a source of potential
functional duplication.

Van. The broad white margin, at the bottom right inside its box, is an
indicator that Van contains many utility classes not related to the main
concepts implemented in it. The background colors of the off-diagonal rect-
angles show that Van is related to both the Moose core and CodeCrawler.
Noteworthy semantic links are – beside the line shared with Hapax men-
tioned above – the fat group of lines parallel to CodeCrawler; and the lines
parallel to ConAn, since Van is otherwise not related to ConAn. Closer
inspection reveals that:

• the first as subclasses extending the CodeCrawler framework, thus
Van makes heavy use of that plug-in, and

• the second link is an implementation of a tree data structure dupli-
cating code in ConAn.

Moose. As we discuss the relationship of Moose to its plug-ins in the other
paragraphs, we examine here its inner structure. The light background
color shows that Moose is less semantically cohesive than the plug-ins.
While all plug-ins deal with one concept, ConAn being the most cohesive,
Moose contains two broad concepts separated by the white lines in its
center. Closer inspection reveals that the first concept is the meta-model,
including the FAMIX model [DTD01]; and the second concept consists of
metrics and operators common to these metrics.

ConAn. The background colors show that ConAn is, as Van, related to
both the core and CodeCrawler. Noteworthy semantic links are – beside
the code duplication mentioned above at Van – the group of lines parallel
to CodeCrawler; and the white cross inside the box, standing out from the
otherwise very cohesive content. Closer inspection reveals:

• the first, again as in the case of Van, as extensions by subclassing of
the CodeCrawler framework, and
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• the second as user-interface classes.

CodeCrawler. The background colors show that CodeCrawler is more
related to other plug-ins than to the core, thus revealing it as being more
an extension of the core than a real plug-in. Which is the case, since Code-
Crawler extends Moose with visualization capabilities. Some noteworthy
semantic links have already been mention above, the two remaining are
the long line parallel to the the core stretching over all other plug-ins;
and the dark cross inside its box. Closer inspection reveals that the first
as CCItemPlugin the root class of the hierarchy extended by both Van
and ConAn, and the second as 2D-geometry classes, forming the core of
CodeCrawler rendering engine.

Our findings in this case study show that the correlation matrix reveals
valuable information about the relationship between the different modules:
it has revealed about a dozen strong relations by inspecting the semantic
link. Among them, we found four cases of potential code duplication
[MM01], and one case of functionality missing in the core.

6.2 Semantic Clusters of Methods in a Class

In this experiment we apply our approach to understand the internals
of a single class (see Figure 6.3). The level of abstraction are methods,
that is the documents of the LSI-space are method bodies. The goal is
to detect different concepts in a large class. The class is MSEModel, with
164 methods. It the core of Moose, from the previous case study, and
its purpose is similar to the Document class in the XML DOM model
[WSB+98].

The most evident patterns are: the large cluster in the top left, and the
small but cohesive cluster in the bottom right. As the background colors
show all other clusters are related to the large one, but none of them to
the cohesive one. A look at the method names reveals the large cluster are
the accessors of the class and provides access to the nodes in the model’s
graph. The cohesive cluster is about meta-information, it provides access
to information, such as, the creation date of the model or the version of
the meta-model.
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Figure 6.3: The correlation matrix of the methods inside the MSEModel
class.

We discuss the remaining clusters in their order on the diagonal from top-
left to bottom-right: The second and the third cluster are quite small and
deal with structural relationships, the labels of the latter are for exam-
ple: inheritance, subclass, superclass, hierarchy, and override. The fourth
cluster is medium-sized are modifiers, containing methods to manipulate
the model (for example addEntity and removeEntity). As the off-diagonal
shows, the modifiers are related to the accessors but not to structural re-
lationships. The fifth cluster however is related to the modifiers, and its
labels reveal that it is dealing with unique IDs of model nodes. Its top
labels are: uuid, MSEUUID, id.

Next are three clusters not related to any other, their top labels are log,
stream, cr and import, context, facade and space, term, vocabulary. Evi-
dentally, they are the logging facility, the import facility, and an extension
of the Moose model specific to LSI and semantic clustering.

In this case study, we looked at the clusters and their labels and got a full
overview of the concepts covered by this class. Furthermore, we identified
four concepts not related to the core functionality of the class, that might
be good candidates to factor out into classes of their own.
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6.3 Distribution of Semantic Clusters in
JBoss

This experiment focuses on the distribution of concepts over classes. As
a case study we use JBoss, an open-source Java application server. We
applied semantic clustering with a threshold of δ = 0.5, which yields ten
distinct concepts that are illustrated on Figure 6.4. The automatically
retrieved labels are listed on Figure 6.5.

Figure 6.4: The distribution map of the semantic clusters found in JBoss.

Color Size Labels
red 223 invocation, invoke, wire, interceptor, call, chain, proxy, share
blue 141 jdbccmp, JDBC, cmp, field, loubyansky, table, fetch
cyan 97 app, web, deploy, undeployed, enc, JAR, servlet
green 63 datetime, parenthesis, arithmetic, negative, mult, div, AST
yellow 35 security, authenticate, subject, realm, made, principle, sec
dark magenta 30 expire, apr, timer, txtimer, duration, recreation, elapsed
magenta 20 ASF, alive, topic, mq, dlq, consume, letter
orange 20 qname, anonymous, jaxrpcmap, aux, xb, xmln, WSDL
purple 16 invalid, cost, September, subscribe, emitt, asynchron, IG
dark green 15 verify, license, warranty, foundation, USA, lesser, fit

Figure 6.5: The labels of the semantic clusters of JBoss.

While Concept Red, which is the largest cluster and thus the main concept
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of the system, is labeled with terms such as invocation, interceptor, proxy
and share, Concept Cyan covers the deployment facility.

The most well encapsulated concepts are Dark green, Orange, Green and
also Blue. The first three are placed apart from Red, which is the main
concept of the system, while Blue has outliers in the red core packages.
From the labels and package names we conclude that Dark green is a bean
verifier, that Orange implements JAX-RPC and WDSL (for example web-
services) and that Green as an SQL parser and that Blue provides JDBC
(for example database access) support.

The most cross-cutting concept is Yellow and spreads across half of the
system. The labels leave no doubt that this is the security aspect of
JBoss.

Noteworthy is the label loubyansky. Evidentally, this is the proper name of
one of the developers and as his names pops up among the labels of concept
Blue, we can assume that he is one of the main developers of that part of
the system. And in fact, further investigation proves this true.

Noteworthy as well are the labels of concept Dark green, as they expose
a failure in the preprocessing of the input data. To exclude copyright
disclaimers, as for example the GPL licence, we ignore any comment above
the the package statement of a Java class. However, in the case of the
three packages covered by concept Dark green this heuristic failed, as they
contain another licence within the body of the class.

In this case study, we analyzed how semantic clusters distribute over the
package structure of JBoss. We identified some domain concepts, most of
them well known EJB technologies, and security as a cross-cutting aspect.
Additionally we identified one of the system’s main authors, and spotted
a failure in the preprocessing of the input data.

6.4 Distribution of Semantic Clusters in
Azureus

In this experiment we show how well the distribution map scales up. As
a case study we use Azureus, a popular bittorent client, that has about
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2000 classes. We applied semantic clustering with a threshold of δ = 0.4,
which yields 14 semantic clusters that are visualized on Figure 6.6.

Figure 6.6: The distribution map of the semantic clusters found in
Azureus.

Figure 6.6 is noteworthy for three reasons:

• The distribution map shows an extraordinary match between the
concepts and the package structure. There are no cross-cutting con-
cepts. Further investigation is necessary to decide, whether this is
due to good design or due to strict code ownership imposing author
specific vocabularies in the system, or maybe, even both explanations
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apply.

• The util package (for example the third box in the third row) as-
sembles classes from a variety of concepts. We call such a package a
concept assembler, utility packages such as this one often follow this
pattern.

• Concept Red is a good example of an octopus concept. It the largest
cluster of the system and its “tentacles” reach into other concepts
such as for example Blue. What we observe here is the layering of the
system: concept Red, as the largest cluster of the system, implements
the system’s main domain concept; while cluster Blue is, as packages
names and labels indicate, implements the user interface.

In this case study, we analyzed how semantic clusters distribute over the
package structure of Azureus. We shows that the distribution map scales
up to thousands of elements, presented three characteristic patterns and
showed how semantic clustering is able to reveal architectural layers.

6.5 Distribution of Semantic Clusters in
JEdit

JEdit3 is a text editor written in Java, the source has a total of 394 classes
in 31 packages and uses a vocabulary of 1603 distinct terms, applying se-
mantic clustering resulted in nine domain concepts. Figure 6.7 illustrates
how the retrieved domain concepts are distributed over the package struc-
ture: the parts are the packages, the elements are the classes and the colors
refer to the detected clusters.

The table below lists for each concept its size, its spread, its focus and
a description of its concept. The concepts description were created using
was the following process:

• For well-encapsulated concepts, as for example Blue, the description
has been derived from the package name.

• In the case of cross-cutting concepts, as for example Yellow or Pink,

3JEdit version 4.2, http://www.jedit.org/.
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Figure 6.7: Distribution Map of linguistic concepts over the packages of
JEdit 31 parts, 394 elements and 9 properties).

the description has been derived from the labels automatically re-
trieved by Semantic Clustering, which are basically a top-ten list
with the most related terms.

color size concept
red 116 (main domain concept)
blue 80 BeanShell scripting
cyan 68 regular experssions
green 63 user interface
pink 26 text buffers
dark-green 12 TAR and ZIP archives
yellow 10 dockable windows
magenta 10 XML reader
orange 9 bytecode assembler

For example the labels for the dark-green cluster are: curr, buff, idx,
archive, TAR, rcdSize, blkSize, rec, heap and ZIP – thus we assigned the
concept “TAR and ZIP archives” to this cluster.

On Figure 6.7 the distribution of Red, the largest cluster and thus the main
domain concept of the application, shows which parts of the system belong
to the core and which do not. Based on the ordering of the packages, we
can conclude that the two UI concepts, Green and Yellow, are more closely
related to the core than for example concept Cyan, which implements
regular expressions.

The three most well-encapsulated concepts (Orange, Blue and Cyan) im-
plement clearly separated concepts such as scripting and regular expres-
sions. The concepts with the lowest encapsulation cross-cut the system:
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Figure 6.8: Distribution Map of linguistic concepts over the packages of
Ant (66 parts, 665 elements and 9 properties).

Yellow implements dockable windows, a custom GUI-feature, and Pink is
about handling text buffers. These two concepts are good candidates for
a closer inspection, since we might want to refactor them into packages of
their own.

6.6 Distribution of Semantic Clusters in
Ant

Ant4 is a popular development tool in Java. Its source has a total of
665 classes in 66 packages and uses a vocabulary of 1787 distinct terms.
Applying semantic clustering resulted in nine domain concepts. Figure 6.8
illustrates how the retrieved domain concepts are distributed over the given
package structure.

4Ant version 1.6.5, http://ant.apache.org/.
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color size concept
red 390 (main domain concept)
blue 103 string processing
cyan 56 version control clients
green 48 unit-test support
pink 23 network protocols
orange 21 XML handling
yellow 15 image and graphics
magenta 7 another versioning client
black 3 FTP and filesystem

The table above lists for each concept its size, its spread, its focus and
a description of its concept. The concept description was obtained using
a process similar to the one describe in Section 6.5. For example the
labels for the Orange cluster are: entity, SAX, parser, jaxp, XML, factory,
feature, systemid, catalog and XSL—thus we assigned the concept “XML
handling” to this cluster.

The three concepts with the lowest encapsulation (Blue, Green and Or-
ange,)broadly cross-cut the package structure and implement main features
of a development tool: string processing, unit-testing and XML handling.
Other features such as, access to version control systems and network pro-
tocols, are well-encapsulated in concepts.

The order of the packages is not arbitrary or by name, but reflects the
distribution of the concepts. On the first three rows there are packages
that implement the core functionality of Ant, the largest concept which
is Red, dominates this part of the figure. Then, on row four we find the
octopus concepts Blue and Green that are used by the core packages in
the third row. And, on the last row there are well-encapsulated plug-ins
such as the Pink parts, which implement network protocols, or the Cyan
and Magenta parts, which implement plug-ins for different version control
systems.
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Chapter 7

Discussion

“Gefühl ist alles, Name ist Schall und Rauch”
— Johann Wolfgang von Goethe,

Faust’s answer to the “Gretchenfrage’

In this chapter we discuss the different variations of the approach.

On the granularity of software artifacts. The approach takes text
documents as input. The source code can be broken into documents at
any level of abstraction. Straightforward approaches are breaking it into
classes or methods, like presented in this paper. However, other slicing
solutions are possible as for example execution traces [KGG05].

On the parameters used. Our approach depends on several parameters,
which are hard too choose for someone not familiar with the underlying
technologies. First, LSI depends on the weighting functions and the choice
of the rank. We weight the term-document-matrix with tf-idf, to balance
out the influence of very rare and very common terms [Dum91]. For the
choice of the rank, usually observed good results with this heuristic: r =
(m ∗ n)0.2.

The clustering is parameterized as well. The clustering uses a hierarchical
average-linkage clustering and takes either similarity threshold or a fix
number of clusters as parameter, using a threshold between δ = 0.75 and
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δ = 0.5 yields good. And finally a semantics link is an element in cluster
d1 with a different similarity to cluster d2 than average, typically we use a
threshold of δ = 0.2 to decide this.

On badly named identifiers. Not unlike structural analysis which de-
pends on correct syntax, semantic analysis is sensitive to the quality of
identifiers and comments. Software systems with a good naming conven-
tion and well chosen identifiers yield best results. In case of legacy code
that uses other naming conventions, or even none at all, please refer to
[CT99] for suitable algorithms and heuristics.

Our approach recovers the developer knowledge put into the identifiers and
comments, but if the developers did not name the identifiers with care, our
approach fails since valuable developer knowledge is missing. For example
if variables are just named temp, foo or x, y and z. Due to the strength
of LSI in detecting synonymy and polysemy1, our approach can deal with
a certain amount of such ambiguous or even complectly wrong named
identifiers – but if most of the identifiers in the system are badly chosen,
the approach fails.

On the abbreviated identifiers. This is similar to badly named iden-
tifiers. Yet, LSI analyzes the statistical distribution of terms across the
documents, it is therefore for the clustering not relevant whether identifiers
are consistently written out or abbreviated. But if the labeling task comes
up with terms like for example pma, tcm, IPFWDIF or sccpsn this does
not tell a human reader much about the system2. Please refer to [AL98]
for approaches on how to recover abbreviations.

On the dimension of the vocabulary. The vocabulary of source code
is very small, smaller than that of a natural language text corpus. Intu-
itively explained: LSI mimics the way children acquire language [LD91],
and a human with a vocabulary of 2000 terms is less eloquent and knowl-
edgeable than a human with a vocabulary of 20’000 term. The smaller the
vocabulary, the stronger the effect of missing or incorrect terms.

In average there are only about 5-10 distinct terms per method body, and
20-50 distinct terms per class. In a well commented software system, these

1Synonymy refers to different words having the same meaning and polysemy refers
to the same word having different meanings.

2These terms are examples taken from a real case study not included in this paper,
where about a third of all identifiers where abbreviations. In this case the labeling was
completely useless.
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numbers are higher since comments are human-readable text. Thus LSI
does not perform as perfectly on source code as on natural language text
[LFOT04], however the results are of sufficient quality.

On the use of ontology. As LSI is not based on an ontological database,
its vocabulary is limited to the terms found in source code. In case of
missing terms, our approach will not find accurate labels. Take for example
a text editor in whose source code the term text-editor is never actually
used, but terms like file and user. In this case our approach will label the
package with these terms, as a more generic term is missing. Thus, using
an ontology might improve our results.

On using the approach to gain a first impression. When encounter-
ing an unknown or not well known software, the distribution map together
with the labeling provides a good first impression of the software’s domain.
Semantic clustering captures concepts regardless of class hierarchies, pack-
ages and other structures. One can, at a glance, see whether the software
covers just a few or many different concepts, how these are distributed
over the structure, and – due to the labeling – what they are about.

On detecting code duplication. As illustrated in the Moose example,
the correlation matrix is useful to detect code duplication. Not on the
level of repeated code fragments and string comparison [DRD99], but –
as we work with lingustic data – high-level concept clones [MM01]: im-
plementations of the same functionality that use different vocabularies.
When developers lose the overview in a large project they tend to reinvent
the wheel, since they are not aware that there is already an implementa-
tion somewhere. LSI can detect these kind of duplication because of its
strength in identifying synonyms.

On the interactivity of the implementation. We implemented our
approach in Hapax, a tool built on top of the Moose reengineering envi-
ronment [DGLD05]. Figure 7.1 emphasizes the interactive nature of our
tool.

On the left we see the main window of Hapax. On left part of the window is
the correlation matrix visualization. On the right side of the window, there
are three panels that are updated as the mouse moves over the matrix.
The top two panels show the entity on the current row and the entity on
the current column. The bottom panel shows the labels attached to the
current cluster.
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Search
query

Search resultCurrent point
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Figure 7.1: Hapax and Moose. To the left we show the main Hapax
window. To the right we show how we can search for the entities relevant
to a query string.

On the right side of the window there is a slider for setting the clustering
threshold. When the slider is moved, the picture is redrawn with the new
clusters. This feature allows one to explore different clustering configura-
tions.

On the right side of the figure we show how we use LSI to also search over
the entities in the system. The top window contains the search query and
the result is shown in the below window with the group of the entities
ordered by their relevancy to the query.

On using the approach as navigation aid. As semantic clustering re-
turns a dendrogram, that is tree of clusters, we can use this to navigate the
source code in a top-down fashion. We combined Hapax with Software-
naut, an environment for the interactive, visual exploration of any hierar-
chical decomposition of a software system [LKGL05]. The user can interact
with, and navigate the visualizations of the semantical clusters, aided by
complementary lower level information about the properties and intercon-
nections between the components of the clusters, see Figure 7.2.
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Figure 7.2: Hapax and Softwarenaut. On the left: the semantic clusters as
boxes with arrows illustrating the number of invocations between them.
On the right: the labels for the selected cluster. On the bottom: the
dendrogram, a tree view of the clustering.
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Chapter 8

Conclusions

“In real life, unlike in Shakespeare,
the sweetness of the rose depends upon the name it bears.”

— Hubert H. Humphrey

When understanding a software system, analyzing its structure reveals
only half of the story. The other half resides in the domain semantics of
the implementation. Many reverse engineering approaches focus only on
structural information and ignore semantic information like the naming of
identifiers or comments. But developers put their domain knowledge into
exactly these parts of the source code.

This dissertation presented the use of Semantic Clustering to analyze the
textual content of source code to recover domain concepts from the code
itself [KDG05]. To identify the different concepts in the code, we apply
Latent Semantic Indexing (LSI) and cluster the source artifacts according
to the vocabulary of identifiers and comments. Each clusters represent a
distinct domain concept. To find out what the concepts are about, we use
LSI as search engine to retrieve the most relevant labels for the clusters.
For each cluster, the labels are obtained by ranking and filtering the most
similar terms [KDG06].

We use a shaded correlation matrix to visualize the identified concepts. It
illustrates the semantic similarity between source artifacts and the par-
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tition of the system into groups of software artifacts that implement the
same domain concept; and it reveals semantic links between these clus-
ters, that is single software artifacts which interconnect the domain con-
cepts. We use a visualization based on the concept of a distribution map
[DGK06] to show on the structure of the system (for example the package
structure) how the different entities (for example classes) are touched by
concepts.

We implemented our approach in a tool called Hapax [Kuh05]. Hapax
is built on top of the Moose reengineering environment [DGLD05], We
showed the generality of the approach by using the tool to analyze sev-
eral case studies at different levels of abstraction and written in Java and
Smalltalk [KDG05, KGG05, LKGL05, KDG06].

In the future we would like to investigate in more depth the relationship
between the concepts and the structure. For example, we would like to
compare the results of the semantic clustering with other types of clus-
tering. Also, we would like to improve the labeling with other computer
linguistic techniques.

We plan to investigate how semantic clustering can be useful for recovering
the architecture. For example, in a layered architecture, each layer uses a
specific vocabulary. Hence if we cluster classes based on semantic similar-
ities and compare this with the structural packages we can detect classes
that are placed in the wrong package. Furthermore, semantic clustering is
able to detect the business domains which are orthogonal to the layers in
the same way, as also each domain uses its own vocabulary.

On the other hand we would like to integrate an LSI engine in an IDE to
support documentation and search.

The labeling, or more simply just a search with a single software artifact
as query, can propose possible keywords to be used in the documentation
or comment of a software artifact. Furthermore, when building an index
with both the source code and its documentation as a separated document,
we can detect bad or out-of-date comments. Hence our approach can be
used to grade Javadoc like comments; this is similar to the essay grading
[FLL99].

Since semantic clustering makes use of an index created based on LSI,
we can simply use it to provide a search functionality that goes beyond
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mere keyword matching, because LSI takes synonymy and polysemy1 into
account. This is most useful in large projects where a single developer can
not know the whole project and its exact vocabulary. This prevents high-
level concept clones before they get written, since a search query finds
the desired implementation even if the query terms itself do not match
exactly.

1Synonymy refers to different words having the same meaning and polysemy refers
to the same word having different meanings.
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