Subjectopia

Unifying Subjectivity

Masterarbeit
der Philosophisch-naturwissenschaftlichen Fakultit
der Universitit Bern

vorgelegt von

Daniel Langone
28. February 2011

Leiter der Arbeit:
Prof. Dr. Oscar Nierstrasz
Jorge Ressia
Institut fiir Informatik und angewandte Mathematik

Acknowledgments

I would like to thank my supervisor Jorge Ressia for all his invested hours and all the input
— Prof. Oscar Nierstrasz for all the support for the master thesis — Tudor Girba and Lukas
Rengli for the review — my friends Urs Ochsner and David Birtschi, my family and Irene
Miihlemann for their patience and getting me always back on earth.

Abstract

Subjective behavior is essential for applications that must adapt their behavior to changing
circumstances. Many different solutions have been proposed in the past, based, for example,
on perspectives, roles, contextual layers, and “force trees”. Although these approaches are
equally expressive, each imposes a particular world view which may not be appropriate for
all applications. We propose a unification of these approaches, called SUBJECTOPIA, which
makes explicit the underlying abstractions needed to support subjective behavior, namely
subjects, contextual elements and decision strategies. We demonstrate how SUBJECTOPIA
subsumes existing approaches, provides a more general foundation for modeling subjective
behavior, and offers a means to alter subjective behavior in a running system.

Contents

1 Introduction 1
2 State of the Art 3
2.1 Self Delegation as an Exemplary Mechanism for Subjective Behavior 4
2.2 Perspectives i e e e e 6
2.2.1 Perspectives as Viewsof anObject 6

2.2.2 US - A Perspective-Based Programming Language 7

2.2.3 Symmetry Problem in Perspectives 0 oL L. 8

2.2.4 Perspective — Receiver Symmetry 9

2.2.5 Perspective’s Drawbacks oL 9

23 Roles 10
2.3.1 Subjects —Objects withRoles 10

2.3.2 Forces Affecting Subjects oL oo 12

233 Role’sDrawbacks 13

2.4 Context-oriented Programming 13
24.1 ContextasLayers. e e 13

2.4.2 Context Layer Activation Mechanisms 15

243 Context Variables 16

244 COPsDrawbacks e 16

2.5 Subjective Message Behavior oL Lo 16
2.5.1 Forces Influencing Behavior of Objects 16

2.5.2 Force Tree - A Decision Dispatching Mechanism 17

253 SMB’sDrawbacks 18

2.6 Problems in Current Subjectivity Models, 19
3 SUBJECTOPIA 21
3.1 Subjects e e e e e e 22
3.2 Decision Strate@ieso e e 22
3.3 Contextual Elements 25
3.4 Modeling Previous Approaches in SUBJECTOPIA oo 27
3.4.1 Perspectives as Decision Strategy o 27

34.2 RolesasDecision Strategy e 28

343 COPasDecision Strategy e 29

344 SMB asDecision Strategyo 30

3.5 Implementationl e e e 30

4 Validation
4.1 Case Study — Mobile Mail Application .

4.2 Case Study — Group Programming Application

4.3 Case Study — Bank Account Application
4.4 Case Studiesin Moose
4.4.1 Short Introduction to Moose . .

4.4.2 Case Study — Subjective Behavior of Group of Entities in Moose
4.4.3 Case Study — Subjective Behavior Influenced by Third-Party Entities in Moose .
4.4.4 Case Study — Subjectives menusin Moose

5 Conclusion
51 FutureWork

Appendices
A.1 Installation Guide
A.2 Introductory Example for SUBJECTOPIA

35
35
38
40
40
40
42
44
46

48
49

Introduction

We, as humans, generally strive to be objective, that is we try to behave in a unique and consistent way,
independent of personal feelings or external influences. In practice, however, we are often required to
behave subjectively, that is, we must adapt our behavior depending on circumstances.

In fact, real world entities are subjective. We have learned, for example, in the 20*" century that
physical measurements are relative to the frame of reference used by the observer. As a consequence,
real-world problem domains that we model in software applications are also subjective. The elements
that collaborate to achieve a common goal may need to adapt their behavior under given circumstances
such as for specific events or conditions. An employee of a bank, for example, does not reveal the current
balance of a bank account to all persons asking for it. Only authorized persons may asking for the balance
to obtain it. The behavior of the employee is subjective to the authorization circumstance.

Object oriented software systems consist of objects which interact by sending messages. Objects follow
the objective approach, that is they behave always the same way when receiving the same message. We
can reach subjective behavior in object oriented by using static idioms or patterns such as self-delegation
and double or multiple dispatch patterns [1]. Moreover, objects model their behaviors as if they were
intrinsic to them, which makes adapting the object for new requirements difficult. Therefore, we force
the developer of the object to forego the advantages of the object-oriented style or anticipate all future
adaptations. To faithfully model real-world domains we need other mechanisms to model subjectivity.

Subject-oriented programming was first introduced by Harrison and Ossher [2]. They advocated the
use of subjective views to model variation to avoid the proliferation of inheritance relations. We analyzed
other models for subjectivity and extracted the proposed key approaches as follows:

Perspectives. Smith proposed adding multiple perspectives to an object. Each perspective implements
different behavior for that object [3]. When an object sends a message through a perspective the
receiver behaves differently depending on the perspective chosen by the sender of the message.
Perspectives model subjective behavior as a set of different views for an object which influences its
behavior.

Roles. Kristensen introduced the concept of roles to model subjective behavior [4]. We attach a role to an
object to specify additional or modified behavior. Kristensen explicitly models subjects — objects
with roles — whose behavior depends on the role they are playing for the sender of a message.

COP. Costanza et al. introduced Context-oriented programming (COP) [5]. COP splits the behavior of
an object into layers that define the object’s behavior for a particular context. We can activate and
deactivate layers to represent the actual contextual state. When an object sends a message the active
context determines the behavior of the object receiving the message.

SMB. Darderes and Prieto proposed subjective message behavior (SMB) [6]. SMB splits the different
behaviors for a message into a set of independent methods. A tree based decision mechanism, called
force tree, determines the behavior of the object when object receives the message.

Although formally the approaches are equivalent in expressive power they are not equally suitable
in all circumstances. The subjectivity models provide no cohesive sense of what subjectivity exactly is.
Each of these approaches imposes a particular modeling paradigm which may be appropriate for certain
problem domains, but not for others. Consider the use case where a user sends an email using a mobile
device [6]. The application sends the email immediately if the network is available. Otherwise it retains
the email and sends it when possible. Roles and perspectives are not suited to model the network object in
contrast to COP and SMB. The subjective behavior of the network is not about a sender knowing or seeing
an object through a role or perspective. Nevertheless, the network is either available or not in the current
context. Therefore, COP, providing explicit modeling of context, is more appropriate to model subjectivity
in this domain. Also SMB suits this problem domain as it models the subjective decision at the side of the
network object.

Furthermore, the responsibility of determining which subjective behavior to select may lie varyingly
with the sender of a message, the receiver, or even the context. For example, in the perspective- and
role-based approaches it is the sender of the message which determines the used perspective or role. In
SMB it is the receiver of the message that evaluates the force-tree and thus selects the behavior. Consider
communicating with a person who might be at work or on holidays. The same message triggers different
responses depending on the context the person is. Nevertheless, it makes more sense for the receiver or the
context and not the sender to determine the subjective behavior.

Subjectivity models so far force us to look at the problem domain from a certain point of view.
Moreover, they fix the decision for the subjective behavior either at the receiver, sender or context.

SUBJECTOPIA To alleviate these problems, we propose a framework, called SUBJECTOPIA, which
unifies and generalizes the earlier approaches. SUBJECTOPIA reifies three key abstractions that are only
implicit in the other approaches. A subject is an object that behaves subjectively. Any object can become
a subject. Decision strategies explicitly model subjective behavior. A decision strategy determines the
appropriate subjective behavior based on the value of a set of contextual elements. We can configure
decision strategies to model roles, perspectives, force trees or layers, thus subsuming the earlier approaches.
Furthermore, they can be dynamically adapted at runtime, which is important for adapting long-lived
software systems.

Chapter 2 presents a review of previous approaches to modeling subjective behavior. In Chapter 3 we
explain how SUBJECTOPIA models the subjective behavior of objects and discuss our implementation.
Chapter 4 validates our approach by showing the drawbacks of previous approaches in solving subjective
problems and demonstrates how SUBJECTOPIA circumvents these shortcomings. In Chapter 5 we summa-
rize the paper and discuss future work. In Section A.1 we show how to install and use SUBJECTOPIA in
Pharo [7].

State of the Art

Developers often use delegation and dispatching patterns [1] to model subjective behavior. Even if these
solve the problems they do not provide a model for subjective behavior. This moved Harrison and Ossher
to propose the first subjectivity model [2]. Inspired by this idea, other researchers came up with more and
different models for subjective behavior. Instead of unifying current subjectivity approaches they imposed
new interests and requirements to what subjectivity is and how to model it. As we are aiming to unify the
current subjectivity models we analyze the requirements to subjectivity based on the previous approaches.
We used the results of the analysis to define the SUBJECTOPIA approach.

Ben’s
BankAccount

addAndRecord: 200.00 Dave’s

BankAccount

transfer: 200.00 to:
DavesBankAccount __addAndRecord: 200.00

®

Ben Dave

Figure 2.1: The message addandrecord: sent from Ben’s Bank Account — green path — should have an
impact on the balance, whereas the same message sent from Ben — red path — should not.

Our analysis focuses on the most relevant models of subjective behavior. In this section we explain

the subjective models and discuss their drawbacks. To this end we use an explanatory and canonical
bank account example described in Figure 2.1 [3]. The use case' consists of users transferring money
through bank accounts. The user object sends the message transfer:to: to its bank account indicating
as arguments the amount of money and to which bank account to transfer the money. Next, the bank
account object decreases its balance by the amount of money to be transferred and sends the message
addAndRecord: to the bank account receiving the money. A user should not be able to directly send the
message addAndRecord: to a bank account to guarantee that only bank accounts trigger transfers of money
to maintain the balance invariant in the whole banking application. As a consequence the bank account
behaves subjectively for the message addandrecord:, depending in whether the sender of the message is a
user or a bank account object.

Before we start introducing the four most relevant approaches to model subjective behavior we
propose a possible object oriented solution for the bank account use case. We show how object oriented
programming, even with patterns, does not model subjective behavior in all problem domains.

2.1 Self Delegation as an Exemplary Mechanism for Subjective Be-
havior

We use the self delegation pattern when the receiver of the message needs a reference to the sender of the
message [1]. Since the subjective behavior of the bank account objects for the message addandrecord:
depends on the sender of the message, we use self delegation.

Figure 2.2 shows the class hierarchy and the sequence diagram of our object oriented solution for the
bank application. We assume that most of the bank entities are not allowed to change the balance of a
bank account. Hence, we define the default behavior for the message allowedToadd in the BankEntity as
follows:

BankEntity>>allowedToAdd
“False

All bank entities that are not allowed to change the balance of a bank account by sending the message
addAndRecord:, reuse the default behavior for the message. Bank entities that can change the balance of a
bank account override the behavior for the message al1owedToadd as follows:

BankAccount>>allowedToAdd
“True

The class BankAccount, for example, overrides the message, whereas the class Bankuser does not. The
method addandrecord: message in the class Bankaccount looks as follows:

BankAccount>>addAndRecord: aNumber from: anObject
(anObject allowedToAdd)
ifTrue:
[balance := balance + aNumber.]
ifFalse:
[self error: 'Rejected']

The use case demands that the behavior of the bank account for the message addandRecord: depends
on the class of the object sending the message. Instead of determining the class of the sender object we
override the message allowedToadd. We directly define in the class of the bank entity whether we allow
an object to change the balance of the bank account or not. New bank entities do not require changes the
method addandrRecord: of the bank account class.

Readers unfamiliar with the syntax of Smalltalk might read the code examples aloud and interpret them as normal sentences: An
invocation to a method named method:with:, using two arguments looks like: receiver method: argl with: arg2.

BankEntity

+allowedToAdd

/\
BankUser BankAccount
-balance
+addAndRecord:
+transfer:to:
+allowedToAdd
aUser aBankAccount anotherBankAccount

addAndRecord: 200.00

Rejected!

balance := balance + 200.00

|
|
|
|
i
addAndRecord: 200.00 !
|
|
|
|
|

Figure 2.2: Class hierarchy and sequence diagram of object oriented bank account solution using self-
delegation.

We cannot use patterns to generally model subjectivity, as they are only suitable for some particular
problem domains. The self delegation pattern, for example, only solves use cases where the behavior of an
object depends on properties of the message sender. Moreover, the self delegation pattern does not model
the subjective behavior of the bank account object realistically. The bank account asks the sender of the
message if he is allowed to send addandrecord:. In reality a customer of the bank is not asked if he is
allowed or not to change the balance of a bank account. Hence, self delegation does not reflect reality for
this particular use case.

Patterns also miss explicit objects that model the subjective behavior. Patterns rely on the object
oriented paradigm defining all the behavior of an object to be intrinsic to it. The behavior for the message
addAndRecord: is not intrinsic to the bank account object, because it also depends on the sender of the
message. To overcome the problem, patterns split the behavior of a subjective messages all over the
application, which makes adaptation of subjective behavior tedious work. When the requirements for the
behavior addandrecord: change, we have to adapt at least the methods a11owedToadd and the method
addAndRecord: in the bank account class.

The mentioned limitations moved researchers to define their own model for subjectivity. We next
introduce the four most relevant subjective behavior models.

2.2 Perspectives

Smith and Ungar define Subjectivity as a system having multiple overlapping but not identical realities.
The perception of a system always depends on the frame of reference of the observer. For example, the
perception of a bank account is different for another bank account than for a customer of the bank. To
this end, Smith and Ungar propose to model subjective behavior as a set of possible views towards an
object [3].

2.2.1 Perspectives as Views of an Object

Perspectives model the different views that objects have when sending a message. A perspective is a
composition of zero or more hierarchically ordered layers. Each layer links to its parent layer. The object
viewing another object through a perspective sees the composition of the perspective’s starting layer and
all its layer parents. Each layer is a composition of pieces modeling one behavior for one message and one
object. Each object has exactly one, possibly empty, piece on each layer. Smith and Ungar also mention
how to use pieces to model additional instance variables for an object. In our discussion we focus on the
behavior only, but perspectives can be easily extended to support subjective instance variables as well.

The behavior of an object receiving a message depends on which perspective the sender of the message
views the receiver object through. Subjective objects are objects behaving subjectively because of having
perspectives.

To model the bank account, for example, we need two perspectives. We call the perspective for user
objects UserPerspective and the perspective for bank account objects BankAccountPerspective. Each
perspective consists of one layer and one piece. The pieces model the two possible behavior for the
message addandRecord:, described in the sequence diagram in Figure 2.3. We have to locate each piece
in one layer. In our use case each layer models exactly one perspective.

The piece in the UserPerspective implements the following behavior for the message addandrecord::

UserPerspectivePiece>>addAndRecord: aNumber
“self error: 'Rejected’.

The above code notifies the rejection of the request to the object sending the message addandrRecord:
through the perspective UserPerspective. The UserPerspective models the view user objects have to a
bank account object. The BankAccountPerspective defines, through its piece, the following behavior for
the message addAndRecord::

BankAccountPerspectivePiece>>addAndRecord: aNumber
balance := balance + aNumber.

The BankAccountPerspectivePiece changes the balance of the subjective object of the class Bankaccount.
The perspective models how the bank account sending the message views the bank account to which he
sends the message. A perspective has access to the instance variables of the object it belongs to.

Figure 2.3 describes the use of the perspectives when sending a message. User objects send the message
addAndRecord: through the Userperspective to the bank account. The first layer in the perspective
defines a piece for the message addandrecord:. The piece models the behavior for user objects sending
the message to a bank account. When executing the behavior of the piece the user gets notified about
the rejection of its request to change the balance. Bank account objects send the same message through
the BankAccountPerspective to another bank account. The BankaccountPerspective has a piece for the
message which changes the balance of the bank account that receives the message.

6

Rejected!

aUser aUserPerspective

addAndRecord: 200.00 2 aBankAccount
Perspective used o
by User ObJeCts' Perspectlve used balance = balance + 20000

by BankAccount
objects.

~
~
~
~
~

anotherBankAccount addAndRecord: 200.00 aBankAccountPerspective

Figure 2.3: Message sending of bank application using perspectives.

Up until now we discussed perspectives consisting of one layer only. Next, we add a new layer to the
perspective UserPerspective. The new layer has no pieces defined for the message addandrecord: and
uses the original layer of the userPerspective as its layer parent. If a user object now sends the message
addAndRecord: through the userPerspective, the first layer evaluates the message. As the layer does not
find a piece corresponding to the message addandRecord:, the evaluation for that message continues at the
layer parent. As the parent layer models a piece for the message addandrecord:, the lookup finishes and
the object executes the behavior.

Each layer of the userPerspective and the BankAccountPerspective contains only one piece for
the message addandrRecord:. We cannot merge the layers of the perspectives to one layer, because both
pieces model the behavior for the message addandrecord: for bank account objects. The perspective
based approach is deterministic and consistent if every layer only defines one piece for each message and
the class of the object.

2.2.2 US - A Perspective-Based Programming Language

Smith and Ungar introduce the perspective-based programming language US [3] based on Self [8]. Self is
a prototype-based object oriented programming language. Self uses prototypes to model objects instead of
classes. Prototypes do not provide a description but figure as examples of objects. Nevertheless, objects
can share behavior by having using inherits from relationship. In contrast to classes, prototype-based
relationships do not contain any formatting information.

Self uses slots to store behavior and state. In Self we activate slots by sending messages. Hence,
messages are often sent to self, referencing the current object, which gives the programming language
its name. Slots either contain normal objects or method objects. The message sending activates the the
slot corresponding to the message selector. The activation of a slot either results in returning the object or
executing the behavior modeled by the method object.

US extends Self with the concept of perspectives by performing the following transformation to an
expression in Self:

expression — expression ® perspective

Each expression in US requires the use of a perspective to maintain the perspective-receiver symmetry,
we discuss in Section 2.2.4. The keyword here links to the current perspective just like the keyword self
points to the current object. Hence, the following expressions are equivalent in US:

message <> message ® perspective
<> self message <> self message ® perspective

The subjective decision is always taken by the sender of the message by selecting the perspective
through which it communicates. Consider the implementation describe in Figure 2.3 where a user sends
the message addandRecord: to a bank account. The message send in US looks as follows:

[...]
aBankAccount addAndRecord: 200.00 ® aUserPerspective
[...]

2.2.3 Symmetry Problem in Perspectives

To discuss a problem arising in changing perspectives during a method invocation we slightly extend
our original use case. We additionally model the message subtractAndrecord:, subtracting an amount,
given as an argument, from the balance of the bank account the message is sent to. Instead of sending
addAndRecord: we use the message record:, implemented as follows:

BankAccount>>record: aNumber
~ (aNumber >= 0)
ifTrue:
[self addAndRecord: aNumber @ aBankAccountPerspective]
ifFalse:
[self substractAndRecord: aNumber negated ® aBankAccountPerspective].

aNumber negated negates the value of the number, thus becomes positive. Hence the decision strategies
directly deal with the positive value of the amount to be transferred. Furthermore, consider that the piece
for the message subtractandrRecord: may only subtract the amount from a bank account if the balance
is not negative afterwards. To get the current balance of a bank account the object sends the message
balance to the bank account. Only bank account objects can view the balance of another bank account,
user objects can not. We implement the piece for the message substractAndRecord: in the bank account
perspective as follows:

BankAccountPerspectivePiece>>subtractAndRecord: aNumber
" (self balance ® here >= aNumber)
ifTrue:
[self balance: (balance - aNumber)].

Consider the following message send:

aBankAccount record: 200.00 ® aUserPerspective

Figure 2.4 describes how the message record: is sent through the perspective aUserPerspective.
The aUserPerspective uses the aBankAccountPersepective in his piece. The keyword here used in
the aBankAccountPerspective for the message balance points to the current perspective. We have to
answer whether here points to the starting perspective aUserPerspective or the last active perspective
aBankAccountPerspective. To answer this question, Smith and Ungar propose two different policies.
The rubber band policy [3] remembers the perspective used before the message is sent. The message
is sent through the new perspective and afterwards switched back to the saved one. Therefore, here

record: 200.00 aUserPerspective addAndRecord: 200.00 aBankAccountPerspective

Figure 2.4: Depending on the used policy, here points to a different perspective.

corresponds to aUserPerspective. The second approach, called minimal motion policy [3], states that
once a perspective is active it stays active until we explicitly change it. In the minimal motion policy here
points to the aBankAccountPerspective. US implements the second policy to maintain the perspective-
receiver symmetry.

2.2.4 Perspective — Receiver Symmetry

We can use perspectives to extend object oriented programming languages with a subjectivity model. There
are two kind of perspective based programming languages depending on whether or not they follow the
Perspective — Receiver Symmetry. A developer has to be aware of this to faithfully model the application
based on perspectives.

Consider that a developer models one perspective for the entire system. The system reduces to object
oriented style. Every message has to be sent through a perspective. Hence, the behavior of a message is
either defined as a piece in the perspective or as a method in the object. Hence, it has the same semantics
as object oriented programming languages.

The perspective-receiver symmetry states that a system with only one receiver but multiple perspectives
has the same semantics as multiple receivers having only one perspective. Hence, the system reduces to a
conventional object oriented system. In this scenario we can translate each perspective to an individual
object. The hierarchy of layers corresponds to the hierarchy of the individual objects. To respect the
perspective receiver symmetry the system has to use minimal motion policy.

Consider the bank account in a perspective based system using the rubber band policy. When we
introduced the policies we mentioned that the behavior for the message record: depends on the used
policy. The bank account still behaves subjectively for the message record: under the rubber band policy.
Nevertheless, we only have one receiver with multiple perspectives. Hence, the system does not respect
the Perspective — Receiver Symmetry.

2.2.5 Perspective’s Drawbacks

The perspective based approach has the drawback that it forces us to translate the problem to suit the
model of perspectives. For example, a person behaves subjectively to the same complaint depending if he
is at home or at work. Consider modeling the home and work context as perspectives. Still, the sender
of the complaint message needs to know the location of the receiver prior to sending the message. The
perspective approach has a fixed model implying that it prescribes which perspective to use when sending
a message.

The decision of which perspective to use is always taken by the sender of the message. To model the
decision at the side of the receiver we require delegation patterns. Considering the bank account example:
letting the user choose through which perspective he sees a bank account object does not model reality.
We should be able to model the services provided by a bank account to a certain object at the side of the
bank account. In this scenario it is the receiver of the message addandRecord:.

Dynamicity is not directly discussed when presenting the perspective based approach. The perspective
based approach does not model the evolution of subjective behavior at runtime. Changing perspectives is
not supported natively because we hard-code the used perspective when sending a message. Moreover,
Smith and Ungar do not talk about how to add new layers to a perspective, other than implicitly in the
group programming use case [3].

2.3 Roles

Kristensen [4] stresses the importance of roles in the subjective behavior of entities: “we think and express
ourselves in terms of roles” when dealing with the real world. Kristensen infers the notion of a role from
psychology as a set of connected behaviors, rights and obligations as conceptualized by actors in a social
situation.

2.3.1 Subjects — Objects with Roles

The objective behavior of a subject is intrinsic to it and called intrinsic behavior. Hence, they are
directly implemented on the so called intrinsic objects. For example, the bank account has an intrinsic
behavior for the message balance, which always returns the current balance. The subjective behavior is
extrinsic to the object, because it depends on the context and not only on the object receiving the message.
To model extrinsic behavior, Kristensen introduces the notion of role objects. For example, the bank
account has an extrinsic behavior for the message addandrecord:, whose behavior depends on the sender
of the message. We attach role objects to the intrinsic object to add, remove or redefine the latter’s original
behavior, making it to behave subjectively. Kristensen calls an intrinsic object together with its role a
subject.

Kristensen proposes a graphical notation described in Table 2.1 [4] to visualize role based programming.

Figure 2.5 describes the bank account subject consisting of the intrinsic object aBankAccount and one
intrinsic behavior for the message balance. We extend the intrinsic object by the role Barole adding a
behavior for the message addandrecord: and redefining the behavior for the message balance:. The
object sending the message to a subject decides which role the subject plays. The sender of the message
knows the subject either directly or playing a particular role. For example, a user directly sends the
message addandRecord: to the intrinsic object aBankAccount.

A subject can have one or more roles. For example, we can extend the bank account subject to model
a separate role for the user objects, called userrole. The user role models the behavior for the message
addAndRecord: for bank account subjects playing the role for user object. User objects send the message
balance to bank account subjects using the UserrRole. The role does not model a behavior for that message
so it forwards it to the intrinsic bank account object.

Figure 2.6 describes a further extension to our application by defining the ownerrole for bank account
subjects. The users, owning the bank account they sent the message to, know the bank account through the
owner role. Recall that the original behavior for the message balance in the intrinsic bank account object
returns an error message. The owner role overrides the balance behavior to return the balance of the bank
account. The owner role is a specialization of the user role. Hence, the owner inherits all other behaviors
from the user role. If an object sends the message addandRecord: using the owner role the bank account

10

Entity Graphical notation

.. . Intrinsi j
Intrinsic Object ntrinsic Object

Role Object

Role Object

m
Method EI

Table 2.1: Graphical notation for role-based systems.

addAndRecord:

balance
balance

BARole

aBankAccount

Figure 2.5: The bank account subject with one intrinsic object and one role object.

does not find a method for the message in the owner role. Next, the user role further evaluates the message,
which models the behavior for the message addandrecord:.

Dynamicity is an important characteristic or roles, as subjects may change their roles during lifetime. A
person, for example, is a student at a given time, becomes an employee and quits being a student. Subjects
obey rules when having multiple, overlapping or changing roles. Kristensen refers to it as Dynamics of
Roles modeling the conditions as regular expressions. Kristensen also introduces a graphical notation to
reflect on the dynamicity of roles. [4]. The nature of the dynamicity of roles can be:

Sequential Role instances may only exist in a given sequence. For example, a person getting the professor
role needs to have had the student role before.

11

addAndRecord:

balance balance balance
addAndRecord:
BARole
OwnerRole UserRole
aBankAccount

Figure 2.6: The bank account subject with more roles.

Overlapping Role instances may exist in some overlapping form. For example, a person with the role of
a student can have the overlapping role of a tutorial assistant.

Composition We can name any mixture of the previous conditions, such as duplication, for example,
being a specialization of overlapping roles.

We have seen that a role is-part-of the intrinsic object. To model the is-part-of relationship Kristensen
refers to the location of part objects introduced by Madsen and Mgller-Pedersen [9]. Location relies on
part objects, which, in contrast to a referenced instance variables, belong to the hosting object. Roles,
for example, belong to a subject and have no responsibility by themselves. We should not reference
roles because roles are not normal objects with own responsibilities. Kristensen declares that a role only
instantiates when instantiating the subject it belongs to. This condition is also given for part objects.
Madsen and Mgller-Pedersen model the relation of part objects more concretely. An implementation
supporting part objects is BETA [9], for example, using special semantics and syntax to provide location
of part objects. Nevertheless, not all programming languages provide a facility to model part objects.

2.3.2 Forces Affecting Subjects

Real world problem domains motivate the notion of subjects. Kristensen defines three forces that affect
the behavior of a subject in the real world [10]. We shortly summarize how to use roles to model these
influences:

o Sender Force: The sender of the message affects the behavior of a subject. For example, the message
addandrecord: makes the bank account behave subjective depending on the object that is sending
the message. We can model the sender force by using different roles.

* Context Force: The context of the sender and receiver object influences the behavior. For example, a
user being in the context of the bank building may make a bank account behave differently. Roles
do not provide a facility to model context-dependent behavior, as the subjective decision is always
taken by the sender.

* State Force: The state of the sender and receiver also influences the behavior. Kristensen proposes
an extension of roles, called multiple method implementations.

Kristensen is aware of the problem that only the sender takes the subjective decision by determining the
role used when sending a message. To overcome this limitation, Kristensen proposes the use of Multiple

12

Method Implementations [10]. The idea is to have a set of methods modeling the possible behaviors
for one message. When the receiver receives a message he decides, depending on the current context,
which method to invoke [11]. Chamber already proposes an implementation of multi-methods in the
programming language cecil1 [12].

The bank account, for example, can use multiple method implementations to decide the behavior for
the message addandrRecord:. In this scenario, the only influence determining the behavior is the sender
of the message. Moreover, there can also be time constraints or performance measures influencing the
behavior of objects [11]. We refer to the paper for a more detailed discussion.

There are implementations of role-based programming written in BETA [13] and Smalltalk [13].

2.3.3 Role’s Drawbacks

Role-based programming forces the developer to model subjective problem domains using subjects playing
roles. Let us consider the group programming example [3] of a system for registering changes on source
code of an object-oriented application. In the original implementation perspectives modeled the changes to
the source code. Hence we can have different views of the same source-code. Using roles for this particular
problem domain implies that the source code subject plays different roles for developers. Modeling the
source code object using perspective suits this problem domain better than using roles.

Roles model a fixed mechanism to determine the subjective behavior of a subject. Role-based
programming asserts that the sender always knows which role the subject plays when he sends the message.
Consider a person having the role of an employee that complaints to another person having the roles of a
chief and an actor. Roles cannot model the influence of the contexts theater or office, as always the sender
of the message determines the role to use. The location of the subjective behavior mechanism is in the
internals of the approach and we cannot adapt it to suit the problem domain.

Once the sender decides which role to use the behavior of the receiver is not further adapted. Consider
the bank account use case where the users object sends the message to the bank account subject through the
owner role. The role model does not provide a mechanism for the bank account to additionally influence
the behavior, for example, by changing the role it plays.

2.4 Context-oriented Programming

Context-Oriented Programming (COP) refers to programming language mechanisms and techniques that
support dynamic adaptation to context [14]. Costanza and Hirschfeld are the first to introduce COP [5].
The idea is to avoid having to spread context-dependent behavior all over the application. The Model-
View-Controller pattern, for example, isolates the domain logic from the user interface by separation of
concerns [15]. As a result we spread the behavior all over the application’s source code.

2.4.1 Context as Layers

Object oriented programming languages often use if-constructs to allow context-dependent behavior. COP
splits objects into a set of layers factoring out context-dependent behavior. We should not confuse layers
in COP with the layers introduced in perspectives. Whereas a layer in a perspective is a view towards an
object, layers in COP model context.

Each layer models the behavior for multiple objects associated to a particular context. Every definition
not explicitly placed in a user-defined layer belongs to the default root layer. When an object receives a
message, its behavior depends on the active layer, representing the current context.

Figure 2.7 shows the bank account split into three layers, representing three different contexts. In the
sequence diagram aBankAccount userLayer means that the userLayer is active when the message is sent

13

rootLayer

~addAndRecord:
--~__-~addAndRecord:
->addAndRecord:| bankLayer

aBankAccount

userLayer

'\

Figure 2.7: Split the behavior of the message addandrecord: of the bank account object into three layers,
representing three contexts. Depending in which context the message is sent, the bank account shows a
different behavior.

to the aBankAccount object. The userLayer, for example, represents the context of a user sending the
message to an object, in our example to the bank account. The layer implements the behavior of the bank
account object for the context of a user sending the message:

UserLayer>>addAndRecord: aNumber
“self error: 'Rejected’.

The bank account is a layered class, because it consists of three layers. The layered class of the bank
account has layered methods for the message addandrecord:. The user is not a layered class, as in our use
case all its behavior is objective, i.e., classified in the root layer.

addAndRecord: | {addAndRecord:
aUser aBankAccc\>unt userLayer aBankAccount rootlLayer
activate |
addAndRecord: 200.00

Rejected!

Figure 2.8: User activates context and sends message to bank account..

Figure 2.8 describes the process of the user sending the message addandrecord:. Before sending
the message, we choose the context by activating the corresponding layer. Before a user object sends
any message he changes the context, i.e., activates the layer userrayer. Only then the user sends the
message addAndRecord: which has a layered method definition in the current context. As a result, the

14

bank account executes the behavior described by the layered method for the message addandRecord: in
the layer userLayer.

Consider that the bank account’s default behavior for the message addAndRecord: is to return an error
message. We move the layered method from the userLayer to the root layer of the application, because the
behavior is the same as in the userLayer. If a user now sends the message addandrecord: it first activates
the user context. The active context does not define a layered method for that message. Hence, we delegate
the evaluation of the message to the next layer, which is the root layer. The bank account object executes
the default behavior for the message addandrecord:.

The layered method for the message addandRecord: in the bankLayer, corresponding to the context
of a bank account sending the message, implemented as follows:

BankLayer>>addAndRecord: aNumber
self balance: (self balance + aNumber) .

The layered method needs to access the instance variable balance of the bank account.

Consider a bank account sending the message addandrecord: to another bank account. First, the bank
account has to define the bank context as the current context, by activating the layer bankLayer. Next, the
bank account sends the message addandrecord: to the bank account, which does have a layered method
definition in the active context and behaves accordingly.

2.4.2 Context Layer Activation Mechanisms

The sender of the message determines the active context by explicitly activating the layer, modeling the
desired context. For example the user object explicitly activates the userLayer before sending the message
addAndRecord: to the bank account object. Any object can activate the context in the COP application,
also the bank account. In our particular scenario this implies the use of dispatching mechanisms as the
the class of the object sending the message defines the context. To overcome this limitation, researchers
defined additional approaches to deal with layer activation in COP:

Explicit layer activation. We can refer to layers at runtime and activate or deactivate them in arbitrary
code locations. Furthermore, layer activation is restricted to the current thread of execution only
to avoid race conditions and interferences of different contexts. COP languages and environment
extensions provide the mechanisms for expressing, activating and composing layers at runtime, but
it is the application domain that determines which contextual information is relevant [14].

Implicit layer activation. Layers define conditions for which they are active. The framework determines
which layers are active when sending a message. For example, the userLayer is automatically
activated if user objects send messages. PyContext [16] implements this extension, for example.

Reflective layer activation. Layers may have dependencies among them. The activation or deactivation
of a certain layer can involve the activation or deactivation of other layers as well. Consider a user
object that owns a bank account and sends a message to it. Assume that we implemented a layer
representing the context of the owner sending a message to the bank account. Hence, the activation
of the owner layer implies that the user layer is also activated. Reflective layer activation is useful
if dependencies between the layers exist. For example, we may require the presence or mutual
exclusiveness of other layers [17].

ContextL [14] extends the multi-paradigm language CommonLisp [18] with layers and PyContext [16]
does the same for Python. Implementations also exist for Java, JavaScript, Smalltalk and Scheme?.

’http://www.swa.hpi.uni-potsdam.de/cop/implementations/index.html

15

http://www.swa.hpi.uni-potsdam.de/cop/implementations/index.html

2.4.3 Context Variables

Implicit layer activation also proposes the use of context variables [16]. Context variables maintain their
value while the layer is active. The idea originates from languages implementing dynamic scoping such as
the layer activation in ContextL. Dynamically scoped layer activation has the effect that the layer is only
active during execution of the contained code. When the control flow returns from the dynamically scoped
layer activation it deactivates the layer again [5]. When the application activates a new context it changes
value of the context variable. Only when the execution in that particular context finishes it restores the
value back to the original value of the context variable.

2.4.4 COP’s Drawbacks

COP forces developers to model subjective behavior as a set of contextual layers. Consider the use case
where a user sends an email using a mobile device [6]. If the receiver of the email is in the same room as
the sender the email becomes of high otherwise of normal priority. The mail deliverer is responsible for
delivering the emails selecting the right priority depending on the context. In COP, we split the behavior
for sending the message with different priorities into a two layered method, one for high and the other for
normal priority. The activation of the layers depends whether or not the users are in the same room. How
to activate the right layer is not foreseen in the original COP approach, which only supports explicit layer
activation.

In the original understanding of COP each layer modeled a particular context. We cannot model the
room as a layer which is active or not depending in which room the user is in. Hence, we redefined the
understanding of the room context to suit the COP approach.

Different researchers defined their own layer activations to suit the problem domain. Adapting COP
languages to support new layer activations is tedious work, because COP has a fixed view of the activation
of layers. The reflective layer activation, for example, checks all layers in the system upon a layer activation,
to determine which other layers to activate or deactivate.

2.5 Subjective Message Behavior

Darderes and Prieto [6] define subjective behavior as objects behaving differently for the same message
depending on the current invocation context. The bank account, for example, behaves differently for
the message addandrecord: depending on the context of the sender of the message. Subjective method
Behavior (SMB) suggests to split subjective behavior for a message into a set of independent methods.
SMB proposes a generalized method dispatch mechanism to determine the behavior when an object
receives the message depending on the context at invocation time.

2.5.1 Forces Influencing Behavior of Objects

The message invocation context influences the behavior of an object making it behave subjectively for the
same message. Darderes and Prieto define the message invocation context as the following four forces:

Sender force. The sender object of a message.
Self force. The receiver of the message, i.e., the behaving object.

Collaborator force. Any object known by the object receiving the message. We further categorize these
into:

Internal collaborators. Objects referenced by instance variables.

16

External collaborators. Objects referenced by message arguments.
Class collaborators. Objects referenced by class variables.
Global collaborators. Objects referenced by global variables.

Awareness force. Any other object influencing the behavior for a message.

The above mentioned objects are called forces, because force an object to behave in a particular way.
The forces are accessible at invocation time for the object receiving the message. Based on these, the
object selects the appropriate method to execute.

The bank account object, for example, behaves subjectively for the message addandRecord: depending
on the sender force. The use case only allows bank account objects to change the balance of another bank
account by sending the message addandrecord:. Any other object sending the same message to a bank
account has no effect on its balance. This leads to two possible behaviors for the message addandrecord:,
being changing or not the balance of the bank account receiving the message. Hence, the set of possible
methods of the bank account object for the message addandrecord: consists of two methods.

Based on the sender force we can formulate a condition to determine the behavior for the message
addAndRecord:. As only bank accounts can change the balance of another bank account we define the
condition recordauthorized as follows:

recordAuthorized := ((aMessageSender class) = BankAccount)

Where aMessagesender is precisely the object corresponding to the sender force.
Depending on conditions, like the recordauthorized, the subjective behavior of an object is uniquely
determined. Darderes and Prieto propose a response mechanism for subjective messages like addandrecord:
based on method dispatching.

2.5.2 Force Tree - A Decision Dispatching Mechanism

The determinant is a condition together with a behavior executed if the condition fulfills. We say that a
determinant prevails if the condition is true at invocation time. The determinant with the recordauthorized
condition, for example, prevails if the sender of the message is a bank account.

SMB has two types of determinants depending on the associated behavior. Method determinants are
determinants modeling behavior. The force determinant uses a boolean condition based on one force
to decide which determinant to evaluate next. For example the message addandRecord: for the bank
account object has two method determinants, for the two behaviors, and one force determinant. The force
determinant models the decision of which method determinant to evaluate based on the recordauthorized
condition. Figure 2.9 shows the determinants for the message addandrecord: graphically. Looking at it,
we detect that the determinants, modeling the subjective behavior, form a tree alike structure based on
forces. Hence, we call the resulting tree, force-tree. The force determinants are the nodes and the method
determinants are the leaves of the force tree. As force trees model subjective behavior, these replace the
object oriented methods, modeling objective behavior.

Force trees need to fulfill three properties to always determine the subjective behavior for a message.
The force tree has to be complete to determine the behavior based on the context when the message is send.
Consider the force tree for the message addandrecord:. There is no behavior for a bank account object
sending the message addandrecord: if we eliminate the method determinant a11lowrRecord. The force
tree also has to be acyclic, as cyclic force trees model unexpected behavior. Consider the force tree for
addAndRecord: pointing back to the root node instead of pointing to the denyRecord method determinant.
Hence, the bank account does not have any behavior for a user object sending addandrRecord: anymore.
This will catch the force tree lookup in an endless loop until the user object eventually converts itself into
a bank account object. The last condition for the force tree is that it has to be mutual exclusive. This is
normally given as force determinants conditions are binary.

17

allowRecord

balance := balance + aNumber

recordAllowed Method Determinant

Sender ldentity
Force

Force Determinant denyRecord

self error: ‘Rejected!’

Method Determinant

Figure 2.9: The force tree replaces the object oriented method for the message addandrecord: of the bank
account.

SMB also allows the modeling of more complex trees for subjective behavior than the proposed in
Figure 2.9. Consider that we return different error messages to owners of the bank account than to a normal
users sending the same message addandRecord:. The condition for the force determinant is the following:

isOwner := ((aMessageSender account) = aReceiverBankAccount)

The aMessageSender object corresponds to the sender of the message and the aReceiverBankAccount is
the bank account receiving the message addandRecord:. Figure 2.10 shows the resulting force tree for this
use case.

We describe how SMB reacts subjectively to a message using the addandrecord: send from a user
to a bank account. We use the simple force tree described in Figure 2.9. As the bank account defines a
subjective behavior for the message addandrecord:, the message lookup finds the root node of the force
tree instead of the objective method. SMB evaluates the root node, in our example the recordallowed,
depending on the current context. The evaluation of a force determinant results in determining the next
determinant based on a force condition. SMB evaluates the recordauthorized condition based on the
current context. As a user object sent the message the force determinant continues with the evaluation
of the denyrRecord method determinant. The evaluation of a method determinant results in the object
behaving. The denyrecord method determinant models the throwing of the error message “Rejected!”.

Darderes and Prieto implemented a proof of concept of SMB in the object-oriented Smalltalk environ-
ment VisualWorks 3.0nc [6].

2.5.3 SMB’s Drawbacks

SMB forces the developer to translate subjective behavior into a force tree which does not always suit the
problem domain. Consider the group programming example [3] modeling a system registering changes on

18

allowRecord

balance := balance + aNumber
recordAllowed Method Determinant
. denyUser
Sender Identity
Force
self error: ‘Rejected!’
Force Determinant
denyRecord -
Method Determinant

Sender Identity
Force

Force Determinant denyOwner

self error: ‘Action not allowed!’

Method Determinant

Figure 2.10: A more complex force tree replacing the object oriented method for the message
addAndRecord: of the bank account.

source code of an object-oriented application. If we intend to view the source as a particular developer we
are not evaluating a tree of changes attached to the source code. Hence, SMB does not suit this particular
problem domain.

We cannot adapt the point of view of the subjective behavior in SMB. Consider a person behaving
subjectively to a complaint depending on whether he is the chief or a friend of the complaining person. We
cannot adapt SMB to model this problem domain using roles or perspectives, for example.

The mechanism for determining the subjective behavior is always located at the receiver of the message.
The sender of a message can only implicitly, as a sender force, influence the behavior of the object receiving
the message. We cannot adapt SMB to let the sender of the message decide for the subjective behavior.
For example, it is not possible to implement how an object sending the message views the receiver.

2.6 Problems in Current Subjectivity Models

The main approaches that we have analyzed are not suitable to model all the subjective problem domains.
The main drawback is that each approach forces the developer to have a fixed point of view on the problem
domain. Perspectives, for example, is suitable for the group programming use case [3], whereas SMB is
not.

A fixed subjective behavior model implies that the mechanism for selecting the behavior is implicit
and that it is unchangeable. Roles, for example, assume that subjective behavior in all problem domains
depends on the role a certain subject plays when receiving the message.

The analyzed approaches focus their mechanism for selecting the behavior either on the sender or on
the receiver of the message. Because of the mechanisms being implicit we cannot adapt the location of
the subjective decision to suit the problem domain. In roles, for example, only the sender of a message
decides which roles the receiving subject plays. Context as an influence of the used role in the subject is
not foreseen the role-based approach.

19

In most of the analyzed approaches only the context of the communication, being the sender, receiver
and the arguments of the message, influences the behavior of the object. Nevertheless, subjective behavior
may also depend on other types of context. Consider the email sending using a mobile device [6]. The
email is sent with high priority if the sender and receiver of the email are in the same room. The mail
deliverer, responsible for sending the messages with the correct priority, cannot retrieve this information
from the communication context. Whereas SMB solves the problem using the awareness force, COP,
for example, does not suit to model the room context. In this scenario a room is a simple list of users
influencing the behavior of the mail deliverer and not a set of layers.

A common drawback of most of the analyzed approaches is that they model subjective behavior directly
on objects and not subjects. The responsibilities of a subject differs from those of an object. A subject
needs to be able to register those messages for which it behaves subjectively. The SMB approach, for
example, needs to register which messages have a force tree.

Not all of the main approaches discuss the importance of adapting subjective behavior at runtime.
Whereas objective behavior does not evolve during the lifetime of an object, subjective behavior can. A
person, for example, may behave as a student at a given time and later as an employee. SMB, for example,
uses a static force tree to determine the behavior of an object for a message depending on the invocation
context. The implementation of SMB uses a dynamic language. Nevertheless, the approach itself does not
foresee to change the force tree of an object at runtime.

With SUBJECTOPIA we provide a model for subjective behavior that does not force the developer to
translate the problem domain to fit the model, since we can translate the model to fit the problem domain.

20

SUBJECTOPIA

The problem of previous approaches is that they fix the subjective point of view. For some subjective
problem domains layers are more suitable than roles. In other subjective problem domains roles are
more suitable than layers, as discussed in the previous section. The SUBJECTOPIA approach provides
a subjective view towards subjectivity. The SUBJECTOPIA approach allows the developer to select the
subjectivity model that best fits the current problem domain.

The SUBJECTOPIA approach unifies the previous approaches and provides a model that has no fixed
view of what subjectivity is and how to model it. We define the SUBJECTOPIA approach as an Adaptive
Subjectivity Model, since we can adapt the model for the subjective behavior to the problem domain.
We adapt the model to suit the problem domain instead of redefining the problem to suit the subjective
behavior model. To this end, SUBJECTOPIA can model perspectives, roles, COP and SMB. We can use
perspectives, for example, to model the group programming example [3]. But we can also use SMB to
model the mail deliverer in the email through mobile device application [6]. Moreover, in SUBJECTOPIA
we can even define our own subjectivity models.

In this section we introduce SUBJECTOPIA! and the idea of a unifying subjective behavior model. We
implemented both SUBJECTOPIA and the examples presented in this thesis in Pharo Smalltalk?.

To this end, SUBJECTOPIA models objects with subjective behavior explicitly as subjects. Besides
emphasizing the difference to common objects, subjects also have their own responsibilities, for example,
registering subjective messages. When a subject receives a message, it needs to determine the behavior
from a set of possible behaviors, depending on the current context. We call the process of deciding
for the behavior subjective decision. Decision strategies explicitly model the subjective decision taking
mechanism. We can change the subjectivity model to suit the problem domain, because explicit decision
strategies allow us to reify the decision. SUBJECTOPIA also introduces contextual elements to model
context-dependent information such as the invocation context. Contextual element are generic elements to
model context that influences the subjective decision and thus the behavior of a subject.

Because of the explicitly modeled decision strategy, subjects and contextual elements, SUBJECTOPIA
does not force the developer to use a fixed modeling paradigm. SUBJECTOPIA models roles, context-
oriented programming, subjective message behavior and any other subjectivity models. We can experiment

'http://scg.unibe.ch/research/subjectopia/
2http://www.pharo-project.org/

21

http://scg.unibe.ch/research/subjectopia/
http://www.pharo-project.org/

with different subjectivity models in the same application.
To explain the SUBJECTOPIA model we use the canonical bank account example from the perspective
approach, introduced in Chapter 2.

3.1 Subjects

A subject is an object that behaves differently under different contextual circumstances in contrast to
objects that always behave objectively. SUBJECTOPIA models subjects explicitly because they have their
own responsibilities. A subject may be fully subjective or only present subjective behavior for certain
messages. A bank account subject, for example, may behave subjectively for the message addandrecord:
and objectively for the message balance:. Subjects have the following main responsibilities:

1. Register messages that expect subjective behavior.

2. Evaluate the subjective decision when receiving a messages expecting subjective behavior based on
the contextual information.

3. Allow runtime adaptation of the subjective decision for a message.

In SUBJECTOPIA we have two possibilities to define a subject. We can transform a regular object into
a subject at runtime by sending the message becomesubject to the object. For example, we can tell the
bank account object aBankAccount to become a subject by sending becomesubject to it:

aBankAccount becomeSubject.

The transformation of the aBankAccount into a subject adds the necessary behavior to the bank account to
behave subjectively for certain messages. The second way is to define a subject by directly subclassing the
class subject. The bank account object, for example, can directly inherit from the class subject, having
the same effect as sending the message becomesubject to a bank account object.

A subject must be able to register subjective messages by sending the message register:for: to a
subject. The bank account subject, for example, defines subjective behavior for the message
addandrecord:. We call messages that have subjective behavior subjective messages. To make the bank
account subject behave subjectively for the message addandrRecord: we send the following message to it:

aBankAccount register: aDecisionStrategy for: #addAndRecord:.

The registration process of a subjective message assigns a decision strategy to the message which
models the subjective decision process. If the subject receives a subjective message it evaluates the decision
strategy. The registration process also replaces any old behavior for the subjective message of the object.
Consider the aBankaccount having defined an objective method for the message addandrecord:. Hence,
the registration process replaces the bank account’s original behavior for the message addandrecord: by
the decision strategy. The message register: for: also replaces subjective behavior allowing a subject to
adapt its subjective decision process at runtime.

The class subject models objects that behave subjectively for certain messages. Explicitly modeling
subjects also allows us to detect and reflect upon the subjective parts of an application. Other approaches,
like COP, encode this information in the internals of the application’s source code, requiring the use of ad
hoc mechanisms to detect subjective behavior.

3.2 Decision Strategies
SUBJECTOPIA uses decision strategies to model the process of deciding how a subject behaves when it

receives a subjective message. SUBJECTOPIA aims at eliminating fixed points of view towards subjective
behavior.

22

aUser »| aBankAccount

aContextualElement
addAndRecord: 200

aDecisionStrategy

aDecisionStrategy

Decision strategy
for addAndRecord:

aDecisionStrategy

Figure 3.1: The object auser sends message addAndrecord: with argument 200.00 to aBankAccount.
The subject performs a lookup and finds the subjective method. The method evaluates the decision strategy
selecting the appropriate behavior for the current context.

Consider that we have already defined the message addandrecord: to be subjective for the bank
account subject. The moment we send the message register: for: to the bank account subject the method
for the message addandrecord: adapts to:

aBankAccount>>addAndRecord: aNumber
| message |
message := self currentMessageContext.
" (self findDecisionStrategyFor: #addAndRecord: evaluate: message)

The adaptation forces the object to evaluate the decision strategy instead of executing behavior when he
receives the message addandrecord:. Since this is still a normal method the subject performs a traditional
method-lookup when it receives the subjective message.

Figure 3.1 shows the process of the subject aBankAccount receiving the message addandRecord: from
aUser. Subjective methods use two steps to make subjects behave subjectively. The first step consists
in the subject creating a contextual element representing the meta-information of the invocation context.
In Figure 3.1 the acontextualElement object models the invocation context, containing the following
information:

¢ The message selector #addandRecord:

e The arguments as a list, i.e., a list with the entry 200.00.

* The sender of the message, i.e., the auser object.

* The receiver of the message, i.e., the aBankAccount subject.

The meta-information of the message send represents the context of the communication. Hence, we model
the invocation context as a contextual element. We describe the modeling of context in more detail in
Section 3.3.

23

The second step consists in evaluating the decision strategy with the contextual information modeling
the context of the communication. We can resolve the evaluation of the decision strategy in three different
ways:

» Executing behavior, if the decision strategy directly models behavior.

* Delegating to another decision strategy for further evaluation allowing us to model decision hierar-
chies.

» Sending a message to the subject if we model all possible behaviors in the class of the subject.

The decision strategy models the subjective decision or behavior by overriding the method decideon:
Subsequently, we model exemplifying decision strategies for all the three ways of evaluating decision
strategies. To this end we use the bank account use case.

Consider a simple decision strategy called simpleDecisionStrategy that directly models the behavior
for the message addandrecord:. To this end, the decision strategy defines the behavior for the message
decideoOn: as follows:

SimpleDecisionStrategy>>decideOn: aMessageContext

((aMessageContext sender class) = BankAccount)
ifTrue:
[(aMessageContext receiver) balance: (balance + ((aMessageContext arguments)
at: 1))]
ifFalse:

[self error: 'Rejected’]

The decision strategy checks the class of the sender of the message and reacts accordingly using an if-else
construct. The aMessageContext object models the contextual element representing the meta-information
of the message. The meta-information includes all the relevant communication context and makes it
available to the decision strategy. Sending the message sender to the aMessageContext object returns the
sender object of the subjective message. In the scenario described in Figure 3.1, for example, sending
sender to the aMessageContext object returns aUser. Sending the messages receiver and arguments
to the meta-information object, return the receiver and the list of arguments of the subjective message,
respectively. Decision strategies directly modeling behavior, like the simpleDecisionStrategy, are
normally used in hierarchies of decision strategies. The proposed simpleDecisionStrategy has only
explanatory value.

Next, we model the decision strategy TreeDecisionstrategy composed of multiple decision strategies.
The subjective message addAndrecord: has two different behaviors, we directly model in two independent
decision strategies. The userBehavior decision strategy models the behavior if the sender of the message
addAndRecord: is a user object. The BankAccountBehavior decision strategy does the same for bank
account subjects. The TreeDecisionStrategy is responsible for determining which decision strategy
to evaluate next. For this purpose we require the sender of the message. The method decideon: in the
TreeDecisionStrategyIOOkSer:

TreeDecisionStrategy>>decideOn: aMessageContext

((aMessageContext sender class) = BankAccount)
ifTrue:
[BankAccountBehavior new decideOn: aMessageContext]
ifFalse:

[UserBehavior new decideOn: aMessageContext]

The Treebecisionstrategy models the subjective decision as a tree where the true node is the
BankAccountBehavior and the false node the UserBenavior. The class of the sender of the message
determines the condition. We can observe the similarities of this decision strategy to SMB. We treat
decision strategies used to model SMB in Section 3.4.4.

24

SUBJECTOPIA allows us to polymorphically change decision strategies. Consider that we first model
the subjective behavior using the simpleDecisionStrategy and then decide to use the
TreeDecisionStrategy. We canleplacethe SimpleDecisionStrategy bythe TreeDecisionStrategy
by sending the message register: TreeDecisionStrategyfor: #addAndRecord to the bank account
subject. As a consequence we can experiment with different subjectivity models to find the one that suits
the problem domain the best.

Last we model a decision strategy that sends a message back to the subject receiving the message. To
this end we change the TreeDecisionstrategy and implement the two different behaviors directly in the
subject. The decideon: method of the Treebecisionstrategy looks like:

TreeDecisionStrategy>>decideOn: aMessageContext

((aMessageContext sender class) = BankAccount)
ifTrue:
[(aMessageContext receiver) changeBalanceBy: ((aMessageContext arguments) at:
1)1
ifFalse:

[[(aMessageContext receiver) alertIllegalAction]

In contrast to the original TreeDecisionsStrategy we do not model the behavior in decision strategies, but
directly on the subject. The subjective decision concludes in the sending of a message to the bank account
subject. In this scenario the bank account subject is the receiver of the message addandrecord:. To access
the bank account subject we send the message receiver to the contextual element representing the context
of the communication.

Decision strategies can be replaced. Hence, we can adapt the paradigm for modeling subjective
behavior over time. This allows us to experiment with different subjectivity models to find the model that
suits the problem domain the best. We can use decision strategies to model perspectives, roles, COP and
SMB, discussed in Section 3.4. Because we can register any decision strategy for a subjective message we
can use different subjectivity models within the same application. We can use a role-based decision strategy
for one message and a perspective-based decision strategy for another, for example. As a consequence the
developer using SUBJECTOPIA is not forced to translate the problem domain to suit the model, but he can
adapt the subjectivity model to fit the problem domain.

3.3 Contextual Elements

SUBJECTOPIA introduces contextual elements to provide a general model for contextual information. A
special contextual element is the object reifying the meta-information of the communication discussed
in Section 3.2. As well as the communication context contextual elements are available for the decision
strategy.

Some applications need to model additional context not retrievable from the context of the communica-
tion. We can use contextual elements to model these kind of contextual informations. Consider the use
case where users send emails from their mobile devices [6]. If the sender and receiver of the email are
in the same room the mail deliverer sends the emails with high priority. We cannot determine the room
context from the context of the communication. We can use a contextual element to model the additional
information and influence the subjective decision process taken by the decision strategy. We can model the
room context, for example, as a contextual element holding a list of all present users in a room.

The decision strategy determines how the contextual element influences the subjective decision. The
decision strategy can access, evaluate or ignore the contextual elements. The evaluation of a contextual
element by a decision strategy results in one of the following:

* Provide contextual information to the decision strategy.

¢ Execute behavior.

25

* Delegate to another contextual element for further evaluation. We call such contextual elements
composed contextual elements.

Next, we give examples of how decision strategies evaluate each of the types of contextual elements. Then,
we discuss how contextual elements influence subjective behavior in more detail.

The meta-information of the communication, for example, is a contextual element that represents
the contextual information of the communication. It is directly accessed and influences the subjective
decision of the decision strategy. We can model the above presented room context for the sending of
emails using mobile devices use case as a contextual element. The contextual element holds contextual
information evaluated by the decision strategy. The decision strategy cannot retrieve the room context
from the communication context.

Contextual elements are also used to model behavior. We call behavior extrinsic to an object subjective
behavior. Contextual elements can also model subjective behavior. Some subjectivity models require
additional abstractions affecting the subjective decision or behavior of the decision strategy. The role
based approach, for example, requires the abstraction of roles. Nevertheless, these are not retrievable from
the communication context. A contextual element modeling a role, directly implements behavior. We
discuss the contextual elements of each of the subjectivity models in Section 3.4. Other approaches ignore
contextual elements. Consider a decision strategy modeling SMB. The decision strategy ignores contextual
elements modeling roles, for example, as these are not used by the SMB approach. The decision strategy
models how a contextual element influences the subjective decision.

Some problem domains or subjectivity models require composed contextual elements. An example
for composed contextual elements are the perspectives in the perspective-based subjectivity model. One
contextual element models one layer of the perspective. The layers as contextual elements are hierarchically
composed to one perspective. The decision strategy then determines the evaluation order of the composed
contextual elements.

aUser »| aBankAccount

aMessageContextualElement
addAndRecord: 200

aDecisionStrategy

Contextual element
influences decision
or behavior

aDecisionStrategy

aContextualElement

aDecisionStrategy

Figure 3.2: Two ways of using contextual elements.

Figure 3.2 describes how a decision strategy uses contextual elements to influence the subjective
behavior decision. Decision strategies can access contextual elements in two ways: either the decision

26

strategy has a reference to it or is sent together with the message.

We use the bank account example based on decision strategies modeling perspectives to describe
the use of contextual elements send together with the message. As the sender of the message decides
which perspective to use, we say: “The sender sends the message through a perspective”. In Figure
3.2 a bank account subject sends the message addandrecord: through the perspective, modeled as
aMessageContextualElement. Perspectives modeled as contextual elements contain pieces that model
behavior for messages. We describe perspectives as decision strategies in more detail in Section 3.4.1.
We registered the message addandRecord: as a subjective message. This adapted the method behavior to
allow the use of contextual elements:

aBankAccount>>addAndRecord: aNumber through: aContextualElement
| message |
message := self currentMessageContext.
“(self findDecisionStrategyFor: #addAndRecord: evaluate: message with:
aContextualElement)

When the bank account receives the message, it evaluates the decision strategy, which delegates the
subjective decision to the perspective contextual element. The perspective contains a layer that models
a piece for the message addandrecord:. The decision strategy executes the piece and makes the bank
account behave subjectively depending on the used perspective.

Consider the use case where users send emails from their mobile devices [6]. We use it to talk about
decision strategies directly accessing contextual elements We model the room context of present users
as a contextual element implemented as a list of users. The decision strategy of the mail deliverer has a
reference to the contextual element modeling the room it is in. When the mail deliverer receives the email
the decision strategy takes the room contextual element to influence the subjective decision. Based on the
information provided by the room contextual element the decision strategy sends the email with low or
high priority. In Figure 3.2 this corresponds to the contextual element which is directly accessed by the
decision strategy.

Contextual elements have no fixed point of view about contextual information. We can use contextual
elements to model context without having to translate the problem domain to suit the model. We can model
rooms, for example, as a list of present users or, if required, as an object that also includes the temperature
of the room. We are not limited to use contextual elements to only provide contextual information, but also
to provide contextual behavior. The pieces in the perspective based approach, for example, are contextual
elements that model behavior for a message and object. Contextual elements also model additional
abstractions such as layers in COP.

3.4 Modeling Previous Approaches in SUBJECTOPIA

In this section we introduce decision strategies modeling perspectives, roles, COP and SMB. This shows
that SUBJECTOPIA allows us to easily adapt the subjectivity model to suit the problem domain.

3.4.1 Perspectives as Decision Strategy

In some problem domains, the behavior of an object depends on how the object sending the message views
the receiving object. The behavior of a bank account subject, for example, depends how the object or
subject sending the message views the bank account subject. For such problem domains SUBJECTOPIA
provides decision strategies modeling perspectives.

Perspectives are external to the context of the communication and thus modeled as contextual elements.
We model the layers of the perspective as contextual elements as well. Each perspective points to its
root layer. A layer contains pieces that implement behavior for a message and object. We model pieces

27

PerspectiveDecisionStrategy| |ContextualElement

+decideOn: +decideOn:
| N
«uses»
Perspective PgrspectlveLayer Piece
-pieces -forMessage
-rootlLayer — *>—)
+decideOn -layerParent -forObject
[:
+decideOn: +decideOn:

Figure 3.3: Perspectives as decision strategy

as contextual element and override the method for the message decideon:. The piece that models the
behavior for the message addandrecord: of bank account subjects for users sending the message, for
example, overrides decideon: as follows:

UserPiece>>decideOn: aMessageContext
“self error: 'Rejected’.

We sent the contextual element modeling the perspective together with the message. A user, for
example, sends addAndRecord: 200.00 through: aUserPerspective to the bank account subject. The
decision strategy of the perspective based approach, used to model the subjective decision, does the
following:

1. Start at the root layer of the perspective.
2. Find the piece in the layer corresponding to the message selector and the receiver of the message.
3. Send the message decideon: to the corresponding piece.

In the perspective based approach the sender of the message takes the subjective decision by choosing
the used perspective. The decision strategy delegates the subjective decision entirely to the perspective.

3.4.2 Roles as Decision Strategy

In some problem domains subjective behavior depends on which role the subject plays when receiving
the message. For example, the bank account subject plays a different role for user objects than for bank
account subjects. To this end SUBJECTOPIA provides decision strategies modeling roles.

We model roles as contextual elements because these are external to the context of the communication.
Roles are composed contextual elements to allow hierarchically ordered roles. We model a slightly
different version of roles in SUBJECTOPIA than originally proposed by Kristensen. A role defines methods
with the following preambles:

methodAdd. Adds a behavior for an unknown message to the subject.

28

ContextualElement

+decideOn:
RoleDecisionStrategy| «Uses» Role
,,,,,,,,,,,,,,,, >
+decideOn: +decideOn:

Figure 3.4: Roles as decision strategy

methodChange. Changes the behavior of a message on the subject.
methodHide. Hides the behavior for the message defined on the subject.

For example, modeling the method named methodChangeAddandRecord:, replaces the original behavior
of the bank account subject by the one we modeled in the role.

As well as the contextual elements modeling perspectives we send the role contextual element together
with the message. The decision strategy searches the corresponding method in the composed contextual
elements modeling the role. The subject then behaves accordingly to the preamble the method in the role
has.

Roles model the subjective decision at the sender side by choosing which the role played by the subject.
The decision strategy modeling roles, entirely delegates the responsibility to the role objects, modeled as a
contextual elements.

3.4.3 COP as Decision Strategy

ContextualElement

+decideOn:
COPDecisionStrategy| «USe€s» Layer
,,,,,,,,,,,,,,,, >
+decideOn: +decideOn:

Figure 3.5: COP as decision strategy

29

In some problem domains subjective behavior depends on different contexts. Depending on which
context is active at invocation time, the subject behaves differently. For example, the bank account subject
behaves differently in the user context than in the bank account context. To this end SUBJECTOPIA
provides decision strategies modeling COP.

In SUBJECTOPIA, COP uses one main system wide decision strategy for all subjects modeled in
COP. The decision strategy modeling COP replaces the default decision meta-object of the subjects. We
introduce decision meta-objects in more detail in Section 3.5. We model the layers as contextual elements
because they are extrinsic to the communication context. The root layer defines the default behavior, i.e.,
the default context, for all subjects. We can add others representing specific contexts. The active context
decides the behavior of the subject for the message.

We define context-dependent behavior directly on the layers. A layer corresponds to a particular
subject. We split the behavior of the bank account subject, for example, into two layers: a user and a
bank account layer. The layers correspond to the context of a user or a bank account sending the message
addAndRecord:.

In SUBJECTOPIA the selector of the method in the layer contextual element is a concatenation of the
class name of the subject for which we defined the behavior and the message selector. Each layer in the
bank account application defines a method for the message BankAccountaddandRecord:. The selector is
the concatenation of the class name Bankaccount and the message selector addAndRecord:.

The decision strategy of COP finds, using the contextual information of the communication, the
corresponding method in the contextual element modeling the active layer and behaves accordingly.

We activate the layer explicitly in the system wide decision strategy of COP. The decision strategy
modeling COP entirely delegates the behavior to the active layer contextual element.

3.4.4 SMB as Decision Strategy

SUBJECTOPIA also models force trees for problem domains where this subjectivity model suits the best.
For example, the bank account object decides how to behave for the message addandrecord: depending
on the sender force.

We model the force tree determinants as decision strategies. We have two type of determinants, method
determinants, modeling behavior, and force determinants, modeling the decision of which determinant
to evaluate next. The force determinant depends on the force condition. Forces are retrievable from the
context of the communication. Apart from the awareness forces modeled as an additional contextual
elements. In SMB the subjective decision consist of the following steps:

1. Evaluate the root node of the force tree.

2. If the node is a force determinant use the communication context to evaluate the force condition.
Depending on the result evaluate the t rueDeterminant Or falseDeterminant. We repeat this step
until the evaluated determinant is a method determinant.

3. If the node is a method determinant, execute the modeled behavior.

The receiver of the message takes the subjective decision in SMB by evaluating the force tree. In SMB
the decision strategy directly models the subjective decision and behavior.

3.5 Implementation
We implemented the SUBJECTOPIA approach in Pharo Smalltalk, because of its advanced support for

run-time reflection. In SUBJECTOPIA we have two ways to define a subject. First, a subject can directly
inherit from the class subject to be able to register subjective behavior. Second, we can send the message

30

DecisionStrategy

+decideOn:

I

ForceDeterminant MethodDeterminant

-forceCondition
-trueDeterminant
-falseDeterminant

+decideOn:

+decideOn:

Figure 3.6: Subjective message behavior as decision strategy

becomeSubject to any object, to convert it to a subject. Sending the message becomeSubject automatically
adds the methods to the class of the object for it to behave subjectively. This process converts every
instance of that class into a subject as well. In Section 5.1 we propose a more dynamic way of converting
objects into subjects. The proposed extension allows us to convert a single object into a subject without
affecting its class. Hence, only that particular transformed object defines subjective behavior.

Each subject has a special decision strategy, called decision meta-object, which maps subjective
message selectors to decision strategies.

Registering a subjective method by sending register: for: to the subject consists of two steps. First,
it creates an entry in the decision meta-object with the message as key and the decision strategy as value.
Second, it adapts the behavior of the registered method. Instead of performing the original behavior
the method collaborates with the subject’s decision meta-object to evaluate the corresponding decision
strategy.

For example, to model subjective behavior on a bank account object we first send the message
becomeSubject to the object. Second, we define the message addandrecord: to be subjective by sending
the message register: aDecisionStrategy for: #addAndRecord: tO the bank account subject. Conse-
quently, the subject creates an entry with key addandrecord: and value abDecisionStrategy in its decision
meta-object. Also the following method is automatically generated in the subject:

aBankAccount>>addAndRecord: aNumber
“self findDecisionStrategyFor: #addAndRecord: evaluate: thisContext.

The object thisContext is a pseudo variable representing the current context of the method execution.
Smalltalk automatically generates the thiscontext variable [7].
Figure 3.8 shows the sequence diagram of a user object sending the message addandrecord: to a bank

31

Subject
-aDecisionMetaObject : DecisionMetaObject

I
|
|
| DecisionStrategy ContextualElement
|
|
|
! +decideOn:
|
« i
|
|
| MessageSendInformation
|
| 1|DecisionMetaObject -i:::is(rar
} —r-namesToDecisions arguments
'~ =[regicter-for: i
+register:for: -contextualElements

-messageSelector

Figure 3.7: Class diagram of SUBJECTOPIA.

aUser aBankAccount ‘ aDecisionMetaObject aDecisionStrategy

‘ addAndRecord: 200.00 | e ideOn: #addAndRecord:

with: thisContext

J”

.

extractinformationFrom: thisContext

|

decideOn: aMessageSendInformation

|
|
|
|
|
»
gl
|
L
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Generates
communication
context

Figure 3.8: Evaluation of a decision meta object in SUBJECTOPIA.

account subject. First, the bank account delegates the search for the decision strategy corresponding to
the message selector addandrRecord: to the decision meta-object by sending the message decideOn:with.

32

Next, the decision meta object generates the meta-information of the communication by sending the
message extractInformationFrom: Using the thisContext variable of Smalltalk. In SUBJECTOPIA we
call the meta-information of the message MessageSendInformation. It contains the following information:

* Sender of the message.

* Receiver of the message, thus the subject itself.

* Message selector.

* Arguments of the message.

* Contextual elements that are send together with the message.

Finally, SUBJECTOPIA evaluates the decision strategy by sending the message decideon: and passing along
the current communication context MessageSendInformation as a contextual element. The evaluation of
the decision strategy determines the subjective behavior for the message addandrecord:.

SUBJECTOPIA allows the sender of any subjective message to add through: to send a contex-
tual element together with it. Since we are in the context of Smalltalk we solved this by overriding
doesNotUnderstand: in the subject class. The doesNotUnderstand: method looks for the decision
strategy corresponding to the message selector without through:. Then it evaluates the decision strategy
sending the contextual element together with the message send information. It is possible to implement a
solution in other languages as well even if it requires modifications to the virtual machine or the compiler.
Figure 3.9 describes the doesNotUnderstand: process.

aUser aBankAccount aDecisionMetaObject

addAndRecord: 200.00
through: aUserPerspective

|
|
|
|
|
“i
|

_—

doesNotUnderstand: aMessage

|
|
|
|
|
|
|
|
|
decideOn: #addAndRecord: |
with: thisContext V}

|

|
|
|
|
|
[
|
|
|
|
|
|
I
|
|
|
|
|

thisContext al
contains
aPerspective

Figure 3.9: Sending contextual elements together with messages in SUBJECTOPIA.
Consider an object that sends the message addandRecord: 200.00 through:

aBankAccountPerspective to a bank account subject. In Smalltalk a missing method for a message
concludes in the evaluation of the method doesNotUnderstand:. The bank account subject does not

33

define a method for the message addandRecord:through:. Hence, the bank account evaluates the
doesNotUnderstand: method of the class subject. The subject performs a decision lookup to get the
decision strategy for the message addandrecord: from the decision meta-object. The object representing
the invocation context includes the contextual element aBankAccountPerspective. The decision strat-
egy can take the contextual element aBankAccountPerspective into consideration available through the
meta-information object.

In SUBJECTOPIA we can polymorphically change the root decision strategy, modeled as decision meta-
object, by any other decision meta-object. For this purpose we sent the message decisionMetaObject: to
the subject. We can replace the decision meta-object to use COP by sending:
focol

“aBankAccountSubject decisionMetaObject: (COP new) .

focol

34

Validation

In this section we demonstrate how to use SUBJECTOPIA to solve five particular use cases. In contrast
to the previous subjectivity models we can select the best suiting subjectivity model in SUBJECTOPIA to
solve the problem domain. We discuss for each use case why current subjectivity models cannot solve the
subjective problem domain properly. As we can adapt the subjectivity model in SUBJECTOPIA we can also
decide the location of the subjective decision. In SUBJECTOPIA we can use the SMB model for problem
domains where the receiver of the message takes the subjective decision. Perspectives in SUBJECTOPIA
may model other problem domains where the sender of the message takes the subjective decision.

In this section we extracted only two use cases from the discussion of the previous approaches. Instead
of solving general subjectivity problem domains we focus on use cases preferring a particular subjectivity
model. We defined three use cases from subjectivity requirements taken from the Moose platform for
software and data analysis'. We implemented both SUBJECTOPIA and Moose in Smalltalk. We use the
Moose use cases to discuss how SUBJECTOPIA operates in legacy systems.

We briefly explain the use cases focusing on the subjective behavior and point to the source we
extracted them from. SUBJECTOPIA models all of the discussed subjectivity models, perspectives, roles,
COP and SMB. The use cases demonstrate why the selection of a subjectivity model is subjective to the
problem domain.

4.1 Case Study — Mobile Mail Application

Let us consider the mobile mail application introduced by Darderes and Prieto [6]. The use case is about
having users sending emails from their mobile devices. A user can only send emails from his own device.
The user collaborates with a mail deliverer to send emails to other users. The sending of the email is only
further processed by the mail deliverer if the user sending the email is the owner of the device. The mail
deliverer has an internal collaborator representing the network to which the user sends the email to. The
evaluation order of the emails on the network depends on the priority of the emails. The mail deliverer
determines the priority of the email depending on the physical location of the sender and the receiver of

1http://www.moosetechnology.org

35

http://www.moosetechnology.org

the email. If location of the sender and receiver of the emails is the same room the mail deliverer sends the
email with high else with normal priority.

In our discussion we focus on two subjective behaviors of the mail deliverer. First, the mail deliverer
behaves subjectively when a user sends an email depending on the user-device context. The behavior of
delivering the email to the network depends if the user owns the device or not. Second, the mail deliverer
behaves subjectively depending on the room context. The mail deliverer sends the emails to the network
with different priorities depending on the room context. We locate all the behavior at the mail deliverer
subject when sending an email using the message deliver:.

The behavior of sending the email over a mobile device depends on the following conditions:

e Only authorized users can send emails i.e., only the owner of the device. Otherwise the user gets an
error message.

* The sender and receiver being in the same room makes the email be sent with high priority. Otherwise
with normal priority.

In SUBJECTOPIA we followed the original implementation of the use case modeling the subjective
behavior using force trees. Figure 4.1 describes the classes and the sequence diagram used in the original
implementation of the mobile mail application based on SMB. The class pevice has an instance variable
that points to its owner being an object of class User. The user object sends the message deliver: to the
aMailDeliverer object. We model the subjective behavior of the message deliver: as a force tree. To
model the authorization process we use the authorizedsender condition based on the sender force:

authorizedSender := (aSender = device owner)

The asender object refers to the object that sends the message deliver:. The device is an object
corresponding to the awareness force. The red path in Figure 4.1 corresponds to the scenario where the
user is not logged in.

The mail deliverer object has an internal collaborator representing the network modeled as an object
of class Network. The Boardedcontext models the room context with a list of users that are present in
the room. We have to be aware that the mobile device may not have enough signal strength to connect to
the network. The network object stores the delivery until establishing a connection and then sends the
emails according to its priorities. The mail deliverer uses the awareness force to determine the second
subjective behavior regarding the priority when sending the email. We define the priority condition based
on the awareness force, called IsImmediateDeliver, as follows:

IsImmediateDeliver := (boardedContext includes: aMail recipient)

The boarded context, representing the room context holds a list of users that are present in the room.
The second subjective decision correspond to the blue and green path in Figure 4.1. Depending on the
IsImmediateDeliver the mail is send with high or normal priority.

Figure 4.2 describes the resulting force tree. The evaluation of the force determinant determines, based
on the sender identity using the authorizedSender condition, the next determinant. If the condition is
false, the force tree evaluates the method determinant notAuthorizedsender, notifying the user that he is
not logged in. Otherwise the force tree evaluates the force determinant IsImmediateDeliver based on the
IsImmediateDeliver condition. Depending on the condition, the mail deliverer sends the email with high
or normal priority to the network object.

We discuss the differences of the original SMB implementation and SMB in SUBJECTOPIA. In
SUBJECTOPIA we model objects with subjective behavior as subjects. Hence, the mail deliverer is a
subject due to its subjective behavior for the message deliver:. SUBJECTOPIA uses contextual elements to
model contextual information. As the awareness forces model contextual information not retrievable from
the communication context we model them as contextual elements. We can model the boarded context, for
example, as a contextual element used to influence the subjective decision made by the decision strategy.

36

User MailDeliverer Network

-mailAddress

+deliver: +deliver:withPriority:

Device BoardedContext

-owner ——@-presentUsers

aUser :: User aMailDeliverer::MailDeliverer | | aRoomContext::BoardedContext | | aNetwork::Network

: deliver: aMail : : :
|) i i
| notL In | | |
L otLogged | ! !
: : User takes its own : :
I T i | |
; \ device. | |
) .		
deliver: aMail		
i		
	isPresent: aMail receiver	
I A		
	true	
K i		
! ! deliver: aMail withPriority: high |
! ! ! N

I i >l
: deliver: aMail : : :
! > | |
| | | |
| | false | |
| K] |
: : deliver: aMail withPriority: normal :
| | 1 N
| | |
| | |

Figure 4.1: Sequence diagram and class hierarchy of the application of users sending emails through
mobile devices.

SUBJECTOPIA suits this problem domain, in contrast to perspectives, because SUBJECTOPIA has the
capacity to model different subjectivity models. A decision strategy modeling the decision at the side of
the receiver of the message suits best this problem domain. Perspectives do not suit this problem domain
because this models takes the subjective decision at the sender side of the message.

As SUBJECTOPIA allows us to adapt existing subjectivity models we can adapt the original perspective
based approach to suit the problem domain. In SUBJECTOPIA we changed the perspective decision
strategy to automatically choose the used perspective depending on the communication context to suit
the problem domain Perspectives model the different views users have of the mail deliverer. Because of
the changed decision strategy, the mail deliverer, the receiver of the message, and not the user, as in the

37

notAuthorizedSender

self error: ‘You are not logged in!’

authorizedSender Method Determinant

inmediateDeliver

Sender Identity
Force

Self network deliver: aMail
withPriority: high

Force Determinant

isinmediateDeliver

Method Determinant

Presence
Force

Force Determinant notinmediateDeliver

Self network deliver: aMail
withPriority: normal

Method Determinant

Figure 4.2: Force tree for the message deliver: at the mail deliverer.

original implementation, chooses the perspective. Because SUBJECTOPIA models the decision taking
process explicitly we can modify it. We can have the mail deliverer responsible for deciding through which
perspectives other objects send their messages. The mail deliverer has two perspectives: delivery and deny
delivery, which model the acceptance and denial of the sent emails by users.

Our approach has the advantage of being capable of changing polymorphically the decision strategy.
We started with a decision strategy modeling SMB and polymorphically changed it by a decision strategy
based on a changed perspective-based decision strategy. This allowed us to choose the model suiting the
problem domain the best, without having to change the whole application, but only the decision strategies.

4.2 Case Study — Group Programming Application

Smith and Ungar introduce the group programming application to explain perspectives [3]. In this use case
a system keeps track of all the changes to the source code of an object-oriented application. We can either
see the changes performed by a single developer or the merged changes of multiple developers.

For this particular example we consider objects to be containers of methods. When a developer needs
to see an object’s method source code he collaborates with its MethodContainer. A MethodContainer
models a container for the source code of one object. To obtain the textual representation for a particular
method the developers send the message get SourceCodeFor: aMethodName to the MethodContainer. The
MethodContainer reacts subjectively to the message getSourceCodeFor: depending on the contextual
view of the developer. To model the different views of the object we use perspectives. Hence, we install
a perspective decision strategy for the message getSourceCoderor:. A single perspective defines the
changes that one developer performs to the system. We model the changes of the source code for a
particular as contextual elements representing layers. The perspectives are composed contextual elements
sent by the developer together with the message getsourceCodeFor:. The textual representation of the
source code is different depending on the chosen perspective.

The perception of the textual representation of the source code depends on the applied changes on

38

the source code by the developer. Each developer defines its own perspective used to obtain the textual

representation of the source code.

MethodContainer

-methods

+getSourceCodeFor:

Developer

ContextualElement

+decideOn:

JAN

DeveloperPerspective

DeveloperLayer MethodPiece

-developerlLayers

-pieces -forMethod

+decideOn:

-forMethodContainer

+decideOn:

+decideOn:

aDeveloper::Developer

getSourceCodeFor: #test

aMethodContainer::MethodContainer

testMethod

"2

|
|
A
|
|
|
|
|

getSourceCodeFor: #test through: [aDeveloperLayer

testMethodPiece

test

TN T T T T T _____1___

S N 2 |

Figure 4.3: Sequence diagram and class hierarchy of group programming use case based on perspectives

in SUBJECTOPIA.

In SUBJECTOPIA we use decision strategies modeling perspectives to implement this use case. Figure
4.3 describes the sequence diagram and the class hierarchy of the group programming use case modeled us-
ing perspectives. The MethodContainer models the original object oriented class as a container of methods.
The method container is a subject as it defines a subjective behavior for the message getsourceCodeFor:.
The message getSourceCodeFor: sent to the method container returns the original method of the object.
We model the different views of developers of the same method as DeveloperPerspective contextual

39

element. A developer perspective has a set of developer layers. Each time the developer changes a method
the application adds a new peveloperLayer to the perspective. The layers have a piece for each changed
method. The developer selects its contextual view by sending the message get SourceCodeFor:through:
to the method container. In Figure 4.3 the sequence diagram shows how a developer sends the message
getSourceCode to the method container once directly and once using a perspective. The returned source
code depends on the contextual view i.e., the chosen perspective by the sender of the message.

We are aware that messages are always sent through a perspective. Hence, we add an empty perspective
to directly access the methods of the method container.

Other approaches are not well suited for naturally solving the group programming use case. For
example, SMB models changes to the source code as forces. This is not natural because forces influence
objects behavior and we need to have multiple views on an object. Additionally, force trees are not
supposed to change, i.e., add or remove determinants, at runtime. If we intend to have dynamic force trees
we need to check after each change that the force tree is still complete, acyclic, free of simultaneously
active determinants and that all leaf nodes are method determinants.

4.3 Case Study — Bank Account Application

The bank account application is introduce by Smith and Ungar [3]. We have implemented the application
in SUBJECTOPIA using decision strategies modeling perspectives. The subjective behavior of the message
addaAndrecord: depends on the class of the sender of the message. Only bank account objects sending
addAndRecord: have an effect on the balance at the receiver of the message.

Figure 4.4 describes the sequence diagram of the bank application. The user sends the message
addAndRecord: through the perspective aUserPerspective modeling the behavior in the piece corre-
sponding to the message. The bank account uses the aBankAccountPerspective instead.

We already discussed the problems arising from using perspectives or roles, because the sender of the
message always takes the subjective decision. SUBJECTOPIA allows us to redefine the decision strategy of
perspectives modeling the decision of which perspective has to chosen at the side of the receiver of the
messages. We can polymorphically change the new decision strategy to the default perspective decision
strategy to experiment if that suits better the problem domain.

4.4 Case Studies in Moose

In this section we discuss the use cases extracted from subjectivity requirements taken from the Moose
platform. Before we start, we mention those parts of Moose that concerns our use cases.

4.4.1 Short Introduction to Moose

Moose is an open source and language independent reengineering environment providing facilities to
analyze, query, visualize and navigate object oriented software systems. Moose uses a generic meta-model
to describe applications developed in object oriented languages. In Moose we use models for the analysis.
Applications developed in Smalltalk and Java can be directly imported into Moose. Moose also supports
other languages by extending Moose with plugins. A third option is to define your own parser to extract
the model [19].

The model of the software system represents the object oriented artifacts, such as methods or classes,
as a set of entities. Entities model software artifacts in Moose [20]. Examples of entities are FAMIXClass
representing classes and FamixMethod representing methods. FAMIXClass and FAMIXMethod are entities of
FAMIX a language independent meta-model for object-oriented systems [21]. Each kind of entity allows a
set of actions e.g., we can visualize a FaMmTxclass as UML class diagram.

40

BankAccount User ContextualElement
-balance
+addAndRecord: +decideOn:
Perspective layer
-layers -pieces
+decideOn: +decideOn:
aUser::User aBankAccount::BankAccount anotherBankAccount::BankAccount

;
| I

I

addAndRecord: 200.00 through: [aUserPerspective |
5 :

I

I

»
|
|
1
|
|
r
|
|
|
|
|
|
|
|
|
|

notAllowed

addAndRecord: 200.00 through: |aBankAccountPerspective

]
»
|
|
|
|
|
|
|
|
[

T
|

I

I

I

I

I

I
¢
I

|

I

I

I

I

|

| balance := balance + 200.00
I

I

I

|

|

Figure 4.4: Sequence diagram and class hierarchy of the bank account use case.

Collections of entities, called MooseGroup, are also entities in Moose. Like any other entity, groups
can have specific actions as well, e.g., we can visualize a group of FaMTxClass as system complexity. The
system complexity displays source code as a graph where each node represents a class and each edge
represents the inheritance relationship [22].

Moose provides a graphical user interface to interact with the model of a software system. A list of
all entities provides the possible set of actions depending on what they represent. Each listed entity has a
different right-click menu with all of the actions.

Figure 4.5 describes how Moose handles its entities. In the uses cases we focus on the FAMIXClassGroup
being a group of Moose entities where all of them are of class FamMIxclass. Concretely we concentrate on
the following subjective behavior treated in more details in their corresponding sections:

viewSystemComplexity. A Moose group containing FAMIXClass entities only defines a behavior for the
message viewSystemComplexity. All other Moose groups do not. Treated in Section 4.4.2.

viewDuplicationComplexity. A ramixclassGroup does only provide a behavior for that message if we
previously computed the code duplications. Treated in Section 4.4.3.

viewAsSelectionOnSystemComplexity. The method corresponding to the message

41

MooseEntity

JaN

MooseAbstractGroup FamixClass DudeDuplication

7N

MooseModel MooseGroup

“/|+allClasses

FamixClassGroup

-elements : FamixClass

+viewSystemComplexity
+viewDuplicationComplexity e
+viewAsSelectionOnSystemComplexity

Figure 4.5: Class hierarchy of Moose entities.

viewAsSelectionOnSystemComplexity IN FAMIXClassGroup sends the message allcClasses to the
MooseModel. The allclasses contains different information depending on the instance of the
graphical user interface from which the message viewAsSelectionOnSystemComplexity was send.
Treated in Section 4.4.4.

4.4.2 Case Study — Subjective Behavior of Group of Entities in Moose

Objects of class or subclass MooseGroup offer different behavior depending on the class of the collected
entities. Hence, Moose groups behave subjectively for certain messages. As an example we take the
subjective behavior for the message viewsystemComplexity showing the system complexity view of a
software system. The system complexity view is polymetric i.e., depends on multiple code metrics. The
number of methods or lines of codes, for example, is a code metric. The size of the nodes representing
the classes in the system complexity view depends on the metric values of the classes. The number of
methods, for example, is a metric obtainable from a class. The edges of the system complexity view for
the boxes depend on the class hierarchy of the system [23]. When a MooseGroup receives the message
viewSystemComplexity it only visualizes the system complexity if all its entities are of class
FaMIxClass. Moose only offers the action of viewing the system complexity if the Moose only contains
entities representing classes.

Figure 4.6 describes our solution of modeling MooseGroup as subjects behaving subjectively for the
message viewSystemComplexity. We separately model the subjective decision, called DecideActions, and
the behavior, called systemComplexity, as decision strategies. The DecideActions determines whether the

42

aMooseGroup::MooseGroup aDecideAction::DecisionStrategy systemComplexity::DecisionStrategy

add: anEntity

update

viewSystemComplexity

I
I
I
I
I
|
(
I
I
I
I
I
I
I
I
I
I
I
I
I
viewSystemComplexity :
I

®® |G

decitkOn: aMessageSendlnformatlon

e N

\

Decision strategy was No decision strategy was
installed during update installed during update
process process

Figure 4.6: Step 1: Updating decision strategies when the entities in the Moose group are changed. Step 2.a
and 2.b: Two scenarios for the same message viewSystemComplexity with subjective behavior depending
if decision strategy for that message was installed in step 1 or not.

MooseGroup has a behavior for viewSystemComplexity OI not. Ifa MooseGroup contains only FamixClass
entities the DecideActions attaches the systemComplexity. Each time we manipulate the list of entities
Moose evaluates the decision strategy DecideActions. The evaluation determines the actions made available
to the Moose group.

The MooseGroup provides a method for the message updateTypeAccordingToEntities called each time
we manipulate the list of entities. We override the method to evaluate the DecideActions decision strategy:

MooseGroup>>updateTypeAccordingToEntities
(self decisionMetaObject at: #updateTypeAccordingToEntities) update: self

The DecideActions decision strategy has the same responsibilities as the
updateTypeAccordingToEntities method. In contrast to the original responsibility we add the the
necessary decision strategies to the Moose group instead of changing the class of the object. In this use
case we attach the decision strategy modeling the behavior for the message viewSystemComplexitiy if all
entities are of type FamixClass.

Up until now Moose uses the subclassing of MooseGroup to model subjective behavior. For exam-
ple MooseGroup entities containing only FaMIxClass entities are of class FaMIXClassGroup. Therefore,
changes in the list of entities can result in a change of the runtime class of the group. Additionally, the
hierarchy chain of MooseGroup subclasses becomes complex due to shared behavior. Defining new entities
with new actions can even break the hierarchy of MooseGroup. Consider that we introduce the imagi-

43

nary Moose group MinimalFAMIXClassGroup containing only MinimalFAMIXClass entities. We define
MinimalFAMIXClass as a stripped down version of FaMIXClass containing less information. Because of
missing information MinimalFAMIXClassGroup cannot provide all actions of FAMIXClassGroup. Never-
theless, FAMIXClassGroup can reuse all actions of MinimalFAMIXClassGroup. Thus the FAMIXClassGroup
now subclasses MinimalFAMIXClassGroup instead of the MooseGroup. The changes in the original class hi-
erarchy may have severe impacts on already instantiated objects of class FamMIxclass and also on extracted
models. Figure 4.7

MooseGroup
|
X MinimalFAMIXClassGroup
FAMIXClassGroup

Figure 4.7: Changes — red path — in the original class hierarchy — black path — of Moose when defining the
MinimalFAMIXClassGroup.

Our approach allows us to easily extend MooseGroup to implement other subjective behavior without
depending on the class hierarchy. We simply change the DecideActions to decide the new case and model
the new behavior as a decision strategy. 10 decision strategies can be combined in 2! — 1 = 1023 different
ways. Finding a class hierarchy modeling this without duplication of behavior implies tedious work.

Moose is a legacy system and hard to change. To minimize the impact of the changes we used a
different model than the traditional subjectivity approaches. For example, using COP implies to translate
a big part of the system to layers which means a considerable effort. The elements contained in the
MooseGroup influence its subjective behavior. Hence, we need to define an activation protocol for the
layers. Splitting the contextual behavior of MooseGroup into a set of layers also implies a high effort
because of the shared behavior between the different kinds of groups. For example, future adaptations
may reuse the behavior for the message viewsystemComplexity in other MooseGroup not only containing
FamixClass entities. The layer activation protocol needs to model the selection of multiple layers even if
we model each MooseGroup behavior as a separate layer.

4.4.3 Case Study — Subjective Behavior Influenced by Third-Party Entities in
Moose

The first case study of Moose depends on an intrinsic property of the Moose group. Moose groups may
also provide subjective behavior based on entities that are not in the Moose group but in the Moose model.
As an example we take the subjective behavior for the message viewbuplicationComplexity showing the

44

duplication complexity view of a software system. The duplication complexity view is a polymetric view
in which boxes represent the degree of internal, i.e., within the class, and external code duplication [22].
DudeDuplication entities model code duplication computed based on the FaMIxClass entities. A Moose
model not containing any budeDuplication entities has two possible reasons. Either the duplications
were not yet computed or the model does not have any code duplication. A Moose group, consisting
of FaMIXClass entities should only show the duplication view if the model contains budeDuplication
entities.

Up until now, FaMIXClassGroup entities did always provide the duplication complexity view. If no
DudeDuplication entities were in the model when sending the message viewDuplicationComplexity the
Moose group computed them. If all FamMIxCclass of the Moose model do not contain any code duplication
Moose shows an empty duplication complexity view.

aMooseModel::MooseModel aMooseGroup::MooseGroup || anotherMooseGroup::MooseGroup licationComplexity::DecisionStr:

add: anEntity
N

|
|
|
update }
|

update

| |
| |
|
|
|
|
|
|
|
I A

viewDuplicationComplexity

™~

viewDuplicationComplexity

|
|
|
|
|
|
|
|
|
|
|
t
|
|
|
|
|
|
|
| ‘
|
|
|
|
|
|
N
1
|
|
|

|
T
|
t
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
| |
i i
| |
l |
|
| |
| |
| |
| |
| |
| |
| |
S |
} decideOn: aMessageSendlnform‘ption
L |
I]
| |
| |
| |

Decision strategy was No decision strategy was
installed during update installed during update
process process

Figure 4.8: Step 1: Updating decision strategies when the entities in the Moose model are changed. Step
2.a and 2.b: Two scenarios for the same message viewDecisionComplexity depending if its decision
strategy was installed during the update process or not..

Figure 4.8 describes our solution, which is similar to the solution proposed in Section 4.4.2. We
model a decision strategy duplicationComplexity, Which is only attached to the Moose model, if there
are DudeDuplication objects in the model. We model the decision strategy DecideDuplication deciding
whether to attach the duplicationComplexity decision strategy to the Moose model or not. In contrast to
the first Moose problem the update is not performed when adding or removing entities in the Moose group.
When the entities, normally Moose groups, in a Moose model change, the Moose model evaluates the
DecideDuplication decision strategy. The evaluation determines for each Moose group whether to attach
the viewbuplicationComplexity or not. The attaching depends if the computed dude duplication entities
belong to a particular Moose group in the model. To this end we override the method for the message
update: in the DecideDuplication decision strategy:

45

DecideDuplication>>update: aSubject
(((aSubject mooseModel allDuplications) size) > 0)
ifTrue: [aSubject register: (ViewDuplicationStrategy new) for: #viewDuplication.
aSubject viewDuplication.]

As well as in the first solution we used a different model than traditional subjectivity approaches due
to Moose being a legacy system. Legacy systems are hard to change without affecting the overall stability.
Using SUBJECTOPIA we can iteratively model subjective behavior in the application, as we can change the
decision strategy.

4.4.4 Case Study — Subjectives menus in Moose

Moose provides a generic graphical user interface to interact with the model of the software system. Figure
4.9 lists the MooseGroup entities of the Moose model. A right click on a group opens the contextual
menu listing the possible actions. For example a group of FamixClass entities shows the action Visualize
— System complexity. The selection of a menu entry sends a message to the selected group. For
example, selecting Visualize — System complexity sends the message viewSystemComplexity to the
selected FaMIXClassGroup.

x -0 Moose Panel pmsTis

Models Model x

Model Model (MooseModel) i v Al famixclasses (2192) (FAMIXClassGroup) i
“ E E = & Wl
W All famixaccesses (119608) ~ @ Smalltalk:FSStream ~
m All famixattributes (3973) @ Smalltalk:=MooseMonticelloPopulator

& All famixclasses (2192) malltalk:PPJavaToken

: (@ Inspect -
m Al famFxcomment.s (7061) Open in Mondrian Easel nalltalk::PPActlonPa.rse.r
® All famixglobalvariables (1) open in Moose malltalk:GLMMorphicListRenderer
W All famiximplicitvariables (] Utilities » malltalk-MAMemoDescrintionTest
w All famixinheritances (219 i Y As selection within system complexity
m All famixinvocations (147004) @ S Blueprln_t complexity .

.) Customizable System Complexity
W All famixlocalvariables (18357) B 9 pistribution Map for these elements |,
All famixmethods (20821) & | Distribution Map for these parts
@ All famixnamespaces (2) Duplication complexity
All famixpackages (210) Name Cloud _
W All famixparameters (10860) v Side by Side Duplication

UML class diagram

Figure 4.9: User interface provided by Moose. Selecting the entry system Complexity results in sending
the message viewSystemComplexity to the selected group of classes.

The problem is that some visualizations may require contextual information not retrievable from
the objects and subjects involved in the communication. Consider that we select a group of classes
that we highlight on the overall system complexity. In Moose this is achieved by sending the message
viewAsSelectionOnSystemComplexity to a FamixClass Moose group. To show the selected Moose group
highlighted in the whole system complexity we require all other FamixClass entities of the model to create
this visualization. Nevertheless, in different analysis contexts we only see a subset of all classes as a
basis for the visualization. Hence, the simple action of viewAsSelectionOnSystemComplexity requires
both the receiving group and the reference group. Moose uses a global variable to store the system wide
FamixClass entities. The problem is that each new instance of the graphical user interface of Moose
overrides the value of that global variable and this results in unwanted side effects.

46

MooseModel ContextualElement

-models -

' |

I

|

I

I

|

I

:

|

' FamixEntitiesForinterface

| - — . 1 ModelBag
i |-famixEntities
E
|
|
I
|
|
I
|
|
I

%_
-GUlInstance models

«uses»

Figure 4.10: Class hierarchy of the contextual elements used to provide user interface instance related
class support.

Figure 4.10 describes our solution that uses contextual elements to model the additional, context-
sensitive information. The context influencing the behavior of the selected FamixClass group is all
FamixClass entities of that model. Therefore, each model creates and maintains its own set of contextual
elements holding all of its FamixClass entities for each user interface. We call the contextual element con-
taining the FamixClass entities for one user interface instance FamixEntitiesForInterface. Each new in-
terface initialization makes the model generate a contextual element holding the Famixclass entities for that
particular interface. The composed contextual element Mode1Bag contains a FamixEntitiesForInterface
for each user interface instance. We use a decision strategy modeling the behavior for the message
viewAsSelectionOnSystemComplexity. The decision strategy has access to the contextual element
ModelBag of its model i.e., all FamixClass entities of the model. The decision strategy determines, using
the meta-information of the message, which interface has sent the message and accordingly uses that
contextual element.

With the SUBJECTOPIA approach we can model context-dependent behavior while not all other
approaches cannot. For example, using roles does not suit this problem domain, as roles model different
behaviors and not a way of reflecting on the context. The Moose groups behave subjectively depending on
contextual information which is not included in the default message object. Roles also assume that the
sender determines through which role it knows the MooseGroup. In reality the MooseGroup determines the
active roles for this problem domain.

47

Conclusion

The analysis of the previous subjective behavior use cases demonstrated the lack of a unified subjectivity
model. Up until now all subjective behavior models have a particular point of view towards subjectivity.
We showed that the subjective model behavior is subjective to the problem domain.

In this thesis we introduce a unified approach to model subjectivity called SUBJECTOPIA. We surveyed
prior work and identified a lack of generality when modeling different problem domains. The prototype
implementation of SUBJECTOPIA allowed us to prove that we can model different subjectivity models
such as perspectives, roles, COP and SMB. Hence, SUBJECTOPIA does not force the developer to use a
particular subjectivity model when developing a software system. We prove in different use cases that
SUBJECTOPIA adapts the model of subjective behavior to the problem domain.

SUBJECTOPIA reifies subjects, decision strategies and contextual elements to provide a more general
approach to subjective behavior modeling. Due to explicitly defining these abstractions we can experiment
with different subjectivity models in SUBJECTOPIA in the same application. As SUBJECTOPIA supports
perspectives, roles, COP and SMB as subjectivity models we can reflect upon them accordingly in the
validation. Moreover, we are able to define our own subjectivity model, thus adapting a legacy system like
Moose is possible.

Explicit decision strategies and contextual elements allow us to define all prior subjectivity models.
Hence, in SUBJECTOPIA we can define subjectivity models independently from the location of the
subjective decision, either at the sender or the receiver of the message. Additionally, we can also reify
an existing subjectivity model to change the location of the subjective decision. We reified the decision
strategy of the perspective based approach, for example, to choose the perspective for the communication
by the receiver of the message. Prior approaches did not model this and thus did not suit all problem
domains. In SMB, for example, the lack of letting the sender take the subjective decision in the group
programming use case is the reason it is not suited for that particular problem domain.

To prove that the SUBJECTOPIA approach allows us to model all existing subjective approaches as
well as custom new ones we developed a fully working prototype written in Smalltalk. We also showed
that other approaches cannot model all use cases while our approach can adapt and represent them. For
this purpose, we presented the implementation of different non-trivial subjective use cases.

SUBJECTOPIA also allows us to selectively implement subjective models on a legacy systems such as
Moose. If we use COP on a legacy system, for example, the entire application has to be rewritten to suit

48

the subjectivity model.

SUBJECTOPIA is a novel approach to model subjectivity by explicitly modeling subjects, decision
strategies and contextual elements. The reification of these abstractions avoids the need to impose a
particular paradigm for modeling subjective behavior on the developer.

5.1 Future Work

Introducing subjective behavior in legacy applications might have a considerable impact on the overall
behavior of the application. For example using COP in Moose implies to rewrite the entire Moose
environment as we cannot translate only a part of the system to COP. We explored this by using our
own subjectivity model in Moose. Being able to scope the subjective changes to specific objects helps
in controlling this impact. Especially the way we transform an object into a subject by sending the
message becomeSubject can break a legacy application. In the current SUBJECTOPIA approach sending
the message becomeSubject changes the class hierarchy of the the object receiving the message.

We plan to analyze reflection frameworks for SUBJECTOPIA to perform subjective adaptations on
certain objects only. An example of such a reflection framework is Bifrost (formerly Albedo) [24]. Albedo
uses meta-objects to provide a range of reflective features and allow application models and environments
to evolve at runtime. Structural meta-objects, for example, offers to add, remove or replace methods at
runtime on a single object instance. The message becomesubject manipulates the methods of an object at
the class side. Hence, extending SUBJECTOPIA with Albedo allows us to use structural meta-objects to
manipulate an object at runtime to be able to add the missing responsibilities of a subject.

The current implementation of SUBJECTOPIA models decision strategies for perspectives, roles, SMB
and COP. We need to adapt the implementations of the subjectivity models to fit better with the original
intention. Moreover, some of the implementations do not take the latest research into consideration. The
decision strategy for COP, for example, only implements explicit layer activation. Also we need to define
more subjectivity models in SUBJECTOPIA.

The IDE of Pharo does not support the SUBJECTOPIA approach. For example, in Pharo, a Smalltalk
environment, the representation of methods differs from classes even if following the idea of “everything
is an object”. Pharo handles decision strategies and contextual elements as common classes. Nevertheless,
this does not correspond to the responsibility of decision strategies and contextual elements. To use the
SUBJECTOPIA approach, we need to adapt the IDE to support subject oriented programming. The finding
of a proper IDE implementation goes beyond the scope of this thesis.

The last remaining point is to further evaluate the SUBJECTOPIA approach with new subjectivity use
cases.

49

Bibliography

[1] Beck, K.: Smalltalk Best Practice Patterns. Prentice-Hall (1997)

[2] Harrison, W., Ossher, H.: Subject-oriented programming (a critique of pure objects). In: Proceedings
OOPSLA °93, ACM SIGPLAN Notices. Volume 28. (October 1993) 411-428

[3] Smith, R.B., Ungar, D.: A simple and unifying approach to subjective objects. TAPOS special issue
on Subjectivity in Object-Oriented Systems 2(3) (1996) 161-178

[4] Kristensen, B.B.: Object-oriented modeling with roles. In Murphy, J., Stone, B., eds.: Proceedings of
the 2nd International Conference on Object-Oriented Information Systems, Springer-Verlag (1995)
57-71

[5] Costanza, P., Hirschfeld, R.: Language constructs for context-oriented programming: An overview
of ContextL. In: Proceedings of the Dynamic Languages Symposium (DLS) *05, co-organized with
OOPSLA’05, New York, NY, USA, ACM (October 2005) 1-10

[6] Darderes, B., Prieto, M.: Subjective behavior: a general dynamic method dispatch. In: OOPSLA
Workshop on Revival of Dynamic Languages. (October 2004)

[7] Black, A., Ducasse, S., Nierstrasz, O., Pollet, D., Cassou, D., Denker, M.: Pharo by Example. Square
Bracket Associates (2009)

[8] Ungar, D., Smith, R.B.: Self: The power of simplicity. In: Proceedings OOPSLA *87, ACM
SIGPLAN Notices. Volume 22. (December 1987) 227-242

[9] Madsen, O.L., Mgller-Pedersen, B.: Part objects and their location. In: Proceedings of the seventh
international conference on Technology of object-oriented languages and systems, Hertfordshire,
UK, UK, Prentice Hall International (UK) Ltd. (1992) 283-297

[10] Kristensen, B.B.: Subjective method interpretation in object-oriented modeling. In: In Proceedings
of the 5th International Conference on Object-Oriented Information Systems, Springer-Verlag (1998)
9-11

[11] Kristensen, B.B.: Subjective behaviour. Comput. Syst. Sci. Eng. 16(1) (2001) 13-24

[12] de Champeaux, D., Anderson, A., Feldhousen, E.: Case study of object-oriented software devel-
opment. In: Proceedings OOPSLA 92, ACM SIGPLAN Notices. Volume 27. (October 1992)
377-391

[13] Kristensen, B.B., Osterbye, K.: Roles: Conceptual abstraction theory & practical language issues. In:
Special Issue of Theory and Practice of Object Systems (TAPOS) on Subjectivity in Object-Oriented
Systems. (1996) 143-160

[14] Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented programming. Journal of Object
Technology 7(3) (March 2008)

50

[15] Knight, A., Dai, N.: Objects and the web. IEEE Software 19(2) (March 2002) 51 —59

[16] von Lowis, M., Denker, M., Nierstrasz, O.: Context-oriented programming: Beyond layers. In:
Proceedings of the 2007 International Conference on Dynamic Languages (ICDL 2007), ACM
Digital Library (2007) 143-156

[17] Costanza, P.: Context-oriented programming in contextl: state of the art. In: Celebrating the 50th
Anniversary of Lisp. LISP50, New York, NY, USA, ACM (2008) 4:1-4:5

[18] Dozsa, A., Girba, T., Marinescu, R.: How Lisp systems look different. In: European Conference
on Software Maintenance and Re-Engineering (CSMR 2008), IEEE Computer Society Press (2008)
223-232

[19] Girba, T.: The Moose Book. Self Published (2010)

[20] Ducasse, S., Lanza, M., Tichelaar, S.: The Moose reengineering environment. Smalltalk Chronicles
(August 2001)

[21] Tichelaar, S., Ducasse, S., Demeyer, S., Nierstrasz, O.: A meta-model for language-independent
refactoring. In: Proceedings of International Symposium on Principles of Software Evolution (ISPSE
’00), IEEE Computer Society Press (2000) 157-167

[22] Nierstrasz, O., Ducasse, S., Girba, T.: The story of Moose: an agile reengineering environment.
In: Proceedings of the European Software Engineering Conference (ESEC/FSE’05), New York NY,
ACM Press (2005) 1-10 Invited paper.

[23] Lanza, M., Ducasse, S.: Polymetric views—a lightweight visual approach to reverse engineering.
Transactions on Software Engineering (TSE) 29(9) (September 2003) 782-795

[24] Ressia, J., Renggli, L., Girba, T., Nierstrasz, O.: Run-time evolution through explicit meta-objects.
In: Proceedings of the Sth Workshop on Models @run.time at the ACM/IEEE 13th International
Conference on Model Driven Engineering Languages and Systems (MODELS 2010). (October 2010)
37-48

[25] Goldberg, A., Robson, D.: Smalltalk-80: The Language. Addison Wesley (1989)

51

Appendices

52

A.1 Installation Guide

We implemented SUBJECTOPIA in Pharo version 1.1.1, a Smalltalk environment. Smalltalk is a pure
object-oriented, dynamically typed, reflective programming language [25]. Pharo is an open source
implementation of the Smalltalk programming language and environment. Pharo consists of a Virtual
Machine (VM) and images that contain the Smalltalk environment and the code. The VM in Pharo is
completely written in Smalltalk and available for different OS like Windows, Linux and MacOS [7].

Before installing SUBJECTOPIA we need the Pharo VM. You can download the latest version of the
Pharo VM at http://www.pharo-project.org/. For the VM to work we also need the source
files located in the same source.

Once we have the VM, we can get started using SUBJECTOPIA by either using a ready-made image
(suggested), or try to load the code manually.

Ready-Made Image You can download the ready-made image from http://scg.unibe.ch/
research/subjectopia. Unzip all the files and drag the file named subjectopia_v1.0.image and
drop it on the Pharo VM.

MNarme Anderungsdatum Typ Grafie
J packi i 24,02.2011 14:56 Dateiordner
|| crash - 23.02.2011 14:20 DMP-Datei 17 KB
%) FT2P| 10.02.2011 11:57 Anwendungserwe... 437 KB
% Pharsere ' 1002.2011 11:57 Anwendung 1148 KB
% | Pharo.ini |+ Mit Phare Virtual Machine 4.0.2 6ffnen I'.-';]_E Konfigurationsein... 1 KB

Figure 1: Dragging subjectopia_v1.0.image and drop to Pharo Virtual Machine in Windows.

The current image of SUBJECTOPIA uses the Moose image to reflect about the use case studies of
Moose introduced in Section 4.4.

Manual installation We developed and tested SUBJECTOPIA in the PharoCore image version 1.1.1. We
recommend to use that or later versions, downloadable from http://www.pharo—-project.org/.
The SqueakSource repository hosts the code of SUBJECTOPIA athttp://www.squeaksource.com/
Decisionstrategy. Use Monticello to download the code of SUBJECTOPIA from squeaksource. From
the World menu select the entry Monticello Browser. In the opened window select +Repository and
pick HTTP. Paste the following text in the new window:

MCHttpRepository
location: 'http://www.squeaksource.com/Decisionstrategy'
user: "'
password: ''

You can ignore the warning, as only the Moose use case studies depend on the missing classes, SUBJEC-
TOPIA does not. If you intend to have a look at the implementation of the Moose example you have to
manually install Moose.

Moose Use Case Examples If you intend to run the example implementation of the use cases of
Moose you can do so by installing SUBJECTOPIA in the Moose environment. You can download Moose
from http://www.moosetechnology.org/. Inthe Workspace write subjectopia start to start
Moose with decision strategies. At any time you can write Subjectopia stop in the Workspace to stop
subjective Moose. We have to point out that models extracted in subjective Moose may not work in Moose.

53

http://www.pharo-project.org/
http://scg.unibe.ch/research/subjectopia
http://scg.unibe.ch/research/subjectopia
http://www.pharo-project.org/
http://www.squeaksource.com/Decisionstrategy
http://www.squeaksource.com/Decisionstrategy
http://www.moosetechnology.org/

Also Moose models may not work in subjective Moose. We retain that subjective Moose is not thought to
be used in productive scenarios, as only being a proof-of-concept solution.

A.2 Introductory Example for SUBJECTOPIA

In this section we introduce a simple use case of modeling private variables of objects in Smalltalk. The
use case aims to model objects whose instance variables are only accessible by other objects of the same
class. In Smalltalk, instance variables are always private to the object’s instance, thus other objects of the
same class cannot access them as in Java, for example.

We model a decision strategy that only returns the instance variable in some contexts. To return the
instance variable, the sender and receiver of the message have to be of the same class. The message
selector corresponds to the name of the private variable.

We create a new category Subjectopia-Private in Pharo by opening the wor1d menu. To open the
world menu we click with the mouse on the background of the main window. Next, we open the System
Browser by selecting the entry System Browser in the wor1d menu. The System Browser, shown in Figure
2, lists all available categories in the image. To add a new category we right-click in the list of categories
and select the entry add category. . ..

806 PrivateDecisionStrategy =

Subjectopia-MailSending & PrivateDecisionStrategy | - all -
Subjectopia-Perspective no messages
Subjectopia-Perspective-

Subjectopia-BankAccount

Subjectopia-Core-Tests

Subjectopia-Group Progr:

Subjectopia-Private Varial

Subjectopia-Role

Subjectopia-Role-Tests

Subjectopia-Moose-FAMIX

Subjectopia-Moose

Subjectopia-Moose-Tests

Subjectopia-Moose-Setu

Subjectopia-Private -
?
Py - UI\LUBSS_’)

browse | hierarchy) wvariables) imple

DecisionStrategy subclass: #PrivateDecisionStrategy
instanceVariableNames: 'nameOflnstvar’
classVariableNames: "
poolDictionaries: "
category: 'Subjectopia-Private’

Figure 2: System Browser listing the categories, also the category subjectopia-Private.

In the newly created category we model our simple decision strategy checking whether the sender and
the receiver of the message are instances of the same class. We first create the decision strategy by sub-
classing DecisionStrategy. Figure 2 shows, at the bottom text panel, how to subclass becisionStrategy
to create the class
PrivateDecisionStrategy:

DecisionStrategy subclass: #PrivateDecisionStrategy
instanceVariableNames: 'nameOfInstVar'

54

classVariableNames: ''

poolDictionaries: ''

category: 'Subjectopia-Private'

Pressing cTRL + s generates the class PrivateDecisionStrategy in the image. The class PrivateDecisionStrategy
has an instance variable called nameofInstvar. The instance variable saves the name of the instance
variable for which we use the decision strategy.
In the class PrivateDecisionStrategy we override the method decideon: to implement the following
subjective behavior:

decideOn: aMessageSendInformation
" ((aMessageSendInformation sender class) = (aMessageSendInformation receiver class))
ifTrue:

[
(aMessageSendInformation receiver) instVarNamed: nameOfInstVar.
]
ifFalse:
[
self error: self class asString, ' does not understand: ',
aMessageSendInformation selector asString.

[

The message instvarNamed: is a reflective method returning the value of the instance where the argument
suits the instance variable’s name.

The decision strategy corresponds to one particular instance variable. For this purpose we create the
fOllOWing method in the class PrivateDecisionStrategy.

nameOfInstVar: aBinaryString
nameOfInstVar := aBinaryString

We create a simple subject Mocksubject to test our application by subclassing subject:

Subject subclass: #MockSubject
instanceVariableNames: 'privateVariable'
classVariableNames: ''
poolDictionaries: ''
category: 'Subjectopia-Private'

We call the private variable of the created class privatevariable.

We override the method initialize in the class Mocksubject to set the value of the private variable:
initialize

super initialize.

privateVariable := 1.

For testing purposes we also define the message privatevariableof: in the MockSubject as follows:

privateVariableOf: aSubject
“aSubject privateVariable.

We write a test to prove that our decision strategy models exactly what we except. We therefore define
the class PrivateTest subclassing TestcCase.

TestCase subclass: #PrivateTest

instanceVariableNames: 'nameOfInstVar'
classVariableNames: ''
poolDictionaries: ''

category: 'Subjectopia-Private'

We create the method testpPrivate as follows:

55

testPrivate
|aSubject anotherSubject|
aSubject := MockSubject new.
anotherSubject := MockSubject new.

"Registering decision strategy on subject"
aSubject register: (PrivateDecisionStrategy new nameOfInstVar: #privateVariable)
for: #privateVariable.

"As the test object is the sender of the message the instance an exception is thrown
n

self should: [aSubject privateVariable] raise: Error.

"anotherSubject does not have a decision strategy for the message Variable, hence it
is not understood."
self should: [anotherSubject privateVariable. self assert: false] raise: Error.

"As the subject itself sends the message, the value of the instance variable is
returned."
self assert: ((aSubject privateVariableOf: aSubject) = 1).

"A mock subject sends the message, the value of the instance variable is returned."
self assert: ((anotherSubject privateVariableOf: aSubject) = 1).

We can now right-click on the created method and select run test. If you followed the instructions
the test should be green.

We also give an introductory example for using contextual elements based on the same use case. SUB-
JECTOPIA models a perspective ready to use for instance variable access, called InstancevariableLayerAccess
. We use the perspective based approach to model this problem domain. An object can only access
the instance variable if it uses the right perspective. In the privateTest class we create the method
testPerspectives. We start with the setup initializing a Mocksubject subject and the perspective

instVarPerspective:

testPerspectives
|aSubject instVarPerspective |
aSubject := MockSubject new.
instVarPerspective := InstanceVariableLayerAccess new instanceVariableName:
#privatevVariable.

‘We mentioned that SUBJECTOPIA models a decision strategy for perspectives. We use the perspective
decision strategy for the subject. To test this we append the following to the testPerspectives method:

aSubject register: (Perspective new) for: #privateVariable.

Only if we use the perspective when sending the message privatevariable the subject returns its
instance variable. We define the following tests in the method testPerspectives:

[aSubject privateVariable. self assert: false.] on: Error do: [self assert: true.].

self assert: ((aSubject privateVariablethrough: instVarPerspective) = 1)

The complete method testPerspectives in the class PrivateTest is:

testPerspectives
|aSubject instVarPerspective |
aSubject := MockSubject new.
instVarPerspective := InstanceVariableLayerAccess new instanceVariableName: #
privateVariable.

56

aSubject register: (Perspective new) for: #privateVariable.
[aSubject privateVariable. self assert: false.] on: Error do: [self assert: true.].

self assert: ((aSubject privateVariablethrough: instVarPerspective) = 1)

If you followed the instructions and run the tests, they both become green.

57

	1 Introduction
	2 State of the Art
	2.1 Self Delegation as an Exemplary Mechanism for Subjective Behavior
	2.2 Perspectives
	2.2.1 Perspectives as Views of an Object
	2.2.2 US – A Perspective-Based Programming Language
	2.2.3 Symmetry Problem in Perspectives
	2.2.4 Perspective – Receiver Symmetry
	2.2.5 Perspective's Drawbacks

	2.3 Roles
	2.3.1 Subjects – Objects with Roles
	2.3.2 Forces Affecting Subjects
	2.3.3 Role's Drawbacks

	2.4 Context-oriented Programming
	2.4.1 Context as Layers
	2.4.2 Context Layer Activation Mechanisms
	2.4.3 Context Variables
	2.4.4 COP's Drawbacks

	2.5 Subjective Message Behavior
	2.5.1 Forces Influencing Behavior of Objects
	2.5.2 Force Tree - A Decision Dispatching Mechanism
	2.5.3 SMB's Drawbacks

	2.6 Problems in Current Subjectivity Models

	3 Subjectopia
	3.1 Subjects
	3.2 Decision Strategies
	3.3 Contextual Elements
	3.4 Modeling Previous Approaches in Subjectopia
	3.4.1 Perspectives as Decision Strategy
	3.4.2 Roles as Decision Strategy
	3.4.3 COP as Decision Strategy
	3.4.4 SMB as Decision Strategy

	3.5 Implementation

	4 Validation
	4.1 Case Study – Mobile Mail Application
	4.2 Case Study – Group Programming Application
	4.3 Case Study – Bank Account Application
	4.4 Case Studies in Moose
	4.4.1 Short Introduction to Moose
	4.4.2 Case Study – Subjective Behavior of Group of Entities in Moose
	4.4.3 Case Study – Subjective Behavior Influenced by Third-Party Entities in Moose
	4.4.4 Case Study – Subjectives menus in Moose

	5 Conclusion
	5.1 Future Work

	Appendices
	A.1 Installation Guide
	A.2 Introductory Example for Subjectopia

