
Scripting Interactive
Visualizations

Masterarbeit
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Michael Meyer
im November 2006

Leiter der Arbeit

Prof. Dr. Oscar Nierstrasz

Dr. Tudor Gı̂rba

Institut für Informatik und angewandte Mathematik

ii

Abstract

Data visualization is an important tool in reverse engineering. With a good visu-
alization the interesting parts of the underlying data can be detected faster than
by merely inspecting the raw data.

One peculiarity of the existing visualization tools is the fact that they implement a
finite set of specific visualizations. These specialized tools are not flexible enough
to support the user when a slightly or sometimes even drastically different visu-
alization is needed. Often the user needs to be familiar with several visualization
tools with each tool expecting a different input format. Usually a large amount of
time is being invested into converting the data into the format that is expected by
the visualization tool.

We propose a new visualization model that is designed to minimize the time-to-
solution. We achieve this by working directly on the underlying data, by making
nesting an integral part of the model and by defining a powerful scripting lan-
guage that can be used to define visualizations. We support exploring data in an
interactive way by providing hooks for various events. Users can register actions
for these events in the visualization script. As a validation of our model we im-
plemented the framework Mondrian and used it to implement several established
visualizations.

iii

iv

Acknowledgements

First I wish to thank my supervisor Dr. Tudor Gı̂rba for this really interesting
year. Being able to just walk into your office whenever I had a question was great.
I also thank you for constantly providing me with new ideas and of course for the
discussions we had about them. Thank you for challenging me (“This should be
easy, right?”) every so often. This made things a lot more interesting :-)

I thank Prof. Dr. Oscar Nierstrasz, head of the Software Composition Group, for
giving me the opportunity to work in his group and especially for providing me
with a solution for my administrative difficulties.

I thank Prof. Dr. Stéphane Ducasse, Prof. Dr. Oscar Nierstrasz and Orla Greevy
for reading this master thesis. Thanks for all the constructive feedback.

I thank Adrian Kuhn for the interesting code optimization discussions we had. I
also thank him for renaming his version of RectangleShape to RectangleFoo and
for sending me a Youtube link every now and then.

I thank Rafael Wampfler for, well, hanging around in the students pool. “Work-
ing” was always fun when you were around. I would also like to thank all the
other Software Composition Group members. I really enjoyed the discussions and
lunches I had with all of you.

I thank Frédéric Pluquet for showing me how to implement sequence diagrams
with Mondrian three months before I managed to do so. You really raised the
bar.

Finally I would like to thank my parents for all the support they gave me in various
occasions. It is great to know that there are people that always stand by you no
matter what you do. I also thank my brother for all the things he taught me about
brake fluid, valves and lambda sensors lately. The discussions combined with the
practical exercises were more than welcome when my head was (once again) too
full with algorithms, visualizations and clipping problems.

Michael Meyer
November 2006

v

vi

Contents

1 Introduction 1
1.1 Challenges for an information visualization framework 2
1.2 Our solution in a nutshell . 3
1.3 Contributions . 5
1.4 Document structure . 5

2 State of the art 7
2.1 Approaches to Visualization . 7

2.1.1 GraphViz . 7
2.1.2 SHriMP . 8
2.1.3 GEF . 10
2.1.4 CodeCrawler . 11
2.1.5 Seesoft . 11
2.1.6 BLOOM . 12
2.1.7 Vizz3D . 12
2.1.8 MetricView . 13
2.1.9 Softwarenaut . 13

2.2 Declarative ways for composing components 15
2.2.1 CSS3 . 15
2.2.2 Form Layout . 16

3 Scripting Visualizations with Mondrian 19
3.1 Building our first visualization: A class hierarchy 19
3.2 Adding interaction to the Visualization 25
3.3 Composing shapes . 28
3.4 Instance based visualizations . 30
3.5 Mondrian internals . 31

4 Implementing various visualizations using Mondrian 35
4.1 System Complexity View . 35
4.2 Class Blueprint . 36
4.3 Scatterplot . 39
4.4 Spectographs . 40

vii

Contents

4.5 UML class diagram . 42
4.6 UML sequence diagram . 45
4.7 Scripting tools . 48
4.8 MetricView . 51

5 Discussion 53
5.1 Composing shapes . 53

5.1.1 Human speech is ambiguous 53
5.1.2 Resize behaviour of shapes 54

5.2 Positioning the nested visualization explicitly 55
5.3 Implementing our model in other languages 57

5.3.1 Squeak . 58
5.3.2 Java - Groovy . 58

5.4 Improving the workflow . 61
5.5 Custom tool example: A Moose property editor 63

6 Conclusions 65

List of figures 66

Bibliography 68

viii

1 Introduction

When confronted with a new kind of problem we often start with a small sketch
on a piece of paper [Snyder, 2003; Bellin and Simone, 1997]. The sketch helps
us arrange our ideas [Crapo et al., 2000]. It seems that the human mind needs
the additional visual aid for a better understanding of complex problems and
coherences [Wade and Swanston, 2001].

The world is complex, dynamic, multidimensional; the paper is static, flat. How
are we to present the rich visual world of experience and measurement on mere
flatland? [Tufte, 1990]

Tufte describes the problem accurately: We have a complex, multilayered problem
and have to condense it until it fits on a finite piece of paper or computer screen
while still keeping its essence.

Visualization is an important tool in reverse engineering. Koschke reports that 80%
of interviewed researchers consider visualizations as being important or absolutely
necessary in software reverse engineering [Koschke, 2003]. Recently many new
visualizations have been developed. Some focus on the changes of a system during
time [Gı̂rba, 2005] others on email content visualization [Viégas et al., 2006] and
again others on runtime analysis [Greevy et al., 2006; Reiss, 2006; Ducasse et al.,
2004a]. All these visualizations have the same goal: Making it easier to understand
complex coherences.

The enormous interest in visualization as an aid for reverse engineering and prob-
lem detection can also be inferred from the large number of tools that have been
developed for this purpose: Seesoft [Eick et al., 1992], Rigi [Müller, 1986; Müller
and Klashinsky, 1988], SHriMP [Storey and Müller, 1995; M.-A. D. Storey and
Michaud, 2001], CodeCrawler [Lanza, 2003a; Lanza and Ducasse, 2005], etc.

1

1 Introduction

1.1 Challenges for an information visualization
framework

One peculiarity of the existing visualization tools is the fact that they implement
a finite set of specific visualizations. The very nature of program optimization,
problem detection and program understanding though, implies that the user might
not know a priori what he is looking for, and therefore, what visualizations to use.
Reiss identified the following two reasons for the slowness of the software developer
community in adopting software visualization tools [Reiss, 2001]:

• Specialized tools are not flexible enough. They do not support the user when
he needs a slightly or sometimes even drastically different visualization.

• The user needs to be familiar with several visualization tools with each tool
expecting a different input format. Usually a large amount of time is being
invested into converting the data into the format that is expected by the
visualization tool: by having the model classes implement a certain interface,
by adding wrapper objects around the model classes or by writing a tool that
exports the model to a XML or TXT file.

We argue that a visualization framework that strives to be flexible, needs to con-
sider the following factors:

The visualization engine should be domain independent. It is important that the
framework be general enough to accommodate any data model.

Visualizations should be easily composed from simpler parts. The user of the
framework should be able to define basic blocks that can be used to build
more complex visualizations. One example of this is the way graph-layouting
tools such as GraphViz1 and aiSee2 implement nested layouts: once a layout
is defined, it can be used to layout the internal contents of a given node
which is part of another graph which has yet another layout.

The visualization should be definable at a fine-grained level. Being able to define
a visualization with several levels of detail adds flexibility to the framework.
A possible use case is showing the details of a figure by representing other
figures inside based on the characteristics of the represented object. The
framework should also support instance-based representation as opposed to
type-based representation, as it is sometimes desired to not show all the
objects of the same type with the same representation.

1http://www.graphviz.org
2http://www.aisee.com/

2

1.2 Our solution in a nutshell

Object creation overhead should be kept to a minimum. Visualization engines
typically have an internal meta-model, usually a graph-like one, in which
they put the data and on which the visualization is defined. However, when
the objects of the data model are already present, we do not need to duplicate
them, but the visualization should work directly with those objects. This is
important as it saves memory and time that is otherwise spent in building the
internal model. Another benefit is that the data model and the visualization
model stay in sync when the data model changes.

The visualization description should be declarative. The description of the vi-
sualization should be declarative, as it should only be a mapping between
the data model and the visualization model. The benefit of a declarative
approach is that it allows for generation of the descriptions from editors.

1.2 Our solution in a nutshell

Often it is not clear from the outset how the given data should be visualized.
We argue that the users do not know up front in detail how their solution should
appear in the end. This means that they need a tool that allows them to try
several ideas with little effort. In this thesis we present a new visualization model
that focuses on fast prototyping of visualizations. Our model can also be used as
basis for specialized visualization tools.

Figure 1.1 (p.4) shows the essence of our solution. In our model a visualization is
defined in a declarative way using scripts. In the script we refer to a model . The
model provides two methods: the #allClasses method which returns a collection
of class definitions and the #allInheritances method which returns a collection
of inheritance definitions.

In the example we render a class hierarchy. We use the classes as nodes and the
inheritance definitions as edges. The script is structured as follows: We start
by creating a ViewRenderer . The ViewRenderer is used to build and render the
visualization. We specify that a node should be created for each class and that
the nodes should be painted as bordered rectangles. Next we specify that the
inheritance definitions should be represented as edges and that they should be
painted as lines. Finally we apply a tree layout to the nodes and render the
visualization.

Each inheritance definition provides the methods #superclass and #subclass. In
the third line of the script we specify that for each inheritance definition the edge

3

1 Introduction

view := ViewRenderer new.
view nodes: model allClasses using: RectangleShape withBorder.
view edges: model allInheritances
 from: #superclass
 to: #subclass
 using: LineShape new.
view layout: TreeLayout new.
view open.

Figure 1.1: A simple visualization based on the Mondrian framework. The script
shows the essence of our solution.

should be added between the result of the #superclass method and the result of
the #subclass method.

Our framework works directly on the underlying data. We do not enforce the model
to implement a certain interface and we do not need to put wrappers around the
model classes. Instead the shapes act as a translator between the model interface
and the view interface. The advantage of working directly on the underlying data
is the fact that we do not need to recreate the visualization model when the data
model changes.

Our model is graph-based [Battista et al., 1999]. We have a graph behind every
figure. A graph may contain other figures (e.g., nodes and edges). In this way we
support “infinite” nesting. In our approach, a figure does not have a visual repre-
sentation. The reason why we still need a figure is that the underlying graphical
framework usually expects a visual component to inherit from a special class (e.g.,
VisualPart in Smalltalk or JComponent in Java).

The figures are decorated with shapes. Unlike a figure, a shape has a visual repre-
sentation. The framework provides basic shapes like RectangleShape or LineShape.
Shapes hold no data model specific state. Thus we are able to use the same shape
to paint several figures. We decided to use stateless objects because one of our de-
sign goals was to minimize the overhead in terms of memory and time introduced
by our framework.

All shapes have reasonable default values. Like this the shapes can be created

4

1.3 Contributions

with the default constructor. We believe that this is an important feature for fast
prototyping. Most shapes also have specific properties that the user may set if
required. The RectangleShape, for example, supports the properties color, width
and height and the LineShape supports the properties color and lineWidth.

The user specifies the visualization using a script. Like this the entire visualization
can be defined in a single method. This allows the user to focus on the visualization
he would like to achieve. In contrast to our script-based approach to visualization,
frameworks that rely on subclassing have a tendency of becoming complicated
and one usually ends up with spending more time in creating the classes that the
framework wants than in creating the visualization.

1.3 Contributions

In this thesis we define a model [Meyer et al., 2006] that is flexible enough to
accommodate many different kinds of visualizations while keeping the complexity
that is exposed to the user to a minimum. With our model the user can focus on
his data and the visualization that he would like to build. The contributions of
our work are:

1. Based on our analysis of the existing visualization tools and frameworks we
identify a number of factors that are crucial for any flexible visualization
model.

2. We implemented a full-fledged prototype of our model in Smalltalk and a
basic version in Java.

3. We show how several established visualizations can be expressed with our
approach.

1.4 Document structure

In Chapter 2 (p.7) we present the state of the art. In the first part we look at
a variety of visualization tools and frameworks and in the second part we explore
some established techniques for laying out components.

In Chapter 3 (p.19) we present our solution from a user point of view and we
give a detailed introduction to our model.

5

1 Introduction

In Chapter 4 (p.35) we validate our model by using Mondrian to implement
various established visualizations.

In Chapter 5 (p.53) we present some of the problems that we had to solve and
we look at implementing our model with different programming languages.

In Chapter 6 (p.65) we recapitulate the key features of our model.

6

2 State of the art

The main problem of software visualization is the fact that too many tools spe-
cialize on a limited number of visualizations. This leads to several problems. One
problem is that a user cannot be familiar with all the tools. Another problem is
that one usually has to convert the data in some way to make it compatible with
the format that the tool expects which is time consuming. Furthermore we have
to consider that it takes time to get familiar with a new tool.

What is needed is a single, cohesive visualization environment that can be read-
ily adapted to a user’s needs, so that he can learn the tool once and apply that
knowledge to any problem [Bosch et al., 2000]

2.1 Approaches to Visualization

In this section we survey a number of existing visualization tools and frameworks.
We are especially interested in the features that they provide with respect to our
goal of providing a model for fast prototyping of visualizations.

2.1.1 GraphViz

GraphViz [Gansner and North, 2000] is a popular visualization tool that focuses on
drawing directed graphs. The drawing can be described with a simple language1

that supports graphs, nodes and edges. GraphViz supports subgraphs. This means
that a node in a graph may contain another graph. This is an important feature
since it allows us to express complex coherences that could not be expressed with
an ordinary graph.

GraphViz includes a number of well-tuned layout algorithms [Gansner et al., 1993].
Well-tuned means that these algorithms are very fast, they are capable of handling
cycles in the graph definition and they take aesthetic measurements into account.

1http://www.graphviz.org/doc/info/lang.html

7

2 State of the art

GraphViz also supports a large number of output formats (e.g., GIF, PNG, SVG,
VRML, PDF, PostScript, ...). Although some of the formats (i.e., SVG and
VRML) would be able to handle some kind of user interaction, GraphViz does
not make use of this.

digraph G {
 a -> b -> c;
 b -> d;
 d -> a

 a [shape=polygon, sides=5, peripheries=3,
 color=deepskyblue, style=filled];
 b [shape=polygon, sides=4, skew=0.4,
 label="b aka B",color=greenyellow,style=filled];
 c [shape=polygon, sides=3, color=orange,
 style=filled];
 d [shape=circle, color=gold1, style=filled];
}

Figure 2.1: GraphViz definition of a graph and the resulting drawing. The graph
consists of the nodes a to d. Notice how all the nodes have different
colors and shapes and how the edge between node d and node a is
slightly bent to avoid intersection with node b.

In GraphViz the user has, within bounds, the possibility to influence the way
that a node or edge is drawn. A node can be drawn as box, circle, ellipse or as
polygon and edges support several attributes like color, dotted (paints an edge as
dotted line) or stroked (paints an edge as stroked line). GraphViz also supports
more complicated node representations by allowing the user to compose boxes
and labels in an html-table kind of way. Figure 2.1 (p.8) shows an example of a
GraphViz graph definition and the resulting drawing.

Since GraphViz only creates static drawings there is no way to explore the data in
an interactive way. Another drawback is the fact that GraphViz does not work on
the underlying data directly. By transforming the data model to the format that
GraphViz expects we duplicate the needed resources.

2.1.2 SHriMP

SHriMP (Simple Hierarchical Multi-Perspective) [Storey and Müller, 1995; M.-A.
D. Storey and Michaud, 2001] is a tool for visualizing and analyzing hierarchical
data. Though mainly used for analyzing and visualizing large software systems it

8

2.1 Approaches to Visualization

is not limited to this domain. The tool is graph-based and represents nodes as
rectangles and edges as lines. SHriMP supports nesting. Nesting is a more general
term for what we introduced as subgraphs in Section 2.1.1 (p.7). The term nesting
is the more common one in the visualization community since it moves the focus
from graph theory to the visualization field. When talking about nesting we mean
that it is possible to embed an entire visualization inside a node as opposed to
embedding a graph inside a node. The authors have implemented several layouts.
Especially the SpringLayout and the RadialLayout produce aesthetically pleasing
results.

A interesting feature that SHriMP offers is semantic zooming [Bederson and Hol-
lan, 1994]. This is particularly interesting when exploring data in an interactive
way. Semantic zooming means that we can define several levels of detail for our
data. Figure 2.2 (p.9) shows an example of semantic zooming. We start with the
Java package bingo.game. Then we display all the classes that are in the package
and for the class NotaryPublic we also show the methods. So basically semantic
zooming is nothing other than an application of nesting.

1 2

3

Figure 2.2: An example for semantic zooming. (1) shows the Java package
bingo.game. Then we add the classes that the package contains (2)
and finally we add the methods for the class NotaryPublic (3).

The standalone version of SHriMP loads its data from a file with a graph-like struc-
ture (e.g., GXL, RSF, XML, XMI). There are also two sub-projects: Jambalaya
is a plugin for Protégé2 that can be used for visualizing ontologies and knowledge-
base data and Creole is an eclipse plugin for source code visualization.

2http://protege.stanford.edu/

9

2 State of the art

SHriMP does not work on the model directly. This means that we have to export
our model each time we perform changes on it. The need to export and import
the data leads to a very slow iteration loop. Semantic zooming only works if we
export all the necessary data. It also seems that SHriMP is not meant to be easily
extended with custom figures. So, as a typical user, we are limited to the basic
shapes that SHriMP offers.

2.1.3 GEF

The Graphical Editing Framework (GEF) is part of the Eclipse Modeling Project
[Moore et al., 2004]. GEF assumes that you have a model that you would like to
display and edit graphically. Unlike the previous tools GEF works with any kind
of model and close to the original data. The framework makes use of the Model
- View - Controller pattern. The controller classes are subclasses of EditPart.
EditParts handle the communication between the model and the view. In GEF
the communication works in both ways. This means that the EditPart propagates
changes from the model to the view and also from the view to the model. The
EditPart is also responsible for creating the visual representation of the model
object. To create the EditParts the developer needs to provide a factory that
returns the proper EditPart for each model entity. Based on this it is possible to
have an instance-based representation of the model objects. The framework also
supports nesting and the user has a lot of freedom when it comes to defining the
visual representation of a model entity since he has access to the entire Java 2D
API.

The Graphical Editing Framework is a powerful and easy to use framework with
good interaction support. With interaction we mean that the user has the possi-
bility of resizing figures with the mouse, that it is possible to move figures around
with the mouse, that we have access to the model data behind a figure and that
we can add and remove figures on the fly.

A problem of the GEF framework is the linking between the model and the con-
troller. It is not possible to store a state in the controller although the framework
creates a controller for every model object. So when we need to store a state like
the x, y position of a figure we can either store this information in the model
or we need to add a wrapper around the model object. This leads to a large
number of objects. In the worst case we have a model object, a controller object
and a wrapper object. So basically the framework triples the number of required
objects.

10

2.1 Approaches to Visualization

2.1.4 CodeCrawler

CodeCrawler [Lanza, 2003a; Lanza and Ducasse, 2005] is a tool specialized for
understanding object-oriented software systems. To work with CodeCrawler no
programming skills are required. The tool comes with a rich and intuitive user
interface and is capable of working with data provided by the Moose reengineering
environment [Ducasse et al., 2005; Nierstrasz et al., 2005].

Defining a visualization in CodeCrawler is straightforward. The complete visual-
ization can be defined at runtime with the mouse. Like most visualization tools
CodeCrawler is graph-based. The user can define which model entities should
represent the nodes and which model entities should be used as edges. The user
also has the possibility to map metrics that the model provides to properties that
the view needs. The rectangle implementation, for example, has the properties
width, height, fill-color, border-width and border-color. These kind of visualiza-
tions where one maps model metrics to view properties are known as polymetric
views [Lanza and Ducasse, 2003].

CodeCrawler also comes with a set of ready to use visualizations such as the Class
Hierarchy and the Class Blueprint to name two of the well-established ones and
several developers have used CodeCrawler as a basis for their own visualizations
[Gı̂rba et al., 2005; D’Ambros and Lanza, 2006b; D’Ambros and Lanza, 2006a;
Arévalo, 2005].

Although CodeCrawler has been used as a base for custom visualizations the pro-
cess of adding a new visualization is not trivial. Also CodeCrawler, like GEF,
puts wrappers around the model entities which doubles the needed resources and
it requires the visualization model to be recreated when the data model changes.
Moreover CodeCrawler only supports type-based representations.

2.1.5 Seesoft

Seesoft [Eick et al., 1992] is a tool that is specialized for visualizing large amounts
of data (50000 lines of code or more). The tool expects version control data or the
result of a static or dynamic analysis as input data. The tool will map every line
of the input data to a thin line in the visualization. The color of the line will be
set based on a user criterion. When working with version control data it uses red
for all lines that have been changed a short while ago and blue for all lines that
have not changed for a long while.

Seesoft does not support any other kind of visualization. The advantage of this
approach is that the developers are able to optimize the code for this specific task

11

2 State of the art

which is desirable, from a user point of view, when working with a huge amount
of data. It can be expected that Seesoft is faster than a more generalized tool
that offers the same visualization. The downside of the specialized tool approach
is that users who need several different visualizations will need to know several
different tools. In the worst case each of these tools expects the input data in a
different format.

2.1.6 BLOOM

BLOOM [Reiss, 2001] is a tool that is optimized for software visualization. It offers
a large number of different visualizations, 2D as well as 3D, and supports various
data formats. Data can be obtained from a database or by parsing the source code
and there are even facilities for collecting Java and C++ traces. BLOOM then
provides a powerful query language to collect the data that should be visualized
from these sources. Then BLOOM starts a search and looks for all defined visual-
izations that could be applied to the provided data. The end result of this process
is a XML file that can be visualized by the BLOOM rendering engine.

BLOOM provides a plugin mechanism that makes it possible to add new visual-
izations hence the fact that BLOOM already offers a large number of visualiza-
tions.

A feature that BLOOM is missing is nesting. Furthermore since the focus of the
project is on software visualization, it seems unlikely that the tool could be easily
adapted to other domains.

2.1.7 Vizz3D

As the name suggests Vizz3D [Panas et al., 2005] is a tool that focuses on 3D visu-
alizations. Vizz3D is intended for users and not primarily for developers. Vizz3D
has an easy-to-use user interface and the user can create the entire visualization
with the mouse. The tool supports polymetric views and comes with a rich set of
available visualizations.

Vizz3D focuses on software visualization. But adding new visualizations and data
bindings is possible which makes Vizz3D not only a tool but also a framework. To
add new bindings and visualizations programming skills are needed though. We
did not find any evidence that Vizz3D supports nesting and it is not clear what
kind of input data Vizz3D expects.

12

2.1 Approaches to Visualization

2.1.8 MetricView

MetricView [Termeer et al., 2005] is a software visualization tool that turns tra-
ditional UML diagrams into polymetric views. The starting point is a plain UML
diagram. The user can then define an “invisible” grid on top of the UML figure
and map a metric to each cell. The visual representation of the metric is set by the
user. It is possible to map a metric to an icon or to a rectangle where width and
height can be based on the value of the metric. No programming skills are required
to use MetricView. The entire visualization can be defined with the mouse.

MetricView loads the UML data and the metric data from two different files.
The UML data is loaded from XMI (XML Metadata Interchange) files. The XMI
format is a standard that is supported by many UML modeling tools such as
Rational Rose3 and Together 4. The metric data can be loaded from files created
by a tool called Software Architecture Analysis Tool [Muskens, 2002; Lange, 2003].
According to the authors loading metrics from other sources can be achieved with
little effort.

MetricView is an end user tool that focuses on the various UML diagrams. This
specialization does not make MetricView an ideal base for custom visualizations.
Additionally we did not find any evidence that the diagrams that MetricView
creates support interaction.

2.1.9 Softwarenaut

Softwarenaut [Lungu et al., 2006] is a reverse engineering tool for package-based
systems that uses Moose [Ducasse et al., 2005] as data provider. Figure 2.3 (p.14)
shows a screenshot of Softwarenaut while exploring the BitTorrent client Azureus5.
Softwarenaut displays three levels of detail at the same time which is helpful for
exploring a system in an interactive way. The Exploration Perspective is the main
view where the user can collapse and expand packages. The Map Perspective gives
an overview over the complete package hierarchy and highlights the nodes that are
currently visible in the exploration perspective. The Detail Perspective provides
details on the package which has the focus in the exploration perspective.

Softwarenaut is easy to use. When selecting a package in the exploration perspec-
tive the detail perspective gets updated immediately. One can right click on an
arbitrary node in the map perspective and make that package the current selection

3www.ibm.com/software/rational
4http://www.borland.com/de/products/together
5http://azureus.sourceforge.net

13

2 State of the art

in the exploration perspective. As a navigation aid Softwarenaut indicates which
packages are interesting to explore based on package patterns.

Exploration
Perspective

Detail
Perspective

Map
Perspective

Figure 2.3: Softwarenaut is a reverse engineering tool for package-based systems.
The tool focuses on interactive navigation.

While Softwarenaut is mainly used for analyzing package-based software systems
it has also been used for navigating clusters [Lungu et al., 2005].

Softwarenaut is a dedicated tool. With the three perspectives (i.e., Exploration,
Map and Detail perspective) even the user interface is highly specialized. The
interaction between the three perspectives is hard coded. This makes it difficult to
extend Softwarenaut with custom visualizations. Softwarenaut does not work with
the data model directly. Instead it puts wrappers around the model objects. This
duplicates the number of needed objects and we need to recreate the visualization
model when the underlying data changes.

14

2.2 Declarative ways for composing components

2.2 Declarative ways for composing components

Since we want to be able to script the visual representation of figures by composing
shapes we explored some established ways of composing components.

2.2.1 CSS3

In the early days of the web it was common to have document content and docu-
ment presentation in the same file. This was impractical for several reasons, the
most serious one being that each file had to be edited if one wanted to change some-
thing like the font size of a title or the color of an emphasized word in a consistent
way. This is why CSS6 (Cascading Style Sheets) was introduced. CSS allows a
complete separation of document content and document presentation.

While formating text works well with CSS it is still difficult to express complex
layouts. This is why it is still common to use html-tables to define the overall look
of a document. CSS3, the upcoming version of CSS, will have a special module to
solve this problem. The module is called CSS3 Advanced Layout Module7 and it
offers all the functionality that the classical html table provides.

<style type="text/css">
 body {
 display: "a.b.c" (2em)
 "....." (1em)
 "d.e.f"
 "....." (1em)
 "g.h.i" (2em)
 5em 1em * 1em 10em
 }
 #logo {position: a}
 #motto {position: b}
 #date {position: c}
 #main {position: e}
 #adv {position: f}
 #copy {position: g}
 #about {position: h}
</style>

a b c

d e f

g h i

5em * 10em

2e
m

*
2e
m

Figure 2.4: Example of a CSS3 layout definition and an outline of the grid that
the definition creates.

Figure 2.4 (p.15) shows an example of a CSS3 layout definition and an outline of
the grid that the definition creates. In the example we create a grid that consists of

6http://www.w3.org/Style/CSS/
7http://www.w3.org/TR/css3-layout/

15

2 State of the art

five columns and five rows. The letters a to i are placeholders for a component and
a point defines a column or row that will not contain a component. As distance
unit we use em. This unit depends on the used font and is helpful for providing
a similar look on different platforms. The middle row and the middle column are
flexible. This means that they will take up all remaining space that the fixed rows
and columns do not need. The first column is 5em wide, the second column 1em
and the last column 10em.

After defining the grid we can assign html tags to the slots. CSS3 offers a new
position property for this. In Figure 2.4 (p.15) we assign the tag with id #logo to
slot a. A component can span several slots if we give the same name (e.g., a) to
more than one slot. If we wanted the logo to span the entire first row we could
replace b and c by an a in Figure 2.4 (p.15).

Positioning and aligning components in a grid is straightforward. The table
metaphor can also be used in the visualization domain for composing shapes and
defining the visual representation of figures. In a simplified form this has already
been done by GraphViz (Section 2.1.1 (p.7)) where it is possible to compose boxes
and labels in a html-table kind of way.

What is not covered by the CSS3 Advanced Layout Module is resize behaviour.
Web pages do not need this functionality since web browsers have scrollbars. How-
ever, in an interactive visualization model resize functionality is needed.

2.2.2 Form Layout

When building a GUI with Java one makes use of a LayoutManager. The Layout-
Manager is responsible for position and size of the components inside a container.
While components can indicate their preferred size and alignment the Layout-
Manager has the final say. The LayoutManager is also responsible for resizing the
components if the size of the container changes.

One of the most flexible and also most complicated LayoutManagers that Java
offers is the GridBagLayout8. An alternative to the GridBagLayout is the Form-
Layout [Lentzsch, 2004]. The FormLayout is offered free of charge by JGoodies 9,
a company specialized on advanced Java UI design and usability. The FormLayout
provides the same flexibilty as the GridBagLayout but is easier to use.

The FormLayout works with rows and columns. After defining the grid we can
start adding the components to the slots. A component can span several rows and

8http://java.sun.com/docs/books/tutorial/uiswing/layout/gridbag.html
9http://www.jgoodies.com

16

2.2 Declarative ways for composing components

FormLayout layout = new FormLayout(
 "10dlu, pref, 4dlu, fill:pref:grow", //columns
 "pref, 2dlu, pref, 3dlu, pref"); //rows

PanelBuilder builder = new PanelBuilder(layout);
builder.setDefaultDialogBorder();
CellConstraints cc = new CellConstraints();

builder.addSeparator("General Information", cc.xyw(1, 1, 4));
builder.addLabel("Firstname", cc.xy (2, 3));
builder.add(new JTextField(), cc.xy (4, 3));
builder.addLabel("Lastname", cc.xy (2, 5));
builder.add(new JTextField(), cc.xy (4, 5));

this.getContentPane().add(builder.getPanel());

Figure 2.5: Screenshot of a Java UI and the code that creates it. In the code we
make use of the FormLayout.

17

2 State of the art

columns and we have a fine-grained way of influencing the behavior of a component
when resizing the surrounding container.

Figure 2.5 (p.17) shows a screenshot of a Java UI and the code that creates it. The
UI has been built with the FormLayout. In this example we define a grid with four
columns and five rows. Most cells have a fixed width and height. As distance unit
we use dlu. This unit, like em, is based on the used font and produces a better
result if the UI is used on different platforms. For the width of the fourth column
we use the term fill:pref:grow. The pref indicates that the column should
use the preferred width of the contained component if possible. With the fill

attribute we tell the layout that a component should use all available space. This
means that a component will fill the entire cell, especially when the column width
is larger than the preferred width of the component. Finally the grow attribute
defines the resize behavior of the column. If we increase the width of the container,
the columns with the grow attribute will distribute the newly available space among
each other. After defining the grid we can start placing the components into the
cells. A component can span several rows and columns.

The strength of the FormLayout is the compact layout definition and the manner
in which the resize behaviour can be defined.

18

3 Scripting Visualizations with
Mondrian

In the previous chapter we looked at several visualization tools and we introduced
concepts like nesting and instance-based representation that are important in the
field of visualization.

In this chapter we present our model with various examples. We will use Mondrian,
the Smalltalk implementation of our model, to render the visualizations. After
looking at the model from a user point of view we present the internal details of
our model.

3.1 Building our first visualization: A class hierarchy

In the following examples we will use a simple model that contains classes and the
inheritance relations between those classes. The method #allClasses returns a
collection with all classes and the method #allInheritances returns a collection
with all inheritance relations. We always present the script and the visualization
that it produces.

Creating a view. We have designed Mondrian to work like a view that the user
paints. We start by creating an empty view.

view := ViewRenderer new.
view open.

19

3 Scripting Visualizations with Mondrian

Adding nodes. Next we add a node for each class object to the visualization.
We obtain the class objects by calling the model’s #allClasses method. For the
visual representation of the objects we choose a bordered rectangle.

view := ViewRenderer new.
view nodes: model allClasses using: RectangleShape withBorder.
view open.

Adding edges. In our example model the inheritance relations are modeled
as first-class entities. We obtain the inheritance objects by calling the model’s
#allInheritances method. In the script below we make use of #superclass and
#subclass. These are methods that the inheritance objects implement. The
method #superclass returns the class object of the superclass and the method
#subclass returns the class object of the subclass. For the visual representation
of the edges we use a line.

view := ViewRenderer new.
view nodes: model allClasses using: RectangleShape withBorder.
view edges: model allInheritances
 from: #superclass
 to: #subclass
 using: LineShape new.
view open.

Layouting. By default the nodes are arranged in a horizontal line. Since we have
hierarchical data a tree layout is more appropriate.

view := ViewRenderer new.
view nodes: model allClasses using: RectangleShape withBorder.
view edges: model allInheritances
 from: #superclass
 to: #subclass
 using: LineShape new.
view layout: TreeLayout new.
view open.

Polymetric size. Our model supports polymetric views [Lanza and Ducasse,
2003]. The class objects implement the methods #noa and #nom. The #noa method
returns the number of attributes and the #nom method returns the number of
methods in the class. In the next example we map the width of the rectangle to

20

3.1 Building our first visualization: A class hierarchy

the result of the #noa method and the height of the rectangle to the result of the
#nom method.

view := ViewRenderer new.
view nodes: model allClasses
 using: (RectangleShape withBorder width: #noa height: #nom).
view edges: model allInheritances
 from: #superclass
 to: #subclass
 using: LineShape new.
view layout: TreeLayout new.
view open.

Polymetric color. We assign to each node a color between white and black based
on the number of lines of code. In our model the number of lines of code can be
obtained by executing the class object’s #loc method. In the script we make use
of a class called LinearNormalizer . The class takes as the context all objects that
should get a color and as the command the name of the method that should be
used for determining the color.

view := ViewRenderer new.
view nodes: model allClasses
 using: (RectangleShape withBorder width: #noa height: #nom color:
 (LinearNormalizer
 context: model allClasses
 command: #loc)).
view edges: model allInheritances
 from: #superclass
 to: #subclass
 using: LineShape new.
view layout: TreeLayout new.
view open.

At this point we have produced a complete System Complexity view [Lanza, 2003b]

with a script that consist of only five instructions.

Nesting. The class objects implement the method #allMethods that returns a
collection with method objects. We would like to visualize the methods as or-
ange rectangles that are surrounded by a border. Until now we used the com-
mand #nodes:using: for adding the class objects. Now we use the command
#nodes:using:forEach:. The code that we provide in the forEach block will be
evaluated for each class object.

21

3 Scripting Visualizations with Mondrian

view := ViewRenderer new.
view nodes: model allClasses using: RectangleShape withBorder
 forEach: [:class |
 view nodes: class allMethods using: RectangleShape orange.
].
view edges: model allInheritances from: #superclass to: #subclass
 using: LineShape new.
view layout: TreeLayout new.
view open.

Local edges. Our model allows edges to be added in a controlled way. Since we
have methods in our visualization we can visualize the method invocations. Again
we assume that in our model the invocations are first-class entities. The model’s
#allInvocations method returns a collection with invocation objects. Each invo-
cation object implements the methods #invoces and #invokedBy. To emphasize
the difference between the invocation edges and the inheritance edges we will use
blue for the invocation edges and black for the inheritance edges.

view := ViewRenderer new.
view nodes: model allClasses using: RectangleShape withBorder
 forEach: [:class |
 view nodes: class allMethods using: RectangleShape orange.
 view layout: GridLayout new.
 view edges: model allInvocations
 from: #invokedBy
 to: #invokes
 using: (LineShape color: Color blue).
].
view edges: model allInheritances
 from: #superclass
 to: #subclass
 using: LineShape new.
view layout: TreeLayout new.
view open.

22

3.1 Building our first visualization: A class hierarchy

The full method to add edges is #edges:from:to:using:fromGlobal:toGlobal:.
With the fromGlobal:toGlobal part of the method we can influence the scope
of the edges. Setting fromGlobal or toGlobal to true means that all figures in
the visualization will be taken into account. Setting them to false means that
only figures on the same nesting level or below will be considered. In the method
#edges:from:to:using: we set fromGlobal and toGlobal to false. Like this we
can influence the scope of the edges by placing the call on the appropriate nesting
level.

In the previous script we only see the method invocations within a class since the
#edges:from:to:using: call was inside the forEach block. We call this kind of
edge with a narrow scope a local edge.

Global edges. To see the method invocations between different classes we move
the #edges:from:to:using: call to the outermost position. These top-level edges
have the broadest possible scope and thus we call them global edges.

view := ViewRenderer new.
view nodes: model allClasses using: RectangleShape withBorder
 forEach: [:class |
 view nodes: class allMethods using: RectangleShape orange.
 view layout: GridLayout new.
].
view edges: model allInheritances
 from: #superclass
 to: #subclass
 using: LineShape new.
view edges: model allInvocations
 from: #invokedBy
 to: #invokes
 using: (LineShape color: Color blue).
view layout: TreeLayout new.
view open.

Saving a reusable script. Another feature of our model is the fact that scripts
can be reused. For this we take another look at the previous example. In that
example we have one large script where we add classes, methods and edges. The
script can be split into two visualizations.

23

3 Scripting Visualizations with Mondrian

When we want a script to be reusable we store it in a method. The only con-
straint to a reusable script is that it is not allowed to create its own instance of
ViewRenderer . The method should accept an existing instance of a ViewRenderer
as parameter.

In the following script we add the method #addMethodsView: directly to our data
model. Keeping the data and the visualizations close together is quite handy but
our model does not enforce this. If we do not want to “pollute” our model with
visualization scripts we can create a library class where we store our scripts.

Class>>addMethodsTo: view
 view nodes: self allMethods using: RectangleShape orange.
 view layout: GridLayout new.
 view edges: self allInvocations
 from: #invokedBy
 to: #invokes
 using: (LineShape color: Color blue).

Reusing a script. In the next example we will produce the same result as in
the local edges example but this time by reusing the script we have defined in the
method #addMethodsView:.

view := ViewRenderer new.
view nodes: model allClasses using: RectangleShape withBorder
 forEach: [:class | class addMethodsTo: view].
view edges: model allInheritances
 from: #superclass
 to: #subclass
 using: LineShape new.
view layout: TreeLayout new.
view open.

Notice how the script becomes smaller and easier to read. By allowing the user
to reuse existing visualizations it is possible to build complex visualizations by
composing several simple visualizations. On the other hand a user can also choose
to decompose a complex visualization into several simpler blocks which helps to
keep the whole visualization maintainable.

24

3.2 Adding interaction to the Visualization

3.2 Adding interaction to the Visualization

Our model supports interaction in a fine-grained way. On one hand we offer hooks
for several events, and on the other hand the user can decide for each figure which
events he would like to register.

We support a number of different events. The onClick and onDoubleClick events
occur when a user clicks on a figure. When a user selects or deselects a figure
we raise an onSelect or an onDeselect event. Opening a figures menu with a
right click raises an onMenuOpen event and when the mouse moves over a figure an
onMouseOver event occurs.

The ViewRenderer has the method #interaction for registering events. When
calling #interaction the ViewRenderer returns an EventHandler instance that
will be available until the next call to a #nodes:using:.. or an #edges:using:..

method. The reasoning behind this is that we want to give the user the pos-
sibility to define different behaviour for different figures and at different nesting
levels.

Popup text. A possible use case is shown in the next script where we show a
popup window with class-specific information when the mouse moves over a class
figure and nothing when we move over an edge figure.

view := ViewRenderer new.
view interaction popupText: [:entity |
 'Name: ', entity longName, Character cr,
 'NOM: ', entity nom, Character cr,
 'NOA: ', entity noa, Character cr,
 'LOC: ', entity loc]).
view nodes: model allClasses using: Shape forClass.
view edges: model allInheritances from: #superclass to: #subclass
 using: LineShape new.
view layout: TreeLayout new.
view open.

The method #popupText: is a utility method that the EventHandler provides. The
method is actually a shortcut for defining a specific #onMouseEnter: event. The

25

3 Scripting Visualizations with Mondrian

next script shows the implementation of #popupText:.

popupText: aBlock
 self onMouseEnter: [:entity | ToolTip show: (aBlock value: entity)]

The #popupText: method expects a block as argument that will be evaluated
with the entity that is behind the figure. In the script we make use of a class
called ToolTip and the method #show:. The #show: method expects a string as
parameter and displays a popup window at the current cursor position.

Popup window. Another convenience method that the EventHandler provides
is #popupView:. This method expects a block that will be evaluated with two
parameters. The first parameter is the entity behind the figure and the second
parameter is a ViewRenderer instance.

In the next script we use this utility method to show a Class Blueprint [Ducasse
and Lanza, 2005] in a popup window while the mouse is over a class figure. The
zoom factor of the popup window is set to 50% by default but it is possible to set
a different zoom factor.

view := ViewRenderer new.
view interaction popupView: [:entity :popupView |
 entity viewBlueprintOn: popupView].
view nodes: model allClasses using: Shape forClass.
view edges: model allInheritances from: #superclass to: #subclass.
view layout: TreeLayout new.
view open.

Since the popupView variable holds a completely functional ViewRenderer instance
we can show any visualization we want in the popup window. This is also another
example for reusing scripts. We do not need to script the Class Blueprint again.
We can just reuse the existing script.

Toolbar. In the next example we will script a toolbar that opens when we click
on a method. To build the toolbar we use the class Toolbar . The public interface
of Toolbar consists of two methods. The method #open opens a toolbar at the
current cursor position and the method #icon:action: is used for adding actions
to the toolbar.

26

3.2 Adding interaction to the Visualization

In the script we register the #onClick event of the method nodes. In the onClick

block we create an instance of Toolbar and define two actions. The first action
opens a Refactoring Browser on the selected method and the second action opens
an editor that can be used to edit the code of the selected method directly. In the
screenshot we opened an editor on the method #doExecute: of the class Abstract-
NormalTreeLayout .

We use a TextEditorView for editing the method. This is a class that is provided
by the environment. In the #loadBlock: we specify what should be displayed in
the editor and in the #saveBlock: we define into which class the method should
be compiled.

view := ViewRenderer new.
view classShapeWithLabel: #name.
view nodes: self selectedClass withAllSubclasses forEach: [:eachClass |
 view interaction onClick: [:eachSelector |
 Toolbar new
 icon: ImageLib systemBrowser action: [
 RefactoringBrowser class: eachClass; selector: eachSelector; open];

 icon: ImageLib edit action: [
 | window |
 window := EventHandler windowHandle.
 window label: eachClass printString.
 window component: (
 TextEditorView
 loadBlock: [eachClass sourceCodeAt: eachSelector]
 saveBlock: [:aValue | eachClass compile: aValue]).
 window open];
 open.
].
 view nodes: eachClass selectors using: (LabelShape label: #asString).
 view verticalLineLayout gapSize: 1.
].
view edgesFrom: #superclass using: UmlInheritance new.
view treeLayout.
view open.

27

3 Scripting Visualizations with Mondrian

3.3 Composing shapes

In the previous scripts we used bordered rectangles to draw the nodes. To create
the bordered rectangle we use the command RectangleShape withBorder. This is
actually a short form for RectangleShape new decoratedWith: BorderShape new.
The idea that a shape can be decorated with other shapes is a central part of
our model. We provide basic shapes that can be composed by the user without
requiring any knowledge of the underlying graphical framework.

Decorating shapes. The following script demonstrates the low-level way of
composing shapes. The script creates a pink node with the text “Alice” attached
to the bottom left corner. We use the method #decoratedWith: to decorate shapes
and the method #align: to position shapes. In the example we use the keyword
#bottomLeft to position the LabelShape at the bottom left corner.

view := ViewRenderer new.
view node: 'Alice' using: (
 (RectangleShape width: 50 fillColor: Color magenta) decoratedWith:
 ((BorderShape new) decoratedWith:
 (LabelShape align: #bottomLeft label: #yourself))
).
view open.

What is striking is the fact that the script is difficult to read although we only
combined three shapes. The problem is that we need to make extensive use of
parentheses which decreases the readability greatly. This is why we offer a number
of high-level ways to compose shapes.

Shape. In the next script we create a blue node with the text “Bob” attached
to the bottom left corner. But this time we make use of a utility class called
Shape.

view := ViewRenderer new.
view node: 'Bob' using: (Shape new
 add: (RectangleShape width: 50 fillColor: Color blue);
 add: (BorderShape new);
 add: (LabelShape align: #bottomLeft label: #yourself)).
view open.

The Shape class only offers the method #add:. Internally the class does nothing else
than what we did in the previous script but reading and writing scripts becomes

28

3.3 Composing shapes

easier.

ShapeBuilder. In the previous example we decorated a RectangleShape with a
BorderShape and the BorderShape with a LabelShape. In this example we will dec-
orate the BorderShape with two LabelShapes . Decorating the same shape several
times is a more complicated task than only decorating the shape once and although
it can still be done with the #decorateWith: method and clever use of brackets we
do not advise this since the script becomes difficult to read and maintain.

We offer another utility class that is called ShapeBuilder . The ShapeBuilder im-
plements the methods #add: and #add:with: that can be used to decorate shapes
and the method #asShape that returns the finished shape.

builder := ShapeBuilder new.
builder add: (RectangleShape width: 250 height: 5 color: Color red) with: [

builder add: (BorderShape lineWidth: 2) with: [
builder add: (LabelShape align: #topLeft

 boldLabel: 'Align: Top - Left').
builder add: (LabelShape align: #topRight

 boldLabel: 'Align: Top - Right').
]

].

view := ViewRenderer new.
view node: 'Align - Example' using: builder asShape.
view open.

In the script we compose the shapes with the ShapeBuilder before we start defin-
ing the visualization. The BorderShape is decorated with two LabelShapes . One
is aligned to the top left corner and the other to the top right corner. To empha-
size the labels we made use of the convenience constructor #boldLabel: that the
LabelShape offers.

FormsBuilder. Thanks to the #align: method and utility classes like Shape
and ShapeBuilder it is possible to create complex visual representations by merely
composing shapes. In Mondrian the user can resize figures with the mouse. While
this works without problems most of the time there are cases where the resize
behaviour needs to be specified explicitly (e.g., should a shape have a fixed width
or height or should it occupy as much space as possible?).

For this we provide another utility class that is completely different from the
previous approaches. The class is called FormsBuilder and has been influenced by
the Form Layout that we introduced in Section 2.2.2 (p.16).

In the next script we start with an instance of FormsBuilder . Then we define a

29

3 Scripting Visualizations with Mondrian

grid that consists of five columns and four rows.

In the definition we use the keywords fill, pref and grow. The keyword fill

indicates that a shape should take up all available space in a cell even if the width
or height of the cell is larger than the shapes preferred width or height, with pref

we tell the layout manager that the shapes preferred size should be considered if
possible and with grow we specify that a row or column should take up all the
available space that is left at the end of the layouting process.

builder := FormsBuilder new.
builder columns: 'pref, fill:pref:grow, pref, pref, fill:pref:grow'.
builder rows: 'fill:pref:grow, fill:pref:grow, pref, pref'.

builder x: 1 y: 2 add: (RectangleShape width: 10 color: Color orange).
builder x: 2 y: 1 h: 2 add: (RectangleShape color: Color red).
builder x: 2 y: 3 w: 3 add: (RectangleShape color: Color blue).
builder x: 3 y: 1 add: (LabelShape label: [:entity | 'Hello']).
builder x: 4 y: 2 add: (LabelShape label: [:entity | 'World']).
builder x: 4 y: 4 add: (RectangleShape color: Color green) with: [
 builder add: (BorderShape lineWidth: 2 lineColor: Color lightGray).
].
builder x:5 y: 1 add: (RectangleShape height: 15 color: Color orchid).

view := ViewRenderer new.
view node: 'Forms Layout' using: builder asShape.
view open.

After defining the grid we use the #x:y:add: method to add the shapes to the
slots. It is also possible to specify that a shape takes up more than slot by using
one of the following methods: #x:y:w:add:, #x:y:h:add: or #x:y:w:h:add:.

3.4 Instance based visualizations

Unlike many of the existing solutions our model is instance-based as opposed to
type-based. This means that not all model objects of the same type need to have
the same visual representation. In this example our model consists of all integers
between one and eight.

The term #(1 2 3 4) is the Smalltalk notation for an array containing the numbers
one, two, three and four. In the script below we add four numbers that should be
painted as orange rectangles and four numbers that should be painted as red circles.

30

3.5 Mondrian internals

Although this example is fairly simple it shows nicely how our model works with
any kind of data and how our model supports instance-based visualizations.

view := ViewRenderer new.
view nodes: #(1 2 3 4) using: RectangleShape orange.
view nodes: #(5 6 7 8) using: CircleShape red.
view layout: CircleLayout new.
view open.

3.5 Mondrian internals

Mondrian is the prototype that we implemented to validate our model. In this
section we will take a look at the design of our framework. Figure 3.1 (p.32) shows
the core structure of our framework.

The classes Figure, NodeFigure and EdgeFigure inherit from the underlying graph-
ical framework. At the beginning we used HotDraw [Brandt and Schmidt, 1995]

as the underlying drawing framework but as we added more and more features
to our framework it got more and more difficult to adapt HotDraw to our needs.
This is why at some point we abandoned HotDraw and started to inherit from the
underlying graphical framework directly.

One of our assumptions is that there is a model object behind every figure. At
this point we actually double the needed resources since we need a graphical object
for every model object. Since this is a constraint that the graphical framework
enforces on us we cannot avoid this.

Our entire model is graph-based. There is a graph behind every figure. This is how
we provide “infinite” nesting. The graph provides methods to add, remove and
find NodeFigures and EdgeFigures and a method to apply a layout. Since there is
a graph behind every figure we decided to add all the graph-specific methods to
Figure. Having a dedicated graph class would triple the number of needed objects
since we would have the original model object, an instance of the figure and an
instance of the graph.

The layouts are subclasses of Layout . The layout algorithm is implemented in the
method #doExecute:. Since each figure is also a graph the #doExecute: method
receives a figure as parameter. Like this the layout algorithm has access to a large
amount of environmental information. Most layout algorithms only operate on

31

3 Scripting Visualizations with Mondrian

entity
nodeFigures
edgeFigures
layout:

Figure

Object

NodeFigure EdgeFigure

decoratedWith:
displayOn:

AbstractShape

...

color:
width:

LineShape

color:
width:
height:

RectangleShape

*

...

executeOn:
AbstractLayout

verticalGap:
horizontalGap
:

TreeLayout

radius:
CircleLayout

nodes:using:
node:using:
nodes:using:forEach:
edges:using:
edge:using:
layout:
interaction
open

ViewRenderer

onClick:
onDoubleClick:
onCtrlClick:
onMenuOpen:
onMouseEnter:
onMouseOver:
onSelect:
onUnselect:
popupText:
popupScript:

EventHandler

1

1

gap:
LineLayout

Public Interface

Private Interface

Figure 3.1: The internal model of Mondrian.

32

3.5 Mondrian internals

nodes but some more advanced layouts need additional information. The Force-
BasedLayout for example computes the repelling force of a node based on the
number of children that the node has.

In our model a figure does not know how to paint itself. Instead a figure for-
wards all calls to its #displayOn: method to its shapes. The shapes are subclasses
of AbstractShape. We provide several basic shapes (e.g.,RectangleShape, Border-
Shape, LineShape, CircleShape, etc.) that can be composed by the users in various
ways.

What is special about shapes is the fact that they hold no model-specific state as
they are just specifications of how the original model should be read from the visu-
alization point of view. Instead of doing a model transformation we use the shapes
to do a meta-model transformation. This approach has several benefits:

• As a consequence of not duplicating the original model into an internal model
we do not need to synchronize the two models when the original model
changes.

• We can change the properties of a shape at runtime without having to recre-
ate the visualization model. This is particularly interesting when working
with an interactive editor.

• Since we can share the same instance of a shape among several figures, we can
keep the memory overhead that the framework introduces at a reasonable
size even for large models.

All the shapes provide a default constructor. Like this we can create a basic
visualization quickly and can then start to refine the visualization. Most shapes
offer specific properties that can be adjusted by the user. The CircleShape for
example offers a radius property. The simplest thing that we offer is mapping a
model method, a number or a color directly to a view property. It is also possible
to provide a more complex mapping by using a closure.

Being able to use closures is useful when the model does not provide the needed
information directly. A common use case is transforming numbers or booleans into
colors since it is unusual to have hard-coded color values in the data model. This
kind of code that is concerned with bridging incompatible interfaces and data types
is known as glue code [Schneider and Nierstrasz, 1999]. The usual solution for a
glue problem is adding a wrapper around the original component [Schneider, 1999].
The wrapper typically acts as an adaptor or as a transformer. By using closures
to express the glue code we chose a lightweight approach that supports scripting
of glue code. We argue that being able to script the glue code is important from
a fast prototyping point of view.

33

3 Scripting Visualizations with Mondrian

Our model supports interaction at a fine-grained level. Each Figure has access
to an instance of EventHandler . The EventHandler , like the shapes, holds no
model-specific state. Like this several figures can share the same instance of the
EventHandler . This again is for keeping the memory and time overhead that our
framework introduces at a reasonable size. The EventHandler offers several events
for which the user can register an action. There are simple events like #onClick:

and #onDoubleClick: that get triggered when clicking or double clicking on a
figure and also more sophisticated ones like #popupView: that can be used to show
a complete visualization in a popup window while hovering over a figure.

The ViewRenderer is a facade that offers all methods needed to build a visual-
ization. The ViewRenderer provides a concise way of writing scripts while hiding
the internal details of the model. Internally the ViewRenderer uses a stack. This
is useful to define nested visualizations since we can use the same ViewRenderer
instance on all nesting levels. The design of the ViewRenderer was inspired by
Seaside [Ducasse et al., 2004b], a Smalltalk-based framework for creating dynamic
web applications.

34

4 Implementing various
visualizations using Mondrian

In this chapter we will validate our approach by implementing various visualiza-
tions that have been published. Each case study stresses another part of our
model.

All case studies are presented in the same way. First we give an introduction to the
visualization, then we present the script that we used for creating the visualization,
and finally we show the visual result of the script. In some cases we add a small
discussion, mainly to point out if a visualization was exceptionally easy or difficult
to implement with our model.

4.1 System Complexity View

Our model supports polymetric views [Lanza and Ducasse, 2003]. In a polymetric
view we can map model metrics to view properties. An important polymetric view
is the System Complexity View. A view that shows an inheritance tree where the
width, height and color of the class nodes depend on model metrics.

We already showed in Section 3 (p.19) how Mondrian can be used to build the
System Complexity View. In the example we only applied the system complexity
view to a small model (38 classes). In Figure 4.1 (p.36) we apply the System
Complexity View to ArgoUML (1405 classes). In the classical System Complexity
View the hierarchies are positioned next to each other. This is impractical for
large models with a wide hierarchy since getting the general idea is difficult.

When using a screen, we would like to have an overview that uses the entire
screen surface. That is why we designed a view that we call Screen Filling System
Complexity. Figure 4.2 (p.37) shows the same data as Figure 4.1 (p.36) but this time
we put each tree in a different node and then arrange the nodes in a FlowLayout
to fill the screen surface. Besides the hierarchies, we also group the lonely classes
in a single box to save more space.

35

4 Implementing various visualizations using Mondrian

view := ViewRenderer new.
view nodes: model classes
 using: (Rectangle withBorder width: #noa; height: #nom;
 linearColor: #loc within: model classes).
view edges: model inheritances
 from: #superclass to: #subclass
 using: LineShape new
view layout: TreeLayout new.
view open.

Figure 4.1: Classical System Complexity View of the sources of ArgoUML (1405
classes).

By grouping the nodes and applying a different layout we produced a radically
different visualization.

4.2 Class Blueprint

The Class Blueprint [Ducasse and Lanza, 2005] is another polymetric view, de-
signed for visualizing and understanding the internals of a class. It splits the class
into five layers: the initialization methods, the public interface methods, the inter-
nal implementation methods, the accessor methods and the attributes. Figure 4.3
(p.38) shows the script that we use for creating the class blueprint and the visual
result. In the script we start with a node that represents the class, inside we
add five more nodes. Each node representing one of the layers. Then we apply a
HorizontalLineLayout to the five layer nodes. Inside the layers we use a VerticalL-
ineLayout . We also add some edges. The blue edges represent invocations and the
cyan edges represent accesses.

In the script we use Shape forMethod and Shape forAttribute. These shapes
define how we draw methods and attributes. Since we use these shapes in several
places in the script we factored them out into a separate method. Apart from that
they are normal shape definitions. Figure 4.4 (p.38) shows the definition of the
#forMethod shape. We use a RectangleShape that is decorated with a BorderShape.
The width depends on the number of invocations (#ni) and the height depends
on the number of lines of code (#loc). To define the color we use a number of
if-statements.

By moving the visual representation of a certain type of data to a separate method

36

4.2 Class Blueprint

view = ViewRenderer new.
model rootClasses do: [:rootClass |
 view node: rootClass forIt: [
 view nodes: rootClass subclassHierarchy
 using: (Rectangle withBorder width: #noa; height: #nom;
 linearColor: #loc within: model classes).
 view edges: model inheritances
 from: #superclass
 to: #subclass
 using: LineShape new.
 view layout: TreeLayout new.
].
].
view node: model lonelyClasses forIt: [
 view nodes: model lonelyClasses
 using: (Rectangle withBorder width: #noa; height: #nom;
 linearColor: #loc within: model classes).
 view layout: CheckerboardLayout new.
].
view layout: (FlowLayout withMaxWidth: 800).
view open.

Figure 4.2: Screen Filling System Complexity View that makes better use of of the
space that a computer screen offers.

37

4 Implementing various visualizations using Mondrian

view := ViewRenderer new.
view node: class using: (RectangleShape new) forIt: [

 view node: class initMethods using: RectangleShape withBorder forIt: [
 view nodes: class initMethods using: Shape forMethod.
 view layout: VerticalLineLayout new].

 view node: class interfaceMethods using: RectangleShape withBorder forIt: [
 view nodes: class interfaceMethods using: Shape forMethod.
 view layout: VerticalLineLayout new].

 view node: class implementationMethods using: RectangleShape withBorder forIt: [
 view nodes: class implementationMethods using: Shape forMethod.
 view layout: VerticalLineLayout new].

 view node: class accessorMethods using: RectangleShape withBorder forIt: [
 view nodes: class accessorMethods using: Shape forMethod.
 view layout: VerticalLineLayout new].

 view node: class attributes using: RectangleShape withBorder forIt: [
 view nodes: class attributes using: Shape forAttribute.
 view layout: VerticalLineLayout new].

 view edges: class invocations
 from: #invokedBy
 to: #invoked
 using: LineShape blue.

 view edges: class accesses
 from: #accessedBy
 to: accessed
 using: LineShape cyan.
].
view open.

Figure 4.3: Example of a class blueprint and the script that was used to create the
visualization.

Shape>>forMethod
 ^RectangleShape withBorder width: #ni height: #loc color: [:entity |
 entity isPureAccessor ifTrue: [^Color red].
 entity isPureWriter) ifTrue: [^Color orange].
 entity isAbstract ifTrue: [^Color cyan].
 entity isOverriding ifTrue: [^Color brown].
 entity isCleanSuperSend) ifTrue: [^Color orange].
 entity isConstMethod) ifTrue: [^Color gray].
 entity isureSelfDelegatingReturn ifTrue: [^Color yellow].
 entity isPureSelfDelegatingNoReturn ifTrue: [^Color yellow].
 ^Color white
].

Figure 4.4: Definition of the shape that is being used to draw the methods.

38

4.3 Scatterplot

we can reuse the definition in a different context.

4.3 Scatterplot

Our model can also be used for general information visualization. In Figure 4.5
(p.39) we show how we build a scatterplot showing the classes of Ant1 (500 classes).
For positioning and coloring the nodes we use metrics like in the polymetric views
[Lanza and Ducasse, 2003]. We position the nodes according to the values of the
#loc and #nom methods and we choose the color depending on the value of the
#tcc method.

view := ViewRenderer new.
view shape: Rectangle new.
view decorateShapeWith: HorizontalCoordinate new.
view decorateShapeWith: VerticalCoordinate new.
view node: model classes forIt: [
 view nodes: model classes
 using: (Rectangle withGrayBorder
 x: #loc
 y: #nom
 color: (LinearNormalizer context: model classes
 command: #tcc)).
 view layout: ScatterplotLayout new.
].
view open.

Figure 4.5: Example of a scatterplot visualization with “intelligent” decorations
and the corresponding script.

1http://ant.apache.org/

39

4 Implementing various visualizations using Mondrian

The example shows how decorations can be used in a way that exposes informa-
tion. The node that contains the scatterplot is decorated with coordinate lines
(i.e.,HorizontalCoordinateShape and VerticalCoordinateShape). The coordinate
lines show the density of the nested nodes based on their x and y position [Tufte,
2001].

4.4 Spectographs

Figure 4.6 (p.41) shows an example of a spectograph [Wu et al., 2004]. We used
the spectograph to visualize the files in the CVS repository of JBoss (2094 files).
Each file is represented as a horizontal line. A dot on a line is red if there was a
commit in the current month, yellow if there was a commit in the previous or the
next month and green otherwise. In the script we iterate over the CVS files in the
model and assign to each dot the appropriate color. We use the ScatterplotLayout
to arrange the dots.

The script for this visualization is not as readable as the previous scripts. This
is surprising considering that the visualization is rather simple. When looking at
the script in detail we notice that we use several temporary variables (greenOk,
yellowOk, etc.) and that the script is cluttered with if-statements. We are abusing
the visualization script for extracting information from the model that the model
does not provide directly.

We have encountered this situation several times while experimenting, and every
time the script was too long and difficult to grasp, we came to the conclusion that
the data model is not providing enough information and thus should be updated.
Once we applied the enhancement, the visualization scripts became smaller and
easier to read. In our example, a lot of lines of code are dedicated to the compu-
tation of the color of a dot (i.e., red, green, yellow). If this information would be
provided by the data model directly, the script would be more compact. From a
prototyping point of view it is however a benefit that the user can simulate miss-
ing model information in the visualization script before deciding what information
should be provided by the model directly.

Figure 4.7 (p.42) shows the script for creating the spectograph after updating the
model to provide the necessary information. The model has been extended with
the methods #isHotIn:, #isWarmIn: and #isColdIn: that return the state of a file
in a given month.

This example also emphasizes something else: In our model there is an object
behind every figure. While this is suited for graph like visualizations, for this

40

4.4 Spectographs

view := Mondrian.ViewRenderer new.
yPos := 5.
model files do: [:file |
 | xPos greenOk yellowOk|
 greenOk := false.
 yellowOk := false.
 xPos := 5.
 model months do: [:month |
 (file hasCommitIn: month) ifTrue: [
 view node: file
 using: (RectangleShape x: xPos
 y: yPos
 color: #red).
 greenOk := false.
 yellowOk := true.
].
 ifFalse: [
 greenOk ifTrue: [
 view node: file
 using: (RectangleShape x: xPos
 y: yPos
 color: #green)
].
 yellowOk ifTrue: [
 view node: file
 using: (RectangleShape x: xPos
 y: yPos
 color: #yellow).
 yellowOk := false.
 greenOk := true.
]
].
 xPos := xPos + 5.
].
 yPos := yPos + 1.
].
view layout: Mondrian.ScatterplotLayout new.
view open.

Figure 4.6: Example of a spectograph and the script that was used to create the
visualization.

41

4 Implementing various visualizations using Mondrian

view := ViewRenderer new.
yPos := 5.
model files do: [:file |
 | xPos |
 xPos := 5.
 model months do: [:month |
 (file isHotIn: month) ifTrue: [
 view node: file using: (RectangleShape x: xPos y: yPos color: #red)].
 (file isColdIn: month) ifTrue: [
 view node: file using: (RectangleShape x: xPos y: yPos color: #green)].
 (file isWarmIn: month) ifTrue: [
 view node: file using: (RectangleShape x: xPos y: yPos color: #yellow)].
 xPos := xPos + 5.
].
 yPos := yPos + 1.
].
view scatterplotLayout.
view open.

Figure 4.7: Script for creating the spectograph after updating the model to provide
the necessary information.

particular one, it generates a significant overhead in object creation since we create
a figure for every dot. Definitely, the spectograph could be implemented in a much
more concise way using either a more intelligent shape for a line, or by just creating
one single shape for the entire view. However, the example does show that it is
possible to prototype even such a visualization using our framework.

4.5 UML class diagram

Our model can also be used to generate UML class diagrams [Fowler, 1997]. The
UML representation of a class consists of three sections. The first section contains
the name, the second section contains all the attributes and the third section
contains all the methods of the class. Figure 4.8 (p.43) shows part of the Mondrian
layout hierarchy.

Considering the popularity of UML we decided to introduce specialized shapes to
represent classes and inheritance edges. This is why the script in Figure 4.8 (p.43)
gets by with only five lines of code. The shape that we use to draw classes is called
UmlClass . In our data model a class provides the methods #name, #attributes

and #methods. The #name method returns the name of the class, the #attributes

method returns a collection containing all the attributes and the #methods method
returns a collection containing all the methods. In the script we map the UmlClass
to these methods.

The UML case study was interesting since we had to decide between introducing

42

4.5 UML class diagram

view := ViewRenderer new.
view nodes: model allClasses
 using: (UmlClass name: #name
 attributes: #attributes
 methods: #methods).
view edges: model allInheritances
 from: #superclass
 to: #subclass
 using: UmlInheritance new.
view layout: TreeLayout new.
view open.

Figure 4.8: A UML class diagram showing part of the Mondrian layout hierarchy.

43

4 Implementing various visualizations using Mondrian

a specialized shape for drawing classes and using the ordinary approach of com-
posing simple shapes and nested figures. We ended up trying both approaches.
Figure 4.9 (p.44) shows a Mondrian script that can be used to create a UML
class representation. Since this script needs to be run for each class we moved
the script to a utility class called UmlLib. The utility class has a method called
#class:attributes:methods:view: that takes the class, the attributes, the meth-
ods and an instance of ViewRenderere as parameter. The method produces exactly
the same visual result as the dedicated UmlClass shape.

 UmlLib >> class: class attributes: attributes methods: methods view: view

 view node: class using: RectangleShape withThickBorder forIt: [

 view node: class name using: (LabelShape withBottomLine boldLabel: #name).

 view node: attributes using: RectangleShape withBottomLine forIt: [
 view nodes: attributes using: (LabelShape label: #name).
 view layout: VerticalLineLayout new.
].

 view node: methods using: RectangleShape new forIt: [
 view nodes: methods using: (LabelShape label: #name).
 view layout: VerticalLineLayout new.
].

 view layout: VerticalLineLayout new.
].

Figure 4.9: A script for creating an UML class representation.

The script is straightforward. We start by adding a node for the class that is
surrounded by a thick line. Then we add a node for the class name and decorate
the node with a horizontal line along the bottom. We add a node that contains
the attributes, again decorated with a horizontal line and a node that contains the
methods. To these three nodes we apply a VerticalLineLayout .

The downside of the script approach is that we need to execute the script for each
class that we want to visualize. This can be a problem for large models since we
need to create a lot of figures for each UML class. Since the dedicated UmlClass
shape is stateless we only need one instance of the shape to draw all UML classes
which is an advantage in terms of memory usage.

A dedicated shape is almost four times faster than a script that we need to execute
for each model object. We did some time profiling on a computer with a 2GHz
CPU and 1GByte of memory. Rendering a UML diagram with 1797 classes takes
2.892 seconds when using the UmlClass shape and 10.328 seconds when using the
script.

44

4.6 UML sequence diagram

In our model we assume that there is only one entity behind every figure. From
this point of view the script approach is better since it would be possible to add
invocation edges to the methods of the UML class. This is not possible with the
dedicated UmlClass shape since the only entity behind the shape is the actual
class object.

The decision to use a script or a dedicated shape is a trade-off between memory
usage and having the possibility of adding edges.

4.6 UML sequence diagram

UML sequence diagrams are used to visualize the interaction between collaborating
objects [Fowler, 1997]. In a sequence diagram an object is usually represented as
a box on top of a dashed line. The dashed line is called life line. On the life line
we have boxes that represent methods. The boxes are placed on the life line in
chronological order with the height of the box depending on the execution time of
the method. Message sends between methods are drawn as arrows. Usually the
name of the message is displayed above the arrow.

Figure 4.10 (p.46) shows an UML sequence diagram that has been scripted with
Mondrian. The presented use case starts with an instance of PersonTest . Per-
sonTest creates an instance of Professor , an instance of University and an in-
stance of Person. Finally PersonTest sends the message #name: to the Person
instance.

In the diagram we have self message sends. The Professor’s #initialize method
calls the #initialize method of its two superclasses. To indicate which methods
have a return value we added a dashed arrow to the end of the methods that return
a value.

Figure 4.11 (p.47) shows the script that we used to create the UML sequence
diagram. We start by adding a node for each object. To get the objects we
call the model’s #allInstances method. We moved the shape definition of the
objects to the utility class UmlLib since it would just be another example of the
FormsBuilder .

Inside the objects we add a node for each message. To arrange the nodes we use
a Scatterplot layout. We distinguish between normal messages and self messages
since the self messages need to be shifted to the right. For the x coordinate of
the messages we use the keyword #centered. This is a special keyword that the
Scatterplot layout provides. All figures with x coordinate set to #centered will be

45

4 Implementing various visualizations using Mondrian

Figure 4.10: UML sequence diagram.

centered within the parent bounds.

Next we add the edges. In the sequence diagram we have three different kinds
of edges. We obtain the message send and message return objects by calling the
model’s #allMessageSends and #allMessageReturns methods. The shape defini-
tion of these edges is in the utility class UmlLib. For drawing the self messages
(#allSelfMessageSends) we use a dedicated shape called UmlSelfSend .

The object nodes need to be aligned horizontally. Additionally all nodes should
have the same height. This cannot be done with the HorizontalLineLayout . In-
stead we use the FormsBuilder to define the layout. Until now we only used the
FormsBuilder to compose shapes but the FormsBuilder can also be used to set
the size and position of figures.

In the script we define a grid that consists of one row and several columns. Since we
do not know up front how many nodes we have, we define the layout dynamically
while looping over the object nodes. We also add a 20 pixel gap between successive
nodes since the nodes would be to close to each other otherwise. To obtain the
layout from the FormsBuilder we call the #asLayout method.

Figure 4.12 (p.48) shows the definition of the shape that we use for drawing the
message send objects. We start by defining the blocks startPoint and endPoint.
These blocks contain the strategies that the LineShape should use to calculate its
start and end point. We need specialized strategies since the default edge strate-

46

4.6 UML sequence diagram

view := ViewRenderer new.
nodes := view nodes: model allInstances using: UmlLib instanceShape
 forEach: [:instance |
 view nodes: (model messageSendsFor: instance)
 using: (RectangleShape withBrownBorder
 width: 10 height: #duration
 x: #centered y: #timestamp).
 view nodes: (model selfMessageSendsFor: instance)
 using: (RectangleShape withBrownBorder
 width: 10 height: #duration
 x: #centered y: #timestamp
 xOffset: [:event | 5 * event level]).

 view layout: ScatterplotLayout new].

view edges: model allMessageSends
 from: #sender to: #receiver
 using: UmlLib messageSendShape.

view edges: model allMessageReturns
 from: #sender to: #receiver
 using: UmlLib messageReturnShape.

view edges: model allSelfMessageSends
 from: #sender to: #receiver
 using: UmlSelfSend new.

builder := FormsBuilder new.
builder rows: 'fill:pref'.
nodes do: [:node |

builder column; size: 20; column; pref.
builder x: builder lastColumn y: 1 add: node.

].
view layout: builder asLayout.
view open.

Figure 4.11: Script for creating a UML sequence diagram with Mondrian. To ar-
range the top-level nodes we make use of the FormsBuilder.

47

4 Implementing various visualizations using Mondrian

gies do not produce the desired result. The rest of the script is straightforward.
We use a ShapeBuilder to decorate the LineShape with an ArrowShape and a
LabelShape.

UmlLib>>messageSendShape
 | builder startPoint endPoint line |

 startPoint := [:anEdge |
 | base delta |
 base := (anEdge fromFigure right < anEdge toFigure left)
 ifTrue: [anEdge fromFigure topRight]
 ifFalse: [anEdge fromFigure topLeft].
 delta := anEdge toFigure preferredY - anEdge fromFigure preferredY.
 base + (0 @ delta)].

 endPoint := [:anEdge |
 (anEdge toFigure left > anEdge fromFigure right)
 ifTrue: [anEdge toFigure topLeft]
 ifFalse: [anEdge toFigure topRight]].

 line := LineShape color: Color brown start: startPoint end: endPoint.
 builder := ShapeBuilder new.
 builder add: line with: [
 builder add: (ArrowShape width: 5 height: 10).
 builder add: (LabelShape align: #topCenter label: #asString).
].

 ^builder asShape

Figure 4.12: The shape definition that we use for the message sends in the UML
sequence diagram. The strategy for the start and end point of a
LineShape can be scripted.

An edge can be connected to a node in many different ways. It is almost impossi-
ble to provide dedicated shapes for all possible connection positions. This is why
we decided to use strategies instead of hard-coded algorithms. By allowing the
user to script the start and end point of the LineShape we give him the possibil-
ity to experiment with different connection positions without having to resort to
subclassing.

4.7 Scripting tools

In this case study we use Mondrian to script a simplified version of Software-
naut (Section 2.1.9 (p.13)). Softwarenaut is an interactive reverse engineering tool.
Instead of analyzing low-level artifacts (e.g., classes, files) the tool focuses on high-
level abstractions (e.g., packages) and the relationships between them.

48

4.7 Scripting tools

Overview
Canvas

Detail
Canvas

Main
Canvas

Figure 4.13: A simple tool for navigating through packages.

Figure 4.13 (p.49) shows a screenshot of our application. The user interface con-
sists of three areas. The Main Canvas displays packages as blue rectangles. The
Detail Canvas shows the name of the selected package in bold letters and the
names of the child packages in normal letters. The Overview Canvas shows the
complete package tree. The currently selected package is highlighted using a red
background.

In Figure 4.13 (p.49) we are browsing the Cincom Smalltalk package hierarchy. The
currently selected package is called Graphics . Graphics is a subpackage of Base
VisualWorks .

Figure 4.14 (p.50) shows the script that we use to create the application. The
complete business logic is defined in the script. The ScriptingToolsUI class is
only responsible for opening the application window and to position the three
Mondrian windows. The ScriptingToolsUI class implements the three methods
#mainCanvas, #detailCanvas and #overviewCanvas which we use in the script to
access the Mondrian windows.

The script can be split into three parts. In the script we define the variables
mainScript, detailScript and overviewScript. Each of these variables contains a
script that is responsible for one of three Mondrian windows that ScriptingToolsUI

49

4 Implementing various visualizations using Mondrian

window := ScriptingToolsUI new.
window open.

currentPackage := aPackage.
currentPackages := OrderedCollection with: aPackage.

mainScript := [
 mainView := ViewRenderer new.
 mainView interaction
 onClick: [:package |
 currentPackage := package.
 detailScript evaluate.

 window oveviewCanvas repaint];
 onDoubleClick: [:package |
 currentPackages := package childPackages.

 mainScript evaluate].
 mainView nodes: currentPackages using: Shape forPackage.
 mainView installOn: window mainCanvas].

detailScript := [
 detailView := ViewRenderer new.
 detailView node: currentPackage using: (LabelShape boldLabel: #name).
 detailView nodes: currentPackage childPackages
 using: (LabelShape label: #name).
 detailView verticalLineLayout.
 detailView installOn: window detailCanvas].

overviewScript := [
 overviewView := ViewRenderer new.
 overviewView tree: self to: #childPackages using: (CircleShape
 color: [:package | (package = currentPackage)
 ifTrue: [Color red]
 ifFalse: [Color lightGreen]]).
 overviewView treeLayout.
 overviewView installOn: window oveviewCanvas].

mainScript evaluate.
detailScript evaluate.
overviewScript evaluate

Figure 4.14: We define the complete business logic in this script. ScriptingToolsUI
is only responsible for opening the application window.

50

4.8 MetricView

provides.

mainScript. In this script we specify that the packages should be painted as blue
rectangles and we provide code for the #onClick: and #onDoubleClick: events.
When a user clicks on a package we update the variable currentPackage, repaint
the Overview canvas and reevaluate the detailScript. When a user double-clicks
on a package we update the variable currentPackages and reevaluate the complete
mainScript. mainScript is actually a recursive definition.

detailScript. This script is responsible for the Detail Canvas. The script creates
a bold label for the selected package and normal labels for the subpackages. The
labels get aligned vertically. This script is reevaluated each time the user clicks on
a package in the Main Canvas.

overviewScript. In this script we create the package tree. All packages get
painted as green circles except for the package that is currently selected. That
package gets painted as a red circle. To build the tree we make use of the conve-
nience method #tree:to:using: that the ViewRenderer provides.

This is an example of how the scripting approach of our model can be extended to
not only script visualizations but to also script complete tools. It also shows one
possible way of building a specialized application on top of our framework.

4.8 MetricView

MetricView (Section 2.1.8 (p.13)) is a tool that extends UML diagrams with poly-
metric features. Figure 4.15 (p.52) shows how a MetricView visualization can be
scripted using Mondrian. In the script we make use of the FormsBuilder to com-
pose the shapes. We start by defining a grid with two rows and two columns. Then
we add a UmlClass shape that covers the entire grid. Now, like in the original tool,
we start mapping metrics to cells. The cells (1, 1), (1, 2) and (2, 2) contain an icon.
If the value of the metric is within the specified bounds the icon will be a green
tick otherwise we display a red cross. In cell (2, 1) we display a green rectangle.
The height of the rectangle is based on the length of the class name.

Combining the shapes in this way is not possible with the #decoratedWith: ap-
proach since the individual shapes have only got limit knowledge of the environ-
ment. The FormsBuilder is a way around this limitation. With the FormsBuilder
we have a high-level view and can freely position the shapes.

51

4 Implementing various visualizations using Mondrian

builder := FormsBuilder new.
builder columns: 'center:pref:grow, center:pref:grow'.
builder rows: 'center:pref:grow, center:pref:grow'.

builder x: 1 y: 1 w: 2 h: 2 add: (
 UmlClass name: #name attributes: #attributes methods: #methods).

builder x:1 y: 1 add: (
 ImageShape image: [:entity | entity wloc < 100
 ifTrue: [ImageLib ok] ifFalse: [ImageLib error]]).

builder x:1 y: 2 add: (
 ImageShape image: [:entity | entity nom < 20
 ifTrue: [ImageLib ok] ifFalse: [ImageLib error]]).

builder x: 2 y: 1 add: (
 RectangleShape withBorder width: 15 height: #nl color: Color lawnGreen).

builder x:2 y: 2 add: (
 ImageShape image: [:entity | entity noa < 10
 ifTrue: [ImageLib ok] ifFalse: [ImageLib error]]).

view := ViewRenderer new.
view nodes: model allClasses using: builder asShape.
view edges: model allInheritances
 from: #superclass
 to: #subclass
 using: UmlInheritance new.
view layout: TreeLayout new.
view open.

Figure 4.15: Script for creating a MetricView-like visualization and the visual re-
sult that the script produces.

52

5 Discussion

While developing our model we had to find solutions to a number of problems. In
this section we will present some of these problems and the solution that we pro-
vide. We also discuss the details of implementing our model in other programming
languages.

5.1 Composing shapes

In Section 3.3 (p.28) we presented the various ways that Mondrian offers to compose
shapes. The development of these interfaces was driven by the increasingly com-
plex visualizations that the users were trying to do. By adding the FormsBuilder
we supplemented our model with a completely new paradigm for composing shapes.
We moved from the decorator pattern where each shape is responsible to calculate
its size and position based on the decorated shape to a global layout algorithm that
is responsible for position and size of all shapes. This new paradigm was needed
for the reasons that we describe in the next two sections.

5.1.1 Human speech is ambiguous

To align shapes we offer keywords like #bottomLeft and #topRight. Figure 5.1 (p.53)
shows a LabelShape that is aligned to the bottom left corner of a BorderShape.
This is where most people expect the label to be but this is not the only possible
position.

Figure 5.1: LabelShape that is aligned to the bottom left.

There are actually four positions that could be associated with #bottomLeft. Fig-
ure 5.2 (p.54) shows the same visualization as Figure 5.1 (p.53) but this time we

53

5 Discussion

added the letters A to D to show all the possible positions that #bottomLeft could
mean in human speech.

A B

C D

Figure 5.2: There are four positions that could be associated with #bottomLeft.

This problem can be solved by introducing more accurate terms for defining the
position. As an example we could introduce the keyword #bottomLeftSouthWest

to reference position C. We decided otherwise since we came to the conclusion that
these terms would be too artificial. Only for the four corners we would need 16
keywords. So we decided to use a small number of keywords and to implement
them in a way that allows the user to guess how #topLeft will behave if he already
knows #bottomLeft. This makes the align mechanism easier to use at the cost
of flexibility. We believe that this is an acceptable trade-off since we provide the
FormsBuilder that offers plenty of flexibility while still being easy to use.

5.1.2 Resize behaviour of shapes

Shapes have limited knowledge of their environment. They only know the size of
the shape that they decorate. They do not know their position in the “big picture”.
They do not even know their decorators. When creating the initial visualization
this is not an issue. It becomes an issue when we start resizing figures.

Resizing the bottom right corner of the figure

Figure 5.3: On the left we see three RectangleShapes with alignment #rightTop.
On the right we see the same three RectangleShapes after resizing the
bottom-right corner of the figure.

For Figure 5.3 (p.54) we used a single node. The visual representation of the node
is given by three RectangleShapes that have alignment #rightTop. On the left we
see how the node looked initially and on the right how it looks after resizing the
bottom-right corner of the figure with the mouse.

54

5.2 Positioning the nested visualization explicitly

Did we expect the node to look like this after resizing the bottom-right corner or
did we expect that the three RectangleShapes distribute the additional space equally
amongst themselves?

As we mentioned in the first paragraph of this section a shape does not know
its decorators. This means that the orange shape does not know anything about
the green and the blue shape and the green shape does not know anything about
the blue shape. The result of this is that it is technically impossible to distribute
the space equally among the three shapes by only using the decorator mecha-
nism.

Another thing that is not possible with the decorator mechanism is telling the
shapes that they should all have the same height. The preferred height of the
orange shape is 20, of the green shape is 35 and of the blue shape is 50. Since the
orange shape does not know the other shapes it cannot ask them for their heights
and can therefore not find out that the maximum height of all three shapes is
50.

The FormsBuilder provides a solution for both of these problems. It allows a
fine-grained definition of the resize behaviour and we can define if a shape should
occupy additional space. At the moment we distribute additional available space
equally among the “greedy” shapes but it is planned to make this process more
fine-grained by allowing the user to specify the “greediness” with a percentage
value.

5.2 Positioning the nested visualization explicitly

When we first started to work on our framework an important decision was taken
somewhat implicitly. Namely the way how a nested visualization interacts with
the decorators (i.e., shapes) of the parent figure.

All shapes implement the method #outerBoundsForFigure:forBounds:. This is the
method that is responsible for calculating the size and position of the shape. We
pass the figure as parameter since shapes are stateless. In the forBounds: part of
the method we pass the outer bounds of the decorated shape. Like this a shape
can calculate its bounds based on the bounds of the shape that it decorates. The
first shape of the entire shape composition is special since it decorates a figure and
not a shape. In this special case we pass the bounds of the nested visualization as
parameter to the #outerBoundsForFigure:forBounds: method.

Figure 5.4 (p.56) shows a simple example of a nested visualization. We have a

55

5 Discussion

single node that contains three other nodes. When rendering the script we start
by calculating the size and the position of the nested nodes. Then we calculate
the compound bounds of the nested nodes and use these bounds as the input for
the Rectangle- and BorderShape of the parent node.

view := ViewRenderer new.
view node: #a using: RectangleShape withBorder forIt: [
 view nodes: #(1 2 3)
 using: (RectangleShape withBorder width: 20 height: 10).
].
view open.

Figure 5.4: The shapes that decorate the parent node take the outer bounds of the
nested visualization as input.

This implies that we always need to start decorating the outer bounds of the nested
visualization. In this simple example this fact is well hidden from the user. When
we want to apply more complicated decorations to the parent figure this constraint
becomes a nuisance though. Often it is difficult to compose shapes while keeping
in mind that they need to be arranged around the nested visualization.

This led to the insight that we somehow need to give the user the possibility to posi-
tion the nested visualization explicitly during the shape composition process.

The solution that we came up with was to introduce a new shape. The shape is
called ChildrenShape and it can be used like any other shape. Like this the user
can explicitly define the position of the nested visualization while still using his
favorite way of composing shapes (i.e.,#decoratedWith:, Shape, ShapeBuilder or
FormsBuilder).

Figure 5.5 (p.57) shows a simplified UML class visualization. We show the methods
but not the attributes. We used the FormsBuilder to compose the shapes and the
ChildrenShape to position the nested visualization (i.e., the methods). The yellow
box indicates the position and size of the ChildrenShape.

In our current implementation we only support one ChildrenShape per shape com-
position. This is why Figure 5.5 (p.57) only shows a simplified UML class and not a
proper one. Being able to place two ChildrenShapes , one for the methods and one
for the attributes, would be an elegant way to build a UML class diagram.

The reason why we do not support this currently is that we have not found an
intuitive way yet to script the mapping between a specific ChildrenShape and

56

5.3 Implementing our model in other languages

a subset of the nested visualization. At the moment the single ChildrenShape
instance is responsible for the complete nested visualization.

builder := FormsBuilder new.
builder columns: '2px, 2px, fill:pref:grow, 2px, 2px'.
builder rows: '2px, pref, 1px, fill:pref:grow, 2px'.
builder x: 1 y: 1 w: 5 h: 5 add: RectangleShape new with: [
 builder add: (BorderShape lineWidth: 2)
].
builder x: 3 y:2 add: (LabelShape centeredLabel: #name).
builder x: 2 y: 3 w: 3 add: SpacerShape new.
builder x: 3 y: 4 add: ChildrenShape new.

view := ViewRenderer new.
view node: aClass using: builder asShape withBorder forIt: [

view nodes: aClass selectors using: (LabelShape label: #asString).
view verticalLineLayout.

].
view open.

Ch
ildr
enS

hap
e

Figure 5.5: Class visualization in an UML kind of way. The ChildrenShape has
been used to position the nested visualization.

5.3 Implementing our model in other languages

We implemented our model in Cincom1 Smalltalk. Before looking at other im-
plementations of our model we would like to mention a couple of reasons why we
chose Cincom Smalltalk for our implementation:

• Smalltalk can be used for writing scripts. With no additional work one has
access to basic constructs like loops and conditions and to all the classes that
are in the image.

• Closures are a central part of Smalltalk. We rely heavily on closures for
defining the mapping between the data model and the visualization model.

1http://smalltalk.cincom.com

57

5 Discussion

• Moose is only available for Cincom Smalltalk and since many of our potential
customers are working with Moose we thought it ideal to make our framework
available on the same platform, although our framework is not coupled to
Moose in any way.

We also implemented our model in two other languages. We did a Squeak im-
plementation to verify that our model works with a different graphical framework
and a Java implementation to verify that our model works with a different lan-
guage.

5.3.1 Squeak

We did a basic implementation of our model with Squeak2. Squeak is another
Smalltalk dialect. At first sight a port to another Smalltalk flavor may not look
that interesting since there are many similarities among the different Smalltalk
dialects. The reason why we did it is the fact that our framework relies heavily on
the underlying graphical framework. This is an area where the different Smalltalk
implementations differ. Cincom Smalltalk offers a basic but stable graphical frame-
work. The core of the framework is the class GraphicsContext that provides low-
level drawing commands like #drawLineFrom:To: or #drawRectangle:. Two things
that the framework does not provide are transparency and antialiasing.

Squeak has a sophisticated graphical framework that is called Morphic. Morphic
figures are interactive by nature. After creating a Morph it can be selected, moved
and resized. All by only using the mouse. Morphic even supports connecting fig-
ures out of the box. In Cincom Smalltalk this functionality had to be implemented
from scratch.

5.3.2 Java - Groovy

We also wanted to test our model with a completely different programming lan-
guage. This is why we did a basic Java implementation. The main problem we
had was to come up with a replacement for closures. The closest to a closure
that Java offers are “anonymous inner classes”. This is a poor solution for two
reasons3. Firstly a closure should make things easier. An “anonymous inner class”
only makes things more complicated because of the verbose syntax. And secondly
a “anonymous inner class” is no proper replacement for a closure since a closure

2http://www.squeak.org
3http://fishbowl.pastiche.org/2003/05/16/closures and java a tutorial

58

5.3 Implementing our model in other languages

is a proper object that can be passed around in the system. “Anonymous inner
classes” only have a limited scope. Another issue was that Java does not support
scripting out of the box.

This is why we decided to use Groovy [Koenig et al., 2006] for our implementation.
Groovy is an agile dynamic language for the Java Platform that has been inspired
by other languages like Ruby, Pyhton and Smalltalk. Groovy extends Java with an
easy to use scripting language and also introduces the notion of closures to Java.
Behind the scenes Groovy scripts get compiled into proper Java objects. Groovy
can be embedded in a Java application but it also comes with a small standalone
Swing application that can be used for writing and running scripts. Groovy has
access to all Java classes and all custom classes that are in the classpath.

Figure 5.6 (p.59) shows a screenshot of the Groovy Console. The console consists
of two input fields. The top one is for writing the script and the bottom one shows
log and error messages.

Figure 5.6: The Groovy console adds scripting functionality to Java.

Figure 5.7 (p.60) shows a simple visualization that we produced with the Java
port of our model and the script that we used to create the visualization. In
the first line of the script we define a simple model. In this example we use a
Collection that contains six Integers . In Smalltalk the ViewRenderer has the

59

5 Discussion

method #nodes:using:. In the Java port we use a similar syntax. The Java
version of the command is called #nodesUsing(,) and it takes two parameters.
The first parameter is expected to be a Collection of model objects and the second
parameter needs to be a Shape. The RectangleShape has a constructor that takes
three parameters. A closure for the width, a closure for the height and a closure
for the color. Like in the Smalltalk version the closure expects one parameter, the
model entity behind the figure.

model = [15, 10, 5, 5, 10, 15]

view = new ViewRenderer()
view.nodesUsing(model, new RectangleShape({entity -> entity + 5},
 {entity -> entity + 8},
 {entity -> Color.yellow}))
view.layout(new LineLayout())
view.open()

Figure 5.7: A simple visualization that has been done with the Java based imple-
mentation of our model.

The Groovy syntax for a closure is straightforward. For the width we use the
closure {entity -> entity + 5}. On the left hand side of the arrow we tell the
closure that it will be executed with one parameter and that the parameter should
be known as entity inside the closure. On the right hand side of the arrow we
have the code that should be executed when evaluating the closure. In this case
we return the value of the model entity increased by five. For the fill color we use
the closure {entity -> Color.yellow}. This closure always returns the color yellow
regardless of the value of the model entity.

In Figure 5.8 (p.61) we define a nested visualization. We take the same model as
in the previous example but this time we add three nested nodes to each node. To
define the nesting we make use of the method #nodesUsingForEach(, ,). This
method expects three parameters. Like in the previous example the first parameter
is a Collection of model objects and the second parameter is the shape that is used
for painting the nodes. As third parameter the method expects a closure that will
be executed for each model object.

Thanks to Groovy a Java version is almost as easy to use as the Smalltalk version.
The major difference is the fact that the command #nodesUsingForEach(, ,)

with the third parameter being a rather large closure is harder to read. It is likely

60

5.4 Improving the workflow

view = new ViewRenderer();
view.nodesUsingForEach(
 [15, 10, 5, 5, 10, 15],
 new RectangleShape({entity -> Color.yellow}),
 {enity ->
 view.nodesUsing([1, 2, 3], new RectangleShape(
 {entity -> 15 },
 {entity -> 8 },
 {entity -> Color.green }));
 }
);
view.layout(new LineLayout());
view.open();

Figure 5.8: A possible way tor define nested visualizations with the Java port of
Mondrian.

that an interface could be found that fits better with the Java language syntax
but this was not a goal of this work.

5.4 Improving the workflow

When we started to work on Mondrian most of the scripts were written in the
workspace or in the evaluation pane of an inspector. Since writing Mondrian
scripts is an iterative process the script needs to be selected and evaluated several
times. Each time when we evaluate the script a Mondrian window opens that
needs to be closed again after checking the visual result. Once the script works as
expected it needs to be saved as a method. Otherwise the script will be lost when
switching to a new image.

What we did not like about this workflow is the fact that we constantly need
to change between the keyboard and the mouse. We write the script with the
keyboard but we need to switch to the mouse for selecting the script and closing
the Mondrian window.

This is why we developed the Mondrian Easel. The Mondrian Easel is an IDE for
writing Mondrian scripts. Figure 5.9 (p.62) shows a screenshot of the Mondrian
Easel. In the upper part of the editor we see the visualization that the script in the
lower part of the editor creates. The visualization can either be created by clicking

61

5 Discussion

the “Generate View” button or by using the platform-specific Do-It shortkey. Like
this we can write the script and update the visualization without having to use
the mouse once.

Visualization

Managing
variables

Editing a script

Loading scripts

Saving scripts

Figure 5.9: The Mondrian Easel is an IDE for loading, writing, viewing and saving
scripts.

In the left bottom corner of the editor we can manage the data that is available
to the editor. In Figure 5.9 (p.62) we only have one variable called “classes”. This
variable can be accessed from the script. Additional data can be added by dragging
the data into the editor. We can also freely choose the variable names.

When right-clicking on any object in the variables panel we get a list with all

62

5.5 Custom tool example: A Moose property editor

scripts that have already been defined for that particular object and we can load
the script into the editor by just selecting a script from the list. Saving a script is
just as easy as loading a script. To save a script we can click on the “Install code”
button. This will open the “Install the view in a class” window. In that window
we have access to all the variables that are defined in the editor. And for each
variable we see the complete class hierarchy. Like this we can freely choose where
to install the script. We can also define the name of the method that we would
like to create. As a safety measure we add the method to a class extension in the
“none” - package. Like this there is no danger of unintentionally overwriting an
existing method.

The Mondrian Easel makes working with Mondrian a lot easier since we have all
important tasks assembled into one IDE.

5.5 Custom tool example: A Moose property editor

Figure 5.10 (p.63) shows an example of a specialized tool. The editor can be used
for fine-tuning visualizations that have a Moose model [Ducasse et al., 2005] as
data model. On the left hand side of Figure 5.10 (p.63) we have the visualization
and on the right hand side we have the Property Editor.

Figure 5.10: A visual editor for Moose entities

The Property Editor shows the shapes that are used in the visualization. In this
example the list contains a RectangleShape and a LineShape. When clicking on

63

5 Discussion

a shape in the list all the figures that are using that shape get highlighted in the
visualization and the Property Editor shows all editable properties and the possible
values. In the visualization we use a bordered rectangle. The BorderShape does
not show up in the list since it is a decoration of the RectangleShape. When we
click on the RectangleShape we get the properties of the RectangleShape and of
the BorderShape.

When we change a property in the Property Editor the affected figures get updated
instantly. This is possible because we work directly on the data model and because
all “affected” figures share the same instance of the shape.

64

6 Conclusions

Visualizations are an important aid for data analysis and problem detection [Lee
et al., 2003]. By presenting information in a graphical way we make use of the
massively parallel architecture of the human visual system for interpreting the
data [Larkin and Simon, 1987].

A lot of tools only focus on a limit set of visualizations. These specialized tools
are not flexible enough to support the user when a slightly or even completely
different visualization is needed.

The goal of this thesis was to develop a flexible visualization model that can be
used for fast prototyping of visualizations. We identified a number of factors that
such a model needs to address:

• The visualization engine should be domain-independent.

• Visualizations should be easily composed from simpler parts.

• The visualization should be definable at a fine-grained level.

• Object creation overhead should be kept to a minimum.

• The visualization description should be declarative.

The visualization model that we developed works directly on the underlying data.
Instead of making the data model compliant with the internal model of our visu-
alization model we use shapes to perform a meta-model transformation. Like this
we avoid duplicating the original data and we do not need to recreate the internal
model when the original data changes.

Since shapes hold no model-specific state we can use the same instance of a shape
to paint several model objects. This is an optimization in terms of memory usage
and time.

We developed a scripting language for writing visualizations. The ViewRenderer
is a facade that can be used for writing scripts in a concise way while hiding the
internals of our model.

65

6 Conclusions

Nesting is a central part of our model. With nesting it is possible to prototype
all sorts of different visualizations. We also support instance-based representations
and interaction. Combining these three features makes it possible to explore the
underlying data in an interactive way. Since we support interaction it is also
possible to build complete tools on top of our model.

As a validation of our model we implemented Mondrian and used it to express
various different visualizations.

66

List of Figures

1.1 A simple visualization based on the Mondrian framework. The
script shows the essence of our solution. 4

2.1 GraphViz definition of a graph and the resulting drawing. The
graph consists of the nodes a to d. Notice how all the nodes have
different colors and shapes and how the edge between node d and
node a is slightly bent to avoid intersection with node b. 8

2.2 An example for semantic zooming. (1) shows the Java package
bingo.game. Then we add the classes that the package contains (2)
and finally we add the methods for the class NotaryPublic (3). . . . 9

2.3 Softwarenaut is a reverse engineering tool for package-based sys-
tems. The tool focuses on interactive navigation. 14

2.4 Example of a CSS3 layout definition and an outline of the grid that
the definition creates. 15

2.5 Screenshot of a Java UI and the code that creates it. In the code
we make use of the FormLayout. 17

3.1 The internal model of Mondrian. 32

4.1 Classical System Complexity View of the sources of ArgoUML (1405
classes). 36

4.2 Screen Filling System Complexity View that makes better use of of
the space that a computer screen offers. 37

4.3 Example of a class blueprint and the script that was used to create
the visualization. 38

4.4 Definition of the shape that is being used to draw the methods. . . 38
4.5 Example of a scatterplot visualization with “intelligent” decorations

and the corresponding script. 39
4.6 Example of a spectograph and the script that was used to create

the visualization. 41
4.7 Script for creating the spectograph after updating the model to

provide the necessary information. 42
4.8 A UML class diagram showing part of the Mondrian layout hierarchy. 43

67

List of Figures

4.9 A script for creating an UML class representation. 44
4.10 UML sequence diagram. 46
4.11 Script for creating a UML sequence diagram with Mondrian. To

arrange the top-level nodes we make use of the FormsBuilder. . . . 47
4.12 The shape definition that we use for the message sends in the UML

sequence diagram. The strategy for the start and end point of a
LineShape can be scripted. 48

4.13 A simple tool for navigating through packages. 49
4.14 We define the complete business logic in this script. ScriptingTool-

sUI is only responsible for opening the application window. 50
4.15 Script for creating a MetricView-like visualization and the visual

result that the script produces. 52

5.1 LabelShape that is aligned to the bottom left. 53
5.2 There are four positions that could be associated with #bottomLeft. 54
5.3 On the left we see three RectangleShapes with alignment #rightTop.

On the right we see the same three RectangleShapes after resizing
the bottom-right corner of the figure. 54

5.4 The shapes that decorate the parent node take the outer bounds of
the nested visualization as input. 56

5.5 Class visualization in an UML kind of way. The ChildrenShape has
been used to position the nested visualization. 57

5.6 The Groovy console adds scripting functionality to Java. 59
5.7 A simple visualization that has been done with the Java based im-

plementation of our model. 60
5.8 A possible way tor define nested visualizations with the Java port

of Mondrian. 61
5.9 The Mondrian Easel is an IDE for loading, writing, viewing and

saving scripts. 62
5.10 A visual editor for Moose entities 63

68

Bibliography

[Arévalo, 2005] Gabriela Arévalo. High Level Views in Object-Oriented Systems
using Formal Concept Analysis. PhD thesis, University of Berne, Berne, January
2005.

[Battista et al., 1999] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and
Ioannis G. Tolls. Graph Drawing — Algorithms for the visualization of graphs.
Prentice-Hall, 1999.

[Bederson and Hollan, 1994] Benjamin B. Bederson and James D. Hollan. Pad++:
a zooming graphical interface for exploring alternate interface physics. In Pro-
ceedings of the 7th annual ACM symposium on User interface software and
technology, pages 17–26, Marina del Rey, California, 1994.

[Bellin and Simone, 1997] David Bellin and Susan Suchman Simone. The CRC
Card Book. Addison Wesley, 1997.

[Bosch et al., 2000] Robert Bosch, Chris Stolte, Diane Tang, John Gerth, Mendel
Rosenblum, and Pat Hanrahan. Rivet: a flexible environment for computer
systems visualization. SIGGRAPH Comput. Graph., 34(1):68–73, 2000.

[Brandt and Schmidt, 1995] Soren Brandt and René W. Schmidt. The design of
a meta-level architecture for the BETA language. In Proceedings of META ’95:
Workshop on Advances in Metaobject Protocols and Reflection at ECOOP ’95,
August 1995.

[Crapo et al., 2000] Andrew W. Crapo, Laurie B. Waisel, William A. Wallace, and
Thomas R. Willemain. Visualization and the process of modeling: a cognitive-
theoretic view. In KDD ’00: Proceedings of the sixth ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pages 218–226, New
York, NY, USA, 2000. ACM Press.

[D’Ambros and Lanza, 2006a] Marco D’Ambros and Michele Lanza. Reverse en-
gineering with logical coupling. In Proceedings of WCRE 2006 (13th Working
Conference on Reverse Engineering), page to be published, 2006.

[D’Ambros and Lanza, 2006b] Marco D’Ambros and Michele Lanza. Software

69

Bibliography

bugs and evolution: A visual approach to uncover their relationship. In Proceed-
ings of CSMR 2006 (10th IEEE European Conference on Software Maintenance
and Reengineering), pages 227 – 236. IEEE Computer Society Press, 2006.

[Ducasse and Lanza, 2005] Stéphane Ducasse and Michele Lanza. The class
blueprint: Visually supporting the understanding of classes. IEEE Transac-
tions on Software Engineering, 31(1):75–90, January 2005.

[Ducasse et al., 2004a] Stéphane Ducasse, Michele Lanza, and Roland Bertuli.
High-level polymetric views of condensed run-time information. In Proceed-
ings of Conference on Software Maintenance and Reengineering (CSMR 2004),
pages 309–318, Los Alamitos CA, 2004. IEEE Computer Society Press.

[Ducasse et al., 2004b] Stéphane Ducasse, Adrian Lienhard, and Lukas Renggli.
Seaside — a multiple control flow web application framework. In Proceedings
of ESUG International Smalltalk Conference 2004, pages 231–257, September
2004.

[Ducasse et al., 2005] Stéphane Ducasse, Tudor Gı̂rba, Michele Lanza, and Serge
Demeyer. Moose: a collaborative and extensible reengineering environment. In
Tools for Software Maintenance and Reengineering, RCOST / Software Tech-
nology Series, pages 55–71. Franco Angeli, Milano, 2005.

[Eick et al., 1992] Stephen G. Eick, Joseph L. Steffen, and Sumner Eric E., Jr.
SeeSoft—a tool for visualizing line oriented software statistics. IEEE Transac-
tions on Software Engineering, 18(11):957–968, November 1992.

[Fowler, 1997] Martin Fowler. UML Distilled. Addison Wesley, 1997.

[Gansner and North, 2000] Emden R. Gansner and Stephen C. North. An open
graph visualization system and its applications to software engineering. Software
— Practice and Experience, 30(11):1203–1233, 2000.

[Gansner et al., 1993] Emden R. Gansner, Eleftherios Koutsofios, Stephen C.
North, and Kiem-Phong Vo. A technique for drawing directed graphs. Soft-
ware Engineering, 19(3):214–230, 1993.

[Gı̂rba et al., 2005] Tudor Gı̂rba, Michele Lanza, and Stéphane Ducasse. Char-
acterizing the evolution of class hierarchies. In Proceedings IEEE European
Conference on Software Maintenance and Reengineering (CSMR 2005), pages
2–11, Los Alamitos CA, 2005. IEEE Computer Society.

[Gı̂rba, 2005] Tudor Gı̂rba. Modeling History to Understand Software Evolution.
PhD thesis, University of Berne, Berne, November 2005.

70

Bibliography

[Greevy et al., 2006] Orla Greevy, Michele Lanza, and Christoph Wysseier. Vi-
sualizing live software systems in 3d. In Proceedings of SoftVis 2006 (ACM
Symposium on Software Visualization), September 2006. to appear.

[Koenig et al., 2006] Dierk Koenig, Andrew Glover, Paul King, Guillaume
Laforge, and Jon Skeet. Groovy in Action. Manning Publications, 2006.

[Koschke, 2003] Rainer Koschke. Software visualization in software maintenance,
reverse engineering, and re-engineering: a research survey. Journal of Software
Maintenance and Evolution: Research and Practice, 15(2):87–109, 2003.

[Lange, 2003] Christian F. J. Lange. Empirical investigations in software archi-
tecture completeness. Master’s thesis, University of Eindhoven, 2003.

[Lanza and Ducasse, 2003] Michele Lanza and Stéphane Ducasse. Polymetric
views—a lightweight visual approach to reverse engineering. IEEE Transac-
tions on Software Engineering, 29(9):782–795, September 2003.

[Lanza and Ducasse, 2005] Michele Lanza and Stéphane Ducasse. Codecrawler–
an extensible and language independent 2d and 3d software visualization tool.
In Tools for Software Maintenance and Reengineering, RCOST / Software Tech-
nology Series, pages 74–94. Franco Angeli, Milano, 2005.

[Lanza, 2003a] Michele Lanza. Codecrawler — lessons learned in building a soft-
ware visualization tool. In Proceedings of CSMR 2003, pages 409–418. IEEE
Press, 2003.

[Lanza, 2003b] Michele Lanza. Object-Oriented Reverse Engineering — Coarse-
grained, Fine-grained, and Evolutionary Software Visualization. PhD thesis,
University of Berne, May 2003.

[Larkin and Simon, 1987] Jill Larkin and Herbert Simon. Why a diagram is (some-
times) worth ten thousand words. Cognitive Science, pages 65–99, 1987.

[Lee et al., 2003] Michael D. Lee, Rachel E. Reilly, and Marcus E. Butavicius. An
empirical evaluation of chernoff faces, star glyphs, and spatial visualizations
for binary data. In APVis ’03: Proceedings of the Asia-Pacific symposium on
Information visualisation, pages 1–10, Darlinghurst, Australia, Australia, 2003.
Australian Computer Society, Inc.

[Lentzsch, 2004] Karsten Lentzsch. The jgoodies forms framework, 2004. The
whitepaper can be downloaded together with the jar file and the source code.

[Lungu et al., 2005] Mircea Lungu, Adrian Kuhn, Tudor Gı̂rba, and Michele
Lanza. Interactive exploration of semantic clusters. In 3rd International Work-

71

Bibliography

shop on Visualizing Software for Understanding and Analysis (VISSOFT 2005),
pages 95–100, 2005.

[Lungu et al., 2006] Mircea Lungu, Michele Lanza, and Tudor Gı̂rba. Package pat-
terns for visual architecture recovery. In Proceedings 10th European Conference
on Software Maintenance and Reengineering (CSMR 2006), pages 183–192, Los
Alamitos CA, 2006. IEEE Computer Society Press.

[M.-A. D. Storey and Michaud, 2001] C. Best M.-A. D. Storey and J. Michaud.
Shrimp views: An interactive and customizable environment for software explo-
ration. In Proceedings of International Workshop on Program Comprehension
(IWPC ’2001), 2001.

[Meyer et al., 2006] Michael Meyer, Tudor Gı̂rba, and Mircea Lungu. Mondrian:
An agile visualization framework. In ACM Symposium on Software Visualization
(SoftVis 2006), pages 135–144, New York, NY, USA, 2006. ACM Press. To
appear.

[Moore et al., 2004] William Moore, David Dean, Anna Gerber, Gunnar Wa-
genknecht, and Philippe Vanderheyden. Eclipse Development using the Graph-
ical Editing Framework and the Eclipse Modeling Framework. IBM Redbooks.
IBM International Technical Support Organizat, 2004.

[Müller and Klashinsky, 1988] H. A. Müller and K. Klashinsky. Rigi – a system for
programming-in-the-large. In ICSE ’88: Proceedings of the 10th international
conference on Software engineering, pages 80–86. IEEE Computer Society Press,
1988.

[Müller, 1986] Hausi A. Müller. Rigi — A Model for Software System Construc-
tion, Integration, and Evaluation based on Module Interface Specifications. PhD
thesis, Rice University, 1986.

[Muskens, 2002] Johan Muskens. Software architecture analysis tool. Master’s
thesis, University of Eindhoven, 2002.

[Nierstrasz et al., 2005] Oscar Nierstrasz, Stéphane Ducasse, and Tudor Gı̂rba.
The story of Moose: an agile reengineering environment. In Proceedings of
the European Software Engineering Conference (ESEC/FSE 2005), pages 1–10,
New York NY, 2005. ACM Press. Invited paper.

[Panas et al., 2005] Thomas Panas, Rüdiger Lincke, and Welf Löwe. Online-
configuration of software visualization with Vizz3D. In Proceedings of ACM
Symposium on Software Visualization (SOFTVIS 2005), pages 173–182, 2005.

[Reiss, 2001] Steven P. Reiss. An overview of bloom. In PASTE ’01: Proceedings of

72

Bibliography

the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis for software
tools and engineering, pages 2–5, New York, NY, USA, 2001. ACM Press.

[Reiss, 2006] Steven P. Reiss. Visualizing program execution using user abstrac-
tions. In SoftVis ’06: Proceedings of the 2006 ACM symposium on Software
visualization, pages 125–134, New York, NY, USA, 2006. ACM Press.

[Schneider and Nierstrasz, 1999] Jean-Guy Schneider and Oscar Nierstrasz. Com-
ponents, scripts and glue. In Leonor Barroca, Jon Hall, and Patrick Hall, editors,
Software Architectures — Advances and Applications, pages 13–25. Springer-
Verlag, 1999.

[Schneider, 1999] Jean-Guy Schneider. Components, Scripts, and Glue: A con-
ceptual framework for software composition. Ph.D. thesis, University of Bern,
Institute of Computer Science and Applied Mathematics, October 1999.

[Snyder, 2003] Carolyn Snyder. Paper Prototyping. Morgan Kaufmann, 2003.

[Storey and Müller, 1995] Margaret-Anne D. Storey and Hausi A. Müller. Manip-
ulating and Documenting Software Structures using SHriMP Views. In Proceed-
ings of ICSM ’95 (International Conference on Software Maintenance), pages
275–284. IEEE Computer Society Press, 1995.

[Termeer et al., 2005] Maurice Termeer, Christian F. J. Lange, Alexandru Telea,
and Michel R. V. Chaudron. Visual exploration of combined architectural and
metric information. In VISSOFT, pages 21–26, 2005.

[Tufte, 1990] Edward R. Tufte. Envisioning Information. Graphics Press, 1990.

[Tufte, 2001] Edward R. Tufte. The Visual Display of Quantitative Information.
Graphics Press, 2nd edition, 2001.

[Viégas et al., 2006] Fernanda B. Viégas, Scott Golder, and Judith Donath. Visu-
alizing email content: portraying relationships from conversational histories. In
CHI ’06: Proceedings of the SIGCHI conference on Human Factors in computing
systems, pages 979–988, New York, NY, USA, 2006. ACM Press.

[Wade and Swanston, 2001] Nicholas Wade and Michael Swanston. Visual Per-
ception: An Introduction. Psychology Press, 2001.

[Wu et al., 2004] Jingwei Wu, Richard Holt, and Ahmed Hassan. Exploring soft-
ware evolution using spectrographs. In Proceedings of 11th Working Conference
on Reverse Engineering (WCRE 2004), pages 80–89, Los Alamitos CA, Novem-
ber 2004. IEEE Computer Society Press.

73

	Introduction
	Challenges for an information visualization framework
	Our solution in a nutshell
	Contributions
	Document structure

	State of the art
	Approaches to Visualization
	GraphViz
	SHriMP
	GEF
	CodeCrawler
	Seesoft
	BLOOM
	Vizz3D
	MetricView
	Softwarenaut

	Declarative ways for composing components
	CSS3
	Form Layout

	Scripting Visualizations with Mondrian
	Building our first visualization: A class hierarchy
	Adding interaction to the Visualization
	Composing shapes
	Instance based visualizations
	Mondrian internals

	Implementing various visualizations using Mondrian
	System Complexity View
	Class Blueprint
	Scatterplot
	Spectographs
	UML class diagram
	UML sequence diagram
	Scripting tools
	MetricView

	Discussion
	Composing shapes
	Human speech is ambiguous
	Resize behaviour of shapes

	Positioning the nested visualization explicitly
	Implementing our model in other languages
	Squeak
	Java - Groovy

	Improving the workflow
	Custom tool example: A Moose property editor

	Conclusions
	List of figures
	Bibliography

