
Implementing the FACE Object Model in C++

Masters Thesis
Faculty of Science
University of Berne

by

Matthias Rieger

1997

Supervisor:
Prof. Dr. Oscar Nierstrasz

Institute of Computer Science and Applied Mathematics

Abstract

FACE is an object–oriented, self-descripting data model with first-class types.FACE
can be used to model software, e.g. object–oriented frameworks.

We explore techniques and mechanisms to implement the reflectiveFACE data model
in the statically typed, object–oriented language C++. Some comparison ofFACE with
other meta level approaches like MetaObject Protocols or Open Implementations is

done, and a short example modeling software is described.

Keywords:Software Reuse, Frameworks, Data models, Reification, Reflection, Open
Implementations.

Contents

1 Introduction 7

1.1 Software Reuse with Frameworks 8

1.1.1 FACE supports abstraction. 9

1.1.2 FACE supports selection. 9

1.1.3 FACE supports specialization. 10

1.1.4 FACE supports integration. 10

1.2 The implementation of theFACE data model 10

1.2.1 The scope of the work in a nutshell 12

1.3 Road map for the reader . 12

2 Background 14

2.1 Conceptual background. 14

2.1.1 Frameworks . 15

2.1.2 Software Composition. 16

2.1.3 From object composition to class composition 18

2.1.4 Reflection and Reification 19

2.1.5 MetaObject Protocols and Open Implementations 21

2.2 Implementational background. 24

2.2.1 Generic Programming in C++: Templates and STL 24

2.3 TheFACE data model . 27

2.3.1 The history of theFACE data model 27

2.3.2 The philosophy of the data model 29

2.3.3 The basic element of the data model: the Object 31

2.3.4 Types . 32

3

4 CONTENTS

2.3.5 The kernel of theFACE data model 37

2.3.6 The Extensibility feature 38

3 Implementation Issues 40

3.1 Road map for this chapter . 40

3.2 Establishing the system of domains and types 42

3.2.1 The formal basis of the domain system 42

3.2.2 Transferring the domain system to C++ 43

3.3 The implementation of theFACE-Object 45

3.3.1 The generic structure of theFACE-Object 45

3.3.2 The basic interface of aFACE-Object 46

3.3.3 The implementation of theFACE-Object 47

3.3.4 The implementation of the type checking mechanism 52

3.4 The implementation of theFACE kernel 54

3.4.1 Mapping theFACE instantiation to C++ 54

3.4.2 The implementation of the instantiation mechanism 59

3.4.3 Discussion . 63

3.5 Bootstrapping the system . 65

3.5.1 The requirements . 65

3.5.2 The method . 66

3.5.3 The implementation . 67

3.5.4 Discussion . 68

3.6 Implementing an example . 69

3.6.1 Execution inFACE . 69

3.6.2 The implementation of the example 70

3.6.3 Discussion . 73

4 Conclusions 75

4.1 Conclusions from the implementation 75

4.1.1 Specific conclusions forFACE 75

4.1.2 Negative Results . 75

4.2 Theoretic Conclusions . 76

4.3 Future Work . 76

CONTENTS 5

4.3.1 Technical Issues . 76

4.3.2 Research Issues . 76

A Notation 78

A.1 TheFACE-notation . 79

A.1.1 Purpose . 79

A.1.2 Motivation of the chosen presentation 79

A.2 The Intermediate notation . 80

A.2.1 Purpose . 80

A.2.2 Motivation of the chosen presentation 80

A.3 The Unified Modeling Language. 81

Acknowledgments

There are a lot of people who have contributed in many direct or indirect ways to the
completion of this work.

First and foremost I want to thank my supervisor Theo Dirk Meijler for the long discus-
sions (or should I say monologues?) onFACE and the surroundings. He also teached
my scientific reasoning, ripping apart this text over and over again only occasionally
showing fatigue. He made me aware of my sloppiness in thinking .1

I want to thank J¨urg Gertsch and Roland Loser and Sander Tichelaar2 who more or less
by coincidence did the same thing at the same time and thus3 provided support. (Hey
Jürg and Roli: we still failed to achieve the status of last of the mohicans. Amazing,
isn’t it?) I want to thank Christoph Pappa who helped me organize the final battle. He
was a great coach. I want to thank Serge Demeyer for telling me about the fish and
constantly reminding me how much fun I was having in writing this thesis.

I want to thank Sonja Muhlert who laughed at me when I took this work too serious. I
want to thank Nicole Pfister who also tried to inspire me with a less existential attitude
toward this thing (I wonder why it is always women who have to teach us men that
there are things in life that might be more important than work.)

Last but not least I want to thank my parents who were so generous to provide me with
a shoestring I could live on. It allowed me to concentrate on this work.

Thank you very much.

1Hey, I like being sloppy. It’s a prerequisite for one of the best things in life: graphic design. But it’s
good to know where to stop.

2Eeeeiii — Hammock!
3Of course, they are nice fellows too!

6

Chapter 1

Introduction

The demand for software is increasing steadily as the micro chip is applied in more and
more domains. Hardware is getting faster and more powerful every year, databases are
growing by the minute and so do the systems that manage them. But the productivity
of the software developer has not kept up with this growth. The widening gap between
supply and demand of quality software has been denominated thesoftware crisisin an
article a long time ago.1 The problem of the software crisis is twofold: On the one
hand there is the already mentioned productivity problem and on the other hand is the
complexity problem. One of the basic problems behind the complexity issue are “our
very small heads we must live with” (E.J.Dijkstra).

When we are fighting the software crisis, we are fighting human nature and
the human inability to handle complexity. If we possessed perfect minds
with perfect recall, programs with one million lines of code or programs
written in spaghetti code style would present us with no problems. How-
ever, such programs do give us problems because our mindsare limited.
([Sig96, page 3])

Apart from overwhelming complexity—which is anessentialproblem of modern soft-
ware systems according to [Bro87]—it is still a non-settled question in the software
engineering community on how to implement the technique that lies at the heart of
every engineering discipline:Reuse.2 Software reuse can take many forms but the
principal goal of every reuse technology is to raise the abstraction level of the artifacts
developers deal with. The closer the abstractions are to the informal concepts of the
system a software developer has in his mind, the faster the system will be built and
the more successful is the reuse technology [Kru92]. As Gamma et. al. in their book
on Design Patterns [GHJV95] put it (referring to designers of all kinds of engineering
disciplines):

1This is the famous articleMass produced software componentsby M. McIlroy, In Naur P., Randell B.,
Software Engineering: Report on a conference by the NATO Science Committee, NATO Scientific Affairs
Division, Brussels 1968.

2According to [Bro87],Software Reuseis one of the promising attacks on the essential problem in soft-
ware engineering.

7

8 CHAPTER 1. INTRODUCTION

Expert designers don’t solve every problem from first principles. Rather
they use solutions that have worked for them in the past. A good solution
is used over and over again.

In other mature engineering disciplines with a longer history than the software engi-
neering profession, books with “best practices” hand down very specific knowledge
about methods and techniques that have proven to be valuable to the young and un-
experienced disciples. In the software engineering field, attempts at producing such
standardized reference manuals are only beginning to emerge.3 The efficient reuse of
ideas and designs is still a large research area.

Frameworks offer promising capabilities in this respect.4

1.1 Software Reuse with Frameworks

An object–oriented framework, or simplyframework, is a set of cooperating classes
that make up a reusable design for a specific class of software.5 Frameworks are typi-
cally designed by domain experts and then used by non-experts to develop applications
for that domain. Expert knowledge of the specific domain the framework is written for
is expressed in the collaboration patterns between its classes. A framework is therefore
much more than a class library. The components of a class library are used individu-
ally, whereas the framework is reused as a whole, providing the common skeleton of
applications in its domain. A developer who wants to use the framework to build a
specific application in the frameworks domain, a process also known asspecialization,
has to ‘beef up’ the bare bones. In order to specialize a framework correctly he has
to have a lot of knowledge. He has to understand the design of the prototype applica-
tion the framework offers as well as the inner workings of the components he wants to
adapt and adjust. Thus, the learning curve for frameworks is very steep. Also, users of
a framework are normally not guided in the specialization process, making reuse of the
framework in ways not intended by the framework developer a risk.
FACE, a Framework Adaptive Composition Environment, is intended to overcome
these problems and make framework reuse more “user friendly”.FACE 6 is essentially
an object–oriented data model coupled with a visual environment, in which compo-
sitions of software artifacts can be described, graphically presented to the user, and
changed using the means of direct manipulation.7 Using a meta-framework,FACE
adapts to a specific framework, which means that the framework classes get an explicit
representation in the data model. The relations that link the classes of the framework

3One of the promising approaches in collections of case studies of exemplary software designs are the
Design Patternswidely accepted after the publication of [GHJV95].

4According to [Kru92, page 178],software architecturescome closest to an ideal reuse technologyamong
the eight reuse categories reviewed in the article.

5Definition cited in [GHJV95, page 26].
6For a more detailed introduction refer to [Mei96].
7The notion ofDirect Manipulationrefers to interfaces having the following properties:

1. Continuous representation of the object of interest.

2. Physical actions or labeled button presses instead of complex syntax.

3. Rapid incremental reversible operations whose impact on the object of interest is immediately visible.
(Shneiderman, 1982)

1.1. SOFTWARE REUSE WITH FRAMEWORKS 9

are also made into explicitly represented components. The whole framework is in this
way represented as objects in theFACE data model and can be visually presented in
a graphical workspace. Users can then develop applications by instantiatingFACE
class-components and parameterizing them.
In [Kru92], Charles Krueger discusses eight approaches to software reuse along a tax-
onomy of four dimensions which are motivated by the four tasks involved in every
reuse activity: Abstraction, Selection, Specialization and Integration. In the following
four sections I will characterizeFACE in discussing how it contributes to each of those
four dimensions.

1.1.1 FACE supports abstraction

Abstraction8 is theessential feature in any reuse technique. Successful application of
a reuse technique to a software engineering technology is inexorably tied to raising the
level of abstraction for that technology ([Kru92, pages 133–134]).FACE tries to raise
the abstraction level by the following means:

� Blackbox parameterization: The usual approach to framework specialization
is subclassing, where the author of the subclass has to understand the imple-
mentation of the superclass (whitebox reuse).FACE supports blackbox reuse:
components are specialized through parameterization.

� Reification of relations: Relations between components can also be represented
as domain-specific components which can be parameterized. These relationship
informations are normally hidden in the source code of a class. By making them
explicit, the abstraction level is raised again.

� Describing the evolution: In FACE, an application developer has the possibility
to describe not only the initial set of runtime objects but also thepossible evo-
lution of the object structures during runtime. Making the explicit control over
this features possible raises abstraction again.

1.1.2 FACE supports selection

Reusable software artifacts must be cataloged so that developers can locate, compare
and select them [Kru92, page 133].FACE supports the selection process in the follow-
ing ways:

� Menu of available components: In a visual environment, all reified artifacts
of a framework can be graphically presented to a user. It is possible to intro-
duce hierarchies to structure the set. With an online help system, features of the
components can be explained.

� Type checking mechanism: Because relations are made explicit and can be
described, the system is able to select candidates for a certain link automatically.

8An abstraction for a software artifact is a succinct description that suppresses the details that are unim-
portant to a software developer and emphasizes the information that is important. ([Kru92, page 134])

10 CHAPTER 1. INTRODUCTION

1.1.3 FACE supports specialization

The software artifacts of a reuse catalogue are mostly of agenericcharacter. In order
to use them for a specific solution, they have to be instantiated or specialized through
parameters, transformations, constraints or some other form of refinement ([Kru92,
page 133]).FACE supports specialization in the following ways:

� Explicit composition interface: Every FACE-component has an explicit com-
position interface. This interface is shown in the visual environment. It is there-
fore easy for a developer to control the parameterization of such a component.

� Correctness: The type checking mechanism ensures that only correct links are
established.

1.1.4 FACE supports integration

Integration is the process of combining the selected and specialized components to
form a complete, runnable system.FACE has the following possibilities for helping to
build a running system out of aFACE-composition:

� Runtime semantics: Through the meta-framework ofFACE, the framework de-
veloper can specify how the components are given runtime semantic. With an
underlying programming language,eachFACE-component can have an imple-
mentation. Compositions can then be translated to a runtime system.

� Compilation and interpretation : With the link to the runtime entities, compo-
sitions can be tested by interpreting theFACE-structure. It is also theoretically
possible to generate stand alone systems by compilation.

1.2 The implementation of theFACE data model

The purpose of the work at hand is to provide an implementation of the kernel of the
FACE data model as it would be needed as a back end by a visual composition envi-
ronment. This kernel is based on the formalization essentially laid down in [Mei93a].
It has, however, evolved in certain aspects since it was published. We will use this for-
malization as a starting point for the implementation. The elements of the data model
that are important for a visual composition environment and that showed the way for
the implementation to go are the following:

� the genericFACE-Object, the cornerstone of the model,

� object–oriented mechanisms like instantiation, inheritance and message passing,

� the kernel of the type-system, which allows the creation and parameterization of
new types and also enables type checking,

Implementing the formal model means mapping the objects, properties, and methods
defined in the model to the programming constructs of an underlyinghost programming

1.2. THE IMPLEMENTATION OF THEFACE DATA MODEL 11

language. Choosing such a host language must be done with respect to the following
requirements:

� The concepts of objects, inheritance and polymorphism should be easily real-
izable in the hostlanguage, the language should obviously be object–oriented
itself.

� The graphical user interface (GUI) of the visual environment needs to have an
easy interface to the data model implementation. It is also important that the
programming of the GUI can be supported by some windowing toolkit. The
hostlanguage for the data model should be ‘near’ such a GUI-language.

� It should be possible to link compositions to the frameworks they are a repre-
sentation of. It should therefore be possible to interface the hostlanguage to a
multitude of different programming languages. This requirement translates to
the need for a well known, widely used language with certain low-level pro-
gramming facilities.

� There should be a range of development tools available for the language.

As a possible set of programming languages that fulfill these requirements the follow-
ing can be considered: CLOS, Smalltalk, Java, SELF, C++.

� CLOS and Smalltalk were considered too complicated under the aspect of com-
bining theFACE meta model with the meta model already included in each
of these languages. Besides, during the initial development of theFACE data
model, an implementation was attempted in CLOS with mediocre success.9

� Java was at the inception of this work still very new and barely known.

� An implementation in SELF10 was attempted in parallel to this work.

The choice of implementation language finally fell on the widely used language C++.
An advantage of this choice is, for example, that since C++ is being used so frequently
for software projects, it would be easy to find a sample framework to whichFACE
could be adapted for testing purposes without having to cross language borders. Also,
since C++ code runs very efficiently, a transformation of the prototype into a production
quality program would be possible without a port to another language.11

After a closer examination of the implementation task, the following subtasks come
into view:

� The type system of theFACE formalization has to be mapped to the type system
of the host-language. This comprises built-in types (basic value typesin FACE)
as well as complex types (object typesin FACE).

9Meijler, personal communication.
10For an introduction to Self, refer to D. Ungar, R. Smith,SELF: The Power of Simplicity, in LISP

and Symbolic Computation, 4, 3, 1991, Kluwer Academic Publishers, or link your browser to the server
http://self.stanford.edu .

11For a more detailed discussion of the advantages of C++ with respect to our model, see [Mei93b, page
175].

12 CHAPTER 1. INTRODUCTION

� For the generic structure of theFACE-Object, generic containers have to be pro-
vided. These containers will hold the parameters of the component, which can
be of every type the data model provides.

� The instantiation process ofFACE has to be mapped to the instantiation in the
hostlanguage. The same is true for inheritance.

� A bootstrapping procedure has to be designed to start up the kernel of the type
system.

The work of this thesis does, however, not comprise the following aspects ofFACE:

� It is not our goal to adapt the kernel type system to a sample framework.

� From the last point follows that we do not intend to research possible link mech-
anisms between theFACE-components and the framework-elements they repre-
sent.

� As a further consequence of the first point, we do not provide interpretation
or compilation facilities for the compositions developed in the model that go
beyond an execution mechanism stemming from a previous step in theFACE
evolution.

� The GUI part of the visual composition environment is also out of scope of this
work.

What, after all, this work wants to achieve, is just a bare naked implementation of the
FACE-kernel with the basic functionalities of the data model.

1.2.1 The scope of the work in a nutshell

FACE is a tool for making structures of object–oriented software explicit. To do so it
uses representations for elements of the software, makes them into first class citizens
in its own model, and lets the user change and modify these structures as ifFACE were
a programming language.

The main goal of this work is to explore the possibilities of implementing a reflective
object model where types are accessible at runtime in a statically typed object–oriented
programming language that has classes which remain implicit at runtime. This requires
the implementation of mechanisms that ‘elevate’ classes in the rang of first class citi-
zens.

Additionally, in order to understand theFACE model in more depth, we try to explain
the connection betweenFACE and other reflective models from the realm of MetaOb-
ject Protocols and Open Implementations.

1.3 Road map for the reader

The thesis is divided in two parts. In the background chapter (Chapter 2), the work
on the concepts of object–oriented data models, reification and reflection, which influ-
enced the development ofFACE, are presented. In addition, the theoretical aspects of

1.3. ROAD MAP FOR THE READER 13

some of the methods that were used in the implementation are explained.
In the implementation chapter (Chapter 3), different parts of the implementation are ex-
plained in detail giving an overview of the problems and how they were resolved. The
description of a small example is presented that was implemented to gain experience
with modeling software using theFACE system.

Chapter 2

Background

In this chapter, the problem domain in whichFACE is set, is presented in detail. We
will give overviews of models and techniques that are used in common solutions to
these problems, and we will show how the approach taken withFACE differs from
them.
We will proceed in the following general direction. First, we present the ideas behind
software reuse with frameworks and the inheritance technique. Next, we are explaining
composition as another method of software reuse. Composition is normally done at
the object level, but composing at the class level has some advantages which will be
presented. Class level composition is the main contribution of theFACE approach. To
be able to compose classes in a manner similar to object composition,FACE introduces
another level above the class level, the so-called meta level, which allows to describe
the compositions on the class level. This can also be seen as configuration of systems.
We will explain the theories of reification and reflection that are related to the question
of how to configure systems. We will then give an overview of generic programming
in C++. The chapter will end with a thorough presentation of theFACE-data model.

2.1 Conceptual background

What is an object?

Objects1 are entities that combine the properties of procedures and data by performing
computations and saving local state. A computation in an object is triggered by send-
ing a message to the object. The object chooses the appropriate function to perform
according to a selector in the message. Message sending thus supports data abstraction,
as the implementation and the inner workings of the object remain hidden. The set of
methods that is visible from the outside is called theinterfaceor theprotocolof the
object. Standardized protocols — different kinds of objects have the same protocol —
are a prerequisite forpolymorphism. Polymorphism, in the context of object–oriented
programming, refers to “the capability for different classes of objects to respond to ex-
actly the same protocols. ... Protocols extend the notion ofmodularity(reusable and

1This introduction on objects is based on [SB86].

14

2.1. CONCEPTUAL BACKGROUND 15

modifiable pieces as enabled by data-abstracted subroutines) topolymorphism(inter-
changeable pieces as enabled by message sending)” [SB86, page 41].
The other major idea in object–oriented programming is the feature of specialization.
Specialization allows to specify objects incrementally, taking an old specification that
nearly fits the current needs and modifying it to suit the needs exactly. Information can
be kept in one central place which facilitates change.
Polymorphism and specialization help to keep invariants over change in a program. In-
formation is localized and hidden as much as possible, the program is thus more robust
when confronted with extension and modification.

2.1.1 Frameworks

An object–oriented application framework is a set of prefabricated building blocks
modeling a certain problem domain. The framework serves as a starting point for
application developers. Instead of starting from scratch, developers can rely on

� a set of abstract and concrete classes which offer default behavior and have to be
specialized.

� an application architecture or typical collaboration patterns which model com-
mon behavior of an application in this problem domain.

� well tested and proven solutions: frameworks are designed for reuse and evolve
over many iterations.

In its generic parts (expressed by the abstract classes), a framework encapsulates the as-
pects of its domain that can vary over the family of applications represented by it. The
variability is represented by the ‘holes’ of the abstract classes, the abstract methods.
Developers derive concrete classes from the abstract bases, beefing up the inherited
interface with the meat of their specifically needed behavior. Different than reusing
code from a simple class library, the user-written classes and methods do not form the
backbone of the application. In fact, the relationship between reused code and user
code is reversed: the main thread of computation is dictated by the common architec-
ture of the framework, and only at the points where the specific application deviates
from the generic one, user code is called. This requires a deep understanding of how
the elements of the framework work together; a steep learning curve is normal with
framework users [MN96].

The problems with Inheritance and How we can try better

The framework idea is based on polymorphism. The specialized classes are subtypes
of the general ones, which means that they exhibit (at least) the same interface. Poly-
morphism assures that the new classes can replace the superclass without the clients
noticing it. In an object–oriented language like C++, subtyping is tied to the inheritance
mechanism; i.e. we cannot create a subtype without reusing the implementation of the
supertype. The problem with this specialization method lies in the amount of detail
that is exposed to the programmer who is using inheritance. The superclass to her is
a “white box” which she has to understand in great detail in order to extend it without

16 CHAPTER 2. BACKGROUND

introducing problems. The knowledge of the inner workings of the superclass that im-
plicitly flows into the design of the subclass results in a strong coupling of the subclass
to its parent. The inheritance interface of the class–model in common object–oriented
languages is in many cases to wide and weakens the encapsulation of the superclass
[Sny86]. This leads to unwanted and costly long–range effects when changing the su-
perclass.
Remedies for these problems of the specialization process in object–oriented frame-
works generally follow the path to more modularity. By modularity we mean that the
client is decoupled from the server,2 that the client can access the server only over well
defined interface. This interface can be made as narrow as possible. The server exposes
no implementation details to the outside, it becomes a “black box”. Two important ad-
vantages result:

� Changes made at one point of the system do not spread too easily. A class can
change its implementation completely as long as it still conforms to its interface.

� It is easier to understand just the interface of an object without having to bother
with the implementation details. The learning curve of a user of the class is
flattened so she can start reusing the code faster.

The narrower the interface of a software entity is, the more encapsulated the entity is.
The most narrow kind of interface is one where a parameter of a simple type is sent to
the entity.
In general, parameter granularity can vary from simple values to structured types and
even methods. Parameterization is therefore a powerful method to specialize software.
The designer of a framework leaves ‘holes’ in the code which will be filled with pa-
rameter values by the framework user. The whole system can be assembled using only
parameterization. In that way, parameterization can replace inheritance as a specializa-
tion method for software.
In software composition where the components are seen as blackboxes with a number
of ‘plugs’, parameterization is used as a method to ‘glue’ the components together.

2.1.2 Software Composition

The research done in the field ofSoftware Compositionis attempting to further de-
velop ideas stemming from object–oriented software engineering, namely reuse of soft-
ware artifacts and design expertise, as well as flexibility and openness of applications
faced with constant evolution. The vision of “component–oriented software technol-
ogy” [ND95] is an application development environment where systems can be built
much like cars or other hardware is developed: by assembling prefabricated compo-
nents into a finished product along the rules and guidelines that have been established
in the engineering history in the respective domain. In addition, software composition
wants to pay respect to the special nature of software artifacts which sets them apart
from hardware items: their theoretical infinite malleability. Software can be changed,
extended, and adapted endlessly without necessary loss of quality or ability to perform
its functions. Successful software systems with a long lifespan will undoubtedly be

2By server we mean the entity that provides a service to a client. This can be an object that supplies
functionality via the methods in its public interface or it can be a superclass that provides its implementation
via inheritance to its subclasses.

2.1. CONCEPTUAL BACKGROUND 17

Figure 2.1: A software component and its polarity exhibiting plugs.

subject to changing requirements. Systems built from a set of reconfigurable software
components can answer to this needs with a reconfiguration that is relatively easy com-
pared to the approach of reprogramming parts of the system. This kind of reuse has
naturally to be planned for from the beginning of the design of such an application. In
fact, the software composition approach penetrates the whole range of technological,
methodical, tool- and process-oriented aspects of software development.3

What is a component?

At the center of the software composition approach lies the notion of acomponent. In
a component, the aspect of composability of an entity is emphasized over the compu-
tational aspect of the entity. A component is at first an entity in a framework which
can be connected to other components and only as such, parameterized and linked to
its surroundings, serves its computational purpose. The computational functionality of
a component is abstracted away. ‘Visible’ from the outside is only the interface. A
component therefore can be seen as a“static abstraction with plugs”4 (see Figure 2.1).
“Static” covers the aspect that we are considering entities that can be stored and re-
trieved so that their lifespan is independent from a runtime environment. The term
“plug” refers to the ways that are defined to interact with the component (parameters,
ports, messages, etc.).
The concept of an object (see section 2.1) can overlap with the concept of a component:
sometimes an object is a component and vice versa. There are, however, differences
between the two:

� Objects are entities of a fixed granularity. Components can exist at any level
where composition makes sense. They may be for example macros, procedures,
templates.

� Objects exist only at runtime, components exist at ‘composition’–time, which
includes run– as well as compile–time. They need not exist at both times, though.

� Objects are software entities. In a component framework, there may be also
other entities like specifications or documentation that can be used as compos-
able items.

In order to be able to work together, components can only be assembled if they adhere
to a specific contract which settles the terms of their collaboration. If compositions are

3See [ND95] for a detailed and thorough exposition of the ideas presented here as an overview.
4[ND95, page 6].

18 CHAPTER 2. BACKGROUND

to be checked, a type system must make the contracts explicit.5

Composition vs. programming

Software composition is the systematic construction of software applications from
components. Components can be parameterized by a link to other components over
plugs(see Figure 2.1). Such a plug represents functionality the server component pro-
vides for a client who establishes a link to that plug.
Composition means instantiating the generic component framework by parameterizing
its components in a specific manner (according to a set of composition rules). In the
composition process, the inner workings of a component need not be understood by the
user: components remain blackbox entities that expose only their interface. Therefore,
composition is situated on a higher level of abstraction than programming the compo-
nent itself. This suggests that different skills are needed for programmers that work on
the different levels.

� Component engineeringmeans building up a component framework. A compo-
nent framework is a domain specific expert system that incorporates knowledge
on how to build applications in this domain. The knowledge consists of a frame-
work of software abstractions that represent a generic application in this domain,
but ideally also requirement models and guidelines on how to use components
and generic designs.

� Application development means using an component framework to build an
application for the end-user. This kind of development often happens under strict
time and budget constraints. It is also on this level where requirements change
frequently and the possibility for adapting a system as opposed to rebuild it from
scratch represents the real benefits of component–oriented software technology.

The tools that the two type of programmers use will differ considerably. Component
engineers will work with the languages the software components are implemented in,
which will be normal 3GL like C++. The application developer however will probably
work in quite a different environment, where languages like C++ are considered to be
on the machine language level, and the experience of the developer has to be on the
domain level instead.6

2.1.3 From object composition to class composition

In well–known component-oriented models such as Delphi or Visual Basic, composi-
tions are directly mapped to objects at runtime. A link between two components in the
composition then just means that two runtime objects interact in some way. A com-
positional element refers directly to a runtime object. Composition with such models
is limited to specifying initial configurations of objects in an application. But one can
give links between entities in a structure (i.e. components) a different semantic. The
link, for example, between two classes can mean that instances of these two classes

5The question of what kind of type systems can capture the static and dynamicsemantics of compositional
links is still being discussed. See [ND95, pages16–18] for details.

6This sentence is based on a statement of Ivar Jacobson, cited in [dM95, page276].

2.1. CONCEPTUAL BACKGROUND 19

have the possibility of being connected [Mei96]. With such an extended link semantic,
classescan be composed, where the composition of two classes means that theycan
have instances which cooperate. Such a composition does not have to say anything
about actual instances being present at some given moment during execution time. In
this way,evolutionsof object compositions can be described, making it possible to
compose dynamic applications. An example of a dynamical application is a structural
editors for visual composition. The essential feature of an editor is to provide the means
to buildarbitrary structures.
If we want to be able to compose classes (inFACE, they are calledclass-components),
those classes must themselves be represented in the composition environment by some
sort of objects. They must becomefirst-classelements of the system7 which is achieved
by making them instances of meta-classes. A class is then just like a normal object with
additional instantiation and subclassing behavior. In traditional object–oriented frame-
works, each framework comes with its own set of classes. Also in aFACE setting it
should be possible to have specific kind of classes, and specific rules for composing
them in order to realize specific frameworks.8 This is done by having meta class–
components describe classes in the same way as class–components describe objects.
By specializing a general meta class we can then describe new classes. The meta level
is thus used to specify or configure theFACE composition “language”.
Meta levels are used in programming languages or systems to configure either the syn-
tactic side of the language or the semantic part of a language or a system. In the theory
of MetaObject Protocols techniques were developed to make language implementa-
tions modifiable by the user of the language. The work on Open Implementations con-
cerns itself with a similar idea. Subject of interest are in this case any blackbox kind of
software abstraction. An Open Implementation tries to introduce a specialmeta level
interface over which implementation configuration can be done. This configuration is
separated from the normal access to the server functionality which is done over the
so-calledbase levelinterface.
I will give a short overview over the theories of metaobject protocols and reflection and
how theFACE approach differs from these well–known ideas.

2.1.4 Reflection and Reification

The termreflectionin computer science refers to a property of a computing architecture
or a language design. A very general definition, taken from [Ibr90], states:

Reflection: an entity’s integral ability to represent, operate on, and other-
wise deal with itself in the same way that it represents, operates on, and
deals with its primary subject matter.

Reflection involves having different levels in the system: the domain of thebase level
deals with the outside world the system tries to represent. The domain of themeta
level is about (some of the aspects of) the system itself. This implies that there is a
representation of these aspects in the system.
Now, what kind of aspects of the system one could wish to reflect upon? In every
computational system, certain things are made explicit and can be accessed at run-
time, while others are inaccessible orabsorbed[Ste94]. For example in a typical LISP

7the system being in this case theFACE “language” with which we are doing the composition.
8That is whyFACE is called ‘framework adaptive’.

20 CHAPTER 2. BACKGROUND

system, the programmer has access to the program and the data structures he creates;
however, the running program hasaccess only to its data structures and not to a rep-
resentation of itself. For both the programmer and the program, the LISP interpreter
which runs the program is hidden, as well as other elements of the running system like
the heap, continuations, local environments, etc.9 In a language like C++, the language
entity class is available for explicit manipulation and introspection only to the pro-
grammer. During execution, the program cannotaccess the class of an object; classes
are not among the so calledFirst-Class Entitiesof the language.
By reification10 we mean, that such otherwise inaccessible structures are represented in
some form on the meta-level. We then can access the representations, read information
from them or even manipulate them. The manipulation of objects on the meta-level
leads to the key question of reflection: Are the base-level and the meta-levelcausally
connected? Lets say for example that we have a robot arm and a representation of the
robot arm in a computer system.Causal connectionmeans that the representation in
the computer system always accurately reflects the state of the real arm and vice versa.
When the arm changes its position, the representation is automatically updated. When
we edit the representation of the arm in the computer system, then the arm moves to
match the new coordinates. A reflective system where base- and meta level are linked
in such a way that changes of one of them leads to corresponding changes to the other
is called causally connected.
Practical interests of reflective systems differ with the models used. We can identify
reflective models by the aspects they make accessible [Fer89]:

Procedural reflection: In procedural reflection,11 some of the dynamic properties of
the system are reified, for example how commands are executed. Programs are not run
by an inaccessible interpreter but by another program which represents the interpreter.
The user program can then switch deliberately between the two levels.12 In this way, a
procedurally reflective architecture allows the user to alter the interpreter behavior, for
example by adding various runtime activities like monitoring function calls, tracing and
debugging activities, or even extending the interpreter with new language constructs at
runtime, etc.

Structural reflection: In structural reflection, the static parts of the language are
reified. For example, the above mentionedclass–construct in C++ gets a runtime repre-
sentation. This representation can be accessed and manipulated, which possibly affects
the set of instances of the class. As we will see in the detailed discussion of theFACE-
data model, making classes explicit consequently leads to explicit meta classes as well.
The possibilities of these meta- and metameta-structures lie mainly in the extension of
the language. Structurally reflective languages do not need to be executed in a proce-
durally reflective system [Fer89], one can build normal interpreters that interpret these
structures.

It has been stated that object–oriented technology is particularly well suited for imple-
menting reflective facilities [KdRB91, Ibr90]. It seems natural that a reified abstraction

9Example taken from [dR88].
10To reify means to ‘thingify’: abstractions are treated as material things.
11also calledcomputationalreflection.
12The interpreter on the meta-level is written in the same language as the programs at the base level. If

this is not the case, a running program cannot switch levels. See [dR88] for a thorough explanation.

2.1. CONCEPTUAL BACKGROUND 21

takes the ‘form’ of an object. In an object–oriented language, the meta level function-
ality can be distributed among a set of individual meta objects which enables users to
change meta level elements independently and incrementally. The object models of
some object–oriented languages (e.g. Smalltalk) incorporate reified classes and meta
classes right away.

2.1.5 MetaObject Protocols and Open Implementations

MetaObject Protocols (MOP’s) are an application of reflection to programming lan-
guages. The meta level in a computational system allows programmers to “look be-
hind” the curtain13 of implicit features of the system and even adapt those features to
specific needs the designers of the system couldn’t and wouldn’t anticipate. There are
currently two approaches under investigation, which differ in the degree of details used
in the representation of the inner workings of the system.

MetaObject Protocols: MetaObject Protocols (MOP’s) are mainly used for language
design. The implementation of the language is structured as an object–oriented pro-
gram. The interactions between the meta objects are encoded in a communication
protocol (the meta classes that implement the meta objects and their interaction shape
a framework). The MOP controls what language constructs are available (how pro-
grams may be written) and how those language constructs are mapped to their seman-
tics (what the meaning of the program is). Using the MOP, the programmer can then
become more of a language designer and adapt the language implementation to suit
his needs. Because of the subclassing and polymorphic features of the object–oriented
implementation, he can use arbitrary code to do so, as long as it conforms to the proto-
col.14 MetaObject Protocols can vary in what they reify. The CLOS MOP of [KdRB91]
is an example where a large part of the language is madeaccessible to the user.

Open Implementations: Systems other than language implementations can have a
kind of a metaobject protocol too. Here, instead of allowing to adapt an implemen-
tation in arbitrary ways, a more declarative interface15 is used to let the user make
decisions about the implementation. The range of choices is fixed though. Different
than in metaobject protocols, Open Implementations do not allow you to edit how your
programs can be written (or how your system can be used), but they let you choose (out
of a fixed set of possibilities) what your programs (or your system handling)means.
Open Implementations are therefore less powerful than metaobject protocols, but they
have the advantage of being easier to understand and having less trouble with overhead
and efficiency concerns.

In both cases the programmer can use the system on two different levels. On the

13Kiczales et. al. use the metaphor of a stage in [KdRB91]: The show being performed on stage stands for
the language entities and mechanisms as they are presented to a user, while backstage the meta level exposes
the inner workings of these language mechanisms.

14It is of course possible to change even the protocol if one is willing to invest the appropriate amount of
effort.

15”The term ‘interface’ is used here to refer to any documented means of accessing computational func-
tionality. This is a broader notion than a procedural interface. For example it includes the kinds of commands
that one can put into a makefile.” [Kic94]

22 CHAPTER 2. BACKGROUND

lower level, the basic functionality of the system or of the language is used. On the
higher level, the implementation of the functionality is manipulated.16 The program-
mer can switch between levels deliberately, writing programs where base level code is
interwoven with meta level code.

FACE and Reflection

Basically, theFACE model is an object–oriented data model featuring types, objects,
instantiation, subtyping and message passing. Reification and reflection are the tech-
niques used to add genericity and extensibility to the model.
First, reification is used inFACE to turn relationships between objects into first class
elements of the language. A relationship inFACE is represented by an object which
belongs to the object which is the origin of the relation. A relationship object thus also
has a type of which it is an instance, but it cannot exist independently.
With these two elements, the components and the relationships,FACE provides a
generic composition model. This model is described using a structurally reflective
meta level–architecture. This means thatFACE provides meta objects describing the
static parts of its language: the objects and their relations. Note that none of the dy-
namic aspects of object-orientation are reflected on theFACE meta level: inheritance,
instantiation and message passing17 mechanism remain implicit in the language and
cannot be changed by the userFACE.18 The FACE meta objects offerintrospective
access — which means that we can ask them for information about themselves (and
thus about their instances) — as well asintercessoryaccess — which means that when
changing their description we also change the objects that are instantiated from the
description. This is illustrated by the following properties of the language:

� Genericity of the model. Everything inFACE is an object and present at run-
time. Because this is also true for classes, every object has access to its class and
can ask it for information (introspective access). This makes it possible to keep
the object very generic and hold specific information in the class. This informa-
tion can be accessed by the object at runtime to adapt its behavior. See [ME96]
for an example.

� Extensibility of the language. The meta level of theFACE model describes a
general composition model. By specializing (subtyping) the meta classes, the
user can create a specific composition meta-model (intercessoryaccess). The
possibility of introducing specific types allows the model to be adapted to the
classes of a certain framework.

TheFACE meta level–architecture is described completely using structural reflection.
A class is instance of a meta class and a meta class is also instance of its class until in

16This distinction between base level and meta level is mirrored in theFACE environment by the idea of
two kind of programmers: one using the meta level interface to adaptFACE to a framework and the other
using the adapted language to implement applications in the framework.

17Although operations can be reified inFACE as well, they are aboutwhatan object does and nothow it
behaves. The goal of reifying operations inFACE is again to make applicability explicit, which emphasizes
the structure of object/operations links. See [McA95] for a meta level architecture which reifies the dynamic
aspects of an object–oriented language, i.e. message sending and receiving.

18Of course, changing the interpreter is always an option, although it requires knowledge that goes beyond
what a simple user ofFACE can be expected to learn.

2.1. CONCEPTUAL BACKGROUND 23

the end the highest meta class is instance of itself (self-description). This makes the
FACE language totally open for change.

Comparing FACE and the CLOS MOP

If we compare theFACE meta level–architecture to a metaobject protocol like the
CLOS MOP,19 we see some similarities but also some differences. Both, theFACE
meta model and the CLOS MOP define a ‘language’. The various elements of this ‘lan-
guage’ are reified via meta classes. MetaObject Protocols use structural and procedural
reflection to make static as well as dynamic properties of the languageaccessible to the
user. InFACE, on the other hand, only structural parts of the language are reified.
In both cases, the semantics of the language can be changed by changing the imple-
mentation of the meta classes. In the CLOS case these implementations are performed
using CLOS itself, in FACE, however, implementations can be done in any suitable
hostlanguage the system happens to be implemented in.
The CLOS MOP reifies a general purpose programming language almost entirely. This
makes it possible to program CLOS in CLOS. There are, however, parts in the language
that are not reified.
The meta level–architecture ofFACE, in comparison, only describes a real simple
blackbox configuration ‘language’. We therefore cannot useFACE for implementing
the compositional and the corresponding reflective behavior but need a hostlanguage
for that purpose. On the other hand, sinceFACE is self-descriptive, every structural
element of the language is reified.

We can further compare theFACE approach to the MOP approach on two goals that
one wants to achieve with either technique:

Extensibility of the language: In both systems, we are able to specify the structure
of the language byaccessing the reified objects on the metalevel. The access to the
meta level has to follow a structured approach in both cases.

Giving semantics to the language: This is done differently in the two systems. In
CLOS, the semantics are given by using the same interface as before when changing the
structure of the language. In theFACE language, semantics are currently20 changed by
going to the hostlanguage level and adding new classes and methods.

As a main point of the difference ofFACE and the CLOS MOP, we state the following.

� CLOS has a MOP that describes a complete general purpose programming lan-
guage. This means that the whole language implementation is opened up, in-
cluding dynamic features like inheritance and instantiation. This results in the
MOP being very detailed and thus complicated.

19The CLOS MOP of [KdRB91] is taken as the reference metaobject protocol because of its exemplary
character and since it is the most widely known.

20No further support for adding semantics is yet provided inFACE. This does not mean that this would
not be possible, just the work done up to the point where this thesis was written consisted mainly in building
the syntactic side of the language. It reflects however the intent ofFACE, that support for the application
developer should be provided on basis of the blackbox concept.

24 CHAPTER 2. BACKGROUND

� FACE on the other hand provides a special purpose MOP which has a clear focus
on its problem domain, namely the compositional aspects of software systems.
This makes the MOP less complex. Another abstraction or simplification results
from the separation of the implementation of theFACE language and its purpose,
the configuration of software systems.

2.2 Implementational background

In this section we are going to introduce some of the methodologies and tools that we
are going to use in the implementation of the object model.

2.2.1 Generic Programming in C++: Templates and STL

Generic programming in general

A generic solution to a programming problem, e.g. a function, is a solution that can
be adapted to elements of different types. Generic software components (e.g. classes,
operations) are components that can be parameterized with a type and can thus be used
with a range of types.
Generic software is written in terms of operations that are applicable to all of the
types the software is going to work with. For example a generic minimum function
min(T a, T b) that uses the less-operator< provides template code that can be
instantiated for every type that defines the< operator.

Templates in C++

Templates make genericity over data types possible in C++. The template mechanism
was introduced into the C++ language by the ANSI C++ standard committee (X3J16) in
Juli 1990. Aclasstemplate defines the layout and operations for an unbounded set of
related types. The types, which are parameters to the class templates, must all have a
set of operations in common21 in terms of which the methods of the classes are written.
Templates often are used to write general container types such as lists, stacks, or arrays.
They are then instantiated with a specific type, creating stacks holding integers, stacks
holding characters or stacks holding items of any built–in or user–defined type.
The templates in C++ are realized in the following manner: the class template written
by the programmer is used as a macro which is expanded by the compiler whenever
the template gets instantiated with a specific type as actual parameter. The instantiated
class template is then compiled normally. This means of course that on the one hand
the programmer saves space writing less source code but this advantage is confronted
by a sometimes surprising ‘code bloat’ in the executable.

21Although, no restrictions are enforced on types that match a given type argument. This gives the pro-
grammer a lot of flexibility (as always in C/C++) but has the cost of errors — like trying to sort a type which
has no comparison operator — being detected but at link time.

2.2. IMPLEMENTATIONAL BACKGROUND 25

template <class T> void foobar()
class vector { {

... vector<char> x;
}; ...

}

Figure 2.2: The definition and an instantiation of thevector -class template of the
STL.

template <class InputIterator1, class InputIterator2,
class OutputIterator, class Compare>

OutputIterator merge(InputIterator1 first1,
InputIterator1 last1,
InputIterator2 first2,
InputIterator2 last2,
OutputIterator result, Compare comp);

Figure 2.3: The declaration of the genericmerge -algorithm in STL. Note the different
types of iterators that are required.

A collection of reusable, generic data structures and algorithms: The Standard
Template Library

The Standard Template Library (STL) [MS96] is a general purpose library providing
a rich set of containers and algorithms designed to work together. The library has two
dimensions: algorithms and data structures. The data structures that are provided are
a small set of of well known containers, such as vectors, lists, sets, and maps. The
algorithms cover a broad range of the most common kinds of data manipulations, such
as searching, sorting, and merging. The separation between these two dimensions or
categories of STL is very strong, as the algorithms only know of the data structures
in terms of abstract access methods, so–callediterators.22 The specification of such
an iterator type includes also time complexity aspects which enables writing different
algorithms that have to meet individual time efficiency requirements by changing the
specification of the iterators used. Genericity is achieved because the algorithms work
on any container23 that offers the iterator–access required by the specific algorithm. In
other words, generic algorithms and containers can be ‘plugged’ together if they are
‘plug–compatible’. The adaptability of the algorithms leads to increased friendliness
towards software reuse: it becomes simpler to adapt than to program from scratch.
STL is implemented in C++.24 In this language, the generic approach of the library
is supported by the C++ template mechanism. An STL container is a class template
which takes the data type of the containers’ elements as its template–argument (see
Fig. 2.2). The generic algorithms in STL are C++ function templates (see Fig. 2.3). They

22An iterator is a generalization of a standard C pointer. An iterator represents a position in an abstract
data structure in the same way as a pointer represents a position in memory. STL provides a set of several of
these pointer types, each having a very well defined behavior which is a subset of the behavior we associate
with normal pointers.

23Naturally, containers that are not part of the library in the first place but are written by the STL user can
also be taken as parameters for the algorithms.

24In fact, it has been made part of the ANSI/ISO C++ standard.

26 CHAPTER 2. BACKGROUND

are instantiated by specifying concrete iterators that point at positions of a container.
The compiler takes care of the implementation of the ‘plugging’, guaranteeing type
correctness. It prevents certain combinations of containers and algorithms and ensures
a efficient implementation of the algorithms.

2.3. THEFACE DATA MODEL 27

2.3 TheFACE data model

FACE is based on ideas from object–oriented data modeling. Adata modelis a model
that describes how information may be structured. Object–oriented data models are
an extension of the older technique of relational data models. Those models tried to
map the structure of data in the real world into a model consisting of tables. The tables
were passive data stores with all the functionality that manipulated the data kept in the
separate application program. In a next step functionality, constraints and semantics
moved from the application program to the data following the object–oriented principle
of the encapsulation of data and functionality. This leads to domain specific modeling
primitives (e.g. multimedia objects like video movies which not only store the data but
also show it, convert it, print stills out of it etc.) where the user finds all the elements he
needs for his specific domain. TheFACE system is built using an object–oriented data
model. A data model may also be described by analogy to the context of programming
languages.25

1. A data model corresponds to the syntax and the semantics of a programming lan-
guage, i.e. the grammar that defineshowprograms are written in that language
and the runtime meaning of the grammar elements.

In FACE the data model is defined through so called meta types. By using meta
types we can specify what kind of domain specific modeling primitives there are.
This set is however not fixed (see section 2.3.6 on page 38).

2. The programs written in the programming language correspond to a schema built
using the data model.

In FACE, the schema is used to model the intentional part of the application (see
section 2.3.2 on page 30).

3. The running program corresponds to the instantiation of the schema, i.e. to the
objects and relationships that form a structure according to the schema.

In FACE, the schema defines what objects and what relations can be present in
the context of the application.

In what follows, a little bit of the history of theFACE model is exposed, then a general
view of the ideas behind the model is presented, and then an in-depth explanation of
the model itself is given.

2.3.1 The history of theFACE data model

The history of theFACE system dates back to theYANUS system of [Mei93b].YANUS
stands for Yet Another Unifying System and it tries to integrate multiple applications
and their data resources under one graphical user interface. The work onYANUS orig-
inated at the department for medical informatics of the university of Rotterdam where
statistical research on population data or ECG’s is performed. The different software
packages that are used there are a database management system, a statistical package
for analyzing data, image processing facilities and programs to do statistical pattern

25Analogy taken from [Mei93b, page 33].

28 CHAPTER 2. BACKGROUND

Conceptual
Table

cluster

select

ConceptualTable
Interface_Description

DB Table

select

ImplementationTable
Interface_Description

cluster
PatternRecognition
Implementation
Interface_Description

Conceptual Level
Implementation Level

Request

Figure 2.4: Example of aYANUS composition for describing a centralized integration
between a database system and a pattern recognition package used to perform statistical
information analysis.

recognition. All these packages are stand alone applications with different interfaces,
requiring their input-data resources to be in different formats and producing output in
still another format. Work in this kind of environment is done by applying a set of op-
erations to data in a certain consecutive order, each operation probably requiring trans-
formations of the data resources to a specific data format, forcing the user to change
from package to package, from interface to interface. The idea of theYANUS system is
to build a unifying interface on top of such a heterogeneous environment under which
the application boundaries and the necessary ‘housekeeping’ activities would vanish
and the user would see only one seamless environment. This was done by defining an
object–oriented data model where data and request for operations are the instances. We
can divide the data and request instances into two categories:

� Data and request instances that are presented to the user. They represent these
elements ‘conceptually’, independent from underlying representation and imple-
mentation in software packages.

� Data and request instances that represent a corresponding implementation of data
and the execution of a request in an underlying software package.

The user can create a request and link it to the data object to which it should be ap-
plied. By submitting the request, it is executed which corresponds to finding in which
software package the request can be executed and then creating the corresponding im-
plementation request; moreover the data has to be represented—and thus, if necessary,
transformed—in the data representation which is used by the chosen software package
(e.g. a special data representation for statistical analysis). In the terminology given
above, the system creates the right implementation object.
The domain specific ‘model’ of the application describes how the interface that is pre-

2.3. THEFACE DATA MODEL 29

a set of instances of the grammar

a grammar

describes

instantiation leveldescription level

Figure 2.5: Object structures describing object structures.

sented to the user is related to the interface of the underlying packages. This is shown
in Figure 2.4. The link betweenConceptualTable Interface Description and the
two types on the implementation level,ImplementationTable Interface Description
andPatterRecognitionImplementation Interface Description, show how the oper-
ation presented to the user corresponds to implementation operations as provided by
the underlying software packages.

The idea ofFACE is to use the principle of domain specific modeling primitives in the
context of frameworks. The use of meta types already introduced inYANUS allows to
define new modeling primitives.YANUS also shows how a semantic can be given to
those primitives.

2.3.2 The philosophy of the data model

Syntax

The purpose of theFACE data model in the most general terms is to represent ar-
bitrary object structures consisting of elements that have various connections among
each other. In order to know for a specific structure what the rules are that govern its
construction, a basic feature of the model is to have a separatedescriptionlevel ‘above’
the structure. The description level contains the rules which are basically telling which
objects can relate. The rules contained on the description level form a grammar. A
grammar does not describe one single object structure but a whole set of structures (see
Figure 2.5). It can be checked if a specific structure conforms to the rules of the gram-
mar. If it does,26 we will speak of aninstanceof the grammar. In what follows, the
level of the rules will be calleddescription leveland the level with the object structures
described by the grammar will be calledinstance level.

26We are not interested in structures that do not conform to the rules so we are not considering them any
further.

30 CHAPTER 2. BACKGROUND

Now the important feature ofFACE is that the grammar on the description level is
again represented as an object structure. Even simpler, there is no fundamental dif-
ference between object structures on the instance level and object structures on the
description level. On both levels the same construction mechanisms are used, and the
objects on both levels have a common basis. The described and the describing are es-
sentiallyuniform.
The obvious advantage of this uniformity is that the description level can have a de-
scription of its own in just the same way as the instance level. On the level ‘above’ the
description level we find a grammar for grammars, the description of a general gram-
mar structure, which can be instantiated to yield a set of specific grammars. Therefore,
the description level can be adapted, which is the basis of the extensibility of the data
model.
We have seen so far that theFACE model consists of three levels—an instantiation-, a
description- and ameta level—which have all a uniform syntactical structure: objects
connected in various ways.

Syntax and Semantics

The idea ofFACE is, that an object structure has a certain runtime-meaning, that struc-
tures have semantic.To give semantics to an object structure, the structures—the ob-
jects, and their connections—have to be interpreted somehow. The uniformity of struc-
tures on the different levels of the model is a clue as to how independent the object
structures are of their interpretation: the meta level has completely different meaning—
being a meta-meta-description—as the instance level, but it has the same structure. The
connection between syntax and semantics of the object structures inFACE, i.e. the in-
terpretation, must therefore be implemented in a very flexible manner. The flexibility
such an implementation has to exhibit implies openness to further semantic extensions,
e.g. domain specific types that are introduced when adapting the model to a specific
application domain.

Since we are buildingFACE to give arbitrary semantics to the object structures, when
we introduce types that stem from another domain, i.e. not the domain of theFACE
model itself, these types will have semantics that are added to their behavior as aFACE
object.FACE then becomes sort of a scripting language27 for these systems. How the
FACE types are connected to the semantics of the foreign domain is not fixed. It can be
done by interpretation but it can also be done by compiling the object structure, thereby
loosing theFACE behavior. So far, only the interpretative approach has been worked
out.28 The appropriate method will have to be decided from case to case and further
work is required to research the possibilities.29

In the following sections we will present the details of the data model in as much accu-
racy as is needed for the reader to understand the problems that have to be solved by an
implementation. The details can also be found in [Mei93b] and [Mei93a], although the
model has evolved in certain aspects in the time since those texts were written down.

27A scripting language is a language for controlling and composing components of a system.
28See the explanation of theFACE execution mechanism in section 3.6.1 on page 69.
29See [ME96] for an experiment on using an interpretative approach to model the domain of network

protocols.

2.3. THEFACE DATA MODEL 31

Properties

a FACE object

Figure 2.6: AFACE object with threeProperties.

2.3.3 The basic element of the data model: the Object

At the heart of theFACE data model lies the notion of anobject. We will describe how
those objects are synthesized.

The structure of an object

An object is an entity present at runtime of theFACE system. An object can have
an arbitrary number of properties, among them for example a ‘Name’Property, i.e.
the Property that contains the name of an object. Each property contains values of
a specified kind, in our example this would be a string. The identity of the objects is
independent of the values of its properties, so for example changing the name of an
object does not change the object, and other objects still refer to the same object.
An object refers to one type of which it is an instance. This means that the type de-
scribes a set (or class) of similar objects out of which an instance is one specimen.
The information theFACE-Type holds about its instances concern the structure of the
object as well as the operations that are applicable to the object (for details on the
type–instance relation see chapter 2.3.4).

Properties

An FACE-Object has a certain number ofProperties. A Property has a name and
can be accessed through this name. EachProperty has aProperty Value which can
hold one or more elements of a specified type, called theElement Type of thePrope-
rty. These elements can either be references to other objects or they can be “simple”
values from different domains like integer numbers, booleans, strings, etc. AProperty
is described by aProperty Descriptor in terms ofElement Type, number of elements
that can be held and other descriptions (see section 2.3.4 on page 33).

Associations

Associations between types are higher level abstractions that represent structural rela-
tionships between instances of those types. Higher level means that associations have
a certain semantic the goes beyond one object referencing the other. A relationship
between objects can be called an instance of an association between the types of the

32 CHAPTER 2. BACKGROUND

A

referring entity

B

referred entity

Figure 2.7: A binary link (A,B).

two objects. Such a relationship is realized inFACE using one or multiple links. A
link is, theoretically spoken, a tuple of object references, e.g. a binary link is a pair
of references (A,B) (see Figure 2.7). We call the first element of the pair thereferring
part and the second element thereferred. The referring object is the distinguished part
of the relation which establishes and destroys the relation. A link is modeled inFACE
by putting a reference to objectB in a Property of objectA. Using links we model the
various associations inFACE. All associations inFACE are binary. There are three
different kinds of associations:

� The simplest association is a unidirectionalReference whereunidirectional
means that only the referring side is aware of the relation. The association has
no additional semantic.

� TheComponent association is a bidirectional reference. Both participants of
the relation are aware of it, i.e. the referred object has a so-calledbackreference
to the referring object. In aComponent association, the referring object owns
the referred object. This means for example that the lifetime of the referred
object depends on the lifetime of the referring object.

� TheCross-Reference association is again bidirectional. Cross-references are
used to prevent dangling references since before destroying an objectB, the back-
references ofB can be used to notify objects that refer toB to abolish the relation.
Cross-references have their name since they essentially referacrossthe acyclic
tree of the component structure established by component associations.

2.3.4 Types

The object as described by its type

Every object refers to a type from which it is an instance. Through this reference the
object has permanent (at runtime) access to its type. The type describes its instances in
terms of their properties. This means that the type specifies a list of all the properties
that its instances must have. The list of properties is in fact a list of references toPro-
perty Descriptors 30 (see Figure 2.8). At the moment of the instantiation, the object
is formed by a routine that creates aProperty for eachProperty Descriptor in the list
of the type.

30ThoseProperty Descriptors can be reused by other types. We therefore can say thatcompositionis
used to create the types.

2.3. THEFACE DATA MODEL 33

Property "A"

Property "C"
Property "B"

Property Descriptor "C"

"A"Property Descriptor

Property Descriptor "B"

Property
"PropDescriptors"

instance of

instances of

Object

Type

Figure 2.8: A type describing an object throughProperty Descriptors.

Property Descriptors

A Property Descriptor is a special type object which describesProperties. A Pro-
perty Descriptor is structured with a fixed set of slots, each with a specified meaning.
These slots, which are realized asProperties like in a normal object, can be parameter-
ized so that theProperty Descriptor completely describes the corresponding property.
Some of the slots of aProperty Descriptor, i.e the categories in terms of which the
Property is described, can be found in the following list:

Elttype: Determines the type of the property values. This property enables the type
checking mechanisms (see sectionType checking and Validityon page 35).

Minelt: Determines the minimal number of elements the property can have. Together
with Maxelt, Minelt controls the arity of the relationship.

Maxelt: Determines the maximal number of elements the property can have.Maxelt
must be equal or larger thanMinelt.

Through property descriptors the type exerts control over thestructureof the object:
it determines the number of the properties and some aspects of the property values in
prospect. As mentioned in sectionAssociationson page 31,Property Descriptors are
used to represent the associations between types in the model. In theYANUS model,31

which was formalized in [Mei93a], there was a range of different types forProperty

31This section about the outdated categorization ofProperty Descriptor types inYANUS and how they
translate into theFACE model is part of this text since the transition and the reasons for it are documented
nowhere else.

34 CHAPTER 2. BACKGROUND

iAttributeDescr_type iReferenceDescr_type iCrossRefDescr_type iComponentDescr_type

iStructPropDescr_type

Figure 2.9: The different categories ofProperty Descriptors in theYANUS model.

Descriptors (i.e. meta types relative to aProperty, see Figure 2.9). Each of the types
represented a different relation:

iAttributeDescr type: Property Descriptors that are instances of this meta type have
basic values as theElement Type of theProperties they describe. Since basic
values do not have the status of objects, elements of an attribute-Propertycannot
be called relations. This implies that there is no special semantic attached to these
Property Descriptors.

iReferenceDescr type: Property Descriptors with this type represent a unidirec-
tional relation. An objectB is referenced in aProperty of object A without
being aware of it. This type does not have any special semantics.

iCrossRefDescr type: Property Descriptors with this type represent relationships
that are bidirectional. Establishing a link fromA to B under this relation results
in a backlink fromB to A. This link would be set automatically in aProperty of
B calledRefObjs.

iComponentDescr type: Property Descriptors of theiComponentDescr type de-
scribe component relationships. An objectB that is referenced in a component
Property of A automatically gets a link toA in its Property SuperObj. If A
would be destroyed,B would be destroyed also.

The type of theProperty Descriptor of a Property accessed with a write operation
helped to decide, which additional semantics had to be respected (see [Mei93a, pages
46–50]).
TheFACE data model has evolved from this older ideas. InFACE only the meta type
iStructPropDescr type remained. Two newProperties were added to theProperty
Descriptors which let us express the same as before in a more declarative way:

Ownership: Determines if the referred objects are owned by the object theProperty
belongs to. Owned objects are destroyed when their owner is destroyed and are
copied when their owner is copied.

BackRefPropDescr: Determines whichProperty in the referred object is used to
link back to the referring object. If the value of theBackRefPropDescr is set
to NIL , no back link is established.

2.3. THEFACE DATA MODEL 35

We can model the relation between a type and its subtype for example by settingOwn-
ership to false in theProperty Descriptor SubTypes andBackRefPropDescr
to Supertype. This would result in a cross-reference relationship where the supertype
refers to its subtypes via theProperty SubTypes and the non-owned subtypes auto-
matically refer back to their supertype through theProperty Supertype. This achieves
the same semantic as did theProperty Descriptors of typeiCrossRefDescr type in
theYANUS model.
The main advantage of the new model over the old is that in the case of theBack-
RefPropDescr it allows to specify individually for every relation where the back link
should be set. In the old model, the back link for a subtype relation would have been
set inRefObjs together with all the back links of the other crossreference relations.

Type checking and Validity

Type checking is a means to ensure that objects are parameterized and composed in
the right manner. Before two objectsA andB are related by referencing the objectB
through a propertyp of A , the system must check ifB has the right type, which it does
by looking at theElttype property of theProperty Descriptor of p.

An object is only legitimate when it refers to a valid type. Only then can type checking
be applied. Thevalidity of an object tells how good an object satisfies the description
of its type. Validity is divided into three levels, each higher level encompassing the
requirements of the lower levels. On the first level, whichProperties the object has
conforms to the property list, or the template, of its type. On the lowest level of validity
the object is still labeledinvalid. On the second level, the values of the properties fulfill
the syntactic requirements of the type’s property descriptors, like being of the right
type and the right arity. The object is said to besyntactic valid. On the highest level,
the object conforms to prescriptions of a set of extra requirements32 each object type
has. An object which satisfies the extra requirements of its type is labeledvalid. See
pages 46-50 in [Mei93b] for a detailed explanation.

Types and Meta types

In theFACE data model, types are also objects. They are therefore also described by
types of their own, the so calledmeta types, which, being types themselves, again have
to be described. This seemingly never ending recursion finds its fix point in a meta-
meta type which describes itself.
The relationship between object and type is found throughout the model, and because
everything in the data model is an object, everything has also a type. The model is thus
totally self-descriptive.

Types come in different categories:

� Object types
Object types describe objects. Instances of object types areFACE objects.

32Extra requirementsare predicates that range over the property values. Extra requirements will be used
to prescribe relations of different property values, for example the value 9 of a hypothetical propertyMonth
has the consequence for the value of the hypothetical propertyDate not to exceed 30. See [Mei93b, page
49].

36 CHAPTER 2. BACKGROUND

iValueType_type

iType_type

iMetaType_type

iStructPropDescr_typeiBasicValue_type

Οi

iObjectType_typeiObject_type

iOperationDescr_type

subtype of

instance of

Figure 2.10: TheFACE kernel (partial view).

� Value types
Value types describe values that can be elements of object properties. There are
two sorts of value types:

– Basic Value types
BasicValue types describe elementary data elements of such domains as
integers, booleans, characters, strings, etc.

– Property Descriptors
Property Descriptor are used to describe properties of objects. An in-
stance of aProperty Descriptor is a property object.

� Type types
Type types describe types. An instance of a type type is a type (therefore, type
types are meta types).

Supertypes and subtypes

Between instances of the same meta type, therefore between types, there may exist a
supertype/subtype relationship.

A subtypeinherits the lists ofProperty Descriptors andOperation Descriptors of
its supertype and incrementally modifies them. That means that the subtype can add
new values to the set of inherited values, or that it can modify some of those inherited
values. The instances of the subtype are then also instances of the supertype because
the set of their properties is a superset of the properties of the instances of the supertype.

Each type has one (and only one) supertype which is referred through the property
Supertype. If the property is empty, the supertype is theempty typei;.

2.3. THEFACE DATA MODEL 37

iType_type

iObjectType_typeiObject_type

instance of

iValueType_type

iStructPropDescr_type

iOperationDescr_type

iMetaType_type

iBasicValueType_type

Figure 2.11: Part of the instantiation hierarchy of theFACE kernel.

2.3.5 The kernel of theFACE data model

The kernel of theFACE data model contains the descriptions or types of all the basic
structure and elements of model itself. Because the model is self-descriptive, the types
in the kernel are simultaneously elements of the modelanddescriptions of the elements
of the model. Thus the kernel inevitably evolves into a set of objects that have multiply
interwoven instance- and inheritance relationships. (see Figure 2.3.5)
To give an overview over the kernel structure which is clarifying rather than confusing,
we split the depiction in two parts, emphasizing the aspect of “Who is instance of
whom?” in the one drawing and the aspect “Who is subtype of whom?” in the other
drawing.

The instantiation hierarchy

The instantiation hierarchy in Figure 2.11 shows the relationship between the types
and their instances which are part of the kernel. The most remarkable thing is that the
meta typeiMetaType type is an instance of itself, thus ending the infinite recursion
of description.

The inheritance hierarchy

The inheritance hierarchy in Figure 2.12 shows the relationships between the super-
types and the subtypes in the kernel. At the top of the hierarchy we find the type
iObject type which describes the basic behavior of an object. All the other types and
meta types are subtypes ofiObject type, which means that everything in the model is
first of all an object.

38 CHAPTER 2. BACKGROUND

iStructPropDescr_type

iType_type

iValueType_type

Οi

iMetaType_typeiOperationDescr_type

iObjectType_type

iBasicValueType_type

iObject_type

subtype of

Figure 2.12: Part of the inheritance hierarchy of theFACE kernel.

2.3.6 The Extensibility feature

The following quote defines extensibility for programming languages. BecauseFACE
can be seen as an programming language as well, the definition can be used in the case
at hand.

Let us define anextensionto be a set of definitions which augment a lan-
guage with an entirely new facility that can be used in the same way that
preexisting facilities are used. ... Any time we define a new object, a new
function, or a new data type we are extending the language. Each such
definition extends the list of words that are meaningful and adds new ex-
pressive power. By building up a vocabulary of defined functions and/or
procedures, we ultimately write programs in a language that is much more
extensive and powerful than the bare language provided by he compiler.
([FG93, page 101])

Extensibility is an essential feature of theFACE data model. Thanks to it we can adapt
FACE to describe systems of a wide variety. This is done by extending theFACE ker-
nel with special types which describe, for example, the classes of a framework. The
very generalFACE kernel model thus gets specialized to a specific data model which
lets the user then model exactly those systems that are realizable with the framework.
The self-description of the model offers a flexibility for extensions which is remark-
able: Because every item of the model has also its description in the model, and these
descriptions are accessible to the user—this means that the user can derive special-
ized versions from the descriptions—we can specialize every item of the model and,
theoretically, build a completely new model.

The specialization interface

TheFACE data model, being object–oriented, offers the possibility to create new types
by deriving from older types. Derivation first means that the new type is determined
in certain aspects by the old. The main reason to derive is of course to extend the old

2.3. THEFACE DATA MODEL 39

type in the process, so the derivation can be influenced by the user over a so called
specialization interface. This interface enables her to incrementally change the new
type with respect to the old.
Specialization is calledsubtypingin theFACE data model [Mei93b, page 50 ff]. The
type that is going to be specialized is called thesupertypeand the specialized type is
called thesubtype. A subtype inherits the values of two properties of its supertype:
the value ofPropDescriptors and the value ofOperations. PropDescriptors deter-
mines the structure of the instances of the type as it contains a list of all the properties.33

Operations determines which methods are applicable to the instances of the type as
it contains a list of all the operations.34 The specialization can now be applied to those
two lists and their elements. It has two possible dimensions:

1. Horizontal extension:New35 Property Descriptors are added to the subtype’s
list, so that instances of the type have more properties compared to instances of
the supertype.
TheseProperty Descriptors are added as a link to theOwnProperties–property.

2. Vertical modification:Specific elements of the list ofProperty Descriptors are
changed in certain restricted ways. For example, the number of elements that the
property can hold may be (further) constrained.
Vertical modification is realized by substituting the link to the ‘old’Property
Descriptor with a link to the more constrainedProperty Descriptor, which
must be a subtype of the oldProperty Descriptor.

Specialization inFACE is thus done by composing or re-composing a set ofProperty
Descriptors. The specialization interface is well defined and allows only a small set
of operations to be performed. Still, it can be controlled down to a very detailed level,
i.e. the user can influence the creation of new types down to the basic elements of the
structure and the behavior of the objects.

33In fact, the list holds the types of the properties, theProperty Descriptors. See sectionThe object as
described by its typeon page 32.

34Again, the list holds the types or descriptions of the operations and not the operations (the instances of
the operation descriptors) itself.

35Newrespective to the list ofProperty Descriptors of the supertype of which the type in question is a
specialization.

Chapter 3

Implementation Issues

In this chapter, we are going to present some key problems that had to be solved in the
implementation of theFACE data model.
The implementation work performed could follow in large parts the formalization of
the data model in [Mei93a]. The problem was not so much to find a correct algorithm
to implement the ideas of the model but more to find the means in the chosen language
to translate the formalization adequately.
The main problems that arouse during the implementation where therefore of prag-
matic nature,1 although in the course of the implementation some problems with the
formalization were discovered which led to adaptions of the formalization.

3.1 Road map for this chapter

This chapter consists of 5 sections, each treating a separate problem that emerged dur-
ing the work. Each section starts with a description of the problem and then goes on to
describe the work that has been performed.
The sections are loosely connected as is the case of the problems that were treated. The
order of the sections follows the construction of the system, starting with the low level
parts and gradually building up.
The sections are the following:

� The basis of theFACE model: the system of basic types. How was it imple-
mented on top of the type system of C++? (See section 3.2 on page 42)

� The cornerstone of theFACE model: theFACE-Object. How was the basic
object with attributes and interface built? (See section 3.3 on page 45)

� How areFACE-Objects and types mapped to C++ classes? Which basic C++

classes are needed to implement the functionality of specificFACE-Objects?
(The set of basic types is called the kernel ofFACE) (See section 3.4 on page 54)

� The bootstrap. How doesFACE perform its lift-off? (See section 3.5 on page 65)

1As a subtitle of this work, “Teach yourself C++ in 8 month” was shortly in the discussion.

40

3.1. ROAD MAP FOR THIS CHAPTER 41

� A small example. How can we useFACE to model software? (see section 3.6)

� Last but not least: Who killed John F. Kennedy? Finally the answer. Discov-
ered accidentally while ensuringconst -correctness of thefaceObj code. (See
page)2

Since the chapter is mainly organized around the different subjects mentioned, we will
the different sections will be a mixture of technical documentation and discussion of
the contribution.

2HaHaHa, very funny!

42 CHAPTER 3. IMPLEMENTATION ISSUES

3.2 Establishing the system of domains and types

In theFACE object model we work with typed items. All elements that appear in the
context of the model either stem from a specific domain of basic values or have a type
of which they are an instance. Types are introduced to be able to check and support the
user in creating correct compositions. Using typesFACE can control if values of the
right kind are being entered or operations are applied to the right objects.

In the following section we explain how the formalization of theYANUS model intro-
duced domains and types and to what extent we created a representation of the system
in our implementation.

3.2.1 The formal basis of the domain system

TheYANUS model establishes one main dichotomy of the elements that appear in the
formalization. This is the one between

� basic values from different ‘primitive’ domains,

� and elements from a set of object identifiers.3

The primitive domains4 include generally known sets like that of all integer numbers
(Z), that of all boolean values (B = ftrue; falseg), that of all strings (STRING), and
also some other domains that are more specifically tailored to theYANUS model like
the set of all possible values that indicate the validity status of an object (VALIDITY =

finvalid ; syntactically valid ; validg). For each primitive domain inYANUS, a type
object is introduced which represents that domain [Mei93a, page 25-26, Definition 23a].

The set of all object identifiersID5 that is defined in theYANUS model is structured
by a system of subsets. Each different subset ofID is defined as the set of instances
of a specificYANUS type [Mei93a, page 28, Definition 24]. The setIMT � ID for
example is the set of all instances of the typeiMetaType type.

Additionally, theYANUS formalization introduced some domains that were unions of
the primitive sets. The union of all primitive domains is the setD ([Mei93a, page 5,
Definition 1]). The setEV of all the values that can be elements ofProperty Values
is defined like follows:

EV = D [ID [NIL

D andEV are not only used to define the domains of specificProperty Values but
consequently also for the definitions of the domains of functions that access thePro-
perties of an object. Note that a function that has a parameterev 2 EV is defined for
all elements out ofZ[B [� � � [ID [NIL.

3A third category is actually defined on page 6, Definition 3: It consists of the setNIL which contains
only the elementNil .

4See [Mei93a, page 5, Definitions 1-1b] for details.
5See [Mei93a, page 6, Definition 2].

3.2. ESTABLISHING THE SYSTEM OF DOMAINS AND TYPES 43

3.2.2 Transferring the domain system to C++

When implementing theFACE data model, we mapped the domains of the formal-
ization onto the type system of our hostlanguage C++. The correspondence between
the formalization and the implementation preferably should be as close as possible,
since the formalization will be a guide for the implementation also in other areas. The
following three tasks result:

� Map primitive domains to C++ data types.

� Create a representation for object identities.

� Build support for the union of domains,D andEV .

The goal of the of the union data typesD andEV is to support multiple data types
in one interface. C++ is a statically typed language, meaning that the types of variables
and arguments to functions have to be known at compile time. A function has to be
declared with the exact types of the arguments it is going to get which is not possible
when the argument can be of a data type out of a range of types.

Implementation of primitive domains

The mapping of the primitive domains is very straightforward. Some examples:

� Zwas mapped to the builtin C++ data typelong .

� B was mapped to an enumeration setbool = ftrue, false g.

� STRING is represented by a user-defined classstring .

Implementation of Object Identifiers

The requirements for the setID and its elements are the following:

� ID is a countably infinite set of symbols.

� For eachFACE-Object that is created, one object identifier is claimed fromID .
When the object is deleted, the identifier is given back toID .

� Via its identifier an object can be referenced, i.e. retrieved from the set of all
objects currently in existence.

We mapped the setID to the set of all C++ pointers, i.e. an object is identified by the
memory location its storage space starts at. Note that we do not move the objects to
a different location in memory after they are created. The management of free store
done by the implicit C++ runtime system thus models the identity concept well enough
(except that the storage space is limited), so no further work on our side is required to
let the C++ pointers have the semantics ofFACE object identifiers.

44 CHAPTER 3. IMPLEMENTATION ISSUES

Implementation of the union sets

The sets of data typesD andEV are used to treat different types of a common category
at once. This is useful also for an implementation so we reproduced the typeEV .
Using such a union type we can pass objects of different data types around under the
hood of a single type. This helps in keeping the amount of code that has to be written
to handle the data of the different types small. Instead of writing a function foreach of
the different data types we know as little as possible about the types of the data objects
until we really need to be exact. At that moment, we convert the union type to the true
type of the value.

A classSimpleType acts as a wrapper for the different domains or C++ data types,
including the built-in typeslong , char , bool and also the user-defined data types
String andfaceObj , the base class for allFACE-Objects (see Figure 3.6 on page 58).
An instance of the classSimpleType acts as a variable which can have values of dif-
ferent domains. Such an object keeps one element of an arbitrary data type using the
union construct [ES90, page 181] to save space. A tag identifies the type of the
element being kept in the object so type information is available in the object itself.
The object is initialized with a specific value (and a specific type) by a constructor for
each of the different data types. Once created, the value of the object can change, the
data type of the values kept in that particular object however cannot. Conversion func-
tions [ES90, page 272] are used to transfer the value of aSimpleType -object into its
proper format.

Discussion of the implementation

The implementation of the object identifiers may not be optimal in the long run. A
redesign would probably necessary when implementing a permanent object store. At
the moment of saving an object it is moved from memory to a different storage medium
and thus pointers to memory locations become invalid as identifiers.

The problem of hiding data types behind a generic mask to save code will return when
we implement theFACE-Object (see next section). The solution we choose in this
case moves type checking from the hands of the C++ compiler into the hands of the
programmer since the programmer has to do the right downcasting. This means more
efficiency in space but also more overhead at runtime (since type checking is no longer
done at compile time but at runtime). The tradeoff is in favor of our solution since
efficiency concerns are for the moment at lower priority for theFACE system.

3.3. THE IMPLEMENTATION OF THEFACE-OBJECT 45

3.3 The implementation of theFACE-Object

The FACE-Object is the basic entity of theFACE data model.FACE, being a self-
descriptive data model, has explicit types and meta types and represents types as ob-
jects: FACE-Types are alsoFACE-Objects. TheFACE-Object is therefore the basis
for most of the elements (objects, types, meta types) of the data model. In this section
we are going to present the implementation of theFACE-Object.
FACE-Objects have a generic implementation, consisting of containers for itsPro-
perties andProperty Values. AlthoughFACE-Objects are (runtime) typed, all these
types use this same implementation.

Road map for this section

This section discusses the implementation of the generic structure of theFACE-Object
in detail. We will start with a description of the formal definition and the interface of the
object which is a summary of the formal definition of theFACE-Object in [Mei93a].
We will then describe how theFACE-Object was implemented in C++, how thePro-
perties and theProperty Values are implemented. At the end of this section, some
basic details on the implementation of type checking will touch the typed structure of
theFACE-Object.

3.3.1 The generic structure of theFACE-Object

Objects have an identity independent of their value, and refer to their type.
Objects have namedproperties. Via a property name, the value of that
property can be accessed. This so-calledproperty valueis either a se-
quence of identifiers of other objects, i.e. references to other objects, or a
sequence of (other kinds of) values. [Mei93b, page 42]

These are the informal requirements for theFACE-Object. In order to define aFACE-
Object formally6 correct, we need the following ingredients:

� The set of all identifiersID . Identifiers play the role of object references.

� The set of all identifiers identifying object types:7 IOT � ID .

� The set of all basic types:

D = Integer [Boolean [String [: : :

� A set of symbols representing the validity state of objects:

VALIDITY = finvalid ; synt valid ; validg

� The set of allProperty names:

PNAMES

6For the full formalization see [Mei93a, pp. 5-8]
7Object types are types describing objects. See section 3.4.1 on page 57.

46 CHAPTER 3. IMPLEMENTATION ISSUES

� For each object a finite subsetA that is determined by the type of the object:

A = fPn1; : : : ; Pnkg � PNAMES

� The set of all possibleProperty Values:

PV = ID� [D�:

Note that aProperty Value consists of a sequence of data elements of one type,
the so calledElement Type.

� The setOV of all mappingst:

t : A ! PV

Pni 7! vi 8i; 1 � i � k

A FACE-ObjectO is then defined in the following way [Mei93a, page 7, Definition 6]:

O = (value ; type; validity)

where
type 2 IOT ; validity 2 VALIDITY ; value 2 OV

We note that eachFACE-Object has a distinct number ofProperties which depends
on the type of the object. We further note that the number of elements that form a
Property Value is not fixed. We finally note theProperties cannot be discerned by
the type of their elements, they all have the same structure.

3.3.2 The basic interface of aFACE-Object

In FACE, the definition of aProperty for an object automatically results in the avail-
ability of operations to read and write the values of theProperty [Mei93b, page 38].
The user wanting to access theProperties of the object does so by sending an access-
message via the object which is the owner of theProperty. The basic interface of
a FACE-Object therefore consists of aget andset method for eachProperty the
object has. There are twoget methods which are slightly different [Mei93a, page 8,
Definition 9]:

1. get : returns the wholeProperty Value in the form of a set. The set can then be
queried for its contents.

2. singet : returns only the first8 element of theProperty Value.

Access to the properties must be realized in agenericmanner. This means that instead
of having a method

setName("Idefix")

to change the contents of theProperty “Name” we should be able to parameterize a
genericset method with the name of theProperty, e.g.

8‘First’ is meaningful sinceProperty Values are a sequence (see previous section).

3.3. THE IMPLEMENTATION OF THEFACE-OBJECT 47

set("Name","Idefix") .

The reason for the genericity-requirement is that we want to be able to create new
FACE-Types at runtime [Mei93b, page 38] which will then be instantiated without
recompilation of the system. We thus are not able to predict at compile time which
Properties anyFACE-Object has. It is possible to build such a generic access mecha-
nism, i.e. to know at runtime whichProperties the object has and which not, because
a FACE-Object always has a reference to its type. The type is where the information
about theProperties of the instances can be retrieved. Note that we must take precau-
tions that we do not run into an endless recursion when, in order to access an object’s
properties, we first have to access the type-object’s properties.

3.3.3 The implementation of theFACE-Object

The major characteristic of aFACE-Object that influences the implementation is that
it is created at runtime following a description that is not known at compile time.9 It
is therefore obvious that aFACE-Object cannot be implemented by a simple class in
the hostlanguage C++. For an implementation of theFACE-Object we have to consider
three major points:

1. How are theProperties of an object going to be realized?

2. How does the fact that there areProperties with differentElement Types affect
the implementation?

3. How does the fact affect the implementation that the number ofProperties in
a FACE-Object as well as the number of elements in eachProperty Value is
unspecified at compile time?

We will examine the threee points in detail in the following sections.

The Implementation of theProperties

We propose to implement aProperty as an object in its own right, theProperty Ob-
ject. TheProperty Value is contained as an aggregation in theProperty Object. The
characteristics of this choice are the following:

� A Property Object has its own identity, i.e. it can be treated as a handy item.
We can build easily support for collections or sets ofProperty Objects using
container classes from libraries (see next section).

� The behavior of theProperty is encapsulated. TheProperty Object has a dis-
tinct interface of its own. This allows to create different levels of abstraction.

� A Property Object is generic. This means that for every element type of the
Property Value, theProperty Object “looks” the same from outside. ThePro-
perty Object hides theElement Type of its value.

9For a detailed description of the instantiation mechanism see section 3.4.2 on page 59.

48 CHAPTER 3. IMPLEMENTATION ISSUES

TheElement Type of theProperty Value will be fixed at creation time of thePro-
perty Object. The information, whichElement Type to choose for a specificPro-
perty Object is taken from theProperty Descriptor. TheProperty Object therefore
is seen as an instance of theProperty Descriptor. It is, however, not aFACE-Object
and thus not aFACE-instance of theProperty Descriptor (see page 62 for details
about the instantiation ofProperty Descriptors).

Using containers

Both the set ofProperties and the set of elements of aProperty Value are unknown at
compile time. We therefore have to devise a mechanism to deal with the dynamic allo-
cation of items during runtime. This is a standard task that occurs when implementing
software systems. Reusable code for this kind of functionality can be found in every
source code library. We used container components from the STL [MS96] in the two
cases.

The implementation of theFACE-Object called for the possibility of allocating any
number ofProperties, which are items that can be identified by their name. To build a
container for theseProperties (see the left side of Figure 3.1 on page 49) we used an
associative array of the STL, the template container

map<class Key, class T, class Compare> .

where amapcontains elements of classT which are indexed by keys of some arbitrary
typeKey. It offers fast retrieval of information based on the key, using aCompare-
function provided by the user.10

In our implementation, the objects of classT are theProperty Objects. The map
organizes storage and retrieval by using the name of theProperty as theKey. The
information whichProperties the object has is thus implicitly contained in themap
and does not have to be retrieved from the object’s type. The access to the objects
Properties can thus be genericand fast. We furthermore avoid the trouble when, in
order to access theProperties of an object, we first have to access theProperties of
the type.

For the implementation of theProperty Value (see the right side of Figure 3.1) we
used a sequential container from the STL, the

vector<class T>

whereT is the type of the elements that can be stored in the container. Avector
offers fast randomaccess to sequences of varying length in addition to fast insertions
and deletions at the end.11

The interfaces of the STL containers are very “heavy” and allow the user to do almost
everything. To tailor the interface to our specific needs, we wrapped both containers in
classes of our own (classespropsContainer andpropValue<T> in Figure 3.1).
Note that we can do this with a non-template class in the case ofpropsContainer

10See [MS96, page 164].
11See [MS96, page 118].

3.3. THE IMPLEMENTATION OF THEFACE-OBJECT 49

propsContainer propObj

abstract

propValueWrapmap
(STL)

Key,T,Compare

propValue

T

vector
(STL)

T

a container for Property Objects

a container representing a Property Value

Figure 3.1: Wrappers around STL container classes.

but have to use a template forpropValue<T> since this class must provide an inter-
face to the elements of typeT stored in thevector .

Two problems arise when we implement theProperty Value as a template class:

1. In order to store all theProperty Objects of aFACE-Object in one and the same
map, the type of implementation of theProperty Object—the classpropObj
(see Figure 3.2)—cannot vary with the elements that are stored in it, it has to be
the same for all the types. This means that we have to aggregate the template
propValue<T> in the non-template classpropObj .

2. Another question to ask at this point is how the access functions of theFACE-
Object are realized in the class structure that we have developed. All three of
these operations must have access to theProperty Value.

� get returns the wholeProperty Value,12

� singet returns only the first element of theProperty Value,

� andset adds another element to theProperty Value.

get , singet , andset must be available for each of the different types that
can be stored in aProperty Value. In a statically typed programming language
like C++ we can achieve this by overloading theset andsinget methods for
each type. This results in the interface that has to provide these access functions
being “heavy” in the sense of having lots of methods, which implies lots of code.
The number of those overloaded interfaces has to be minimized.

These problems can be overcome by the introduction of a non-template, abstract base
class for the the value container of theProperty Object: this is the classpropValueWrap

12Note thatget does not return theProperty Object but only its value part (see section 3.3.2 on page 46).

50 CHAPTER 3. IMPLEMENTATION ISSUES

n1

map
(STL)

Key,T,Compare

propsContainer

faceObj

propObjKey

abstract

propValueWrap propValue

T

vector
(STL)

T

Property Object

Value of the FACE object

Figure 3.2: The classes of the implementation of theFACE-Object.

(see Figure 3.2). This class enables the following respective solutions to the problems
mentioned above:

1. We can easily store a reference to the base class in the classpropObj and thus
hide the type of the value container.

2. Access requests that ‘enter’ theFACE-Object over the broad, overloaded in-
terface of the classfaceObj can be easily multiplexed into a single function
that transfers thepropValueWrap container from thepropObj through the
different classes (propObj , propsContainer) to the access functions in
faceObj :

� get returns the wholepropValueWrap container to the caller which has
to do the downcasting itself. This is possible since the client either knows
what to expect or theElement Type can be asked from the type of the
Property. An iterator that is built inpropValue<T> helps accessing the
elements of the container sequentially.

� set andsinget which, as mentioned above, are implemented using over-
loading and are thus typed, can downcast the container and access it over
the typed interface ofpropValue<T> .

We thus solve the problem of the unspecified numbers of elements using two template
containers. Note: The way we use the STL template classes is different in the two
cases:

� Themap<Key,T,Compare> template will only be instantiated with the class
propObj as actual argument forT.

3.3. THE IMPLEMENTATION OF THEFACE-OBJECT 51

� Thevector<T> will be instantiated with the range of different types that are
going to be stored in aProperty Value. The template functionalityofvector<T> is
thus essential for our implementation.

Layering of structure

Summarizing the implementation of the genericFACE-Object we can see a layer struc-
ture. The behavior of theFACE-Object is distributed in the implementation over the
different levels of abstraction. Starting ‘bottom up’, the levels are the following:

1. TheProperty Value
At the lowest level (implemented by the classpropValue) we find the behavior
for storing and retrieving data elements.

2. TheProperty Object
The Property Object (implemented by the classpropObj) encapsulates the
functionality to create the right type of value container when theProperty Ob-
ject is created (see section 3.4.2 on page 62). It additionally stores and provides
access toProperty-specific data like the access-control flagsaddallowed ,
removeAllowed , changeAllowed .

3. The Object value
The value of aFACE-Object consists in a set ofProperties and their values. The
classpropsContainer implements the management of the set ofProperty
Objects of the object by using the STL associativemap-container.

4. TheFACE-Object
The basic behavior of aFACE-Object is implemented by the classfaceObj .
With basic behavior we mean, for example, how an object behaves during in-
stantiation (see section 3.4.2 on page 59), how basic access is provided.

These different levels are a clean separation of tasks and responsibilities in theFACE-
Object. Following the object–oriented paradigm we implemented each of these layers
in a separate class. The implementation profits of the advantages of encapsulation and
abstraction.

Discussion of the Implementation of theProperties

An alternative implementation of theProperties was proposed in [Mei93b, page 177].
The idea was to implement the object value as an array. Each position of the array
would hold aProperty Value (in the form of a sequence). In order to access aPro-
perty, the offset of its array-position would have to be known. This information would
be gathered by asking theProperty Descriptor. The mechanism thus proposed would
guarantee genericity, because it would only be based on the runtime availability of type
information.
The implementation proposed in this work, while keeping the genericity feature of
the access mechanism, has the advantage that it eliminates the call to aProperty De-
scriptor asProperties are searched for not by offset but by name. The drawback is
obviously that more space is needed for the overhead of an object.

52 CHAPTER 3. IMPLEMENTATION ISSUES

3.3.4 The implementation of the type checking mechanism

In the following, we assume the reader to know what aFACE-Type is, namely a de-
scription for an object in terms of theProperties the object has and the operations that
can be applied to the object (see section 2.3.4 on page 32). Since every object inFACE
refers to its type, runtime type checking can be performed for every operation that is
called. The basic example of an operation inFACE where type checking is needed is
set : does the data element that is about to be entered in aProperty match theEle-
ment Type that theProperty Descriptor prescribes? In fact, before a new value can
be entered into aProperty Value, a number of checks have to be performed:

� Is theProperty allowed to change its contents? (Checking the flagsaddAllowed ,
removeAllowed , changeAllowed)

� Is theElement Type of theProperty the same as the type of the new value?
(Type checking)

� If the new value is an object reference, do we have to set a backreference or not?
(look at theProperty BackrefPropDescr of theProperty Descriptor)

� After the value has been added/removed/changed: does the object still conform
to the syntactic requirements of its type? Note that this check does not decide if
an operation can be performed or not.

These different checks are very dependent on runtime type information and are de-
signed to keep an interactive user from doing the wrong thing. If, however, aFACE-
Object is accessed by the means of a program, and we assume that the correctness
of the operation was ensured before compilation time of the program (an example for
such an program is the bootstrap process, see page 65), such tests could be a waste of
time (or not even possible, see again page 65). We therefore divided the interface of
theFACE-Object into two layers.

1. On the upper layer,access to the objects’Properties is guarded by the different
checks mentioned above. To perform the checks on this level, the access methods
need runtime type information.

2. On the lower level, the only checks that are performed are ensuring that the
requestedProperty exists and that the domain of the new value matches the
domain of theProperty’s Element Type. To perform these checks, no other
runtime information is needed than what can be found in the object itself.

The lower level is implemented as part of the classfaceObj , which has the result
that the implementation offaceObj does not have to bother with the typesystem.
The upper layer of the interface is implemented in the classSCObject type (see
Figure 3.6 on page 58). This class, using the information of an established run time
type system, can then offer the full type checking capabilities.

As an example, we display the different phases of an access ofProperty p of an object
O to store a new data itemd .

1. The add-check for theProperty p and the itemd is performed. The add-check
consists of the following parts.

3.3. THE IMPLEMENTATION OF THEFACE-OBJECT 53

� Does theProperty p exist?

� Is adding top allowed?

� Is the type ofO valid, i.e. is type checking possible?

� Check if the type ofd conforms to theElement Type that is prescribed by
theProperty Descriptor of p.

� If d is an object reference, check ifd is not is not already in the backrefer-
ences ofO (to avoid circular references).

2. Call the lower level interface function. On the lower level, the following checks
are performed:

� Is theProperty p part of the object value ofO?

� Doesd have the right data type for theProperty Value container ofp?

If these checks are passed successfully,d is being added top. We return to the
upper level.

3. If d is an object reference: check with theProperty Descriptor of p if a back-
reference has to be set and set it if necessary.

4. Compute the validity ofO which has now an altered value: does it still satisfy
the prescriptions of its type as before?

54 CHAPTER 3. IMPLEMENTATION ISSUES

3.4 The implementation of theFACE kernel

The kernel of theFACE system consists in those types and meta types that describe
the basicFACE-Object and its relations (see section 2.3.5 on page 37). The question
we have to answer here is how these types and meta types are implemented in C++. The
main point we have to consider when implementing the kernel of theFACE model is
the relationship betweenFACE types and classes in C++.

Our hostlanguage C++ has an object model as well asFACE. They share basic features
of object orientation:

� Objects are instantiated following a description of a class (or type).

� Classes (or types) can be specialized through inheritance.

The most remarkable difference between the two objects models is however the fol-
lowing: Types (and subsequently meta types as well) are reified in theFACE runtime
environment. Everything in theFACE model is an object. A type therefore has again a
type and this leads to an instantiation tree with a depth of four: from the self-descripting
meta classiMetaType type which has meta types as instances which in turn instantiate
types which instantiate simple objects.

In C++, on the other hand, classes are no reified entities of the runtime environment and
meta classes do not exist. We have an instantiation tree with a fixed depth of one: a C++

class has objects as its instances.

What we want to achieve with our implementation is to map theFACE object model
on the object model of C++, to mapFACE instantiation to instantiation in C++, and to
map inheritance or subtyping inFACE to inheritance in C++. This may be summarized
in the following single goal: We want to mapFACE-Types to C++ classes.

3.4.1 Mapping theFACE instantiation to C++

The goal of the implementation of theFACE instantiation mechanism is to create an
instantiation mechanism forFACE which is built upon the instantiation mechanism of
C++. This implies that instances ofFACE-Types are then real C++ objects. Intuitively this
means that eachFACE-Type has to be mapped to a C++ class. To map theFACE-Types
to C++ classes we use a mechanism [Mei93b, page 177] which equates all instances of
a FACE-TypeT with the instances of a C++ classSCT. This means that every (FACE)
instance ofT is a C++ instance ofSCT. The classSCT13 is called theShadowclass of
the typeT (see Figure 3.3).
TheShadowclass implements theFACE-Type:

� All the methods that are defined for instances ofT are implemented as methods
of theShadowclass: the generic access methods that implement the behavior
of a normalFACE-Object as well as specific methods that implement specific
behavior of that type.

13We use the following naming convention in our implementation: AFACE-Type with the name of
“AType ” corresponds to aShadowclass named “SCAType”.

3.4. THE IMPLEMENTATION OF THEFACE KERNEL 55

T

C++FACE

O

C++ instance

C++ instance

SCT

SCMT

FACE instance

FACE-Type

FACE-Object

Shadowclass

Figure 3.3: The principle ofShadowclasses. [Mei93b, page 178]

� The Shadowclass does not, however, implement theProperties of the in-
stances ofT . Since theProperties are realized as dynamically allocatedPro-
perty Objects (see section 3.3.3 on page 47), theShadowclass does not pro-
vide any member variabless to represent the individualProperties.

A Shadowclass is thus not a complete representation of aFACE-Type since it does
not represent the structure of the type that is only created at runtime.

In FACE, subtyping adheres to the principle of subtypes corresponding to subsets
[Mei93a, page 13ff, Definitions 18-19]. This principle—meaning that the set of in-
stancesI S of a supertypeT S is a superset ofI , the set of all instances of typeT —is
also fulfilled by inheritance in C++ since every instance of a subclass is also an instance
of the superclass. Therefore, when twoFACE-TypesT andT S , which correspond to
the respectiveShadowclasses SCTandSCTSup, have a subtype relationship—T is
subtype ofT S—thenSCTwill be a subclass ofSCTSup(see Figure 3.4).

However,FACE subtyping is not equal to C++ inheritance. As mentioned before, which
Properties a FACE-Object has is prescribed by theFACE-Type of the object and
not by theShadowclass. We therefore need a special subtype relationship between
FACE-Types to copyProperties and add new ones.FACE subtyping is needed to
introduce new structure while C++ subclassing is needed to add fundamental new be-
havior toFACE-Objects. If a typeTS has not a specific behavior which would need

56 CHAPTER 3. IMPLEMENTATION ISSUES

C++FACE

SCMT

TS

T

T S

SCTSup

SCT

C++ subclass

FACE-Type

FACE-Type Shadowclass

FACE-Type Shadowclass

FACE subtype

FACE subtype Shadowclass

Figure 3.4: Subtyping corresponds to subclassing.

a special implementation in aShadowclass of its own, it can as well just correspond
to theShadowclass SCTof its FACE supertypeT . All FACE instances ofTS are
then C++ instances of the classSCT [Mei93b, page 179] (see Figure 3.4). Note that
this enables us to create newFACE-Types at runtime and immediately instantiate them
without recompiling the system with a newShadowclass.

FACE-Objects that are notFACE-Types do not have aShadowclass since they have
no instances and thus cannot fulfill the left part of the equation “FACE instanceimplies
instance of the C++ Shadowclass”.

In summary, one can state that theShadowclass mechanism is a direct mapping of
FACE-Types to classes in C++, including a correspondence of the two instantiation
mechanisms. Subtyping inFACE can also be mapped to inheritance in C++. TheSha-
dowclass mechanism allows us to implementFACE-Types using the object–oriented
paradigms of C++, i.e. data abstraction and encapsulation. The closeness of the map-
ping of the basic object–oriented features allows to further build a good representation
of theFACE type system in C++, as will be described in the next section.

3.4. THE IMPLEMENTATION OF THEFACE KERNEL 57

The implementation of the kernel

Given the idea presented in the last section, the question now is: When implementing
the kernel, where do we needShadowclasses?

When we look in Figure 3.5 at the part of the meta type-hierarchy of theFACE model
which describes types, we see that there are different categories of types. All the types
in FACE areFACE-Objects. They do not, however, describe similar ‘things’ and do
not all have the same behavior; e.g. they cannot all be instantiated. In what follows we
give a short explanation of the relevant categories. This will make clear which types
have aShadowclass and which do not.

Object Types (Instances14 of iObjectType type)
Object types describeFACE-Objects. When we instantiate an object type, we
get aFACE-Object (see functionNew [Mei93a, page 42, Definition 37]).

Basic Value Types(Instances ofiBasicValueType type)
Basic Value types describe elements of primitive domains like strings, integer
numbers or booleans (see section 3.2 on page 42). Elements of these domains do
not have the status of objects. They do not refer to a type, their type can only be
known by virtue of their context [Mei93b, page 42]. Since Basic Values are not
objects, Basic Value types do not haveShadowclasses.

Property Descriptors (Instances ofiStructPropDescr type)
Property Descriptors are used in the formal model to describeProperties (see
for example predicatepost New [Mei93a, page 42, Definition 37] where the
list of Property Descriptors is translated intoProperties) but theProperties
have no object status. In our implementation, however,Properties are a special
kind of objects (see page 47). We thus introduced a type-object relation between
Property Descriptor anProperty: sending aProperty Descriptor the message
instantiate results in aProperty Object being created.

All elements of the two categories, object types andProperty Descriptors, have a
correspondingShadowclass. But object types andProperty Descriptors have two

14Note that the types in Figure 3.5 are on the meta level: their instances are again types which can be
instantiated themselves.

iStructPropDescr_type

iType_type

iValueType_type iObjectType_type

iBasicValueType_type

Figure 3.5: The meta type hierarchy showing different kinds of types.

58 CHAPTER 3. IMPLEMENTATION ISSUES

faceObj

SCObject_type

SCType_type

SCObjectType_typeSCValueType_type

SCMetaType_typeSCBasicValueType_type SCStructPropDescr_type SCOperationDescr_type

Figure 3.6: The system ofShadowclasses which correspond to theFACE kernel
types.

completely different set of instances:

� the instances ofiObjectType type 15 describeFACE-Objects.

� the instances ofiStructPropDescr type describeProperty Objects.

SinceProperty Objects andFACE-Objects have no common behavior, theShadow-
classes of these two items are not related. This leads to two differentShadowclass-
hierarchies with different root classes (see Figures 3.6 and 3.7).

In Figure 3.6 we see the hierarchy among theShadowclasses of object types. The
layout is similar to the one showing the subtyping relationships among the kernel types
(see Figure 2.12 on page 38). The topmost class in the hierarchy is not aShadowclass.
The classfaceObj (see section3.3.3 on page 51) implements generic object behavior
which has nothing to do with the the type system ofFACE. The topShadowclass is
the classSCObject type which corresponds to theFACE-TypeiObject type. Ev-
ery type in theFACE model is a subtype ofiObject type and that makes every object
typeShadowclass a subclass ofSCObject type .
The different mechanisms ofFACE are implemented in theShadowclass that corre-
sponds to the type that introduces the mechanism in theFACE model.
For example:

� The meta typeiObjectType type introduces the methodinstantiate 16 Ob-
jects which are instances ofiObjectType type can therefore be sent the message
instantiate . The classSCObjectType type therefore has the method

faceObj *instantiate() const

and introduces the instantiation mechanism (see next section).

� The classSCType type introduces the function

15The instances ofiObjectType type include also the instances ofiMetaType type which is a subtype
of iObjectType type.

16In the formalization ([Mei93a, page 42, Definition 37]), the functionNEW is defined for all elements
of the setIOT, i.e. for all object types.

3.4. THE IMPLEMENTATION OF THEFACE KERNEL 59

SCName SCEltType SCMaxelt SCPropDescriptors

SCPrimalProp_descr

propObj

...

...

Figure 3.7: The hierarchy ofShadowclasses of Property Descriptors.

bool is_subtype_of(const SCType_type& supertype) const

which checks for a subtyping relationship between two types.

� The classSCBasicValueType type introduces the function

static bool DomainChecking(const SimpleType&)

which enables clients to check for affiliation of data elements to a specific basic
value type.17

The hierarchy ofShadowclasses that correspond toProperty Descriptors can be
seen in Figure 3.7. The topmost classpropObj (see section 3.3.3 on page 51) im-
plements the main behavior of aProperty Object. It is implemented with the least
possible knowledge of theFACE type system. The subclasses are realShadowclas-
ses of FACE Property Descriptors.
The existence ofShadowclasses for Property Descriptors opens up the possibility
to implement a special behavior for aProperty Object, like triggering certain actions
when data is stored in theProperty Value or retrieved from there. This behavior could
then be made explicit in the model by introducing a new meta type (which would then
describe the new kind ofProperty Descriptors).

3.4.2 The implementation of the instantiation mechanism

As we have seen in section 3.4.1 we can map instantiation of aFACE-Type directly to
instantiation of the type’sShadowclass. In this section we present a mechanism that
realizes this mapping.

What we want when instantiating aFACE-Type is an instance of the type’sShadow-
class. Theinstantiate -message received by aFACE-Type must somehow trigger
a call to a constructor in theShadowclass. Just calling a constructor of aShadow-
class is not enough, though, to establish theFACE-Object fully, since for example the
Properties of a FACE-Object are not represented by member variables of theSha-
dowclass (see section 3.4.1 on page 54). In fact, the call to the specific constructor
of theFACE-Type’sShadowclass is only used to ensure the proper implementation
of theFACE-Object (i.e. its C++ based behavior) and not sufficient to build the generic
structure of theFACE-Object based on the description of it’sFACE-Type. This done
generically in a second stage of the instantiation procedure.

17See section 3.2.2 on page 43 for details on the implementation of primitive domains.

60 CHAPTER 3. IMPLEMENTATION ISSUES

3

SCTT

static faceObj * SCinstantiation(...);

callSCinstantiation= SCT(...);2

1

instantiate

SCT::SCinstantiation(...);

Figure 3.8: How aFACE-Type calls the constructor of itsShadowclass.

The connection between a type and itsShadowclass

The first stage of the instantiation process consists of the call to the constructor of
the type’sShadowclass. In order to be able to do that, we must link the runtime
entity ‘FACE-Type’ to the compile time entity ‘Shadowclass’. They are inherently
not connected in any way. Thus, access from the type to the constructor functions
of the Shadowclass is not immediately possible and has to be established by the
implementation.

To connect the type object to itsShadowclass we would like to reference the con-
structor function of theShadowclass via a function pointer. This is not possible since
in C++ it is not allowed to take the address of a constructor [ES90, page 265]. We
are therefore creating a ‘stand-in’ for the constructor in eachShadowclass—a static
function since we will not call it through an instance—and reference a pointer to this
function in the associatedFACE-Type. When theinstantiate message is sent to
theFACE-Type, it will call the static stand-in which in turn calls the constructor of its
class (see Figure 3.8).
Attaching aShadowclass to aFACE-Type is normally done right after the creation of
the type object. The advantage of using a dynamically attachedShadowclass is flex-
ibility: we can change theShadowclass at runtime, thus altering the implementation
of theFACE-Type’s instances on the fly.
The constructor of theShadowclass is the place to put initialization routines for class
members or behavior that is specific to the implementation of the type.

After the first stage of the instantiation process, the C++ object has been created, but
none of the type specific structure of theFACE-Object has been instantiated. This is
done in the second stage of the instantiation process. The second stage can be per-
formed in two different ways. On the one hand there is a mechanism to build the
Property structure of aFACE-Object by taking its structural description (found in the
type’sProperty PropDescriptors) as an input for the algorithm. On the other hand,
we can use a prototype mechanism where a prototypical instance of the type that is
attached to the type is cloned.
Since the creation of the inner structure of aFACE-Object needs access to data struc-
tures that are hidden18 in the classfaceObj , we implement the functions that perform
the creation of theFACE-Object structure not as method of the type or the prototype

18that is, they areprivate members of the C++ class.

3.4. THE IMPLEMENTATION OF THEFACE KERNEL 61

T

P O

1

2

P O

Prototype copy

instantiate

Figure 3.9: How aFACE-Type creates a new instance of itself by copying a prototype.

that instantiates an object, but as method of the object that gets instantiated. Either
of these functions is thus called on the freshly created object with theFACE-Type as
argument in one case and the prototype in the other case.

The following sections detail the two implementations of the second stage of the im-
plementation process.

Instantiation following the description of the FACE-Type

The functionfaceObj::getinstantiatedbydescription() takes the type
T of the object as an argument and creates a containerpropsContainer to hold
theProperty Objects. The routine then requests the list of allProperty Descriptors
from T and one after the other calls theinstantiate -method of theProperty De-
scriptors (see section 3.4.2 on page 62). This results in the differentProperty Objects
being created and the object is thus filled with theProperties that are prescribed byT .
TheProperties are empty, noProperty Value can be filled by this algorithms sinceT
prescribes only the structure of its instances but not their values.

Instantiation using a prototype mechanism

The functionfaceObj::getinstantiatedbycopying() takes the prototypi-
cal instance of the typeT as an argument and calls the C++ copy-constructors on the
components of the prototype.19 Using a deep copy algorithm, theProperty Objects
including the content of theirProperty Values are duplicated. Not only the prototype
object is thus copied but also objects that are eventually attached to it. This is the main
difference to the instantiation by description that was discussed in the previous section.
This feature of the prototype mechanism allows us to instantiate whole object struc-
tures at once.
Prototypes likeShadowclasses can be changed on the fly.

19Note that we do not call the copy-constructor of the prototype-object itself.

62 CHAPTER 3. IMPLEMENTATION ISSUES

The instantiation of Property Descriptors

The instantiation mechanism that was described in the previous sections concerned
only the instantiation of object types, i.e. onlyFACE-Objects were created. But since
we established a type-object connection between theProperty Descriptor and itsPro-
perty Object, we use a similar instantiation mechanism to createProperty Objects.
The only difference to the instantiation mechanism forFACE-Objects is that theSha-
dowclasses of Property Descriptors are subclasses of the classpropObj and thus
calls to their constructors createProperty Objects.
As opposed to the instantiation ofFACE-Objects, the whole creation of theProperty
Object is done in the constructor of theShadowclass (or mainly in the constructor
of theShadowclass’s superclasspropObj). Since aProperty Object, in contrast
to aFACE-Object, has not a structure that consists of an number ofProperties that is
only known at runtime like aFACE-Object, but has a fixed member structure, instan-
tiation is easier. Using theElement Type prescribed by theProperty Descriptor, the
domain (i.e. the C++ data type) is derived with which theProperty Value container is
instantiated. This is realized using a staticcase -statement which has a instantiation-
command for each container-type.

The prototype mechanism

In theYANUS data model, an implementation proposal already made use of so called
‘templates’, i.e. prototypes (see [Mei93a, section 6.4, page 181]). In addition to that
the model also featured the so-calledPrimalType (see [Mei93b, page 68ff]). APri-
malType was a special instance of a meta type and was attached to its type. All
the other instances of the meta type had to be subtypes of thePrimalType (see the
extra-requirementreqt1 in [Mei93a, page 27, Definition 23c]). ThePrimalType thus
allowed its meta type to exert control over the instances of its instances.
In FACE, thePrimalType and the ‘template’ are unified20 since they had essentially
the same features: InFACE, types can have aPrototype. A Prototype is similar to
a PrimalType as it has to be an instance of the type it is attached to. APrototype
is different from aPrimalType as it does not have to be a type: Since they are not
instantiated but copied,Prototypes can be everything down to normalFACE-Objects
or evenProperty Objects. Prototypes surpass the abilities ofPrimalTypes as they
can represent an object structure which encompasses multiple objects and connections
between them and which can then be copied as a whole.

The formalization of the prototype mechanism

The formalization for theProperty Descriptor of thePrototype-Property is the fol-
lowing:

20Meijler, personal communication.

3.4. THE IMPLEMENTATION OF THEFACE KERNEL 63

iPrototype inst of iStructPropDescr type
name(iPrototype) =

iPrototype
supertype(iPrototype) =

iPrimalProp descr
elttype(iPrototype) =

iObject type
minelt(iPrototype) =

0
maxelt(iPrototype) =

1
changeable(iPrototype) =

true
unique(iPrototype) =

true

TheiPrimalType was introduced asProperty of iMetaType type, meaning that every
meta type had theProperty PrimalType and could thus have a primal type. Instead
of PrimalType, we introduce theProperty Descriptor iPrototype asOwnPropde-
scriptor of iType type, meaning that every type (Object types as well asProperty
Descriptors) can have a prototype.

3.4.3 Discussion

The instantiation

For specificShadowclasses specific initializationsmay be needed for C++ (non-FACE)
properties. This code should always be called even when copying theFACE Proper-
ties of the prototype. Since both instantiation mechanisms—using the description or
using the prototype—are going through the same constructor in theShadowclass, we
can assure such a similar initialization. This is the main advantage over an implemen-
tation which would have followed thePrototypedesign pattern in [GHJV95, page 117]
more closely. In the prototype design pattern, a new instance of a specific classC can
be created not only by calling the constructor ofC but by calling aclone() method
of a prototype instance ofC. Theclone() method then calls the copy constructor of
C to copy itself. Thereby a second location in the class definition (besides the normal
constructor) would be created where initializing would have to be done.

The Shadowclass mechanism

The Shadowclass mechanism has some advantages that we want to discuss in this
section. As an alternative to theShadowclass mechanism we can envisage an im-
plementation where only one C++ class is used to represent all theFACE-Objects at
compile time. The wholeFACE type system would be based on dynamical structures.
The advantage of this hypothetical solution would be, that since we would create new
types only dynamically with no new classes, we would never have to recompile the
system after extending the type system.

64 CHAPTER 3. IMPLEMENTATION ISSUES

The advantages of theShadowclass mechanism are obvious.

� We model theFACE type system in C++. A FACE-Object has two identities, one
in FACE and one in C++. We can thus programFACE easily from the C++ level
and use the C++ type checking mechanism to ensure type safety of programs.

� SinceFACE-Object always has an implementation as a C++ object,FACE object
structures—which are models of software systems—can be executed. In the
hypothetical solution with no shadowclasses, aFACE structure would first have
to be translated into a executable format.

� When we think the other way round, a framework class can directly be the im-
plementation of theFACE-Type that is its representation.

TheShadowclass mechanism allows a tight integration of theFACE type system with
the type system of the underlying hostlanguage.

3.5. BOOTSTRAPPING THE SYSTEM 65

3.5 Bootstrapping the system

A natural and fundamental question to ask, on learning of these incredibly
interlocking pieces of software and hardware is: “How did they ever get
started in the first place?” It is truly a baffling thing.

Douglas R. Hofstadter

in: Goedel, Escher, Bach: An Eternal Golden Braid

3.5.1 The requirements

During the bootstrap of the system, the kernel types and meta types ofFACE are cre-
ated. BootstrappingFACE is tricky since it is a self-descriptive model. Self-description
implies that in order to build the model we have to have the model at hand. Several
functions which are crucial in building the system, in order to function have to read
information contained in the structure. At the beginning of the bootstrap, none of this
information is available.
In the following list, the dependencies of the operations on information contained in
the structure are listed. The survey is done in a cursory manner, for greater detail refer
to the formalization.

Instantiation: When we instantiate aFACE-Type, we use the list ofProperty De-
scriptors the type holds to build the object (see functionNew [Mei93a, page 42,
Definition 37]).
Thus, for automatic instantiation we have to have a link to a type object, the type
has to have aProperty calledPropDescriptors of which the value has to hold
the list ofProperty Descriptors.

Inheritance: During the subtyping process the list ofProperty Descriptors as well
as the list ofOperation Descriptors is copied from the supertype to the subtype
(see functionsmk propdescriptors andmk operations in [Mei93a, page 28,
Definition 25]). Both of these lists are merged with the respective list fromOwn-
PropDescriptors andOwnOperations of the subtype.
Thus, for automatic inheritance a type has to have theProperty Supertype
which has to be instantiated with a link to its supertype, the supertype has to
have the twoProperties named “PropDescriptors” and “OperationDescriptors”
filled with links to its Property Descriptors, and the subtype has to have the
Properties OwnPropDescriptors and OwnOperations, possibly initialized
with its ownProperty Descriptors.

Adding elements toProperties: When we want to add an element to aProperty, the
system performs a series of type- and other checks which rely heavily on the
runtime type-information (see section 3.3.4 on page 52). These functions also
compute the validity of the object based on the new elements of theProperty
Value (see predicatesset cond synt valid and set cond valid in [Mei93a,
page 41, Definition 36]).
Thus, when adding elements toProperties under full control of the type check-
ing mechanism, we have to have the typesystem more or less fully operational.

66 CHAPTER 3. IMPLEMENTATION ISSUES

Establishing crossreference- and component-relationships:When we linkFACE-
Objects together we have to check theProperty Descriptor if it requires a back-
reference to be set (see section 2.3.4 on page 33).
Thus, for automatic linking of objects theProperty Descriptors have to have
theProperties “Owner” and “BackrefPropdescr” initialized.

Since we cannot use the built-in functions during the bootstrap phase, the efforts that
are normally performed automatically, when for example instantiating aFACE-Object,
have to be coded ‘by hand’: create the C++ instance, create the necessaryProperties
for the object, enter the elements in theProperty Values and establish backreferences
where necessary. Doing this for each and every type in the kernel is of course an
unacceptable way of wasting (programming) time and space.
Based on these considerations we formulate the requirements for bootstrapping in the
following way:

� The bootstrap process creates a fully functional set of kernel object instantiated
and initializedaccording to the formalization in [Mei93a].

� The code that has to be written to substitute for functions and methods of the
normal system that cannot be used due to lack of runtime structures has to be
kept to a minimum.

3.5.2 The method

The main goal when finding a method for the bootstrap process is to minimize the
additional code that has to be written specifically for this process. This means that we
should use the built-in functions as much as possible, i.e. as early in the process as
possible. We can do the following things to reach that goal:

First of all we have to find a minimal set of kernel objects which has to be instantiated
and initialized fully as a start, using ad-hoc methods. This set of types should then
allow to create the rest of the kernel with the normal methods.

Second, we have to find an order to instantiate the chosen objects which tries to use
the built-in function for instantiation and inheritance as much as possible. Note that
there is a tradeoff between these two actions : The topmost object in the instantiation
hierarchy isiMetaType type (see Figure 2.11 on page 37) which serves as type for
all the meta types of the kernel (including itself). This means that in order to use the
normal instantiation mechanism as soon as possible, we should createiMetaType type
very early. In the inheritance hierarchy however,iMetaType type is located towards
the bottom (see Figure 2.12 on page 38). This implies that if we want to use the built-in
inheritance function to assemble the list ofProperty Descriptors for iMetaType type,
we must first instantiate all the objects that are aboveiMetaType type in the hierarchy.

Two strategies can be applied here:

� We must bypass the type checking mechanism whenaccessing theProperties
of objects. This is without danger since the bootstrap is a controlled process and
thus type checking is not necessary.

3.5. BOOTSTRAPPING THE SYSTEM 67

The interface of theFACE-Object is implemented with two levels (see sec-
tion 3.3.4 on page 52) so when we use just the lower level of access no type
checking is done.

� Instead of instantiating an object at once with one function call (which implies
that the type of the object has to have a complete list of all theProperty Descrip-
tors) or to use the inheritance function only once (which implies the supertype
to have a complete list of all theProperty Descriptors), we use a ‘stepwise’
instantiation and inheritance mechanism.
With stepwise we mean that we can run the instantiation or inheritance procedure
several times on the same object, each time with a extended list ofProperty De-
scriptors in the type. The respective mechanism is clever enough to find out
which Property Descriptors have already been instantiated (asProperty Ob-
jects) or copied (in the case of inheritance) and leaves them out of the process if
necessary. Using this method, we can start with a small set of essentialProperty
Descriptors in the type, instantiate the object in a first step, then let the type
inherit newProperty Descriptors and re-instantiate the object.

3.5.3 The implementation

At the beginning of the implementation we choose the set of objects that have to be
instantiated first. These are the objects that define the basic behavior of aFACE-Ob-
ject, including the topmost object in the instantiation hierarchyiMetaType type, and
the topmost object in the inheritance hierarchyiObject type as well as the objects
that lie between them in the type hierarchy. The variousProperty Descriptors have
to be included in the initial set too since they are essential to the creation ofFACE-Ob-
jects. This implies their typeiStructPropDescr type being also created early in the
bootstrap process. When these objects are all instantiated and correctly connected, the
normal methods of the implementation can be used.

The actual implementation can be divided in two parts: preparation and actual boot-
strap.
During the preparation phase we do following things in a very ‘dirty’ way, i.e. we do
it all by hand:

� First we create ‘empty’ C++ instantiations of all the objects of the initial set and
connect them to theirShadowclass. We have to create the C++ objects at the
very beginning since their addresses will be needed for references.

� Then we (FACE-) instantiate and initialize the set ofProperty Descriptors. In-
stantiation is done ‘by hand’ since the typeiStructPropDescr type is still an
empty hull. Initializing theProperty Descriptors is done with a specially writ-
ten functioninitializePropertyDescriptor(...) which sets cer-
tain backreferences automatically. But since this mechanism requires again run-
time information to be gathered from certain otherProperty Descriptors, we
have to start with an initialization of these otherProperty Descriptors done
without the function.

� As the last point in preparing we establish the instantiation-and the type-hierarchy
among the kernel-objects by setting the links to types. Since the reference of an

68 CHAPTER 3. IMPLEMENTATION ISSUES

object to its type is not realized via aProperty (see formal definition of the
FACE-Object in section 3.3.1 on page 45), we do not have to create aProperty
Object for the object for this purpose.

After the preparation phase, we begin instantiating the objects in the kernel.

� First, the two propertiesPropDescriptors andOwnPropDescriptors for the
type iMetaType type are created by hand. Then they are initialized with the
following Property Descriptors: iPropDescriptors and iOwnPropDescrip-
tors.

� Next we instantiate the typeiObjectType type with the normal instantiation
procedure: theProperties PropDescriptors andOwnPropDescriptors are
created automatically iniObjectType type. We initialize these twoProperties
by hand and instantiateiObject type with the automatic instantiation mecha-
nism.

� After initializing iObject type we begin to use the inheritance function down
the inheritance tree untiliMetaType type has the necessary list ofProperty
Descriptors.

� We then re-instantiateiObjectType type and the other objects.

From now on, the instantiation process can be used in a more or less normal way.

3.5.4 Discussion

The algorithm implemented here to bootstrap theFACE system is, to speak frankly, a
hack. It still uses a lot of space (around 800 lines of pure code) since we practically
translated the specification of the kernel into code. This is a waste of memory since the
code is used only once at the startup of the system; some kind of dynamic loading of
the code for bootstrap would be a good solution here. We could then throw the code
out again after generating the kernel.

Another problem is clearly that we have duplicated a lot of knowledge about the behav-
ior of objects and the model as a whole. This knowledge is on the one side part of the
implementation of theFACE-Object and on the other side contained here in the code
that was specially written for the bootstrap procedure. This will get problematic when
the model is changed and we subsequently have to change the bootstrap procedure too.

Another approach to bootstrapping which could save a lot of code lines (but would
require a sophisticated interpreter) would be to read a specification of the kernel from
a file. This idea can be integrated into the prospect of a permanent object store. An
object store would allow us to save object structures to permanent memory (i.e. disk
or tape) and recover it from there. We could generate the kernel once, save it in a file
and every time the systems boots it would just read from the object store. This way, the
extra code for the bootstrap would not be part of the system.

Since a big problem is the setting of backreferences, we could imagine forgetting about
the backreferences until the end of the process when a checker program would be run
over the object structures ensuring that all the backreferences were set.

3.6. IMPLEMENTING AN EXAMPLE 69

3.6 Implementing an example

To gain experience with the modeling of software thatFACE is supposed to enable, we
designed and implemented a small example. The example was inspired by the situation
presented in Figure 2.4 (see page 28), which is essentially the reference problem of
[Mei93b].

The general setting of the example is the following: we have a number of existing
programs with a command line interface that perform operations on simple ASCII data
streams (see section 3.6.2 for details). We want to build a model consisting ofFACE
types and operation descriptors which provide an interface to these programs. These
types and operation descriptors and the ways they are composed can be seen as defining
a ‘language’. Users can then compose structures of instances of the types and operation
descriptors. These structures can be seen as scripts for the underlying programs, and
we should be able to run the scripts. This means that we have to take advantage of an
execution mechanism.

The questions we ask with respect to the example are mainly concerned with the expe-
rience gained in implementing the example.

� Is it feasible to build such a software model inFACE?

� How much work is necessary to model the example, i.e. how many types have
to be introduced to describe the elements of the example?

The section has three parts: First, we are going to explain the execution mechanism
which takes care of the connection of theFACE objects and operations with the under-
lying software. We are then going to present the situation of the example and the design
of the model inFACE. The section will conclude with a comparison of theFACE ex-
ecution mechanism with other generic implementations of behavior in object–oriented
systems and a presentation of experience data gathered during the implementation of
the example.

3.6.1 Execution inFACE

An operation inFACE generally21 consists of a request which has a number of operands.
A request is an instance of anOperation Descriptor and thus an object. A request is
parameterized by establishing connections between the request object and the operand
objects. Additionally, arguments that are less important, calledsettingsof the opera-
tion, can be entered as strings or numbers. The parameterization is done by the user
on the conceptual level. Execution is initiated by sending the conceptual request an
execute -message.
The way thisexecute is performed stems from theYANUS model [Mei93b, Chapter
4]. TheYANUS request execution creates an object structure on the implementation
level that corresponds to the composition on the conceptual level (see Figure 3.10). The
data represented by the conceptual operands is brought into the required implementa-
tion formats by the transformation functions. Finally the sequence22 of implementation

21i.e. operations on the conceptual level and on the implementation level alike.
22The sequence may consist of any number of implementation requests including 1.

70 CHAPTER 3. IMPLEMENTATION ISSUES

ImplOperations

Object
Conceptual Request_type

Conceptual

Request
Conceptual

Request
Implementation

Implementation Level

Conceptual Level

ImplObjectA ImplObjectB

transformation
created

Implementation
Request_type

ImplObjects

InputOp

InputOp

execute()

Figure 3.10: The execution of a conceptual request creates an analogous structure on
the implementation level for each implementation operation.

requests is executed by sendingexecute messages to the implementation requests.
Each implementation operation encapsulates the knowledge on how the underlying
software packages are controlled. Note that the execution mechanism is not fixed at
compile time. It is guided by the the connections established between theFACE-Types
and acts thus as an interpreter ofFACE compositions.

3.6.2 The implementation of the example

The situation of the example

Our example is, as mentioned above, a simplification of theYANUS reference problem.
Standard UNIX tools play the role of ‘software packages’.

We are modeling the functionality23 of the following statements that can be executed
in every UNIX shell:

cd <path>
grep -c <searchstring> <filenamemask>

Thepath , searchstring , andfilenamemask are settings of the operations in
our model.
To make the parsing of the output of thegrep -c command easier,24 our implemen-

23Our goal is to count the number of occurrences of a string in a specific type of files that are stored in a
specific directory.

24When searching a single file,grep -c gives a single number as output. When searching multiple files
grep -c gives a list of the names searched files followed by the number of occurrences.

3.6. IMPLEMENTING AN EXAMPLE 71

tation achieves the above behavior by actually implementing the following statement
sequence:

cd <path>
cat <filenamemask> > tmp.text
grep -c <searchstring> tmp.txt

In the following two sections we will describe theFACE-Types that were introduced
to model this situation.

On the conceptual level

On the conceptual level of the example we have two kinds of elements: the chosen
set of files and the number which is the result of the count. These two elements are
represented by conceptual objects:

� A set of selected files is represented by an instance of the typeiDirectory type.
Instances ofiDirectory type have theProperties Path andFileMask to iden-
tify the file selection.

� The result of the count operation, an integer number, is represented by an in-
stance ofiIntegerObject type.

The functionality of the example is captured by two conceptual operations:

� Instances ofiCSelect descr upon execution take a filemask-string and an in-
stance ofiDirectory type and then create a newiDirectory type-instance with
a FileMask that combines the masks of the arguments.

� Instances ofiCCount descr upon execution take an instance ofiDirectory type,
a string to search for and return an instance ofiIntegerObject type.

On the implementation level

On the implementation level we introduce the types that connect the conceptual level to
the actual data and actual functionality. We therefore introduce implementation types
for data representations and operations. We additionally need transformation functions
that prepare data in the required formats for input to the underlying software.

Implementation representations for conceptual data are the following:

� Instances ofiDirectory type play a double role of conceptual and implementa-
tion objects (see [Mei93b, Section 4.6.4, p. 129] for details on this principle).
This means that instances ofiDirectory type can be used as operands for the
conceptualselect as well as for theselect on the implementation level. For the
count operation, however, we need to represent the data of the selected files as
an instance ofiUnixFile type. Instances ofiUnixFile type refer to a file in an
UNIX file system. This file is created uponeach instantiation ofiUnixFile type
and removed when the object gets destroyed.

72 CHAPTER 3. IMPLEMENTATION ISSUES

iUnixFile_type

ICount_descr

7

iDirectory_type

CCount_descr

iIntegerResult_type

Implementation Level
Conceptual Level

Byte Level

Request

OutputInput

Input Output

ImplObjects ImplObjects ImplOperations

Request

Figure 3.11: The structure of objects and types during the execution of thecount-
operation.

3.6. IMPLEMENTING AN EXAMPLE 73

� The conceptualiIntegerObject type is also represented byiUnixFile type on
the implementation level.

The implementation types that correspond to the conceptual operationsiCSelect descr
andiCCount descr encapsulate the knowledge of how the operations are actually per-
formed:

� Selection requests, instances ofiISelect descr, combine theFileMask of the
iDirectory type operand with theSelectCriteria setting of the request. This is
done with a simple string-concatenation operation.

� Count requests, instances ofiICount descr, take an ASCII-file represented by
an instance ofiUnixFile type and use a call to the UNIX grep utility to count
occurrences of the string of theSelectCriteria setting of the request. The out-
put of the call togrep is redirected to another ASCII-file. In Figure 3.11 the
situation of objects at the execution of thecount operation is depicted.

In order to transform between the data representations we had to create two transforma-
tion functions. A transformation function is represented by an instance of a transform
operation descriptor (see [Mei93b, section 4.6, p. 126 ff].

� The set of selected files is represented using a path and a filemask by instances
of iDirectory type. The input to thegrep utility is done with a single file. We
thereforecat the selected files into a single file. The function that does this is
represented by the typeiCatTransform descr.

� The result of theiICount descr operation is another ASCII file. In order to
transform this data into an instance ofiIntegerObject type we build a trivial
reader function which is represented by the typeiReadIntTransform descr.

3.6.3 Discussion

Comparison of theFACE execution mechanism to other approaches

The execution mechanism inFACE allows to put requests together at runtime. This can
be seen in contrast to many message passing mechanisms in object–oriented program-
ming. In the normal message-passing syntax of, for example, C++, the client is coupled
directly to the server and the server has to be known at compile time. Moreover, the
connection that is implicitly established when the client calls a method of the server, is
hidden in the code.

A well known approach to dynamically determining which operation must be executed
are the behavioral design patterns found in [GHJV95, Chapter 5]. TheCommandpat-
tern, for example, encapsulates requests in generic command-objects allowing the cou-
pling of client and server to be deferred to runtime. The execution mechanism inFACE
does however more.25 It allows not only to specify at runtime which server will execute
the operation, but we can specify an operation at runtime in more detailed terms, i.e.
we can compose a sequence of subordinate operations to perform a conceptual task.

25In fact, theCommanddesign pattern is used in the implementation of theFACE execution mechanism.

74 CHAPTER 3. IMPLEMENTATION ISSUES

Object-Types
iDirectory type Yes Conceptual types
iIntegerObject type No
iUnixFile type Yes Implementation type
Operation Descriptors
iCSelect descr No Conceptual operations
iCCount descr Yes
iISelect descr Yes Implementation operations
iICount descr Yes
Operand Descriptors
iOldDir No Conceptual and implementation
iNewDir No operands for theselect operation
iCCountInput No Conceptual operands
iCCountOutput No for thecount operation
iICountInFile No Implementation operands
iICountOutFile No for thecount operation
Setting Descriptors
iSelectCriteria No specifies filemasks and searchstrings
Property Descriptors
iFileMask No
iPath No
iResult No
Transformation Descriptors
iCatTransform descr Yes cat ’s a series of file into another file
iReadIntTransform descr Yes Reads an integer out of a file

Figure 3.12: The list of types that were introduced when modeling the example (Yes
and No refer to the necessity of an ownShadowclass).

Another specific aspect ofFACE message execution is that it is not pre-defined and
implicit. The mechanism being explicit it has in common with certain reflective ap-
proaches [Chi95]. In our point of view this is essential for a compositional environ-
ment: by making request execution explicit, the objects can be fitted in different envi-
ronments (in which different non-functional requirements are posed) without having to
change the object itself.

Experience data from the implementation of the example

To measure the effort that has to be taken to model the example, we display in Fig-
ure 3.12 a list of all the types that had to be introduced into theFACE type system. A
distinction is made between types that introduce some new behavior and therefore have
to have aShadowclass of their own and types that use theShadowclass of their su-
pertype. Types having their ownShadowclass have aYesin the second column of the
table. Note that we also list theProperty Descriptors andOperand Descriptors that
were introduced to describe theProperties of the data representations and requests.

Chapter 4

Conclusions

4.1 Conclusions from the implementation

We have presented mechanisms to implement a reflective object–oriented data model
in a non-reflective object–oriented language.
We have explored mechanisms that allow us to make objects behave as classes or types,
i.e. we have implemented mechanisms that make instantiation and inheritance possible
with these type-objects. Due to the runtime availability of types we can have runtime
type checking.

Using theShadowclass principle, we have integrated theFACE object model very
closely to the object model of C++. This means that we can profit from the compile time
and runtime systems of C++. Also programming withFACE types and objects is not
different from programming with normal C++ objects.

We have devised a mechanism that bootstraps the self-descriptiveFACE model.

To demonstrate the expressiveness of theFACE modeling capacities, we implemented
a short example.

4.1.1 Specific conclusions forFACE

In contrast to the implementation proposals of [Mei93b, Chapter 6], we devised a
mechanism for accessing a specificProperty of a FACE-Object without querying the
type of the object on the existence of theProperty first. This simplification avoids the
danger of an endless recursion.

4.1.2 Negative Results

Our experience when writing the bootstrap of the system in an ad hoc manner lead to
the conclusion that bootstrapping the model should be done in a more algorithmic1 way,

1To illustrate what we mean with ‘more algorithmic’ we give a simple example: When the task is to write
a program that counts to ten and writes all the encountered numbers on the screen, a non-algorithmic way

75

76 CHAPTER 4. CONCLUSIONS

i.e. the specifications of theFACE type system should be stored in a machine readable
format and be translated into a system of runtime objects and types algorithmically. We
think that this development could go hand in hand with an investigation of persistent
objects (see section 4.3.1) .

4.2 Theoretic Conclusions

We have investigated the connection between theFACE data model and the theory
of MetaObject Protocols. Since both of these techniques use meta levels to configure
systems or languages, we tried to establish the relationships between these techniques
in greater detail.

We draw the following conclusions:

1. While CLOS provides procedural reflective mechanisms in much of its runtime
behavior, inFACE such reflective mechanisms are only introduced when needed
(e.g. the execute mechanism, see section 3.6.1).

2. While CLOS

a) provides a full programming language that can be used to implement reflec-
tion to realize, for example, new semantics of its own language elements,

b) has a relatively fixed framework of the language elements that can be changed
and extended in this way,

the language elements ofFACE, in contrast, are defined when needed to define
new forms of composition; giving semantics to these elements is done using an
underlying programming language. The reason for this is thatFACE focuses
on being a software composition environment and not providing a full fledged
programming language itself.

4.3 Future Work

4.3.1 Technical Issues

Investigate the possibilities of persistent stream mechanisms that would enable us to
store compositions ofFACE objects to and retrieve them from permanent streams.

Devise facilities to efficiently report errors encountered when running theFACE sys-
tem. Since for example runtime type checking is an important part ofFACE, the user
should be informed properly about type checking errors.

4.3.2 Research Issues

Gain experience in modeling software withFACE. Prime candidates are rather small
frameworks like for example the STL.

would be to actually write tenprintf statements and a more algorithmic way would be to use afor -loop.

4.3. FUTURE WORK 77

Explore the connections between compositions done withFACE and the semantics
they represent in a more formal setting. Investigate further how runtime semantics can
be given toFACE compositions. The current approach is based on giving semantics
through interpretation. Another interesting approach would be the use of compilation
techniques.

Continue on an extension ofFACE as a visual composition environment (see [ME96]).
Define aFACE framework for that purpose in order to support visualizing objects and
their connections in a graphical user interface.

Appendix A

Notation

Three different notations are used in this document:

1. TheFACE-notation to describe sets of connectedFACE types and meta types
(e.g. the kernel) on a high abstraction level.

2. An ad hoc notation to explain on a medium abstraction level the coherence be-
tween the basic elements of the model.

3. The Unified Modeling Language (UML) [BJR96] for low level descriptions of
the implementation.

I will present a short description of the three notations and a legend describing the
drawing elements for each of them.

MetaType Association

Type instance_of Relationship

Object subtype_of Relationship

1:m Property Descriptor Operation Descriptor

Figure A.1: The elements of theFACE notation.

78

A.1. THE FACE-NOTATION 79

MT_A MT_B
PD_1

1:3

Figure A.2: An association in theFACE notation.

A.1 The FACE-notation

A.1.1 Purpose

The FACE notation was developed in the course of the evolution of theFACE data
model. FACE is destined to be the basis of a visual composition tool. A notation
to visualize compositions with a graphical user interface is therefore an essential part
of the development. Compositions withFACE will happen especially on the class
level, so classes must have a representation. Important in theFACE notation is that it
makes clear that an association inFACE is reified or represented by a type-object. In
the example of Figure A.2, a meta typeMTA has a connection to a meta typeMTB.
This connection is described by theProperty Descriptor PD 1. All the information
that defines the association is concentrated inPD 1 and can be asked for or adapted
there. The labeling1:3 indicates that instances ofMTA can have up to three associate
instances ofMTB in this relation.
Since theFACE notation shows links between elements, it emphasizes a compositional
viewpoint. Structures that consist of associated types can be displayed with a balanced
amount of drawing elements, as unimportant information is not shown.

A.1.2 Motivation of the chosen presentation

The FACE notation holds a symbol for every reified component. Foreach different
type there is a different symbol, e.g. for types, meta types, property descriptors, etc.
(see Figure A.1). AFACE composition is close to a design. The difference is that
it is a) a composition which b) uses domain specific connections. The closeness to
design diagrams has led us to take as much as possible from the UML symbols (see
Figure A.5). TheFACE type is thus equivalent to a UML class, theFACE meta type
is a class which is slightly modified. For aProperty Descriptor, which has no direct
counterpart in the UML, a new symbol was created.
TheFACE notion is not fixed. It must be extensible because theFACE meta model al-
lows for introduction of new, domain specific types and possible connections between
types and objects. The notation must be adaptable as well to depict these new connec-
tions.
Since theFACE notation is built upon an object- and class diagram technique, it has
an immediate mapping to the Intermediate Notation (see Figure A.4).

80 APPENDIX A. NOTATION

FACE Type

Property Descriptor

FACE MetaType FACE Object

Property Object

subtype_of Relationship
instance_of Relationship
Association

Figure A.3: The elements of the intermediate notation.

A.2 The Intermediate notation

A.2.1 Purpose

The intermediate notation was developed for the purpose of this work. It was felt that
for certain explanations a notation would be needed which had more detail than the
FACE notation but still did not conveyall the details of the implementation. Especially
to explain the complicated structure of the object-type connection we need a certain
intermediate (hence the name) abstraction level which emphasizes the different kinds
of objects that are involved in this relationship.

A.2.2 Motivation of the chosen presentation

The intermediate notation depicts four kinds of objects (see Figure A.3) :

� normalFACE-Objects.

� FACE-MetaTypes andFACE-Types which describeFACE-Objects.

� Property Descriptors which describe property objects.

� Property objects.

The hexagon of the UML object (see Figure A.5) is used for all the elements in the
notation. This emphasizes that intermediate diagrams are basically object diagrams.
Type objects (FACE-MetaTypes,FACE-Types,Property Descriptors) are marked
with double lines at the upper left and at the lower right sides and they have their
respective symbol from theFACE notation (see Figure A.1) in the middle. Property
objects are marked with an inscribed circle.
A mapping from the Intermediate notation to theFACE notation (see Figure A.4) can
be done by eliminating the property objects and annotating associations between types
with the association descriptor. In this way, we suppress unnecessary detail which
clutters the view on the compositional structure

A.3. THE UNIFIED MODELING LANGUAGE 81

"O1" "O2"
"A"

"O1" "O2""A"

"A" "T2""T1"

"PropDescriptors" "ElType"

"T1" "T2""A"

Figure A.4: TheFACE and the Intermediate notation can be mapped onto each other.

A.3 The Unified Modeling Language

The Unified Modeling Language(formerly Unified Method) is the unification of the
Boochmethod from Grady Booch, theObject Modeling Technique(OMT) method
from James Rumbaugh, and the OOSE method from Ivar Jacobson as well as some
ideas from other methodologies. It was created for specifying, visualizing, and docu-
menting the artifacts of an object–oriented system under development. Since the meth-
ods it unifies are the leading object–oriented methods, the UML represents aDe facto
standard in the domain of object–oriented analysis and design. At the time of this writ-
ing, the version 1.0 was still under way.
The method offers a number of diagrams which span most of the aspects of an object–
oriented system. Design is supported on different levels of abstraction, from the level of
objects and classes up to modules and platforms. The list of diagrams is the following:

instance vars

Name

methods

Class

Class

T,n:int

Name

FArray Parameterized
Class

O1: Class
Object

instance_of Relationship

subclass_of Relationship

Aggregation

Figure A.5: Classes and objects in the UML-Notation.

� Class Diagram
A class diagram shows the set of logical elements that make up a system: classes

82 APPENDIX A. NOTATION

and objects. Object diagrams are a snapshot of a particular moment of the sys-
tems runtime, while class diagrams show descriptions of possible systems.

� Use Case Diagram
Use cases are generic descriptions of a transaction in the system. Emphasis is put
on the the set of objects that are involved in the transaction, not in the sequence
of sub-transactions that are performed.

� Message Trace Diagram
Message trace diagrams shows the interactions among a set of objects along a
time line. It is used to emphasize timing issues.

� Object Message Diagram
An object message diagram displays the series of objects and the messages sent
between them that implement a certain transaction. In contrast to the message
trace diagrams, relationships between objects are emphasized.

� State Diagram
”The state diagram describes the temporal evolution of an object of a given
class in response to interactions with other objects inside or outside the sys-
tem” [BR95, Version 0.8, page 31]. The state diagram specifies the behavior of
a class.

� Module Diagram
A module diagram permits a view on the system under the aspect of physical
modules (or files) of source code. It can display compilation dependencies be-
tween the files.

� Platform Diagram
A platform diagram specifies the physical topology upon which the software sys-
tem executes, which compromises processors (computing devices) and devices
with no computational power. Displayed are connections along which informa-
tion passes.

In the work presented here, class and object diagrams will be used. A legend with the
most important drawing elements can be found in Figure A.5. For a complete reference
see [BJR96] or look for the release 1.0 of the UML on

http://www.rational.com/ot/uml.html .

The UML was chosen as design notation for this document because it is expected to
become a quasi standard and therefore will be understood by most of todays computer
scientists. With a fine grained vocabulary and great expressive power, it is capable of
depicting a design in much detail.

Bibliography

[BJR96] Grady Booch, Ivar Jacobson, and James Rumbaugh. Unified Modelling
Language for Object-Oriented Development, September 1996. Version
0.91.

[BR95] Grady Booch and James Rumbaugh. Unified Method for Object-Oriented
Development, 1995. Version 0.8.

[Bro87] Frederick P. Brooks. No Silver Bullet. Essence and Accidents of Software
Engineering.IEEE Computer, pages 10–19, April 1987.

[Chi95] Shigeru Chiba. A Metaobject Protocol for C++. InProceedings OOPSLA
95, ACM SIGPLAN Notices, 1995.

[dM95] Vicki de Mey. Visual Composition of Software Applications. In Oscar
Nierstrasz and Dennis Tsichritzis, editors,Object-Oriented Software Com-
position, chapter 10, pages 275 – 303. Prentice Hall, 1995.

[dR88] Jim des Rivi`eres. Meta-Level Facilities in LISP. In P. Maes and D. Nardi,
editors,Meta-Level Architectures and Reflection. North-Holland, 1988.

[ES90] Margaret A. Ellis and Bjarne Stroustroup.The Annotated C++ Reference
Manual (ARM). Addison Wesley, 1990.

[Fer89] Jacques Ferber. Computational Reflection in Class based Object-Oriented
Languages. InOOPSLA 89 Proceedings, ACM SIGPLAN Notices. ACM,
ACM Press, November 1989.

[FG93] Alice E. Fischer and Frances S. Grodzinsky.The Anatomy of Programming
Languages. Prentice-Hall International Editions. Prentice-Hall, 1993.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.Design
Patterns: Elements of Reusable Object-Oriented Software. Addison Wes-
ley, 1995.

[Ibr90] Mamdouh H. Ibrahim. Report on the Workshop Reflection and Metalevel
Architectures in Object-Oriented Programming. InAddendum to the Pro-
ceedings OOPSLA/ECOOP 90, ACM SIGPLAN Notices, pages 73–80,
1990.

[KdRB91] Gregor Kiczales, Jim des Rivi`eres, and Daniel Bobrow.The Art of the
Metaobject Protocol. The MIT Press, 1991.

83

84 BIBLIOGRAPHY

[Kic94] Gregor Kiczales. Foil for the Workshop on Open Implementations. WWW,
October 1994.

[Kru92] Charles W. Krueger. Software Reuse.ACM Computing Surveys, 24(2):133
– 183, June 1992.

[McA95] Jeff McAffer. Meta-Level Programming with CodA. InOOPSLA Proceed-
ings, 1995.

[ME96] Theo Dirk Meijler and Robert Engel. Making Design Patterns explicit with
FACE, a Framework Adaptive Composition Environement. InEuroPLoP
Conference Proceedings, May 1996.

[Mei93a] Theo Dirk Meijler. User-Level Integration of Data and Operation Re-
sources by Means of a Self-Descripting Data-Model, Part II: Formaliza-
tion. PhD thesis, Erasmus Universiteit Rotterdam, September 1993.

[Mei93b] Theo Dirk Meijler. User-Level Integration of Data and Operation Re-
sources by Means of a Self-Descripting Data-Model. PhD thesis, Erasmus
Universiteit Rotterdam, September 1993.

[Mei96] Theo Dirk Meijler. An Overview of FACE, a Framework Adaptive Com-
position Environment. unpublished techreport, September 1996.

[MN96] Simon Moser and Oscar Nierstrasz. The Effect of Object-Oriented Frame-
works on Developer Productivity.IEEE Computer, 29(9):45–51, Septem-
ber 1996.

[MS96] David R. Musser and Atul Saini.STL Tutorial and Reference Guide: C++

Programming with the Standard Template Library. Professional Comput-
ing Series. Addison-Wesley, 1996.

[ND95] Oscar Nierstrasz and Laurent Dami. Component-Oriented Software Tech-
nology. In Oscar Nierstrasz and Dennis Tsichritzis, editors,Object-
Oriented Software Composition, chapter 1, pages 3 – 28. Prentice Hall,
1995.

[SB86] Mark Stefik and Daniel G. Bobrow. Object-Oriented Programming:
Themes and Variations.The AI Magazine, 1986.

[Sig96] Stefan Sigfried. Understanding Object-Oriented Software Engineering.
IEEE Press, 1996.

[Sny86] Alan Snyder. Encapsulation and Inheritance in Object-Oriented Program-
ming Languages. InOOPSLA Proceedings, ACM SIGPLAN Notices,
pages 38–45, September 1986.

[Ste94] Patrick Steyaert.Open Design of Object-Oriented Languages, A Founda-
tion for Specialisable Reflective Language Frameworks. PhD thesis, Vrije
Universiteit Brussel, 1994.

