
Supporting Pure Composition
by Inter-language Bridging

on the Meta-level

Diplomarbeit
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Nathanael Schärli

September 2001

Leiter der Arbeit:
Prof. Dr. Oscar Nierstrasz

Franz Achermann

Institut für Informatik und angewandte Mathematik

Abstract
Inter-language bridging is an important issue of scripting language design and
implementation. Most of the popular languages such as Python, Perl, Tcl, and Ruby
use a bridging approach based on wrappers that are written in the external language
(usually C/C++) and serve as a glue layer between the languages. This allows a wide
flexibility in defining the glue abstractions, but it requires the user to specify them on
the level of the implementation language, and it therefore impairs the higher-level
scripting process. In contrast, the first implementations of JPiccola, a scripting and
composition language implemented in Java, use a generic bridging strategy based on
information provided by Java’s runtime introspection facilities. This strategy makes
accessing of external objects more lightweight, but it does not provide the necessary
means of abstraction and leads to a very tight coupling between the two language
levels.

In this thesis, we present a new bridging strategy for Piccola that combines the
advantages of the two approaches. We minimize the bridging functionality that is
hardcoded in the virtual machine by making it a meta-aspect of the language Piccola.
This allows the programmer to use the unrestricted expressive power of the scripting
language to specify the glue abstractions at a higher level and adapt them
dynamically. As a second contribution, we present a lazy evaluation technique that
significantly reduces the performance overhead introduced by the meta-level
bridging layer. In order to apply this lazy evaluation technique to Piccola services in
general, we develop a partial evaluation algorithm that separates the side effects of a
service and turns the individual expressions into closures. Finally, we give an
overview of SPiccola, a Squeak-based Piccola implementation with thread-aware
debugging tools.

- i -

Acknowledgements
I’d like to thank all the people who were, directly or indirectly, involved in this work.
Special thanks to Franz Achermann for introducing me to Piccola and supporting me
throughout the work that finally resulted in this thesis. In particular, I’d like to thank
him for the countless hours we were sitting together and discussed about the Piccola
language and its implementations. It was so much fun!

Special thanks also to Stéphane Ducasse who motivated me to join the SCG and to
learn Smalltalk. The interesting discussions about Smalltalk, other programming
languages and meta-object protocols were the starting point for all my work in these
fields. And of course, I especially want to thank him for introducing me to Squeak
and initiating the contact to Alan Kay, which allowed me to spend two summers as
an intern at Alan’s research group in Los Angeles. The time I have gotten to spend
there was invaluable in many aspects that go far beyond computer science, and I’d
like to thank Alan and all the other members of the Squeak Central for giving me this
great opportunity.

I’d also like to thank Oscar Nierstrasz, head of the SCG, for giving me the
opportunity to work in his group, for all the fruitful discussions about Piccola, and
for the careful reading of this thesis and the constructive comments that helped me to
improve it.

Thanks also to all the other members of the SCG for their support and the great time I
have gotten to spend together with them. I also want thank some of my fellow
students during my studies in computer science, mathematics, and physics. I enjoyed
it very much!

Last but not least, I would like to thank my family and friends, who supported me
during all my life and allowed me to be at the point where I am now.

Thank you all!

Nathanael Schärli,

September 2001

- ii -

Contents

1 Introduction.. 1

2 The Piccola Language... 5
2.1 Piccola — A pure composition language .. 5

2.1.1 What is Piccola? .. 5
2.1.2 Architecture − Forms, agents and channels.. 6

2.2 Everything is a form... 6
2.2.1 Semantics of forms ... 7
2.2.2 Forms as a unifying concept ... 9
2.2.3 Forms versus objects .. 11

2.3 Language syntax ... 13
2.4 Piccola by example ... 14

2.4.1 Piccola scripts.. 14
2.4.2 Agents and channels.. 15
2.4.3 Nested bindings.. 16
2.4.4 Operators... 16
2.4.5 Static namespace and scope.. 17
2.4.6 Dynamic namespace .. 18

3 JPiccola 2 and its inter-language bridge ... 19
3.1 Concept of JPiccola’s virtual machine.. 19
3.2 Bridging between two nested language models .. 21
3.3 JPiccola’s bridging approach... 23

3.3.1 The bridging strategy .. 23
3.3.2 Examples ... 24

3.4 Limitations of JPiccola’s bridging approach ... 26
3.4.1 The problems .. 26
3.4.2 The problems are coupled and hard to overcome............................... 29

4 Inter-language bridging as a meta-aspect of Piccola.................................. 31
4.1 Overview of our solution... 31

4.1.1 Terminology.. 31
4.1.2 Illustration of the bridging strategy... 32
4.1.3 Specification of the bridging strategy.. 34

- iii -

4.2 Representing external objects as nested forms ... 35
4.2.1 The structure of external forms .. 35
4.2.2 Consequences and example.. 36

4.3 Wrapping external objects inside Piccola.. 37
4.3.1 Structure of the inter-language bridge .. 37
4.3.2 Two models for the meta-level bridging layer..................................... 37
4.3.3 Comparison of the two bridging models.. 40

4.4 The explicit bridging model .. 42
4.4.1 Architecture... 43
4.4.2 Implementation .. 44
4.4.3 Example ... 46

4.5 Protecting forms from being converted... 46
4.5.1 Introductory example .. 47
4.5.2 The protect service ... 48
4.5.3 Using protect on the meta-level ... 50

5 Optimization using lazy evaluation.. 53
5.1 Piccola’s inter-language bridge... 53

5.1.1 Profiling a simple expression in SPiccola ... 54
5.1.2 Unused interface bindings .. 55

5.2 Lazy evaluation... 56
5.2.1 A lazy evaluation strategy using lazy forms.. 57
5.2.2 Requirements for lazy evaluation .. 57
5.2.3 Using partial evaluation to meet the requirements............................. 58

5.3 Illustration of the partial evaluation algorithm.. 59
5.3.1 Part 1 — Separating the side effect .. 60
5.3.2 Part 2 — Turning expressions into closures ... 63

5.4 Formal specification ... 65
5.4.1 The domains.. 66
5.4.2 Standard Piccola evaluation ... 68
5.4.3 The partial evaluation algorithm ... 70
5.4.4 The meta-functions .. 73
5.4.5 Evaluating the side effects and the functional part 76
5.4.6 Examples ... 77

5.5 How to prove correctness.. 82
5.6 The SPiccola based prototype implementation .. 83
5.7 Application examples... 85

- iv -

6 Conclusion.. 89

7 Related and future work.. 91

Bibliography ... 95

Appendix A. SPiccola and its debugger .. 99

- v -

Chapter 1

Introduction

Today, applications are more and more frequently specified and implemented as the
composition of components [11]. These components may be built elsewhere and are
written in different languages. It is the purpose of a scripting or composition
language to provide the necessary glue to make these components cooperate and
wire them together. Components are per definition elements of a component
framework. They adhere to a particular component architecture or architectural style
that defines the plugs, the connectors and the corresponding composition rules.
Examples for compositional styles are Unix pipes and filters, C++ template
composition, GUI composition, and GUI event composition [3][8].

Many scripting languages such as Python [20], Ruby [25], Tcl [26], and Perl [27] have
a rich set of programming constructs and built-in features that facilitate composition
of components according to predefined compositional (architectural) styles [1][2].
Piccola, in contrast, is a small and general-purpose composition language. It has a small
syntax and a minimal set of features needed to specify different styles of software
composition [1][2][6]. This allows us to specify our own styles that define a kind of
component algebra [1][2] that is well suited for the given problem-domain. Instead of
low-level wiring, this allows us to plug components together on a higher level
[1][2][3][5]. In addition, Piccola is a pure composition language. This means there is
only a minimal set of primitives providing the necessary composition abstractions.
All the other features of the language are provided by exchangeable components, and
there are no datatypes or values built into the language. Even simple arithmetic or
string operations are performed by external components. These components are
represented as forms, which are the only first-class values in Piccola.

Accessing and controlling external components is one of the crucial issues of
scripting languages, and due to its design as a pure composition language, it is
especially important for Piccola. Other languages such as Python, Ruby, Tcl, and Perl
use a bridging approach based on glue code that has to be written in the external
language (usually C/C++). This allows a wide flexibility in defining the glue
abstractions, but it requires the user to specify them on the level of the
implementation language. Therefore, this approach is not high-level and lightweight
enough for a pure composition language like Piccola, where everything is
represented as an external component. Instead, JPiccola 2, the Piccola implementation
on top of Java [36], uses a generic bridging strategy based on information provided

- 1 -

2 Chapter 1. Introduction

by Java’s runtime introspection facilities, which makes accessing of external objects
more lightweight. When a programmer accesses a Java object, the inter-language
bridge, which is part of the JPiccola virtual machine, automatically creates an
according Piccola form that represents the Java object and provides access to its
methods. Similarly, a Piccola forms gets converted into a Java object when passed as
an argument to an external (Java) method.

In our work with JPiccola, we identified several limitations of this bridging strategy.
The main problem is caused by a lack of abstraction between the two language levels.
In fact, the inter-language bridge only makes the passed entities technically
compatible to the object model of the other language, but it does not allow the
programmer to specify how to adapt them in order to fit the needs of the application
and to cooperate with the other components. This leads to a very tight coupling
between the two languages, and dealing with external components basically becomes
“Java programming within Piccola”. Due to the different philosophies of the
languages, this results in code that does not suit the Piccola paradigm. In addition,
the resulting code is inherently Java dependent and cannot be used on other Piccola
platforms.

This gets even more problematic since the Piccola forms that result from converting
external objects, we call them external forms, cannot be modified without sacrificing
their external identity. This means that a modified external form is not converted to
the original object when it is passed back to the Java language. On the one hand, this
guarantees that the modifications performed in Piccola do not get lost, but at the
same time, it causes the resulting object to lack the Java characteristics of the original
one. In particular, the resulting object has a different class and can therefore not be
used like the original object. Since most of the external components used in Piccola
are eventually passed back to the Java language, this circumstance prevents the
Piccola user from adapting the interface and the glue associated with an external
component.

In this thesis, we tackle this problem and develop a more appropriate and flexible
design for an inter-language bridge of a composition language. Basically, our
solution consists of two main concepts:

Separating the different aspects of external forms. There are two different aspects
associated with an external form, namely its external identity (i.e. the relation to
the associated component) and its Piccola interface together with the glue. We
use a nested structure to separate these two aspects. This allows the programmer
to adapt the Piccola interface and the glue of an external component without
sacrificing its external identity.

Moving the variable part of the bridge into Piccola. The task of a flexible inter-
language bridge can be divided into two parts. First, the bridge has to convert the
entities to make them technically compatible to the foreign language model. And

 3

second, it should adapt the entity in order to fit the needs of the application and
to cooperate with the other components. Whereas the first part is generic, the
second one is completely variable and should be easy for a programmer to
influence and adapt. We achieve this by moving the second part of the inter-
language bridge into Piccola’s meta-level, which allows dynamic and high-level
specification of the components, their interfaces and the associated glue.

We show that this solution supports Piccola’s concept of being a general-purpose and
pure composition language. It allows external components to be accessed through a
level of indirection that can be entirely defined in Piccola and allows the user to
modify the external forms in a natural way.

However, a price has to be paid for the indirection introduced by moving the variable
part of the inter-language bridge into Piccola, and this price is performance loss.
Because Piccola is a pure composition language, external components are used
everywhere and each of these components has to pass the inter-language bridge.
Profiling a typical Piccola scripts shows that there is an enormous amount of time
spent in the variable part of the bridge. This part consists of ordinary Piccola code
that wraps the external components and provides the necessary glue for the
components to cooperate. Analyzing the usage of external components shows that an
average component only uses a small amount of the code built by the wrappers.
Therefore, we propose a solution based on lazy evaluation to overcome this
performance bottleneck.

In particular, we use a partial evaluation technique to transform a Piccola script into a
semantically equivalent script that allows effective lazy evaluation. Then, we
represent the result of service applications as lazy forms that only evaluate the
effectively needed expressions. Our partial evaluation strategy allows us to apply
lazy evaluation for any Piccola service by using two main techniques:

Separating the side effects. A service is transformed into an equivalent service
where side effects are separated from the referentially transparent part. When
such a service is invoked, we only have to execute the side effects immediately
and can return the referentially transparent part as a lazy form.

Turning expressions into closures. A service is transformed into a service with
closed expressions. This means that these expressions do not contain free
identifiers except the ones referring to the service arguments. This makes it
possible to evaluate only the expressions associated to the effectively needed
bindings of a lazy form.

It turns out that Piccola is well suited for partial evaluation because of its simple
syntax and semantics based on forms. Form expressions exhibit the right kind of
information to statically separate the side effects of services and resolve internal
dependencies. Furthermore, there is a direct and natural mapping between the

4 Chapter 1. Introduction

syntactical form expressions and the actual forms, which provide lightweight
introspection facilities. Piccola has also no built-in datatypes that would complicate
reasoning. Nevertheless, we believe that the presented partial evaluation technique
can also be applied to other languages.

The rest of this thesis is structured as follows: In Chapter 2, we give an overview of
the language Piccola. We present its architecture and syntax, introduce forms, and
illustrate the key features with a few examples. In Chapter 3, we present the
implementation of JPiccola 2 and especially focus on the problems caused by its inter-
language bridge. Chapter 4 shows how we can solve these problems by separating
the different aspects of an external form and moving the variable part of the bridge
into Piccola’s meta-level. In Chapter 5, we analyze the performance penalty caused
by this bridging strategy and present a partial evaluation technique that allows
effective lazy evaluation of general Piccola services. Chapter 6 concludes the paper
and Chapter 7 addresses related and future work. In Appendix A, we give an
overview of SPiccola, a Piccola implementation based on Squeak [10] with thread-
aware debugging features.

Chapter 2

The Piccola Language

In this chapter we give an overview of the language Piccola [1][2]. In Section 2.1, we
present Piccola’s concept and architecture. Section 2.2 focuses on the notion of forms,
which are the only first class values in Piccola. In Section 2.3, we present Piccola’s
syntax, and in Section 2.4, we illustrate Piccola’s key features with a few examples.

2.1 Piccola — A pure composition language
In this section, we first give an overview of Piccola’s concept and design goals, and
then we present its architecture.

2.1.1 What is Piccola?
Piccola is a scripting and composition language. That is, it is a language for
composing software components that may be written in a separate implementation
language. Piccola is designed to express how such components are configured, and to
provide the connectors, coordination abstractions, and glue abstractions to wire them
together on a higher level [1][2].

Most of the scripting and fourth-generation languages such as Perl or Python have a
rich set of programming constructs and built-in features that facilitate composition of
components according to a predefined compositional style [1]. Piccola, in contrast, is
a small, pure and general-purpose composition language:

Small. Piccola has only a small syntax and provides a small set of primitives needed
for specifying different styles of software composition [1][6]. The primitives
facilitate inspection of forms, spawning parallel agents, and creation of
communication channels (cf. Section 2.1.2).

Pure. Piccola is a pure composition language because there is only a small set of
primitives providing the necessary composition abstractions. All the other
features of the language are provided by exchangeable components. This means
that even basic programming entities such as numbers and strings are
represented by components that can be dynamically reconfigured.

- 5 -

6 Chapter 2. The Piccola Language

General-purpose. Piccola is a general-purpose composition language because it
supports composition of components corresponding to different compositional
(architectural) styles. This means that Piccola allows us to specify our own styles
that define a kind of component algebra [1][2][3][6]. The sorts of such an algebra
are different kinds of components, each characterized by different plugs and
sockets that represent required and provided services. The operators of the
algebra are the connectors. Instead of using low-level wiring, this allows us to
plug components together. Thus, a script is just an expression that composes
components, where each subexpression is also a component [1][2][3][5].

2.1.2 Architecture − Forms, agents and channels
In order to achieve a simple framework for component composition and definition of
compositional styles, Piccola uses the following primitives that unify various
concepts [6]:

Forms embody structure. A form is an immutable set of bindings that associate
labels to values (i.e. forms). They can be extended with additional bindings,
which yields a new form. Forms are the only first class values and unify data-
structures, services, keyword based arguments, namespaces, and interfaces.

Agents embody behavior. Agents are concurrent communicating entities whose
behavior is specified by a script. Agents implement the connections between
components, and they unify concurrency and composition.

Channels embody state. Channels are mailboxes that agents use to communicate.
Channels unify synchronization and communication.

Unlike forms, agents and channels do not appear in the syntax of Piccola but they can
be directly instantiated by means of the primitive services run and newChannel.

2.2 Everything is a form
In Piccola, forms are the only first class values, which means that every first-class
entity is represented as a form [1][2][6]. This section covers the semantics of Piccola
forms and presents how the different language aspects are modeled with forms.
Finally, it compares Piccola forms to the traditional object-oriented approach with
objects and classes.

2.2 Everything is a form 7

2.2.1 Semantics of forms
A Piccola form is an immutable and unordered set of bindings that associate labels to
values (i.e. forms). The empty form contains no bindings. The following five basic
operations are defined on forms:

Polymorphic extension. Polymorphic extension F, G of a form F with a form G
yields another form containing all the bindings of the form G and the bindings of
the form F whose labels are not used within the form G. This means that the
bindings of the form G override equally labeled bindings of the form F in the
resulting form.
F = # A nested form with three bindings name, value and size
 name = "Foo"
 value = 15
 size = # The label size is bound to the form (x = 10, y = 20)
 x = 10
 y = 20

G = # A nested form with two bindings value and size
 value = 7
 size = (x = 10, y = 28)

println (F, G) # Prints: (name = Foo, value = 7, size = (x = 10, y = 28))

Projection. Projection allows us to retrieve the form that is bound to a certain label.
This means that a projection F.l returns the form that is bound to the label l
within the form F. If this form does not contain a binding labeled l the operation
results in a runtime exception.
F = # A nested form with three bindings name, value and size
 name = "Foo"
 value = 15
 size = # The label size is bound to the form (x = 10, y = 20)
 x = 10
 y = 20

println F.name # Prints: Foo
println F.size # Prints: (x = 10, y = 20)
println F.size.x # Prints: 10
println F.abc # Error! (F does not contain a binding labeled abc)

Application. Everything in Piccola is a form, and therefore, services (Piccola
abstractions) are also represented as forms. The application F G invokes the
service represented by the form F with the argument form G and yields the
resulting form. Note that a form can represent a service and have bindings at the
same time (cf. Section 2.2.2).

8 Chapter 2. The Piccola Language

The form F gets defined as a service taking an argument X
F X: # Alternative definition: F = \X: ...
 value = X
 predecessor = X - 1
 successor = X + 1

println (F 3) # Prints: (value = 3, predecessor = 2, successor = 4)

Restriction. Restriction allows the user to remove a binding labeled l from a form F.
If this form does not contain a binding labeled l the operation results in an error.
F = # A form with two bindings labeled name and size
 name = "Foo"
 size = 15

The service label returns an arbitrary first class label bound in the argument form.
Here, it returns size because this is the only label in the argument form
labelSize = label(size = ())
G = labelSize.restrict F # Form restriction

println F # Prints: (name = Foo, size = 15)
println G # Prints: (name = Foo)

Inspection. Inspection is used to find out whether a form contains bindings,
represents a service or is the empty form. The primitive service inspect is
Curried. As a first argument, it takes the form that gets inspected. The second
argument contains three services. Depending on the structure of the inspected
form, either of these services gets invoked. If a form contains bindings, inspection
can be used to retrieve an arbitrary first class label that is available within the
inspected form.

Define the three services for the second argument of the inspect service
Cases =
 isEmpty: println "Form is empty"
 isService: println "Form is a service and has no bindings"
 isLabel L: println "Form with label " + L.name()

inspect () Cases # Prints: Form is empty
inspect (\X: X) Cases # Prints: Form is a service and has no bindings
inspect (a = 5) Cases # Prints: Form with label a

Whereas the Piccola syntax provides structures for polymorphic extension,
projection, and application, there are no syntactical structures for the rarely used
operations for restriction and inspection, which can be performed using the primitive
inspect or first class labels, respectively. Note that a combination of restriction and
inspection allows iteration through the bindings of a form.

2.2 Everything is a form 9

2.2.2 Forms as a unifying concept
Forms are the only first class values in Piccola. In the following, we show how forms
are used to naturally represent the different language concepts:

Data-structures (objects). Piccola uses (nested) forms to define data-structures.
These data-structures are basic objects that may consist of structure and behavior
(services). The following example shows such a data-structure and illustrates
how projection can be used to access individual elements.
person = # A nested form
 name = (first = "Peter", last = "Brown")
 yearOfBirth = 1970
 city = "Los Angeles"
 getAge YearNow: YearNow - yearOfBirth # A service (behavior)

println person.city # Prints: Los Angeles
println person.name.last # Prints: Brown
println (person.getAge 2001) # Prints: 31

Services (behavior). Services are abstractions over an arbitrary form. Internal services
are defined by Piccola scripts, whereas external services are provided by external
components. Both, internal and external services are represented as forms. This
allows us to define higher order services. In the following example, we define a
service calculating the absolute value of a number and show how to use it. Note
that a form may represent a service and contain bindings at the same time.
abs X: # The form abs represents an internal service taking an argument X
 if X >= 0
 then: X
 else: (-X)

result = abs (-3) # Invokes the service with the argument -3.
println result # Prints: 3

newAbs = (abs, name = "Peter") # Extends the form abs with a binding
println newAbs(-5) # Prints: 5
println newAbs.name # Prints: Peter

Keyword-based arguments. The structure of forms permits the strictly monadic
Piccola services to use keyword-based arguments with optional default values.
The following example shows how we can define a service myPrint that takes
arguments that are associated to the keywords stream and value. Note that the
service provides a default value for the argument stream. The quote expressions
(') are used to modify the static namespace without affecting the form being
constructed (cf. Sections 2.3 and 2.4.5). Note that the example requires the initial
context to provide two bindings anOutputStream and aFileStream.

10 Chapter 2. The Piccola Language

Service taking an argument with keywords stream and value.
myPrint X:
 # Use anOutputStream as a default if the argument X does not specify a specific stream
 'stream = (stream = anOutputStream, X).stream
 stream.print X.value

myPrint (value = "Hello") # Use default stream
myPrint (stream = aFileStream, value = "World") # Use aFileStream

Namespaces. Piccola supports both static and dynamic namespaces, which are
modeled as (nested) forms. Since these namespaces are first-class values, one can
implement various abstractions to support modules and packages. The keyword
root refers to the static namespaces (root context) in which identifiers are looked
up. The dynamic namespace (dynamic context) is a form with a special semantics
that is bound to the label dynamic of the root context [7]. Refer to Sections 2.4.5
and 2.4.6 for examples about namespaces and scope.

Channels. New channels are created by the primitive service newChannel, which
returns a form that gives access to a channel. This form consists of two services
for sending respectively receiving. Consult Section 2.4.2 for an extended example
that illustrates the use of channels and agents. Note that channels do not
necessarily preserve the order of the sent forms.
ch = newChannel()
ch.send 1
ch.send 2
println ch # Prints: (send = (service), receive = (service))
println ch.receive() # Prints: 1 or 2
println ch.receive() # Prints: 2 or 1

Labels. Piccola has the notion of first class labels, which provide a non-syntactic
alternative for form extension (bind), restriction (restrict), and projection
(project). Furthermore, they can be used to find out whether a form contains a
specific label (exists). First class labels may be created using the built-in service
label, which returns an arbitrary first class label that is available in the
argument form. In the following example, we create a first class label color by
invoking the service label with the argument form (color = ()) that contains
only one binding.
label = label (color = ()) # Returns first class label color
form = label.bind("blue") # Binds the label color to "blue" in the resulting form
println form # Prints: (color = blue)
val = label.project(form) # Project on the label color of the argument form
println val # Prints: blue
form = label.restrict(form) # Remove the label color from the argument
println form # Prints: ()

2.2 Everything is a form 11

External components. Piccola represents external components (respectively their
interfaces) as forms. shows an external Piccola form that represents the
object 9. All the (public) methods of the object are mapped to the corresponding
labels of the form. Thus, the external form can be considered an interface or a
proxy for the associated object.

Figure 2.1

Figure 2.1: Form as interface to an external component

Piccola

External
Component

9

+

-

/

...

+

-

/

...

9

Piccola Form

2.2.3 Forms versus objects
Today, most programming languages are designed according to the object-oriented
paradigm with objects and classes as their basic entities. Every object is an instance of
a certain class that defines its structure and its behavior. Usually, these classes are
statically defined and they can inherit state and behavior from other classes.

In Piccola, forms play the role of objects. Forms are first class values and may contain
both state and behavior. But compared to objects, forms are simpler data-structures
and are not instances of classes describing their structure. As a consequence, dealing
with forms is more lightweight:

No self. There is no reference to the active form (i.e. the form where the currently
executed service is defined).

Immutability. Forms are extensible but immutable data structures and so there is no
need for a copy-semantics.1

1 In Piccola, forms are also used to represent entities with state, such as channels and external
components. In these cases the immutable forms serve as interfaces to mutable entities.

12 Chapter 2. The Piccola Language

Prototype-based instantiation. Forms may be built by adding new bindings to an
existing form. There is no need to specify a corresponding class first. This
approach is similar to that used by prototype-based object-oriented languages
such as Self [12].

Dynamic extension. Polymorphic form extension can be used as a very primitive
subclassing mechanism. As with traditional subclassing in object-oriented
languages, the extended form (derived class) is compatible1 to the original form
(base class). This means that an extended form can play the role of the original
one (cf. Section 3.4.1 for an example). Unlike traditional subclassing, which is
performed on static classes, form extension is completely dynamic and directly
applies to forms as runtime entities.

Whereas the traditional object-oriented paradigm is appropriate for creating
component frameworks from scratch [11], we claim that the form approach is suitable
as a unifying concept for high-level composition, because forms are more lightweight
and dynamic:

• In the previous chapter we presented how forms are used to represent interfaces
of external objects. The fact that forms can be dynamically extended facilitates
dynamic adapting of these interfaces according to different needs and
composition styles.

• Piccola uses forms to provide keyword-based arguments. This is possible because
forms can be naturally created without having to specify a corresponding class
first.

It is important to know that the rather primitive form concept of Piccola does not
prevent the user from using more complex abstraction mechanisms [8]. As an
example, Jean-Guy Schneider has developed an architectural style that conforms to
the traditional OO programming paradigm [8].

1 In Piccola, a value bound to a certain label x within a form F can be overridden with an
arbitrary value when F is extended with another form G. As an example, we can override a
label bound to a service and bind it to the empty form. Therefore compatibility of an extended
form with the original form is not guaranteed. However, also in traditional object-oriented
languages like Eiffel [37], compatibility between a base class and a derived class is not
guaranteed. In Eiffel, methods of a base class can be removed or renamed in the derived class.

2.3 Language syntax 13

2.3 Language syntax
In this section, we give a brief overview of the Piccola language syntax. Instead of
explaining all the available features, we give examples of the most important ones in
Section 2.4. A complete description of the language syntax is given in Achermann’s
thesis [9].

Form ::=
 root static namespace
 identifier label
 literal constant literal
 \ [Param] : Form anonymous service
 Form . identifier projection
 Form Form application
 Form op Form infix application
 op Form prefix application
 Form , Form extension
 op{ [FormList] op} collection
 ([Form]) parenthesis
 root = Form [, Form] sandbox
 [def] Label [Param] : Form [, Form] service binding
 [def] Label = Form [, Form] binding
 ‘ Form [, Form] quote

FormList ::=
 [FormList ,] Form collection composition

Param ::=
 identifier [Param]
 ([identifier]) [Param]

Label ::=
 [root .] identifier simple label
 Label . identifier nested label

Table 2.2: Piccola language syntax

The fact that Piccola uses only a few unifying concepts leads to a small syntax that is
presented in Table 2.2. We use the keyword root to denote the static namespace
where identifiers are looked up. Literal numbers and strings provide access to the
associated external components. Piccola supports infix and prefix operators (op) that
can be sequences of operator characters such as + and *. Bracket operators (op{ and
}op) may be used to specify user-defined collections, but they are not used within this

14 Chapter 2. The Piccola Language

thesis. We use sandbox for specifying the static namespace that is used to evaluate the
subsequent Form. As an alternative, we can use quote, which extends the static
namespace instead of replacing it. In fact, the quote expression ‘E, F is syntactic sugar
for the sandbox root = (root, E), F. Anonymous abstractions are specified by
anonymous service, whereas service binding defines named abstractions. Finally, we use
the keyword def in binding respectively service binding to define a recursive forms
(fixed-point).

The reader may have noticed that we use the term form to denote both first-class
runtime entities and syntactical expressions. In the following, we sometimes use the
term form expressions to make it explicit that we mean syntactical forms.

2.4 Piccola by example
In this section we illustrate the most important Piccola features with examples. First,
we introduce Piccola scripts, which are services taking the initial context as an
argument. Then, we illustrate the use of agents and channels and show how nested
bindings simplify modification of nested forms. Finally, we present some examples of
namespaces and their scope.

2.4.1 Piccola scripts
Piccola programs are written as scripts that describe a sequence of form expressions.
According to Piccola’s architecture, these scripts are executed by an agent that
provides the initial context (namespace). This context can be used and extended by
the script. Therefore, a Piccola script can be considered as the body of a service
definition that takes the initial context as an argument and makes it the static
namespace by assigning it to root (sandbox). When executed, this service yields a new
form that is the result of the script.

If B is the definition of a script, the corresponding service is:
\Root: # Anonymous abstraction taking an argument Root
 root = Root # Use the argument form as the static namespace (sandbox)
 B

Here is an example script that defines a recursive service fact, invokes it with the
argument 5 and assigns the result to the label result. The script uses the identifiers
fact, if, argument, result, and println that are looked up in the static
namespace. Since the bindings for if and println are not defined by the script, they
have to be provided by the initial context.

2.4 Piccola by example 15

def fact N: # The keyword def is used to define recursive services (fixed-point)
 if N > 1
 then: N * (fact N - 1)
 else: 1

argument = 5
result = fact argument
println result # Prints: 120

2.4.2 Agents and channels
Piccola provides the primitive services run and newChannel to spawn new agents
and create channels for communication and synchronization. The service run spawns
a new asynchronous agent executing the service that is bound to the label do of its
argument. The service newChannel creates a new blocking communication channel
that is represented by a form containing the services send and receive.

In the following example, we spawn a new agent that uses two channels in and out
for communication. The agent reads a number from the channel in, increments it and
sends the result to the channel out. We use this agent by sending a few numbers to
the channel in and reading the results from out.

in = newChannel() # Create new channel
out = newChannel() # Create new channel
def incService: # Define recursive service
 value = in.receive() # Blocking read from the channel in
 out.send value + 1 # Send to the channel out
 incService() # Loop after sending the incremented value

run (do = incService) # Spawn a new agent executing incService

in.send 5
println out.receive() # Prints: 6
in.send 10
println out.receive() # Prints: 11

16 Chapter 2. The Piccola Language

2.4.3 Nested bindings
Nested bindings are syntactic sugar used to extend nested forms. In the following
example, we show how they can be used to extend a nested form in a shorter and
more natural way. The syntax of nested bindings is defined in Table 2.2.

In the following example, we create a nested form person and extend it using nested
bindings. Then we show the clumsy alternative without nested bindings.

Definition of a nested form
person =
 age = 23
 name =
 first = "Peter"
 last = "Brown"

Using nested binding to extend the previously created nested form
person.name.middle = "Michael"

Alternative without the use of nested bindings
person =
 person
 name =
 person.name
 middle = "Michael"

2.4.4 Operators
Piccola supports user-defined infix and prefix operators. An operator is a sequence of
operator characters such as * and +. Infix and prefix operators can be defined using
the special identifiers _op_ respectively op_, which can be defined as ordinary services
(op denotes an operator).

In the following example, we create a form two that contains infix and prefix
operators. Then, we show how the operators can be used.

two =
 +(Left): 2 + Left # Define infix operator +
 -(Left): 2 - Left # Define infix operator -
 -_: -2 # Define prefix operator -

println two + 100 # Prints: 102
println two - 1 # Prints: 1
println (-two) # Prints: -2

Piccola also supports default operators, but we do not cover them in this thesis.

2.4 Piccola by example 17

2.4.5 Static namespace and scope
In Piccola, the static namespace is an ordinary form that can be accessed with the
keyword root. The scopes of Piccola namespaces are local, and therefore, bindings
defined in a subform do not affect the outer scope. Furthermore, Piccola provides
hidden bindings (quote) that are added to the static namespace but not to the value
that is being constructed.

In the following example, we first define a binding val that is added to both the
current form and the static namespace. Then, we create a subform and bind it to the
label rectangle. Note that the quoted (') binding for val is added to the static
namespace only and does not affect the form bound to rectangle. Since Piccola
scopes are local, the redefinition of val is not visible outside this subform. Finally,
we use sandbox to replace the static namespace by another form. Since val is not
defined in this form, a reference to it results in an error. Note that overriding of the
static namespace is a crucial operation that may have serious consequences. In our
example, we make sure that the dynamic namespace (dynamic) and the service
println are available in the new static namespace.

val = 100 # Add binding to the static namespace and the current form

rectangle =
 'val = 3 * val # Add binding to the static namespace only (quote)
 width = val - 10 # The identifier val refers to the local definition
 height = val + 10

println val # Prints: 100
println rectangle # Prints: (width = 290, height = 310)

root = # Explicitly replace the static namespace (sandbox)
 dynamic = dynamic # Reuse the dynamic namespace in the new namespace
 println = println # Reuse the service println in the new snamespace
 color = "blue"
 name = "Peter"

println color # Prints: blue
println val # Error!

18 Chapter 2. The Piccola Language

2.4.6 Dynamic namespace
By default, all identifiers are looked up in the static namespace, which is an ordinary
form that is accessible using the keyword root. In addition, Piccola also provides a
dynamic namespace. The dynamic namespace is represented by a form bound to the
label dynamic of the static namespace. This form gets implicitly passed whenever a
Piccola service is invoked [6].

The following example script defines a service printState that prints a string onto a
stream defined in the dynamic context. Because this context is implicitly passed on
every service invocation, the programmer can dynamically specify which stream to
use. Note that the script requires the initial context to provide bindings
anOuputStream, aFileStream and myPrint.

Use anOutputStream as the defaultStream in the dynamic context
dynamic.defaultStream = anOutputStream # Nested binding

printState X:
 myPrint
 stream = dynamic.defaultStream
 value = "State of the script: " + X

printState "Hello" # Prints to anOutputStream

Use errorStream as the defaultStream of the dynamic context
dynamic.defaultStream = aFileStream # Nested binding
printState "World" # Prints to aFileStream

Chapter 3

JPiccola 2 and its inter-language
bridge

The original implementation of Piccola is called JPiccola, and it is implemented on
top of Java. This means that the parser and the virtual machine are implemented in
Java, whereas other parts like a simple development environment and a small library
are built in Piccola by using Java components. Since Piccola is designed as a
composition language, using external components is a core principle of JPiccola, and
it strongly influences its implementation.

In this chapter, we focus on JPiccola 2 and analyze its strategy for inter-language
bridging. Section 3.1 gives an overview of JPiccola’s virtual machine. In Section 3.2,
we reason about inter-language bridging in general, and Section 3.3 presents the
bridging strategy used by JPiccola. In Section 3.4, we show that this strategy is not
flexible enough and causes serious incompatibilities with Piccola’s goals and
architecture.

3.1 Concept of JPiccola’s virtual machine
JPiccola’s virtual machine reflects the fact that Piccola is designed as a composition
language. It consists of a special part called the inter-language bridge that facilitates
accessing external components and their methods from within Piccola. Whereas most
other virtual machine implementations provide many primitives to perform basic
system operations such as integer arithmetic, the JPiccola virtual machine uses the
inter-language bridge to delegate these operations to external components.

Apart from that, the JPiccola virtual machine has a structure similar to other virtual
machines such as the one of Smalltalk-80 [13][14], and it consists of the following
parts:

• Interpreter

• Runtime data structures (forms)

• Primitive services

• Inter-language bridge

- 19 -

20 Chapter 3. JPiccola 2 and its inter-language bridge

Because there is no byte-code compiler for Piccola yet, the interpreter directly operates
on the parse trees1. Interpretation of the parse tree nodes results in forms, which are
the only first-class values in Piccola. Every form is represented by a Piccola runtime
data structure that is an instance of a Java class providing the five basic form
operations, namely polymorphic extension, projection, application, restriction, and
inspection (cf. Section 2.2.1). Since everything in Piccola is a modeled as a form, the
form data structures are also used to implement namespaces.

When a Piccola service is invoked, the interpreter usually responds by executing the
Piccola code that is associated with the service. Some services, however, are realized
by executing a virtual machine primitive. Similar to other virtual machines, the
JPiccola virtual machine uses such primitive services to perform basic operations that
cannot be performed or can only be performed inefficiently without a primitive. But,
whereas other virtual machine implementations usually need lots of primitives for
arithmetic operations, arrays and streams, input/output, storage management, and
system operations, Piccola only needs the four primitives shown in Table 3.1.

Primitive Description

run Spawns a new asynchronic agent executing the service that
is bound to the label do of its argument.

newChannel Creates a blocking communication channel.

inspect Inspection is used to find out whether a form contains
bindings, represents a service or is the empty form. If the
form contains bindings, inspection returns an arbitrary
label that is used within the form.

external Provides access to external components2.

Table 3.1: The Piccola primitives

All the other basic operations are delegated to external components that are accessed
through the inter-language bridge that is a core part of the Piccola virtual machine and
allows passing of runtime entities across the language boundary in a bi-directional
way.

1 In the first versions of JPiccola, the Piccola code is first translated to the polyadic π-calculus,
which serves as a semantic foundation for Piccola and allows formal reasoning about
program behavior [4]. This additional language layer is not relevant in this context and is
therefore neglected.
2 Note that the primitive to access external components depends on the host language.
Therefore, the name and the semantics of this service are implementation specific. In
JPiccola2, this primitive is named javaClass.

3.2 Bridging between two nested language models 21

3.2 Bridging between two nested language models
In this section, we analyze the situation of having two nested language models and
the consequences for an inter-language bridge. Although we are starting with
JPiccola and Java as the example, the analysis stays at an abstract level and is
independent of particular programming languages.

By implementing the language Piccola on top of Java, we are dealing with two nested
language models. On the one hand, we have the Piccola model with forms as its
runtime entities. From a Piccola point of view, everything is a form and every form
has the properties specified by the semantics in Section 2.2.1. On the other hand,
there is the Java model, where everything is an object1. Since Piccola is running
within the Java model, every Piccola form is actually a Java object. However, Java
objects are incompatible with the form-based Piccola model and so they cannot be
accessed within Piccola.

To abstract away from our concrete situation, we use the same terminology as in
Agora [15]. The term down level refers to the implementation language (such as Java
or Squeak), whereas up level means the language that is implemented and evaluated
on top of the down level (Piccola). We assume that the down level provides some
object-like first class entities and call them objects. At the same time, the first class
entities of the up level are named forms. If we say that an object is passed upwards, we
mean that the object is passed from the down level to the up level. Accordingly, we
say a form is passed downwards if it is passed from the up level to the down level.

 gives an illustration of the two language models and the terminology. Figure 3.2

Figure 3.2: Nested language models (up level and down level)

Up Level
(Piccola)

Down Level
(Java)

Passing
objects
upwards

Passing
forms
downwards Forms

Objects

1 In fact, Java also has primitive data-structures such as int and bool, which are not objects.
Since they can be converted into corresponding objects, this issue is neglected here, although
it complicates the implementation of the Piccola virtual machine.

22 Chapter 3. JPiccola 2 and its inter-language bridge

A strategy for bridging between two languages has to specify how runtime entities of
either language are passed across the language boundary. In the case of nested
language models, this is not symmetric, and we have to consider both directions:

Passing objects upwards
Since the language model of the up level cannot deal with generic objects, they have
to be converted into forms in order to be accessible. This means that the inter-
language bridge has to create an appropriate form representation of every object that
is passed to the up level. If the passed object is already a form, the bridge does not
have to do anything and can directly forward the form.

As a consequence, the up level knows two substantially different kinds of forms. The
most obvious ones are the forms that are ex nihilo created within the up level, and we
call them plain forms. This means that a plain form may be the empty form or a form
that results from binding values (i.e. forms) to labels within Piccola. The other forms
are the ones that are automatically created by the inter-language bridge whenever an
object is passed upwards. They actually represent a down object within the up level,
and we therefore name them external forms. Sometimes, we use the term associated
object to refer to the object represented by an external form.

Passing forms downwards
From a down-level point of view, every form is a special object in its own language
model. Therefore, a form can be passed to the down level just as it is. Although this
makes sense for plain forms, it is usually not what we need in case of external forms
that represent a down object. In this case, we often want the down level to operate on
the object associated to the form rather than on the form itself. Deciding on which of
the two possible entities has to be passed in a certain situation is one of the crucial
points of an inter-language bridging strategy and as we will show in Section 4.5, the
bridging layer does not have enough information to reasonably take this decision by
itself.

3.3 JPiccola’s bridging approach 23

3.3 JPiccola’s bridging approach
After analyzing the strategy for inter-language bridging on an abstract level, we
present the approach that is used by JPiccola and illustrate its key issues with two
examples.

3.3.1 The bridging strategy
This section contains a description of what happens if an entity is passed across the
language boundary in either direction.

Up. Passing objects from Java to Piccola

A. If the object is already a form (i.e. it is an instance of a form data structure), it is
directly passed up to the Piccola language.

B. Otherwise, the following happens:
B1. An object is converted into a form that contains a label for every public

method that is implemented or inherited by the class of the object. Each of
these labels is bound to a service that represents this method for the given
object.1 This means that this object is used as self when the service is invoked.

B2. Forms representing special objects such as numbers, strings or booleans are
extended with additional bindings that make them more appropriate from a
Piccola point of view.

We say that a form represents an external (Java) object if it was created by step Up.B
of the inter-language bridge. According to the terminology in the previous section,
we call these forms external forms. Note that a form that is built by extending or
restricting an external form is not considered an external form anymore.

Passing forms from Piccola to Java (Down)

A. If the form represents an external object (i.e. it is an external form) this object is
passed down to Java.

B. Otherwise the form itself is passed down to Java.

1 Since Piccola services have a different structure than Java methods, we use the labels val,
val1, val2, etc. to specify the arguments of the corresponding method invocation. Similarly,
we use the labels type, type1, type2, etc. to specify the type of the arguments, which may be
important for selecting a particular overloaded method.

24 Chapter 3. JPiccola 2 and its inter-language bridge

3.3.2 Examples
In the following we present two examples that illustrate the different aspects of
JPiccola’s bridging strategy. Whereas the first example just passes external objects up
and down, the second one also passes plain forms across the language boundary.
Note that the following examples and the other examples in this Chapter are written
in JPiccola 2.

Example 1
In this example, we first use the primitive service javaClass to create a new
instance of the Java class FileWriter that refers to the file named "FileName".
Then we create an instance of the class PrintWriter that is attached to the
FileWriter instance and print "Hello World" on it. Note that we use the labels
val and type in the argument of external services. This is necessary to specify the
argument value and the argument type of the corresponding Java method.

1. writer = javaClass("java.io.FileWriter").new
 val = "FileName"
2. stream = javaClass("java.io.PrintWriter").new
 val = writer, type = "java.io.Writer"
3. stream.println (val = "Hello World")

Execution of this script triggers the following bridging related virtual machine
operations:

1. The operations triggered by line 1 can be separated as follows:
a. "java.io.Filewriter". The virtual machine creates the Java string object

and the bridge converts it into the corresponding form when it is passed
upwards (Up.B1, Up.B2).

b. javaClass("java.io.FileWriter"). javaClass is a primitive service
referring to a Java method. Since the argument is an external form the bridge
passes the associated string object downwards (Down.A). The result of this
operation is a form representing the Java class FileWriter.

c. writer = javaClass("java.io.FileWriter").new(val = "FileName").
The service new refers to the constructor of the class FileWriter. Because
the argument value "FileName" is an external form it gets converted to the
corresponding string object by the bridge (Down.A). Finally, the newly
created FileWriter instance is converted to a form when passed back to
Piccola (Up.B1).

3.3 JPiccola’s bridging approach 25

2. The second line triggers similar bridging operations as the first line. The main
difference is the call to the new service. We use a service of the class PrintWriter
and pass the form writer created in the first line as an argument. In addition, we
specify the constructor by defining the type of the argument. Both the argument
(writer) and the type ("java.io.Writer") are external forms and therefore
the associated Java objects are passed downwards (Down.A).

3. First, the string object "Hello World" is created and passed up to Piccola
(Up.B1, Up.B2). Then, the resulting form is used as an argument for the service
println and is converted back to the string object by the inter-language
bridge (Down.B).

Example 2
In the second example, we use the primitive service javaClass to create a new
instance of the class Vector. Then we create the string "Hello World" and add a
binding labeled length to it. Finally, we append the resulting form to the vector,
read it again and print it.

1. vector = javaClass("java.util.Vector").new()
2. originalForm =
 "Hello World"
 length = 11
3. vector.add (val = originalForm)
4. readForm = vector.firstElement()
5. println readForm.length # Prints: 11

Most of the bridging operations have already been described in the previous
example. Therefore, we mainly focus on line 3 and 4 where new operations are used:

1. First, the string object "java.util.Vector" is passed upwards (Up.B1,
Up.B2) and then the corresponding form is passed downwards as the
argument to the service javaClass again (Down.A). Finally, the newly created
vector is passed upwards and converted to a form (Up.B1).

2. The literals "Hello World" and 11 are created by the virtual machine and
passed upwards (Up.B1, Up.B2).

3. The add service of the vector is invoked with the form orginalForm as the
argument. Since the orginalForm is not an external form, the bridge passes
the form object downwards as it is (Down.B). This means that the form is not
converted and the form object itself is directly added to the Java vector.

4. The invocation of the Java method firstElement yields the form object that
was added in the previous line. Since this object is already a form, the bridge
directly passes it up to Piccola (Up.A).

26 Chapter 3. JPiccola 2 and its inter-language bridge

5. The label length is bound to the external form representing 11 and therefore,
the corresponding object is passed down to Java (Down.B) and printed.

Lines 3, 4, and 5 nicely illustrate that it is important that only unmodified forms are
replaced by the associated object when passed downwards. Otherwise, the form
originalForm would be converted to the string object "Hello World" when stored
in the vector. As a consequence, the retrieved form readForm would not contain the
binding length anymore. This would violate the usual semantics of the collection
(vector), which says that elements are not modified when inserted and retrieved.

3.4 Limitations of JPiccola’s bridging approach
As the previous examples show, JPiccola’s bridging strategy basically fulfills its task
and allows the user to access external components wrapped up as forms. In this
section, we have a closer look at this strategy and point out why it is still not flexible
enough. We explain why using the external forms as provided by the bridge causes
many incompatibilities with Piccola’s core concepts and show that the problems are
coupled in a way that prevents a user from working around some of the problems
without running into others.

3.4.1 The problems
In this section we show that there are many problems caused by JPiccola’s bridging
strategy. First, we explain why external forms do not behave like internal Piccola
forms. Then, we illustrate that the bridge uses a very direct way to convert external
components into Piccola forms. Amongst others, this leads to a very tight coupling of
the two languages. Finally we claim that hardcoding the structures of special objects
such as integer and strings in the Piccola virtual machine is not flexible enough.

I. Incoherent behavior of external forms
As a pure composition language, which uses external components even for basic
operations, Piccola should make it possible to work with forms representing such
components in the same way as with internal forms. This is particularly important for
form extension. As explained in Section 2.2.3, form extension can be used as a simple
but dynamic subclassing mechanism in Piccola. This means that we can extend a
form with new bindings without sacrificing compatibility to the original form. The
extended form can then play the role of the original in similar way as a subclass can
play the role of its base class. Due to Piccola’s semantics, this is automatically true for
every form as long as it is used inside of Piccola.

3.4 Limitations of JPiccola’s bridging approach 27

The following example uses a service printDate that prints the date represented by
the argument form. This service requires the argument to provide at least the
bindings month, day and year. First, we invoke it with a form that represents a date
and only contains the required bindings. Then, we extend the form with bindings
specifying the time and show that is still compatible with the service.

printDate X:
 println X.month + "/" + X.day + "/" + X.year

date = # Defines a form representing a date
 month = "7"
 day = 2
 year = 2001
printDate date # Prints: "7/2/2001"

dateAndTime = # Defines a form representing a date and a time
 date
 hour = 10
 minute = 33
printDate dateAndTime # Prints: "7/2/2001"

Unfortunately, this basic Piccola concept does not hold for forms that are passed to
external services. As soon as an external form is extended it is not considered an
external form anymore and it behaves totally different when passed down to the host
language. An external form gets converted into the associated external object
(Down.A) whereas any other form is not converted, and the form object itself is
passed to the host language (Down.B). Since the user has no means to determine
whether a certain form is external, it is also not possible to find out whether
extending this form will affect the way it is handled by the bridge.

The following example illustrates this problem. We first create a service newButton,
which builds an external form representing a button and extend it with a service
setText. Then, we call the service newButton to create a new button and use
setText to set its label. Finally, we try to add the button to a Java panel, but
unfortunately, Piccola does not behave as we expect. Because the argument
okButton has been modified it is not considered an external form anymore, and the
inter-language bridge passes the form object itself (Down.B) and not the associated
button object down to the Java language (Down.A).

28 Chapter 3. JPiccola 2 and its inter-language bridge

This service creates a new button and extends it with an additional interface binding
newButton:
 'button = javaClass("java.awt.Button").new()
 button
 setText(S): button.setLabel(val = "Piccola-Button: " + S)

okButton = newButton()
okButton.setText("Ok") # Uses interface service to set the label
XPiccola.piccolaPanel.buttons is a Java panel of the Piccola user-interface
panel = XPiccola.piccolaPanel.buttons
Attention! The whole Piccola form and not only the button object is passed down to Java
panel.add(val = okButton)

II. Direct mapping conflicts with Piccola’s principles
JPiccola’s inter-language bridge uses a very direct way to convert an external
component into a Piccola form. In fact, the method interface of the object gets entirely
mapped to the resulting form. As a consequence, Piccola operates basically on the
level of the host language, which leads to the following problems:

No separation between the language levels. Most of the components used by
JPiccola are Java objects. Because of the direct bridging strategy, dealing with
these components basically becomes „Java programming within Piccola“ and
due to the different philosophies of the languages, this results in code that does
not suit the Piccola paradigm. In addition, the resulting code is inherently Java
dependent and cannot be used on other Piccola hosts. This gets especially
obvious with service invocations. Whereas Java is a typed language with tuple
based method arguments, Piccola does not have types and uses a concept of
monadic higher order services. Therefore, invocation of Java methods from
Piccola looks very unnatural and clumsy. See Section 3.3.2 for examples.

External forms are cluttered with inappropriate lower level services. Java objects
often provide rich interfaces and therefore the corresponding Piccola forms
contain many bindings. Besides the fact that this makes them very complex, it
also contradicts Piccola’s philosophy. Within Piccola, Java objects are viewed as
components with a limited set of services used to plug them together according
to a specific compositional style. Therefore, most of a Java object’s public
methods should not be visible on the composition level.

Hard to use components with incompatible interfaces. The lack of abstraction for
accessing components prevents the programmer from using components with
incompatible interfaces (plugs). As an example we consider several components
representing numerical structures (integers, floats, fractions, etc.) that were
written independently and have different interfaces. Rather than directly using

3.4 Limitations of JPiccola’s bridging approach 29

these interfaces, the bridge should convert them according to the current style for
composing numerical structures in Piccola.

III. Hardcoding structures in the virtual machine is inflexible
In order to make some of the frequently used Java objects look more natural in
Piccola, the inter-language bridge adds some special bindings to the external forms
representing these objects in step Up.B2. Although this helps to avoid some of the
problems caused by the direct mapping, hardcoding the extension in the virtual
machine is not a flexible solution. Piccola is supposed to be a general-purpose
composition language and the programmer should be able to use it for many
different problem domains with different requirements on the used components.
Hardcoding the structure of the components in the virtual machine is completely
static and cannot be modified without replacing the virtual machine. Therefore it
contradicts Piccola’s goal of being a flexible and general-purpose language.

This can be illustrated with number components. Most applications only use a very
limited set of numerical operations. Therefore it is suitable to provide standard
number components with a small, clear and easy to use interface. However, for other
applications (e.g. mathematical encryption) it is necessary to have numeric
components providing a rich set of operations. In this case, the standard number
representation is not sufficient anymore, and the user should be able to easily modify
it according to her needs.

3.4.2 The problems are coupled and hard to overcome
Unfortunately, the problems mentioned in the previous section are coupled in a way
that makes it hard for a user to work around some of them without running into
others.

A programmer can tackle the direct mapping problem (II) by manually adapting the
structure of external forms and make them appropriate to Piccola’s paradigm and the
used compositional style. This adaptation includes changing method names and
argument structure, cleaning up the interface by removing irrelevant methods and
adding Piccola forms and services to provide more information and allow new
operations. This makes the external forms look like internal ones, and as long as they
are passed to internal Piccola services, everything works out. However, because of
the incoherent behavior of external forms (I), a modified external form loses its
external identity, and this completely changes the way it is treated when passed as an
argument to an external service.

On the other hand, the incoherent behavior of external forms (I) can be avoided by
keeping the original external forms as the bridge provides them. Like that, these
forms are treated the right way when passed to the host language, but we cannot

30 Chapter 3. JPiccola 2 and its inter-language bridge

handle them like ordinary Piccola forms and have therefore no means to avoid the
direct mapping to the host language (II).

Hardcoding the structure of external forms in the virtual machine is an approach that
avoids the problem of direct mapping without having to modify the external forms in
Piccola. But as we mentioned above, it leads to a completely static behavior that
cannot be modified or extended without replacing the virtual machine.

In the rest of this thesis we present a solution that solves the problems identified in
this section and show how it can be implemented efficiently.

Chapter 4

Inter-language bridging as a meta-
aspect of Piccola

After pointing out the limitations of JPiccola’s original inter-language bridge in the
previous chapter, we present a bridging strategy that is more suitable for Piccola.
This strategy is based on two main concepts: Separating the different aspects of an
external form and moving the variable part of the inter-language bridge onto
Piccola’s meta-level.

This chapter is structured as follows: Section 4.1 gives an overview of our solution,
and Section 4.2 presents the nested structure of external forms in detail. In Section
4.3, we explain why moving the variable part of the bridge into Piccola leads to the
required flexibility. Then, we present two possible models for the bridging
framework inside Piccola, compare them and explain our decision. In Section 4.4, we
give a detailed presentation of our preferred model for this bridging framework.
Finally, we use Section 4.5 to introduce a simple service that allows the programmer
to control the behavior of the bridge when a form is passed down to the host
language.

4.1 Overview of our solution
In this section we present a new bridging strategy that solves the problems identified
in the last chapter. The solution is based on two main concepts: First, we use a nested
structure to separate the different aspects of an external form, namely its external
identity and its higher-level interface (including glue). This makes external forms
behave like all the other ones and allows the programmer to add and remove
bindings without destroying their external identity. Second, we move the variable
part of the inter-language bridge into Piccola. This allows dynamic configuration of
the components, their interface and the associated glue directly within Piccola itself.

4.1.1 Terminology
As in the previous chapters, we use the term external form to denote a form that
represents an external object within Piccola, and we use the term plain form for all the

- 31 -

32 Chapter 4. Inter-language bridging as a meta-aspect of Piccola

other Piccola forms. In addition, we require that an external form has a nested
structure that consists of two parts: The top level part represents the Piccola interface
of the object and we therefore call it interface form or just interface. This form contains a
label peer that is bound to a subform representing the identity of the external object,
which is called peer form or just peer. It is important to understand that only forms
corresponding to this structure are considered external forms. In particular, a form
with a label peer that is not bound to a peer form (i.e. a form representing an external
component) is not an external form.

In order to achieve the required flexibility, we separate the inter-language bridge into
two parts: The generic part is located in Piccola’s virtual machine, whereas the variable
part is situated inside Piccola. When an external object is passed up to Piccola, both of
these parts may build an interface for this object. Note that these interfaces usually
include glue code. We use the term generic interface to denote the interface built by the
generic part of the bridge and use the term specific interface for the interface built by
the variable part. Accordingly, we use the terms generic external form and specific
external form for the external forms created by the generic and the variable part of the
bridge, respectively. Since Piccola uses external components even for very basic
operations, the ability of specifying their interface (including glue code) in the inter-
language bridge allows us to control and influence the behavior of the language. The
variable part of the bridge allows the programmer to do this in the Piccola language
itself, and we therefore say that it is located in Piccola’s meta-level.

4.1.2 Illustration of the bridging strategy
Figure 4.1 shows the architecture of the inter-language bridge and illustrates how
entities are passed across the language boundary. We see that the inter-language
bridge is divided into two parts. The generic part is implemented in the virtual
machine, which is part of the down level, whereas the variable part is located in
Piccola’s meta-level.

On the left side of Figure 4.1, we show what happens when an object not
representing a form is passed upwards. In the generic part of the inter-language
bridge, the object is converted into an external form consisting of a generic interface
and the peer form that represents the identity of the object. Then, the external form is
passed to the variable part of the inter-language bridge on Piccola’s meta-level. Here,
the generic interface gets replaced with a specific interface that can be specified by
the programmer. The resulting external form consisting of the specific interface and
the peer binding is then used within Piccola. Note that the variable part of the
interface may not provide every object with a specific interface. In this case the
generic external form is passed to Piccola.

4.1 Overview of our solution 33

U
p

Le
ve

l
(P

ic
co

la
)

D
ow

n
Le

ve
l

(J
av

a)

Pi
cc

ol
a

M
et

a-
Le

ve
l

V
ir

tu
al

M

ac
hi

ne

Inter-Language
Bridge

External Form
Peer

Generic
Interface

Specif ic
Interface

Object Form Object

Plain Form
Interface

Figure 4.1: Illustration of the inter-language bridge

In the middle, we illustrate how forms are passed downwards. In the first step, the
inter-language bridge takes the subform bound to the label peer if it is available.
Otherwise, it takes the form itself. If this form is a peer form, the associated object is
passed down to the host language. Otherwise, the form itself is passed downwards.
As a consequence, an external form is converted to the associated external object,
whereas a plain form is passed down as it is.

On the right side, an object representing a form is passed upwards. This case is very
straightforward and the bridge directly passes the form to Piccola.

34 Chapter 4. Inter-language bridging as a meta-aspect of Piccola

4.1.3 Specification of the bridging strategy
After illustrating the new bridging strategy in the previous section, we give a more
formal specification in this section.

Up. Passing objects upwards
When an object is passed from the host language up to Piccola, it is the responsibility
of the bridge to convert it into an appropriate form. This task is performed according
to the following rules:

A. If the object is already a form, it is directly passed to the Piccola language.

B. Otherwise, the bridge builds up an appropriate external form. This task can be
divided into the following two steps. The first is performed in the generic part
of the bridge, whereas the second is performed in the variable part.
B1. Create a generic external form consisting of the generic interface and the peer

that represents the external identity. Refer to Section 4.2 for more details
about the structure of external forms.

B2. If there is a suitable specific interface for the object, the generic interface is
replaced by the specific one. Otherwise, the bridge leaves the external form as
it is. See Sections 4.3 and 4.4 for a more detailed explanation of the variable
part of the bridge.

Down. Passing forms downwards
When a form F is passed from Piccola down to the host language, the bridge has to
make sure that it is converted into the appropriate object. This task can be divided
into two steps, and the second one does the same as the original inter-language
bridge presented in Chapter 3.

1. If the form contains a label peer, let P be the form bound to this label.
Otherwise, P denotes the form F itself.

2. In this step, we pass the object represented by the form P to the host language.
This means:
2A. If the form P represents an external object (i.e. it is a peer form), this object is

passed down to the host language.
2B. Otherwise, the form P itself is passed down to the host language.

4.2 Representing external objects as nested forms 35

4.2 Representing external objects as nested forms
In the previous section, we have introduce a nested structure for external forms, and
we claim that this leads to a coherent behavior of external forms and allows a higher-
level interface for external components. This section presents the details of this
structure and illustrates them with an example.

4.2.1 The structure of external forms
In JPiccola 2, external objects are converted into flat forms that consist of the bindings
representing the object’s interface. The information that the form is actually
representing an external object is not visible within Piccola. It is implicitly associated
with the unmodified interface that has been created by the bridge. As the previous
chapter shows, this unification of the object’s identity with its Piccola interface
prevents the programmer from modifying an external form without destroying its
external identity.

We tackle this problem by separating the two different aspects associated with an
external object. Thus, an external form is divided into a part that represents the
Piccola interface respectively the glue and a part that represents the actual external
object. We use the unifying concept of nested forms to achieve this separation in a
way that completely conforms to Piccola’s structure and does not require additional
syntax or semantics. So, every form representing an external object has the following
structure:

Interface and glue. The top level of an external form represents the Piccola interface
and the glue that is necessary to adapt the object to a specific compositional style.

Peer. The external form contains a label peer bound to the peer form that actually
represents the external object. This subform contains a binding for every public
method available for the object. This means that it has the same structure as the
forms created by step Up.B1 of JPiccola’s original inter-language bridge (cf. page
23).

Figure 4.3 illustrates the nested structure of an external form that represents an array
component. At the top level of the form, there is the Piccola interface, which consists
of services that allow us to access the component in an appropriate way. In addition,
there is the label peer bound to the peer form representing the identity of the external
component. This form contains services that are directly mapped to the external
component. (We used the prefix peer to indicate that the services are directly mapped
to methods of the external object). Note that the Piccola interface may have an
entirely different structure than the peer.

36 Chapter 4. Inter-language bridging as a meta-aspect of Piccola

peer
add
remove
at
first
...

peerAdd
peerRemove
peerAt
peerAllocate
peerRelease
...

Piccola

[1, 2, 3]

Interface and
glue Peer form

External
component

External form

Figure 4.3: An external form consisting of interface and peer

4.2.2 Consequences and example
The explicit separation of the different aspects of an external form allows the
programmer to modify these forms without affecting their external identity. In
addition, the programmer can naturally influence how external forms are handled by
the bridge when they are passed down to the host language (cf. Section 4.5).

The following examples illustrates that we can adapt the interface of external forms
in a natural way. We first create a service newButton, which creates an external form
representing a button and extend it with a service setText. Then, we call
newButton to create a new button and use setText to set its label. Finally, we add
the button to a Java panel. Because of the nested structure for external forms, the
bridge correctly transforms the argument form into the associated button object
before it is used as the argument of the add method.

This service creates a new button and extends it with an additional interface binding
newButton:
 'button = Host.class("java.awt.Button").new()
 button
 setText(S): button.setLabel(val = "Piccola-Button: " + S)

okayButton = newButton()
okayButton.setText("Okay") # Uses interface service to set the label
XPiccola.piccolaPanel.buttons represents a Java Panel in the Piccola user-interface
panel = XPiccola.piccolaPanel.buttons
panel.add(val = okayButton) # Only the button object (peer) is passed downwards

Note that this example is written in JPiccola 3. In Section 3.4.1, we have shown that
the corresponding JPiccola 2 script fails because of the limited bridging strategy.

4.3 Wrapping external objects inside Piccola 37

4.3 Wrapping external objects inside Piccola
As described in the overview of our solution, the inter-language bridge consists of
two parts. In the following, we explain the structure of the bridge in detail and we
particularly focus on the variable part, which is located on Piccola’s meta-level.
Thereby, we consider two possible models for the architecture of this part; we
compare them and present our decision.

4.3.1 Structure of the inter-language bridge
The inter-language bridge presented in Section 4.1 consists of two parts (Figures 4.1
and 4.2). The lower-level part is similar to the original inter-language bridge and it is
responsible for converting the entities in order to make them compatible to the other
language model. This happens at a technical level and is completely generic. The
higher-level part, on the other hand, makes sure that the entities are converted in an
appropriate way. In the upward direction, this means that the bridge has to provide
the external component with a suitable Piccola interface and glue. This task is not at
all generic and may depend on many aspects of the object such as its class or instance
variable values. The programmer should also be able to dynamically adapt the
interface depending on the compositional style and the specific needs of the
application.

We achieve this flexibility by moving the variable part of the inter-language bridge
into Piccola. This allows the programmer to define the representation of external
components by modifying the bridging framework within Piccola itself. Controlling
the behavior of a language within the language itself is called meta-programming
[16], and we therefore say that the variable aspect of the inter-language bridge is
located in Piccola’s meta-level. Since the variable part of the bridge wraps the peer
forms with a suitable interface, we sometimes call it the wrapping part or the wrapping
layer.

4.3.2 Two models for the meta-level bridging layer
There are many possible models for the design of the bridging layer in Piccola’s
meta-level. All of them have to provide an activation strategy and they have to find
out how to wrap the external components. We can characterize these models based
on the following properties:

Activation strategy. The activation strategy describes how the meta-level bridging
layer gets activated when an entity is passed across the language boundary.

Dispatch strategy. The dispatch strategy describes how to decide which interface
should be provided for a specific external object.

38 Chapter 4. Inter-language bridging as a meta-aspect of Piccola

In our work, we have tested two models with very different activation and dispatch
strategies. The rest of this section gives an overview of them, and in the following
section we compare the models and explain our decision.

Implicit dispatching
In this model, the meta-level bridging layer is directly coupled to the bridging layer
in the virtual machine. This means that after creating the generic form, the bridging
layer in the virtual machine automatically calls a predefined hook service and passes
the generic form as the argument. This hook is the entry-point and the dispatch
service of the meta-level bridging framework, which consists of many wrapping
services (wrappers). Each of these services has a name corresponding to a class of the
host language. It takes a generic external form as the argument and returns the
specific external form consisting of the peer wrapped with the appropriate Piccola
interface and glue code. Depending on the class of the object, the dispatch service
implicitly determines which of these wrappers is the most suitable. This means that it
walks up the inheritance chain of the object’s class to detect the first class with a
corresponding wrapper. Then it calls this service with the generic form as the
argument. The result of this operation is also the result of the bridging procedure.

To specify the interface and the glue code for external components, the programmer
can add new wrappers and modify existing ones. In addition, she can adapt the
dispatch service to take different criteria into account. This means that the dispatch
decision may be based on other parameters than the inheritance chain of the object’s
class.

In SPiccola, the Squeak-based Piccola implementation, this bridging framework could
look as illustrated below. The form wrappers contains two wrapping services
Object and Number, which are supposed to wrap general Squeak objects and
numeric objects, respectively. For conciseness, these services only contain a few
bindings. Note that the service Number is an extension of the service Object.
Furthermore, there is the hook service named dispatch, which is supposed to be
called from the bridging layer in the virtual machine with the generic external form
as an argument. The service dispatch then calls the Curried service
recursiveDispatch, which takes the external form and the class of the external
object as an argument. This service creates a first-class label with the name of the
class and checks whether the form wrappers contains this label. If so, this wrapping
service gets called with the generic form as the argument. Otherwise, the service is
recursively invoked with the super-class as the second argument. Note that this
recursion is guaranteed to terminate as long as there is a wrapping service
corresponding to the class Object. Since all numeric Squeak classes inherit from
Number, the number wrapper is called for each numeric object.

4.3 Wrapping external objects inside Piccola 39

This form contains wrapping services that provide the generic external form with a specific
interface and glue code.
wrappers =
 Object X: # This service is called if there is no specific wrapper
 peer = X.peer
 == Y: X._==_ Y
 Number X: # This service wraps any kind of number component
 Object X
 + Y: X._+_ Y

This service determines the most specific wrapping service by walking up the
inheritance chain of the class.
def recursiveDispatch GenericForm Class:
 'label = newLabel Class.name()
 if label.exists(wrappers)
 then: label.project(wrappers) Object
 else: recursiveDispatch Object Class.superclass()

This is the the entry-point (hook) of the bridging framework that is called with
a generic external form
dispatch GenericForm:
 recursiveDispatch GenericForm GenericForm.class()

Explicit dispatching
In this model, the meta-level bridging layer is not directly coupled to the bridging
layer in the virtual machine, which means that there is no automatic call of a hook
method from within the virtual machine. Nevertheless, the meta-level bridging
framework has a similar structure to the one described above and consists of many
wrappers that provide the argument form with a specific Piccola interface and glue
code. The important difference is that all the services of the interface created by the
wrapper have to make sure that their results are also wrapped with a proper
interface. This means that every service built by the bridge has to call a suitable
bridging service to explicitly wrap its result. If this principle is applied consistently, all
the services of an external form again return external forms wrapped with an
appropriate interface. As a consequence, we only have to make sure that all the initial
objects are converted correctly when passed upwards. In Piccola, there are only three
different ways to create such initial objects.

Literals. Piccola supports literals for numbers and strings (cf. Section 2.3). To
correctly convert them into external forms, there are two predefined hooks that
are automatically called whenever a number respectively a string is newly
created.

40 Chapter 4. Inter-language bridging as a meta-aspect of Piccola

Exceptions. While a Piccola script is executed, host language exceptions may be
passed up to the Piccola language. In order to wrap them properly, a special
hook service gets automatically called.

External primitive. As described in Section 3.1, Piccola has a primitive service
external, which is used to access external components. Since this service is
accessible within Piccola, it can easily be modified in order to return external
forms with a suitable interface. However, usually the user wants to provide a
more comfortable abstraction to create specific components anyway, and so he
can just add the call of the bridging service there. As an example, the
programmer might want to use a specific service newArray to create a new array
rather than using Host.class("java.util.Vector").new(). Note that the
name and the structure of the primitive service external are host dependent. In
JPiccola 3, it is called Host.class.

To specify the interface and the glue code for external components, the programmer
can add new wrappers to this meta-level bridging framework or modify existing
ones. But other than in the previous model, it is the responsibility of these interfaces
that each of its services returns an external form that is again wrapped with a proper
interface. Figure 4.5 (on page 45) shows the wrapping services for numbers, strings
and booleans in SPiccola 0.7.

4.3.3 Comparison of the two bridging models
Moving parts of the virtual machine into the meta-level of the language increases
flexibility, but it usually has negative impacts on the performance. In Piccola,
everything, even numbers and strings, are represented as external objects and
therefore the inter-language bridge is used constantly and has an enormous impact
on the overall performance. As a consequence, performance is the most important
criteria of the following comparison and it is also the main reason for our decision.

The comparison is structured into two parts, which compare the activation strategy
and the dispatch strategy, respectively.

Activation strategy
The implicit model uses a completely automatic and generic activation strategy.
Whenever an object is passed up to the Piccola language, the virtual machine directly
invokes the bridging layer on the meta-level. This has two main advantages. First, the
user does not have to care about activating the meta-level bridging layer. Second, the
approach needs only one predefined hook service and has therefore a minimal
interface to the virtual machine.

4.3 Wrapping external objects inside Piccola 41

In the explicit model, the activation of the meta-level bridging layer can happen in two
different ways. For literals (numbers and strings) and host language exceptions, there
are three hook services that are called whenever a new object is created and passed to
Piccola. For everything else, it is the responsibility of the forms representing external
components that all their services return objects with a proper Piccola interface.
Compared to the first model, this entails the disadvantage that the programmer has
to accomplish extra work when she defines the wrapping services.

Regarding the performance, both activation strategies are equivalent. In either case,
there is just one additional service invocation to activate the meta-level bridging
layer.

Dispatch strategy
The dispatch strategy is the main difference between the two models. In the implicit
model, there is a dispatch method that dynamically decides which of the wrapping
services has to be called for a concrete object. Unfortunately, this task is rather
complex and time consuming. Finding out the next class of the inheritance chain
requires at least one more call of an external service. Since the result of this call gets
also wrapped it causes an indirect recursive invocation of the dispatch service. If
there are many wrapping services, also the check whether a corresponding wrapping
service exists takes a substantial amount of time.

Besides this performance disadvantage, there are also conceptual problems with the
implicit dispatch. Depending on the paradigm of the host language, it might be
difficult or time consuming to find out the class and the inheritance chain of a certain
object. In particular, this might be the case if Piccola accesses a component that is
distributed over the network and is perhaps even written in another language than
the Piccola host.

The explicit model uses a static dispatch strategy. When the programmer writes an
interface for an external component, he specifies for each service which wrapper has
to be used to wrap the result. The main advantage of this approach is its runtime
efficiency. There is no runtime dispatching necessary, and the only thing to do is
looking up and invoking the wrapper.

Considering the structure of the bridging framework, the explicit model has also
some advantages. The wrapper that provides an external component with the Piccola
interface (including glue) ensures that the return values of the created services are
provided with an appropriate interface. As a consequence, all the bridging and
gluing code for a component is explicitly specified in the wrapper. This makes it easy
to understand and adapt the bridging framework.

42 Chapter 4. Inter-language bridging as a meta-aspect of Piccola

Our decision
After implementing and testing both of these models we decided to use the explicit
model. The main reason for this decision is performance. We implemented both the
implicit and the explicit bridging model in SPiccola and compared the time needed to
execute different scripts. For both models we specified wrappers for numbers,
booleans, strings, collections and streams. The corresponding wrappers provide the
components with the same interfaces, which have between 8 (booleans) and 15
(numbers) bindings. Table 4.4 shows that the time Ti used for executing the scripts
with the implicit bridging model is 3.4 respectively 5.9 times longer than the time Te
used for executing them with the explicit model. The relatively big difference
between the quotients can be explained with the fact that calculating the Fibonacci
Numbers creates an enormous amount of number components, and all of them pass
the bridging framework.

Script Ti / Te

Prelude. A script specifying default Piccola abstractions and building
the wrappers

3.4

Fibonacci. A script that recursively calculates Fibonacci Numbers. First,
the Fibonacci Numbers are naively calculated and then they are
calculated using futures that omit recalculation of the same Numbers.

5.9

Table 4.4: Performance of the explicit and implicit bridging model

Since the performance difference is entirely caused by the dispatch process, it could
be decreased by optimization such as caching the dispatch result in dependence of
the object’s class. However, this optimization would be very specific and could not be
used for other aspects of Piccola. In addition, it would prevent the programmer from
using other criteria like instance variable values in the dispatch process.

Although our experience with the explicit model is mainly positive, we also
encountered some situations where the implicit solution would be advantageous.
Further experiments and research will show whether we have to revise our decision.

4.4 The explicit bridging model
In this section, we present the explicit bridging framework that has been introduced
in the previous section. First, we illustrate its architecture, then we show its
implementation, and finally, we present a few examples.

4.4 The explicit bridging model 43

4.4.1 Architecture
The explicit bridging framework is located on Piccola’s meta-level, and its
architecture consists of two different kinds of services:

Wrapping services (wrappers). The wrapping services are responsible for wrapping
an external object with a Piccola interface and glue. It is the responsibility of these
wrappers to make sure that all the services of the created interface return objects
that are also suitably wrapped.

Hook services (hooks). Whereas the design of the wrappers makes sure that all the
services of an external object return properly wrapped objects, the hook services
are used to ensure such an interface for the objects that are directly passed to
Piccola. In fact, there are two hook services to wrap literal numbers and strings
and one hook service to wrap host language exceptions.

When an object that is not representing a form is passed upwards, the generic part of
the inter-language bridge first creates an external form consisting of the generic
interface and the peer that represents the external identity (Up.B1 on page 34). The
peer form contains a binding for every public method that is available for the object,
and it has the same structure as the form generated by step Up.B1 of the original
inter-language bridge (cf. page 23). The generic interface is identical to the peer form.
Thus, a generic external form as the following structure:

GenericExternalForm = # A generic external form
 peer = PeerForm # Peer representing the external identity
 PeerForm # The peer form also serves as a generic default interface

In Java, the generic external form representing a Vector would therefore look as
follows:

Vector = # The generic external form representing a Java Vector
 peer =
 isEmpty
 size
 iterator
 setElementAt
 ...

 isEmpty
 size
 iterator
 setElementAt
 ...

Usually, the generic interface of such a form is replaced through a more appropriate
specific interface created by the bridging framework on the meta-level (Up.B2).
However, in case of components without a specific wrapper, the generic external

44 Chapter 4. Inter-language bridging as a meta-aspect of Piccola

form may be passed directly to the Piccola language. Therefore, building the generic
form makes sure that every component is represented by a form that fulfills the
structure defined in Section 4.2. In particular, this guarantees that external forms can
be naturally modified without destroying their external identity, and it therefore
ensures a uniform behavior for all Piccola forms.

4.4.2 Implementation
It should be possible to dynamically reconfigure the external components. In Piccola,
this can be easily achieved by building the bridging framework within the dynamic
namespace.

In on page 45, we present a simple framework containing wrappers for
numbers, strings, and booleans. All the wrappers are built inside the dynamic
context, and in order to avoid code duplication, the common code is factored out in
helping services. As described in the previous section, the wrappers are called with
the generic external form as an argument, and they return a specific external form
with an appropriate interface. Each service created by the wrappers is responsible for
wrapping its return value. Note that the example code is written in SPiccola 0.7.

Figure 4.5

Once we have defined the wrapping services, defining the hooks is trivial because
they usually just call the wrappers. For literals, this looks as follows:

Hook.wrapString X: dynamic.wrapper.asString X
Hook.wrapNumber X: dynamic.wrapper.asNumber X

4.4 The explicit bridging model 45

 dynamic.wrapper =
 'addBasics X: # Make sure that every form contains the peer form
 peer = X.peer

 'addEquality X: # Add equality operators
 == Y: dynamic.wrapper.asBoolean X._=_(Y)
 != Y: dynamic.wrapper.asBoolean X._~=_(Y)

 'addComparison X: # Add comparison operators
 addEquality X
 < Y: dynamic.wrapper.asBoolean X._<_(Y)
 > Y: dynamic.wrapper.asBoolean X._>_(Y)
 <= Y: dynamic.wrapper.asBoolean X._<=_(Y)
 >= Y: dynamic.wrapper.asBoolean X._>=_(Y)

 asNumber X: # Wrapper for external numbers
 addBasics X
 addComparison X
 -_: dynamic.wrapper.asNumber X.negated()
 + Y: dynamic.wrapper.asNumber X._+_(Y)
 - Y: dynamic.wrapper.asNumber X._-_(Y)
 * Y: dynamic.wrapper.asNumber X._*_(Y)
 / Y: dynamic.wrapper.asNumber X._/_(Y)
 abs: dynamic.wrapper.asNumber X.abs()
 trunc: dynamic.wrapper.asNumber X.truncated()

 asString X: # Wrapper for external strings
 addBasics X
 addComparison X
 + Y: dynamic.wrapper.asString
 newLabel("_,_").project(X) Y
 endsWith Y: dynamic.wrapper.asBoolean X.endsWith_(Y)
 indexOf Y: dynamic.wrapper.asNumber
 X.findString_startingAt_ Y 0
 startsWith Y: indexOf(Y) == 1
 substring Y: dynamic.wrapper.asString
 X.copyFrom_to_ Y.from Y.to
 size: dynamic.wrapper.asNumber X.size()

 asBoolean X: # Wrapper for external booleans
 addBasics X
 addEquality X
 select = X.select
 !_: dynamic.wrapper.asBoolean X.not()
 & Y:
 'block = Host.asZeroArgBlock (\x: Y)
 dynamic.wrapper.asBoolean X.and_ block
 | Y:
 'block = Host.asZeroArgBlock (\x: Y)

 dynamic.wrapper.asBoolean X.or_ block

Figure 4.5: A simple wrapping framework in SPiccola

46 Chapter 4. Inter-language bridging as a meta-aspect of Piccola

4.4.3 Example
In this section, we show an example that illustrates dynamic reconfiguration of
external components. We assume that the following script is executed in a context
that contains the wrappers of Figure 4.5 in the dynamic namespace. First we define a
service fact that calculates the factorial of a number. Then, we create the literal
numbers 3 and 2 that are automatically wrapped by calling the hook service for
literals. The summation of these literals is again wrapped, because the _+_ service
built by the wrapper also wraps its result. A first call to fact creates many new
external numbers, and all of them are properly wrapped. Then, we adapt the
definition of the wrapper by adding a service _^_ that is used to exponentiate
numbers. Because the wrapper is located in the dynamic context, this extended
wrapper is used for all further computations. In particular, this means that this
wrapper also wraps the numbers created within the service fact. Therefore, the
result of the second invocation of fact contains the service for exponentiation.

def fact N:
 if N > 1
 then: N * fact(N - 1)
 else: 1
argument = 3 + 2
result = fact argument
println result # Prints: 120

Extend the wrapper asNumber
Remember the original definition of asNumber. (Necessary to avoid a loop when it is called)
originalAsNumber = dynamic.wrapper.asNumber
dynamic.wrapper.asNumber X:
 originalAsNumber X
 ^ Y: dynamic.wrapper.asNumber (Y * X.ln()).peer.exp()

All these computations use the extended wrapper.
Therefore, the result of fact also contains the service for exponentiation.
argument = 2 ^ 2
result = (fact argument) ^ 3 # The result contains the service for exponentiation
println result # Prints: 13824

4.5 Protecting forms from being converted
In the last two sections we developed a solution that allows the programmer to
control the upward direction of the inter-language bridge in a very flexible way. The
following example shows that the programmer should also be able to control the
behavior of the downward direction. The rest of this section presents a simple and

4.5 Protecting forms from being converted 47

natural approach to do this and shows how it can be integrated within the wrapping
services on the meta-level.

4.5.1 Introductory example
Whenever an external form gets passed down to the host language, it is automatically
converted into the associated external object (cf. Section 4.1 and Figure 4.1). In most
cases, this makes perfect sense because the host language should deal with the
associated object rather than with the form itself. However, there are some cases
where an external form should be passed down to the host language as it is. In
particular, this is the case with host-based collections. A Piccola programmer expects
that adding a form to a collection and retrieving it again yields the exact same form
(i.e. it does not modify the form). But as the following example illustrates, this is not
true for external Piccola forms.

We assume that the service newList creates a new host-based list. Then we create
two forms p and e and add them to this list. The form p is a plain Piccola form and
therefore it is not modified when it is added to the list and retrieved again. The form
e, on the other hand, is an external form (representing 5) extended with a service inc.
When it is added to the host-based list, it is therefore converted into the object 5, and
the binding inc is lost. As a consequence, the form e2 does not contain the binding
labeled inc anymore and the script results in an error.

list = newList() # Creates an empty list
p = (name = "Peter Brown", age = 28)
e =
 5 # Creates an external form consisting of an interface and a peer
 inc: 6 # Adds a new service to the interface of the number

list.add p # The form p is passed to the host language as it is
list.add e # The form e gets converted to the object 5 when passed downwards

p2 = list.at 1
e2 = list.at 2
println p2 # Prints: (name = "Peter Brown", age = 28)
println e2.inc() # Error! (The binding inc got lost)

Figure 4.6 illustrates what happens when we add the form e to the list and retrieve it
again. When we use e as the argument of add, the bridge projects on the label peer
(Down.1 on page 34), and only the associated external object 5 is passed downwards
(Down.2A). Thus, the interface containing the service inc is discarded. When we read
from the list, the object 5 is first converted into a generic external form (Up.B1), and
afterwards, the generic interface is replaced by the specific interface (Up.B2). Note
that neither of these interfaces contains the service inc.

48 Chapter 4. Inter-language bridging as a meta-aspect of Piccola

U
p

Le
ve

l
(P

ic
co

la
)

D
ow

n
Le

ve
l

(J
av

a)

Pi
cc

ol
a

M
et

a-
Le

ve
l

V
ir

tu
al

M

ac
hi

ne

Inter-Language
Bridge

List

e
Contains service inc

e2

5

Figure 4.6: Using a collection without protecting the argument form

4.5.2 The protect service
By analyzing the problem in the previous example, we see that external services can
be categorized into two non-disjoint groups, and we call them clients respectively
containers:

Clients. Clients are services that use the argument (and its services) for doing some
computations. Usually, clients can only deal with specific types of objects (e.g.
numbers), and therefore, an external form has to be converted into the associated
object before it is passed as an argument to a client. A typical example of this
category is the summation service of a numeric object. It takes a number as an
argument and returns a newly created number. Most of the clients do not return
the argument itself and do not store it for later retrieval.

Containers. Containers are services that store the argument without making use of
its services. Usually, containers are designed to take any kind of objects as an
argument. A typical example of this category is a service to add an object to a
collection.

4.5 Protecting forms from being converted 49

If an external form is passed as an argument to a client, it is important that the inter-
language bridge converts the form into the associated object. At the same time,
external forms used as the argument of containers must not be converted to the
associated object in order to retain their interface. Unfortunately, the inter-language
bridge has no means to find out what category an external service belongs to. In fact,
there are even services that are both clients (do some computations with a specific
argument type) and containers (store the argument for later retrieval). In this case,
the programmer has to decide whether the argument form gets converted. Because
these services usually require the argument to provide specific methods they have to
be treated like clients, which means that the argument has to be converted to the
associated object.

Since nearly all of the external services are clients, the bridge converts an external
form to an object by default. Although this is appropriate in most of the cases, it leads
to the problem illustrated in the previous section in connection with containers.

Due to the design of external forms and the inter-language bridge, the programmer
can easily avoid this problem by using the following simple service:

protect X:
 peer = X

This service takes an argument X and returns a form consisting of a single label peer
that is bound to the argument form, which means that the argument form X itself
should be considered as the peer object. If we apply the bridging rule on page 34 to
this form, we see that it gets converted to the argument form X independent of
whether X is an external form or not. Thus, the service protect ensures that the
argument form is never converted when passed to an external service. We therefore
say that it protects the argument form from being converted.

In the previous example, this service can be used to protect the form e from being
converted when it is passed as an argument to the service add of the list. This means
that we must replace the line

list.add p
by

list.add (protect p)

in the previous example. Then, the example works as expected and the retrieved
form e2 is identical to the original form e.

Figure 4.7 illustrates what happens when we add the form protect e to the list and
retrieve it again. When we use this form as the argument of add, the bridge projects
on the label peer (Down.1 on page 34) and the resulting form e is passed downwards
as it is (Down.2B). Then we read from the list, and the form e is directly passed to
Piccola (Up.A).

50 Chapter 4. Inter-language bridging as a meta-aspect of Piccola

U
p

Le
ve

l
(P

ic
co

la
)

D
ow

n
Le

ve
l

(J
av

a)

P
ic

co
la

M

et
a-

Le
ve

l
V

ir
tu

al

M
ac

hi
ne

Inter-Language
Bridge

e e2 protect e

Figure 4.7: Using a collection with a protected argument form

4.5.3 Using protect on the meta-level
Since Piccola is a pure composition language, external services are mainly used
within external components that have a corresponding wrapping service in the
bridging layer. For every service provided by a component, the programmer knows
whether it is a client or container and so she can use the protect service already
within the definition of the component’s interface on the meta-level. This leads to a
clean design where all the technical details of an external component are covered
within the wrapping service on the meta-level, and the user of the component does
not have to care about them. From the user’s point of view, the inter-language bridge
is completely transparent and automatically converts the arguments and the results
in an appropriate way.

In the following example, we define a wrapper for an external list component that
automatically protects the arguments of containers. This allows us to deal with list
components in a natural and high-level way. Note that this example is written in
SPiccola 0.7 and that we use some services defined in Figure 4.5.

4.5 Protecting forms from being converted 51

High-level list wrapper that automatically protects the arguments of containers
dynamic.wrapper.asList X:
 peer = X.peer
 at Y: X.at_ Y
 add Y: 'X.add_(protect Y) # Protect the argument
 addAll Y: 'X.addAll_ Y
 remove Y: 'X.remove_(protect Y) # Protect the argument
 removeAll Y: 'X.removeAll_ Y
 ? Y: dynamic.wrapper.asBoolean
 X.includes_(protect Y) # Protect the argument
 size: dynamic.wrapper.asNumber X.size()
 isEmpty: dynamic.wrapper.asBoolean X.isEmpty()

This service creates a new high-level list component
newList():
 dynamic.wrapper.asList
 Host.smalltalk.at("OrderedCollection").new()

Using the high-level list component
list = newList() # Create an empty list
p = (name = "Peter Brown", age = 28)
e =
 5 # Create an external form consisting of an interface and a peer
 inc: 6 # Add a new service to the interface of the number

list.add p # The form p is automatically protected and passed downwards as it is
list.add e # The form e is automatically protected and passed downwards as it is

p2 = list.at 1
e2 = list.at 2
println p2 # Prints: (name = "Peter Brown", age = 28)
println e2.inc() # Prints: 6

Chapter 5

Optimization using lazy evaluation

In the previous chapter we developed a strategy to access external components in a
flexible and high-level way that allows dynamic reconfiguration. One of the key
concepts of this approach is that the variable part of the inter-language bridge has
been moved from the Piccola virtual machine into Piccola’s meta-level. The
disadvantage of this technique is the performance penalty that is caused by calling
the Piccola based bridging abstractions instead of doing all the bridging related work
in the virtual machine. In this chapter, we show how we can overcome this
performance bottleneck by using lazy evaluation, and we develop a partial
evaluation algorithm to transform a Piccola script into a semantically equivalent
script that allows us to apply our lazy evaluation technique very effectively.

This chapter is structured as follows: In Section 5.1, we profile a simple expression
and show that the meta-level bridging framework spends an enormous amount of
time for building interface bindings that are never used. In Section 5.2, we introduce
a lazy evaluation technique based on lazy forms and derive the requirements for a
Piccola service to allow effective lazy evaluation. Then, we introduce a partial
evaluation algorithm that transforms a general Piccola service into a semantically
equivalent service fulfilling these requirements. Section 5.3 gives an informal
illustration of this partial evaluation algorithm, and in Section 5.4, we present a
formal specification. In Section 5.5, we reason about how to prove its correctness, and
in Section 5.6, we discuss implementation issues. Finally, we present some
application examples in Section 5.7.

5.1 Piccola’s inter-language bridge
As a pure composition language Piccola is constantly dealing with external
components. In this section, we first examine a simple expression with regard to its
performance and show that there is an enormous amount of time spent in the
wrapping services of Piccola’s bridging framework. Then, we show that most of this
time is used for building parts of the interface that are never used.

- 53 -

54 Chapter 5. Optimization using lazy evaluation

5.1.1 Profiling a simple expression in SPiccola
In this section, we examine the impact of the inter-language bridge on the overall
performance by executing and profiling the simple expression result = 1 + 2 in
SPiccola.

First, the expression is executed with a modified SPiccola version that does not use
inter-language bridging at all and directly operates on the external components. The
time used for this direct execution serves as a reference, and we define it to be t.

In the second step, we execute the same expression with the real SPiccola version.
Since Piccola is a pure composition language, even integers are represented by
external components, and they pass the bridge in the same way as the other external
objects (cf. Section 4.1). In our example, we use integer objects of the host language
and wrap them with the service asNumber presented in . This service is
called with the generic external form as an argument, and it yields an external form
with a suitable Piccola interface as the result. Some of the services built by this
wrapper are mapped to a corresponding Squeak method. As an example, the
arithmetic plus operator (_+_) takes the right-hand side operand Y, calls the native
Squeak method (available through X._+_) and wraps the result by applying the
wrapper asNumber again. Other services like abs are specified using previously
defined bindings.

Figure 5.1

Figure 5.1: A number wrapper for SPiccola

 dynamic.wrapper =
 'addComparison X:
 == Y: dynamic.wrapper.asBoolean X._=_(Y)
 != Y: dynamic.wrapper.asBoolean X._~=_(Y)
 < Y: dynamic.wrapper.asBoolean X._<_(Y)
 > Y: dynamic.wrapper.asBoolean X._>_(Y)
 <= Y: dynamic.wrapper.asBoolean X._<=_(Y)
 >= Y: dynamic.wrapper.asBoolean X._>=_(Y)

 def asNumber X:
 peer = X.peer
 addComparison X
 -_: asNumber X.negated()
 + Y: asNumber X._+_(Y)
 - Y: asNumber X._-_(Y)
 * Y: asNumber X._*_(Y)
 / Y: asNumber X._/_(Y)
 abs:
 if (_<_ 0)
 then: -_()
 else: asNumber X
 trunc: asNumber X.truncated()

5.1 Piccola’s inter-language bridge 55

In Table 5.2, we give an overview of how much time is spent in the different parts of
the inter-language bridge. We use the names defined in Section 4.1.1 to refer to the
different steps of the bridging procedure, and we only list the steps that are
effectively used in this example. Recall that t is the amount of time used for executing
the same expression without inter-language bridging at all.

Bridging activity Time

Up.B1. Create the peer form for the external object. This is performed
within the Piccola virtual machine and it is therefore very efficient.

< 0.05t

Up.B2. Create the appropriate Piccola interface. This step is accomplished
by the bridging framework within Piccola. In our particular example, the
wrapping service shown in asNumber gets executed, which is very time
consuming.

6t

Down.1. Check for peer binding. This check can be done in the virtual
machine and is therefore very efficient.

< 0.05t

Down.2. Passing the associated object to Squeak. This is a trivial operation
that virtually needs no time.

≈ 0t

Table 5.2: Time spent in the inter-language bridge

These results show that the bridging activities triggered by the execution of the
example expression take about 6 times more time than executing the actual code, and
about 98% of this extra time is spent in the Piccola part of the inter-language bridge.

5.1.2 Unused interface bindings
The previous section shows that there is an enormous amount of time spent in the
wrapping services of Piccola’s bridging framework. In the following we have a closer
look at the usage of the interfaces built by these services, and we see that only a small
percentage of the provided bindings is actually used.

Execution of our example expression result = 1 + 2 causes the following
bridging related activities:

1. The external object representing the number 1 is wrapped by the service
asNumber, which yields a form F.

2. A projection on the label _+_ of the wrapped form F is performed.

3. The external object representing the number 2 is wrapped, which yields a form
G.

56 Chapter 5. Optimization using lazy evaluation

4. The wrapped form G is passed as an argument to the service _+_. This service
sends the message + to the Squeak object 1. As the argument we use the
projection on the label peer of the form G1, which yields the object 2.

5. The result, the number 3, is passed back to Piccola and wrapped by the service
asNumber.

The wrapping service asNumber is invoked in steps 1, 3 and 5 and each time, it
builds up the whole interface consisting of 14 bindings. But for the forms built in 1
and 3, only one of these bindings is effectively used while all the others are
discarded.

Examination of other Piccola scripts show that we usually only use a small amount of
the bindings created by the wrapping services. As an example, we can consider
numbers or string components. To be usable, they usually provide at least 10 to 20
bindings. But in most of the cases, we use only one or two of them for every
component we have created (e.g. we add two numbers, compare two numbers, print
a string, concatenate two strings). Also for more complex components like URLs, the
situation is similar. A URL component might also have at least 10 bindings, but
oftentimes, we only use one or two of them (e.g. we retrieve the contents at a URL).

If we therefore assume that we only use 10% of the bindings created by the wrapping
services and we further assume that the time used for setting up such an interface is
uniformly distributed over the created bindings, this means that the overhead for
building such an interface would be reduced by 90% if we only created the bindings
that are actually used. Applied to our example, the time spent in the bridging service
would be reduced from 6t to 0.6t and as a consequence, the inter-language bridge
would slow down the execution of an average script by less than factor 2 instead of
factor 7. We verified this theoretical result by modifying the wrapping services so
that they only generate the effectively used bindings.

It should be noted that these results are based on wrappers that only provide small
interfaces. As an example, the number wrapper provides an external number with 14
services. In contrast, the SmallInteger objects of Squeak v2.9 understand more than
400 messages. Thus, the performance problems caused by the wrappers will be much
more dramatic if an application requires more complex components.

5.2 Lazy evaluation
We have illustrated that we can significantly improve Piccola’s performance if the
wrapping services only build the parts of the interfaces that are actually used. In this

1 Projection on the label peer is implicitly performed by the generic part of the inter-language
bridge (Down.1).

5.2 Lazy evaluation 57

section, we show that this can be achieved by using a lazy evaluation strategy. Then,
we derive the requirements for a service to allow effective lazy evaluation, and we
see that only a small subset of the Piccola services actually satisfies them. Therefore,
we develop a partial evaluation strategy that transforms a general Piccola service
(respectively a script) into a semantically equivalent service that fulfills these
requirements.

5.2.1 A lazy evaluation strategy using lazy forms
Lazy evaluation is an evaluation strategy combining normal order evaluation with
updating. Under normal order evaluation (outermost or call-by-name evaluation) an
expression is evaluated only when its value is needed in order for the program to
return its result. Updating means that if the value of an expression is needed more
than once, the result of the first evaluation is remembered and subsequent requests
for it will return the remembered value immediately without further evaluation [19].

In order to use lazy evaluation in Piccola we introduce the notion of lazy forms. Lazy
forms represent the result of a service invocation that is not yet evaluated or only
partially evaluated. This allows us to split up service application into invocation and
utilization time. Note that general Piccola services are not referentially transparent
and that we have to execute the side effects at invocation time in order to preserve
the semantics:

Invocation time. At invocation time, we execute the side effects of the service and
return a lazy form that remembers the functional part (i.e. the referentially
transparent part) of the service, the form containing the results of the side effects,
and the concrete argument.1

Utilization time. When a certain binding of a lazy form is used, only the expression
associated with this binding is executed and remembered (to avoid subsequent
executions of the same expression). This expression may refer to the invocation
argument and the results of the side effects that are stored in the lazy form.

5.2.2 Requirements for lazy evaluation
Looking at the lazy evaluation strategy introduced above, we see that there are two
critical requirements for Piccola services to evaluate them lazily:

1 In Piccola, the dynamic context is implicitly passed whenever a service is invoked (cf. 2.4.6).
Therefore, a lazy form also has to remember the dynamic context at invocation time. This
behavior can be modeled by explicitly passing the dynamic context together with the
argument. For simplicity, we do not consider the dynamic context throughout this chapter.

58 Chapter 5. Optimization using lazy evaluation

Separated side effects. Piccola is not a pure functional language, which means that
Piccola services may have side effects. Applying lazy evaluation in presence of
side effects is problematic [17], and we have to make sure that all the expressions
causing side effects are executed only once and in the right order. If we apply
lazy evaluation to general Piccola services, we therefore execute the side effect of
the service at invocation time and return the purely functional part as a lazy
form. In order to do that efficiently, the side effects of the service have to be
separated from the functional part.

Closed expressions. When a binding of a lazy form is effectively used, only the
expression associated to this binding is executed. This can only be done if all the
individual expressions of the service are closed, which means that they do not
contain free identifiers (except the ones referring to the arguments of the service).

5.2.3 Using partial evaluation to meet the requirements
Although some of the wrappers used in the bridging framework may already fulfill
the two requirements for lazy evaluation, general Piccola services do not. In this
section, we therefore introduce a transformation based on partial evaluation that
allows us to apply lazy evaluation to all Piccola services.

Partial evaluation is a source-to-source program transformation technique for
specializing programs with respect to parts of their input [18]. In our situation, the
input is not explicitly given, but it can be derived from the static information
exhibited by any Piccola script. This information is collected and used to transform a
service (respectively a script) into an equivalent service that fulfills the requirements
for lazy evaluation and can therefore be executed more efficiently. Although we
could express a transformed Piccola script with the standard syntax presented in
Section 2.3, we introduce a new syntactic domain that is more suitable to specify
Piccola scripts with separated side effects and a referentially transparent part that
consists of closed expressions. Elements of this domain are called lazy form
expressions.

Figure 5.3 gives an overview of all the syntactic and semantic domains involved in
our lazy evaluation strategy, and it shows how their elements are transformed
respectively evaluated. We use bold letters (such as E or E*) to denote the domains
and use normal letters to denote individual elements of the domains (such as E or
E*). The standard syntactic domain E consists of form expressions as described in
Section 2.3. The standard Piccola interpreter eval takes such an expression E and
evaluates it to a form F, which has the structure described in Section 2.2.
Alternatively, we can use the partial evaluation algorithm split to transform a form
expression E into a lazy form expression E*. Every lazy form expression is represented
as a tuple (P; S), where P denotes a referentially transparent functional expression and
S denotes a side effect expression. At runtime, we first evaluate the side effect

5.3 Illustration of the partial evaluation algorithm 59

expression and return a lazy form F*, which contains the functional expression P, the
result of the side effect evaluation, and the concrete service arguments. Finally, the
effectively needed bindings of the lazy form F* are evaluated to forms by applying
the interpreter eval to the functional expression P in F*. Thereby, we use the result of
the side effect evaluation and the concrete service argument that are available in F*.

In the rest of this chapter, we mainly focus on the partial evaluation algorithm split,
which transforms a form expression E into a lazy form expression E*. In Section 5.3,
we give an informal illustration, and in Section 5.4, we define it formally.

Form Expressions
E

Lazy Form
Expressions
E* = (P; S)

Forms
F

Standard
Piccola
interpretation

Partial
evaluation

Interpretation
of the side
effect S

eval

split

eval

Lazy Forms
F*

Lazy eveluation
of the functional
part P

eval

Figure 5.3: Syntactic and semantic domains

5.3 Illustration of the partial evaluation algorithm
In this section, we give an informal illustration of the partial evaluation algorithm
split that transforms a Piccola service so that it can be evaluated lazily. As we
explained in the previous section, the task of this algorithm consists of two parts:
First, it separates the side effect of a service from the referentially transparent part,
and second, it turns the referentially transparent part into a closure. For a better
understanding, this section individually explains these two parts and illustrates them
with examples.

It is important to note that the decomposition of the algorithm split into these parts
only serves for a better understanding. In reality, the two parts are tightly interlinked
and it would not be possible to achieve an independent sequential decomposition.
See Section 5.4 for a formal specification of the partial evaluation algorithm split as a
whole.

60 Chapter 5. Optimization using lazy evaluation

5.3.1 Part 1 — Separating the side effect
The first requirement in Section 5.2.2 demands that the side effect of a service is
separated from its functional part. In the following, we first present the concept of
our separation strategy. Then, we give an informal description and illustrate it with
an example.

Basic concept
The basic idea of our separation strategy is to replace a general Piccola service f by
two services fs and fp, which fulfill the following properties:
Side effect part fs. The service fs contains all the expressions of the service f that may

cause side effects in the same order as they occur in f. As a consequence, fs causes
identical side effects as f if invoked with the same argument. The service fs
returns a form that contains the results of the side effect operations so that they
are separately accessible.

Functional part fp. The service fp is a referentially transparent service of order two. The
body of fp builds up the same form as f, but all the expressions causing side
effects are replaced by appropriate projections on the second argument. If fp is
invoked with an arbitrary form x as the first and fs x as the second argument, the
return value is identical to the result of f x.

More formal, we can say that for any service f and an arbitrary form x, the service
application f x is equivalent to the nested application fp x (fs x). Equivalent means that
evaluation of the expressions causes identical side effects and yields identical result
forms. Since fp has no side effect we can directly apply the lazy evaluation technique
described in Section 5.2.1.

As an example, we consider the service chFact, which reads a value from a
communication channel and uses it for some referentially transparent arithmetic
operations:

chFact Ch:
 value = Ch.receive() # A blocking read operation on the channel
 factorial = fact value # Calculate factorial
 status = factorial < 256

Reading from a communication channel is not referentially transparent, and
therefore, the side effect part of chFact is the following service.

\Ch:
 y1 = Ch.receive() # y1 is a fresh identifier in chFact

At the same time, the functional part is represented by the following higher order
service. Note that the invocation of the non-transparent service receive is replaced by

5.3 Illustration of the partial evaluation algorithm 61

a projection on the second argument which is supposed to contain the result of the
side effects.

\Ch Side:
 value = Side.y1
 factorial = fact value
 status = factorial < 256

Description of the algorithm
In the following, we give a simplified description of the algorithm that iterates
through a Piccola script and transforms each service f into a service fs representing
the side effect part and a service fp representing the purely functional part. In Piccola,
the operations causing side effects can be divided into three categories: Spawning
new agents, reading respectively writing on channels, and invoking external services
such as println1 . All these operations are represented by service applications,
which implies that service applications are the only operations that may cause side
effects. 2 As a consequence, the separation algorithm has to focus on service
applications and can be described as follows. Note that the service fp takes two
arguments, the second of which is named side.

• Except from service applications, the functional part fp consists of the same
expressions as the original service f and the side effect part fs is empty at the
beginning.

1 Many of the external service do not have side effects and the programmer may use pragmas
to indicate referentially transparent external services.
2 A projection P.x returns a runtime exception if the label x is not bound in P. Therefore, also
projections can lead to a side effect. For simplicity, these kinds of side effects are not covered
in this section. See the formal specification in Section 5.4 for more details.

62 Chapter 5. Optimization using lazy evaluation

• In case of a service application g z, the following happens:
− If the functor g is referentially transparent, the application g z is directly used

in the functional part fp.
− If the functor g has already been transformed into gp and gs, the side effect

part fs is extended with the binding yi = gs z, and we use gp z side.yi as the
functional part in fp (yi denotes an identifier that is fresh in fp). This means that
the side effect of g is executed in the side effect part of f whereas the
functional part of g is evaluated in the functional part of f. Note that the result
of the side effect part gs is bound to the fresh label yi in the side effect part.
When evaluated, this result is passed as a second argument to the functional
part gp.

− If the functor g has side effects and cannot be decomposed further (e.g. it is an
external function such as println), the side effect part fs is extended with the
binding yi = g z, and we use side.yi in fp (yi denotes an identifier that is fresh in
fp). This means that the service application happens in the side effect part fs
and we just refer to its result in the functional part fp.

Example
Table 5.4 presents an example script and shows how this algorithm transforms it.
This script is kind of artificial but it illustrates all the different aspects of our
algorithm. The script defines the services fact, f and g. We assume that the service
if and the integer operators +, *, -, and > are known to be referentially transparent.
As a consequence, the service fact is also referentially transparent and transforming
it is trivial. The service f invokes the services println, fact, receive, and _>_. The
services fact and _>_ are referentially transparent and we therefore directly use
them in the functional part fp. The services println and receive contain side
effects or they are not known to be side effect free, respectively. Therefore we invoke
them in the side effect part fs and reference the results in the functional part fp. In the
service g, the invocation of f is particularly interesting, since we have already
transformed f into fs and fp. We invoke fs in the side effect part gs and use the result
as the second argument of the invocation of fp in the functional part gp. Note that
after transforming the services f and g, every application of the time-consuming
service fact happens in the functional part and is therefore only executed if it is
effectively needed.

5.3 Illustration of the partial evaluation algorithm 63

Original script Transformed script
 def fact N:
 if N > 1
 then: N * fact N - 1
 else: N

Fact is referentially transparent and therefore
it remains as it is.

f X:
 println X
 b = fact X
 c = ch.recive()
 d = b > c

fs X:
 y1 = println X
 y2 = ch.receive()

fp X Side:
 Side.y1
 b = fact X
 c = Side.y2
 d = b > c

g Y:
 a = f(Y).b
 b = fact Y + a

gs Y:
 y1 = fs Y

gp Y Side:
 a = f (Y)(Side.y1).b p

 b = fact Y + a

Table 5.4: Separating the side effect from the functional part

5.3.2 Part 2 — Turning expressions into closures
The second part of our partial evaluation algorithm makes sure that all the
expressions of the service are closed, which means that they do not contain free
identifiers (except the ones referring to the arguments of the service). As explained in
Section 5.2.2, closed expressions are a necessary requirement to evaluate only the
effectively needed expressions in the referentially transparent part of a service.

In the following, we give an informal description of our algorithm that transforms a
service f into an equivalent service f’ that exclusively contains closed expressions.

Description of the algorithm
This partial evaluation algorithm is based on a static interpreter that works similar to
the real Piccola interpreter. But unlike the real one, the static interpreter does not
execute any service applications. It only keeps track of the bindings in the root
context (the static namespace) and statically resolves and simplifies references to it.
All the expressions that modify the root context (sandbox and quote) are eliminated in
the resulting services. As a consequence, these services consist of independent
expressions that can be evaluated in an arbitrary order.

64 Chapter 5. Optimization using lazy evaluation

If the algorithm is applied to a service f, the following happens:

• The state of the interpreter consists of two special forms that can hold partly
evaluated form expressions. One of them represents the resulting service (value)
whereas the other represents the static namespace (root). Both are initialized with
the empty form and are managed according to Piccola’s scoping rules (cf. Section
2.4.5).

• Except from sandbox and quote, all the form expressions modify the resulting
service. When the interpreter encounters such an expression it resolves all the
dependencies to the static namespace and tries to simplify it. In particular, this
means that it replaces identifiers by projections on root and simplifies projections
by static pre-evaluation. Then, the modified expression is appended to the
resulting service (value).

• Every expression that modifies the static namespace gets appended to root.
According to Piccola’s syntax (Section 2.3), these expressions are sandbox, quote,
binding, and service binding.

• After the whole service is interpreted, value contains the transformed service f’,
which is guaranteed to have closed expressions. This means that the only free
identifiers are the service arguments.

Depending on the concrete implementation of this transformation and the
interpretation of lazy forms, application of the transformed service f’ may execute
some parts of the original service f multiple times. Because the real algorithm (cf.
Section 5.4) only applies this transformation to the referentially transparent part of a
service, this does not change the semantics. Nevertheless, a real implementation
should avoid multiple executions of the same expressions for performance reasons,
and it should use pointers (references) to decrease the size of the generated code (cf.
Section 5.6).

Examples
As a first example, we consider the service chFact defined in Section 5.3.1. We have
shown that the separation of the side effect yields the functional part:

\Ch Side:
 value = Side.y1
 factorial = fact value
 status = factorial < 256

If we apply the algorithm to resolve internal dependencies, this service is
transformed into the following service, which has closed expressions that only
reference the arguments Ch and Side.

5.4 Formal specification 65

\Ch Side:
 value = Side.y1
 factorial = fact Side.y1
 status = (fact Side.y1) < Side.y2

The second example that is shown in Table 5.5 is rather artificial, but it is useful to
illustrate the different aspects of our partial evaluation algorithm. It shows a service f
and its transformation f'. Note that f' has completely independent expressions and
that quote and sandbox expressions are eliminated. Because the impact of the
expression 'X on the root context cannot be statically determined (the bindings of the
argument X are not known at compile time), the expression d = u gets transformed
into d = (u = 10, X).u. This means that the label d will be bound to X.u, if the
argument X contains a label u. Otherwise, the label d will be bound to 10, which is
the statically determined value associated to the label u in the lexical namespace.

Original script Transformed script

f X:
 a =
 u = 10
 v = u + X
 b = a.v
 'a
 c = u * v
 'X
 d = u
 root = b
 e = abs()

f' X:
 a =
 u = 10
 v = 10 + X
 b = 10 + X

 c = 10 * (10 + X)

 d = (u = 10, X).u

 e = (10 + X).abs

Table 5.5: Resolving internal dependencies

5.4 Formal specification
In the following, we give a formal specification of our lazy evaluation strategy. First,
we define the involved domains and show the definition of the standard Piccola
interpreter eval. Then, we specify the partial evaluation algorithm split, which
separates a service into a side effect expression and a functional expression. These
expressions are very similar to standard Piccola expressions, but they may contain
unevaluated substitutions. Thus, we have to extend the definition of the interpreter
eval in order to evaluate them correctly. Finally, we illustrate our lazy evaluation
technique with a few examples.

66 Chapter 5. Optimization using lazy evaluation

5.4.1 The domains
Section 5.2.3 and give an overview of the syntactic and semantic domains
that are needed for our lazy evaluation strategy. In the following, we define them
formally.

Figure 5.3

Identifiers
We use X to denote the domain of all the identifiers x. In addition, we define the
domain Y ⊂ X to be the domain of all the identifiers yi that are used to refer to a side
effect. To avoid name clashes, we assume that the identifiers yi in Y are distinct from
all the identifiers used in form expressions E.

Form expressions and forms
Although Piccola has a small syntax (cf. Section 2.3) there is a lot of syntactic sugar
[9]. For conciseness, we only consider the core expressions in this section. Thus, form
expressions E are inductively defined as follows:

 E ::= ε x E · E E.x E E \x: E root x = E, E root = E, E

The meaning of these expressions is the same as described in Sections 2.2 and 2.3: The
empty expression is denoted by ε. We use x ∈ X \ Y to range over identifiers, and
E · E stands for form extension. We use E.x to express projection, E E for service
application and \x: E for service definition. The expression root refers to the
environment where identifiers are looked up (static namespace). Finally, x = E1, E2
stands for binding and root = E1, E2 for sandbox (cf. Section 2.3). Note that for both
binding and sandbox the expressions x = E1 respectively root = E1 modify the
environment where E2 is executed. As for all the other domains used in this chapter,
the extension operator · is associative.

The standard Piccola interpreter f takes such a form E and evaluates it to a form F.
Forms F are inductively defined as follows:

 F ::= ε x = F Cl(x; E; F) primitivei F · F

The empty form is denoted by ε and we use x = F to express a binding. Form
extension is expressed by F · F, and Cl(x; E; F) denotes a service (closure), where x is
the formal argument, E is the expression that defines the body of the service and the
form F is the context where free identifiers are looked up. In addition, we use
primitivei to model primitive services respectively external services. These services
are provided by the Piccola virtual machine respectively the host language and do
not have a definition inside Piccola.

Note that we sometimes use AF to denote the domain of atomic forms. An atomic form
AF is defined to be any form that does not contain form extension.

5.4 Formal specification 67

Lazy form expressions and lazy forms
Our partial evaluation algorithm split transforms a Piccola expression E into a lazy
form expression E*, where the side effects are separated from the referentially
transparent part. Accordingly, a lazy form expression is defined as a tuple consisting
of a functional expression P and a side effect expression S.
 E* ::= (P; S)
 P ::= ε x P · P P.x x = P \x: E* Re(P; P; P)
 projectEx noServiceEx
 S ::= ε x = P P, S x = P.x, S x = S, S Re(S; P; P)

The domain P of functional expressions is just a specialization and extension of form
expressions E. The empty expression ε, identifiers x, form extension P · P, and
projection P.x have identical semantics as in form expressions E. Singleton bindings
are expressed by x = P, which is just an abbreviation for the binding x = P, ε as it is
defined in E. We use \x: E* to denote service definition, where the identifier x is the
service argument and the lazy form expression E* specifies the service body. The
substitution Re(P1; Px; Py) means that free side effect identifiers yi ∈ Y in P1 are
replaced by projections on Py and free identifiers x ∉ Y in P1 are replaced by the
values of bindings x = P in Px (if available). Finally, we use projectEx and noServiceEx
to denote an illegal projection (i.e. identifier cannot be found) and an illegal service
application (i.e. functor does not specify a service), respectively. Note that P does
neither contain binding (x = E, E) nor sandbox (root = root, E), and as a consequence,
evaluation order does not matter.

For convenience, we sometime use AP to denote the domain of atomic functional
expressions. An atomic functional expression AP is defined to be any functional
expression that does not contain form extension.

The domain of side effect expressions S is also derived from form expressions E.
Thus, the empty expression ε, the composite expressions x = P P, S and x = P.x, S have
identical semantics as in E. The same holds for x = S, S. The substitution Re(S; Px; Py)
has the same semantics as in P, which means that free side effect identifiers yi ∈ Y in
S are replaced by projections on Py and free identifiers x ∉ Y in S are replaced by the
values P of bindings x = P in Px (if available).

Finally, we define lazy forms F* to be substitutions Re(P; F). A substitution Re(P; F)
means that bindings in F are used to replace free identifiers x in P.
 F* ::= Re(P; F)

Side effects
Evaluating a Piccola expression may cause side effects. These side effects are
modeled with the domain SE, the elements of which are defined as follows:

68 Chapter 5. Optimization using lazy evaluation

 SE ::= ε effecti projectEx noServiceEx SE, SE

The expression ε denotes the empty side effect (i.e. no side effect) and we use effecti
to denote an arbitrary side effect. Side effects caused by an illegal projection and
service application are denoted by projectEx (projection exception) and noServiceEx
(no service exception), respectively. We use SE, SE to denote sequential composition
of side effects.

5.4.2 Standard Piccola evaluation
In his Ph. D. thesis [9], Achermann formally defines the semantics of Piccola using
the Piccola calculus, which is based on the polyadic π-calculus. In this thesis, we do
not cover the Piccola calculus, and we represent the Piccola semantics with a
semantic function eval : E × F → F × SE. The equation eval(E; R) = (F; SE) means that
we evaluate a form expression E in an environment R, which yields a resulting form
F and causes some side effects SE.

Auxiliary functions
In , we inductively define the standard Piccola evaluation eval on the
definition of form expressions E. Thereby, we use the auxiliary functions project,
service, apply and primApply as defined in Table 5.6. Note that these definitions consist
of several branches, and we always apply the first branch matching the argument
structure. This rule is used for all the function definitions in this chapter.

Table 5.7

The auxiliary function project : F × X → F × SE returns the value bound by a label. As
an example, project(x = 3 · x = 5 · y = 7; x) yields 5. According to the semantics of the
polymorphic form extension (cf. Section 2.2.1), bindings of the form G override
equally labeled bindings of the form F in the extended form F · G. Therefore, the
definition of project treats extended forms from right to left. Note that project(F; x)
yields the side effect projectEx when the label x cannot be found in the form F. In all
the other cases, project is free from side effects.

The function service : F → F returns the service that is represented by a form. For
instance, service(x = 5 · Cl(x; E; F) · y = 7) yields Cl(x; E; F). Similar to project, the
service of the form G overrides the service of the form F in the extended form F · G. If
the form F does not contain a service, service(F) yields the empty form.

The function apply : F × F → F × SE takes two forms F1 and F2 as arguments and
evaluates the application F1 F2 which yields the resulting form and a side effect. The
definition of apply consists of three cases: If the functor F1 represents a Piccola service
Cl(x, E, F), we use the semantic function eval to evaluate the service body E in the
environment F extended with the argument binding x = F2. If the functor F1
represents a primitive service, we use the auxiliary function

5.4 Formal specification 69

primApply : F × F → F × SE to execute it. We do not cover this function in detail here,
and we just assume that it executes a primitive service (respectively an external
service) and returns both the resulting form and the generated side effects. In the last
case, if the functor F1 does not represent a service, service application yields the
empty form as the result and causes the side effect noServiceEx.

 project(F1 · x = F2; x) := (F2; ε)
 project(F1 · AF; x) := project(F1; x)
 project(F; x) := (ε; projectEx)

 service(F1 · Cl(x; E; F)) := Cl(x; E; F)
 service(F1 · primitivei) := primitivei
 service(F1 · AF) := service(F1)
 service(F) := ε

 eval(E; F · x = F2) if Cl(x; E; F) = service(F1)
 primApply(primitivei; F) if primitivei = service(F1)

 (ε; noServiceEx) otherwise
apply(F1; F2) :=

Table 5.6: Auxiliary functions used to define the Piccola semantics

Table 5.6

The semantic function
Table 5.7 shows the semantic function eval, which evaluates a Piccola expression and
yields a resulting form and a side effect. Evaluation of the empty expression ε is
trivial, and it yields the empty form as a result and does not cause side effects. An
identifier x is looked up in the environment R, and therefore, evaluation of x is put
down to evaluation of the projection root.x. The expression root denotes the current
environment (static namespace), and therefore, evaluation of root yields the
environment R and does not cause side effects. For a form extension E1 · E2, we
evaluate both E1 and E2 and return the polymorphic extension of the resulting forms
and the sequential composition of the side effects. A service definition \x: E is turned
into a closure Cl(x, E, R), that consists of the service argument x, the body of the
service E and the current environment R, which is used as the static namespace when
the closure is applied (cf.). In case of a binding x = E1, E2, we first evaluate
the expression E1 in the environment R, which yields a form F1 and side effects SE1.
Then, we extend R with the binding x = F1 and use this as the environment to
evaluate E2, which yields a form F2 and side effects SE2. Finally, we use the binding
x = F1 extended with the form F2 as the resulting form and the sequential composition
SE1, SE2 as the resulting side effect. Evaluation of a sandbox root = E1, E2 is very
similar to evaluation of a binding. We evaluate E1 and use the resulting form F1 as the
environment for the evaluation of E2. This yields a form F2 that is used as the final

70 Chapter 5. Optimization using lazy evaluation

result. In case of a projection E.x, we first evaluate the expression E, which yields
(F1; SE1). Then, we use the auxiliary function project (cf. Table 5.6) to retrieve the form
F bound to the label x within the form F1. Note that this projection causes a side effect
SE, which is empty (ε) if the projection is successful. Finally, we return the form F and
the sequential composition of the side effects SE1 and SE. Evaluation of a service
application E1 E2 happens in three steps. First, we inductively evaluate the expression
E1, which yields (F1; SE1). Second, we evaluate E2, which yields (F2; SE2). And third,
we use the auxiliary function apply to evaluate the application F1 F2, which yields a
form F and causes side effects SE. The form F is then used as the resulting form and
the sequential composition SE1, SE2, SE as the resulting side effect.

 eval(ε; R) := (ε; ε) (empty)
 eval(x; R) := eval(root.x; R) (identifier)
 eval(root; R) := (R; ε) (root)
 eval(E1 · E2; R) := (F1 · F2; SE1, SE2) (F1, SE1) = eval(E1; R) (extend)
 (F2, SE2) = eval(E2; R)
 eval(\x: E; R) := (Cl(x; E; R); ε) (service)
 eval(x = E1, E2; R) := (x = F1 · F2; SE1, SE2) (F1, SE1) = eval(E1; R) (bind)
 (F2, SE2) = eval(E2; R · x = F1)
 eval(root = E1, E2; R) := (F2; SE1, SE2) (F1, SE1) = eval(E1; R) (sandbox)
 (F2, SE2) = eval(E2; F1)
 eval(E.x; R) := (F; SE1, SE) (F1, SE1) = eval(E; R) (project)
 (F, SE) = project(F1; x)
 eval(E1 E2; R) := (F; SE1, SE2, SE) (F1, SE1) = eval(E1; R) (apply)
 (F2, SE2) = eval(E2; R)

 (F; SE) = apply(F1; F2)

Table 5.7: Standard Piccola semantics

5.4.3 The partial evaluation algorithm
Using the domains specified above, we define our partial evaluation algorithm by
means of the semantic function split : E × P → E*. The equation split(E; R) = (P; S)
means that we use the static namespace R to transform the form expression E into the
lazy form expression (P; S), which consists of the functional expression P and the side
effect expression S. Note that this transformation may duplicate expressions. A real
implementation should make sure that this does not affect performance and code
size. For example, it may use pointers (references) to avoid duplication of expressions
and cache the results of previously evaluated expressions (cf. Section 5.6).

In the rest of this section, we inductively define split on the definition of form
expressions. Thereby, we use different meta-functions that are discussed and defined
in Section 5.4.4. The meta-functions projectP : P × X → P, serviceP : P → P,

5.4 Formal specification 71

replaceP : P × P × P → P and replaceS : S × P × P → S statically evaluate a projection, a
service selection, and a substitution, respectively. The meta-function labelsP : P → {X},
returns a set of identifiers that are guaranteed to be bound in the argument
expression.

The definition of split is shown in Table 5.8. Note that this is very similar to the
definition of the standard Piccola evaluation eval, but instead of evaluating an
expression, the function split statically separates it into a functional expression and a
side effect expression.

Transformation of the empty expression ε is trivial and yields the empty expression
for both the functional part and the side effect. An identifier x can be considered as a
projection on the static namespace, and transformation of an identifier is therefore
the same as transformation of a projection. The expression root returns the
environment R as the functional part and has no side effect. In case of an extension
E1 · E2, we separately transform the expression E1 and E2, and return the form
extension of the functional parts and sequential composition of the side effects. For a
service definition \x: E we extend the environment R with the singleton binding
x = ai, where ai denotes a fresh identifier1 that represents the formal argument of the
service. Then we transform the expression E in this new environment. The result
(P; S) of this transformation is then used in the service definition \ai: (P, S), which is
returned as the functional part. Obviously, a service definition does not cause side
effect. In case of a binding x = E1, E2, we first transform the expression E1, which
yields a functional part P1 and a side effect S1. Then we extend the environment R
with the singleton binding x = P1 and use it to transform the expression E2, which
yields (P2; S2). Finally, the functional part of the result is the extension of the binding
x = P1 with P2, and the side effect is the sequential combination of S1 and S2.
Transformation of a sandbox root = E1, E2 is similar to the transformation of a
binding. We first transform the expression E1, which yields a functional part P1 and
side effect S1. Then we transform the expression E2 in the environment P1, which
yields (P2; S2). Finally, we return P2 as the functional part and the sequential
composition of S1 and S2 as the side effect part.

For a projection E.x, we first transform the expression E, which yields (P; S). Now,
there are two cases: If it can be statically verified that the label x is available in the
functional expression P, we apply the projection projectP(P, x) in the functional part
and return S as the side effect. Otherwise, we apply the projection in the side effect
part. This means that the side effect part consists of the sequential composition of S
and the projection projectP(P; x), and the functional part just contains a reference to
the result of the projection performed in the side effect part. Note that in the second

1 A fresh identifier is an identifier that is not used in the service containing the current
expression. In particular, this means that the identifier is not used in any nested service
definitions within this service.

72 Chapter 5. Optimization using lazy evaluation

case, evaluating the projection in the side effect part is necessary because a projection
results in a runtime exception (projectEx) if the identifier is not available.

 split(ε; R) := (ε; ε) (empty)
 split(x; R) := split(root.x; R) (identifier)
 split(root; R) := (R; ε) (root)
 split(E1 · E2; R) := (P1 · P2; S1, S2) (P1; S1) = split(E1; R) (extend)
 (P2; S2) = split(E2; R)

 split(\x: E; R) := (\ai: (P, S); ε) (P; S) = split(E; R · x = ai) (service)
 where ai ∈ X \ Y denote fresh identifiers

 split(x = E1, E2; R) := (x = P1 · P2; S1, S2) (P1; S1) = split(E1; R) (bind)
 (P2; S2) = split(E2; R · x = P1)

 split(root = E1, E2; R) := (P2; S1, S2) (P1; S1) = split(E1; R) (sandbox)
 (P2; S2) = split(E2; P1)

 (projectP(P; x); S) if x ∈ labelsP(P)
 (yi; S, yi = projectP(P; x) otherwise split(E.x, R) := (project)

 where (P; S) = split(E; R)
 (replaceP(P; x = P2; ε); S1, S2)) if P1’ = \x: (P, ε)
 (replaceP(P; x = P2; yi); if P1’ = \x: (P, S)
 S1, S2, yi = replaceS(S; x = P2; ε)) and S ≠ ε
 (yi; S1, S2, yi = P1’ P2) otherwise

(apply) split(E1 E2; R) :=

 where (P1; P2) = split(E1; R), (P2; S2) = split(E2; R), P1’ = serviceP(P1)
 and yi ∈ Y denote fresh identifiers

Table 5.8: The partial evaluation algorithm

The most complex part is service invocation E1 E2, which consists of three different
cases. In any case, we first transform the expressions E1 and E2 which yields (P1; S2)
and (P2; S2) respectively. Then we apply service selection to retrieve the service P1 ‘
represented by the functor P1. The first case applies when this service has already
been separated into \x: (P, S) and does not contain any side effects (S = ε). In this
case, we substitute the formal argument x in the functor P with the functional part of
the argument (P2), and we return this as the functional part. The side effect consists of
the sequential composition of the side effects of the functor (S1) and the argument
(S2). This means that we evaluate the application in the functional part and that the
side effect part only consists of the side effects resulting from evaluating E1 and E2.
The second case applies when the service P1 ‘ is a service \x: (P; S) with a side effect
that is not empty (S ≠ ε). In this case, the substitution in the functional part of the first
case is extended with a fresh identifier yi ∈ Y, which refers to the result of the side
effects. At the same time, the side effect part of the first case is extended with an
expression that binds the form returned by evaluating the side effect to the label yi.

5.4 Formal specification 73

This form is the substitution of the formal argument x with the functional part of the
concrete argument (P2) in the side effect S. Finally, if the service P1’ is a primitive
service or if we do not have enough static information to determine the structure of
this service, we bind the application of the functor P1’ with the functional part of the
argument P2 to the fresh label yi and append this to the side effects of the functor (S1)
and the argument (S2). As the functional part, we return the label yi, which refers to
the side effect.

5.4.4 The meta-functions
In this section, we discuss and define the meta-functions used by the function split.
The functions projectP, serviceP, replaceP and replaceS statically evaluate a projection, a
service selection and a substitution. This means that they simplify expressions
already at compile time (i.e. during the partial evaluation). This is valuable for two
reasons: First, it allows us to determine the structure of the resulting forms already at
compile time, which is necessary for an effective usage of our partial evaluation
algorithm1. And second, it decreases the number of operations that have to be
executed at runtime.

At the same time, static evaluation influences the resulting code and especially the
code size. As an example, a statically evaluated substitution may increase the code
size if the substituted expression is large and occurs multiple times. Therefore, a
concrete implementation of these meta-functions depends on the structure of the
Piccola scripts in memory and the requirements of the user (performance vs. code
size). Note that it is possible to perform no static evaluation at all and use the
unevaluated projection, the unevaluated service selection 2 and the unevaluated
substitution instead:
 projectP(P; x) := P.x
 serviceP(P) := P
 replaceP(P; Px; Py) := Re(P; Px; Py)
 replaceS(S; Px; Py) := Re(S; Px; Py)

The last meta-function is the function labelsP, which returns the set of identifiers that
are guaranteed to be bound in the argument expression. This is useful for splitting a
projection into a side effect and a referentially transparent part because we can
anticipate whether the projection might yield a runtime exception (cf. rule project in

). Table 5.8

1 As an example, consider the rule apply in Table 5.8. There, the structure of the functor is used
to determine which of the three cases applies.
2 Evaluation of a service application implicitly selects the service represented by the functor.
Therefore, an unevaluated service selection can be expressed with the original form itself.

74 Chapter 5. Optimization using lazy evaluation

In the following, we present the definitions of these meta-functions. For simplicity
and conciseness, we present definitions that are relatively easy to define and
understand. However, they may not lead to optimal performance and code size.

Projection
The function projectP : P × X → P simplifies a projection on a certain label of a
functional expression. For instance projectP(P1 · x = P2; x) yields P2. If the result of the
projection cannot be determined, an unevaluated projection P.x is returned. projectP
is inductively defined on the definition of functional expressions P as follows:
 projectP(ε, x) := projectEx
 projectP(P1 · x = P2; x) := P2
 projectP(P1 · AP, x) := projectP(P1, x)
 projectP(P, x) := P.x

In order to effectively transform projections, we also use the function
labelsP : P → {X}, which returns the identifiers that are guaranteed to be bound in an
expression. labelsP is inductively defined as follows:
 labelsP(x = P) := {x}
 labelsP(Re(P; Px; Py)) := labelsP(P)
 labelsP(P1 · P2) := labelsP(P1) ∪ labelsP(P2)
 labelsP(P) := ∅

Service selection
The function serviceP : P → P simplifies service selection in a functional expression.
For instance serviceP(P1 · \x: (P2, S)) yields \x: (P2, S). If the result of the service
selection cannot be determined, the argument expression P itself is returned. serviceP
is inductively defined on the definition of functional expressions P:
 serviceP(ε) := noServiceEx
 serviceP(P · \x: (P; S)) := \x: (P; S)
 serviceP(P · primitivei) := primitivei
 serviceP(P · AP) := serviceP(P)
 serviceP(P) := P

Substitution
The function replaceP : P × P × P → P is used to substitute identifiers in functional
expressions. A substitution replaceP(P1; Px; Py) means that free side effect identifiers
yi ∈ Y in P1 are replaced by projections on Py and free identifiers x ∉ Y in P1 are
replaced by the values of bindings x = P in Px (if available). Note that substitutions
replaceP(P; Px; Py) are performed atomically, which means that only the identifiers

5.4 Formal specification 75

that appear in the original expression P are substituted. As an example, we consider
the expression replaceP(x1 · x2 · y1 · y2; x1 = x3 · x3 = P; y3) with xi ∈ X \ Y and yi ∈ Y.
Because of the binding x1 = x3 in Px, the identifier x1 gets replaced with x3. Since Px
does not contain a binding with the label x2, the free identifier x2 in P remains as it is.
Furthermore, both side effect identifiers y1 and y2 are replaced by projections on y3.
Thus, the result of the substitution is x3 · x2 · y3.y1 · y3.y2.

In the following, we define the function replaceP(P; Px; Py) on the definition of
functional expressions P:

A free side effect identifier yi ∈ Y is substituted with a projection on the identifier yi of
argument Py. If the substitution is applied to a free identifier x ∉ Y and there is a
binding for the label x in the expression Px, we use projectP to replace x with the value
of this binding. If there is no such binding in Px, the general case (last line of the
definition) applies, and the identifier x remains as it is. In case of a projection P.x, we
first apply the substitution to P and perform the projection afterwards. Similarly, if
the substitution is applied to a binding x = P, we apply the substitution to the
expression P and bind the result to the identifier x. In case of a service \x: (P; S), we
apply an unevaluated substitution to both the functional part P and the side effect
part S. A nested substitution replaceP(Re(P; Px1; Py1); Px2; Py2) is transformed into a
single substitution by combining the expressions Px1 and Px2 respectively Py1 and Py1
with form extension. If the substitution is applied to an extension P1 · P2, we perform
the substitutions for both P1 and P2 and use form extension to combine the results.
Finally, if no other branch of the definition applies, the substitution replaceR returns
the argument expression P.

 replaceP(yi; Px; Py) := Py.yi yi ∈ Y
 replaceP(x; Px; Py) := projectP(Px; x) x ∉ Y and x ∈ labels(Px)
 replaceP(P.x; Px; Py) := replaceP(P; Px; Py).x
 replaceP(x = P; Px; Py) := x = replaceP(P; Px; Py)
 replaceP(\x: (P; S); Px; Py) := \x: (Re(P; Px; Py); Re(S; Px; Py))
 replaceP(Re(P; Px1; Py1); Px2; Py2) := replaceP(P; Px1 · Px2; Py1 · Py2)
 replaceP(P1 · P2; Px; Py) := replaceP(P1; Px; Py) · replaceP(P2; Px; Py)
 replaceP(P; Px; Py) := P

The function replaceS : S × P × P → S is used to substitute identifiers in side effect
expressions. The semantics of this substitution is identical to the one of replaceP, and
therefore, the definition looks as follows:
 replaceS(ε; Px; Py) := ε
 replaceS(y = P1 P2, S; Px; Py) := y = replaceP(P1; Px; Py) replaceP(P2; Px; Py), replaceS(S; Px; Py)
 replaceS(y = P1.z, S; Px; Py) := y = replaceP(P1, Px; Py).z, replaceS(S; Px; Py)
 replaceS(y = S1, S2; Px; Py) := y = replaceS(S1, Px; Py).z, replaceS(S2; Px; Py)
 replaceS(Re(S; Px1; Py1); Px2; Py2) := replaceS(S; Px1 · Px2; Py1 · Py2)

76 Chapter 5. Optimization using lazy evaluation

5.4.5 Evaluating the side effects and the functional part
After defining the partial evaluation algorithm split in the previous section, we
complete the specification of our lazy evaluation strategy by extending the Piccola
evaluation eval so that we can use it to evaluate side effect expressions S and
functional expressions P.

In Table 5.7, we have defined the semantic function eval for form expressions E. Now,
we extend this function and define it for E ∪ P ∪ S ∪ F*. Since P and S are derived
from E (cf. Section 5.4.1) and F* contains only of a single element (Re(P; F)), this
extension is simple and consists of the following additional rules:
 eval(Re(P; Px; Py); R) := eval(P; R · Fx · Fy) (Fx, ε) = eval(Px; R)
 (Fy, ε) = eval(Py; R)
 eval(projectEx; R) := (ε; projectEx)
 eval(noServiceEx; R) := (ε; noServiceEx)
 eval(\x: (P; S); R) := (Cl*(x, P, S); ε)
 eval(Re(S; Px; Py); R) := eval(S; R · Fx · Fy) (Fx, ε) = eval(Px; R)
 (Fx, ε) = eval(Px; R)
 eval(Re(P; F); R) := eval(P; R · F)

The domain P contains the expressions Re(P; Px; Py), projectEx, noServiceEx, and
\x: (P; S) that are not in E. Evaluation of a substitution Re(P; Px; Py) happens in two
steps. First, we inductively evaluate the expressions Px and Py in the environment R,
which yields forms Fx, Fy and causes no side effects. Then, we extend R with the
resulting forms and use this as the environment to evaluate P. Due to the definition
of eval, a free identifier x in P is now automatically substituted with the form bound
to a label x in Fx respectively Fy. If both Fx and Fy do not contain the label x, the
identifier is looked up in the original environment R.1 Evaluation of the expressions
projectEx and noServiceEx are trivial, and we just return the corresponding side
effects. Finally, evaluation of a lazy service \x: (P; S) yields a closure Cl*(x, P, S) that
consists of the service argument x, the functional expression P and the side effect
expression S. Since references to the environment are already resolved in P and S, the
environment R is not used. Note that the original definition of forms F (cf. Section
5.4.1) only defines the closures Cl(x, E, F), which represent services with an argument
x, a body E and an environment F. Thus, we need to extend our definition of forms F
with the lazy closure Cl*(x, P, S).

For the domain S we only have to define evaluation of the substitution Re(S; Px; Py).
(All the other expressions are evaluated using the rules for E and P). The substitution
Re(S; Px; Py) is evaluated very similarly to the substitution Re(P; Px; Py) defined above.

1 Due to the definition of the service split (cf. Table 5.8), Fy only contains bindings yi = P (yi ∈
Y) and Fx only contains bindings x = P (x ∉ Y). Therefore it does not matter whether we use
the extension Fx · Fy or the extension Fy · Fx.

5.4 Formal specification 77

First, the functional expressions Px and Py are evaluated in the original environment,
and then the side effect expression S is evaluated in the extended environment.

Finally, we have to define eval for the substitution Re(P; F) in F*. Since the second
argument F is already a form, we directly extend the environment R with this form
and use the result as the environment to evaluate P.

Using the extended version of eval, we can now formally specify how an application
of the service \x: E is evaluated lazily: At compile time, we use the function split to
transform this service into a lazy service \a: (P; S). At runtime, when this service is
invoked with an argument F, we use eval to evaluate the side effect expression S in
the environment a = F, which yields a form Fs and causes some side effects SE. Using
the form Fs, we then build the lazy form Re(P; Fs · a = F), which contains no free
identifiers and can be evaluated when it is effectively needed.

For convenience, we define the function lazyApply : E × F → F × SE, which takes a
service \x: E and an argument form F and performs a lazy application. The return
value consists of the resulting form and the triggered side effects.
 lazyApply(\x: E; F) := (FP, SE) \a: (P; S) = split(\x: E; ε) [compile time]
 (Fs; SE) = eval(S; a = F) [invocation time]
 (FP; ε) = eval(Re(P; FS · a = F); ε) [utilization time]

5.4.6 Examples
In this section, we apply our lazy evaluation technique to a few examples. These
examples show how the function split transforms a service into a lazy service and
how such a service is evaluated.

Note that we sometimes simplify the resulting terms by removing unnecessary
occurrences of the empty expression respectively the empty form. This means that we
use the identities U · ε = ε · U = U and V, ε = ε, V = V, where U ∈ E ∪ P ∪ S ∪ F ∪ F*
and V ∈ E ∪ S [9].

Example 1 — A simple script
In this example, we apply our lazy evaluation strategy to the simple script s. This
script takes an argument r, which is then used as the static namespace. Then it
invokes a service e and binds the resulting form to the label k. Note that the service e
is looked up in the argument r. Therefore, its structure cannot be determined at
compile time and may cause side effects. Finally, we bind the value represented by
the identifier k to the label l:

78 Chapter 5. Optimization using lazy evaluation

s(r):
 root = r
 k = e()
 l = k

First, we transform this script into a lazy form expression \a1: (P; S) by applying the
function split with the empty environment ε. In Table 5.9, we show this
transformation with all the details.

Note that we use the definition of split in and indicate the applied rule on
the right hand side of each line. Usually, evaluation of a rule involves application of
other rules. Therefore, we use bold headers and indentation to indicate nesting of
rules. Furthermore, we use numbers to refer to different applications of rules. As an
example, all the lines marked with binding1 are used to evaluate a single application
of the rule binding, whereas the lines marked with binding2 are used to evaluate a
different binding expression.

Table 5.8

Collecting all the resulting expressions in yields the following result for P
and S:

Table 5.9

(P; S) = (P2; S1, S2) = (k = P4 · P5; ε, S4, S5) = (k = y1 · l = P8 · P9; ε, y1 = a1.e ε, S8, S9)
 = (k = y1 · l = y1 · ε; ε, y1 = a1.e ε, ε, ε) = (k = y1 · l = y1; y1 = a1.e ε)

This means that the service s is transformed into the lazy form expression \a1: (k = y1 ·
l = y1; y1 = a1.e ε). Note that the functional part k = y1 · l = y1 is free from side effects
and that the only free identifier y1 refers to the result of the side effects. If we invoke
this service with an argument form e = primitive1, we first evaluate the side effect
expression. As the initial environment we use the form a1 = (e = primitive1) that binds
the invocation argument to the formal argument a1 of the service (cf. Section 5.4.5).
This evaluation yields a form y1 = F1 as the result and causes a side effect effect1:

eval(y1 = a1.e ε; a1 = (e = primitive1)) = eval(y1 = (e = primitive1).e ε; ε)
 = eval(primitive1 ε; ε) = (y1 = F1; effect1) where (F1; effect1) = primApply(primitive1; ε)

In the next step, we use the resulting form y1 = F1 of the side effect evaluation to
create the lazy form Re(k = y1 · l = y1; y1 = F1 · a1 = (e = primitive1)). This form
represents the result of the service application and since it is free from side effects it
can be evaluated when it is effectively needed. Note that this form is a closure, since
all the free identifiers are replaced when the substitution is applied. Therefore, we
evaluate it in the empty environment ε. This yields the resulting form k = F1 · l = F1
and does not cause side effects. (The side effect effect1 was already generated by
evaluating the side effect expression).

eval(Re(k = y1 · l = y1; y1 = F1 · a1 = (e = primitive1)); ε)
 = eval(k = y1 · l = y1; ε · y1 = F1 · a1 = (e = primitive1))
 = eval(k = (ε · y1 = F1 · a1 = (e = primitive1)).y1 · l = (ε · y1 = F1 · a1 = (e = primitive1)).y1; ε)
 = (k = F1 · l = F1; ε)

5.4 Formal specification 79

 split(s; ε) = split(\r: (root = r, k = e ε, l = k); ε) = (\a1: (P; S); ε) (service1)

 service1:
 (P; S) = split(root = r, k = e ε, l = k; ε · r = a1) (service1)
 = (P2; S1, S2) (sandbox1)

 sandbox1:
 (P1; S1) = split(r; ε · r = a1) (sandbox1) box1)
 = split(root.r; ε · r = a1) (identifier1) = split(root.r; ε · r = a1) (identifier1)

 project1: project1:
 (P3, S3) = split(root; ε · r = a1) (project1) (P3, S3) = split(root; ε · r = a1) (project1)
 = (ε · r = a1; ε) (root) = (ε · r = a1; ε) (root)
 Since r ∈ labelsP(ε · r = a1): Since r ∈ labelsP(ε · r = a1):
 (P1; S1) = (projectP(P3; r); S3) = (projectP(ε · r = a1; r); ε) = (a1; ε) (project1) (P1; S1) = (projectP(P3; r); S3) = (projectP(ε · r = a1; r); ε) = (a1; ε) (project1)

 (P2; S2) = split(k = e ε, l = k; P1) = split(k = e ε, l = k; a1) (sandbox1) (P2; S2) = split(k = e ε, l = k; P1) = split(k = e ε, l = k; a1) (sandbox1)
 = (k = P4 · P5; S4, S5) (binding1) = (k = P4 · P5; S4, S5) (binding1)

 binding1: binding1:
 (P4; S4) = split(e ε; a1) (binding1) (P4; S4) = split(e ε; a1) (binding1)

 app1: app1:
 (P6; S6) = split(e; a1) (app1) (P6; S6) = split(e; a1) (app1)
 = split(root.e; a1) = … = (a1.e; ε) (identifier2) = split(root.e; a1) = … = (a1.e; ε) (identifier2)
 (P7; S7) = split(ε; a1) (app1) (P7; S7) = split(ε; a1) (app1)
 = (ε; ε) (empty) = (ε; ε) (empty)
 Since serviceP(P6) = serviceP(a1.e) = a1.e: Since serviceP(P6) = serviceP(a1.e) = a1.e:
 (P4; S4) = (y1; S6, S7, y1 = serviceP(P6) ε) = (y1; y1 = a1.e ε) (app1) (P4; S4) = (y1; S6, S7, y1 = serviceP(P6) ε) = (y1; y1 = a1.e ε) (app1)

 (P5; S5) = split(l = k; a1 · k = P4) = split(l = k, ε; a1 · k = y1) (binding1) (P5; S5) = split(l = k; a1 · k = P4) = split(l = k, ε; a1 · k = y1) (binding1)
 = (l = P8 · P9; S8, S9) (binding2) = (l = P8 · P9; S8, S9) (binding2)

 binding2: binding2:
 (P8; S8) = split(k; a1 · k = y1) (binding2) (P8; S8) = split(k; a1 · k = y1) (binding2)
 = split(root.k; a1 · k = y1) = … = (y1; ε) (identifier3) = split(root.k; a1 · k = y1) = … = (y1; ε) (identifier3)
 (P9; S9) = split(ε; a1 · k = y1 · l = P8) = split(ε; a1 · k = y1 · l = y1) (binding2) (P9; S9) = split(ε; a1 · k = y1 · l = P8) = split(ε; a1 · k = y1 · l = y1) (binding2)
 = (ε; ε) (empty) = (ε; ε) (empty)

Table 5.9: Transformation of a simple script

Example 2 — Multiple services
In this example, we consider a script s that defines two services f and g. The service f
is similar to the service s used in the previous example, and it contains the
application of a service e, which is not known at compile time and may cause side
effects. The service g consists of two invocations of the service f with the arguments x
respectively v.

80 Chapter 5. Optimization using lazy evaluation

s(r):
 root = r
 f(x):
 k = e x
 l = k
 g(x):
 m = f x
 n = f u

In the following, we apply the transformation split to this service s. We do not show
all the details and mainly focus on the applications of the service f in the service g.

Transformation of split(s; ε) finally yields a lazy form expression \as: (Ps, Ss). As a
consequence of the sandbox (root = r) in the first line, the definition of the service f is
transformed in the environment as (as is the formal argument of the transformation of
s). Thus, transformation of the service f looks as follows:

split(\x: (k = e x, l = k); as) = \af: (Pf; Sf)
(Pf; Sf) = split(k = e x, l = k; as · x = af) = (k = y1 · l = y1; y1 = as.e af)

As a consequence of the rule binding, the transformation \af: (Pf; Sf) of the service f is
appended to the environment when the service g is transformed. Thus, applications
of the service f are transformed according to the second case of the rule apply. In the
resulting side effect expression, the formal argument af of the service f is substituted
with the concrete arguments by applying replaceS. In the functional expression, we
use replaceP to substitute the formal arguments and to indicate the identifier of the
side effect. Note that the two invocations of f cause different side effects, which are
bound to the labels y2 and y3 in the side effect expressions and referenced within the
functional expression.

split(\x: (m = f x, n = f u); as · f = \af: (Pf, Sf)) = \ag: (Pg; Sg)
(Pg; Sg) = split(m = f x, n = f u; as · f = \af:(Pf, Sf)· x = ag)
 = (m = replaceP(Pf; af = ag; y2) · n = replaceP(Pf; af = as.u; y3);
 y2 = replaceS(Sf; af = ag; ε), y3 = replaceS(Sf; af = as.u; ε))
 = (m = replaceP(k = y1 · l = y1; af = ag; y2) · n = replaceP(k = y1 · l = y1; af = as.u; y3);
 y2 = replaceS(y1 = as.e af; af = ag; ε), y3 = replaceS(y1 = as.e af; af = as.u; ε))
 = (m = (k = y2.y1 · l = y2.y1) · n = (k = y3.y1 · l = y3.y1);
 y2 = (y1 = as.e ag), y3 = (y1 = as.e as.u))

If we execute the expression s(e = primitive1 · u = 3).g(5), we first evaluate the side
effect expression Sg in the environment that provides the function arguments:

eval(y2 = (y1 = as.e ag), y3 = (y1 = as.e as.u); as = (e = primitive1 · u = 3) · ag = 5))
 = (y2 = (y1 = F1) · y3 = (y1 = F2); effect1, effect2) where (F1; effect1) = eval(primitive1 5)
 and (F2; effect2) = eval(primitive1 3)

Then, we use the resulting form to create the lazy form representing the functional
part of the executed expression:

Re(m = (k = y2.y1 · l = y2.y1) · n = (k = y3.y1 · l = y3.y1); ag = 5 · (y2 = (y1 = F1) · y3 = (y1 = F2)))

5.4 Formal specification 81

When we finally use this part, we evaluate it in the empty environment. This yields
the resulting form m = (k = F1 · l = F1) · n = (k = F2 · l = F2) and does not cause side effects.
(The side effects effect1 and effect2 were already generated by executing the side effect
expression)

eval(Re(m = (k = y2.y1 · l = y2.y1) · n = (k = y3.y1 · l = y3.y1); ag = 5 · (y2 = (y1 = F1) · y3 = (y1 = F2))); ε)
 = eval(m = (k = y2.y1 · l = y2.y1) · n = (k = y3.y1 · l = y3.y1); ag = 5 · (y2 = (y1 = F1) · y3 = (y1 = F2))
 = (m = (k = F1 · l = F1) · n = (k = F2 · l = F2); ε)

Example 3 — Higher order service application
The following script s contains a higher order service application, which means that it
invokes a Curried service e with an argument u and then it invokes the resulting
service with an argument v.

s(r):
 root = r
 k = e u
 l = k v

Applying the transformation split to this service yields a lazy service \a: (P; S).
Because of the sandbox expression root = r in the first line, the expression
k = e u, l = k v is evaluated in the environment a, which refers to the formal service
argument.

split(\r: (root = r, k = e u, l = k v); ε) = (\a: (P; S); ε)
(P; S) = split(root = r, k = e u v, l = k v; r = a) = … = split(k = e u, l = k v; a)

According to the rule binding, transforming the expression k = e u, l = k v means
transforming the expression k = e u followed by transforming l = k v in the extended
environment. Transformation of e u and k v is done by applying the third case of the
rule apply in Table 5.8.

split(k = e u; a) = split(k = a.e a.u; ε) = (k = y1; y1 = a.e a.u)
split(l = k v; a · k = y1) = split(l = y1 a.v) = (l = y2; y2 = y1 a.v)

Altogether, we get the following result for the transformation of s:
split(s; ε) = (\a: (k = y1 · l = y2; y1 = a.e a.u, y2 = y1 a.v); ε)

If we invoke this service with an argument form e = primitive1, u = 1, v = 2, we first
evaluate the side effect expression with the interpreter eval. Note that the second
binding y2 = y1 a.v of the side effect refers to the first one and that this reference is
properly resolved:

eval(y1 = a.e a.u, y2 = y1 a.v; a = (e = primitive1, u = 1, v = 2))
 = … = (y1 = F1 · y2 = F2; effect1, effect2) where (F1; effect1) = eval(primitive1 1)
 and (F2; effect2) = eval(F1 2)

82 Chapter 5. Optimization using lazy evaluation

Now, evaluating the functional part of the service is trivial and yields the resulting
form k = F1 · l = F2.

5.5 How to prove correctness
A prototype implementation in SPiccola (cf. Appendix A) gives us evidence that our
lazy evaluation strategy is behavior preserving, but we have not carried out a formal
proof yet. In this section, we are discussing what it means to formally prove it and
how such a proof could look like.

Considering the diagram in , we see that there are two ways of evaluating a
Piccola service \x: E with an argument form Fa. On the one hand, we can apply the
standard Piccola evaluation eval (respectively apply), which invokes the service and
yields a resulting form F and some side effects SE. On the other hand, we can
evaluate the service using our lazy evaluation strategy. This means that at compile
time, we use the partial evaluation function split to transform the service \x: E into a
lazy service \x: (P; S) that consists of a functional expression P and a side effect
expression S. At runtime, we use the extended evaluation function eval to evaluate
the side effect expression S, which yields a form Fs and some side effects SE’. In
addition, we build a lazy form F* that consists of the functional expression P, the side
effect form Fs and the argument form Fa. Finally, when the resulting form is actually
needed, we again apply the function eval to evaluate the lazy form F* and get the
resulting form F’.

Figure 5.3

In order to show that our lazy evaluation is behavior preserving, we basically have to
prove that the form F’ and the side effects SE’ that result from the lazy evaluation are
equivalent to the form F and the side effects SE resulting from the standard Piccola
evaluation. Equivalence on the domain of forms and side effects can be formally
defined by using the Piccola calculus, which is based on the polyadic π-calculus [9].
Since we do not treat the Piccola calculus in this thesis, we use the following informal
definition: Two side effects SE and SE’ are considered equivalent, if they contain the
same atomic side effects in the same order. (Empty side effects ε do not matter and
can be ignored). Two forms F and F’ are considered equivalent, if they represent
equivalent services1 and contain the same set of labels L and projections on each of
these labels x ∈ L yield equivalent forms for both F and F’.

In Section 5.4.5, we have defined a semantic function lazyEval, which combines the
three steps involved in our lazy evaluation. Assuming that the binary operator ≡
stands for equivalence of forms respectively side effects, we can now say that our

1 Two forms represent equivalent services if either both forms do not contain a service or if the
services of both forms yield equivalent results (form and side effects) when invoked with an
arbitrary argument form F.

5.6 The SPiccola based prototype implementation 83

lazy evaluation strategy is behavior preserving if for all the services \x: E and all the
forms F it is true that:

F ≡ F’ and SE ≡ SE’ where (F; SE) = eval((\x: E) F)
 and (F’; SE’) = lazyApply(\x: E; F)

We believe that we can inductively prove this equivalence on the definition of the
form expressions E in the body of the service \x: E. Note that if the resulting forms
contain services, we apply the induction assumption to show that they are
equivalent.

5.6 The SPiccola based prototype implementation
The lazy strategy described in this chapter has been implemented as a prototype
based on SPiccola. In this thesis, we do not treat this implementation in detail, and
we just mention a few important issues.

Avoiding code duplication and multiple evaluations of expressions
The heart of our lazy evaluation strategy is the partial evaluation algorithm split
presented in Section 5.4.3. This algorithm resolves literal dependencies by inlining
the expressions that are referenced by identifiers. Since a naive inlining approach
leads to code duplication and multiple evaluations of the same expressions, we use a
more sophisticated technique that is based on pointers (respectively object references
in Squeak). This means that the algorithm split resolves literal references to functional
expressions by using pointers to the original expressions. This avoids unnecessary
duplication of code. When a functional expression with multiple references is
evaluated for the first time, it gets replaced by its value, which is directly returned for
subsequent evaluations. This ensures, that every expression is only evaluated once.

It is important to understand that this technique does not only avoid multiple
evaluations of expressions that appear in more than one binding of a service, but it
also avoids multiple evaluations of certain expressions in all but the first invocation
of a service. In fact, the functional expressions that are independent of the concrete
argument (and the dynamic namespace) are evaluated only when the service is
executed for the first time and are then replaced by their value. As an example, we
consider the following script, which defines a service f that is invoked with different
arguments.

84 Chapter 5. Optimization using lazy evaluation

f X:
 print X + fact(10) + 5

f 200
f 300

Because the expression fact(10) + 5 is independent of the function argument
(respectively the dynamic namespace), it is only evaluated in the first invocation and
then replaced by its result (3628805). Thus, for all the subsequent invocations, the
service f looks as follows:

f X:
 print X + 3628805

Note that all these optimizations do not affect the semantics of a service because they
are only used within functional expressions, which are referentially transparent.

Using pragmas to indicate referential transparent services
Although Piccola exhibits information that allow us to iteratively determine the
expressions causing side effects, we cannot find out which of the external services
effectively cause side effects. Therefore, our prototype implementation assumes that
external services have side effects by default. The programmer can indicate a
referentially transparent external service by means of pragmas.

Using pragmas to transform services at definition time
Because there is no compiler for SPiccola yet, executable SPiccola code is represented
as parse trees. By default, we apply the partial evaluation split at the time when the
parse tree of a service is built. On the one hand, this has the advantage, that the
transformation has to be executed only once and that it has no negative impact on
runtime efficiency at all. On the other hand, applying the transformation at compile
time (respectively parse time) has the disadvantage that we have no information
about the execution context. This means that we do not know the definitions of the
services available in the environment (i.e. the static namespace) and cannot
determine whether they cause side effects. As a consequence, the code resulting from
the partial evaluation is less efficient than it could be.

This problem can be solved if we apply our partial evaluation algorithm at the time
when a service is defined (i.e. when the expression that defines the service is
executed). At this time, all the entries in the static namespace are available, and in
particular, we can access the structure of the used services and inline their
definitions.

In our prototype implementation, we use pragmas to indicate that a service should be
transformed at definition time instead of compile time (respectively parse time).

5.7 Application examples 85

Although this makes execution of the service definition slower, it usually increases
the performance of service invocations and may therefore lead to a better overall
performance. Obviously, the performance gain gets bigger if the service is invoked
more often.

5.7 Application examples
In this section, we present a few application examples for the lazy evaluation
technique developed in this chapter. We apply the transformation split to the
example services and represent the resulting lazy services \x: (P, S) as tables.

Example 1 — A referentially transparent service
Table 5.10

Table 5.10: Transformation of referentially transparent services

 shows the transformation of the referentially transparent service
asNumber introduced in . This service uses the referentially transparent
service addComparison, which is represented by a lazy service without a side effect.
Therefore, the invocation of addComparison in the service asNumber is directly
replaced by a substitution that replaces the formal argument of addComparison with
the concrete invocation argument. Since both the formal and the concrete argument
are the identifier X, this substitution is trivial and we essentially inline the body of the
service addComparison.

Figure 5.1

Service Functional part
Side

effect

addComparison(X) _==_ Y: dynamic.wrapper.asBoolean X._=_(Y)
!= Y: dynamic.wrapper.asBoolean X._~=_(Y)
< Y: dynamic.wrapper.asBoolean X._<_(Y)
> Y: dynamic.wrapper.asBoolean X._>_(Y)
<= Y: dynamic.wrapper.asBoolean X._<=_(Y)
>= Y: dynamic.wrapper.asBoolean X._>=_(Y)

ε

asNumber(X) peer = X.peer
== Y: dynamic.wrapper.asBoolean X._=_(Y)
!= Y: dynamic.wrapper.asBoolean X._~=_(Y)
< Y: dynamic.wrapper.asBoolean X._<_(Y)
> Y: dynamic.wrapper.asBoolean X._>_(Y)
<= Y: dynamic.wrapper.asBoolean X._<=_(Y)
>= Y: dynamic.wrapper.asBoolean X._>=_(Y)
-_: asNumber X.negated()
+ Y: asNumber X._+_(Y)
...

ε

86 Chapter 5. Optimization using lazy evaluation

Example 2 — A compound service
As a more involved example, we consider the service f, which invokes the service
chFact introduced in Section 5.3.1.

chFact Ch:
 value = Ch.receive() # A blocking read operation on the channel
 factorial = fact value # Calculate factorial
 status = factorial < 256

f Ch:
 result = chFact Ch

The transformation of these services is shown in . Since reading on a
communication channel is not referentially transparent, it is performed in the side
effect part. Note that in the functional part of both functions chFact and f the
application of fact y1 (respectively fact y1) appears multiple times, but in a real
implementation, multiple evaluations of the same expressions is avoided and
pointers (references) are used to decrease the code size (cf. Section 5.6).

Table 5.11

Table 5.11: Transformation of compound services

Service Functional part Side effect

chFact(Ch) value = y1
factorial = fact y1
status = (fact y1) < 256

y1 = Ch.receive()

f(Ch) result =
 value = y2.y1
 factorial = fact y2.y1
 status = fact y2.y1 < 256

y2 =
 y1 = Ch.receive()

Example 3 — Default arguments
The last example illustrates how our partial evaluation technique eliminates the
performance overhead introduced by specifying default arguments in a Piccola
service.

The service newBox defines default arguments for both width and height of a new
box that is returned as the result. The client service g invokes newBox with an
argument that specifies a specific value for height.

5.7 Application examples 87

newBox X:
 '(with = 10, height = 15, X)
 'println "Width: " + with
 newPeerBox (w = width, h = height)

g: box = newBox(height = 20)

Table 5.12

Table 5.12: Optimization of default arguments

 shows how these services are transformed. The functional part of the
service newBox refers to the result of the peer service that creates the new box. The
side effect part of newBox contains the invocation of println and newPeerBox. Note
that the quoted expressions are inlined and do not appear in the transformed service.
The functional part of the service g consists of a binding that assigns the box created
within the side effect part to the label box. In the side effect part, the invocations of
println and newPeerBox are statically simplified, and therefore they directly
contain the literal arguments.

Service Functional part Side effect

newBox(X) y2 y1 = println "Width " +
 (width = 10, X).width
y2 = newPeerBox
 w = (width = 10, X).width
 h = (height = 15, X).height

g() Box = y3.y2 y3 =
 y1 = println "Width: " + 10
 y2 = newPeerBox (w = 10, h = 20)

Chapter 6

Conclusion

The research described in this thesis is focused on two important issues of scripting
language design and implementation. The first issue is inter-language bridging, and
we developed a technique to use external objects in a flexible and higher-level way
that can be dynamically configured within the scripting language. The second issue is
performance. We show how we can use lazy evaluation to optimize the additional
layer of flexibility introduced by the inter-language bridge. In particular, we present
a partial evaluation technique that separates the non-transparent part of a service and
therefore allows us to apply lazy evaluation in the presence of side effects. Because
this approach is entirely generic, it is not limited to the inter-language bridge and can
be used to improve the performance of our language in general. Although the
presented solutions are specific to the language Piccola, we believe that similar
techniques can also be applied to other programming languages and in particular to
other scripting and composition languages.

Inter-language bridging
After an overview of the language Piccola, we explain the problems caused by a lack
of abstraction for accessing external objects, and we show that these problems
prevent a composition language like Piccola from dealing with components in a
higher-level and independent manner. Analysis of these problems leads to the
conclusion that it is not possible to achieve the needed flexibility with a generic
bridging strategy that is hardcoded in the virtual machine. Thus, our solution
introduces a modified strategy for inter-language bridging that reduces the activities
in the virtual machine to a technical conversion and performs the higher-level
configuration in an abstraction layer located on Piccola’s meta-level. This allows the
programmer to use the full expressive power of Piccola to adapt and configure the
external objects according to the demands of the application and the used
compositional (architectural) style.

Using the bridging strategy presented in this thesis, we were able to develop the
Piccola 3 standard, which is independent of the underlying host language. Since
Piccola is a pure composition language, the standard specifies standard components
such as numbers, collections and URLs that are used very frequently. Depending on
the specific requirements of an application, the programmer may dynamically
reconfigure these components or replace them with more appropriate ones. The

- 89 -

90 Chapter 6. Conclusion

standard components are available in the latest versions of JPiccola and SPiccola, and
they allow us to write host-independent Piccola scripts.

Optimization using lazy evaluation
Moving the variable part of the inter-language bridge onto Piccola’s meta-level leads
to a great flexibility in specifying external components, but at the same time, it is far
less efficient than performing the bridging operations inside the virtual machine.
Analyzing and profiling typical scripts lead to the conclusion that most of the
interface abstractions built by the wrappers of the bridging framework are never
used. Therefore, we introduce a lazy evaluation strategy that only executes the
effectively needed expressions of a service. In order to use lazy evaluation for all
Piccola services, we develop a partial evaluation algorithm that separates the side
effect of a service and resolves internal dependencies. It turns out that this can be
done very effectively in Piccola. Form expressions exhibit the right kind of
information to statically analyze a script, and there is a direct and natural mapping
between the syntactical form expressions and the actual forms, which provide
lightweight introspection facilities. Furthermore, Piccola has no built-in datatypes
that would complicate reasoning. Nevertheless, we believe that the presented partial
evaluation technique can also be applied to other languages.

Using this optimization technique, only the effectively used bridging code is
executed. If the wrapping services can be statically determined (i.e. they are not
defined in the dynamic namespace), the bridging code is directly weaved into the
script and is executed extremely efficiently. It is interesting to compare this effect
with aspect-oriented programming [35].

Due to its generic nature, this technique can also be used to optimize many other
aspects of Piccola. As an example, the prototype implementation in SPiccola ensures
full laziness, which means that in a function body, the subexpressions that do not
depend on the arguments are only evaluated once [19]. Resolving literal references
avoids the lookup of identifiers in the static namespace and makes service definitions
independent of the static namespace at the time when they were defined. This
independence will be very useful to efficiently send a Piccola service over the
network in a distributed scenario. (Piccola does not support distribution yet). We also
use this partial evaluation technique to detect errors such as undefined identifiers
already at compile time.

Chapter 7

Related and future work

The main contributions of this thesis are in the field of inter-language bridging and
partial evaluation respectively lazy evaluation in presence of side effects. In this
chapter, we present some of the related and future work.

Related work
In this thesis, we present a flexible bridging layer that is located inside the language
Piccola and facilitates using external components by means of wrappers. Agora [15]
is a prototype-based object-oriented programming language that is entirely based on
message passing. However, on the level of the Agora implementation, other concepts
such as delegation, encapsulation, cloning and object concatenation can be found as
explicit operations on objects. By making Agora reflective, these implementation
operators become visible and accessible to the programmer. In Agora, there are built-
in objects that are wrapped versions of their corresponding implementation language
objects. The wrapping is performed by sending the up message to an implementation
level object. (This means that the object is passed from the implementation language
up to the Agora language). On the Agora level, all the wrapped objects understand
the messages send and down, which are used to send a message to the implementation
level object and to retrieve the corresponding implementation level object,
respectively. Using these three messages (up, down, and send), an Agora programmer
can make use implementation level objects and their methods.

Accessing external structures is an important feature of any scripting and
composition language, but usually, they do not allow the user to configure the
external objects in the scripting language itself. In Python, C/C++ libraries are
accessible as extension modules. An extension module needs to register wrappers
with Python. These wrappers serve as a glue layer between the languages and are
responsible for converting function arguments to C and for returning Python friendly
return values [21][22][23]. Other than with Piccola, the programmer has to write the
wrappers in C/C++, and although there are extension-building tools such as SWIG
[23][24] or GRAD available, this is far less high-level and ad-hoc than the Piccola
approach. Ruby [25] has an extension API that is similar to the one used by Python.
Also here, extensions have to be initialized (registered) with a C/C++ function that
associates methods with object types. Also Tcl [26] and Perl [27] use a similar
technique to access external structures.

- 91 -

92 Chapter 7. Related and future work

In Piccola, accessing external components can be done generically since both
implementation languages of Piccola (Java and Squeak) provide run-time
introspection. We are more interested in the other side of the coin, namely how the
scripting language can raise the level of abstraction without adding too much
runtime overhead. Jones et al. [28] use Haskell to script COM components and make
use of higher-order functions. They also use the type system to detect certain
composition errors at compile time.

IBM’s System Object Model (SOM) [38] is another approach that allows a
programmer to use components that are written in another language. SOM is
designed specifically to overcome the main obstacles to the pervasive use of object
class libraries. System objects can be distributed in binary form. In addition, they can
be used and subclassed across different languages. This means that it is possible to
implement a system object using one language, subclass it using another language
and use it to build an application in yet a third language. SOM is based on an
advanced object model and an object-oriented runtime engine that supports this
model. SOM supports the concepts and mechanisms that are normally associated
with object-oriented systems including inheritance, encapsulation, and
polymorphism. Furthermore, there are some advanced object mechanisms such as
metaclasses, different types of method dispatch (static and dynamic), dynamic class
creation, and user intercept of method dispatch.

In the fifth Chapter of this thesis, we present a partial evaluation strategy to
transform Piccola scripts into equivalent scripts that can be evaluated lazily. Consel
and Danvy survey the field of partial evaluation and present a critical assessment of
the state of the art [18].

Reasoning about side effects is a necessary precondition to apply our technique to
other languages. Sample et al. argue that even more information should be used for
composition, like cost, associated network delay, or security requirements [29]. Side
effects are a very critical issue for lazy evaluation in general. Our solution is based on
locating the side effects as accurately as possible and separating them from the rest of
the service. Gifford and others proposed an effect typing discipline to delimit the
scope of computational effects within a program [30], while Moggi proposed monads
for much the same purpose [31][32]. Wadler shows how to combine these two
approaches [33].

Future work
In parallel to the work described in this thesis, we have also been working on
distributed Piccola, and our goal is to implement a distribution layer directly in
Piccola. In particular for distribution between heterogeneous Piccola hosts, we need a
flexible technique to abstract away from the host language. In addition, we can use
our partial evaluation algorithm to make Piccola services independent from the static

 93

namespace at the time when they were defined. This facilitates sending services
efficiently over the network.

The SPiccola based prototype implementation of our lazy evaluation strategy is still
in a very early phase and we have no significant benchmark data yet. Future work
will show the performance benefits for different type of Piccola scripts and wrapping
frameworks. In particular, we have to find out in which cases it is better to apply the
partial evaluation algorithm at definition time instead of applying it at compile time.

The basic concept of our lazy evaluation strategy is to separate the side effects of a
service from the referentially transparent part. In our prototype implementation, we
use this separation to avoid multiple evaluations of (referentially transparent)
expressions that are independent of the service argument (respectively the dynamic
namespace). It would be interesting to examine other optimizations that can be
applied to the referentially transparent expressions of a service. As an example, we
could cache the values of the referentially transparent part of a service for often-used
arguments.

We are also working on an integrated composition environment in Piccola. The
information provided by partial evaluation can be used to determine identifier values
and possible runtime errors already when the user writes the source code. In
addition, the partial evaluation algorithm can be used to simplify source expressions
statically. One can think of tool-tips like information when the user selects an
identifier or an expression in the source code. Type information would help to
improve the static analysis and would make the partial evaluation even more
effective.

Bibliography

[1] Franz Achermann and Oscar Nierstrasz. „Applications = Components + Scripts —
A Tour of Piccola“. Software Architectures and Component Technology, Mehmet
Aksit (Ed.), Kluwer, 2001.

[2] Franz Achermann, Markus Lumpe, Jean-Guy Schneider and Oscar Nierstrasz.
„Piccola — a Small Composition Language“. Formal Methods for Distributed
Processing, an Object Oriented Approach, Howard Bowman and John Derrick.
(Eds.), Cambridge University Press, 2001.

[3] Jean-Guy Schneider and Oscar Nierstrasz. „Components, Scripts and Glue“.
Software Architectures — Advances and Applications, Leonor Barroca, Jon
Hall and Patrick Hall (Eds.), pp. 13-25, Springer, 1999.

[4] Markus Lumpe, Franz Achermann and Oscar Nierstrasz. „A Formal Language
for Composition“. Foundations of Component Based Systems, Gary Leavens and
Murali Sitaraman (Eds.), pp. 69—90, Cambridge University Press, 2000.

[5] Franz Achermann, Stefan Kneubuehl and Oscar Nierstrasz. „Scripting
Coordination Styles“. Coordination Languages and Models, António Porto and
Gruia-Catalin Roman (Eds.), LNCS 1906, Limassol, Cyprus, September 2000,
pp. 19—35.

[6] Oscar Nierstrasz and Franz Achermann. „Separation of Concerns through
Unification of Concepts“. ECOOP 2000 Workshop on Aspects & Dimensions of
Concerns, 2000.

[7] Franz Achermann and Oscar Nierstrasz. „Explicit Namespaces”. Modular
Programming Languages, Jürg Gutknecht and Wolfgang Weck (Eds.), LNCS
1897, Zurich, Switzerland, September 2000, pp. 77—89.

[8] Jean-Guy Schneider. „Components, Scripts, and Glue: A conceptual framework for
software composition”. Ph.D. thesis, University of Bern, Institute of Computer
Science and Applied Mathematics, October 1999.

[9] Franz Achermann. „Piccola: A Language to Script Composition Styles“. Ph.D.
thesis, University of Bern, Institut of Computer Science and Applied
Mathematics, 2001, to appear.

[10] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Key. „Back to
the future: The story of Squeak, A practical Smalltalk written in itself“. In
Proceedings OOPSLA ‘97, ACM SIGPLAN Notices, volume 21, November
1997.

- 95 -

96 Bibliography

[11] John K. Ousterhout. „Scripting: Higher Level Programming for the 21st Century“.
IEEE Computer magazine, March 1998.

[12] David Ungar and Randall B. Smith. „Self: The Power of Simplicity“. OOPSLA ‘87
Conference Proceedings, pp. 227-241, Orlando, FL, October 1987.

[13] Adele Goldberg, David Robson. „Smalltalk 80: The Language“. Addison-Wesley
Pub Co, ISBN: 0201136880, June 1989.

[14] Adele Goldberg, David Robson. „Blue Book - Smalltalk-80: The Language and Its
Implementation“. Out of print.

[15] Wolfgang De Meuter. „Agora: The Story of the simplest MOP in the World - or - The
Scheme of Object-Orientation“. Programming Techology Lab, Department of
Computer Science, Vrije Universiteit Brussel.

[16] Gregor Kiczales, Jim des Rivière and Daniel G. Bobrov. „The Art of the
Metaobject Protocol“. MIT Press, 1991.

[17] John Launchbury. „Lazy imperative programming“. In Proceedings of the ACM
SIGPLAN Workshop on State in Functional Languages, Copenhagen,
Denmark, June 1993. Yale University Research Report YALEU/DCS/RR-968.

[18] C. Consel, O. Danvy. „Tutorial Notes on Partial Evaluation“. In 20th ACM
Symposium on Principles of Programming Languages. Charleston, South
Carolina, pp.493-501, ACM Press 1993.

[19] Philip Wadler. „Listlessness is Better than Laziness: Lazy Evaluation and Garbage
Collection at Compile Time”. Proceedings of the 1984 ACM Conference on LISP
and Functional Programming, pp. 45-52, August 5-8, 1984, Austin, Texas, USA.
ACM

[20] Mark Lutz. „Programming Python (2nd Edition)“. O’Reilly & Associates, ISBN:
0596000855, March 2001.

[21] Guido van Rossum, Fred L. Drake, Jr. „Extending and Embedding the Python
Interpreter“. PythonLabs, Release 2.1, April 15, 2001

[22] Guido van Rossum, Fred L. Drake, Jr. „Python/C API Reference Manual“.
PythonLabs, Release 2.1, April 15, 2001

[23] David M. Beazley. „Interfacing C/C++ and Python with SWIG“. 7th International
Python Conference, SWIG Tutorial, 1998

[24] David M. Beazley. „SWIG: an easy to use tool for integrating scripting languages
with C and C++“. In proceedings of the 4th USENIX Tcl/Tk Workshop pp. 129-
139, July 1996.

[25] Yukio Matsumoto, Yukihiro Matsumoto. „The Ruby Programming Language“.
Addison Wesley Professional, ISBN: 020171096X, February 2002, to appear.

 97

[26] John K. Ousterhout. „Tcl and the Tk Toolkit“. Addison Wesley Professional,
ISBN: 020163337X, May 1994.

[27] Larry Wall, Tom Christiansen, Jon Orwant. „Programming Perl (3rd Edition)“.
O’Reilly & Associates, ISBN: 0596000278, July 2000.

[28] Simon L. Peyton-Jones, Erik Meijer and Daan Leijen. „Scripting COM
components in Haskell“. Fifth International Conference on Software Reuse
(ICSR5), Victoria, Canada, 1998.

[30] D. K. Gifford and J. M. Lucassen. „Integrating functional and imperative
programming“. ACM Conference on Lisp and Functional Programming,
Cambridge, Massachusetts, August 1986.

[31] E. Moggi. „Computational lambda calculus and monads“. IEEE Symposium on
Logic in Computer Science, Asilomar, California, June 1989.

[32] E. Moggi. „Notions of computation and monads, Information and Computation“.
93(1), 1991.

[33] Philip Wadler. „The marriage of effects and monads“. Proceedings of the third
ACM SIGPLAN international conference on Functional programming,
September 26 - 29, 1998, Baltimore, MD USA.

[34] McDowell, C., and Helmbold, D. „Debugging Concurrent Programs“. ACM
Computing Surveys 21, 4 (Dec. 1989), 593 - 622.

[35] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. „Aspect-oriented programming“. In
Proceedings of the European Conference on ObjectOriented Programming
(ECOOP), number 1241 in Lecture Notes in Computer Science. Springer-Verlag,
June 1997.

[36] Herb Schildt. „Java 2: The Complete Reference (Osborne Complete Reference Series)“.
McGraw-Hill Professional Publishing, ISBN: 0072130849, December 2000.

[37] Bertrand Meyer. „Eiffel: The Language“. Prentice Hall PTR, ISBN 0132479257,
March 2001.

[38] Christina Lau. „Object-Oriented Programming Using SOM and DSOM“. John
Wiley & Sons, ISBN 0471131237, March 1995.

Appendix A

SPiccola and its debugger

Within the scope of this thesis, we implemented SPiccola, which is a Piccola
implementation on top of Squeak. Squeak is an open, highly portable Smalltalk-80
implementation whose virtual machine is written entirely in Smalltalk [10]. Having a
second Piccola implementation has been essential to gain practical experiences about
inter-language bridging and host-independence. It was also interesting to compare
the strongly typed Java language to the type-less Squeak language with respect to
using them as a Piccola host. As expected, it turned out that the type-less approach
makes implementation of the inter-language bridge easier and more natural.

SPiccola consists of a parser, a virtual machine and an integrated Piccola
development environment. In addition, there are several tools for thread-aware
debugging that are well integrated into the SPiccola development environment. As
explained in Section 2.1, concurrency is a primitive concept of the Piccola language
and therefore, concurrency is an important issue for debugging tools in Piccola.
Unfortunately, the classical debugging techniques used for sequential programs are
only of limited use for debugging concurrent programs. The fact that several threads
may be active at a time adds a new dimension of complexity and a program cannot
be considered a totally ordered sequence of operations anymore. In fact, concurrent
programs do not always have deterministic and reproducible behavior and even
when they are run with the same inputs, their results may be radically different. This
is caused by races, which occur whenever two or more concurrently executing
threads make use of the same memory location, where at least one of the threads
modifies the contents at this location, and the accesses are not ordered by
synchronization.

This non-determinism has major negative impacts on debugging and testing
concurrent programs. In particular, debugging of a concurrent program often fails
because the undesirable behavior may not appear when the program is re-executed.
Especially if this behavior occurs with a low probability, the programmer may never
be able to recreate the error situation. In fact, any attempt to gain more information
about the program may prevent the programmer from reproducing the erroneous
behavior. This effect has been referred to as the Heisenberg uncertainty principle applied
to software or the Probe Effect [34].

In SPiccola, we tackle these problems by two main concepts: First, we make the
complete debugger interface accessible within the Piccola language. This allows the

- 99 -

100 Appendix A. SPiccola and its debugger

programmer to specify the debugging operations without additional user interaction
at runtime, and it significantly decreases the problems caused by the Probe Effect.
Second, we provide SPiccola with event-based debugging techniques [34]. This
means that the debugger supports logging of specific events at runtime, which allows
a reconstruction of the actions performed by the script after some or all of its threads
are already terminated.

In the following, we give a short overview of SPiccola’s main debugging features and
especially focus on the aspects related to concurrency:

Association between parse tree nodes and source code. As most of the other
debuggers, the SPiccola debugger associates the executable code (i.e. the parse
tree nodes) with the source code. Whenever the programmer looks at a certain
position of the executable code, these associations are used to show the
programmer the corresponding location in the source code.

Thread-aware cyclical debugging. Cyclical debugging is the classical debugging
approach where a program is repeatedly stopped during execution in order to
examine its state [34]. SPiccola provides all the commonly used features to
specify breakpoints and step through a script. In addition, the cyclical debugger
in SPiccola is completely thread-aware. It is possible to simultaneously attach
debugger windows to multiple threads and to control them individually. When a
thread with an attached debugger forks a new agent, another debugger window
is opened and attached to the thread of the newly created agent.

Debugger interface is accessible within Piccola. The complete debugger interface is
accessible within the Piccola language. As an example, this allows us to define
breakpoints by using the according debugging commands. In addition, also the
meta-information about the threads is available in Piccola, and there is a notion
of groups of threads. Combined with the debugger interface, this can be used to
atomically apply debugging operations to a group of threads. As an example, a
programmer may open a debugger for each thread in a specific group.

Thread animation. SPiccola can animate the threads that are executing a Piccola
script. While the programmer is watching the threads walking through the
source code, he can also influence them. As an example, he can change the active
thread (i.e. the thread owning the CPU) or influence the execution speed of an
individual thread.

Runtime history and form lifecycles. SPiccola is able to log specific actions during
the execution of a script. After the execution is terminated, the logged
information is available in the runtime history. Using this history, the programmer
can inspect the runtime behavior without forcing the Probe Effect. In addition,
SPiccola also supports form lifecycles. This means that the debugger logs every
usage of a certain form and allows the programmer to browse them afterwards.

 101

As an example, the form lifecycle of a channel may be used to easily examine
communication or synchronization of threads.

	Introduction
	The Piccola Language
	Piccola — A pure composition language
	What is Piccola?
	Architecture (Forms, agents and channels

	Everything is a form
	Semantics of forms
	Forms as a unifying concept
	Forms versus objects

	Language syntax
	Piccola by example
	Piccola scripts
	Agents and channels
	Nested bindings
	Operators
	Static namespace and scope
	Dynamic namespace

	JPiccola 2 and its inter-language bridge
	Concept of JPiccola’s virtual machine
	Bridging between two nested language models
	
	Passing objects upwards
	Passing forms downwards

	JPiccola’s bridging approach
	The bridging strategy
	Up. Passing objects from Java to Piccola
	Passing forms from Piccola to Java (Down)

	Examples
	Example 1
	Example 2

	Limitations of JPiccola’s bridging approach
	The problems
	I. Incoherent behavior of external forms
	II. Direct mapping conflicts with Piccola’s prin
	III. Hardcoding structures in the virtual machine is inflexible

	The problems are coupled and hard to overcome

	Inter-language bridging as a meta-aspect of Piccola
	Overview of our solution
	Terminology
	Illustration of the bridging strategy
	Specification of the bridging strategy
	Up. Passing objects upwards
	Down. Passing forms downwards

	Representing external objects as nested forms
	The structure of external forms
	Consequences and example

	Wrapping external objects inside Piccola
	Structure of the inter-language bridge
	Two models for the meta-level bridging layer
	Implicit dispatching
	Explicit dispatching

	Comparison of the two bridging models
	Activation strategy
	Dispatch strategy
	Our decision

	The explicit bridging model
	Architecture
	Implementation
	Example

	Protecting forms from being converted
	Introductory example
	The protect service
	Using protect on the meta-level

	Optimization using lazy evaluation
	Piccola’s inter-language bridge
	Profiling a simple expression in SPiccola
	Unused interface bindings

	Lazy evaluation
	A lazy evaluation strategy using lazy forms
	Requirements for lazy evaluation
	Using partial evaluation to meet the requirements

	Illustration of the partial evaluation algorithm
	Part 1 — Separating the side effect
	Basic concept
	Description of the algorithm
	Example

	Part 2 — Turning expressions into closures
	Description of the algorithm
	Examples

	Formal specification
	The domains
	Identifiers
	Form expressions and forms
	Lazy form expressions and lazy forms
	Side effects

	Standard Piccola evaluation
	Auxiliary functions
	The semantic function

	The partial evaluation algorithm
	The meta-functions
	Projection
	Service selection
	Substitution

	Evaluating the side effects and the functional part
	Examples
	Example 1 — A simple script
	Example 2 — Multiple services
	Example 3 — Higher order service application

	How to prove correctness
	The SPiccola based prototype implementation
	
	Avoiding code duplication and multiple evaluations of expressions
	Using pragmas to indicate referential transparent services
	Using pragmas to transform services at definition time

	Application examples
	
	Example 1 — A referentially transparent service
	Example 2 — A compound service
	Example 3 — Default arguments

	Conclusion
	
	
	Inter-language bridging
	Optimization using lazy evaluation

	Related and future work
	
	
	Related work
	Future work

