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Abstract

We propose a new method of combining ranking results which each rank the
same set of items according to different criteria. It will choose a ranking that is
closest as possible to each ranking result to be combined. In the context of the
Internet, it can be used to rank web pages into an order that best reflects a balance
between several criteria. In the context of sports, we propose to use the method
to determine the winner of competitions, when the performance of an athlete is
naturally judged according to different criteria, such as figure skating and show
jumping.

The rank aggregation method we propose is known to be NP-hard. This thesis
aims to develop efficient algorithms to compute aggregated rankings for practically
relevant instances. By employing parameterized complexity theory, we can identify
the structural hardness of an instance and allow for choosing a high-performing
algorithm accordingly.

We present efficient and effective data reduction rules which will reduce param-
eters measuring the structural difficulty of an instance provably by simplifying the
instance or removing unneeded parts.

We provide efficient search tree algorithms which will solve practically relevant
instances, where the criteria correlate strongly. Experiments with synthetic data
confirm that for instances with high correlation between the rankings, even large
instances can be computed in short time.

For general instances, we present two enumeration algorithms, which will likely
outperform the trivial algorithm of trying all rankings and comparing their qualities
as aggregations. We prove the enumeration algorithms to perform well in scenarios
with both few items to be ranked and some correlation between the rankings.

We present methods to approximate the solution quality by a factor of two.
We present parameters which can not be used to improve computation by proving
and we will prove the NP-hardness of the problem even for small values of these
parameters.
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CHAPTER 1

Introduction

There appear to be many scenarios where items need to be ranked according
to several criteria—a search engine is just one instance. The criteria need to be
balanced with one another to find a ranking that represents all criteria. Where
possible, one can rank all items separately for each criterion. The separate rankings
can be aggregated into one. This process is called “rank aggregation.”

A well-studied method of aggregating several rankings into one is the Kemeny-
Young method [38]. The Kemeny-Young method looks at the rankings to be aggre-
gated as error-prone, independent judges of the same, sole criterion. The idea of
the Kemeny-Young method stems from Condorcet [13], whose work was generalized
into the Kemeny-Young method. He referred to Rousseau’s Social Contract [51] as
follows:

When in the popular assembly a law is proposed, what the people
is asked is not exactly whether it approves or rejects the proposal,
but whether it is in conformity with the general will, which is
their will. Each man, in giving his vote, states his opinion on
that point; and the general will is found by counting votes. When
therefore the opinion that is contrary to my own prevails, this
proves neither more nor less that I was mistaken, and that what
I thought to be the general will was not so. —J.J. Rousseau [52,
p. 93]

As M. Truchon puts it:

Condorcet’s objective was to formulate this proposition rigor-
ously, using the calculus of probability, which was new at that
time. There is a best alternative, a second best, etc. Voters
may have different opinions because they are imperfect judges.
However, if they are right more often than they are wrong, then
the opinion of the majority should yield the true order of the
alternatives. —M. Truchon [59]

In this thesis, we propose an aggregation method closely related to the Kemeny-
Young method, but based on the assumption that the judges are not imperfect
approximations of the true ranking but rather perfect judges of their own specific
criteria, and that an optimal aggregation is identified as the best possible in all
criteria. In other words, we propose an aggregation that tries to resemble each
judge’s opinion as closely as possible.

To compare two rankings, we propose using the Kendall-τ distance. A ranking
can be turned into any other through repeated swapping of adjacent entries. The
Kendall-τ distance between two rankings is the number of adjacent swaps required
to obtain one list from another. This matches our intuition: the two entries might
be similar and it could be difficult to tell which of them to rank ahead.

We propose aggregating several rankings into the aggregation that has the least
maximum Kendall-τ distance to the input rankings. We refer to the computational
problem of finding such an aggregation as the center ranking problem, and to
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2 1. INTRODUCTION

its usage as an aggregation method as the center ranking method. The center
ranking problem is known to be NP-hard by Popov [50]1 .

The center ranking method contrasts to the well-studied Kemeny-Young
method, which aggregates several input rankings into the ranking that has the
least possible total distance to all input rankings. Let us study the aggregation
method we propose in an example and compare it directly to the Kemeny-Young
method. Search engines aim to deliver a ranking of websites when given a certain
input phrase; the quality of the ranking can be described using specific criteria.
For some criteria that define a good search engine ranking, it is difficult to find
a ranking to represent them, such as the first few results delivered by the search
engine should be as diverse as possible, which would be useful if the search term
has many common meanings. However, for many other criteria, it appears possible
to determine a ranking representing these criteria. Such criteria could include the
quality of the match of a website to the search phrase, the number of links pointing
to it, the website’s probability of not being spam, etc. Quite naturally, we would
not want to give up any of the above criteria in favor of another. We can, however,
determine the rankings and aggregate them using the center ranking aggregation
method.

Let us consider three websites called 1, 2, and 3. Three rankings of the web
pages according to three criteria are presented in Table 1.

Table 1: Rankings of three web pages 1, 2, and 3 according to various criteria. Here,
“<” means “better than.” The Kemeny-Young aggregation is 1 < 2 < 3, while the
center ranking aggregation is 2 < 1 < 3.

criterion ranking

number of links from other websites 1 < 2 < 3
number of occurrences of the search term 1 < 2 < 3
probability of not being spam 2 < 3 < 1

Using the Kemeny-Young method, the aggregation we obtain is 1 < 2 < 3.
But, 1 is almost certainly spam. Apparently, two votes just overrule one in the
Kemeny-Young method. In our example, that is unacceptable. Spam is spam and
we should refrain from putting something at the top of the result list that is very
probably spam.

If we choose to use the center ranking aggregation method, where no crite-
rion can be easily overruled, we arrive at the aggregation 2 < 1 < 3. Here, 2 might
not fit the search term so well; but then again, it is not spam. The aggregation
appears to be more sensible.

If only two rankings are aggregated, the Kemeny-Young method regards both
input rankings as optimum aggregations, while the center ranking method con-
siders only a balance of both input rankings to be of optimum quality. The Kemeny-
Young method tries to obtain an average of the input rankings, thus focusing on
the multitude of the occurrences of certain relative rankings. In contrast, the cen-
ter ranking method tries to obtain a ranking that resembles every input ranking
as closely as possible by minimizing the maximum distance to the input rankings,
completely disregarding of multitude.

Despite the NP-hardness, just as was argued for the Kemeny-Young method [43],
we claim that in practice the criteria-based ranking can be determined in a short

1Note that in his paper, he refers to the center ranking problem as “adjacent swap
center permutation problem.”
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time even on a vintage laptop computer. To establish just that, we investigate a
bevy of algorithms which aggregate rankings using our method in very short time
for a large range of different instances of the problem.

To provide provable bounds of the qualities of the presented algorithms, we
employ parameterized complexity [18, 47, 21] analysis as pioneered by Downey
and Fellows. An outline of parameterized complexity analysis can be found in
Section 1.4.4.

1.1. Aggregating ranks by criteria

When the performance of a competitor in a competition is determined by dif-
ferent and not easily comparable criteria, the aggregation method used still needs
to be able to determine the final ranking of the competitors.

In figure skating contests, the couples receive both a Technical Score and a
Program Component Score. Then, “the final score is calculated by adding the total
Technical Score and the Program Component Score and subtracting any program
deductions (for example 1.0 for a fall)“[62]. In figure skating, program deductions
are used to enforce a certain criterion, namely to make it significantly more difficult
to win if certain rules are broken. In show jumping contests against the clock, riders
are urged not to knock down any obstacles while staying within the time limit. For
each second that a competitor stays behind the time limit, he or she will receive
a penalty point; likewise, knocking off obstacles will result in penalty points. The
riders with the least penalty points (often nil) will finally enter a jump-off. Both
figure skating and show jumping competitions, in principle, allow for compensating
failure in one criterion with success in the other. However, compensating knocking
down an obstacle by speeding up is limited to competing the course within the
time limit. When a horse disobeys for the first time, i.e. refuses to jump over an
obstacle once, the rider receives 4 penalties. The second refusal will lead to the
rider’s elimination from the competition. Figure skaters are penalized heavily for
disobeying a certain rule, e.g. playing vocal music. It appears that the desired effect
of many penalty rules is near complete enforcement of a certain rule, i.e. to lower
significantly the final rank of the competitor that violated a certain rule. The value
of the penalty or program deduction imposed needs to be fine-tuned to show the
desired effect. Many other sports have similar concepts.

The center ranking rank aggregation method that we propose provides an-
other concept which strongly enforces certain rules, i.e. significantly lowers the rank
of a competitor. It does this without requiring the creation of penalty scores—which
seems to be a burdensome business, because the value of the penalty must be com-
pared directly to the other scores a competitor might obtain. Instead, we propose
ranking for each criterion separately. Ranking the competitors according to their
compliance to this rule (or criterion) might be trivial. Then, we propose aggregating
the ranking that expresses the performance in the competition with the rankings
for compliance with certain rules. The aggregation we propose is defined to be the
closest possible to each separate ranking.

In the example of show jumping, we have argued that the rules try to severely
punish the disobedience of a rider. The center ranking aggregation method
might start by ranking the riders three times, by their knock-down penalties, by
their time to complete the course and finally by their penalties for disobedience.
As an example, let us assume four riders A,B,C,D which are ranked as seen in
Table 2. All rankings are fairly similar to A<B<C<D, except that A raced through
the course much too fast, knocking down all obstacles, C surprisingly had fewer
penalties for disobedience than B. The center ranking aggregation lists A on
the second rank. A competitor who completely failed in the criterion of knocking
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down as few obstacles as possible cannot assume to win. On the other hand, B
wins over C, since otherwise the final ranking would only poorly reflect the ranking
of the times to complete the course. Of course, D is ranked last.

Table 2: Three rankings of candidates A,B,C,D in a show jumping competition.
Here, “X<Y” means “X performed better than Y.” When aggregated by the center
ranking aggregation method, the only best ranking is B<A<C<D.

criterion ranking

ranking by time to complete the course A<B<C<D
ranking by knock-downs B<C<D<A
ranking by disobediences A<C<B<D

It might be worthwhile to note that there is a chance to have several optimal
aggregations when using the center ranking method. In the example of Table 2,
there is only one optimal aggregation.

1.1.1. Mixing and post-processing the center ranking aggrega-
tion. The center ranking aggregation method shares a common advantage with
all aggregation methods. Even if we are interested in only the first position of a
ranking, we receive a complete ranking. While this might appear wasteful at first,
it leaves room for corrections in case our modelling of the criteria was imprecise.
Receiving the complete list enables us to identify the runners-up and compare them
with the winner. We can change the final ranking to match criteria that were not
part of the aggregation.

Another advantage of the center ranking aggregation method would be that,
in order to aggregate several rankings, it allows itself to be mixed with the Kemeny-
Young method, which might be tempting as one of them allows compensation while
the other one does not. We could aggregate rankings that are meant to represent
the same criterion but are error-prone, using the Kemeny-Young method, and then
combine the aggregation with other rankings that reflect criteria using the center
ranking aggregation method.

For example, a DVD rental store can have one ranking of all movies for each
user, representing the users’ ratings of the movies. There might be several thou-
sand rankings representing the users’ votes and another one representing the num-
ber of scratches on DVDs. Here, we could aggregate the users’ votes using the
Kemeny-Young method and then combine it with the scratch-rating using the cen-
ter ranking aggregation method. For it might be a significant drawback of a DVD
to contain scratches. The drawback can hardly be compensated by more and more
good reviews.

Known results. Despite the many interesting applications, and indeed quite
surprisingly, the only research on the center ranking problem known to the
author is the proof of NP-hardness by Popov [50]2. In Popov’s work, the problem
is found to be of interest to bio-informatics.

1.2. Main results

This section gives an overview of the most original, novel and exciting results
of this thesis.

The proposal of using the center ranking method for obtaining aggregations
that balance between several criteria appears to be original to this thesis. Currently,

2Note that in his paper, he refers to the center ranking problem as “adjacent swap
center permutation problem.”
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in many sports compliance to criteria is measured in penalties, which must be fine-
tuned to be fair and to show the desired effect, since every penalty is directly
comparable to every other penalty. This author hopes that the center ranking
aggregation method provides a way to determine the final ranking of all competitors
in a way that depends less on the (possibly debatable) decisions on the exact sizes
of the penalties and still provides a final ranking of the competitors that matches
common sense.

It appears to be plausible to expect a correlation between several rankings
representing criteria that constitute the overall quality of the ranked items. The
problem is NP-hard, but we can expect at least some correlation between the rank-
ings that are aggregated. Thus, the neighbor permutation search algorithm appears
to be of interest. The neighbor permutation search algorithm in Section 4.2 solves
instances of high correlation between the rankings in only short time. While the
general idea of limiting the search tree to logarithmic depth by branching into many
cases on every node in the search tree has been provided by Ma and Sun [44], the
center ranking problem is more difficult than the closest string problem (we
can reduce closest string to center ranking such that the reduced instance
closely resembles the original instance, see Section 2.2.1). It is difficult to adapt
the branching proposed by Ma and Sun, because strings can easily be truncated
to sub-strings, as the algorithm by Ma and Sun does, but truncating a ranking to
some of its relative rankings requires careful and complex modelling.

This author believes the sphere intersection enumeration algorithm in Sec-
tion 5.3 to provide a novel and interesting technique of enumerating permutations.
The algorithm achieves to enumerate the intersection of two balls in the metric
space of permutations, with respect to the Kendall-τ distance, to be enumerated in
time that is linear in the output size. This is surprising since the computation of
the Kendall-τ distance alone could be expected to take more than linear time per
permutation that is enumerated. To achieve this surprising performance, the algo-
rithm does not compute Kendall-τ distances directly, but rather computes numbers
of inversions and spreads these computations so evenly across the enumeration, that
no asymptotic extra-cost is required. Further, the algorithm directly enumerates
the intersection of two balls, it does not need to select an intersection out of a
greater set. The algorithm builds up the permutations within the enumeration
digit-wise and thereby never errs and rejects a choice that was made earlier in the
build-up process. Therefore, together with the astonishingly little work required
per enumeration item, the algorithm is expected to perform very well in practice.

1.3. Organization

This thesis is divided into the following chapters.

• Chapter 1 presents the motivation of our analysis and the preliminaries
needed for the later chapters.
• Chapter 2 presents the center ranking problem from an election theory

point of view, introduces data reduction rules, discusses the relation to the
Kemeny ranking problem and closest string problem.
• Chapter 3 examines fixed-parameter tractability with respect to the most

interesting parameters.
• Chapter 4 presents parameterized algorithms for instances where the rank-

ings to be aggregate correlate strongly. For these, the radius parameter is
small.
• Chapter 5 presents parameterized algorithms for general instances, which

likely outperforms the trivial algorithm enumerating all possible rankings.
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• Chapter 6 presents the results of experiments to determine the practical
run times of some of the algorithms presented.
• Chapter 7 presents a summary of the algorithms examined and lists ques-

tions that appeared, or remained open.

1.4. Preliminaries

The basic concepts and notations we will use are presented in this section.

1.4.1. Rankings. We define a ranking or vote as a total order of the set
[n] = {1, . . . , n} for n ∈ N. The set of all rankings of set [n] will be denoted
as Sym[n].

A ranking can represent the preference of a voter on the candidates available
in an election, where the candidates would be represented by numbers. In social
choice theory, a ranking according to the preference of a voter is called a “vote.”
The entries of the votes are called “candidates.” Because of the close relation to
voting theory we will use the terms “votes” and “rankings” as synonyms, and hence
we will refer to the ranked entries as “candidates.” Since a total order on the set [n]
can be identified with permutations, we further identify rankings and permutations,
perhaps oddly therefore referring to the entries of permutations as “candidates” and
to permutations themselves as “votes.”

1.4.2. Kendall-τ distance. Different rankings can be compared by their dis-
tance. Numerous metrics on rankings have been proposed. Perhaps the most
natural one (e.g. argued by Noether [48]) is the Kendall-τ distance, proposed by
Kendall [39], which is central for our investigations. We may assume that the
smallest possible difference between two rankings may be that they list two adja-
cent candidates in different order.

Each unordered pair of candidates that two rankings list in different order may
be seen as a discordance, as Kendall names it [39].

Definition 1 (Kendall [39]). Let λ = p1p2 · · · pn and µ = q1q2 . . . qn be two per-
mutations. Then {pi, pj} is a discordance between λ and µ if and only if λ lists pi
before pj , but µ does not.

The concept of discordances between two permutations allows for a natural way
to define the Kendall-τ distance.

Definition 2 (Kendall-τ distance). Let µ, λ ∈ Sym[n], n ∈ N. The Kendall-τ
distance is equivalent to the number of discordances between µ and λ,

τ(µ, λ) B #{(a, b)|a <µ b ∧ a >λ b}.

Here, # denotes the cardinality of a set. Note that the number of discordances
between two permutations equals the number of adjacent swaps required to turn
one permutation into the other.

The Kendall-τ distance is a metric which means that for three permutations
µ, λ, ν ∈ Sym[n], the following holds.

• τ(λ, µ) = 0 if and only if λ = µ (identity of indiscernibles)
• τ(λ, µ) = τ(µ, λ) (symmetry)
• τ(λ, µ) ≤ τ(λ, ν) + τ(ν,µ) (triangle inequality)

The values τ assumes range from 0 to
(
n
2

)
for permutations of length n ∈ N, where(

n
2

)
refers to the binomial coefficient. The values must be smaller than

(
n
2

)
since

the number of pairs of discordance, which define the Kendall-τ distance must be
smaller than the number of pairs of n candidates. The bound of

(
n
2

)
is reached if

and only if the two permutations are discordant on all pairs, which is equivalent to
the rankings being each other’s reverse.
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1.4.3. Definition of the center ranking problem. The center rank-
ing problem seeks to obtain the aggregation of a set of rankings
V ∈ Symm

[n], n,m ∈ N. It chooses the aggregation which has the least maximum
distance from the input rankings. In other words, it tries to find a new permutation
µ ∈ Sym[n] such that maxλ∈V τ(λ, µ) is minimal.

Problem 3 (center ranking). We can describe center ranking as follows:

Given: (V, r), where V is a set of votes—i.e. a set of per-
mutations out of Sym[n], where [n] = {1, . . . , n}, n ∈ N is
a set of candidates; and r ∈ N is a radius.

Question: Is there a π ∈ Sym[n] such that
maxν∈V τ(π, ν) < r?

We denote the set of n ∈ N candidates usually as [n] B {1, . . . , n}.

Figure 1.4.1: A visualization of a minimum KT-distance vote as introduced in
Section 1.4.3, with its aggregation result. The points represent rankings, the middle
of the red ball represents the aggregation results. The vote has an election result
of quality r if the red disc of radius r can be translocated so that all points are
covered, as is the case here.

We could imagine the votes to be points on a plane and the question would be if
we can translocate the disc such that it completely covers all the points. The aggre-
gation would be the ranking represented by the center of that disc. See Figure 1.4.1.
The problem can be looked at as a decision problem, as defined above, but also as an
optimization problem, changing the question to:
“Find minπ∈Sym[n]

maxν∈V τ(π, ν) < r?”

Problem 4. center ranking as an optimization problem:
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Given: V , which is V is a set of votes—i.e. a set of permu-
tations out of Sym[n], where [n] = {1, . . . , n}, n ∈ N is a
set of candidates.

Question: Which is the minimal solution radius
r = maxλ∈V τ(σ, λ) for any permutation σ ∈ Sym[n]?

In the context of this definition, we refer to maxλ∈V τ(σ, λ) as the solution
quality of σ.

We could also ask for the actual solution of the problem: “For which π ∈ Sym[n]

is maxν∈V τ(π, ν) < r minimal?” For us, these three questions are essentially
equivalent. If we can answer the decision problem, a binary search for the smallest
radius solves the optimization problem3. If we can answer the optimization problem,
we can also answer the decision problem simply by comparing parameter r to the
optimum. Being able to solve the question for the optimal solution enables us to
determine the maximum radius from the optimal solution to any input vote and with
that number answer the optimization problem. It is a little bit more difficult to see
how being able to solve the optimization problem enables us to answer the question
for the optimal solution. This would indeed require some extra work. However,
it is of no particular concern to us; all algorithms we present naturally emit the
optimal solution. We therefore see no harm in treating the three formalizations
of the center ranking problem as one problem and we deliberately interchange
between understanding the center ranking problem one way or another.

1.4.4. Parameterized complexity. The center ranking problem was shown
to be NP-hard [50]4. It is an established assumption that NP-hardness inevitably
leads to run times growing exponentially with the input size, as has been argued,
among many others, by Garey and Johnson [23]. Hüffner[31] lists several ways out
of the dilemma: “Heuristics drop the demand for useful run time guarantees or for
useful quality guarantees, and are tuned to run fast with good results on typical in-
stances. Approximation algorithms trade the demand for optimality for a provably
efficient run time behavior, while still providing provable bounds on the solution
quality.”

For determining the final ranking of a sports competition, it is neither ac-
ceptable to expect exceptionally long computation times for corner cases, nor is it
satisfactory to approximate the final ranking of the competitors. Parameterized
complexity analysis as pioneered by Downey and Fellows [18, 21, 47] aims to help
us identify the structural complexity of instances and find algorithms whose run
time can be high-performing for instances of low structural complexity. We argue
that most practically relevant instances are of low structural complexity.

We define a parameterized problem as follows [18].

Definition 5. A parameterized problem is a language L ⊂ Σ∗ × Σ∗, where Σ is a
finite alphabet. The second component is called the parameter of the problem.

Note that throughout this thesis, we will refer to an instance (I, k) ⊂ L as
instance I with parameter k.

A parameterized algorithms for an instance of input size n, is an algorithm
with run time f(k)p(n) where p is a polynomial, f is any function n is the size
of the overall input; and k is the problem parameter. We can restrict the overall

3This has in fact been employed for the algorithm solving the neighbor permutation opti-
mization problem, as seen in Appendix A.

4Note that in his paper, he refers to the center ranking problem as “adjacent swap
center permutation problem.”
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combinatorial explosion to the parameter k, such that for some values of k we can
answer the instance quickly, even if the instance is large. Compare Figure 1.4.2 and
Figure 1.4.3.

n

Figure 1.4.2: Classically considered, an NP-hard problem yields a combinatorial
explosion in the input size. In this picture, n depicts the size of the overall input.

k

n

Figure 1.4.3: Parameterized complexity theory tries to confine the combinatorial
explosion to the parameter k only. For small values of k, an algorithm with run
time O(f(k)p(n)), where f is any function and p is a polynomial. This means that
for some values of k, the problem is efficiently solvable for even large values of n.

Parameterized algorithms with time bounds of the form O(f(k)p(n)) can be
considered to be solutions for variable k, with precise bounds on how much param-
eter k influences the run time. There can be several aspects introducing structural
hardness, each reflected in their own parameter.

Having a range of parameterized algorithms for different parameters allows
for automatic selection of an appropriate algorithm for a given instance. We can
determine the different aspects of the instance that can constitute the structural
hardness of the instance, choose an aspect of low structural hardness for the instance
and then select an algorithm which runs high-performing for low values of the
parameter which reflects the aspect.

1.4.5. Permutations. There are many different, yet compatible definitions of
permutations, each favoring its own notation. A permutations can be understood as
a sequence of symbols such that no symbol appears on two positions of the sequence.
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The sequence is denoted as, for example, π = 3657124. We could understand a
permutation π as a bijection from [n] to [n], Herein, [n] denotes the set {1, 2, . . . , n}.
The bijection π is often denoted table-like as

π =
(

1 2 3 4 5 6 7
3 6 5 7 1 2 4

)
.

The function value of π is identified in the table as the table entry right under i.
The set of permutations of entries [n] is denoted as Sym[n]. In this thesis,

we assume permutations to be presented and stored in a computer in sequence
notation, e.g. as π = 3657124. Here, π is the permutation which maps the number
one to number three, number two to number six and so forth. Nonetheless, we
understand permutations as functions, too. The composition of permutations is
denoted using the circle operator “◦”. The permutation π ◦ µ is the permutation
for which (λ ◦ µ)(i) = λ(µ(i)) ∀i ∈ [n] holds. Understanding a permutation as a
function, we will denote the inverse of a permutation of a permutation µ as µ−1.
For example, for π = 3657124, the inverse would be π−1 = 5617324.

1.4.5.1. Inversions. Counting discordances is closely related to counting inver-
sions in a permutation. Bona [10] gives the following definition of inversions.
Definition 6. Let λ = p1p2 · · · pn be a permutation. We say that (pi, pj) is an
inversion of λ if i < j but pi > pj .

An inversion discordance between λ and the permutation 12 . . . n, as defined in
Definition 4.1.2.
Example 7. Permutation 3657124 has 11 inversions. They are (3, 1), (3, 2), (6, 5),
(6, 1), (6, 2), (6, 4), (5, 1), (5, 2), (5, 4), (7, 1), (7, 2), and (7, 4).

We denote the set of all inversions in λ as inv(λ). For a permutation π, we
write 1 <π 2, if 1 appears before 2 in π. We refer to the permutation 12 . . . n as the
identity permutation, and denote it as 1.

1.4.5.2. Balls. As it might be interesting to analyze the neighborhood of a
certain permutation, let us define balls. A ball is meant to express the set of
permutations proximate to a permutation.
Definition 8. Let (M,d) be a metric space, m ∈M , k ∈ N. Then,

Bd,k(m) B {n ∈M : d(m,n) ≤ k}.
The metric space we deal with most of the time is (Sym[n], τ). If no other

metric is given, we implicitly refer to τ .
Definition 9. Let k ∈ N, µ ∈ Sym[n],

Bk(µ) B Bτ,k(µ) B {ν ∈M : τ(µ, ν) ≤ k}.
1.4.6. Parallel algorithms.

There are two critical forces shaping software development to-
day. One is the popular adoption of Parallel Computing and
the other is the trend toward Service Oriented Architecture.
—L. Chen from Sun Microsystems [11]

We give brief glances at the parallelizability of some of our algorithms. Search tree
algorithms can often be turned into parallel algorithms rather easily by referring
all recursive calls to different threads. For several search tree algorithms we state
the theoretical run time of these parallel algorithms. The computational model
we have in mind when stating these run times is the EREW PRAM, the parallel
random access machine where only one thread can read from or write into a specific
cell of memory. This EREW model fits today’s vintage computers and concurrent
read or write is of no particular benefit to our algorithms. For a more complete
introduction to the computational model and parallel algorithms, see [33].
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1.4.7. Oriented graphs. We model some of our data as graphs to leverage
the multitude of existing and well-analyzed algorithms operating on graphs.

A simple graph is defined as a pair (V,E), where V is understood as a set of
vertices, and a set E of edges between two nodes each. We only consider simple
directed graphs. A simple graph is directed if all of its edges are directed, i.e. if
they have a start point and end point. Also, we only consider oriented graphs. A
graph is oriented if and only if between any two vertices, there can be at most one
directed edge. A tournament is an oriented, simple, directed graph that contains
an edge between every pair of vertices. See [3] for an overview over directed graphs.

1.4.8. Fast computation of the Kendall-τ distance. The Kendall-τ dis-
tance between two permutations in Sym[n], n ∈ N, can easily be computed in time
O(n2). A faster approach, computing the distance in time O(n log n), closely related
to merge-sort, is given by Springsteel and Stojmenovic. [56, 40].

We suggest another algorithm whose run time is within O(n log n), with best
case run time Ω(n). It is related to the parallel computation of prefix sums, de-
scribed in [33].

Instead of counting discordances, we will count the inversions in one permuta-
tion. This suffices, since we show that for λ, µ ∈ Sym[n],

(1.4.1) # inv(λ−1 ◦ µ) = τ(λ, µ).

To prove equation (1.4.1), we first present an important observation.

Lemma 10. Let µ, λ, π ∈ Sym[n], n ∈ N. Then for the Kendall-τ distance,

τ(λ, µ) = τ(π ◦ λ, π ◦ µ).

Proof. Recall that a discordance between permutations λ, µ ∈ Sym[n] is de-
fined to be {a, b} with a, b ∈ [n], a 6= b where λ and µ list a and b in different order.
We show that if {a, b} is a discordance between λ and µ, then {π(a), π(b)} must be
a discordance between π ◦ λ and π ◦ µ. We show that there is a bijection between
sets A and B, where A is the set of discordances between λ and µ, and B is the set
of discordances between π ◦ λ and π ◦ µ.

Let {a, b} be a discordance between λ and µ, we show that {a′, b′} B {π(a), π(b)}
is a discordance between π ◦ λ and π ◦µ. Let us assume, without loss of generality,
that a <λ b , but a >µ b . From here, we find

π−1(a′) <λ π−1(b′) ∧ π−1(a′) >µ π−1(b′)(1.4.2)

⇔λ−1(π−1(a′)) < λ−1(π−1(b′)) ∧ µ−1(π−1(a′)) > µ−1(π−1(b′))(1.4.3)

⇔(π ◦ λ)−1(a′) < (π ◦ λ)−1(b′) ∧ (π ◦ µ)−1(a′) > (π ◦ µ)−1(b′)(1.4.4)

⇔a′ <(π◦λ) b ∧ a′ >(π◦µ) b
′.(1.4.5)

The number of discordances between two permutations equals the Kendall-τ
distance. This completes the proof. �

We can deduce equation (1.4.1).

Corollary 11. Let λ, µ ∈ Sym[n], n,m ∈ N, then

# inv(λ−1 ◦ µ) = τ(λ, µ).

Proof. It is easy to verify by the definition that

(1.4.6) inv(ν) = τ(ν,1).

Then, because of Lemma 10,

τ(λ, µ) = τ(1, λ−1 ◦ µ) = inv(λ−1 ◦ µ).
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�

The number of inversions can be counted as follows. For every entry, we count
the number of entries it precedes, that are smaller than itself. The sum of these
numbers is the number of inversions of the permutation (see [10, p. 50]).

Hence, it suffices to present an algorithm that quickly computes the number of
inversions of a permutation. The pseudo-code of this operation is given in Algo-
rithm 1.

Algorithm 1 Algorithm computing the number of inversions in µ. It is used
in Section 1.4.8 to compute the Kendall-τ distance between two permutations, as
τ(λ, µ) = inv(λ−1 ◦ µ). Here, vi denotes the ith entry in vector v.

Input: permutation µ ∈ Sym[n].
Output: # inv(µ)
A1: Initialize vector v B (1, . . . , 1) of length n.
A2: Initialize the number of inversions z B 0.
A3: for 1 ≤ i ≤ n do begin

Set z B z +
∑
j≤i vµ(j). (*)

Set vµ(i) B 0. (**)
end.

A4: return z.

Proposition 12. Algorithm 1 correctly computes # inv(µ).

Proof. The invariant to prove this algorithm correct is that
∑
j≤i vµ(i) is the

number of elements smaller than µ(i) which µ(i) precedes. It holds right before
the execution of line (*) in loop A3. The entry vµ(i) can be interpreted as vi =
1 iff the element i has been read before. �

To reach the claimed bound, we need to be able to compute instruction (*) in
time O(n log n). We will merely outline the computation and how it leads to the
time bound.

Theorem 13. Algorithm 1computes # inv(µ) in time O(n log n).

Proof (outline). The algorithm looks n times into the prefix sums of vector
v. We will show that instruction (*) can be computed in time O(log n) after some
preparation. In every iteration, one entry of v changes. Since v does not change
much, neither do its prefix sums. Similar to JáJá in [33], we can compute the prefix
sums of v using a structure in which every entry can be read in O(log n) time and in
which every entry of v can be updated in O(log n) time. We build a binary tree with
some partial sums. See Figure 1.4.4 on page 13 for an example. There, the brown
(light) nodes show the partial sums which are preserved throughout the re-iterations
of line (*). The blue (dark) nodes depict the steps required to compute line (*).
Here,

∑l
k B

∑l
i=k vi. The example shows how

∑n
1 is computed recursively using∑j

1 =
∑j/2

1 +
∑j
j/2+1, j ≤ n, but keeps intermediate results in the brown (light)

nodes. Precisely, it keeps a vector s of length n, such that si =
∑i
a, where a is

i− p+ 1, where p is the biggest power of 2 dividing i. In the diagram, the elements
of s are displayed by the topmost brown nodes in each column. Using the vector,
we can compute

∑k
1 =

∑
i si|k|i, where |k| is the binary presentation of k, and si

is the ith entry entry of vector s. In See Figure 1.4.4 on page 13, the brown (light)
nodes represent vector s. Using vector s allows us to compute line (*) by only
computing the blue (dark) nodes of the search tree for the desired sum, which can
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v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16

Σ2
1 Σ4

3 Σ6
5 Σ8

7 Σ10
9 Σ12

11 Σ14
13 Σ16

15

Σ4
1 Σ8

5 Σ12
9 Σ16

13

Σ8
1 Σ16

9

Σ6
1

Σ1
1 Σ2

1 Σ3
1 Σ4

1 Σ5
1 Σ6

1 Σ7
1 Σ8

1 Σ9
1 Σ10

1 Σ11
1 Σ12

1 Σ13
1 Σ14

1 Σ15
1 Σ16

1

Σ10
1 Σ12

1

Σ14
1

Figure 1.4.4: Computing the prefix sums of vector v. This is used in Section 1.4.8 to
quickly execute Algorithm 1 on the preceding page. In this structure, any time an
entry in v changes, the brown (light) entries it is connected with need be updated.
This can be done in O(log n). To obtain an output value oi at the top, all blue
(dark) nodes it is connected to need be computed. There are at most O(log n) such
nodes.

be done in time O(log n). In line (**), s needs to be re-computed, which requires
us to update the brown (light) nodes in the tree depicted in Figure 1.4.4 on page
13, which can done in time O(log n), too, since only one of the input nodes at
the bottom changed due to instruction (**). The initial build-up can before the
looping can be done in time O(n).

Summarizing, the loop can be executed in time O(log n), and it is executed
O(n) times, giving overall run time O(n log n).

�

Algorithm 1 can be further improved by deleting brown (light) nodes that have
been read before and replacing them with a shortcut. The improvement leaves the
worst-case bound at O(n log n), but the best case can be solved in linear time. It
is currently unknown what the expected run time of the improved algorithm is for
randomized inputs.





CHAPTER 2

Simple considerations on center ranking

2.1. The center ranking aggregation method

The optimum solution is defined to be the permutation with the least maximum
Kendall-τ distance to the input rankings. Since the optimum solution needs to be
as close as possible to all input rankings, we expect the aggregation to reflect all
input rankings as closely as possible.

A function e : Symm
[n] → Sym[n], n,m ∈ N, is called an election method [60]1.

The center ranking method can be viewed as an election method, too. The
theory of social choice proposes criteria to judge the quality of election methods.
Truchon [59] lists the following four criteria as the probably most famous ones, all
of which were proposed by Arrow [2].

Monotonicity: This criterion says that if all voters were to maintain or
improve the relative ranking of candidate s with respect to candidate t,
then the final ranking of candidate s with respect to candidate t should
be at least as good as it was before the change.

Binary Independence: This criterion says that only the relative rankings
of two candidates should matter in establishing the final relative ranking
of these two candidates.

Weak Pareto: This criterion says that if all voters are unanimous on the
relative rankings of two candidates, the final relative ranking of these two
candidates should agree with the unanimous view of the voters.

Non-Dictatorship: This criterion says that no voter may be able to impose
his or her ranking as the final ranking in all circumstances.

As an election method, the center ranking aggregation method satisfies all of
these criteria except for Binary Independence. It can be easily verified by the
definition that the center ranking aggregation method satisfies Monotonicity
and Non-Dictatorship. We will prove the weak Pareto criterion to be satisfied and
give an example that proves the Binary Independence criterion to not be satisfied.

To see that the center ranking aggregation method does not satisfy Binary
Independence, let us prove that erasing a candidate from an election can indeed
change the winner. Consider the example given in Table 2 on page 4. Erasing
competitor C changes the aggregation to be A<B<D, while it is B<A<C<D when
C is still considered.

It is not surprising that the center ranking election method does not satisfy
all four criteria. Arrow [2] proved that an election method cannot satisfy all four
criteria. However, note that the failure to satisfy Binary Independence might be de-
sired. In the counter-example, we saw how adding candidate C to the competition
can change the outcome. Adding a candidate also adds information. Candidate C
seems to be a rather weak competitor. Yet, competitor A loses to him in one crite-
rion. Common sense might tell us that the additional information should make us
reconsider the ranking of competitor A, and favor competitor B over competitor A.

1In the the theory of social choice, the term social welfare function is used, too. Such a
function determines the election result, given all ballots of an election.

15
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Let us proceed to show that the weak Pareto criterion is satisfied. The weak
Pareto criterion can be defined more formally as follows.

Definition 14 (Weak Pareto criterion [2, 60]). Let V ∈ Symm
[n], n,m ∈ N, be a set

of votes for (possibly containing duplicates), then an election method e : Symm
[n] →

Sym[n], complies with the weak Pareto criterion if and only if the following is true:
Given that all votes agree on the order of a given pair {a, b}, i. e.

(2.1.1) ∀λ : a <λ b or ∀λ : a >λ b,

the aggregation e(V ) maintains their relative ranking, i. e.

(2.1.2) a <e(V ) b or a >e(V ) b,

respectively.

We find that center ranking complies with the weak Pareto criterion.

Theorem 15. The center ranking aggregation method satisfies the weak Pareto
criterion.

Proof. Let us assume that an optimal aggregation ν would permit b <ν a,
even though ∀λ : a <λ b. We show that by swapping around a and b in ν, we can
obtain a better result. Let ν′ be the permutation we obtain from ν after swapping
a and b. We show that ν′ yields a better score than ν.

Let us first note the easy observation that the Kendall-τ distance can be written
as the sum

τ(λ, ν) :=
∑

{c,d}⊆[n],c 6=d

dλ,ν(c, d),

where dλ,ν(c, d) is defined as

dλ,ν(c, d) =

{
0 if λ and µ agree on the relative ranking of c and d.
1 if λ and µ disagree on the relative ranking of c and d.

For every λ ∈ V , we show that τ(λ, ν′) < τ(λ, ν). In the following inequality,
the indices in the sums are c, d ∈ [n].

τ(λ, ν) =
∑
{c,d}

dλ,ν(c, d)(2.1.3)

=
1
2

∑
c

∑
d

dλ,ν(c, d)(2.1.4)

=
1
2

∑
c/∈{a,b}

∑
d/∈{a,b}

dλ,ν(c, d) +
∑
d

dλ,ν(a, d) +
∑
d

dλ,ν(b, d)(2.1.5)

<
1
2

∑
c/∈{a,b}

∑
d/∈{a,b}

dλ,ν′(c, d) +
∑
d

dλ,ν′(a, d) +
∑
d

dλ,ν′(b, d)(2.1.6)

=
1
2

∑
c

∑
d

dλ,ν′(c, d)(2.1.7)

= τ(λ, ν′).(2.1.8)

To see inequality (2.1.6), note that the first term stays the same, while the other
two terms must shrink or stay the same. The inequality is strict, because

(2.1.9) dλ,ν(a, b) < dλ,ν′(a, b).

We showed that τ(λ, ν′) < τ(λ, ν) for every λ ∈ V .
We have seen that an optimum solution needs to list two candidates whose

relative order is agreed on by all rankings, in that relative order. �
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The center ranking aggregation method lacks any sort of majority principle,
such as the extended Condorcet criterion proposed in [59]. Again, we argue that
this may be wanted. If we regard the rankings we need to aggregate as preferences
according to different criteria, we may not want to compensate one criterion with
several other.

2.2. Relation to the closest string and Kemeny score problems

As a computational problem, the center ranking problem is fairly similar to
both the Kemeny score problem and the closest string problem. Some of the
algorithms designed for either of the problems can be adapted to solve the center
ranking problem.

2.2.1. Relation to closest string. Just like the center ranking prob-
lem, the closest string problem with alphabet Σ = {0, 1} is concerned with
finding the center of a given set of input items. The difference is that the closest
string problem defines the input to be strings of equal length, while the center
ranking problem accepts votes of the same number of candidates as its input.
Also, while the center in the closest string problem is understood as the center
with respect to the Hamming distance, the center ranking problem seeks the
center with respect to the Kendall-τ distance. The closest string problem is
defined as follows.

Problem 16. The closest string problem over alphabet Σ = {0, 1}.

Given: (S, k), where S is a set of strings of the same length,
over the alphabet {0, 1}D, D ∈ N, i. e. S ⊂ {0, 1}D, and
a solution parameter k ∈ N.

Question: Is there a string s ∈ {0, 1}D, such that
S ⊆ Bk(s)?

However, we show that sets of strings over the alphabet {0, 1}D can be trans-
formed into permutations whose pairwise Kendall-τ distances equal original Ham-
ming distances. We deduce that every algorithm solving the center ranking
problem can also solve closest string instances after a transformation.

Popov [50]2 proved the center ranking problem to be NP-hard by reducing
the closest string problem to it. We give a simplification of his proof, as he ob-
tains it as a corollary of showing the similar swap center permutation problem
to be NP-complete, which uses another metric between the votes, known as the
Caley distance.

Theorem 17 (Popov). The center ranking problem is NP-complete.

Proof. The center ranking problem clearly is in NP.
We show the Karp-reduction [1] closest string ≤P center ranking. A

Karp-reduction transforms the input of a closest string instance and outputs an
input to center ranking, such that the latter is solvable if and only if the prior
is solvable. This proves NP-completeness, since the closest string problem was
proved to be NP-complete even for alphabet size3 2 by Lanctot et al. [42].

A run of a permutation is a consecutive sub-sequence of the permutation. By
reversing a run of length 2, we mean swapping the both entries around. The
reduction is performed by the function f , described in Algorithm 2.

2Note that in his paper, he refers to the center ranking problem as “adjacent swap
center permutation problem.”

3Frances and Litman. [22] show NP-completeness for the general case.
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Algorithm 2 Algorithm describing function f that reduces from Closest String
to center ranking.

F1: Take as input a string s.
F2: Set p to be the identity permutation of length 2|s|.
F3: Partition p into runs of length 2.
For each 1 ≤ i ≤ |s|:

F4: Reverse the ith run in p
if and only if si = 1.

F5: Output p.

For example, f(0101) = 12435687. The algorithm would start with identity
permutation 12345678, split into four runs: 12, 34, 56, and 78. The second and
fourth run would be reversed, and the final result would be 12435687.

Apparently, Algorithm 2 runs in polynomial time.
We show that for all s, t ∈ {0, 1}D

(2.2.1) dH(s, t) = τ(f(s), f(t)).

For a position i ∈ [D] that s and t differ, the ith run in f(s) is in reverse order
of f(t), proving

dH(s, t) ≤ τ(f(s), f(t)).
Let {b, c} be a discordance between f(s) and f(t). Due to the definition of f , b and
c are adjacent in both f(s) and f(t), and appear in the same run that ranges from
position i− 1 to position i for some i ∈ [D]. Further, since {b, c} is a discordance,
one run is the reverse of the other, and hence s and t have different symbols on
position i, proving

dH(s, t) ≥ τ(f(s), f(t)).
We proved equation (2.2.1). We show that (S, k) is closest string yes-

instance if and only if (f(S), k) is a center ranking yes-instance.
Let s be a solution of the closest string instance (S, k). Equation (2.2.1)

tells us that f(s) is a solution of the center ranking instance (f(S), k).
We show that if (f(S), k) is a center ranking yes-instance, so is the clos-

est string instance(S, k). Let π be a solution solution of the center ranking
instance (f(S), k). We show that π can be assumed to have inversions only in ad-
jacent candidates. If there were a solution π with a discordance between any other
two elements, transposing them would yield a better solution. Hence, we have that
f is bijective on solutions of (f(S), k). By equation 2.2.1, we conclude that f−1(π)
must be a solution of closest string instance (S, k).

We reduced closest string to center ranking, completing the proof. �

Any two permutations of the reduced instance will have discordances only be-
tween adjacent candidates. The proof implies the following corollary.

Corollary 18. Let (S, k) be a closest string instance and let f be the transfor-
mation described by Algorithm 2, then (f(S), k) is a center ranking yes-instance
if and only if (S, k) is a closest string yes-instance, and equation (2.2.1) holds.

Equation (2.2.1) is especially interesting. Let us note it as a separate corollary.

Corollary 19. Let f be the transformation described by Algorithm 2, then f maps
a set of strings to a set of permutations retaining their respective distances.

The reduction implies that impossibility results for the closest string prob-
lem still hold for the center ranking problem. Transformation f leaves the
structure of closest string instances largely untouched.



2.2. RELATION TO THE CLOSEST STRING AND KEMENY SCORE PROBLEMS 19

2.2.2. Relation to Kemeny score. The computational problem of ob-
taining the final ranking of the Kemeny-Young method is known as the Kemeny
score problem [32]. Bartholdi III et al. [32] showed the Kemeny score problem
to be NP-hard. It has since been studied rather intensively[7, 20, 19, 30, 5, 32].
We attempt to adapt many of the techniques used for obtaining parameterized
algorithms for the Kemeny score problem.

The Kemeny score problem accepts the same input structure as the center
ranking problem, i.e. a set of votes, and it, too, aggregates rankings. However,
the definition of the quality of an optimal solution differs. It is defined as follows.

Problem 20. The Kemeny score problem.

Given: (S, k), where S is a set of permutations out of
Sym[n] for some n ∈ N and a score k ∈ N+.

Question: Is there a permutation π ∈ Sym[n], such that∑
σ∈S τ(σ, π) < k?

The solution quality in the Kemeny score of a solution σ is equivalent to a
double sum, as opposed to the maximum of a sum in the center ranking problem
is a significant difference. The double sum can be separated and re-ordered at will.
The Kemeny score of a solution σ is defined as∑

σ∈S
τ(σ, π) =

∑
i

∑
{a,b}⊂[n]

dσ,λi(a, b),

where

dσ,λi(a, b) =

{
0 if λi and σ list a and b in the same order
1 otherwise

.

Betzler et al. [7] provide a plethora of parameterized algorithms for the Kemeny
score problem. Many of them make use of the separability of the Kemeny score
problem. These algorithms provide a solution for a slice of the instance and then
use this sub-solution to speed up significantly the computation of the next, possibly
overlapping slice of the instance.

Specifically, it is possible to re-arrange the double sum in order to completely
consider the effect of a certain preference pair. For example, for two candidates
b, c ∈ [n], the contribution of the relative ranking of b and c to the overall Kemeny
score is ∑

i

dσ,λi(b, c).

We can isolate the effect of a relative ranking of two candidates in the Kemeny
score problem, which we will refer to as the “separability” of the Kemeny score
problem. In the center ranking problem, we cannot isolate the influence of a
pair as easily, because a certain relative ranking of two candidates in the solution
may or may not change the center ranking solution quality at all. If some input
vote λ is a lot closer to the solution than another input vote µ, then the precise
structure of λ matters less than that of µ. We could swap random adjacent pairs
of λ without changing the aggregation outcome. That may not be true for µ.

Betzler et al. [7] proposed a bounded-depth search tree algorithm that solves
the Kemeny score problem. A simple version of the algorithm could be brought
forward to solve the center ranking problem. The algorithm proposed by Betzler
et al. uses the fact the Kemeny-Young election method maintain the order of a
certain pair of candidates, if the majority of the votes asserts that order. The
center ranking election method does not necessarily preserve the preference of
the majority.
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Dynamic programming algorithms generally seem to require some degree of
separability of the computational problem, which the center ranking problem
can hardly permit. It may thus appear unsurprising that we have not found a single
dynamic programming algorithm for the center ranking problem.

If all votes agree on the relative ranking of two candidates, the Kemeny-Young
election method preserves that relative ranking in the election outcome. This prop-
erty is called weak Pareto criterion. The fact that the Kemeny-Young method
satisfies the weak Pareto criterion permits us to simplify certain instances by re-
moving candidates whose position is entirely determined by the weak Pareto crite-
rion. This sort of simplifying of an instance is called “data reduction.” We discuss
data reduction rules for the center ranking problem in Section 2.3.

2.3. Data reduction rules and kernelizations

Even though a problem might be NP-hard to solve, it is not necessarily impos-
sible to gather information about the solution of a problem instance. For example,
if we were to select a minimal set of vertices whose deletion would delete all edges
(a problem known as vertex cover), it is easy to show that if some vertex is
adjacent to no other vertex, then the deletion of the vertex does not change the
solution.

Downey and Fellows [18] explain that the purpose of the method of data re-
duction is to “reduce a problem instance I to an ’equivalent’ instance I ′, where the
size of I ′ is bounded by some function of [a parameter]. The instance I ′ is then
exhaustively analyzed, and a solution for I ′ can be lifted to a solution for I, in
the case where a solution exists.” For a more complete introduction, together with
many successful examples of the method, see [25, 64].

A kernelization with respect to parameter k is a transformation of an instance
(I, k) of a parameterized problem to an instance (I ′, k′), such that for n ∈ N being
the size of I and for any function g : N→ N,

• the problem instance I is a yes-instance if and only if I ′ is a yes-instance
• the size of I ′ does not exceed g(n)
• the transformation can be done in polynomial time in n
• k′ ≤ k

The result of the exhaustive application of the kernelization is called a problem
kernel. We will refer to the rules that reduce instance I to instance I ′ in a ker-
nelization as data reduction rules. Our ultimate goal is to prove bounds on the
problem kernels of our data reduction rules.

2.3.1. Identical votes. In Problem 3 on page 7, the problem definition as-
sumed the input of votes to be a set rather than a list of votes. The frequency of
a certain vote in the input is not of significance when it comes to answering the
question asked by the center ranking problem4. This follows from the definition
of the center ranking problem in Problem 3 on page 7 as a minimum of a maxi-
mum. We formalize the disposability of multiple votes as a data reduction rule. In
the following rule, V is a list rather than a set.

Data reduction rule 21. Let (V, r) be an instance of the center ranking
problem. Remove all duplicates from V .

4This is a difference from the Kemeny-Young method, where the multitude of votes can have
a significant impact on the impact of the vote. In [67] the Kemeny score problem was formalized
to have the input votes given as a function nσ : Sym[n] → N which mapped a ranking to its number
of occurrences in the given instance.
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As a consequence, we can limit the number of votes in V by knowing the number
of candidates.

Proposition 22. After application of Data Reduction Rule 21, an instance of the
center ranking problem contains at most n! votes where n is the number of
candidates in the instance.

We can therefore bound the number of votes in the problem kernel, if we assume
the number of candidates to be bounded.

2.3.2. Weak Pareto. The center ranking problem satisfies the weak Pareto
criterion which states that if all votes agree on the order of a certain pair of candi-
dates, the order is maintained in the final ranking, see Lemma 15 on page 16.

The data reduction rule uses the term “dirty pair”, which is defined as an un-
ordered pair of candidates whose relative ranking is not agreed on by all candidates[7,
Definition 1].

Definition 23. An unordered pair {a, b} of candidates a, b ∈ [n], n ∈ N, is a dirty
pair of an instance V ⊂ Sym[n],#V = m if and only if there are λ, µ ∈ V such that
a <µ b ∧ b <λ a.

We can deduce the following data reduction rule from the weak Pareto criterion.

Data reduction rule 24. Let (V, r) be an instance of the center ranking
problem, where V ⊂ Sym[n], n ∈ N. If there is a candidate a ∈ [n] which appears in
no dirty pair of instance V , then strike candidate a out of all input votes.

Note that candidate a must have appeared in the same position in each input
vote λ ∈ V , since all candidates to its left agree in every vote that a must be to their
right and by analog, all candidates to the right of λ agree in every vote that λ must
be to their left. After solving the simplified instance and obtaining solution σ′, we
can obtain the solution of the original instance by inserting the struck candidate a
into the position it was struck from.

We prove an easy limit on the kernel.

Proposition 25. Let V ∈ Symm
[n], n,m ∈ N be an instance of the center ranking

problem. After exhaustive application of Data Reduction Rule 24, the kernel of V
has at least n/2 dirty pairs.

Proof. After exhaustive application of Data Reduction Rule 24, an instance
has at least n/2 dirty pairs left, since otherwise there would be a candidate without
a dirty pair, which the rule would have deleted. �

As it is trivial to obtain a parametrization on the number of candidates by
merely trying all orderings, we might be interested in relations between parameters
that implicitly bound the number of candidates.

We show that bounding the maximum pairwise distance of an instance and
bounding the number of votes implies a bound on the number of candidates after
exhaustive application of Data Reduction Rule 24 and Data Reduction Rule 21.

Proposition 26. Let V ⊂ Sym[n], n ∈ N,#V = m be an instance of the center
ranking problem. Let dmax B maxi,j{τ(λi, λj)} denote the maximum pairwise
distance of the input votes. After exhaustive application of Data Reduction Rule 24
and Data Reduction Rule 21 the number of candidates in the problem kernel is
within O(m2dmax).

Proof. Since τ(µ, λ) < dmax ∀µ, λ ∈ V the number of discordances between
any two votes is bounded by dmax. Let P B {{a, b} : ∃µ, λ : a <µ b ∧ a >λ b}. Set
P contains the dirty pairs of the instance.
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We show that the number of dirty pairs does not exceed 1
2m

2dmax.

#P = # {{a, b} : ∃µ, λ : a <µ b ∧ a >λ b}(2.3.1)

≤
∑
µ,λ

# {{a, b} : a <µ b ∧ a >λ b}(2.3.2)

=
∑
µ,λ

τ(µ, λ)(2.3.3)

≤
∑
µ,λ

dmax(2.3.4)

= m2dmax(2.3.5)

After exhaustive application of Data Reduction Rules 24 and 21, each candidate
must be in at least one dirty pair. There are at most 1

2m
2dmax dirty pairs. Each

dirty pair contains two candidates. After exhaustive application of Data Reduction
Rules 24 and 21 an instance can contain no more than m2dmax candidates. �

The above lemma is related to Popov’s rather lengthy proof [50, Theorem
4], which shows that swap center permutation problem is fixed-parameter
tractable, in our terminology, with respect to the parameter “radius and number
of votes combined.” The swap center permutation problem is equivalent to
the center ranking problem, except that it measures distances using the Caley
distance5. While Popov uses the same technique, he does not put it into context
with data reduction.

We deduce yet another data reduction rule from the observation, that in yes-
instances, the maximum pairwise distance may not exceed 2r.

Proposition 27. If V ∈ Symm
[n], nm ∈ N and r ∈ N constitute an instance of the

center ranking problem, then if ∃λ, µ ∈ V : τ(λ, µ) > 2r then there cannot be
π ∈ Sym[n] : maxλ∈V τ(π, λ) ≤ r.

Proof. If a consensus string π were to exist, we would find, by the very defi-
nition of the problem

τ(λ, µ) ≤ τ(λ, π) + τ(π, µ) ≤ 2r,

thus contradicting our assumption. �

Data reduction rule 28. Let (V, r) be an instance of the center ranking
problem, where V ⊂ Sym[n], n ∈ N. Seek for a pair λ1, λ2 ∈ V with τ(λ1, λ2) > 2r.
If one exists, answer “no”.

Next, compute the maximum distance between any two λ1, λ2 ∈ V . If it is less
than r, answer yes.

2.3.3. Impossibility of a data reduction rule based on neighborhood
examinations. It is intriguing to consider the possibility that, as the final outcome
is figuratively trying to “please” the most extreme voters, there could be votes which
do not have any impact on the final outcome, because other votes are more extreme
than they are. However, the idea seems to be misguided.

Specifically, we would imagine that if a vote is surrounded, then it can be
disposed. This turns out to be false.

Proposition 29. Let R be the rule that removes a vote µ from an instance of the
center ranking problem, if all possible votes of votes of Kendall-τ distance 1 to
µ are part of the instance, too. Then, R is not a correct data reduction rule

5We briefly discuss the Caley distance at the end of Section 4.2.
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Proof. Consider the instance V = {λ : λ ∈ Sym[n]} containing all possible
votes for some n ∈ N.

Permutation 1 = 12 . . . n would be removed due to rule R. However, in the
original instance, the optimum solution quality would be

(
n
2

)
, while the reduced

instant would allow solution quality
(
n
2

)
− 1 for solution n . . . 21. �





CHAPTER 3

Multivariate analysis

Fixed-parameter analysis tries to confine the combinatorial explosion in the
run time of a problem to a certain parameter or a combination of several param-
eters. Since the run time is exponential in these parameters, we may want to
choose parameters which give us reason to believe that they are small in instances
worth solving. We examine interesting parameters and try to give parameterized
algorithms or hardness results wherever we can.

3.1. Overview of the parameters under consideration

We present an overview of the parameters that appear to be worth considering,
and refer to a more detailed analysis in subsequent sections and chapters. The
results for the various parameters are summarized in Table 3.

Table 3: Fixed-parameter tractability results on the center ranking problem
presented in this thesis listed per parameter, where #candidates means “number
of candidates.” If a parameterized algorithm was found, its run time is presented.
If the problem was found to be NP-hard for fixed values of the parameter, the
respective entry reads “NP-hard.” It is unknown whether the center ranking
problem is fixed-parameter tractable with respect to parameter “number of votes.”

parameter result section

number of candidates, n O(n! · n log n) Section 3.2
number of votes, m unknown Section 3.8
radius, r O(24rmn2 +mn2 log n) Chapter 4
maximum pairwise distance, dmax O(28dmaxmn2 +mn2 log n) Section 3.4
position range, p NP-hard Section 3.5
average pairwise distance, da NP-hard Section 3.6
number of dirty pairs, pr O(2pr ·mn log n+ n2m) Section 3.7
#candidates and radius combined, (n, r) O(mn log n ·min{rnr, n!}) Chapter 5

Let V ∈ Symm
[n],m, n ∈ N be an instance of the center ranking problem.

We consider the following parameters.
Number of candidates: denoted as n. The number of candidates n is

defined as the number of entries in each input permutation. The center
ranking problem can be solved in time O(n! · n log n). See Section 3.2.

25
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Number of votes: denoted as m. The number of votes m is defined as
the number of input votes in V . When aggregating according to criteria,
the number of votes equals the number of criteria under consideration.
In many scenarios there are only two rankings under consideration. For
m = 2, the center ranking problem can be solved in time O(n2), see
Section 3.8. For general m, it is unknown whether the center rank-
ing problem is fixed-parameter tractable with respect to the parameter
“number of votes.” See Section 3.8.

Radius: denoted as r. The radius of an instance is defined to be the best
solution quality possible for an instance. If σ is an optimum solution of
an instance of the center ranking problem, the radius is the maximum
Kendall-τ distance from σ to any input vote. The radius of an instance
will also be referred to as the optimum solution quality. The parameter
may be very small for correlating input rankings. The center ranking
problem is solvable in time O(24rmn2 + mn2 log n). See Section 3.3 and
Chapter 4.

Maximum pairwise distance: denoted as dmax. The maximum pairwise
distance is defined to be the maximum pairwise Kendall-τ distance be-
tween any two input permutations. It is equivalent to the parameter
“radius” in the sense that r ≤ dmax ≤ 2r. See Section 3.4.

Position range: denoted as p. The position range is the maximum distance
of positions any candidate assumes in the input votes. For example, if a
candidate appears on position 1 in one vote and on position 15 in another,
then the position range is at least 15. The parameter can be very small
for large instances. The center ranking problem is NP-hard even for
p = 1. See Section 3.5.

Average pairwise distance: denoted as da. The average Kendall-τ dis-
tance between all pairs of input permutations. This parameter can be
very small even for large instances if many of the votes correlate. The
center ranking problem is NP-hard for da = 1. See Section 3.6.

Number of dirty pairs: denoted as pr. The number of pairs of candidates
are of different relative ranking for any two input votes. The number
of dirty pairs can be very small, even for large instances. The center
ranking problem can be solved in time O(2pr · mn log n + n2m). See
Section 3.7.

Number of candidates and radius combined: Since the center rank-
ing problem is fixed-parameter tractable with respect to both r and n, it is
naturally fixed-parameter tractable to their combination, too. We present
two algorithms, which present the currently best-known algorithms to
solve instances chosen uniformly at random. The first solves the cen-
ter ranking problem in time O

(
mn log n ·min

{
r(2r)n, rn2r, n!

})
, the

second in time O(mn log n ·min{rnr, n!}). See Chapter 5.

The relationships between the parameters are summarized in Table 4.



3.2. PARAMETER “NUMBER OF CANDIDATES” 27

Table 4: Relationships between the parameters.

parameters relationship

n,m m ≤ n! after data reduction, see Proposition 22

n,m, r n ≤ m2r after data reduction, see Lemma 26.

n, r r ≤
(
n
2

)
,E(r) ≥

(
n
2

)
/4, see Section 3.3.

r, dmax r ≤ dmax ≤ 2r, see Section 3.4.

da, dmax,m dmax ≥ dam, see Section 3.6.

da, dmax da ≤ dmax, see Section 3.6.

dmax,m, n da ≤ m
(
n
2

)
, see Section 3.6.

dmax, p dmax ≥ p, see Section 3.5.

dmax, n dmax ≤ n(n− 1), see Section 3.4.

pr, n
n
2 ≤ pr ≤

(
n
2

)
after data reduction, see Section 3.7.

3.2. Parameter “number of candidates”

In practical implementations solving NP-hard problems, it is not without prece-
dence that the trivial algorithm that tries all possible solutions is preferred to more
refined algorithms. Besides being easily implementable in most cases and provid-
ing predictable run times, algorithms that try all possible solutions may may be
of competitive performance, since they usually involve less complicated data struc-
tures and computations, thus keeping the hidden constants small.

Perhaps the most natural algorithm to solve a center ranking instance of
n candidates is to merely try all n! permutations and see which one is the best
solution. The run time of this simple algorithm would be within O(mn log n · n!),
where n is the number of candidates and m is the number of votes. Enumerating
all n! permutations can be done in O((n+ 1)!) time using standard techniques such
as backtracking, see e.g. [55]. The solution quality of a permutation can be checked
in O(mn log n) time. This is achieved by computing m Kendall-τ distances, which
can be done in O(n log n) time as we have discussed in Section 1.4.8.

Algorithm 3 The trivial algorithm solving center ranking enumerating all
permutations of length n ∈ N and choosing the permutation with the best solution
quality.

Input: An instance (λ1, λm) of the center ranking problem
with λi ∈ Sym[n] ∀i ≤ m.

T1: [Initialize] Set g B∞.
T2: [Loop control]

Using a permutation enumeration algorithm,
e.g. [55, p. 711], execute T3 for each π ∈
Sym[n]. Then go to T4.

T3: [Loop] If maxi{τ(π, λi)} < g,

then σ B π, g B maxi{τ(π, λi)} .
T4: [Result] Return σ.
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The above algorithm already yields a parametrization with respect to the pa-
rameter “number of candidates.” Despite seeming rather crude, the algorithm is
tested in practical experiments in Section 6.2 and in fact outperforms more refined
algorithms for some instances.

3.3. Parameter “radius”

The radius of an instance of the center ranking (λ1, . . . , λm) problem is
defined to be the quality of an optimum solution. The radius is the smallest possible
r ∈ N such that there is a permutation σ with maxi∈[m] τ(λi, σ) ≤ r. Parameterized
algorithms for this parameter are deduced and discussed in Chapter 4. In this
section, we limit the size of the parameter and put it into context with the other
parameters.

For any instance, we find that r ≤
(
n
2

)
, since any two permutations’ distance

needs to be smaller than or equal to
(
n
2

)
. The bound cannot be improved, since

an instance whose set of input permutations includes all permutations of length n
must inevitably contain the reverse of whatever permutation is chosen as a solution.
The Kendall-τ distance between a permutation and its reverse is

(
n
2

)
. Hence, the

instance’s optimum solution would be of quality
(
n
2

)
.

In situations where the criteria we want to aggregate do not correlate, the
radius must be expected to be rather large. We prove the following theorem.

Theorem 30. Let V ∈ Symm
[n], n,m ∈ N be an instance of the center ranking

problem whose input permutations are chosen uniformly at random, the expected
minimal solution quality is greater than or equal to

(
n
2

)
/4, where n is the number

of candidates.

Proof. Let us assume that the number of votes equals m = 2. Otherwise, the
expected value needs clearly be higher. We show that the expected value is exactly(
n
2

)
/4 for m = 2.
Let us show that

(
n
2

)
/2 is the expected Kendall-τ distance between two per-

mutations chosen uniformly at random out of Sym[n]. While this was stated by
Kendall in [39, p. 63] and is in fact quite central to the book, it was not proved
in [39].

Let π, π′ ∈ Sym[n] be chosen uniformly at random. Due to Lemma 10 on
page 11, for µ B π−1 ◦ π′, we have E(τ(π, π′)) = E(τ(1, µ)), where E denotes the
expected value. Apparently µ follows the uniform distribution on Sym[n]. We seek
the average for τ(1, µ) for µ ∈ Sym[n]. Let µR denote the permutation obtained
by reversing the sequence notation of µ. To compute the average distance, we pair
every permutation with its reverse. The average value of the distance between 1
and µ is

1
n!

∑
µ∈Sym[n]

τ(1, µ) =
1

2(n!)

∑
µ∈Sym[n]

τ(1, µ) + τ(1, µR)

=
1

2(n!)

∑
µ∈Sym[n]

(
n

2

)

=
(
n

2

)
/2.

Form = 2, proper analysis of Algorithm 4 on page 36, which solves the center
ranking problem in case m = 2, shows that the minimal solution quality needs to
be half the distance between the two input votes, which completes the proof. �
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The expected value of the optimal solution quality needs to be smaller than
or equal to

(
n
2

)
. We can say that the estimated solution quality must be within

Θ
((
n
2

))
= Θ

(
n2
)
. We can expect r to be significantly greater than n in instances

chosen uniformly at random out of Sym[n], which is confirmed by our experiments
in Section 6.2.

3.4. Parameter “maximum pairwise distance”

Let us define the position range and maximum pairwise distance for a center
ranking instance (V, r). The definition given here is equivalent to that given by
Betzler et al. [7].

Definition 31. Let (V, r), V ∈ Symm
[n], n,m, r ∈ N be an instance of the center

ranking problem. Then,
dmax B max

λ,µ∈V
τ(λ, µ).

For the similar Kemeny score problem, Betzler et al. [7] presented an algo-
rithm parameterized by the maximum distance parameter using dynamic program-
ming. In this section, we establish that center ranking, too, is fixed-parameter
tractable with respect to the parameter “maximum pairwise distance.” We ex-
amine the maximum pairwise distance parameter and then examine the dynamic
programming approach presented in [7].

In relation to the radius parameter, we find a close relation between the max-
imum pairwise distance and the optimum solution quality of an instance. The
optimum solution quality of an instance is the answer to the question asked in
Problem 4 on page 7:

Given: V ∈ Symm
[n],m, n ∈ N, a set of permutations, inter-

preted as votes on the order of the candidates [n].
Question: Which is the minimal solution radius
r = maxλ∈V τ(σ, λ) for any permutation σ ∈ Sym[n]?

We show that the parameter “maximum pairwise distance” is equivalent to the
solution radius parameter r in the same sense as two metrics are equivalent. More
specifically, we find the following lemma.

Lemma 32. Let V ∈ Symm
[n],m, n ∈ N be an instance of the center ranking

optimization problem. Let dmax be the maximum pairwise distance in V and let r
be the optimum solution radius, then after exhaustive application of Data Reduction
Rule 28,

dmax

2
≤ r ≤ dmax.

Proof. To see that r ≤ dmax, note that trivially τ(λ1, λj) ≤ dmax∀j. This
means that vote λ1, if tested for its solution quality, would have solution radius
at most dmax. Since the optimal solution is at least as good as any permutation’s
solution quality, we have r ≤ dmax.

In Lemma 27 on page 22 we already proved dmax ≤ 2r, completing the proof.
�

In Section 1.4.3 we figuratively described the center ranking problem to be
the problem of translocating a disc over the space of permutations such that all
permutations are under the disc. Lemma 32 says that for non-trivial instances, the
radius of the disc needs to be within [dmax

2 , dmax]. See Figure 3.4.1 on page 30.
Lemma 32 implicitly puts the dmax parameter into context with the parameter

“number of candidates.”
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r
0 1

2dmax dmax

Figure 3.4.1: Discs with interesting radii. When the center ranking problem is
viewed as the problem of translocating discs over the space of permutations until
all permutations are covered, then Lemma 32 implies that non-trivial discs must
have radii within [dmax

2 , dmax].

Corollary 33. Let V ∈ Symm
[n], n,m ∈ N be an an instance of the center rank-

ing problem, then

dmax ≤ 2r ≤ 2
(
n

2

)
= n(n− 1).

A consequence of Corollary 33 combined with Corollary 51 on page 45 is the
following.

Corollary 34. The center ranking problem is fixed-parameter tractable with
respect to the parameter dmax.

Lemma 32 has another possibly interesting consequence. By choosing just any
input permutation as a solution, its solution quality can be at most twice as bad
as that of the optimal solution. We can use Lemma 32 to give a constant factor
approximation algorithm that solves the optimization problem associated with cen-
ter ranking. An approximation algorithm is an algorithm for an optimization
problem that finds a solution that is possibly not optimal, but approximates the
optimum. The ratio between the optimal solution and the approximated solution
is called “approximation ratio.” A constant factor approximation algorithm is an
algorithm with a constant approximation ratio[63].

We outline the approximation algorithm and its properties in the following
theorem.

Theorem 35. For the optimization problem associated with center ranking, the
algorithm that chooses any input permutation and outputs it is a factor-2 approxi-
mation algorithm.

Proof. This is a consequence of Lemma 32. �

The algorithm described in Theorem 35 runs in time only O(n), which is merely
the time needed to output the first input permutation. Apparently, this algorithm is
of debatable practical value. However, it does imply that looking for approximation
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algorithms might be fruitful for the center ranking problem. This would be
further suggested by the success of finding good approximation algorithms for the
closest string problem by Ma and Sun [44].

3.5. Parameter “position range”

The maximum range of candidate positions is the size of the largest interval
[b, c], such that a candidate appears on position b in some vote and position c in
another. For large instances, the maximum position range might be very small. In
this section, we discuss a dynamic programming algorithm proposed for the related
Kemeny score problem that yields a parameterized algorithm with respect to
parameter “position range,” and we prove the center ranking problem to be
NP-hard with respect to the parameter.

Betzler et al. [7] provide a parameterized algorithm for the Kemeny score
problem that looks at instances block-wise. All input rankings are truncated to a
given and fixed number of consecutive positions. The algorithm solves the truncated
input, which we will call a frame. When a frame of a certain size has already
been analyzed, it speeds up the analysis of the frame that starts one position
further to the right, by looking at the old frame’s solution. For a given frame,
the qualities of all possible solutions are computed and written into a table. Then,
for the computation of the next frame, lookups in the table speed up the next
frame computation. The algorithm is considered to be a dynamic programming
algorithm.

Even though it is just as possible to split the input to the center ranking
problem into frames, knowing all the qualities of all possible solutions for one frame
does not seem to help computing the next frame. In Section 2.2.2, we have discussed
that the Kemeny score problem allows for a certain degree of separability, which
appears to be a general necessity for dynamic programming approaches.

We prove NP-hardness even for position range 1. Let us first give a precise
definition of the position range, as used by Betzler et al. [7]. Recall that the
position of element i in a permutation λ can be denoted as λ−1(i).

Definition 36. Let (V, r), V ∈ Symm
[n], n,m, r ∈ N be an instance to the center

ranking problem. Then we call

p B max
λ,µ∈V,i∈[n]

|λ−1(i)− µ−1(i)|

the position range of V .
Here, | · | denotes the absolute value.
To put the parameter “position range” into context, let us show that p ≤

dmax. Betzler et al. prove the following proposition as a part of a larger proof [7,
Corollary 1]. Let us isolate the needed piece and repeat it here.

Proposition 37 (Betzler et al.). Let (V, r), V ∈ Symm
[n],m, n, r ∈ N, be an instance

of the center ranking problem. Then, the position range p ∈ N of instance V is
smaller than or equal to the maximum pairwise distance dmax ∈ N, i.e.

p ≤ dmax.

Proof. We prove the theorem by contradiction. For the sake of contradiction,
assume that there are two permutations α, β ∈ V and a candidate k ∈ N such
that the position of k differs by more than d, more precisely, α−1(k) = p and
β−1(k) ≥ p+ dmax + 1. We can examine α and β:

α = α1 . . . αp−1kαp+1 . . . αp+dαp+d+1 . . . αn

β = β1 . . . βp−1βpβp+1 . . . βp+dkβp+d+2 . . . βn.
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Note that in α, the number of candidates to the right of k is at least dmax + 1
larger than than the number of candidates to the right of k in β. Each of these
candidates contributes to at least one discordance between α and β, because α
lists the candidates after k, but β lists them before k. At least dmax + 1 inversions
between α and β imply that τ(α, β) ≥ d+ 1. This means that if the position range
were greater than dmax, then dmax would not be the maximum distance between
any two input permutations, thus proving p ≤ dmax. �

It is possible to reduce the closest string problem with alphabet {0, 1} to
center ranking such that the position range is solely 1. And in fact we have done
so in the proof of Theorem 17 on page 17. We deduce the following observation.

Proposition 38. The center ranking problem is NP-hard even for instances of
position range 1.

Therefore, there cannot be a parameterized algorithm with respect to the “po-
sition range,” unless P=NP.

3.6. Parameter “average distance”

The average distance of an instance V to the center ranking problem is
defined as the mean pairwise distance between the input votes.

In this section, we put the parameter into context with other parameters, dis-
cuss a dynamic programming algorithm for the Kemeny score problem, and prove
that the center ranking problem is NP-hard for every average distance greater
than any ε > 0.

Definition 39. Let V be an instance of the center ranking problem. Then we
call

da(V ) B
1(

#V
2

) ∑
{λ,µ},µ,λ∈V

τ(λ, µ)

the average distance of V .

Due to the definition, of the average distance, we can easily conclude the fol-
lowing.

Proposition 40. Let V ∈ Symm
[n], n,m ∈ N, an an instance of the center rank-

ing problem, where da is the average distance and dmax the maximum pairwise
distance. Then,

da ≤ dmax.

For the Kemeny score problem, Betzler et al. [5, 6] presented a dynamic
programming algorithm that was parameterized with respect to the parameter “av-
erage distance.” Due to the poor separability of the center ranking problem,
see Section 2.2.2, this author was unable to bring forward their algorithm to the
center ranking problem.

We prove that center ranking is NP-hard even for average distance 1, if
duplicate input votes are allowed.

Theorem 41. center ranking is NP-hard for pairwise average distance
da = ε ∀ε > 0, if input permutations are allowed to be identical.

The general idea is that, given any center ranking instance, copying an input
permutation reduces the average score, without making the problem any easier.

Proof. We reduce any center ranking problem instance to another cen-
ter ranking instance with pairwise average distance ε. We show that the trans-
formed instance is solvable if and only if the original instance is solvable. Let
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(λ1, . . . , λm) = V ∈ Symm
[n], n,m ∈ N, be an instance of the center ranking

decision problem. We transform V to another instance

(3.6.1) V ′q B (λ1, . . . , λm, µ1, . . . µq),

where µi = λ1∀i.
We show that there is a q such that the average pairwise distance in V ′ is

smaller than any given ε. Let

(3.6.2) σ :=
∑

{λ,ν},λ,ν∈V

τ(λ, ν)

be the total of all pairwise distances in V . Note that

(3.6.3) σ ≤
(
m

2

)(
n

2

)
.

We choose q as

(3.6.4) q B 2(σ/ε+ 2m−m2).

Then we find that the average pairwise distance of V ′ is

da(V ′q ) =
1(

m+q
2

) ∑
{π,ρ}⊂V ′q

τ(π, ρ)(3.6.5)

=
1(

m+q
2

) (
∑

{π,ρ}⊂V

τ(π, ρ) +
∑

1≤i≤q,λ∈V

τ(µi, λ) +
∑

1≤i,j≤q

τ(µi, µj))(3.6.6)

=
1(

m+q
2

) (σ + q
∑
π∈V

τ(π, λ1) + 0(3.6.7)

≤ 1(
m+q

2

) (σ + qσ)(3.6.8)

=
1(

m+q
2

) (σ(q + 1))(3.6.9)

=
σ

−1 +m+ q/2 + (2− 3m+m2)/(2(1 + q))
(3.6.10)

≤ σ

−1 +m+ q/2 + (2− 3m+m2)
(3.6.11)

=
σ

1− 2m+m2 + q/2
(3.6.12)

<ε,(3.6.13)

where inequality (3.6.13) follows from the definition of q in equation (3.6.4). We
proved that da(V ′q ) < ε, where V ′q is the transformed instance of average distance
smaller than ε.

To show that the reduction is correct, it needs to be shown that V has solution
radius r if and only if V ′q has solution radius r. Data Reduction Rule 21 on page 20
says that erasing duplicates does not alter the solution radius. Using the same
argument, adding one does not alter the solution radius either. Hence, V has
solution radius r if and only if V ′q has solution radius r.

Finally, we argue that the reduction can be done in polynomial time in the
instance size. This is clear, since we only need to create q copies of λ1, and due to
equation (3.6.4) and inequality (3.6.3), we have (note that ε is a constant)

q = 2(σ/ε+ 2m−m2) = O(n2m2),

showing that the reduction can be carried out in polynomial time in the size of V ,
completing the proof. �
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3.7. Parameter “number of dirty pairs”

A dirty pair is defined to be an unordered pair {a, b} of candidates a, b ∈ [n]
of an instance V ∈ Symm

[n], n,m ∈ N, if and only if there are λ, µ ∈ V such that
a <µ b ∧ a >λ b, see Definition 23 on page 21. We will refer to the cardinality of
the set of dirty pairs as the number of dirty pairs.

In this section, we put the parameter into context with the parameter “number
of candidates.” We outline a search tree algorithm that branches on all dirty pairs,
and thus solves the center ranking problem solvable in O(2pr ·mn log n+n2m),
where pr denotes the number of dirty pairs, and n refers to the number of candi-
dates, and m refers to the number of votes. We can count the number of dirty pairs
in the instance upfront in O(n2m) time. This allows estimating the run time of the
algorithm and therefore aids choosing the appropriate algorithm for an instance.

Since the center ranking aggregation method satisfies the weak Pareto crite-
rion (see Section 2.1), we know that if all votes share a preference on two candidates,
every aggregation must adhere to that preference. Hence, rather than trying all pos-
sible permutations of the candidates, it suffices to only consider those permutations
that adhere to the preferences shared by all voters.

After exhaustive application of Data Reduction Rule 24 on page 21, an instance
has at least n/2 dirty pairs left due to Lemma 25. The lower bound can be reached.
Consider the following center ranking instance.

V = {λ1, λ2}
λ1 = 12 . . . n

λ2 = 2143 . . . n(n− 1)

This instance has exactly n/2 dirty pairs, while Data Reduction Rule 24 on
page 21 would not erase any candidate. As an upper bound, the number of dirty
pairs is clearly smaller than

(
n
2

)
, the number of all possible pairs. Let us summarize

these easy observations into the following proposition.

Proposition 42. After exhaustive application of Data Reduction Rule 24, the num-
ber of dirty pairs pr in an instance of center ranking with n candidates is within
[n/2,

(
n
2

)
].

In terms of parameterized complexity analysis, the center ranking problem
is fixed-parameter tractable with respect to the parameter “dirty pairs in the in-
stance.” We outline a search tree algorithm on all dirty pairs that was proposed for
the Kemeny score problem [7], but can be used to solve the center ranking
problem, too. The algorithm computes a set S of pairs of candidates on whose
relative orders all votes agree. The algorithm starts by choosing a pair that is not
present in S, chooses a preference for it and adds the pair to S. It repeats the pro-
cess until either all preferences have been decided, or S contains conflicting pairs.
That is, S contains three pairs that express a cyclic preference. The algorithm
algorithm tries all possibilities to add a new pair in the branch step.

The algorithm solves the center ranking problem in O(2pr ·mn log n+n2m)
time. The search tree would clearly have O(2p) leaves, and the time spent per leaf
would be the time required to check if the selection of preferences is a solution.
The checking can be done in O(mn log n) time. Obtaining all dirty pairs initially
is possible in time O(n2m). Since a more elaborate description can be found in [7],
let us merely state the result.

Theorem 43. The center ranking problem is fixed-parameter tractable with
respect to the parameter “number of dirty pairs”. An instance (V, r) with pr dirty
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pairs can be solved by a search tree in time O(2pr ·mn log n+n2m), where pr denotes
the number of dirty pairs, n the number of candidates and m the number of votes.

Betzler et al. [7] give a refinement of the above search tree which this au-
thor has not been able to transfer. The crux is to branch on dirty triples rather
than on dirty pairs. As defined in [7], “A dirty triple consists of three candidates
such that at least two pairs of them are dirty pairs.” A Kemeny score instance
without dirty triples is trivial, because the Kemeny-Young method satisfies the
extended Condorcet criterion, which says that if the majority of the voters prefer
some candidate over another, that should give the final ranking. This allows a more
sophisticated branching. However, the center ranking problem stays NP-hard
even if restricted to instances without dirty triples. This can be deduced from the
reduction from center ranking to closest string in Section 20 on page 19
which never generates dirty triples.

The search tree algorithm described above can also be parallelized by referring
all recursive calls to different threads. Then, all nodes on one level of the search
tree are computed in parallel, reducing the time needed to the depth of the search
tree times the time per node. In terms of parallel algorithms [33], the algorithm
would run in time T = O(pn2m) and with work (number of operations across all
threads) W = O(2p ·mn log n+ n2m), where p refers to the number of processors.

3.8. Parameter “number of votes”

The number of votes of an instance V ∈ Symm
[n], n,m ∈ N, refers to the num-

ber of input rankings m. For some rather interesting applications of the center
ranking problem, such as obtaining the final ranking of a sports competition, it
is well justifiable that the number of input permutations is small while the num-
ber of candidates is rather large, as in the search engine applications proposed in
Section 1.1. Therefore, several approaches to proving and disproving the fixed-
parameter tractability of the center ranking problem have been tried and are
outlined in this section. Unfortunately, up to the current point, fixed-parameter
tractability of the center ranking problem with respect to the parameter “num-
ber of votes” could be neither proved nor disproved. On the positive side, we show
that for m = 2 the center ranking problem is solvable in O(n2) time.

A ranking can be turned into any other through repeated swapping of adjacent
entries. Let V = {λ1, λ2}, λ1, λ2 ∈ Sym[n], n ∈ N be an instance of the center
ranking problem. We show that V can be solved in time O(n2). If permutation
λ2 can be obtained from permutation λ1 by swapping around k adjacent entries,
then after

⌊
k
2

⌋
of these swaps we arrive at an optimum solution to the problem.

See Algorithm 4.
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Algorithm 4 Solving center ranking for m = 2 input votes.
Input: Two votes λ1, λ2 ∈ Sym[n], n ∈ N.
Output: σ such that maxi∈{1,2} τ(σ, λi)

is minimal.
S1: Collect all unordered pairs

{a, b} ⊂ [n] into set A such that
the relative ranking of a and b
differs in λ1 and λ2.

S2: Repeat bτ(λ1, λ2)/2c times:
S2.1: Remove a pair {p, q} from A such

that p and q are neighbors in λ2.
S2.2: Replace λ2 by λ2 with p and q

swapped.
S3: Return λ2.

Note that in instruction S2.1, the pair {p, q} can always be found in set A.
This is because A is initialized to be the set of inversions between λ1 and λ2. Each
execution of the loop maintains the property that A is the set of inversions between
λ1 and λ2. Now, if λ1 6= λ2 then at least one of their inversion must be between
neighboring entries, see. [41, p. 108].

Theorem 44. Let (λ1, λ2) ∈ Sym2
[n], n ∈ N be an instance of the center ranking

problem. Algorithm 4 correctly solves instance (λ1, λ2) of the center ranking
problem.

Proof. We show that the solution returned by Algorithm 4 is optimal. Algo-
rithm 4 returns a permutation with distance at most dτ(λ1, λ2)/2e to both λ1 and
λ2. If there were a better solution σ, then

τ(λ1, λ2) ≤ τ(λ1, σ) + τ(σ, λ2) < 2 dτ(λ1, λ2)/2e ≤ τ(λ1, λ2),

which is false. Therefore, the solution returned by Algorithm 4 is optimal. �

Let us prove the run time bound.

Theorem 45. Algorithm 4 solves the center ranking problem for V ∈ Symm
[n],

n ∈ N,m = 2, in time O(n2).

Proof. This is clear since since the number of bubble sort steps performed
is half the number of discordances between λ1 and λ2, which is defined to be
τ(λ1, λ2) ≤

(
n
2

)
. �

3.8.1. Integer program. The closest string problem can be parametrized
by the number of input strings, the analog of the number of votes of the center
ranking problem. A parameterized algorithm is provided by Gramm et al. [24]
that makes use of integer programming. As the center ranking problem and the
closest string problem are similar, see Section 2.2.1, we examine the parame-
terized algorithm proposed by by Gramm et al. [24], and then discuss how it could
be brought forward to solving the center ranking problem.

In the closest string problem, if all strings are written in a table below
one another, it is insignificant in which order the columns appear. We prove this
fact in Appendix B. In the parameterized algorithm in [24], identical columns are
compressed to only one. It is counted how often a each column appears in the
input in a table listing all possible columns. The possible columns are called column
types. The input is thus compressed into one counter for each “column type” and
then solved using an integer program. An integer program is a linear optimization



3.8. PARAMETER “NUMBER OF VOTES” 37

problem whose variables are restricted to integer values[66]. Solving an integer
program requires exponential time in the number of variables only, due to a result
by Lenstra [26]. Let us examine how the strings are encoded.

Example 46. An instance of the closest string problem.

s1 = 100
s2 = 010
s3 = 110
s4 = 001

In the example, the first column is of column type 1010, the second column is
of column type 0110, and the third column would be of column type 0001.

There can be at most 2m column types. Let us identify column types with
subsets v ⊂ V , such that a column type would equal v if all t ∈ v, t ∈ {0, 1}D
would be set to 1 in the columns of the specified column type. In this example, we
would identify column type 1010 with the set {s1, s3}, we would identify column
type 0110 with the set {s2, s3}, and we would identify column type 0001 with the
set {s4}. Note that the identification is biunique.

The integer linear program solving closest string is presented in Algo-
rithm 5.

Algorithm 5 Integer program that provides a parameterized algorithm that solves
the closest string problem.

• Variable #σv of the integer program will encode how many of the columns
of type v in the desired solution σ are set to 1.
• Number #v ∈ N is defined to be defined to be the number of occurrences

of column type v ⊂ V in the input.
• Number tv ∈ {0, 1} for t ∈ V ,v ⊂ V is set to 1 if input string t is set to 1

in columns of type v, otherwise 0.
• The integer linear program seeks to minimize

max
λ∈V

∑
v⊂V

(tv(#v −#σv) + (1− tv)(#σv)

such that 0 ≤ #σv ≤ #v.

Note that the only variables of the integer program are variables #σv that
encode the result of the integer program. Numbers #v and tv are not variables of
the integer program but encode the input.

The elegance lies in the fact that the only variables needed are #σv. There
are 2#V of them. Together with Kannan’s improvement of Lenstra’s theorem [36],
Gramm et al. proved that closest string with an alphabet of size 2 can be solved
in time O(m9·2m−1

n). While this yields large numbers for m > 4, it gives hope that
a combinatorial solution to the closest string problem might exist and that its
run time is smaller.

We can try to model center ranking similarly. Let V ∈ Symm
[n] be an instance

of the center ranking problem. We exploit the idea of storing the solution in
variables #σv of which there are only 2#V .We denote our permutations as strings
over the alphabet {0, 1}. We denote a permutation by listing all relative rankings
of the candidates available. Let π ∈ Sym[n] be a permutation, we can encode it as
a string of ones and zeroes as follows.
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Definition 47 (String representation of a permutation). Let {ai, bi}, ai 6= bi be
the ith entry of the list of all unordered pairs on [n] in some fixed order. Let
π ∈ Sym[n], n ∈ N, be a permutation. Then for

si(π) B

{
1 if ai <π bi
0 otherwise

,

we call s(π) B s1 . . . s(n2) the string encoding of permutation π.

The string notations’ Hamming distance of two permutations equals the permu-
tations’ Kendall-τ distance. We will look more closely at this fact in Section 5.3.1.

• Number #v ∈ N is defined to be defined to be the number of occurrences
of column type v ⊂ V in the input encoded as strings.
• Number λv ∈ {0, 1} for λ ∈ V ,v ⊂ V is set to 1 if the string encoding of

input vote λ is set to 1 in columns of type v, 0 otherwise.
• Variables #σv define the string encoding of the solution permutation.

Variable #σv equals the number of positions in columns of column type
v that are set to 1 in the string encoding of the solution permutation.

Then, maxλ∈V
∑
v⊂V (λv(#v − #σv) + (1 − λv)(#σv) is the maximum distance

from σ to any input permutation. However, we need to restrict #σv such that
there always is a permutation that variables #σv define. In other words, not every
setting of the variables #σv represents a permutation. The number of restrictions
needed to restrict #σv to only encode permutations appears to be very big and
depend on the exact values #σv assumes. What is more, each restriction requires
its own variable. If we cannot give an upper bound on the number of variables that
depends only on m, we cannot assume to obtain fixed-parameter tractability. This
author has not been able to identify an integer program that solves the center
ranking problem which has a number of variables that is bounded by f(m), where
f is any function.

Even though we could not prove fixed-parameter tractability with respect to
the parameter “number of votes,” integer programming nonetheless is a promising
technique for obtaining high-performing algorithms that solve the center rank-
ing problem. We present an integer program that solves the center ranking
problem in Section 6.1.

3.8.2. Feedback edge set reduction to Kemeny score. The Ke-
meny score problem is NP-hard even for as few as 4 votes. The Kemeny Score
and center ranking problems share the same input and they both try to aggre-
gate rankings—yet, their aggregations usually differ. In this sub-section, we outline
a proof proposed by Dwork et al. [20], which shows that Kemeny score is NP-
hard for only 4 votes. We will see that it relies on properties of the Kemeny score
problem that are not present in the center ranking problem.

To show the NP-hardness of an instance of only 4 votes, Dwork et al. [20] reduce
feedback edge set instances to Kemeny score instances of only 4 votes. The
feedback edge set problem was shown to be NP-complete by Karp [37]. Karp
defined feedback edge set as the following problem.

Problem. The feedback edge set problem.

Given: (G, k), where G is a directed graph and k is a nat-
ural number.

Question: Is there a set of k edges whose deletion breaks
all cycles?

Dwork et al. could encode the entire directed graph into just one vote. Each
edge is encoded as a candidate in the vote. For two edges e, d that are adjacent to
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a vertex v in the input graph as follows. The relative ranking of the candidates a, b
representing edges e, d was defined as follows. If edge d enters vertex v and edge
e leaves vertex v, then a is sorted before b. If d leaves v and e enters v, then b is
sorted before a. If e and d would both enter or leave v, then an arbitrary order is
chosen. Thus, some relative orders in the vote were important, while other relative
orderings of candidates were arbitrarily chosen. By adding new votes which revers
all arbitrarily chosen relative orders, it is possible to “cancel out” the effect of the
arbitrary choices in the final ranking.

It seems hard to try “cancelling out” one vote with another in the center
ranking problem, since the contributions of discordances do not add up to deter-
mine the quality of a solution. In fact, we have advertised the center ranking
aggregation method in Chapter 1 as an aggregation method that specifically disal-
lows compensating one criterion by another.

3.8.3. Summary. Solving center ranking for m = 2 can be done quickly
and in polynomial time. Form > 2 the question whether center ranking is fixed-
parameter tractable with respect to the parameterm remains open. The complexity
of the center ranking problem with respect to the parameter “number of votes”
appears to be between closest string and Kemeny score. While the closest
string problem is fixed-parameter tractable with respect to the parameter “number
of votes,” the Kemeny score problem is NP-hard even for only 4 votes. There lies
a large number of classes of different fixed-parameter intractability between these
two extremes, proposed by Downey and Fellows. [18]. From the analysis carried
out so far, this author does not dare to conjecture into which of the categories the
center ranking problem falls.





CHAPTER 4

Parameterized algorithms for parameter “radius”

The radius parameter, denoted r, is defined to be the solution quality of an
optimum instance in the center ranking problem. That is, if σ is an optimal
solution, than the maximum distance from σ to any input vote is defined to be the
“radius” of the instance.

The solution quality of an optimization problem is a natural choice of a param-
eter to be analyzed from a parameterized complexity viewpoint. In the center
ranking problem, the radius parameter is of particular interest if we interpret the
center ranking problem as a method to aggregate rankings according to criteria
and if we have reason to assume that the criteria correlate. In such cases, the max-
imum pairwise distance between two votes is small; the radius, therefore, is even
smaller.

We provide two search tree algorithms that allow us to solve large instances of
the center ranking problem in short time on a vintage computer for radius r ≤ 6,
even though the problem is NP-complete. We present two search tree algorithms,
the first one solving the center ranking problem in O(rr ·mn log n) time and the
second one solving it in time O(24rn2m + mn2 log n), which means that center
ranking is fixed-parameter tractable with respect to the radius parameter r.

Both algorithms might be considered practically relevant, since the hidden con-
stants are reasonable and they both are well parallelizable, which might be of in-
terest to search engine applications. The first algorithm can be expected to fare
better for small radii and may be easier to implement. The second algorithm’s run
time is exponentially better for variable radius.

4.1. Search tree algorithm branching on swaps

In this section we examine a search tree algorithm that solves a center rank-
ing instance in run time O(rr ·mn log n). Let us give the outline of the algorithm.
The root of the search tree represents any input vote and radius r. We start by
swapping around two candidates in the vote the root node represents. For the
swapping, we choose two candidates that form a discordance between the vote rep-
resented by the root node and an input vote of distance greater than r to the vote
represented by the root node. We repeat the procedure and branch into the various
cases produced, taking care to lower r by one when each new level of the search
tree is reached. By doing this, we ensure that the search tree nodes have at most
r + 1 children, and that the depth of the tree does not exceed r. The search tree
size is no more than O(rr).

The work done per node is relatively small and so is memory consumption,
which is why the algorithm might be considered practically relevant in applications
where the radius parameter is known to be small.

The branching strategy of the algorithm presented in this section is similar
to a search tree algorithm for the closest string problem. The analog of a
string position in the center ranking problem is the relative ranking of two
candidates. The center ranking problem is more difficult, because reversing

41
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Algorithm 6 An algorithm that solves closest string in O(nm) time for
fixed radius, proposed by Gramm et al. [24]. It accesses the global variables
S = {s1, . . . , sk}, a set of strings and d, the maximum distance of a solution from
any input string, which together form the input of the closest string problem.

Input: Candidate string s and integer ∆d.
In the initial call, set s = s1 and ∆d = d.

Output: A string ŝ with dH(ŝ, si) ≤ d ∀i and
dH(ŝ, s) ≤ ∆d, if a solution exists.
The output is “not found,” otherwise.

D0: If ∆d < 0, then return “not found”.
D1: If ∃i : dH(si, s) > d+ ∆d, then return “not found”.
D2: If dH(s, si) ≤ d ∀i, then return solution s.
D3: Seek for an input string s′ that is

not within BdH ,k(s).
D4: Collect any d+ 1 different strings

out of BdH ,1(s) into
a set named A, such that
∀a ∈ A : dH(a, s′) < dH(s, s′).

D5: For each a ∈ A, run this algorithm. As
arguments, pass it a as the input
string and k − 1 as the ball size.

the relative ranking of two candidates potentially requires changing other relative
rankings, too, while the positions of strings are independent from one another.

To simplify understanding the branching strategy, we first present the closest
string algorithm before we present the similar search tree algorithm that solves
center ranking.

4.1.1. A search tree algorithm that solves closest string. The search
tree algorithm we establish for center ranking makes use of the fact that if two
permutations have Kendall-τ distance greater than r, then neither one can have put
the candidates which create the discordances into the same order as the solution.
A similar statement holds for strings in the closest string problem and it led to
a good algorithm for the closest string problem in [24].

For quick reference, let us recall that the closest string problem accepts as
input a set S of strings of the same length m and a integer number d, the distance
parameter. The cardinality of S is denoted as n. The closest string problem
asks: Is there a string s′ such that dH(s, s′) < d ∀s ∈ S, where dH denotes the
Hamming distance? See Section 2.2.1 on the closest string problem.

Let us outline the search tree algorithm. We assign any input string s to the
root node of the search tree. We seek any input string si of distance greater than d
to string s. We start by changing one of the positions of the string assigned to the
root node to match si. We could now choose to branch into all of the 2d possible
strings derived from s by changing one of its positions to match si. However, while
this branching strategy would correctly retrieve a solution, it can be shown that it
suffices to branch into d+ 1.

Remember that for a string c ∈ {0, 1}n and a radius k ∈ N, a ball is defined as

BdH ,k(c) B {b ∈ {0, 1}n : dH(c, b) ≤ k},

where dH refers to the Hamming distance, and {0, 1}n refers to the set of all
0-1 strings of length n. The algorithm is outlined as pseudo-code in Algorithm 6.
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Algorithm 6 solves closest string in time O(nm + nd · dd), where n is the
number of input strings and m is the length of every input string1.

4.1.2. Search tree algorithm that solves center ranking. We pro-
vide a search tree algorithm that solves a center ranking instance (V, r) in time
O(rrmn log n). To describe the algorithm, we need to remember the concept of a
discordance between two permutations that we defined in Definition 1 on page 6.

Definition. Let λ, µ ∈ Sym[n], n ∈ N. Then {a, b} ⊂ N is a discordance between λ
and µ, if and only if λ lists a and b in another order than µ.

Note that in permutation terminology, an inversion of a permutation µ is a pair
(a, b) with a < b, while a >µ b. Let us define the swap operation.

Definition 48. Let (a, b) ∈ [n]2, n ∈ N. Then swap(a, b) ∈ Sym[n] is the permu-
tation that swaps around entries a and b, i.e.

(swap(a, b))(a) = b, (swap(a, b))(b) = a, swap(a, b)(i) = i, a 6= i 6= b.

The pseudo-code solving a center ranking instance ((λ1, . . . , λm), r) is given
in Algorithm 7. In the initial call, the candidate permutation λ is set to λ1 and ∆r
is set to r.

Algorithm 7 An algorithm that solves center ranking in polynomial time for
fixed radius. It accesses the global variables V = {λ1, . . . , λm} and r, which form
the input to the center ranking problem (see Problem 3 on page 7 for the
definition).

Input: Candidate permutation λ and
rest-radius ∆r ∈ N.
In the initial call, set λ B λ1 and ∆r B r.

Output: A permutation λ̂ with
τ(λ̂, λi) ≤ r ∀i and τ(λ̂, λ) ≤ ∆d,
if a solution exists.
Return “not found,” otherwise.

D0: If ∆r < 0, then return “not found.”
D1: If τ(λ, λ1) > r −∆r,

then return “not found.”
D2: If τ(λ, λi) ≤ r ∀i, then return solution λ̂ B λ.
D3: Seek for an j such that τ(λ, λj) > r.
D4: Collect any r + 1 discordances between

λj and λ into a set named A.
D5: For each (a, b) ∈ A, run this algorithm.

As arguments, pass it swap(a, b) ◦ λ as
the candidate permutation and
∆r − 1 as rest-radius.

Theorem 49. Algorithm 7 solves center ranking correctly.

Proof. The algorithm accepts solutions only if they meet the problem. On
every recursive call we decrease ∆r and once ∆r reaches 0, we abandon the branch,
thus ensuring the termination of the algorithm in all cases. Therefore, it is clear
that the algorithm handles the case where no solution exists, correctly.

We assume that the instance has a solution. Further, we assume the solution
to be the identity permutation. Notice that, while simplifying the proof, this is not

1For details and a proof of correctness, see [24]
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a real restriction, as we do not use this knowledge in the algorithm. The general
case can be shown to be correct by multiplying every input permutation with λ̂−1,
where λ̂ is the solution.

The correctness follows from the observation that, in terms of Algorithm 7,

(4.1.1) ∃(a, b) ∈ A : τ(swap(a, b) ◦ λ,1) < τ(λ,1),

which is to say that one of the children in the search tree has smaller distance to
the solution than its parent node. As a consequence, in at least one recursive call

(4.1.2) τ(1, λ) ≤ ∆r,

which is to say that for at least one node in each level of the search tree, the
solution, if it exists, is at most ∆r steps away from the permutation to the node.

To see equation (4.1.1), let us examine the set Q, defined to be the set of
discordances between λ and λ1. Each of these discordances is either an inversion in
λ1 or it is an inversion in λ. Let Iλ be the set of inversions of λ and Iλ1 be the set
of inversions in λ1. Now we have A ⊂ Q ⊂ Iλ ∪ Iλ1 , where #Iλ ≤ r,#Iλ1 ≤ r. On
the other hand, #A ≥ r+ 1; hence, A contains an inversion in λ by the pigeonhole
principle. The swap that corresponds to the inversion in λ, i.e. (a, b), satisfies
equation (4.1.1). To see this, a simple consideration on the candidates suffices.
For candidates right and left from the two swapped elements, no new inversions
are created. For candidates in between a and b, the number of inversions they are
involved in can only decrease. But for the two swapped elements, one inversion
disappears.

Since all (c, d) ∈ A are tried, for at least one of the recursive calls equa-
tion (4.1.2) must hold. If a solution exists, it is found, as in every recursion level,
one step leads towards it.

To justify instruction D1, consider the condition is not met; then one recursion
step has led back to λ1, the original input, although there must be a path to
the solution where every swap decreases the distance to the solution, if a solution
exists. �

Even though instruction D1 is not strictly necessary, and does not contribute
to our time bound, it might improve practical performance.

Instruction D5 might be a little counterintuitive, as it decreases the rest-radius
∆r by only 1, even though the “step” we have taken towards the solution might
have removed more than one inversion. Indeed, the algorithm could be sped up—if
we only knew the number of inversions that “step” swap(a, b) removes. However, to
know the number, we would need to know the solution beforehand.

Theorem 50. Let V ∈ Symm
[n], n,m ∈ N an instance of the center ranking prob-

lem of optimum solution radius r ∈ N. Algorithm 7 solves V in time O(rrmn log n).

Proof. The recursive algorithm describes a search tree of depth at most r, as
parameter ∆r has value r at first and is decreased to at least 0 in every level of the
call hierarchy. Each node has at most r + 1 children, as in instruction D5, set A is
limited to r+ 1 elements. Thus the number of nodes in the search tree is in O(rr).
The time to run is O(rrf(m,n)), where f is the time to spent on every node.

• Instruction D0 runs in time O(1).
• Instruction D1 runs in time O(n log n).
• Instruction D2 runs in time O(mn log n) (see Section Section 1.4.8).
• Instruction D3 runs in time O(mn log n).
• Instruction D4 runs in time O(n log n).
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Thus the run time per node is O(mn log n). Since the search tree size is in O(rr),
the overall run time is O(rrmn log n), completing the proof. �

Corollary 51. center ranking is fixed-parameter tractable with respect to the
parameter radius r.

Since we know that the radius parameter is closely related to the maximum
pairwise distance parameter, we find that the center ranking problem is also
fixed-parameter tractable with respect to the parameter “maximum pairwise dis-
tance.”

Discussion. Figuratively speaking, the algorithm walks step by step through
the permutation space, where eligible permutations for a next step would be per-
mutations of Caley distance 1.

Definition 52 (Caley distance[17]). Let ν, ν′ ∈ Sym[n], n ∈ N. The Caley dis-
tance T (ν, ν′) is the minimum number of transpositions π1, . . . , πk ∈ Sym[n] such
that

ν = π1 ◦ · · · ◦ πk ◦ ν′.

The Caley distance is the number of transpositions needed to obtain ν from
ν′. Here, a transposition is a permutation which can be obtained from the identity
permutation by swapping two elements. For example, permutation π = 321 is a
transposition, because it is obtained from the identity permutation by swapping 3
and 1. The Caley distance between µ = 213 and µ′ = 231 is one, because µ = π◦µ′.

Note that in instruction D4, in order to solve a center ranking instance, it
does not suffice to gather all permutations out of Bτ,1(λ), as Bτ,1(λ) might be too
small. In metric terms, the child nodes are chosen all out of BT,1(λ). Note that
BT,1(λ) is always of greater cardinality than Bτ,1(λ). We give a short proof2.

Lemma 53 (Cohen and Deza). Let λ, µ ∈ Sym[n], n ∈ N be any two permutations,
then

T (λ, µ) ≤ τ(λ, µ).

Proof. By definition, T (λ, µ) is the minimum number of transpositions needed
to obtain µ from λ. This is less than or equal to the number of pairwise transposi-
tions needed to obtain µ from λ, defined to be τ(λ, µ). �

Further improvement: Computing the distances in linear time. The time to run
the algorithm can be reduced down to O(rrmn+mn log n) by creating a dictionary
with one entry for every input permutation, listing the discordances of this permu-
tation with λ. When λ gets replaced by swap(a, b)◦λ in the recursive call, updating
one dictionary entry can be carried out in time O(n). Hence, all dictionary entries
can be updated in time O(mn), which is linear in the size of the input.

Further improvement: eliminating multiple computations of identical branches.
Algorithm 7 creates a large search tree whose size is dominant to the run time.
Maintaining a list of previously visited nodes might bring some speedup at the cost
of increased memory usage and decreased parallelizability.

Further improvement: Parallelization. The algorithm is excellently paralleliz-
able by referring all recursive calls in instruction D5 to different threads. Since the
search tree depth may not exceed r and the time spent per node is O(mn log n), in
terms of parallel algorithms [33, p. 27ff], we can conclude the following proposition.

Proposition 54. A parallel version of Algorithm 7 that refers all recursive calls to
new threads solves an instance V ∈ Symm

[n], n,m ∈ N, of optimum radius r in time
O(mn log n) with work O(rrmn log n).

2This lemma was proved in [17, 12].
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Proposition 54 implies that there is no extra cost for the parallelization. The
speedup of a parallel algorithm is defined as

Sp(n) B
T ∗(n)
Tp(n)

,

where T ∗ refers to the best known sequential run time and Tp refers to run time
of the algorithm using p processors. Since the algorithm immediately branches into
r+1 cases with equal run time, for p ≤ r+1 we obtain a speedup of p, which is the
best we can hope for. For greater p the speedup degrades slowly. We have analyzed
how the time spent per node might be further parallelized. It is well-known that
the Kendall-τ distance can be computed with significant speedup in parallel.

4.1.3. Concluding remarks. Algorithm 7 on page 43 has fairly good hidden
constants, but the explosion in the parameter radius is enormous. After application
of Data Reduction Rule 24 on page 21, it is clear that every candidate contributes
to at least one discordance with another input vote. While this does not give strict
bounds to the number of candidates the algorithm can reasonably handle, it is clear
that the instances that the algorithm can solve must have a very specific format.
They pair-wise agree on the order of nearly all of their candidates, i.e. they highly
correlate.

4.2. Neighbor permutation search

We present a search tree algorithm with run time O(24dn2m+mn2 log n), which
is asymptotically exponentially better than the algorithm given in Section 4.1.2. Let
us state the idea of the search tree focusing on our goal of answering the decision
problem of a center ranking instance.

Each node represents a set of restrictions on the permutations that is considered
as possible solutions in subsequents nodes in the search tree. These restrictions are
expressed as sets of preference pairs (a, b). A set that contains pair (a, b) restricts
possible solutions examined in descendants of the node, i.e. in the nodes examined
through recursive calls, to permutations which list candidate a before candidate b.
The root node imposes no restrictions at all. On every node of the search tree, a
new set P of preference pairs is chosen which complements the set of restrictions
differently in every child node. Every child node receives the set of restrictions
inherited from its parent complemented by the new set of preference pairs P with
a subset of the pairs reversed. For every subset of P , one child node is generated.

Since we try to solve the decision problem, we are supplied with a radius pa-
rameter. For a carefully picked choice of P , we show that we can halve the radius
parameter in subsequent nodes in the search tree while still guaranteeing that a
solution is found if one exists. The search tree depth is thus upper-bounded by
log r.

The introduction of some terminology lets us formulate the algorithm more
naturally. Following a line of thoughts, a vote can be defined as a strict total order
of its candidates, a strict total order in turn can be defined as a binary relation,
and a binary relation can be identified by a set of pairs. For the binary relation <λ
which expresses the order of candidates in λ, these pairs would be {(a, b) : a <λ b},
as defined by Halmos [27]. We call pairs of the set {(a, b) : a <λ b} “preference
pairs.”

Definition 55 (Preference pairs ). A preference pair is a pair (a, b) ∈ [n]×[n], a 6= b,
n ∈ N. A vote λ ∈ Sym[n] follows a preference pair (a, b), if and only if a <λ b.
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In descendant nodes of the search tree, i.e. nodes that spawn due to the recursive
call of the current nodes, we only examine permutations that follow the preference
pairs associated with the node.

Definition 56 (Permutations following a set of preference pairs). Let

R ⊂ {(a, b) : a, b ∈ [n], a 6= b}, n ∈ N

be a set of preference pairs. We call SymR,[n] the subset of Sym[n] that follows each
preference pair in R.

Each node of the search tree is associated with a set of pairs serving as restric-
tions on the solution. The solutions that can be found in descendants of a node
with associated set of pairs serving as a restriction is SymR,[n]. Our algorithm starts
with an empty set of preference pairs of the solution. It acquires a set of preference
pairs that need to be decided in the next level of the search tree. For a possibility
to decide these preferences, it adds the decided preference pairs to the set. The
algorithms branches into all cases of deciding the preference pairs. A branch of the
search tree can be abandoned once SymR,[n] is empty.

To computationally determine the emptiness of SymR,[n], we use two graph-
related terms. The advantage of modelling the criterion in terms of graph theory
instead of terms of sets is that for both concepts to be introduced, the run time on
on graphs is well-researched. A directed graph is acyclic if and only if it contains no
path that starts and ends on the same vertex [3, pp. 32-44]. A topological sorting
is a linear ordering of the nodes of a graph in which each node comes before all
nodes to which it has outbound edges [15, pp. 485-488].

Lemma 57. Let n ∈ N, and R be a set of preference pairs
R ⊂ {(a, b) : a, b ∈ [n], a 6= b}, and let h be the directed graph with vertices [n]
and an edge from b to c if and only if (b, c) ∈ R. Then the set SymR,[n] is empty if
and only if h is acyclic.

Proof. If the directed graph contains no cycles, then it has a topological
sorting λ ∈ Sym[n]. The topological λ, as a permutation, follows all preference
pairs in R, hence it is in SymR,[n].

If SymR,[n] is not empty, it must contain a permutation µ. Let g be the tourna-
ment graph that contains vertices [n] and an edge (a, b) with a, b ∈ [n] if and only
if a <µ b. Since µ shows no cyclic preferences, g must be acyclic. Since g contains
every edge that h contains, h must be acyclic, too. �

The set of restrictions contains preference pairs solution if a solution is to be
found in the current sub-tree. Since the solution is a total order of the candidates,
the set of restrictions that defines the solution must be transitive, by which we
mean that if it contains two pairs (a, b) and (b, c), it also needs to contain (a, c). In
the above proof, we related the set of pairs serving as a restriction R to the graph
of vertices [n] and and an edge for every member in R, such that there is an edge
in the graph from d to e if and only if the pair (d, e) ∈ R. This technique helps us
determine the pairs we can add to the set of preference pairs serving as a restriction.
We refer to the graph with vertices [n] and edges R as the graph associated with R.
The set of preference pairs which are implied by R is called the transitive closure
of R. On each node, we can replace the set R by its transitive closure without
changing the solvability of the instance. The term transitive closure is defined both
for relations and graphs; in our terms, the transitive closure of R is the same as
the set of edges of the transitive closure of the graph associated with R. A branch
of the search tree can be abandoned once the graph associated with R becomes
complete, i.e. there is an edge between each two vertices. However, because of the
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computational complexity of determining the transitive closure, we compute it at
most once. To ensure the transitivity of R it suffices to abandon branches where
the graph associated with R is acyclic, since a complete directed graph is acyclic if
and only if it is transitive [29, Corollary 5a].

In the subtree, the contribution of some preference pairs to the center rank-
ing score is already known. Branching from there, we only need to add inversions
that were unclear before. We only consider discordances that have not been con-
sidered already in an ancestor need in the search tree. Let us define the space of
all unordered pairs of candidates.

Definition 58. Let n ∈ N, then

Ωn B {{a, b} ⊂ [n], a 6= b}.

To see whether or not a permutation follows a set of preference pairs, we can
compare the preferences of the permutation with the given set.

Definition 59. Let λ ∈ Sym[n], n ∈ N, and Q ⊂ Ωn a set of unordered pairs of
candidates. Then we call

λ|Q B {(a, b) : a <λ b, {a, b} ∈ Q}
the preferences of λ restricted to Q.

The Kendall-τ distance is defined to be the discordance, or the number of dirty
pairs, between two permutations. On every node of the search tree, we know that
if a solution is found in this branch, it follows the restrictions associated with the
node. We can compute the part of the Kendall-τ distance associated with the
restrictions associated with the node.

Definition 60 (Restricted Kendall-τ distance). Let µ, λ ∈ Sym[n], n ∈ N and
R ⊂ Ωn, then

τR(λ, µ) B #(λ|R − µ|R)
is the number of pairs of candidates in R that λ and µ disagree upon.

Note that for R = Ωn, the restricted Kendall-τ distance equals the classical
Kendall-τ distance. The restricted Kendall-τ distance is a pseudometric. We are
mostly interested in the fact that it satisfies the triangle inequality.

Lemma 61. Let R ⊂ Ωn, n ∈ N. Function τR is a pseudometric.

Proof. Remember that a pseudometric must satisfy the following conditions
for any λ, µ, ν ∈ Sym[n][58]:

(1) τR(λ, µ) = τR(µ, λ) (Symmetry)
(2) τR(λ, λ) = 0
(3) τR(λ, µ) ≤ τR(µ, ν) + τR(µ, ν) (triangle inequality)

The first two conditions are easy to verify. We will a generalized version of the
third condition, which we need to defer since it makes use of notation unintroduced
at this point. The generalization are given in Lemma 64 and following it we show
how it proves the triangle inequality of the restricted Kendall-τ distance. �

On every node of the search tree, we determine the part of distance from the
solution to each input permutation that can be determined from the restriction
associated with the node. We associate a distance di to each input permutation λi.
On every node of the search tree, we decrease di by the part of the distance from
the solution to the input permutation that can already be determined from the set
of restrictions associated with the node that were not present in its parent. On
every node, r − di serves as a lower bound of the distance from the solution to λi.
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Once di < 0 for some i at some node of the search tree, the branch of the search
tree can be abandoned. Once all preference pairs have been decided, the algorithm
verifies if the permutation represented by the restrictions is a solution or not.

The above branching can be understood as assigning separate distances for each
input permutation. We help formalizing the cases we branch into by formulating
the neighbor permutation problem3, which generalizes the center ranking
problem by allowing the specification of a maximum allowed distance from the
solution to each input ranking separately. Further, the solution to the neighbor
permutation problem must follow a set of given restrictions. The neighbor
permutation problem asks whether there is a permutation following all of the
preference pairs in a set R serving as a restriction, which have restricted Kendall-
τ distance less than di to the each input permutation λi, where di is a distance
assigned to each input permutation. The Kendall-τ distance is restricted to the
preference pairs outside of the given restriction, to reflect the unknown part of the
Kendall-τ distance in the original center ranking problem.

To express a set of preference pairs being outside of what has been set as
a restriction before, let us define Ωn as a “universe” of pairs of candidates, thus
simplifying the notation of the complement.

Definition 62. Given a set of unordered preference pairs R ⊂ Ωn, n ∈ N, we set

R̄ B Ωn −R.

The restrictions associated with each node in the search tree is a set of ordered
pairs. The Kendall-τ distance limited to the pairs of candidates present in the set
can be expressed by the Kendall-τ distance if the pairs are given as unordered. Let
us define a notation to refer of the unordered pairs associated with a list of ordered
pairs.

Definition 63. For a set of preference pairs R ⊂ {(a, b) : a, b ∈ [n], a 6= b}, n ∈ N,
we call R† B {{a, b} : (a, b) ∈ R}, the unpacking of R.

Using this notation, we can state that on any node in the search tree associated
with the set of preference pairs R serving as a restriction, the distance from the
solution to some input permutation λi must exceed #(R−λi|R†). The cardinality of
the complement serves as a pseudometric. We prove the triangle inequality, which
is a generalization of the triangle inequality of the restricted Kendall-τ distance.

Lemma 64. For three sets of preference pairs a, b, c with

(4.2.1) a† = b† = c†,

we find

(4.2.2) # (a− b) ≤ # (a− c) + #(b− c).

Proof. First, let us prove

(4.2.3) a− b ⊂ (a− c) ∪ (b− c).
Let t ∈ a− b. We show t ∈ (a− c) ∪ (b− c) = (a− c) ∪ (c− b). The equality holds
because equation (4.2.1) implies that b− c = c− b. To see t ∈ (a− c)∪ (c− b), note
that either t ∈ c or t /∈ c. In the first case t ∈ c− b, in the other t ∈ a− c. Either
way, t ∈ (a − c) ∪ (c − b), thus proving inequality (4.2.3), which directly implies
inequality (4.2.2). �

We can now prove the triangle inequality for the restricted Kendall-τ distance.

3The name is chosen after the neighbor string problem, which is a generalization of the
closest string problem and was employed and defined by Ma and Sun [44] to speed up the
solving of closest string instances.
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Proof of the triangle inequality in Lemma 61 . The triangle inequal-
ity in follows from the fact that λ|†R = µ|†R = ν|†R. Now we find, using Lemma 64,

τR(λ, µ) = #(λ|R − µ|R)(4.2.4)
≤ #(λ|R − ν|R) + #(µ|R − ν|R)(4.2.5)

= τR(µ, ν) + τR(µ, ν),(4.2.6)

which is the triangle inequality. �

Let us define the generalized problem that matches the behaviour of our search
tree. It extends the center ranking problem by assigning a distance to each input
permutation separately and demanding the solution to follow a set of preference
pairs serving as a restriction. Also, the metric used is the restricted Kendall-
τ distance, restricted to R†, where R is the set of preference pairs serving as a
restriction.

Definition 65 (Neighbor permutation problem). Let
(λ1, . . . , λm) ∈ Symm

[n], n,m ∈ N, and let d1, d2, . . . , dm ∈ N, and let
R ⊂ {(a, b) : a, b ∈ [n], a 6= b} be a set of preference pairs. The neighbor permu-
tation problem seeks for a permutation σ ∈ SymR,[n] such that

τ R̄
†
(λi, σ) ≤ di∀i ∈ [1, n].

To stress the resemblance between the center ranking problem and the
neighbor string problem, let us state how easily the center ranking problem
can be reduced to neighbor permutation problem, i.e. how we can make use
of an algorithm which solves the neighbor permutation problem to solve the
center ranking problem.

Remark 66. We can reduce the center ranking problem to the neighbor per-
mutation problem by transforming a center ranking instance ((λ1, . . . , λm), r)
into a neighbor permutation instance ((λ1, r), . . . , (λm, r), ∅)) in time O(nm).
Thus, the run time to solve the neighbor permutation problem is the same as
the run time to solve the center ranking problem.

We still need to identify the pairs of candidates whose preferences are added to
the set of preference pairs serving as a restriction on every node in the search tree.
The following choice4 allows us to halve d1 in every child node.

Definition 67 (Permutation disagreement). Let λ, µ ∈ Sym[n], n ∈ N. We call
P (λ, µ) the disagreement choices of λ despite µ. We set P (λ, µ) to be the set of
ordered pairs (a, b) with a <λ b, but a >µ b.

Note that Definition 67 is not symmetric. It reflects the preferences of λ.
We halve d1 on every new level in the search tree of the search tree algorithm.

Yet, if a solution exists, it still is found and identified as a solution. To prove that
we can losslessly decrease d1 so greatly, we use the following Lemma. It is similar
to [44, Lemma 1] by Ma and Sun.

Lemma 68. Let ((λ1, d1), . . . , (λm, dm), R) be an instance of the neighbor per-
mutation problem, where n,m ∈ N, λi ∈ Sym[n] ∀i and R ⊂ Ωn. If j satisfies

τR
†(λ1, λj) > dj, then for P being the disagreement between λ1 despite λj, we find

for any solution σ of the neighbor permutation problem, τR†∪P †(σ, λ1) < d1
2 .

4Note that the disagreement between two permutations is essentially the set of all discor-
dances between them, as defined in Definition 4.1.2 on page 43. We use this term for easy
comparison with the Ma and Sun algorithm.
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Proof. With the conditions of the lemma met, we find

(4.2.7) dj < τR
†
(λ1, λj) = τR

†∩P †(λj , λ1) < τR
†∩P †(σ, λ1) + τR

†∩P †(σ, λj).

Furthermore,

τR
†∩P †(σ, λ1) + τR

†∩P †(σ, λj)(4.2.8)

=(τR
†
(σ, λ1)− τR†∪P †(σ, λ1)) + (τR

†
(σ, λj)− τR

†∪P †(σ, λj))(4.2.9)

=τR
†
(σ, λ1) + τR

†
(σ, λj)− 2τR

†∪P †(σ, λ1)(4.2.10)

≤d1 + dj − 2τR
†∪P †(σ, λ1).(4.2.11)

Here, equation (4.2.10) holds because τR†∪P †(σ, λ1) = τR
†∪P †(σ, λj), because

λ1|P † = λj |P † . By inequality (4.2.7), we get d1 + dj − 2τR†∪P †(σ, λi) > dj , and as
a consequence τR†∪P †(σ, λ1) < d1

2 , as was claimed. �
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Algorithm 8 Algorithm Neighbor permutation search, solving the center
ranking problem for a given radius.

Input: An instance of neighbor permutation search
((λ1, d1), . . . , (λm, dm), R) with λi ∈ Sym[n] ∀i
and R ⊂ {(a, b) : a 6= b, a, b ∈ [n]}.
In the initial call, R must be empty.

Output: Permutation σ ∈ SymR,[n] such that

τR
†(λi, σ) <

di)∀i. Return “not found,” if there is none.
N0: [Ensure termination, edge conditions]

Check if R is cyclic. If it is, return “Not found.”
If di < 0 for some i, return “not found.”
If #R ≥

(
n
2

)
, then check if the topological

sorting of the graph corresponding to R
is a solution. If so, return it, otherwise
return “Not found.”

N1: [Compute q]
Try to find q s.t. τR

†(λq, λ1) > dq. If there
is none, compute the graph corresponding to R.
Compute the transitive closure of the graph.
Set the preference pairs R′ to be the set of
edges of the computed transitive closure.
If the graph corresponding to
λ1|R̄′† ∪R′ is acyclic,
its topological sorting is the solution.
Otherwise, return “Not found.”

N2: [Check if the instance is trivially unsolvable]
Verify that τR

†(λ1, λq) ≤ d1 + maxi di;
otherwise, return “not found.”

N3: [Compute the disagreement]
Compute the disagreement of λ1 despite λq,
intersected with R† and store it in P.

N4: [Compute the set of cases to branch into]
A′ B {{(y, x) : (x, y) ∈ p} ∪ P − p : p ⊂ P}, i.e.
set A′ to be all ways to flip a subset of P.

N5: [Complete the cases to branch into]
Set A B {a ∪R : a ∈ A′}.

N6: [Distances in the branches]
Set ea,i B di −#(λi|c† − a) for i 6= 1 and
ea,1 B min {d1 −#(λ1|c† − a), dd1/2e − 1},
where c = a−R.

N7: [Recursive call]
Run neighbor permutation search for each
a ∈ A with input ((λ1, ea,1), . . . , (λm, ea,m), a).

N8: [Unless a recursive call found a result]
Return “not found.”

We can now formulate the search tree algorithm. See Algorithm 8.
The algorithm restricts the allowed sets of restrictions R, because the algo-

rithm would not operate correctly for arbitrary R. For example, for an input
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((λ1 = 123, d1 = 500)), R = {(3, 1)}, instruction N1 is unable to compute q, and
therefore attempt to compute the topological sorting of the graph corresponding
to λ1|R̄′† ∪R′. The algorithm fails, since the graph corresponding to λ1|R̄′† ∪R′ is
cyclic. In our example, λ1|R̄′† ∪R′ would be the 3-cycle depicted in Figure 4.2.1 on
page 55.

The algorithm requires λ1|R̄′† ∪R′ to be acyclic in case N1 cannot determine q.
It does compute the result correctly for R = ∅ and sets R that are generated by the
algorithm itself in recursive calls. Generalizing the algorithm to be able to handle
all sets R could be done by trying all ways of breaking the cycles in λ1|R̄′† ∪R′ by
reversing edges originating from λ1|R̄′† .

To understand Algorithm 8 better, it might be advisable to examine some of
its intermediate steps during execution. Appendix A contains a complete run of
the algorithm with all intermediate results printed.

Theorem 69. Algorithm 8 correctly solves the neighbor permutation problem.

Proof. Let us prove that if the instance has a solution, the algorithm finds it.
First note that instruction N0 correctly determines the answer in case #R ≥

(
n
2

)
,

thus ensuring that the algorithm terminates, since R grows in every recursive call.
We need to show that if the algorithm returns a solution, it is the correct one; we
then show that if a solution exists, it is reached by the algorithm. We then show
that a solution is found, if one exists.

We need to show that if σ is a solution of an instance I ′ that we branched into,

(4.2.12) I ′ B ((λ1, ea,1), . . . , (λm, eα,m), a),

then σ ∈ Sym[n],a it is also a solution of

(4.2.13) I B ((λ1, d1), . . . , (λm, dm), R).

To show that a solution returned by a recursive call also solves the original problem,
let σ be a solution of an instance that we branched into, i.e. τa†(σ, λi) < ea,i. We
show that τ(σ, λi) ≤ di. In the terms of the algorithm, note that τa† = τR

†−τa†−R† ,
because R ⊂ a.

For i 6= 1, given a solution σ of I’ and ei,α as computed by the algorithm,

τR
†
(σ, λi)−# (σi|a†−R† − λ|a†−R†)(4.2.14)

=τR
†
(σ, λi)− τa

†−R†(σ, λi)(4.2.15)

=τa
†
(σ, λi)(4.2.16)

≤ei,α(4.2.17)
=di −# (λi|a†−R† − a)(4.2.18)
=di −# (λi|a†−R† − σ|a†−R†)(4.2.19)

To see equation (4.2.19), note that σ ∈ Syma. Equation (4.2.19) holds because
a = σ|a−R. After regrouping, we find τR†(σ, λi) ≤ di, implying that σ solves I for
i 6= 1. For i = 1, the above calculation combined with Lemma 68 show that if a
recursive call returns a solution, it is also a solution of its parent node.

We use induction on d1 to show that a solution is found, if one exists. Clearly,
for d1 < 0, the algorithm is correct. Let us examine the case d1 ≥ 0.

If instruction N1 cannot find q, then, since none of the conditions in N0 applied,
if λ1 were within Sym[n],R, clearly λ1 would solve the instance. However, we cannot
generally assume that. We deal with the case that q cannot find q separately at
the end of the proof.
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If instruction N1 finds q successfully, then at least one of the sets of preference
pairs in A′ must reflect σ’s preferences, that is σ ∈ Syma,[n] for some a ∈ A′

after step N4. Since σ ∈ SymR,[n], we find that σ ∈ SymR∪a,[n] as obtained by

instruction N5. Analog the above, for a we find τa
†(σ, λi) < ea,i, and specifically

τa
†(σ, λ1) < ea,1. Hence, if a solution exists, it also solves one of the instances that

instruction N7 tries, namely the instance with restriction set a ∪ R. The recursive
call with restriction set a ∪ R must at least halve d1. Therefore, we conclude per
induction that the algorithm operates properly for the instance with restriction set
a ∪ R, and therefore correctly returns σ. We proved that if a solution exists, it is
found.

We discuss the case that instruction N1 did not find q and prove that the answer
returned by the algorithm is correct. If λ1 is not within Sym[n],R, instruction N1
changes the preference pairs of λ1 that are discordant to the entries of R to match
R. A solution must follow all preference pairs in R. It also needs to follow all
implied preference pairs in R, that is, given two preference pairs (a, b), (b, c) ∈ R,
the solution must also follow the preference pair (a, c). Therefore, we can replace
R by R′ which is obtained from R by inserting all implied preference pairs. This is
equivalent to replacing R with the set of pairs representing the edges on transitive
closure on the graph representing5 R. The result of changing all preference pairs of
λ1 discordant with R′ to match R′ is the set λ1|R′† ∪R

′.
We will show the existence of a permutation with preference pairs

λ1|R′† ∪ R
′. We will show that the permutation with preference pairs λ1|R′† ∪ R

′

either is a solution, or otherwise, there cannot be a solution, which is precisely what
instruction N1 tests.

A permutations with preference pairs λ1|R′† ∪R
′ exists if and only if the graph

corresponding to λ1|R′† ∪R
′ is acyclic. Note that the permutation we find does not

need to be a solution. Note that the graph corresponding to R′ is transitive. We
show the graph represented by R′ ∪ λ1|R′† to be acyclic by contradiction. Let us
assume that the graph would contain a cycle of length 2. Since both the graphs
representing R′ and λ1|R′† are acyclic, one of the edges would represent a prefer-
ence in R′, the other one would represent a preference in λ1|R′† of the same two
candidates, contradicting the restriction of λ1|R′† to pairs of candidates R′ has no
preference upon.

Note that the graph corresponding to λ1|R′† ∪R
′ is a tournament. If a tourna-

ment graph has a cycle of length k ≥ 3, then it also contains a cycle of length 3 [29,
Proof of theorem 7]. Since we know that R′ is transitive and acyclic, only one of
the edges of the cycle of length 3 can stem from R. That is because when any two
edges from a cycle of length 3 are chosen, their transitive closure implies the third,
left out edge. Hence, two of the edges cycle of length three must originate from
λ1|R′† . Without loss of generality, let the three nodes be 1, 2 and 3 as depicted
in Figure 4.2.1 on the facing page, where only the red (light) edge, (3,1) originates
from R′. However, R′ cannot be any set of restrictions, it must be either empty
or have been created earlier by the algorithm, further down the call stack. Since
we already concluded that one edge must stem from R′, R′ cannot be empty. By
carefully examining the creation of R′ as the transitive closure of R, as an entry of
A after instruction N4 down the stack, the edge (1, 3) must have got into R′ because
for a previous q̃, λ1 and λq̃ were discordant on the order of 1 and 3, with λq̃ favoring
3 over 1, while λ1 favored 1 over 3. However, λq̃ must also have been discordant also
on the preference on 1 and 2 or on the preference on 2 and 3, because otherwise λq̃

5Indeed, R indeed meets the definition of a binary relation, and the concept of transitive
closures is also defined for relations in a way compatible with our usage, see [65]. We could say
that R′ is defined to be the transitive closure of R.
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1

2

3

Figure 4.2.1: Cyclic graph of length three, referred to from the proof of Theorem 69.

would have had cyclic preferences. At least one of the other pairs must be within
R, too, since all discordances between the two permutations λ1 and λq̃ are reflected
in all entries of A. This contradicts our assumption that only one of the entries
originates from R′. Hence, the graph represented by R′ ∪ λ1|R′† is acyclic. Let π
be the topological sorting of the graph corresponding to R′ ∪ λ1|R′† . We showed
that a permutation with preference pairs λ1|R′† ∪R

′ exists.
Since τR

′†(π, λi) ≤ τR
†(π, λi) ≤ di ∀i, π is a solution of the instance

((λ1, d1), . . . , (λm, dn)) with restriction set R′. Since R′ only adds necessary pairs
to R, every solution of the given instance with restriction R must be a solution of
the instance with restriction set R′, too. Hence, in case π is not a solution to the
original instance with restrictions R, there cannot be a solution. If π is a solution
of the instance with restriction set R, it is found and correctly returned. Hence, if
a solution exists and q cannot be computed, instruction N1 finds and returns the
solution. If q cannot be computed and there is no solution, instruction N1 correctly
returns that there is no solution. This completes the proof. �

Theorem 70. Let ((λ1, d1), . . . , (λm, dm), R) be an instance of the neighbor
permutation problem, where n,m ∈ N, λi ∈ Sym[n] ∀i and R ⊂ Ωn, d B maxi di.
The neighbor permutation search algorithm runs in time O(24dn2m + mn2 log n).
This means that the neighbor permutation problem is fixed-parameter tractable
with respect to the parameter d1.

Proof. Let us compute the number of leaves of the search tree, since it dom-
inates the run time. The number of children of an inner node is #A. Let us recall
that #A = #A′ and

A′ B {{(y, x) : (x, y) ∈ p} ∪ P − p : p ⊂ P}.

Since P † ⊂ R†, we find that #A ≤ 2#(R†). Unfortunately, this inequality
appears to be too rough to prove the time bound that we claimed. Instead, we
present a recurrence equation for the size of the set of leaves of the search tree,
which splits A into slices depending on the distance to λ1.

For each a ∈ A, where k B #(λ1|P † − a) and d B maxi di we find:

#(P †) = τR
†
(λ1, λq)(4.2.20)

= #
(
λ1|R† − λq|R†

)
(4.2.21)

≤ #
(
λ1|R† − a

)
+ #

(
λq|R† − a

)
(4.2.22)

≤ k + dq(4.2.23)
≤ d+ k(4.2.24)
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Inequality (4.2.22) follows from Corollary 64. Note that the size of #(P †) does
not depend on k.

We bound the sizes of Ak B {a ∈ A′ : #(a − λ1|P †) = k}, which constitute A
in the sense that

A′ =
⋃

k∈[1,d1]

Ak.(4.2.25)

We have

(4.2.26) #Ak ≤
(

#(P †)
k

)
≤
(
d+ k

k

)
.

Let T (d, d1) be the size of the search tree. Then the size of the set of leaves
rooted at α can be bounded by T (d,min{d1−k, dd1/2e−1}). The number of leaves
satisfies

T (d, d1) ≤
d1∑

k=bd1/2c+1

(
d+ k

k

)
T (d, d1 − k)(4.2.27)

+
bd1/2c∑
k=0

(
d+ k

k

)
T (d, dd1/2e − 1)(4.2.28)

= I1 + I2.(4.2.29)

Clearly, T (d, 0) = 1, because of instruction N0.
We prove by induction on k that for k ≥ 1,k < d1:

(4.2.30) T (d, d̃) ≤ 22d

(
d+ d̃

d̃

)
.

For d̃ = 1, we know

(4.2.31) T (d, 1) ≤ d+ 2,

which implies inequality (4.2.30).
For d̃ = 2, because of inequality (4.2.29), we find

(4.2.32) T (d, 2) ≤
(
d+ 2

2

)
+ d+ 2,

which implies inequality (4.2.30).
For the rest of the proof by induction, suppose d1 > 2 and inequality (4.2.30)

is true for 0 ≤ d̃ < d1. We bound I1 and I2 separately.
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I1 =
d1∑

k=bd1/2c+1

(
d+ k

k

)
T (d, d1 − k)(4.2.33)

≤
d1∑

k=bd1/2c+1

(
d+ d1

k

)
T (d, d1 − k)(4.2.34)

≤
d1∑

k=bd1/2c+1

(
d+ d1

k

)(
d+ d1

d1 − k

)
22(d1−k)(4.2.35)

=
(
d+ d1

d1

) d1∑
k=bd1/2c+1

(
d1

k

)
22(d1−k)(4.2.36)

≤
(
d+ d1

d1

)
2d1−1

d1∑
k=bd1/2c+1

(
d1

k

)
(4.2.37)

≤
(
d+ d1

d1

)
22d1−2.(4.2.38)

We can proceed to show

(4.2.39) I2 ≤ 3(
(
d+ d1

d1

)
22d1−2,

where k0 B dd1/2e.

I2 =
k0−1∑
k=0

(
d+ k

k

)
T (d, d1 − k0)(4.2.40)

≤
k0−1∑
k=0

(
d+ k

k

)(
d+ d1 − k0

d1 − k0

)
22(d1−k0)(4.2.41)

=
(
d+ d1 − k0

d1 − k0

)
22(d1−k0)

k0−1∑
k=0

(
d+ k

k

)
(4.2.42)

≤
(
d+ d1 − k0

d1 − k0

)
22(d1−(dd1/2e−1))

(
d+ k0

k0

)
(4.2.43)

Now to show the bound for I2, we only need to show

(4.2.44)
(
d+ d1 − k0

d1 − k0

)(
d+ k0

k0

)
2−2k0 ≤ 3

4

(
d+ d1

d1

)
,

or equivalently

(4.2.45)
(
d+ d1 − k0

d1 − k0

)(
d1

k0

)
≤ 3

4
22k0

(
d+ d1

d1 − k0

)
.

The last equation is true, because

(4.2.46)
(
d+ d1 − k0

d1 − k0

)
≤
(
d+ d1

d1 − k0

)
,

(
d1

k0

)
≤ 1

2
2d1+1 <

3
4

22k0 ,

thus showing inequality (4.2.39).
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Summarizing, we have

T (d, d1) ≤ I1 + I2 due to (4.2.29)

≤
(
d+d1
d1

)
22d1−2 + 3(

(
d+d1
d1

)
22d1−2 due to (4.2.33) and (4.2.39)

≤ 22d
(
d+d1
d1

)
due to induction and (4.2.30)

The implication is that the search tree has at most O(22d
(
d+d1
d1

)
) = O(24d)

nodes. Let us analyze the run time needed per node.
• N0 can be solved in run time O(mn2). Checking if the graph corresponding

to R is acyclic can be achieved by computing a topological sorting which
is possible in time O(edges + vertices) = O(n2), see e.g. [35].
• Instruction N1 can be executed in time O(mn2) if the transitive closure

does not need to be computed. It needs to be computed at most once for
all recursive calls of the algorithm. The transitive closure of the algorithm
can be computed expected time O(n2) [53], or in time O(n2 log n) with
reasonable practical constants [9], or in time O(n2.376) with large hidden
constants [34, 14]. We assume O(n2 log n) deterministic time for the sake
of simplicity.
• Instruction N2 can be executed in time O(n2m), as computing the re-

stricted Kendall-τ distance can be done in time O(n2).
• Instruction N3 can be executed in time O(n2).
• When the cost of instruction N4 is assigned to its recursive calls, the run

time per node of instruction N4 and N5 is O(n2).
• Similarly, the run time per node of instruction N7 is O(1).
• Instruction N8 runs in time O(1).

Altogether, the time needed per node is within O(n2m) and instruction N1 addi-
tionally might require a run of time O(mn2 log n). As the number of leaves of the
search tree is within O(24d), so is the total number of nodes. Summarizing, we find
the total run time to be within O(24d · n2m+mn2 log n). �

For a reference implementation for which all of the above bounds hold, see
Appendix A.

Corollary 71. Let V ∈ Symm
[n], n,m ∈ N be an instance of the center ranking

decision problem with radius r. The neighbor permutation search algorithm solves
V in time O(24r · n2m+mn2 log n).

Proof. Using Remark 66 on page 50, we can reduce a center ranking
instance to an instance of neighbor permutation in time O(nm) such that the
latter is solvable if and only if the prior is solvable. The neighbor permutation
instance can be solved in time O(24d · n2m+mn2 log n). �

Since the sets R in the leaves of the algorithm must be acyclic, the algorithm
cannot have more than n! leaves. Since the leaves dominate the run time, we can
establish a corollary that restricts the run time of the neighbor permutation search
algorithm depending only on n.

Corollary 72. Let V ∈ Symm
[n], n,m ∈ N be an instance of the center ranking

decision problem with radius r. The neighbor permutation search algorithm solves
V in time

O(n! · n2m+mn2 log n).

The neighbor permutation search has been practically implemented and can
solve even large arbitrary instances for r ≤ 6 in less than 20 seconds.

For random instances with possibly large r, the algorithm performs signifi-
cantly worse than the trivial algorithm which determines the solution quality of
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every permutation of length n and then chooses the permutation with the best
solution quality. Recall that the performance of the trivial algorithm is within
O(n! · mn log n). The hidden constant of work per recursive call in the neighbor
permutation search algorithm might be reasonable, but it is significantly worse than
obtaining the solution quality of a specific permutation.

For some instances the algorithm might really consume time Θ(24rn2m). If, for
example, in instruction N4 the two permutations compared differ only in adjacent
pairs and are of distance 2r, then A is of size 22r. The practical performance of the
algorithm is discussed and compared more thoroughly in Chapter 6.

Further improvement: finding the minimum radius for the center ranking
problem. We have seen how we can solve the decision problem center ranking
by making use of the neighbor permutation search algorithm. A common technique
to solve the optimization problem associated with a decision problem is to run a
binary search for the smallest parameter in question. A binary search, as defined
by Sedgewick[55, p. 236], seeks within a specified range. To determine the range,
the radius parameter can be doubled until the decision problem becomes solvable
for the radius. Then, the minimum parameter must be within 0 and the radius
parameter for which it was solvable.

We present an adaptation of the Sedgewick algorithm on binary search adapted
to our needs. Instead of running the initial subsequent doubling, we seek within
range [dmax

2 , dmax], see Section 3.4.
Algorithm 9 solves the center ranking optimization problem in time

O(log r(n2m24r + mn2 log n)). An actual implementation can be found in Ap-
pendix A. The run times of the algorithm for practical instances are thoroughly
examined in Chapter 6.

Algorithm 9 Algorithm that solves the center ranking optimization problem
in time O(log r(n2m24r + mn2 log n)). It runs a binary search for the optimum
parameter and recursively calls the neighbor permutation search algorithm for each
candidate.

Input: An instance (λ1, . . . , λm) of the optimization
problem center ranking.

Output: The minimum r such that ∃σ∀i : τ(σ, λi) ≤ r.
B1: [Initialization]

Set r B maxi,j∈[m] τ(λi, λj). Set l B
⌊
r
2

⌋
.

B2: [Terminate loop if a solution was found]
If r = l, return r.

B3: [Set the candidate] Set x B
⌊
l+r
2

⌋
.

B4: [Reduce to neighbor permutation search] Run the

neighbor permutation search algorithm with input
((λ1, x), . . . , (λm, x)), R = ∅. If the instance
was solvable, set r B x, otherwise l B x+ 1.

B5: [Loop] Return to B2.

Further improvement: initializing the set of restrictions. The algorithm solving
center ranking might be sped up by initializing the set of restrictions not just
by the empty set. We know from Lemma 15 on page 16 that the center ranking
problem satisfies the weak Pareto criterion, which implies that if all votes agree on
the ordering of a certain pair, that ordering shall be found in the final aggregation.
Hence, we can initialize the set of restrictions in our input to the neighbor per-
mutation problem to be the intersection of all pairwise agreements between the
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votes. Unfortunately, the problem stays NP-hard even for instances where this set
is empty, as for example the instances generated by the reduction in the proof of
Theorem 17 on page 17.

If the set of restrictions is already initialized with some preferences, this restricts
the number of branches to go into, which can speed up the computation.

Further improvement: parallelization. The algorithm described above can also
be parallelized by referring all recursive calls to different threads. On this algo-
rithm, all nodes on one level of the search tree would be computed in parallel,
reducing the time needed to the depth of the search tree times the time per node.
In terms of parallel algorithms [33], on p ∈ N processors, the algorithm would run
in time T = O(pn2m) and with work (number of operations across all threads)
W = O(2p ·mn log n+ n2m).

Concluding remarks. The developed algorithm is similar to that given by Ma
and Sun [44]. The proof of Theorem 70 closely resembles [44, Theorem 1] for an
alphabet Σ = {0, 1}. The algorithm in [44] solves closest string and yields
a run time of O(nm + nd · 24d(#Σ − 1)d), where n is the string length, m the
number of input strings and d is he ball size al input strings need to fit in. It is
perhaps surprising that while bringing forward the closest string algorithm, the
equivalent of a certain string position in the closest string problem is indeed
a preference pair (a, b) with either a <λ b or a >λ b for some permutation λ.
The Hamming distance that is to be minimized in the closest string problem
counts the positions two strings differ in, while the Kendall-τ distance counts the
preference pairs that differ for two permutations. Thus, identifying string positions
with preference pairs perhaps appears more natural.



CHAPTER 5

Parameterized for “number of candidates and
radius combined”

The run time complexity of solving the center ranking problem can be
confined to both the number of votes and to the radius parameter. It comes as
no surprise that the center ranking problem is fixed-parameter tractable with
respect to the parameter “number of candidates and radius combined.” We present
two algorithms which are assumed to perform well in case the radius and the number
of candidates are both assumed to be small.

The first algorithm is discussed in Section 5.2. It is proved to run in time
O
(
mn log n ·min

{
r(2r)n, rn2r, n!

})
. The second algorithm is discussed in Section

5.3 and proved to run in time O(mn log n ·min{rnr, n!}). For n < 16, the second
algorithm represents an improvement over the neighbor permutation search algo-
rithm in Section 4.2. For n < r it represents an improvement over the search tree
algorithm presented in Section 4.1. Comparing both algorithms presented in this
chapter, the first one is a little simpler and may be easier to implement. However,
the second one is expected to outperform the first algorithm, since it enumerates
less permutations and does not seem to require more work to be done per enumer-
ation. In case that two of the input permutations have Kendall-τ distance greater
than or equal to 2r− 1, we prove the algorithm to perform in O(22rmn log n) time.

In the first algorithm, rather than trying all permutations of the given n can-
didates, we attempt to try only permutations of distance at most r to some input
permutation. We know that the solution of an instance (V, r) of the center rank-
ing problem can have at most Kendall-τ distance r from any input permutation.

We can further shrink the number of permutations tried. After choosing two
input permutations, we observe that the solution of an instance can have at most
distance r to both rankings. Further, we demand that the two input rankings be
far from one another. The second algorithm proposed thus limits the permutations
tried.

The first section provides an observation that will allow us to translocate per-
mutations at will, which we make use of in both algorithms. We then present the
two algorithms.

5.1. Translocating instances

In the following sections, we will enumerate balls in the metric space of per-
mutations with respect to the Kendall-τ distance. We can save a great deal of
computation by assuming the center of a ball to be the identity permutation. This
section provides a lemma that allows us to translocate permutations while retaining
their original pairwise distances.

We make use of a property of the Kendall-τ distance that we proved in Lemma 10
on page 11. It lets us translocate the instances to our liking. We repeat the lemma
for quick reference.

61
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Lemma. Let µ, λ, π ∈ Sym[n], n ∈ N. Then for the Kendall-τ distance,

τ(λ, µ) = τ(π ◦ λ, π ◦ µ).

When analyzing balls of permutations, we can translocate the center. We will
use the following corollary in the following chapter, where we will enumerate balls.

Corollary 73. Let µ ∈ Sym[n] and n, r ∈ N, then Br(µ) = µ−1 (Br(1)) .

Proof. This follows from

π ∈ Br(µ)(5.1.1)
⇔τ(π, µ) ≤ r(5.1.2)

⇔τ(µ−1 ◦ π, µ−1 ◦ µ) ≤ r(5.1.3)

⇔µ−1 ◦ π ∈ Br(1).(5.1.4)

�

5.2. Enumerating all permutations within a given ball

One trivial algorithm enumerates all n! permutations and tests them for being
a solution or not. It is presented in Section 3.2. We suppose an algorithm that
always checks less permutations than the trivial algorithm, while retaining the
property of the trivial algorithm of having little costs per iteration. We prove the
run time bound O

(
mn log n ·min

{
r(2r)n, rn2r, n!

})
, which proves the algorithm

to be coequal with the trivial algorithm in terms of run time, and surpass it for
small values of r. The algorithm surpasses the search tree algorithms for small
values of n.

The definition of the center ranking problem in 1.4.3 implies that the set of
solutions of an instance is the set

⋂
v∈V Br(v). The first algorithm enumerates Br(µ)

for any µ ∈ V and checks for each element whether it qualifies as a solution. To
do so, we learn to enumerate all permutations within Br(µ) for permutation µ and
radius r. It is easier to enumerate Br(1), where 1 refers to the identity permutation.
We can find the enumeration of Br(µ) by translocating the enumeration of Br(1).

To enumerate the ball around the identity permutation, we introduce a notation
of permutations we call inversion vectors. We enumerate the inversion vectors of
permutations around the identity permutation, obtain their sequence notations and
then translocate them to obtain an enumeration of Br(µ). The inversion vector can
be obtained from a permutation by replacing every element in the sequence notation
of the permutation by the number of inversions that element has with elements to
its right. For example, the permutation 45231 would be denoted as (3, 3, 1, 1).

Since only n − i positions follow after position i, it is clear that entry i of the
inversion vector needs be smaller than n− i. In this inversion vector notation, it is
easy to count inversions. The number of inversions is the sum of the entries of the
inversion vector.

Let (a1, a2, . . . , an−1) be a inversion vector with ai ≤ n − i ∀i. Then there
can be only one permutation π whose inversion vector would be (a1, a2, . . . , an−1),
as we will prove in the following lemma. The proof also shows how to translate
between the usual sequence notation and our vector notation.

Lemma 74. Let (a1, a2, . . . , an−1), n ∈ N be a inversion vector with ai ≤ n −
i ∀i. Then there can be at most one permutation π whose inversion vector is
(a1, a2, . . . , an−1).

Proof. Let π = p1p2 . . . pn and ρ = q1q2 . . . qn denote two permutations out
of Sym[n], n ∈ N, whose inversion vectors both equal (a1, a2, . . . , an−1). We prove
π = ρ.
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For any number b ∈ [n] to go in the first position, we already know how many
entries it must precede that are smaller than itself. That number would be b − 1.
We deduce p1 = q1, since

(5.2.1) p1 = a1 + 1 = q1.

For the next position i, let us for the sake of induction assume that all positions
pj = qj , j < i have been set already. We know that pi and qi precede exactly ai
elements that are smaller than they are. Thus, the ai + 1st smallest element out of
the set of entries that have not been placed yet must equal pi and qi. By induction,
we find that π = ρ. �

Careful consideration of the above proof shows precisely how to obtain the
sequence notation of the permutation described by an inversion vector. We re-
formulate the method into an algorithm, see Algorithm 10. We will refer to the
function that maps between inversion vectors and sequence notation as P.

Algorithm 10 Alogarithm of the P function, which obtains the permutation de-
scribed by an inversion vector, as described in the proof of Lemma 74.

Input: (a1, a2, . . . , an−1), the inversion vector.
Output: p1p2 . . . pn B P ((a1, . . . , an−1)), the permutation

associated with inversion vector
(a1, a2, . . . , an−1) in sequence notation.

P1: [Init] Set i B 1.
P2: [Find candidates for pi] Set

S B {s ∈ [n] : s 6= pj∀j < i}.
P3: [Set pi] Choose the ai + 1st smallest element

from S and declare it to be pi.
P4: [Loop] If i = n, return p1 . . . pn, otherwise

set i B i+ 1 and return to P2.

We enumerate the inversion vectors of Br(1). Enumerating inversion vectors,
i.e. vectors (a1, . . . , an−1) with

∑
i ai ≤ r and ai ≤ n − i ∀i can be done very

similarly to enumerating all numbers in a certain range, only that each position
has its own limit after which it is overflowed. We describe how to enumerate the
inversion vectors by giving the immediate next vector after NEXT((a1, . . . , an−1)) in
Algorithm 11.

Algorithm 11 Algorithm for the NEXT function, finding the next inversion vector
when enumerating Br(1).

Input: An inversion vector (a1, . . . , an−1) ∈ [n]n−1

with ai ≤ n− i ∀i; radius r ∈ N.
Output: (b1, . . . , bn−1) B NEXT((a1, . . . , an−1))
Initialize: (b1, . . . , bn−1) B (a1, . . . , an−1)
FOR i FROM n− 1 DOWNTO 1 DO BEGIN

(*) IF ai ≤ n− i AND
∑
j≤n aj < r THEN BEGIN

bi B ai + 1;
RETURN (b1, . . . , bn−1)

END ELSE BEGIN
(**) bi B 0

END
END;
RETURN “None”
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To understand the behaviour of Algorithm 11 better, let us examine the over-
flowing vectors it enumerates for n = 3 and r = 2.

Example. For n = 3 and r = 2, Algorithm 11 outputs vectors o1 through o9,
where

o1 = (0, 0, 0)

o2 = (0, 0, 1)

o3 = (0, 1, 0)

o4 = (0, 1, 1)

o5 = (0, 2, 0)

o6 = (1, 0, 0)

o7 = (1, 0, 1)

o8 = (1, 1, 0)

o9 = (2, 0, 0).

Lemma 75. Let 1 ∈ Sym[n], n ∈ N. Algorithm 11 enumerates the inversion vectors
of Br(1), r ∈ N.

Proof. For each π ∈ Br(1), the inversion vector of π can be obtained by
a finite number of executions of Algorithm 11 with the result of the previous in-
vocation as input. The first input should be (0, . . . , 0). We merely outline the
proof by stating that the inversion vectors are enumerated exactly as numbers in
digit representation are, only that the overflow occurs at different limits for each
position. �

The algorithm we present enumerates Br(µ) using Algorithm 11 and Algo-
rithm 10, then checks for each member of Br(µ) whether it is a solution. See
Algorithm 12 for the pseudo-code of the procedure.

Theorem 76. Let V ∈ Symm
[n], n ∈ N, an instance of the center ranking prob-

lem. Algorithm 12 correctly solves V .

Proof. Due to the definition of the center ranking problem, for µ as chosen
by the algorithm, the solution needs be within Br(µ), if it exists. The (a1, . . . , an−1)
vector in the repeat loop enumerates the inversion vectors of Br(1) due to Lemma
75. Due to the correctness of Algorithm 10 and Corollary 73, π enumerates Br(µ).
If a solution exists, the algorithm enumerates and checks it. Otherwise, “None” is
returned correctly. �

In summary, to enumerate all permutations, we generate all integer vectors of
length n− 1 with 0 ≤ ai ≤ n− i ∀i with a1 + a2 + · · ·+ an−1 = r, we retrieve their
sequence notations, translocate them using µ and then test for each enumerated
permutation whether it is a solution. The algorithm enumerates Br(µ) which is of
the same size as Br(1). Therefore, the algorithm’s run time depends on the size of
Br(1). We therefore investigate the asymptotic size of #Br(1).

The size of Bk(1) can be expressed exactly using Tahonian numbers1. The
Tahonian number b(n, k) is the number of permutations of n entries and k inver-
sions. The Tahonian numbers can be described by a simple recurrence equation for
k ≤ n as follows:

b(n+ 1, k) = b(n+ 1, k − 1) + b(n, k).
The Tahonian numbers b(n, k) are defined to be the number of permutations of
length n with exactly k inversions. We have

1Named after MacMahon, see Bona [10, p. 50].
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Algorithm 12 Algorithm that enumerates all permutations of a given distance r
around permutation µ. It uses function P which translates between the inversion
vector and the sequence representation of a permutation, see Algorithm 10. It uses
function NEXT which enumerates inversion vectors, see Algorithm 11. The run time
is O(mn log n · r(2r)n).

Input: An instance (V, r) of center ranking of
votes ∅ 6= V ⊂ Sym[n] and radius r ∈ N

Output: A solution π, i.e. π ∈
⋂
µ∈V Br(µ)

if one exists, “None” otherwise.

[Initialize vector (a1, . . . , an−1)]
a1 B . . . B an−1 B 0.

[Choose µ to be any element of V ]
µ B V [1];

[Loop]
REPEAT (a1, . . . , an−1) B NEXT((a1, . . . , an−1), r)

π B µ−1 ◦ P (NEXT((a1, . . . , an−1)));
IF τ(π, µ) ≤ r′ ∀µ ∈ V THEN RETURN π

UNTIL (a1, . . . , an−1) = "None";

RETURN “None”

#Br(1) = #

(⋃
k′

{λ ∈ Sym[n] : inv(λ) = k′}

)
(5.2.2)

=
∑
k′

#{λ ∈ Sym[n] : inv(λ) = k′}(5.2.3)

=
∑
k′

b(n, k′).(5.2.4)

We upper-bound the number of permutations of n candidates and k inversions
as follows.

Lemma 77. Let n, k ∈ N, then Tahonian number

b(n, k) ≤ (2k + 2)n.

Proof. The inversion vectors of a permutations of exactly k inversion needs to
have an entry out of [1, k+ 1] in the first position of the solution sequence, because
if the entry were bigger than k + 1, more than k smaller elements would follow,
and hence it would have more than k inversions. Similarly, we know that for every
position i, the element of the solution string must be chosen out of [i−k−1, i+k+1].
We can conclude that for every position, out of which n exist, we can choose
between 2k+2 elements. Concluding, there cannot be more than (2k+2)n Tahonian
permutations of length n with exactly k inversions. �

We can give yet another bound. We bound the number of permutations of n
candidates and k inversions.

Lemma 78. Let n, k ∈ N, then Tahonian number

b(n, k) ≤
(
n

2

)k
= O(n2k).
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Proof. By definition b(n, k) is the number of permutations with k inversions.
This is of course smaller than the number of sets of r unordered pairs of k entries
which is

(
n
2

)k. �

We are now able to prove a bound on the number of permutations of Kendall-τ
distance at most r from the identity permutation #Br(1).

Theorem 79. Let 1 ∈ Sym[n], n, r ∈ N, then

#Br(1) = O
(
min{r(2r)n, rn2r, n!}

)
.

Proof. Of course, #Br(1) ≤ n! is trivial, since Br(1) ⊂ Sym[n]. The claim
#Br(1) = O (r(2r)n) is a consequence of equations (5.2.3) and Lemma 77. We can
establish it by

#Br(1) ≤
r∑

k′=1

b(n, k′)(5.2.5)

≤
r∑

k′=1

(2k′ + 2)n(5.2.6)

≤ r(2r + 2)n.(5.2.7)

Finally, #Br(1) = O
(
rn2r

)
can be established similarly using Lemma 78.

#Br(1) ≤
r∑

k′=1

b(n, k′)(5.2.8)

≤
r∑

k′=1

(
n

2

)k′
(5.2.9)

≤ 1
2
rn2r.(5.2.10)

�

Theorem 79 tells us the run time of Algorithm 12 on the preceding page which
solved the center ranking problem by trying only permutations out of a ball of
radius r. The following was claimed at the start of the chapter.

Theorem 80. Let (V, r) be an instance of the decision center ranking decision
problem, r ∈ N, and V ∈ Symm

[n], n,m ∈ N. Algorithm 12 solves (V, r) in

O
(
mn log n ·min

{
r(2r)n, rn2r, n!

})
time.

Proof. Let us first note that Algorithm 11 runs in time O(n). To see it, let
us realize that the loop is executed n times. The sum in line (*) needs to be
computed completely only once. In every later loop, we only need to update the
previous computation by subtracting ai from the previously computed value every
time line (**) is executed.

Algorithm 10 runs in time O(n log n). We can store set S as a binary search
tree, by which we mean a tree where for every node the left subtree of a node
contains only values less than the node’s value and the right subtree of a node
contains only values greater than the node’s value. It is important to create the
search tree such that it has depth of at most log n, which is the case for a complete
binary tree. We then attach the number of descendants to every node of the search
tree. The algorithm needs to find and delete the ai + 1st smallest entry of the tree
in instruction P3. We can find the ai + 1st smallest entry by navigating through
the tree according to the information attached to every node. We need to keep the
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information up to date upon deletions, which requires O(log n) time upon every
deletion. Each find-and-delete step can thus be executed in O(log n) time. Since
the loop P4 is executed n times, Algorithm 10 runs in time O(n log n) using a binary
search tree. Note that it is not necessary to re-balance the tree after the deletions.

Algorithm 12 calls Algorithm 11 and then Algorithm 10 once for every per-
mutation ν ∈ Br(µ), precisely to obtain ν ∈ Br(µ) in sequence notation, which
takes O(n log n) time. It then proceeds to verify if ν is a solution, which requires
computing the Kendall-τ distance m times, requiring O(mn log n) time in total, see
Section 1.4.8. The distance is computed once for each ν ∈ Br(µ).

Therefore, Algorithm 12 runs in time O(mn log n ·#Br(µ)). We can deduce by
Theorem 79 and Corollary 73 that the run time needs to be within

O(mn log n · Br(µ)) = O(mn log n ·#Br(1))(5.2.11)

= O
(
mn log n ·min

{
r(2r)n, rn2r, n!

})
.(5.2.12)

This completes the proof. �

5.2.1. Lower bound. The bounds on the ball size #Br(1) appear rather
rough in many respects. In particular, we might have hopes that the size of ball
#Br(1) might be only polynomial in n or r if we just find a more accurate proof
on the bounds. That is, however, not the case.

Lemma 81. Let n, k ∈ N, n ≥ 2, and let n be even. Then Tahonian number

b(n, k) ≥
(
n/2
k

)
.

Proof. We count permutations of k inversions of the form (2i − 1, 2i). For
example, for n = 3, and k = 2, these permutations are 124365, 213465, 214356.

In a permutation of length 2n, exactly n such inversions can occur and they
are completely independent. For k ≤ 2n, we can choose k of the inversions. We
have

(
n
k

)
possibilities to do so, which all lead to different permutations. �

The implication for the ball size #Br(1) would be the following lemma.

Lemma 82. Let 1 ∈ Sym[n], n ∈ N denote the identity permutation, let k ∈ N, r ≤(
n
2

)
. Then

#Br(1) = Ω((
n

2r
)r).

Proof. We have

Br(1) =
∑
k′≤r

b(n, k′)(5.2.13)

≥ b(n, r)(5.2.14)

≥
(
n/2
r

)
(5.2.15)

=
∏
i≤r

n/2 + 1− i
r + 1− i

(5.2.16)

≥
∏
i≤r

n/2
r

(5.2.17)

= (
n

2r
)r(5.2.18)

Inequality (5.2.17) holds since n/r < (n−i)+1
(r−i)+1 for i > 0. �
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Looking at merely one input vote does not bring us fixed-parameter tractability
with respect to either parameter radius r or candidates n.

Theorem 83. Let p be a polynomial and f be any function. Let 1 ∈ Sym[n], n, k ∈
N. Then

#Bk(1) /∈ O(p(n)f(k)).

Proof. If #Bk(1[n]) = O(p(n)f(k)) for a polynomial p and some function f ,
then due to Corollary 82

#Bk(1) ∈ O(p(n)f(k))⇒ lim
n→∞

( n2k )k

( n
2k′ )

k′
<∞ ∀k, k′

⇒ lim
n→∞

n2/4
n/2

<∞ for k = 2 and k′ = 1

⇒ lim
n→∞

n/2 <∞.

Which is false. Thus #Bk(1) /∈ O(p(n)f(k)), completing the proof. �

Algorithm 12 provides an easy to implement algorithm which does relatively
little work per tested permutation and provably tries less permutations than the
trivial algorithm which tries all permutations. For small values of n, it can outper-
form the search tree algorithms from Chapter 4.

5.3. Enumerating the intersection of two balls

In the Euclidean plane, two balls of sufficient distance have a rather small inter-
section, as depicted in Figure 5.3.1. While the intuition the Euclidean plane gives
us might be encouraging, it is also misleading. The metric space of permutations
with Kendall-τ distance is very much unlike the Euclidean plane. For instance,
there are numerous shortest paths between two permutations.

The algorithm presented in this section is proved to run in O(nr · rmn log n)
time. The algorithm is especially good when the input contains two votes of
Kendall-τ distance at least 2r − 1. In that case, the size of the intersection is
bounded by 22r. For distances greater than 2r, the instance can trivially be iden-
tified as a no-instance, see Data Reduction Rule 28 on page 22.

For an instance (V, r) of the center ranking decision problem, we know that
the solution must be within range r from every input permutation. Therefore, if
we choose any two input permutations, the solution must be within Br(λ)∩Br(µ).
To keep the intersection small, we will choose λ and µ such that τ(λ, µ) > r. We
can do so, because if no two such two input permutations exist, Data Reduction
Rule 28 on page 22 can decide the instance.

We present an algorithm that enumerates the intersection of two balls in the
metric space of permutations. We will choose the balls such that a solution must be
enumerated if it exists. We study the sizes of the intersections rigorously, showing
both upper and lower bounds for the size of the intersection.

We translocate the two balls we want to enumerate such that the center of one of
them is the identity permutation. The following proposition is an easy consequence
of Lemma 10 on page 11.

Proposition 84. Let λ, µ ∈ Sym[n], n ∈ N be two permutations and r ∈ N, then

Br(λ) ∩ Br(µ) = λ−1(Br(1) ∩ Br(λ−1 ◦ µ)).

We present an algorithm that enumerates the intersection (Br(1)∩Br(λ−1 ◦µ).
The general idea of the algorithm enumerating the ball intersection is to build
up the permutations from left to right. We start by setting the first digit of the
permutation. We check if any permutation within the intersection starts with that
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Figure 5.3.1: Intersection of two balls in Euclidean space.

digit. We add the next digit and check whether there is a permutation starting
with the starting sequence we have chosen so far. We repeat the process, each time
choosing a new digit, making sure that after each time a digit is added, the new
starting sequence can be completed to a permutations within the intersection. The
algorithm enumerates the intersection by trying all ways of adding a new digit.

To understand how the algorithm enumerates Br(1)∩Br(λ−1 ◦µ), it is decisive
to understand that computing the Kendall-τ distance and inversion counting are
closely related, since the algorithm computes all Kendall-τ distances by counting
the number of inversions. One advantage of counting inversions is that it is fairly
easy to tell how many inversions the first entry of a permutation participates in, in
case the set of entries of the permutation is [n]. The first entry b of a permutation
must participate in b − 1 inversions, since exactly b − 1 entries smaller than itself
are listed to its right. See [10, p. 50] for an explanation of this way of counting
inversions.

The algorithm keeps count on the distance left to both ball centers in every
recursive call, which is decreased by the inversions of the newly set digit with entries
to its right. The observation that the first digit b of a permutation participates in
b− 1 inversions holds only if the set of entries of the permutation equals {1, . . . , k}
for some k ∈ N. That is why once the algorithm chooses a first position, it changes
the remaining entries so that in the recursive call the set of entries is {1, . . . , k}.
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For a newly determined entry b, the distance to 1 is increased by b − 1, which is
the number of entries smaller than itself to its right. Similarly, we can increase the
distance to λ by λ−1(b)−1. See Algorithm 13 for the pseudo-code of the operation.

Algorithm 13 Enumerates the intersection of two balls in permutation space. The
ball centers have distance greater than r but smaller or equal 2r and both radii
are r.

Input: Ball center λ, radius r,
discordance counters iλ, and i1.
Inequality r < τ(λ,1) ≤ 2r must hold.

Output: Br−iλ(λ) ∩ Br−i1(1).
J1: Initialize the answer set as A B ∅.
J2: Initialize D to be the set

{d : d− 1 + λ−1(d)− 1 + τ(λ|[n]−{d},1) ≤
2r − iλ − i1 ∧ d− 1 ≤ i1 ∧ λ−1(d)− 1 ≤ iλ}

J3: Let d ∈ D be any element from D.
Remove d from D.

J4: Update iλ and i1:

iλ,d := iλ + λ−1(d)− 1
i1,d := i1 + d− 1

J5: Run this algorithm with input ρ(λ|[n]−{d}) and
discordance counters iλ,d and i1,d,
and store the answer in B.
Here, function ρ lowers all entries in
λ[n]−{d} that are greater than d by one.

J6: Let ρ−1 denote the function that undoes
the effect of ρ from J5.
Prepend d to each entry of ρ−1(B) and
add the resulting set to A.

J7: If D is not empty, return to J3.
J8: Return A.

Note that J5makes sure that the set of candidates in recursive calls is {1, . . . , k}.
For example, if λ = 45321 and d = 3, then ρ(λ|[n]−{d}) = 3421 is λ after striking
out d and lowering all entries greater than d by one.

The complete algorithm merely enumerates the intersection and checks for each
member whether it qualifies as a solution. See Algorithm 14 on the next page.

Lemma 85. Let λ ∈ Sym[n], n ∈ N. Algorithm 13 correctly
enumerates Br(λ) ∩ Br(1).

Proof. The algorithm builds up the permutation in sequence notation from
left to right. We call the first entries in the sequence notation of a permutation
the permutation’s starting sequence. At any point, the algorithm already knows a
starting sequence s, which consists of all starting digits chosen by previous recursive
calls, and decides for each digit d if there is a permutation within Br(λ) ∩ Br(1)
with starting sequence sd. If there is, the algorithm branches into the new starting
sequence, otherwise it abandons the digit. We prove the correctness of the algorithm
by induction on the length of the starting sequence l.

Clearly, unless τ(1, λ) > 2r, which we excluded, there is a permutation with the
empty starting sequence. Assume for the sake of induction that we already know



5.3. ENUMERATING THE INTERSECTION OF TWO BALLS 71

Algorithm 14 Solves an instance of center ranking using Algorithm 13 on the
facing page.

Input: An instance (V, r) of the center ranking problem.
Output: σ such that maxλ∈V τ(σ, λ) ≤ r,

“None” if there is none.
I1: From the input, verify that

∀λ, µ ∈ V : τ(λ, µ) ≤ 2r.
Otherwise, answer “None.”

I2: Choose any two λ1, λ2 ∈ V with τ(λ1, λ2) > r.
If no such two exist,
any λ1 ∈ V is a solution.

I3: Collect Bk(1) ∩ Bk(λ−1 ◦ µ)
into a set A using Algorithm 13.
As Arguments, pass it the ball center
λ−1 ◦ µ, radius r and iλ = i1 = 0.

I4: Replace A with {λ−1 ◦ α : α ∈ A}.
I5: Remove any a ∈ A from A.
I6: Check if a is a solution. If it is, return a.
I7: If A 6= ∅, return to I5.
I8: Return “None”.

if for a starting sequences of length l if a permutation exists. Now given a starting
sequence s of length l for which there is a permutation with that starting sequence,
for d ∈ [n] we need to decide whether or not a permutation π ∈ Br(λ)∩Br(1) exists
with starting sequence sd, where sd is the concatenation of s and d. For example,
for s = 432 and d = 1, we have sd = 4321.

First, we show that after choosing d ∈ D in instruction J2, there exists a
permutation with starting sequence sd in Br(λ) ∩ Br(1), which we denote as sdπ,
where sd is the starting sequence and π denotes all symbols to the right of the start
sequence. We refer to π as the tail of the permutation. Let λ|C denote permutation
λ after striking out all entries except those present in C. Let C = [n] denote the
set of candidates and let C − sd denote the symbols out of C that are not part of
the start sequence sd.

We present precise instructions how to choose π such that sdπ ∈ Br(λ)∩Br(1).
We choose the π in the “middle” between permutations λ|C−sd and 1|C−sd. A
permutation can be turned into any other through repeated swapping of adjacent
entries and the number of swaps needed equals the Kendall-τ distance. We start
on permutation 1|C−sd and repeatedly swap adjacent entries that are discordant
with λ|C−sd. Let r′ B τ(λ,1). Let iλ be the cardinality of the subset of the set of
discordances {b, c} between sdπ and λ, where either b or c occurs in s. Note that iλ
is independent from π. Further, i1 is the cardinality of the analog subset of the set
of discordances between sdπ and 1. Note that both iλ and i1 are part of the input
to Algorithm 13, but we will show that they are passed as arguments such that the
above holds. Figuratively, iλ is the distance from s to λ and i1 is the distance from
s to 1.

After q of the swaps that turn 1 into λ, we obtain a permutation π for which
the following holds:

(5.3.1) τ(π,1|C−sd) = q ∧ τ(π, λ|C−sd) = τ(λ|C−sd,1|C−sd)− q = r′ − iλ − i1 − q.

We set q to be any element of I B [r′ − r + iλ,d, r − i1,d], where

iλ,d B iλ + λ−1(d)− 1
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and
i1,d B i1 + d− 1,

as defined in instruction J4. Before every recursive call, instruction J5 ensures that
the set of candidates in the recursive call is the set [n−1]—preventing the occurrence
of gaps, and thus allowing us to compute the number of inversions in dπ that d
participates in, as d− 1 on every level of the recursion, because in π, exactly d− 1
entries that are smaller than d must occur. Therefore, for any sdπ ∈ Br(λ)∩Br(1),
discordance counter iλ,d is the cardinality of the subset of the set of discordances
{b, c} between sdπ and λ, where either b or c occurs in sd, and i1,d is the analog
discordance counter for 1 instead of λ. We have shown that the inversion counters
are passed, such that they describe the discordances of the starting sequence with
1 and λ, respectively.

We show that sdπ ∈ Br(λ)∩Br(1). Remember that r denotes the radius of the
instance. It is easy to verify that the first condition in J2, which is the following

(5.3.2) d− 1 + λ−1(d)− 1 + i(λ|[n]−{d}) ≤ 2r − iλ − i1
holds if and only if I is not empty. The other two conditions in J2 hold if and

only if iλ,d, i1,d ≥ 0. Then, q ∈ I together with equation (5.3.1) imply that for π

τ(π,1|C−sd) = q ≤ r − i1,d(5.3.3)

and τ(π, λ|C−sd) = r′ − q ≥ r′ − r + iλ,d,

and therefore

(5.3.4) τ(π, λ|C−sd) ≤ r − iλ,d.
As for the distance from π to λ, we then have

iλ + λ−1(d)− 1 = r − iλ,d ≥ τ(π, λ|C−sd) = τ(dπ, λ|C−s) + λ−1(d)− 1(5.3.5)
⇒ τ(dπ, λ|C−s) ≤ r − iλ
⇒ τ(sdπ, λ) ≤ r.

Analogously, we deduce τ(π,1) ≤ r. We have shown that sdπ ∈ Br(λ)∩Br(1).
Let us show the converse, which is that if a permutation sdν ∈ Br(λ) ∩ Br(1)

exists, then d ∈ D as defined in instruction J2, when the prefix set is s. We can
choose a q so that we can obtain ν by subsequently swapping q adjacent pairs of
candidates in 1|C−sd that are discordant with λ|C−sd. For this q, we can trace back
all the above computation and find that d ∈ D as defined in J2.

We have proved that the digit is correctly chosen. We conclude by induction,
that the rest of π will be chosen correctly in the remaining recursive calls, since in
each of them the starting sequence will be longer than l. Once all digits have been
correctly chosen, all permutations have been correctly enumerated, completing the
proof. �

Corollary 86. Let (V, r), V ∈ Symm
[n], n,m, r ∈ N be an instance of the center

ranking decision problem. Algorithm 14 correctly solves V .

Proof. Due to the definition of the center ranking problem, if a solution
exists, it is in Br(µ) ∩ Br(λ) for µ, λ as chosen by the algorithm. Note that if
λ, µ cannot be picked, then the algorithm correctly solves the instance due to Data
Reduction Rule 28 on page 22.

Algorithm 13 correctly enumerate Br(µ) ∩ Br(λ) due to Lemma 85 and Corol-
lary 73 on page 62. For every element in the intersection, it is tested whether it
solves the instance, and if so, it is returned. Otherwise “Not found” is returned.
Since the solution, if one exists,is in the enumerated intersection, the algorithm
works correctly. �
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The run time of Algorithm 13 depends on the number of permutations in the
intersection (Br(λ) ∩ Br(1)). We upper-bound the size of #Br(λ) ∩ Br(1)) under
the condition τ(1, µ) > r, which is met by the algorithm. We show the following.

Lemma 87. Let µ,1 ∈ Sym[n], n, r ∈ N, where 1 is the identity permutation and
τ(1, µ) > r, then #(Br(1) ∩ Br(µ)) = O(rnr + 2r).

Proof. Let Q denote all “non-inversions”, i.e. all unordered pairs {a, b} with
a < b and a <µ b. Let P denote all inversions, i.e. all unordered pairs {a, b} with
a < b and a >µ b. We know that λ ∈ Br(1) ∩ Br(µ) may contain at most r
inversions. For each pair of λ of candidates a and b, either {a, b} ∈ Q or {a, b} ∈ P .
We show that out of the inversions in λ at most r/2 inversions can be picked out
of Q and at most r can be picked out of P .

Using the restricted Kendall-τ distance notation from Definition 60 on page 48,
we can denote

(5.3.6) τ = τP + τQ.

For each pair {a, b} ∈ P , λ must show a preference, where #P must be greater
than r. Each preference increases the τP -distance to either 1 or µ by one. The
pigeonhole principle now says, that either τP (λ,1) ≥ r

2 or τP (λ, µ) ≥ r
2 . Without

loss of generality, let us assume that

(5.3.7) τP (λ,1) ≥ r

2
.

.
Equation (5.3.6) and equation (5.3.7) imply

(5.3.8) r ≥ τ(λ,1) = τQ(λ,1) + τP (λ,1) ≥ τQ(λ,1) + r/2,

and hence τQ(λ,1) ≤ r/2, which means that at most r/2 inversions may be
chosen out of Q, which has size

(
n
2

)
−#P = O(n2). Naturally, since λ cannot have

more than r inversions, only r can be picked out of P .
To choose at most r

2 inversions out of Q, we have at most

(5.3.9)
∑
j≤ r2

(
#Q
j

)
= O

(∑
j≤ r2

(#Q)j
)

= O
(r

2
(#Q)r/2

)
= O (rnr)

possibilities. To choose r inversions out of P , we can choose any subset of elements
in P , out of which 2#P = O(2r) exist.

Together, we have that

(5.3.10) #(Br(1) ∩ Br(µ)) = O(rnr + 2r),

completing the proof. �

Theorem 88. Let (V, r) be an instance of the center ranking problem, where
r ∈ N and V ∈ Symm

[n], n,m ∈ N. For n ≥ 2, Algorithm 14 solves (V, r) in time

O(nr · rmn log n).

Proof. Algorithm 14 chooses λ, ν ∈ V and for µ B λ−1 ◦ ν, it uses Algo-
rithm 13 to enumerate the set Br(1) ∩ Br(µ). Note that τ in instruction J2 does
not need to be recomputed for every recursive call. It can instead be decreased by
d−1 in every recursive call. Hence, the time consumed by Algorithm 14 equals the
number of permutations checked times the number of time spent on each permuta-
tion.

• Instruction I1 can be run once in time O(n log n).
• Instruction I2 can be run once in time O(mn log n).
• Instruction I3, I4, and I5 can be run in time O(n) per permutation

enumerated.
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• Instruction I6 can be performed in time O(mn log n) per permutation
enumerated, by computing m Kendall-τ distances in time n log n, see Sec-
tion 1.4.8.
• Instruction I7 and I8 can be executed in O(1).

We have that Algorithm 14 runs in time

O(#(Br(1) ∩ Br(µ))mn log n) = O(nr · rmn log n),

due to Theorem 87 and 73. �

Algorithm 14 performs especially well in case that τ(λ, µ) ≥ 2r − 1, as we see
in the following lemma.

Lemma 89. Let λ, µ ∈ Sym[n], n ∈ N with τ(λ, µ) ≥ 2r − 1, then

#(Br(λ) ∩ Br(µ)) ≤ 22r.

Proof. In Chapter 4 we noted that permutations can be defined as binary
relations, and those in turn as sets of ordered pairs, which we call “preference pairs.”
Recall that a “discordance” between permutation λ and µ was defined to be a pair
{a, b}, a, b ∈ [n], a 6= b such that λ and µ list a and b in different order. There are at
least 2r−1 discordances between λ and µ. Let A be the set of discordances between
λ and µ. Permutation ν ∈ Br(µ)∩Br(λ) needs to assign its own preference on each
pair of candidates in A. For a pair of candidates in A, no matter which preference
we choose, the pair must be in discordance with either λ or µ. By the pigeonhole
principle, at least r of ν’s preference pairs must be discordant with one one of λ
and µ. Let us assume without loss of generality that ν has at least r discordances
with λ. There cannot be a discordance between ν and λ that is not present in A
already—or otherwise there would be more than r discordances between ν and λ,
implying ν /∈ Br(λ). Hence, ν can be obtained from λ by reversing a subset of size
r of A. Since #A ≤ 2r, there are at most 22r subsets of A. There are at most 22r

possibilities to obtain ν. Hence, there can be no more than 22r permutations in
Br(µ) ∩ Br(λ). �

In case that there are two permutations λ and µ of distance greater than or
equal to 2r−1, the intersection between them is of a cardinality which is exponential
solely in the radius. We present the run time in case two input permutations are
of distance greater than 2r − 1 in the following corollary.

Corollary 90. For an instance (λ1, . . . , λm) ∈ Symm
[n], n,m ∈ N, of the center

ranking problem, Algorithm 14 runs within time O(22rmn log n) for radius r.

Since the run time very strongly improves the farther the two ball centers are,
it might be of advantage to change instruction I2 in Algorithm 14 to choose the
two input permutation with the greatest pairwise distance. This would, however,
add a one-time run time cost of O(m2n log n).

5.3.1. Lower bounds for Algorithm 13. As we did in Section 5.2, we may
ask if we merely failed to prove a better bound, even though one exists. We show
that the enumerating the intersection of two balls whose centers are r apart, where
r is within ]r, 2r], cannot lead to a fixed-parameter algorithm. Specifically, we show
that for n ∈ N, we can give an example of a ball intersection for the closest
string problem, which can be translated to understanding that for each n ∈ N,
there are permutations λ, µ ∈ Sym[n] such that

#Br(µ) ∩ Br(λ) = Ω
(

max
{

2r/2,
(n/2− r − 1)r/2

r
2 !

})
.
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To show lower bounds for the run time of Algorithm 13, we lower bound the
cardinality of the intersection of the balls which is enumerated. We do so by giving
a lower bound for a similar intersection in the metric space of strings, with the
Hamming distance used as the metric. This is helpful, since we can translate a set
of strings to a set of permutations of equal distances, see Corollary 19 on page 18.

We show that the intersections of two balls of radius d in the metric space
of strings of equal same length, with the Hamming distance as a metric, is within
Ω
(
2r/2

)
. Using the transformation from strings to permutations from Section 2.2.1,

we prove that the enumeration cannot lead to a parameterized algorithm with
respect to the parameter r.

We find two strings s′′1 and s′′2 , such that #(BdH ,r(s
′′
1)∩BdH ,r(s′′2)) = Ω

(
2r/2

)
.

Let s′′1 B 0D and s′′2 B 0D−r−11r+1, r > 3. hence dH(s′′1 , s
′′
2) = r + 1. We show

a lower bound for #I, I B BdH ,r(s
′′
1) ∩ BdH ,r(s′′2), by listing numerous elements

contained in the intersection. They shall have the form bd where b is of length
D− r− 1 and d is of length r+ 1. All strings bd ∈ I are to share the same d, but
differ in the b part.

We find numerous strings of the form bd ∈ {0, 1}D with

(5.3.11) dH(s′′i , (b,d)) ≤ r, i = 1, 2,

which are all be members of I. We choose d B 1b
r+1

2 c0d
r+1

2 e). For b = 0, we
have

(5.3.12) dH(s′′i ,bd) = d1
2
dH(s′′1 , s

′′
2)e, i = 1, 2

We can still change b while staying within the bounds set by equation (5.3.11).
We can choose b to be any string with

(5.3.13) b ∈ {0, 1}D−r−1, dH(b, 0D−r−1) = br
2
c − 1,

because then

dH(bd, s′′i ) ≤
⌊r

2

⌋
− 1 +

⌊
r + 1

2

⌋
≤ r.

Therefore, bd for an b satisfying equation (5.3.13) is within I. To see how
many choices we have on b. We can choose b r2c − 1 ones to go into any position
out of D − r − 1 positions. The number of ways to do so is

#(BdH ,r(s
′′
1) ∩ BdH ,r(s′′2)) ≥

(
D − r − 1
b r2c − 1

)
(5.3.14)

=
(D − r − 1)!

(b r2c − 1)!(D − r − 1− b r2c+ 1)!
(5.3.15)

= Ω
(

(D − r − 1)r/2
r
2 !

)
(5.3.16)

For D ≥ 2r we can lower-bound the above using a result by Stanica et al. [57,
Corollary 2.9], which gives lower bounds on binomial coefficients. We have

(5.3.17) #(BdH ,r(s
′′
1) ∩ BdH ,r(s′′2)) = Ω

(
2r/2

)
.

Using the transformation from strings to permutations from Section 2.2.1,
equations (5.3.16) and (5.3.17) prove that the intersection algorithm gives a fixed-
parameter algorithm neither with respect to candidates nor with parameter radius.
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5.3.1.1. Intersecting three or more balls. Given an input (S, r) to the closest
string problem with s1, s2, s3 ∈ S and dH(si, sj) > r, if i 6= j. We lower-bound⋂
i≤3 BdH ,r(si). Even if 3 strings of pairwise distances greater than r would exist,

we would still find examples for s1, s2, s3 such that #
(⋂

i≤3 BdH ,r(si)
)

= Ω
((

D
1
2 r

))
.

Example 91. Let us consider three input strings like these:

s1 = 0000000000
s2 = 0000001111
s3 = 0000111100

We denote the concatenation of two strings y and z as yz. Here,
⋂
i≤3 BdH ,r(si)

would contain all strings of the form b001100,b ∈ {0, 1}4, with dH(b, 04) ≤ 1 are
in the intersection.

Generalizing, we can set the following.
We denote the string of q repeated ones as 1q. Let q ≤ D ∈ N be even. Then

consider

s1 =0D

s2 =0D−q1q

s3 =0D−
3
2 q1q0

1
2 q

Here, we have that dH(si, sj) = q, if i 6= j. Let us choose radius r B q+ 1. All
strings of the form b0

1
2 q1

1
2 q0

1
2 q with b ∈ {0, 1}D− 3

2 q, dH(b, 0D−
3
2 q) ≤ r− 1

2q are in

the intersection. The number of such strings b is within Ω
((

D
r− 1

2 q

))
= Ω

((
D
1
2 r

))
.

We can even say that with a fairly large number of such balls, we would not reach
fixed-parameter tractability by merely intersecting a fixed number of balls. We
present an example of n input strings with pairwise distances q. The size of the
intersection of the balls of radius r cannot be upper-bounded by a function of the
form p(D)f(m), where p is a polynomial.

Example 92. Let, us consider the following strings for i ≤ n:
s1 =0D

si =ai1
1
2 q

where ai = 01
q
2 0

qi
2 , ai ∈ {0, 1}D−

1
2 q. Here, 0 denotes the string of only zeroes,

such that bi has length D − 1
2q.

By choosingD sufficiently great, all those si still have an arbitrarily large num-
ber of zeroes on their left. We can lower bound the cardinality of the intersection,
#
(⋂

i≤n BdH ,r(si)
)
, because all strings of the form b1

1
2 q, dH(b, 0D−

1
2 q) ≤ r − 1

2q

are in that intersection. There would be Ω
((D− 1

2 q

r− 1
2 q

))
of those, where r ≥ q, because

τ(si, sj) = q if i 6= j.

5.3.2. Summary. The technique of enumerating the intersections of balls im-
prove the trivial algorithm. The amount of computation per enumerated permu-
tation is not much higher, but the number of enumerated permutations may be
significantly lower. For fixed radius, the algorithm are exponentially better than
the trivial algorithm.

Algorithm 14 enumerates the intersection of two balls and checks the members
of the intersection for whether they qualify as a solution or not. The algorithm is
the fastest known algorithm for solving the center ranking problem in case that
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n < r ≤ 16. Compared to the search tree algorithm 8 which constructs a search
tree of size 16r, Algorithm 14 is easier to implement and the cost per permutation
is a lot smaller. Compared to the search tree algorithm 6 which constructs a search
tree of size rr, Algorithm 14 carries the advantage of never examining the same
permutation twice. In case that n < r, the size of enumerated permutations is
smaller than the search tree sizes of both search tree algorithms.





CHAPTER 6

Practical experiments

Some of the algorithms presented in this thesis have been implemented their
run times have been measured for different problem instances. The algorithms
compared here are the trivial algorithm, which tries the solution quality of every
possible permutation (see Section 3.2), the neighbor permutation search algorithm
(see Section 4.2), and an integer linear program implementation.

An integer linear program that solves the center ranking problem with
no proved performance bound is presented in Section 6.1. Section 6.2 contains a
comparison of the practical run times of all implemented algorithms. The exact
implementations of all algorithms are presented in Appendix A.

6.1. Integer linear program solving the center ranking problem

There are various software packages aimed at quickly solving integer programs.
In practical scenarios it occurs that the solution of an integer program formulation
of a problem has a run time good enough to be of practical importance. Integer
programming was used to obtain exact algorithms for the closest string problem
without any complexity bounds, but with respectable practical performance [45].
We present an integer program that solves the center ranking problem. The
integer program we present has no guarantees on the run time of the solver. We
examine the practical run time in Mathematica 7, which will significantly exceed
the time needed to try all permutations.

The formulation of an integer program distinguishes between restrictions and
variables. The restrictions act on the variables. They are expressed through con-
stants. The solution of an integer program is the minimum that a variable we pick
may achieve while all variables satisfy all restrictions.

The integer program we propose resembles an integer program presented by
Ben-Dor et al. [4], which solves the closest string problem. We add restrictions
to the variables of the closest string problem that allow us to identify the
solution string with a permutations. We will encode each input permutation as a
string, too. The integer program is presented in Algorithm 15

Algorithm 15 Integer program solving the center ranking problem with no
proved time bound. Here, a, b ∈ [n], a 6= b, λi ∈ V .

• Variables S{a,b} ∈ {0, 1}, encoding the solution, S{a,b} = 1⇔ a <σ b.
• Variables Hλi,{a,b} ∈ {0, 1},
• Numbers lλi,{a,b} ∈ {0, 1}, encoding the input, lλi,{a,b} = 1⇔ a <λi b
• Restriction S{a,b} + S{b,c} − S{a,c} ≤ 1
• Restriction −S{a,b} − S{b,c} + S{a,c} ≤ 0
• Restriction lλi,{a,b} + S{a,b} ≤ 2Hλi,{a,b} + 1
• Restriction lλi,{a,b} + S{a,b} ≥ 2Hλi,{a,b}
• Minimize m′ B maxi

∑
{a,b} lλi,{a,b} + S{a,b} − 2Hλi,{a,b}

Theorem 93. Algorithm 15 correctly solves the center ranking problem.

79
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Proof. Let V ∈ Symm
[n], n,m ∈ N be an instance of the center ranking

problem. The variables used to encode the solution σ ∈ Sym[n] are denoted as

(6.1.1) S{a,b} ∈ {0, 1}, a, b ∈ [n], a 6= b,

which we will interpret as S{a,b} = 1⇔ a <σ b.
To ensure that S denotes a permutation, we restrict variables S{a,b} as follows.

(6.1.2) S{a,b} = v ∧ S{b,c} = v ⇒ S{a,c} = v,∀v ∈ {0, 1}.

We can express implication (6.1.2) in a linear program for all a, b ∈ [n], a 6= b
as follows.

S{a,b} + S{b,c} − S{a,c} ≤ 1(6.1.3)
−S{a,b} − S{b,c} + S{a,c} ≤ 0.(6.1.4)

We encode the input permutations λi ∈ V in constants

(6.1.5) lλi,{a,b} ∈ {0, 1}, lλi,{a,b} = 1⇔ a <λi b

.
The encoding we chose guarantees the strings to have the same respective

distances as the original permutations. We proved this fact in Section 5.3.1.
The distance from the solution to the input permutations is expressed in the

target function

(6.1.6) max
i

∑
{a,b}

lλi,{a,b} ⊕ S{a,b}.

Here, ⊕ denotes the XOR operation. We encode the XOR operation with helper
variables Hλi,{a,b} ∈ {0, 1}, such that

(6.1.7) lλi,{a,b} + S{a,b} − 2Hλi,{a,b} = lλi,{a,b} ⊕ S{a,b}.

Restriction (6.1.7) can be expressed in the following two inequalities.

lλi,{a,b} + S{a,b} ≤ 2Hλi,{a,b} + 1(6.1.8)
lλi,{a,b} + S{a,b} ≥ 2Hλi,{a,b}(6.1.9)

The final target variable m that needs be minimized is defined as

(6.1.10) m′ B max
i

∑
{a,b}

lλi,{a,b} + S{a,b} − 2Hλi,{a,b},

subject to constraints (6.1.3), (6.1.4), (6.1.8), and (6.1.9), which is the integer
program that was presented. �

The number of variables in the integer program we present is within O(n2m).
We discuss the performance of solving the program in the next section.

6.2. Performance of the implemented algorithms

The practical performance of three of the algorithms proposed in this thesis has
been evaluated in experiments. These algorithms were the integer linear program,
see Section 6.1, the trivial algorithm enumerating all n! permutations, see Section
3.2, and the neighbor permutation search algorithm, see Section 4.2.
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6.2.1. Implementation notes. The integer linear program from Section 6.1
could be implemented straightforwardly. Mathematica is able to compute the ma-
trix that defines the linear program’s restrictions by itself when given the inequali-
ties and equations forming the restrictions. The integer program was given as input
to Mathematica with no further optimization.

To implement the trivial algorithm, it was necessary to implement a new func-
tion that generates all permutations of a given length, despite the fact that Math-
ematica already ships with a function for precisely that purpose, the reason being
that the Mathematica built-in function returns all permutations at once, requiring
an immense amount of memory. To enumerate the permutations, a modification
of the algorithm proposed by Sedgewick [55] was implemented, which requires no
more than O(n) memory.

The neighbor permutation search algorithm could be implemented straightfor-
wardly from the description in Section 4.2. Since Mathematica allows the use of
mathematical notations and ships with a large collection of graph algorithms, it
was possible to retain nearly all of the notation used in Section 4.2 to describe the
neighbor permutation search algorithm.

6.2.2. Test environment and experiment outline. All measurement and
implementation was done in Mathematica 7 on a dual core (all computation has
been single-threaded) 2.4 GHz notebook computer with 2 GB of RAM.

The run time of the neighbor permutation search algorithm very much depends
on the supplied radius. For a non-minimal radius the run time may be significantly
better than for the minimal radius. Thus, the performance is dominated by the
distance from the supplied radius parameter to the minimum radius possible. To
avoid measuring this rather unexciting effect, we have measured the performance
of solving the optimization problem center ranking rather than the decision
problem.

Since the neighbor permutation search algorithm is formulated inherently to
solve the decision problem, the benchmark tests several radii, until the minimum
radius is found, for which the decision problem answers “yes.” The minimal radius
is sought using a binary search. It is possible that seeking for the minimal radius
by trying all possible radii in ascending order would have permitted better perfor-
mance, because the run time of a run for a radius that is greater than the minimal
radius might exceed the run time of all runs for smaller radii. It has not been
practically compared whether a binary search or sequential search yields better
performance.

Three systematic experiments were carried out. The first test was intended to
measure the integer program implementation alone. It was not tested alongside the
other implementations, because in exploratory computations, the integer program
proved to be several magnitudes slower than both other implementations, such
that for an instance small enough for the integer program to solve, the other two
benchmarks would have meaninglessly short run times.

The second experiment compared the trivial algorithm with the neighbor per-
mutation search algorithm for instances where the rankings were expected to cor-
relate. Each instance was solved once by the trivial algorithm and once by the
neighbor permutation search algorithm. A run that exceeded 20 seconds of tie was
aborted. Then, the benchmarks were grouped such that each group would represent
a triple (n,m, r), where n is a number of candidates, m is the number of votes and
r is the minimum radius of the instance solved. In each group, the average run time
and the standard deviation of the run time were computed both for the neighbor
permutation search algorithm and for the trivial algorithm. If the average could
not be computed, because the group contained the measuring of a run that had to
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be aborted because it exceeded the 20 second limit, the average was not computed
will be presented as absent in the upcoming subsection. If for a combination of
candidates, votes and radii, both entries would have had to be left empty, the data
set was disposed, because the instance radius was unknown.

The third experiment compared the run times of the trivial algorithm with
the run time of the neighbor permutation search algorithm for instances chosen
uniformly at random. The results were grouped only after the number of candidates
and votes, not per radius. However, the average radius and the standard deviation
of the radius was recorded. Also, in the third experiment computations were not
aborted.

6.2.3. Instances. Three experiments were run, each with its own kind of
instance.

The first kind of instance was designed to be small enough so the integer pro-
gram would be able to solve it. For each combination of numbers of candidates (3,
4, or 5) and numbers of votes (3, 5, and 10), three instances were chosen uniformly
at random. The sizes were chosen because they appeared to allow instances to be
solved in less than 20 seconds. For any greater number of candidates, experimental
computations took more than 2 minutes.

The second kind of instance was supposed to simulate several rankings with
high correlation, i.e. small radii. To create an instance of minimal radius close
to r, the input permutations were obtained as follows. We start with the identity
permutation. We then chose any random pair of adjacent candidates and swap them
around. This process is repeated k times, where k was is with binomial distribution
with expected value r out of the range

[
0,
(
n
2

)]
. For each combination of numbers

of candidates (7 or 20), number of votes (3, 8, and 30), and radii (1 through 7),
10 instances were created. Altogether 1470 instances were created. The numbers
of candidates was chosen to be 7 because it is the highest number of candidates
that the trivial algorithm can solve within 20 seconds. The neighbor permutation
search algorithm still performs reliably fast for 20 candidates and small radii. The
number of votes did not exceed 30, because otherwise the trivial algorithm might
have exceeded the 20 second time limit.

Additionally, 30 instances were chosen uniformly at random for each combina-
tion of candidates (5, 6) and votes (3, 5, 15). The number of votes differs from
the second experiment, because for 30 votes, the radii that were obtained grew too
high such that the neighbor permutation algorithm took very long to complete. The
number of candidates had to be chosen smaller than 7, because for 7 candidates,
the neighbor permutation search algorithm takes several minutes of time to solve
instances chosen uniformly at random.

6.2.4. Experimental results. The observed run time of the integer program
has proved to be consistently worse by several orders of magnitude than that of the
trivial algorithm. Many solvers for linear programs allow fine-tuning of the branch-
ing strategy. Fine-tuning would be particularly useful in our case to fine-tune the
branching, since the integer program needs to find encodings of valid permutations,
which might not be trivial by itself already. Finding valid encodings could be guided
in a more refined integer program solver—however, the Mathematica solver for in-
teger programs does not support interference with its “branch and bound” strategy.
The measurings can be found in Table 5 on the facing page.

The benchmarking of instances with high correlation revealed that for radius
less than 7, the neighbor permutation search algorithm can compute instances with
very large numbers of candidates in short time. For example, for radii 4 and 7
candidates, the neighbor permutation performed on average more than double as
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Table 5: Run time of the integer linear program solving the center ranking
problem after 3 runs for each combination of parameters. The runs were aborted
after 20 seconds; empty fields indicate that the run time exceeded 20 seconds. Here,
r̄ is the sample mean optimum solution quality, sr is the sample standard deviation
of the optimum solution quality; t̄ refers to the mean time spent solving in seconds,
st is the standard deviance of the run time.

parameters measurements
candidates votes r̄ sr t̄ st

3 3 1.67 0.57 0.14 0.05
3 5 2.00 0 0.32 0.13
3 10 2.33 0.57 1.99 0.61
4 3 2.67 0.57 1.69 0.09
4 5 2.33 0.57 5.57 0.34
4 10
5 3 2.67 0.57 9.60 2.77
5 5
5 10

fast than the trivial algorithm. For 20 candidates, the trivial algorithm would have
required years of run time, while the the neighbor permutation search algorithm
could still reliably solve instances of 20 candidates, 3 votes and radius 6, in less
than 4 seconds on average.

The results confirm that the run time of the neighbor permutation algorithm
vastly depends on the minimal radius, while the trivial algorithm’s run time is
nearly constant for instants of the same number of candidates and votes. See Table
6 on page 84 for the precise measurements.

The systematic experiments depicted in Table 6 have been extended in a more
exploratory way. Instances of 5 votes were created to see how far the algorithm
can be taken, see Table 7 on page 84. The exploratory results reveal that the
neighbor permutation search algorithm does become significantly slower with a
raising number of candidates. For 2000 candidates, and radius 2, the algorithm did
not terminate within 10 minutes. The amount of work done per recursive call of
the neighbor permutation call is relatively big. A graph of size quadratic in the
number of candidates needs to be created for every recursive call and it is tested
whether the graph is acyclic.

For instances chosen uniformly at random it was uncertain before the imple-
mentation whether the neighbor permutation search algorithm would be able to
compete with the trivial algorithm. The neighbor permutation search algorithm
runs in time O(n! · n2m + mn2 log n), see Corollary 72 on page 58; the trivial al-
gorithm runs O(n! · mn log n), see Section 3.2. While the run time of the trivial
algorithm appears to be better, it was unclear how many of the O(n!) possible sets
of restriction the neighbor permutation search algorithm would really be trying. It
was thought to be possible that in practical instances, the many criteria that abort
the branching would lead to a small number of nodes in the search tree. For an
instance of 15 permutations of length 6, the neighbor permutation tries an aver-
age of 491 restrictions (in the complete binary search for the optimum parameter),
where there are only 720 permutations. The results show that the run time of the
neighbor permutation search algorithm for instances chosen uniformly at random
is significantly worse than the run time of the trivial algorithm, supposedly due
to the raised amount of time spent per node in the search tree. Nonetheless, the
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Table 6: Run times of the neighbor permutation search algorithm on average after
at least 3 runs for each combination of the 3 parameters. Here, t̄ refers to the average
time consumed in seconds; st refers to the sample standard deviation of the time
consumed. “Trivial” refers to the trivial algorithm computing the solution quality
of every permutation. NPS refers to the neighbor permutation search algorithm
from Section 4.2.

parameters trivial NPS
candidates votes radius t̄ st t̄ st

7 3 1 1.982 0.022 0.010 0.010
7 3 2 1.983 0.020 0.049 0.043
7 3 3 1.979 0.016 0.219 0.215
7 3 4 1.985 0.020 0.859 1.006
7 3 5 2.003 0.031 3.146 4.731
7 8 1 4.422 0.064 0.032 0.004
7 8 2 4.393 0.054 0.040 0.031
7 8 3 4.397 0.045 0.135 0.195
7 8 4 4.407 0.055 0.656 0.727
7 8 5 4.422 0.069 2.184 2.145
7 8 6 4.414 0.065
7 30 2 14.959 0.079 0.159 0.038
7 30 3 15.097 0.247 0.200 0.108
7 30 4 15.067 0.189 0.513 0.288
7 30 5 15.061 0.191 1.790 2.242
7 30 6 15.080 0.182
7 30 7 15.014 0.149

20 3 1 0.013 0.015
20 3 2 0.183 0.166
20 3 3 0.736 0.760
20 3 4 1.238 1.114

20 3 5 4.065 4.813
20 3 6 3.769 0.572
20 8 2 0.181 0.176

Table 7: Experiments that explore how large instances are handled by the neighbor
permutation search algorithm. All instances contain 5 votes. Column “candidates”
contains the number of candidates, column “radius” contains the minimal solution
radius, and column “t” contains the time needed to solve the instance in seconds.

candidates radius t

1000 2 137
200 4 36
100 4 2

run time of the neighbor permutation search algorithm also greatly varies among
instances.

See Table 8 on the facing page for the measurements of the benchmark.
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Table 8: Run times of the neighbor permutation search and trivial algorithm for
permutations chosen uniformly at random after 5 runs for each combination of
candidates and votes. Here, r̄ refers to the mean optimal solution quality; sr refers
to the sample standard deviance of the optimum solution quality; t̄ refers to the
average time consumed in seconds; st refers to the sample standard deviation of
the time consumed. “Mean calls” refers to the mean number of recursive calls for
the entire search for the minimum parameter.

parameters trivial neighbor permutation search
candidates votes r̄ sr t̄ st t̄ st mean calls

5 3 3.2 0.447 0.040 0.000 0.261 0.410 13.6
5 5 4.4 0.894 0.059 0.003 1.035 1.413 18.4
5 15 6.0 0.707 0.151 0.001 2.409 1.961 79.0
6 3 4.6 1.673 0.263 0.002 11.475 12.645 57.8
6 5 6.0 1.000 0.388 0.014 38.243 29.938 265.2
6 15 8.6 0.548 1.023 0.019 59.519 48.361 491.0





CHAPTER 7

Conclusions and outlook

We proposed the center ranking aggregation method to be used for aggre-
gating rankings that represent different criteria of judgement, especially in sports
competitions. We provided several hardness results and numerous parameterized
algorithms that help computing results efficiently for instances with correlation
between the rankings, but also for instances chosen uniformly at random.

7.1. Summary of the algorithms presented

We have provided a large range of algorithms that solve the center ranking
problem. For instances chosen uniformly at random or instances with only moderate
correlation between rankings, Algorithm 14 on page 71, which enumerates a ball
intersection, promises to be most useful. For instances with strong correlation
between rankings and r ≤ 16, Algorithm 7 on page 43, which runs a search tree
of size O(rr), is expected to perform well. For instances with strong correlation
between the rankings and r > 16, neighbor permutation search, Algorithm 8 on
page 52, is most promising. Experiments show that Algorithm 8 can solve large
instances with strong correlation in little time.

Table 9 contains a summary of all algorithms presented. All tractability results
are summarized in Table 10

Table 9: Algorithms presented and their associated run times. Here, n refers to
the number of candidates, m refers to the number of votes, r refers to optimum
solution radius and pr refers to the number of dirty pairs.

algorithm asymptotic time bound

trivial, Algorithm 3 on page 27 O(mn log n · n!)
search tree on swaps, Algorithm 7 on page 43 O(rrmn log n)
neighbor permutation search, Algorithm 8 on page 52 O(24dn2m+mn2 log n)
search tree algorithm on dirty pairs in Section 3.7 O(2pr ·mn log n+ n2m)
ball enumeration, Algorithm 12 on page 65 O

(
mn log n ·min

{
r(2r)n, rn2r, n!

})
ball intersection enumeration, Algorithm 14 on page 71 O(mn log n ·min{rnr, n!})

7.2. Open questions

7.2.1. Tie breaking. The center ranking problem can have several opti-
mal solution. The algorithms we present all find only one optimal solutions. If we
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Table 10: Fixed-parameter tractability results on the center ranking problem
presented in this thesis listed per parameter, where #candidates means “number
of candidates.” If a parameterized algorithm was found, its run time is presented.
If the problem was found to be NP-hard for fixed values of the parameter, the
respective entry reads “NP-hard.” It is unknown whether the center ranking
problem is fixed-parameter tractable with respect to parameter “number of votes.”

parameter result section

number of candidates, n O(n! · n log n) Section 3.2
number of votes, m unknown Section 3.8
radius, r O(24rmn2 +mn2 log n) Chapter 4
maximum pairwise distance, dmax O(28dmaxmn2 +mn2 log n) Section 3.4
position range, p NP-hard Section 3.5
average pairwise distance, da NP-hard Section 3.6
number of dirty pairs, pr O(2pr ·mn log n+ n2m) Section 3.7
#candidates and radius combined, (n, r) O(mn log n ·min{rnr, n!}) Chapter 5

wish to distinguish between the optimal solutions, we need to enumerate all optimal
solutions and then find criteria which allow us to choose one aggregation out of all
optimal aggregations.

The choice between several optimal aggregations may be domain-specific. It
may not be of importance in all applications. However, if indeed sports competitions
rankings are decided by the center ranking aggregation method, a choice has to
be made.

7.2.2. Resemblance to existing ranking methods. It would be interesting
to compare how the aggregation results we propose compare to the aggregation
methods currently used to obtain final rankings in sport competitions. A close
resemblance would make a strong case for our conjecture that in many cases, the
center ranking aggregation method expresses naturally the intuitively expected
balance between several criteria.

7.2.3. Fixed-parameter tractability with respect to the parameter
“number of votes”. It is still an open question whether the center ranking
problem is fixed-parameter tractable with respect to the number of votes. If a
combinatorial parameterized algorithm were found, it could also be used to solve
the closest string problem. This would be of advantage since until today, the
only parameterized algorithm with respect to the number of strings for the closest
string problem is the integer linear program presented in Gramm et al. [24], which
yields fixed-parameter tractability due to a rather theoretical result by Lenstra et
al. [26].

Gramm et al. ask whether there is a combinatorial parameterized algorithm
with respect to the parameter “number of strings” that solves the closest string
problem. The parameterized algorithm for closest string provided by Gramm
et al. shows an enormous combinatorial explosion in the parameter that could be
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improved if a parameterized algorithm for the center ranking problem were
found, because closest string instances can be reduced to center ranking
instances, such that the reduced instances’ number of votes equal the respective
original instances’ number of strings.

7.2.4. Fixed-parameter tractability with respect to the parameter
“average distance”. While we were able to prove NP-hardness with respect to
parameter “pairwise average distance” in Theorem 41 in case that duplicate input
votes are allowed, it is currently unknown whether the center ranking problem is
fixed-parameter tractable with respect to the parameter “pairwise average distance,”
if duplicates are disallowed.

7.2.5. Generalizations. The center ranking method can be extended to
ties between competitors by making use of the extension of the Kendall-τ distance
proposed by Hemaspaandra et al. [30]. To allow votes with ties in the definition
of the center ranking problem in Problem 3 on page 7, we need to extend the
Kendall-τ metric to tell the similarity between such votes. Hemaspaandra et al.
propose the generalized Kendall-τ distance to be defined as

dµ,λ(c, d) =


0 if λ and µ agree on c and d.
1 if one of λ, µ has a preference amongc, d, while the other one has not.
2 if λ and µ strictly disagree on c and d.

The ordinary Kendall-τ distance is obtained by setting dµ,λ(c, d) to be 0 if permu-
tations µ and λ rank candidates c and d in the same order, 1 otherwise.

The definition of the generalized Kendall-τ distance by Hemaspaandra et al. still
expects all votes to be complete, i.e. to put all available candidates into an order. In
the case that not all votes include the same candidates, Dwork at al. [19] propose to
restrict two votes to the intersection of their respective sets of candidates ranked by
erasing all other votes but leaving the relative orders of the remaining candidates
untouched. A more sophisticated definition is proposed by Sculley [54], which
accesses similarity information available to the data.

Betzler et al. [7] propose to weight votes with positive integer or real values.
In case criteria might be of different importance to us, we could do the same and
search for a permutation π with maxν∈V Wντ(π, ν) < r, where Wν would be the
weight of vote ν.

These generalizations can all be of some practical benefit. Yet, they might
also significantly improve the complexity of the computation. It remains for the
matter of this thesis an open but interesting question to ask which of the proposed
algorithms can be extended to solve the above generalized definitions.

7.2.6. Randomizations. It is an open question how much the algorithms can
be sped up by randomization techniques. A particularly interesting approach would
be to try Schöning’s “local search and restart” technique [16]. A rough outline of
“local search and restart” might be the following. We choose a starting point at
random and then try a random walk towards the solution, where the chance of
the random walk to go towards the solution is only marginally better than sheer
guessing.

When search tree algorithm 7 on page 43 would be modified into randomly
choosing one of the input permutations as a starting point and then, instead of
branching, choose one of the children in a search tree as a next step in a random
walk, and do so repeatedly. The random walk would be aborted after 3r steps,
if did not lead to a solution, then a repeated execution of this process yields an
expected run time which is by a factor of r better than the worst case bound shown
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for the algorithm. The improvement is not any better because, while the search is
local and restarted, an important part of the technique is a good random choice
of the starting point. Unfortunately, blindly choosing any starting out of Sym[n]

gives significantly worse run time than starting from the same member of the set
of input votes V over and over again. If it were possible to choose a starting point
with expected distance r to the solution that is binomially distributed, similar to
the situation discussed in [16], then the expected run time might be significantly
better than that of the search tree algorithms presented in this thesis.

7.2.7. Approximations. Algorithm 8 on page 52, the neighbor permutation
search algorithm, is similar to the neighbor string search algorithm presented in
[44]. The neighbor string search algorithm allows a polynomial time approximation
algorithm for the closest string problem with time complexity O(nO(ε−2)). It is
an open question whether the result can be brought forward to solving the center
ranking problem.

7.2.8. Parallelization. While the search tree algorithms in Chapter 4 and
Section 3.7 can be parallelized very well by referring the recursive calls to, we
have not thoroughly examined how much they can be sped up by parallelizing the
computation per search tree node.



APPENDIX A

Implementations

This chapter contains commented implementations of the neighbor search algo-
rithm, i.e. Algorithm 8, the trivial algorithm, i.e. Algorithm 3, and the integer linear
program described in Section 6.1, all implemented in Mathematica 7. We present
the complete Mathematica notebooks, including the output, where applicable.

Algorithm 8, Algorithm 3 are both implemented to solve the center ranking
optimization problem, as opposed to the decision problem.

Following is the code used to obtain the benchmark results presented in Chap-
ter 6.
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Implementation of the neighbor permutation 
search algorithm
This file will solve the neighbor permutation problem. See Niko Schwarz's thesis for details. 
4/2009

Example run with explanations

In[201]:= input =

8884, 1, 3, 2<, 3<, 882, 4, 3, 1<, 3<, 881, 3, 2, 4<, 3<, 882, 3, 1, 4<, 3<<;
R =

8<;

First, we check if any of the distances in d is smaller than 0, equal to zero, or if R has reached maximum size
already

In[203]:= H*N0*L
If@Min@dD < 0, Return@"Not found"DD;
ModuleA8solutions, cas<,

cas = Cases@input, 8_List, 0<D@@All, 1DD;
IfAcas ¹ 8<,

solutions = SelectAFunctionAp, FlattenAsymAUnionAp
R†
, REEEE �� cas,

ð ¹ 8< && solutionQ@ðD &E;

If@solutions � 8<, Return@"Not found"D, result@solutions �� First DDEE;
If@Length@RD � Binomial@n, 2D,

Module@8sol = TopologicalSort@FromOrderedPairs@RDD<,
If@! solutionQ@solD, Return@"Not found"D, result@solDDDD;

If@! AcyclicQ@FromOrderedPairs@RDD, Return@"Not found"DD;

It appears that none of these is the case. As a next step, let us compute the q needed by the algorithm. If none
can be determined, the algorithm is done.

In[207]:= H*N1*L
ModuleA8qcands = Select@Range@mD,

Function@i, ΤR@Λ@@iDD, Λ@@1DDD > d@@iDD DD <,
IfAqcands � 8<,

ModuleA8RR = ToOrderedPairs@TransitiveClosure@FromOrderedPairs@RDDD,
solution, p< ,

p = JoinAΛ@@1DD
RR†

, RRE;

solution = TopologicalSort@ FromOrderedPairs@pDD;
If@solutionQ@solutionD, result@solutionD, Return@"Not found"D DEE;

q = qcands �� FirstE; q

Out[207]= 2

Let us  try a criterion that excludes the existence of a solution in the case.

In[208]:= H*N2*L
If@ΤR@Λ@@qDD, Λ@@1DDD £ d@@1DD + Max@dD, , Return@"Not found"DD;

We compute P that determines the cases into which cases we branch:
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In[209]:= H*N3*L

P = ModuleB:prs = R†>,

disagreement@Λ@@1DD, Λ@@qDDD Ý Join@prs, Reverse@prs, 82<DDF

Out[209]= 881, 2<, 81, 3<, 83, 2<, 84, 2<<

Let us compute the field A which will contain all pairs we will branch into. All options need be compatible
with R, and the graph of R needs to be transitive. 

In[210]:= H*N4*L
A' = Function@p, Join@Complement@P, pD, Reverse@p, 2DDD �� Subsets@PD

Out[210]= 8881, 2<, 81, 3<, 83, 2<, 84, 2<<, 881, 3<, 83, 2<, 84, 2<, 82, 1<<,
881, 2<, 83, 2<, 84, 2<, 83, 1<<, 881, 2<, 81, 3<, 84, 2<, 82, 3<<,
881, 2<, 81, 3<, 83, 2<, 82, 4<<, 883, 2<, 84, 2<, 82, 1<, 83, 1<<,
881, 3<, 84, 2<, 82, 1<, 82, 3<<, 881, 3<, 83, 2<, 82, 1<, 82, 4<<,
881, 2<, 84, 2<, 83, 1<, 82, 3<<, 881, 2<, 83, 2<, 83, 1<, 82, 4<<,
881, 2<, 81, 3<, 82, 3<, 82, 4<<, 884, 2<, 82, 1<, 83, 1<, 82, 3<<,
883, 2<, 82, 1<, 83, 1<, 82, 4<<, 881, 3<, 82, 1<, 82, 3<, 82, 4<<,
881, 2<, 83, 1<, 82, 3<, 82, 4<<, 882, 1<, 83, 1<, 82, 3<, 82, 4<<<

In[191]:= H*N5*L
A = Join@R, ðD & �� A'

Out[191]= 8881, 2<, 81, 3<, 83, 2<, 84, 2<<, 881, 3<, 83, 2<, 84, 2<, 82, 1<<,
881, 2<, 83, 2<, 84, 2<, 83, 1<<, 881, 2<, 81, 3<, 84, 2<, 82, 3<<,
881, 2<, 81, 3<, 83, 2<, 82, 4<<, 883, 2<, 84, 2<, 82, 1<, 83, 1<<,
881, 3<, 84, 2<, 82, 1<, 82, 3<<, 881, 3<, 83, 2<, 82, 1<, 82, 4<<,
881, 2<, 84, 2<, 83, 1<, 82, 3<<, 881, 2<, 83, 2<, 83, 1<, 82, 4<<,
881, 2<, 81, 3<, 82, 3<, 82, 4<<, 884, 2<, 82, 1<, 83, 1<, 82, 3<<,
883, 2<, 82, 1<, 83, 1<, 82, 4<<, 881, 3<, 82, 1<, 82, 3<, 82, 4<<,
881, 2<, 83, 1<, 82, 3<, 82, 4<<, 882, 1<, 83, 1<, 82, 3<, 82, 4<<<

Let us compute the distances for each entry in A that we will branch into.

In[211]:= H*N6*L
e@p_List, 1D := ModuleA8c = Complement@p, RD<,

MinAd@@1DD - LengthAComplementAΛ@@1DDc†, pEE, `d@@1DD � 2p - 1EE;

e@p_List, i_D := ModuleA8c = Complement@p, RD<,

d@@iDD - LengthAComplementAΛ@@iDDc†, pEEE;
Outer@e, A, Range@mD,
1D

Out[213]= 881, -1, 2, -1<, 81, 0, 1, 0<, 81, 0, 1, 0<, 81, 0, 1, 0<, 81, 0, 3, 0<,
81, 1, 0, 1<, 81, 1, 0, 1<, 81, 1, 2, 1<, 81, 1, 0, 1<, 81, 1, 2, 1<, 81, 1, 2, 1<,
80, 2, -1, 2<, 80, 2, 1, 2<, 80, 2, 1, 2<, 80, 2, 1, 2<, 8-1, 3, 0, 3<<

Let us branch into all elements of A. If a solution is found in one, the computation will be aborted.

In[214]:= H*N7*L
Scan@
Function@p,
Module@8inp =

8Λ@@ðDD, e@p, ðD< & �� Range@1, mD<,
NPSrec @inp, pD

DD,
AD

Throw ::nocatch : Uncaught Throw @81, 2, 4, 3<D returned to top level . �

Out[214]= Hold@Throw@81, 2, 4, 3<DD

Here, {1, 2, 4, 3} was returned by the 11 th  branch. Let us examine how, by resetting input and R to the input
of the eighth branch.
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In[215]:= 8input, R< = Module@8inp =

8Λ@@ðDD, e@a, ðD< & �� Range@1, mD<, 8inp, a<D �. a ® A@@11DD

Out[215]= 88884, 1, 3, 2<, 1<, 882, 4, 3, 1<, 1<, 881, 3, 2, 4<, 2<, 882, 3, 1, 4<, 1<<,
881, 2<, 81, 3<, 82, 3<, 82, 4<<<

Since several distances are set to 0, N0 will dutifully return the solution :

In[216]:= H*N0*L
If@Min@dD < 0, Return@"Not found"DD;
ModuleA8solutions, cas<,

cas = Cases@input, 8_List, 0<D@@All, 1DD;
IfAcas ¹ 8<,

solutions = SelectAFunctionAp, FlattenAsymAUnionAp
R†
, REEEE �� cas,

ð ¹ 8< && solutionQ@ðD &E;

If@solutions � 8<, Return@"Not found"D, result@solutions �� First DDEE;
If@Length@RD � Binomial@n, 2D,

Module@8sol = TopologicalSort@FromOrderedPairs@RDD<,
If@! solutionQ@solD, Return@"Not found"D, result@solDDDD;

If@! AcyclicQ@FromOrderedPairs@RDD, Return@"Not found"DD;

N0 does not abort the branch. Let us compute q:

In[220]:= H*N1*L
ModuleA8qcands = Select@Range@mD,

Function@i, ΤR@Λ@@iDD, Λ@@1DDD > d@@iDD DD <,
IfAqcands � 8<,

ModuleA8RR = ToOrderedPairs@TransitiveClosure@FromOrderedPairs@RDDD,
solution, p< ,

p = JoinAΛ@@1DD
RR†

, RRE;

solution = TopologicalSort@ FromOrderedPairs@pDD;
If@solutionQ@solutionD, result@solutionD, Return@"Not found"D DEE;

q = qcands �� FirstE; q

Out[220]= 4

The condition in N2 is not met :

In[221]:= H*N2*L
If@ΤR@Λ@@qDD, Λ@@1DDD £ d@@1DD + Max@dD, , Return@"Not found"DD;

We compute P that determines the cases into which cases we branch:

In[222]:= H*N3*L

P = ModuleB:prs = R†>,

disagreement@Λ@@1DD, Λ@@qDDD Ý Join@prs, Reverse@prs, 82<DDF

Out[222]= 884, 1<, 84, 3<<

Let us compute the field A which will contain all pairs we will branch into. All options need be compatible
with R, and the graph of R needs to be transitive. 

In[253]:= H*N4*L
As = Function@p, Join@Complement@P, pD, Reverse@p, 2DDD �� Subsets@PD

Out[253]= 8884, 1<, 84, 3<<, 884, 3<, 81, 4<<, 884, 1<, 83, 4<<, 881, 4<, 83, 4<<<

In[254]:= H*N5*L
A = Join@R, ðD & �� As

Out[254]= 8881, 2<, 81, 3<, 82, 3<, 82, 4<, 84, 1<, 84, 3<<,
881, 2<, 81, 3<, 82, 3<, 82, 4<, 84, 3<, 81, 4<<,
881, 2<, 81, 3<, 82, 3<, 82, 4<, 84, 1<, 83, 4<<,
881, 2<, 81, 3<, 82, 3<, 82, 4<, 81, 4<, 83, 4<<<

Let us compute the distances for each entry in A that we will branch into.
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Let us compute the distances for each entry in A that we will branch into.

In[255]:= H*N6*L
e@p_List, 1D := ModuleA8c = Complement@p, RD<,

MinAd@@1DD - LengthAComplementAΛ@@1DDc†, pEE, `d@@1DD � 2p - 1EE;

e@p_List, i_D := ModuleA8c = Complement@p, RD<,

d@@iDD - LengthAComplementAΛ@@iDDc†, pEEE;
Outer@e, A, Range@mD,
1D

Out[257]= 880, 1, 0, -1<, 80, 0, 1, 0<, 80, 0, 1, 0<, 8-1, -1, 2, 1<<

Apparantly, the solution can only be branch 2 or 3. 
Let us branch into all elements of A. If a solution is found in one, the computation will be aborted.

In[258]:= H*N7*L
Scan@
Function@p,
Module@8inp =

8Λ@@ðDD, e@p, ðD< & �� Range@1, mD<,
NPSrec @inp, pD

DD,
AD

Throw ::nocatch : Uncaught Throw @81, 2, 4, 3<D returned to top level . �

Out[258]= Hold@Throw@81, 2, 4, 3<DD

We will find be found in the second branch. Let us reset the input to simulate the recursive call on level 3 into
branch 2.

In[270]:= 8input, R< = Module@8inp =

8Λ@@ðDD, e@a, ðD< & �� Range@1, mD<, 8inp, a<D �. a ® A@@2DD

Out[270]= 88884, 1, 3, 2<, 0<, 882, 4, 3, 1<, 0<, 881, 3, 2, 4<, 1<, 882, 3, 1, 4<, 0<<,
881, 2<, 81, 3<, 82, 3<, 82, 4<, 84, 3<, 81, 4<<<

Since several distances are set to 0, N0 will dutifully return the solution :

In[275]:= H*N0*L
If@Min@dD < 0, Return@"Not found"DD;
ModuleA8solutions, cas<,

cas = Cases@input, 8_List, 0<D@@All, 1DD;
IfAcas ¹ 8<,

solutions = SelectAFunctionAp, FlattenAsymAUnionAp
R†
, REEEE �� cas,

ð ¹ 8< && solutionQ@ðD &E;

If@solutions � 8<, Return@"Not found"D, result@solutions �� First DDEE;
If@Length@RD � Binomial@n, 2D,

Module@8sol = TopologicalSort@FromOrderedPairs@RDD<,
If@! solutionQ@solD, Return@"Not found"D, result@solDDDD;

If@! AcyclicQ@FromOrderedPairs@RDD, Return@"Not found"DD;

Throw ::nocatch : Uncaught Throw @81, 2, 4, 3<D returned to top level . �

Out[276]= Hold@Throw@81, 2, 4, 3<DD

General Definitions

The definitions used closely resemble the definitions given in the Thesis. 
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Needs@"Combinatorica`"D

H*global definitions*L
Clear@W, n, m, OverBar, Subscript, Τ, SuperDaggerD
Wn_Integer := Wn = Subsets@Range@nD, 82<D

set_† := Function@arg,
Module@8a = arg@@1DD, b = arg@@2DD<, If@b < a, 8b, a<, 8a, b<DDD ��  set

Λ_ Q_List �; PermutationQ@ΛD := Module@

8inv = InversePermutation@ΛD<,
Function@q, Module@8a = q@@1DD, b = q@@2DD<,

If@inv@@aDD > inv@@bDD, 8b, a<, 8a, b<DDD �� QD

set_ := Complement@Wn, setD

disagreement@p_, q_D := Complement@pWn
, qWn

D

Τ@Μ_List, Ν_ListD := Inversions@InversePermutation@ΜD@@ΝDDD;
H*Τ@Μ_List,Ν_ListD:=ΤWn

@Μ,ΝD;*L
ΤR_List@Μ_List, Ν_ListD := Complement@ΜR, ΝRD �� Length;

ΤWn
:= Τ

H*small function helpers for testing*L
solutionQ@Μ_D :=

And ��

Function@arg, Module@8Γ = arg@@1DD, d = arg@@2DD<, ΤR@Γ, ΜD £ dDD �� input;
ΤR@a_, b_D := Τ

R†
@a, bD;

ΤRP@a_, b_D := Τ
P†ÝR†

@a, bD;

Λ := input@@All, 1DD;
d := input@@All, 2DD;
m := input �� Length
n := Λ �� First �� Length

Clear@symD;
Intersection@sym@R_D, sym@Q_DD ^:= sym@Union@Q, RDD
sym@res_D := Module@8P = res<,

Select@TopologicalSort ��

FromOrderedPairs ��

HFunction@s, Join@Complement@P, sD, Reverse@s, 2D, resDD ��

Subsets@PD L,
PermutationQDD;

calls = 0;
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The NPS Algorithm

Clear@NPS, NPSrec, NPSdecD;
result@Μ_D := Throw@ΜD;

NPSrec@input_, R_D := ModuleB

8Λ = input@@All, 1DD,
d = input@@All, 2DD, ΤR, ΤRP, P, Q, q, A, solutionQ, Ra, e<,

calls += 1;
ΤR@a_, b_D := Τ

R†
@a, bD;

solutionQ@Μ_D :=

And �� Function@arg,
Module@8Γ = arg@@1DD, d = arg@@2DD<, ΤR@Γ, ΜD £ dDD �� input;

H*N0*L
If@Min@dD < 0, Return@"Not found"DD;
ModuleA8solutions, cas<,
cas = Cases@input, 8_List, 0<D@@All, 1DD;
IfAcas ¹ 8<,

solutions = SelectAFunctionAp, FlattenAsymAUnionAp
R†
, REEEE �� cas,

ð ¹ 8< && solutionQ@ðD &E;

If@solutions � 8<, Return@"Not found"D, result@solutions �� First DDEE;
If@Length@RD � Binomial@n, 2D,
Module@8sol = TopologicalSort@FromOrderedPairs@RDD<,
If@! solutionQ@solD, Return@"Not found"D, result@solDDDD;

H*N1*L
ModuleA8qcands = Select@Range@mD,

Function@i, ΤR@Λ@@iDD, Λ@@1DDD > d@@iDD DD <,
IfAqcands � 8<, ModuleA8RR =

ToOrderedPairs@TransitiveClosure@FromOrderedPairs@RDDD, solution< ,

solution = TopologicalSortA FromOrderedPairsAJoinAΛ@@1DD
RR†

, RREEE;

If@solutionQ@solutionD, result@solutionD, Return@"Not found"D DEE;

q = qcands �� FirstE;

H*N2*L
If@ΤR@Λ@@qDD, Λ@@1DDD £ d@@1DD + Max@dD, , Return@"Not found"DD;

H*N3*L

P = ModuleB:prs = R†>,

disagreement@Λ@@1DD, Λ@@qDDD Ý Join@prs, Reverse@prs, 82<DDF;

H*N4,N5*L
A = Function@p, Join@R, Complement@P, pD, Reverse@p, 2DDD �� Subsets@PD;

H*extra: branch restrict*L
A = Select@A, Composition@AcyclicQ, FromOrderedPairsDD;
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H*N6*L
e@p_List, 1D := ModuleA8c = Complement@p, RD<,

MinAd@@1DD - LengthAComplementAΛ@@1DDc†, pEE, `d@@1DD � 2p - 1EE;

e@p_List, i_D := ModuleA8c = Complement@p, RD<,

d@@iDD - LengthAComplementAΛ@@iDDc†, pEEE;

H*N7*L
Scan@
Function@a,
Module@8inp =

8Λ@@ðDD, e@a, ðD< & �� Range@1, mD<,
NPSrec @inp, aD

DD,
AD;

H*N8*L
Return@"Not found"D

F;

NPS@input : 88_List, _Integer< ..<, R_ListD := Catch@NPSrec@input, RDD;
NPSdec@input : 88_List, _Integer< ..<, R_ListD := HNPS@input, RDL �� ListQ;

Clear@binarySearch, qD
binarySearch@expr_, var_SymbolD :=

Module@8r, l, x, dists = Function@q, Τ �� qD �� Subsets@Λ, 82<D<,
r = Max@distsD; l = Ceiling@r � 2D;
While@r ¹ l,
x := Quotient@l + r, 2D;
If@Evaluate@expr �. var ® xD, r = x, l = x + 1D;

D;
r

D

SetAttributes@binarySearch, HoldFirstD
NPS@D := binarySearch@NPSdec@input �. r ® q, RD, qD
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Integer Programming for

computing the Kendall Τ - distance
This program solves the Minimum Kendall Τ-distance problem, using integer programming. The input is created as a
random problem instance consisting of m permutations of length m. To solve other instances, replace variable inst with
another instance.  We will compute the score of the optimal solution, print one optimal solution, both in permutation form
and in a special 0-1-presentation, defined in stringView. The stringView of a permutation is a string of zeroes and ones
where each position has a specified meaning.     
Each position is assigned to a special pair (a, b) Î [n]^2  . Now, the position is set to 1 iff the permutation lists b before a,
otherwise 0.  This makes computing the Kendall-Τ distance easy: The Kendall Τ - distance is now the sum of the  column-
wise XOR in the transformed representation.       
The  Integer  Program  will  use  helper  variables  HH  to  compute  the  XOR.  They  will  be  defined  using  conditions
"xorHelperRestrictions". To make sure that the defined pairs of the solution string will be transitive (that means, s[{a, b}]
== 0, s[{b, c}] == 0,  then s[{a, c}] ==  0), we will use conditions transitivityRestrictions.

Needs@"Combinatorica`"D
CreateInstance@n_: n, m_: mD := Table@RandomPermutation@nD, 8m<D
inst = CreateInstance@4, 3D;

pairs := Subsets@Range@nD, 82<D;
stringView@permutation_D := If@ð, 1, 0D & ��

Module@8a, b, inv = InversePermutation@permutationD<,
Function@pr,

8a, b< = pr; invPaT < invPbTD ��  pairsD
OO@perm_, pr_D := stringView@permD@@positionOf@prDDD
stringView ��  inst

880, 0, 0, 1, 1, 0<, 81, 0, 0, 0, 0, 1<, 81, 1, 1, 0, 0, 1<<

HH contains the helper variables to compute the XOR. They are defined using"xorHelperRestriction".
S contains the variables making up the solution. s[{a, b}] == 1, iff s lists a before b.
To make sure that the defined pairs of the solution string will be transitive ( that means, s[{a, b}] == 0, s[{b, c}] == 0,
then s[{a, c}] == 0), we will use conditions transitivityRestrictions.



HH := Outer@h, inst, pairs, 1D �� Flatten;
S := Thread@s@pairsDD;
vars := Union@HH, S, 8maximum<D;
positionOf@pr_D := Position@pairs, pr, 1D �� Flatten �� First
transitivityRestriction := And �� Module@8a, b, c<, Function@tri,

8a, b, c< = tri; s@8a, b<D + s@8b, c<D - s@8a, c<D £ 1
&& -s@8a, b<D - s@8b, c<D + s@8a, c<D £ 0

DD ��  Subsets@Range@nD, 83<D ;

xorHelperRestriction := And �� Module@8perm, pr<,
Function@arg, 8perm, pr< = arg;

OO@perm, prD + s@prD £ 2 h@perm, prD + 1
&& OO@perm, prD + s@prD ³ 2 h @perm, prDD

�� Flatten@Outer@List, inst, pairs, 1D, 1D D;
variableConstraints := And �� Thread@1 ³ S ³ 0D && And �� Thread@1 ³ HH ³ 0D;
values := Function@w, Total@OO@w, ðD + s@ðD - 2 h@w, ðD & �� pairsDD �� inst;
constraints := Apply@List,

Join@transitivityRestriction, xorHelperRestriction, variableConstraints,
Apply@And, Thread@maximum ³ valuesDDDD;

Timing@8res, rules< = Minimize@8maximum, constraints<, vars, IntegersDD �� First
8res, rules<

1.97463

83, 8maximum ® 3, h@81, 3, 4, 2<, 81, 2<D ® 0, h@81, 3, 4, 2<, 81, 3<D ® 0,
h@81, 3, 4, 2<, 81, 4<D ® 1, h@81, 3, 4, 2<, 82, 3<D ® 0,
h@81, 3, 4, 2<, 82, 4<D ® 0, h@81, 3, 4, 2<, 83, 4<D ® 1, h@82, 4, 3, 1<, 81, 2<D ® 0,
h@82, 4, 3, 1<, 81, 3<D ® 0, h@82, 4, 3, 1<, 81, 4<D ® 0, h@82, 4, 3, 1<, 82, 3<D ® 0,
h@82, 4, 3, 1<, 82, 4<D ® 1, h@82, 4, 3, 1<, 83, 4<D ® 0, h@83, 4, 1, 2<, 81, 2<D ® 0,
h@83, 4, 1, 2<, 81, 3<D ® 0, h@83, 4, 1, 2<, 81, 4<D ® 0, h@83, 4, 1, 2<, 82, 3<D ® 0,
h@83, 4, 1, 2<, 82, 4<D ® 0, h@83, 4, 1, 2<, 83, 4<D ® 1, s@81, 2<D ® 0,
s@81, 3<D ® 0, s@81, 4<D ® 1, s@82, 3<D ® 0, s@82, 4<D ® 1, s@83, 4<D ® 1<<

Here, the linear program put together and run. The output is the optimum solution quality and the assignments done to the
variables.

We will compute the result expressed by these assignments.  Since the solution was coputed in a string view, we will also
show the string view of the solution and the input permutations. The first rows of the table are the stringViews of the
input permutations. The last row is the stringView of the solution. 

solution = Sort@Range@nD, HS �. rulesL@@positionOf@8ð1, ð2<DDD � 1 &D

TableView@Insert@Insert@stringView �� inst , S �. rules, -1D, pairs, 1D , ItemSize ® 4D

83, 2, 1, 4<

1 2 3 4 5 6

1 81,2< 81,3< 81,4< 82,3< 82,4< 83,4<

2 0 0 0 1 1 0

3 1 0 0 0 0 1

4 1 1 1 0 0 1

5 0 0 1 0 1 1

Verifying the result

Here, we define the distance computation differently, to  verify the previous results. We will use the Τ function from the
NPS implementation file here.

The diameter of the instance. The solution has to be greater than half the diameter, but not bigger than the diameter :
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diameter = Module@8a, b<,
Function@arg, 8a, b< = arg; Τ@a, bDD �� Subsets@inst, 82<D D �� Max

6

Let us examine our solution compared with all input strings :

Τ@ð, solutionD & �� inst

83, 3, 3<

This implies that the computed score is correct. Is there a better solution?

score@perm_?PermutationQD := Max@ Τ@ð, permD & �� instD;
8time, result< = score ��  Permutations@Range@nDD �� Min �� Timing

80.008667, 3<

No, there is not. Note that, unfortunately, the brute force algorithm is a LOT faster than the linear program.
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Benchmark code
Niko Schwarz, 4/2009

The code presented here is used to provide the performance measurements shown and discussed in Niko Schwarz' s
Diplom Thesis . It was run in Mathematica 7.

Definitions used in the benchmark

CreateInstance@n_, m_, r_D :=

Module@8<, 8input, R< = 88ð, r< & ��   Table@RandomPermutation@nD, 8m<D, 8<<D

CreateInstance@n_: n, m_: mD := Table@RandomPermutation@nD, 8m<D

swap@ll_List, i_IntegerD :=

Module@8l = ll, t = ll@@iDD<, l@@iDD = l@@i + 1DD; l@@i + 1DD = t; lD

next@n_, expectedDist_D := Module@8t, perm = Range@nD, swaps = RandomInteger@
BinomialDistribution@Binomial@n, 2D, expectedDist � Binomial@n, 2DDD<,

Do@perm = swap@perm, RandomInteger@81, n - 1<DD, 8swaps<D; permD

CreateEasyInstance@n_, m_, r_, expectedDist_: 5D :=

Module@8<, 8input, R< = 88ð, r< & ��   Table@next@n, expectedDistD, 8m<D, 8<<D

score@perm_ListD := Max@Τ@perm, ðD & �� ΛD

H*enumerate all permutaions and call f for each*L
gen@f_, n_D := Module@8id = -1, val = Table@Null, 8n<D, visit<,

visit@k_D := Module@8t<,
id++; If@k ¹ 0, val@@kDD = idD;
If@id � n, f@valDD;
Do@If@val@@tDD � Null, visit@tDD, 8t, 1, n<D;
id--; val@@kDD = Null;D;

visit@0D;
D

mean@x_ListD �; MemberQ@x, $AbortedD := $Aborted
var@x_ListD �; MemberQ@x, $AbortedD := $Aborted
mean@x : ___D := N@Mean@xD, 3D
var@x : ___D := N@StandardDeviation@xD, 4D

triv@D := Module@8min = ¥, s, ret<,
gen@Function@p, s = score@pD; If@s < min, min = s; ret = pDD, nD; minD

Benchmarks

runtimes = 8<;

NN = 87, 20<; MM = 83, 8, 30<; RR = Range@1, 7D;
benchmark@n_, m_, r_D :=

Module@8<, CreateEasyInstance@n, m, q, rD; AppendTo@runtimes, 8n, m,
TimeConstrained@triv@D �� Timing, 20D, TimeConstrained@NPS@D �� Timing, 20D<DD

Do@Outer@benchmark, NN, MM, RRD, 810<D



runtimes;
ReplaceAll@%, 8nn_, mm_, 8a_, r_<, 8b_, _<< ® 8nn, mm, r, a, b<D;
ReplaceAll@%, 8nn_, mm_, 8a_, r_<, $Aborted< ® 8nn, mm, r, a, $Aborted<D;
ReplaceAll@%, 8nn_, mm_, $Aborted, 8b_, r_<< ® 8nn, mm, r, $Aborted, b<D;
Select@%, Length@ðD � 5 &D H*drop samples where both runs were interrupted*L;

GatherBy@%, Take@ð, 3D &D;
Select@%, Length@ðD ³ 3 &D;
Join@Take@ð �� First, 3D,

8mean@ð@@All, 4DDD, var@ð@@All, 4DDD, mean@ð@@All, 5DDD, var@ð@@All, 5DDD<D & �� %;

SortByA%, DotAReverseAArrayAFunctionAi, 500i�.$Aborted ® 0E, 7EE, ðE &E;

% �. f_Real ® Round@f, 0.001D;
Export@"Dropbox�Thesis�tabgen1.csv", %, "CSV"D;
%% �� TableView;

Import@"Dropbox�Thesis�tabgen1.csv"D

SortByA%, DotAReverseAArrayAFunctionAi, 10i�.$Aborted ® 0E, 7EE, ðE &E;

% �. f_Real ® Round@f, 0.001D;
Export@"Dropbox�Thesis�tabgen11.csv", %, "CSV"D;
%% �� TableView

runtimes2 = 8<;

benchmark2@n_, m_D := Module@8<, CreateInstance@n, m, qD; calls = 0;
AppendTo@runtimes2, 8n, m, triv@D �� Timing, NPS@D �� Timing, calls<DD

MemoryConstrained@
Do@Outer@benchmark2, 85, 6<, 83, 5, 15<D, 85<D, H3 � 2L * 1000 * 1000 * 1000D

runtimes2;
ReplaceAll@%, 8nn_, mm_, 8a_, r_<, 8b_, _<, t_< ® 8nn, mm, r, a, b, t<D;
ReplaceAll@%, 8nn_, mm_, 8a_, r_<, $Aborted, t_< ® 8nn, mm, r, a, $Aborted, t<D;
ReplaceAll@%, 8nn_, mm_, $Aborted, 8b_, r_<, t_< ® 8nn, mm, r, $Aborted, b, t<D;
GatherBy@%, Take@ð, 2D &D;
Join@Take@ð �� First, 2D,

8mean@ð@@All, 3DDD, var@ð@@All, 3DDD, mean@ð@@All, 4DDD, var@ð@@All, 4DDD,
mean@ð@@All, 5DDD, var@ð@@All, 5DDD, mean@ð@@All, 6DDD<D & �� %;

SortByA%, DotAReverseAArrayAFunctionAi, 50i�.$Aborted ® 0E, 9EE, ðE &E;

% �. f_Real ® Round@f, 0.001D;
Export@"Dropbox�Thesis�tabgen2.csv", %D
%%

runtimes3 = 8<;

benchmark3@n_, m_D := Module@8time, erg<,
inst = CreateInstance@n, mD;
time = TimeConstrained@

Timing@erg = Minimize@8maximum, constraints<, vars, IntegersDD@@1DD , 20D;
rules = erg@@2DD

AppendTo@runtimes3, 8n, m, erg@@1DD, time<D;
D;

Do@Outer@benchmark3, 83, 4, 5<, 83, 5, 10<D, 83<D;

runtimes3;
ReplaceAll@%, 8nn_, mm_, r_, $Aborted< ® 8nn, mm, $Aborted, $Aborted<D;
GatherBy@%, Take@ð, 2D &D;
Join@Take@ð �� First, 2D,

8mean@ð@@All, 3DDD, var@ð@@All, 3DDD, mean@ð@@All, 4DDD, var@ð@@All, 4DDD<D & �� %;
Export@"Dropbox�Thesis�tabgen3.csv", %D
%% �� TableView
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Exploratory experiments

CreateEasyInstance@100, 5, q, 3D;
NPS@D �� Timing

82.36686, 4<

CreateEasyInstance@200, 5, q, 2D;
NPS@D �� Timing

89.25836, 4<

CreateEasyInstance@1000, 5, q, 1D;
NPS@D �� Timing

8102.865, 1<
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Helper function for testing
To test the functionality, it might be convenient to enumerate sym[a_]. The easiset way is this:

Clear@symD
sym@R_ListD :=   Select@Permutations@Range@nDD, Function@e, Module@8prs = eWn

<,
And �� HMemberQ@prs, ðD & ��  RLDDD

However, we are interested in an algorithm that can is exponential only in the output size. One could improve the above
by  re-implementing the enumeration of all  permutations (as a depth-first  search that  tracks back,  see Sedgewick's
"Algorithms") and abort as soon as the properties are violated. However, this can still have run-time exponential in n
eventhough the output is not exponential in n:

Clear@symD
Intersection@sym@a_D, sym@b_DD ^:= sym@a Ü bD
sym@R_D := Module@8id, val, visit<,

id = -1; val = Table@Null, 8n<D;

visit@k_D := Module@8t<,
id++;
If@k ¹ 0, val@@kDD = id;
If@HR Ý Reverse@pairsWith@val, idD, 2DL ¹ 8<,
id--; val@@kDD = Null; Return@DDD;

If@id � n, Sow@valDD;
For@t = 1, t £ n, t++,
If@val@@tDD � Null, visit@tDD

D;
id--; val@@kDD = Null;

D;
Flatten@Reap@visit@0DD@@2DD, 1DD;

H*Pairs in perm that have i as one entry,
in exactly the order in which they appear in perm*L
pairsWith@perm_, i_D := Module@8flip = False<,

Flatten@Reap@
Scan@Function@el,

If@el � i, flip = True,
Sow@If@flip, 8i, el<, 8el, i<DDDD, permDD@@2DD, 1DD

Block@8n = 6<, Intersection@sym@881, 2<, 82, 3<, 83, 4<<D, sym@884, 5<<DDD �� Timing

80.169979, 881, 2, 3, 4, 5, 6<, 81, 2, 3, 4, 6, 5<,
81, 2, 3, 6, 4, 5<, 81, 2, 6, 3, 4, 5<, 81, 6, 2, 3, 4, 5<, 86, 1, 2, 3, 4, 5<<<

The previous algorithm is already a lot faster than the naive procedure; unfortunately, it is still exponential in n. This is
the speed for n=10:

BlockA8n = 11<, IntersectionAsym@8<D, symATable@i, 8i, 1, 12<DW12
EE E �� Timing �� First

1.27948

Fortunately, we can speed it up a great deal by only trying the possible inversions we are interested in, and checking if,
together with the restrictions, they make up a permutation.



Clear@symD;
sym@res_D := ModuleA9P = R=,

TopologicalSort ��

Select@
FromOrderedPairs ��

HFunction@s, Join@Complement@P, sD, Reverse@s, 2D, resDD ��

Subsets@PD L
, AcyclicQDE

Which yields acceptable speed :

BlockA8n = 13<, IntersectionAsym@8<D, symATable@i, 8i, 1, 12<DW12
EE E �� Timing �� First

0.009672

Tests that show the intented behaviour of the definitions. 

These tests are convenient to verify that all tests set in the NPS algorithm implementation work as intended. All
these statements should evaluate to true. 

883, 2<, 81, 4<<† � 882, 3<, 81, 4<<
81, 2, 4, 3<881,2<,83,4<< == 881, 2<, 84, 3<<

ModuleA8n = 5<, IRange@nDWn
�� LengthM � Binomial@n, 2DE

BlockA8n = 11<, Length@881, 2<<D � Binomial@n, 2D - 1E

Τ@84, 2, 3, 1, 5<, 81, 2, 3, 4, 5<D � 5
Τ881,2<,82,3<,84,2<<@84, 2, 3, 1, 5<, 81, 2, 3, 4, 5<D � 2

True

True

True

True

True

True
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APPENDIX B

Transformation rules for closest string

We provide rules that help transform a closest string instance into another
closest string that is solvable if and only if the original instance is solvable.

Example. Let us assume that we have an input (S, r) and two input strings with
maximum distance s1, s2 ∈ S which are

s1 = 01001011001
s2 = 01011100100.

We can tidy up the instance see the structure of s1 and s2 more easily. The
idea is to replace every s ∈ S by some s′, without changing anything essential.

Lemma (B.1. Isometric transformation). Let f : {0, 1}D → {0, 1}D, D ∈ N be bi-
jective and isometric on the Hamming distance, i.e. f−1 exists and ∀a,b ∈ {0, 1}D :
dH(a,b) = dH(f(a), f(b)), then (S, r) is a closest string instance that can be
answered in the affirmative if and only if (f(S), r) is a yes-instance.

Proof. Note first that if f is isometric, then f−1 must be isometric, too. This
is because

dH(f−1(a), f−1(b))

=dH(f(f−1(a)), f(f−1(b)))

=dH(a,b)

Hence, for all s ∈ {0, 1}D we find that

f(S) ⊂ BdH ,r(s)

⇔∀s′ ∈ f(S) : dH(s′, s) ≤ r
⇔∀s′ ∈ S : dH(f(s′), s) ≤ r
⇔∀s′ ∈ S : dH(f−1(f(s′)), f−1(s)) ≤ r
⇔∀s′ ∈ S : dH(s′, f−1(s)) ≤ r
⇔S ⊂ BdH ,r(f−1(s))

Thus we are proving that a solution of (f(S), r) yields a solution of (S, r). And, if
we replace s by f(s) in the above, we see that

S ⊂ BdH ,r(s)⇔ f(S) ⊂ BdH ,r(f(s))

Which proves that a solution in (S, r) yields a solution in (f(S), r). �

This allows us to tidy up our example instance. We transform the whole in-
stance using Lemma B.1 . Applying an XOR with s1 on the whole instance would
achieve s1 to consist only of zeroes, while not changing the solvability of the prob-
lem. We would get:
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s′1 = 00000000000

s′2 = 00010111101

To show that we can use Lemma B.1, we need to show that the xor operation
is isometric.

Lemma (B.2). Let a ∈ {0, 1}D, D ∈ N, then function f

f : {0, 1}D → {0, 1}D, f(q) B a⊕ q

is invertible and isometric on dH .

Proof. We prove that f is bijective.
Assume that for s, t ∈ {0, 1}D, we would find f(s) = f(t). We would get

f(s) = f(t)
⇒s⊕ a = t⊕ a

⇒s⊕ a⊕ a = t⊕ a⊕ a

⇒s = t

Hence, f is injective.
Given any s ∈ {0, 1}D, we find that

f(a⊕ s) = s

Hence, f is surjective.
We prove that f is isometric.
We can define the Hamming distance as follows:

dH(s, t) =
∑

1≤i≤D

(s⊕ t)i = 1(s⊕ t)T

And now we get

dH(s1 ⊕ t, s2 ⊕ t) = 1(s1 ⊕ t⊕ s2 ⊕ t)T = 1(s1 ⊕ s2)T = dH(s1, s2)

The second equation follows from t⊕ t = 0. Hence, we find

dH(s, t) = dH(f(s), f(t))

�

We can still order a little more. We would like to sort all ones in s2 to the right
and obtain

s′′1 = 00000000000

s′′2 = 00000111111.

Again, we use Lemma B.1 , for which we have to show that reordering the
positions of the strings does not change the solvability.

Lemma (B.3). Each π ∈ Sym[D] is isometric with respect to dH and reversible.
Here, a permutation π is considered isometric with respect to dH if and only if for
all s1, s2 ∈ {0, 1}D

dH(πs1, πs2) = dH(s1, s2).
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Proof. The invertibility of permutations is well-known. The isometry follows
from

dH(s1, s2) =
∑
i

(s1 ⊕ s2)i =
∑
i

(s1 ⊕ s2)π(i)

=
∑
i

(π(s1 ⊕ s2))i =
∑
i

(πs1 ⊕ πs2)i = dH(πs1, πs2)

�

Using Lemma B.1 and Lemma B.2, we can assume that s1 = 0. Using
Lemma B.1 and Lemma B.3, we can assume that for s2,

(s′′2)i ≤ (s′′2)j , if i < j

holds.
We can also change the input by applying the XOR operation to all strings,

without changing the respective distances.

Lemma (B.4). Let s, t, p ∈ {0, 1}D, then
dH(s, t) = dH(s⊕ p, t⊕ p).

Here, s⊕ t stands for the XOR operation.

Proof. We have

dH(s, t) =
∑
i

s[i]↔ t[i]

=
∑
i

s[i]⊕ p[i]↔ t[i]⊕ p[i]

= dH(s⊕ p, t⊕ p)
Here, the symbol ↔ denotes the biconditional, also known as xnor. �

Next we show that the hamming distance is not affected by the order of the
columns.

Let s, t ∈ {0, 1}D and π ∈ Sym[D]. We define the product

λt := (t[λ(1)], t[λ(2)], . . . , t[λ(D)]).

Lemma (B.5). Let s, t ∈ {0, 1}D, then
dH(s, t) = dH(λs, λt).

Proof. We have dH(s, t) =
∑
i s[i]↔ t[i], where ↔ denotes the biconditional

(the negation of the XOR operation). The lemma is hence equivalent to reordering
the sum. �
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⊕ Binary addition; that is, the addition on the vector space over FD2
↔ The biconditional, also known as XNOR.
# Cardinality of a set.
◦ Concatenation of permutations. See Section 1.4.5.
E The expected value.
− The set complement. For two sets A,B, A−B is all of A except all of B.
[n] For a natural number n ∈ N, the set [n] is defined to be {1, . . . , n}(
n
k

)
The binomial coefficient n choose k.

⊂ We will write A ⊂ B to express that A is a non-strict subset of B, sometimes
written as A ⊆ B.

Sym[n] The symmetric group on [n] = {1, 2, . . . , n}. I. e., all permutations of length
n

SymR,[n] The permutations of length n which follow the set of restrictions R. See
Section 4.2.
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