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Abstract

Reasoning about the run-time behavior of software applications is a challenging
task. Live debuggers are essential tools that developers use in combination with other
tools from an IDE to find and fix problematic behavior. Nevertheless, if developers
use the debugger the wrong way or the debugger does not provide adequate features,
it will complicate the debugging process. To explore these issues and help improve the
debugging process, we perform an empirical investigation into how developers fix a
given bug in an unknown piece of code. We focus our investigation on how developers
use the debugger, and on how domain-specific information helps developers during the
debugging process. Towards this goal, we design the experiment as a between-group
study with 10 participants.

We collected and analyzed 6 hours of recordings. By analyzing them we observed
that: (i) developers use different strategies to find the cause of a bug; those who
successfully solved the given bug observed the live behavior of the application while
stepping in the debugger; (ii) domain-specific information helps developers if they
are able to find it, especially when dealing with unfamiliar libraries, and (iii) find-
ing and using domain-specific information is not always straightforward unless the
information is shown by default. Based on these observations we propose several
improvements to the debugger, such as visually highlighting domain-specific infor-
mation in the debugger, and automatically executing previous debugging actions to
avoid their repetition.
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1
Introduction

In software development, integrated software environments (IDEs) help programmers to create
and maintain software.

1.1 Debugging software
Software developers spend a large part of their time debugging software. This process involves
various activities like: reproducing bugs, finding and understanding their causes, and finally
repairing them. Current IDEs provide multiple tools and features that support developers in
performing these tasks. One example is static analysis tools. They can analyze the program
without executing it and detect a wide range of issues, like type mismatches, arithmetic overflows,
null exceptions, etc. A different category of tools are those that actually allow developers to
interact with a running system, instead of just looking at the static code. One crucial development
tool from this category that is nowadays present in most IDEs is the live debugger.

The live debugger1 supports developers in understanding the run-time behavior of a running
application. It does this by allowing developers to control the execution of the program. First,
developers can add breakpoints to pause the program execution when an interesting point is
reached. Second, developers can inspect and change the state of the interrupted program through
embedded inspectors. Third, developers can step through the execution of the program, one or
more instructions at a time. In some languages, live debuggers also enable developers to edit the
code of a running method, save it and resume the execution, without stopping the program.

An alternative to a live debugger is a post-mortem debugger. This debugging technique allows
the developer to debug a process that already finished executing or has crashed by analyzing a
memory dump file that was created during run time of the process.

1Unless otherwise mentioned, when we use the word debugger to refer to a live debugger.

1



CHAPTER 1. INTRODUCTION 2

1.2 Research Questions
Given that the debugger is a crucial, but also complex tool, in this thesis we focus on investigating
ways in which we can improve it. To achieve this, we design and perform an empirical study
with software developers. The experiment consists in fixing a bug in an unknown piece of code.
By focusing on a user study instead of a survey, we can directly see how developers interact with
the debugger during a bug-fixing scenario. We can further observe how they use the debugger
in combination with other tools from the IDE.

We selected to design the user study starting from the following three research questions:

RQ1: What debugging strategies are effective in solving the given bug?

RQ2: Does domain-specific information improve program comprehension during debug-
ging?

RQ3: How do participants notice and use domain-specific information during debugging?

There are many possible ways of approaching a debugging task, depending on the actual
bug, the developer’s experience and the available tools. Through RQ1 we want to investigate
strategies taken by developers who were successful in solving the given bug. In particular we
are interested in how developers navigate through code, what tools they use, and for what tasks
they rely on the debugger.

It is a common statement that domain-specific information helps developers during debug-
ging [2, 3, 9]. For example, debugging a parser using breakpoints at the level of the parser’s
grammar should be better then debugging the same parser using only breakpoints at the level
of the programming language. Through RQ2 we want to investigate this aspect, as well as what
domain-specific information can help developers solve the given bug.

Last but not least, a developer can only take advantage of domain-specific information or
domain-specific actions in the debugger if she is able to find and understand them. Through
RQ3 we are interested in observing how developers notice and discover such information.

As a concrete debugger for answering these research questions we selected the debugger from
the Pharo IDE2. We made this choice as Pharo comes with a debugging framework where it is
easy to add domain-specific information to the debugger [2], as well as to create domain-specific
extensions. The Pharo IDE also comes with a generic debugger, and two custom extensions, one
for debugging bytecode and one for debugging failed tests.

1.3 Experiment Setup and Main Findings
Gaining insight into the three research questions requires first and foremost a relevant bug. To
select it we surveyed the bug tracker for the Pharo IDE and discussed with Pharo developers. We
detail this process in Section 3.2. Second, to be able to answer our research questions we selected
a between-group design. We designed two experimental setups and assigned participants to one
of the two groups at random. In the first setup, participants had to use the standard debugger
from Pharo. For the second group, we extended the debugger and object-inspector with several
pieces of domain-specific information, relevant for the domain of the selected application.

We performed the experiment with 10 participants (PhD students and software developers);
we assigned 5 participants to each group. During the experiments we collected information about
the usage of the debugger and the interaction with other tools in the IDE using two recorders

2http://pharo.org

http://pharo.org
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for the Pharo IDE. We also recorded the screen and asked participants to think aloud during the
task.

To answer the three research questions we used a qualitative analysis with additional quan-
titative support. We first transcribed the interviews and, for each research question, extracted
relevant information. We also analyzed the recorded data to infer navigation between tools, tool
usage, and time spent in various methods. We can make the following observations about each
research question:

RQ1: Only two participants solved the bug. We observed that they used a strategy in which
they based their decisions on observing the live behavior of the application containing the
bug. Several other participants relied on dynamic data, however, by not observing the
behavior of the application they were unable to find the bug. A participant did not rely
on dynamic data and made very little progress;

RQ2: We noticed that indeed domain-specific information improved several subtasks, as
long as participants were able to find the relevant information in the debugger. Domain-
specific information was especially useful for participants not familiar with the libraries
used in the selected application; developers who encountered those libraries before already
knew what to look for.

RQ3: We observed that participants could not really find relevant extensions unless they
were active by default. Even if participants were told where to find them, during the task
they focused mainly on tool features that they already knew and felt comfortable with.

Based on this analysis we propose several improvement opportunities in the debugger. One
improvement opportunity is to emphasize in a visual way domain-specific information and actions
in the debugger, the first time a developer encounters them. This could ensure that developers
are made aware that they exist. We show a possible approach for highlighting the domain-specific
extensions used by the second group in Section 5.1.

Another improvement opportunity discussed in Section 5.2, consists in embedding the visual
representation of a graphical component directly in the debugger, when dealing with graphical
components. This change is directly related to the domain of the selected application, and in
our experiment this would have allowed participants to better find the code containing the bug.

We further noticed a significant number of repetitive actions in the debugger for navigating
through the execution of a program. For example, developers started a debugger, performed
several actions like step into and step over to reach a certain point, closed the debugger in order
to make a change, and then redid the navigation in the debugger to get back to the previous
point. To address this we propose in Section 5.4 a solution that records the actions done in
the debugger, allowing a developer to restore previous navigations through the execution. An
alternative solution consists in inserting conditional breakpoints that would stop in the same
place. We chose to record and replay debugging actions as for core libraries of a system inserting
conditional breakpoints can slow down the execution.

Outline
The remainder of this thesis is structured as follows:

Chapter 2 discusses several related studies that analyze developer actions within IDEs.

Chapter 3 describes the setup of the experiment. It presents the task that the participants
were asked to solve, and the differences between the tools used by the two groups.
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Chapter 4 presents the participants’ various debugging strategies and analyzes usage data
for several tools from the Pharo IDE. It also describes the participants’ difficulties and
discusses the three research questions.

Chapter 5 provides different opportunities to address problems found during the experiment
and presents possible implementations.

Chapter 6 summarizes and concludes the thesis.



2
Related Work

In this chapter we look at several other studies that aim to improve software development by
analyzing how developers interact with an IDE. We look at studies involving both the Pharo
IDE, as well as other languages and IDEs.

2.1 Understanding Developer Questions
IDEs are not only used for writing new code. They are also used to navigate through the code,
understand it and build a mental model. In their study, Kersten and Murphy [4] claim that
programmers spend more time navigating through code than working with it. Kersten and Gail
developed a plugin called Mylar (also known as Mylyn) for Eclipse that monitors the activity of
the software developer. Based on the collected data the plugin then generates a degree-of-interest
(DOI) model for each program element based on the historical selection or modification of the
element. Every time an element is selected or modified its DOI is increased and decreases over
time. The element is then highlighted depending on its DOI. This helps the developer to find
the elements that are relevant for the task she is currently working on. Kersten and Murphy
tested their tool in an experiment. They informed their participants about Mylar and collected
information about the usage of the tool. This data was used to calculate an “edit ratio” – the
number of keystrokes in the editor over the number of selections made in the IDE. Their results
show that the edit ratio increased between their baseline usage data and the Mylar usage data on
average by 15%. However, Mylar is not optimized to support debugging activities and can lead
to overpopulation e.g., single-stepping through the code results in too many irrelevant elements
to be marked as interesting. Additionally some participants disliked the intensity of the colors
added to the views.

Not only the direct interaction with the IDE is important. Another useful approach to
improve the IDE is to know what the developers think during their development task. Sillito et
al. identified four categories of questions being asked during a programming session in statically
typed languages [14]. These categories are:

• Finding initial focus points – e.g., “Which type represents this domain concept?”

5
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• Expanding focus points – e.g., “Which type is this type part of?”

• Understanding a subgraph – e.g., “What is the behavior these types provide together?”

• Questions over groups of subgraphs – e.g., “What is the mapping between these UI types
and model types?”

Perscheid et al. published a field study [12] about the advancement in debugging practice of
professional software developers. They observed eight software engineers while debugging and
interviewed them about their experiences. Additionally they did an online survey to get more
data. Their results show that the most difficult bugs nowadays are related to erroneous program
design and parallel behavior. They also observed that different tools and debugging strategies are
useful for different types of bugs. An important skill for efficient debugging is to be able to decide
which tool to use for what kind of bug. For their participants the most important properties for
new debugging tools are useful features, the ease of use and availability of documentation.

In a study of expert Java programmers using Eclipse [5], Ko et al. identified three fundamental
activities performed by developers during maintenance: (1) collecting a working set – a group
of task-relevant code fragments, (2) navigating dependencies between code fragments (such as
callers, callees, declarations) and (3) repairing or creating the necessary code. They suggest six
design requirements for maintenance-oriented tools based on the findings in their study: (1) A
working set interface for adding/removing task-relevant code fragments, (2) distinct tools for
navigating and representing working sets, (3) automatically adding dependencies to the working
set, (4) highlighting unchanged references of copied code, (5) helping to find indirect dependencies
of copied code and (6) automatically building a working set for why and how questions about
the program output. They claim that using these opportunities for new tools could save up to
35% of the programmer’s time.

Three years later Ko et al. presented a tool called Whyline [6] that tries to implement the
idea about automatically answering developer questions. The tool derives why did and why
didn’t questions from the program’s code and execution about the object and its properties and
fields. These questions are answered using the call graph, as well as static and dynamic slicing
techniques. The authors claim that novice programmers using their tool were twice as fast as
expert programmers without it.

In a paper presenting three studies [8] LaToza et al. showed that reachability questions –
searches across feasible paths through a program for target statements matching search criteria
– are common and consume a lot of the developers’ time. In their first study they found that
developers often understood facts about the code incorrectly and based on these false assumptions
they implemented buggy changes. The authors could relate half of those defective changes to
a reachability question. The goal of the second study was to understand the frequency and
difficulty of reachability questions. Their results show that on average the developers asked 9
reachability questions every day; 82% of them were rated as hard to answer. The third study
showed that 90% of the longest debugging sessions were associated with reachability questions.
The authors conclude that developers would be able to perform coding tasks more quickly with
tools that support them in answering reachability questions.

The study that we are proposing in this thesis builds on the ideas of these papers, however,
proposes to have a closer look at how developers use the debugger during a bug-fixing task.

2.2 Studies involving the Pharo IDE
Minelli and Lanza proposed a tool called DFlow [10] that records and creates web-based visual-
izations of the interactions between developers and the Pharo IDE. Using this tool they collected
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information about how developers spend their time during programming sessions, concluding
that they spend around 70% of their time performing program comprehension tasks and 14%
of their time in fiddling with the UI of the IDE. The time used to actually edit and navigate
through code covers only about 5% respectively 4% of the time [11]. Their results show that a
simple to understand and user-friendly IDE is important to improve the efficiency in software
development.

Kubelka et al. replicated Sillito’s thesis in Pharo, an environment for the dynamically typed
language Smalltalk [7]. Additionally to Sillito’s findings they added more questions to the four
categories. On debugging sessions with an unfamiliar codebase they found similar results as
Sillito et al. But on sessions with a familiar codebase the number of questions from the category
Expanding focus points was higher and the number of questions from the category Questions
over groups of subgraphs was lower than in Sillito’s paper. Kubelka et al. assume that this
is caused by different development strategies due to missing type information and test driven
development. The authors also noticed various techniques to get static information in Pharo. To
find the declaration or definition of a method the participants often used the senders (callers)
and implementors (callees) tools. However, if the method name is commonly used this technique
can be inconvenient and, if the object’s type is known, navigating to the class and then to the
implementation of the method would be more efficient. Kubelka et al. also noticed that some
developers made code changes based on assumptions about the object’s type or the method names
that a particular class should understand, and only in the case of a failure did they investigate
the code in more detail.

2.3 Summary
Studies show that the maintenance and debugging process is time consuming. Developers spend
a lot of time for code comprehension and answering reachability questions, to find the code
fragments that are related to the bug they are trying to resolve. For different types of problems
there are different tools and debugging strategies that are most effective to find and solve this
problem. Developers often ask how and why questions to get a better understanding about the
code. These questions can vary depending on the type and the domain of the application. In
this thesis we are interested in improving debugging by better understanding how developers use
a specific tool, the debugger, and by investigating how domain information can help developers
during a bug fix.



3
Study Design

In this chapter we describe the design and setup of the study. We also describe the selected bug
and the best strategies for solving it.

3.1 The Pharo IDE
Before going into details about the experiment, we present a brief overview of Pharo, the envi-
ronment that we are using for the experiment. Pharo is an open-source, Smalltalk development
environment. As in any Smalltalk implementation there is a very close integration between the
language and the IDE. The Pharo IDE itself consists of multiple development tools (Figure 3.1).
A central tool is the code browser Nautilus that allows developers to navigate through code,
create new classes and methods, and refactor code. Another important tool is the debugger. It
is a live debugger that allows developers to go through the code step by step and inspect the
state of the program and its variables. Two other tools for static code analysis are the senders
(callers) and implementors (callees) browsers. The playground is a tool that provides an interface
for scripting and live programming. It is often used by developers to work with snippets of code
not yet belonging to a class. Last but not least, there is the inspector that allows developer to
explore the state of run-time objects.

Unlike other IDEs, both the inspector and the debugger from Pharo are moldable: they allow
developers to create new domain-specific extensions with low effort [1]. For example, there are
inspector extensions for displaying widgets in a visual way and debugging extensions for parsers.
We rely on this in our experiment, as for one group we introduce several extensions to the IDE.

8
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Figure 3.1: The main tools from the Pharo IDE: the code browser Nautilus (1), the debugger
(2), the browsers for senders and implementors (3), the playground (4) and the inspector (5).

3.2 Task
Next we describe the selected bug in detail together with its fix.

3.2.1 Finding a suitable bug
Gaining insight into the three research questions mentioned in Chapter 1 requires first and
foremost a relevant bug. Hence, we decided to look for an existing bug instead of creating a
bug by ourself. This helps us to reason about how developers solve a real-world bug. Another
requirement that we had for the bug was its difficulty. To get enough data about tool usage in
Pharo we needed a bug that should not be found and fixed with ease.

To find a suitable bug in a Pharo application we surveyed FogBugz1. This bug tracker contains
bugs related the Pharo IDE itself, as well as libraries and frameworks used by the IDE. We looked
for bugs where the discussion indicated a difficult bug and that was not closed for several months.
We also asked Pharo IDE developers for possible candidates. This search produced six potential
candidates2. We then selected “Case 15345: GT workspace/inspector evaluates source wrong
when it ends with $”, treating it as nil instead” as the bug for the experiment. This bug was
reported on April 16 2015 and was fixed in Pharo build 50662 on March 26 2016. The bug affects

1https://pharo.fogbugz.com
2https://pharo.fogbugz.com/f/cases/7357,

https://pharo.fogbugz.com/f/cases/13049,
https://pharo.fogbugz.com/f/cases/13316,
https://pharo.fogbugz.com/f/cases/15286,
https://pharo.fogbugz.com/f/cases/15345,
https://pharo.fogbugz.com/f/cases/17330

https://pharo.fogbugz.com
https://pharo.fogbugz.com/f/cases/7357
https://pharo.fogbugz.com/f/cases/13049
https://pharo.fogbugz.com/f/cases/13316
https://pharo.fogbugz.com/f/cases/15286
https://pharo.fogbugz.com/f/cases/15345
https://pharo.fogbugz.com/f/cases/17330
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Rubric, a text editor from Pharo used by several development tools and it covers our needs well,
as it is not straightforward to locate the code containing the bug.

3.2.2 Understanding the problematic behavior
Like any code editor, the code editor from Pharo allows developers to simply select code and
perform various contextual actions on it. For example, in the debugger and playground developers
can evaluate, debug, or inspect the selected code. In case no code is selected when a contextual
action is invoked (Figure 3.2) the code editor will automatically select the current line. However,
due to the presence of the selected bug, if the line ends with a code comment there will be an
error during the invocation of the action (Figure 3.3).

Figure 3.2: Pharo Playground with a snippet of
code that triggers the bug.

Figure 3.3: Error message after executing the
line in case no explicit selection was already
made.

This bug appears due to a feature of Rubric that allows developers to execute a line of code
that is commented out. When a developer comments out a line of code3 and later still wants
to execute this line, for example to inspect the returned value, she does not need to remove the
quotes denoting the comment or select the code inside the comment manually. She can simply
place the cursor somewhere on the line and perform the desired action. The editor then selects
the code by removing the double quotes at the beginning and at the end of the line, before
passing it to the compiler. If the Playground contains on a line the code (e.g.,"40+2"), executing
this code without any selection will select and execute 40+2.

The method #computeSelectionIntervalForCurrentLine from the class RubTextEditor contains
this behavior. Rubric uses this method to compute the selection of the current line. Nonetheless,
the bug that leads to the error described above can be found in this method and is shown in
Code 1.

On line 4 the interval for the complete line is calculated. In lines 7-8 the left side of the
selection of the line is trimmed by removing quotes and separators i.e., whitespaces, tabs, line
breaks and similar characters. In lines 9-10 the same is done for the right side of the selected
line.

What the creator of this method did not consider is the case when a developer does not
comment out the whole line but just adds a comment at the end (or at the beginning) of the
line. In this case the method above just removes the last quote of the comment and the rest of

3Pharo uses double quotes to define comments
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1 computeSelectionIntervalForCurrentLine
2 | i left right s |
3 s := self string.
4 i := s encompassParagraph: self selectionInterval.
5 left := i first.
6 right := i last.
7 [ left <= right and: [ (s at: left) = $" or: [(s at: left) isSeparator] ] ]
8 whileTrue: [ left := left + 1 ].
9 [ left <= right and: [ (s at: right) = $" or: [(s at: right) isSeparator] ] ]

10 whileTrue: [ right := right - 1 ].
11 ^ left to: right

Code 1: The faulty method that calculates the selection interval when no explicit selection is
present.

the line is still selected. The same happens for comments at the beginning of the line where only
the first quote is trimmed.

Consider a line having the code 40+2 "compute 42". The size of this string is 17 characters,
so the variable left will have the value 1 at the beginning of the trim process and the variable
right will have the value 17. On the left side of the code there are no quotes or separators. Thus
in lines 7-8 nothing is trimmed and the variable left stays unchanged. On the right side however
we have a comment. The last character is a quote so the variable right is decreased from 17 to
16 in lines 9-10. The next character is the number 2 which is neither a separator nor a quote. So
nothing is trimmed anymore on the right side. The resulting selection of the line will be from
character 1 to 16, i.e., 42+2 "compute 42, resulting in the parsing error Unmatched " in comment due
to the missing quote character at the end.

3.2.3 Addressing the bug
The developers of Pharo fixed this bug by ignoring any quotes at the beginning and the end of
the line. The solution integrated in Pharo also removes the original feature, that of allowing
developers to execute lines that are completely commented out. Since the Pharo developers
removed this feature we also accept this solution in our experiment. Participants are allowed to
just remove the complete code that handles and removes the quote characters. After asking the
developers who were involved in fixing this bug we found out that they were actually unaware
of the previous behavior, never used it, and consider the fix to be correct.

3.3 Experiment Setup
To ensure that all participants started from the same buggy code, we prepared a set of unit tests
reproducing the bug. One of them is presented in Code 2.

This test opens a playground, using Rubric as a text editor, and executes the line 40+2
"compute 42" without selecting it first. Then it checks if the result was computed successfully.
The test suite also included other tests to exclude possible buggy solutions that while fixing this
bug were breaking other parts of the text selection logic in Rubric.

For the experiment we created two groups and we randomly assigned participants to one of
them:

• Group 1: The participants in Group 1 got a default Pharo image in which we reintroduced
the bug described above. They were allowed to use any tool available in the Pharo IDE.
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1 testExecutionWithComment
2 | page obtainedResult |
3

4 page := GTPlayPage new
5 saveContent: '40+2 "compute 42"';
6 yourself.
7

8 window := playground openOn: page.
9

10 playground codePresentation evaluateSelectionAndDo: [ :aResult |
11 obtainedResult := aResult ].
12

13 self assert: obtainedResult equals: 42.

Code 2: One of the tests used in our experiments

• Group 2: The participants in Group 2 got a Pharo image in which we reintroduced the
bug described above, and were also allowed to use any tool available in the Pharo IDE. For
this group, however, we introduced in the IDE several domain-specific extensions for the
debugger and the inspector.

Every participant got 50 minutes to find and solve the bug. However, we did not enforce this
limit. We allowed participants to stop if they solved the bug earlier and also if they felt that
they could not make any progress towards solving the bug. Also after 50 minutes we informed
participants of the time, but if they wanted they could choose to spend more time on fixing the
bug. We asked participants to think aloud as they were solving the bug and used screen recording
during the experiment. Additionally we employed two tools to collect usage data during the task:

• DFlow4 – also known as DevFlow – is a general profiling tool for the Pharo IDE. DFlow
collects various information like user clicks in the IDE, selected code entities, used tools
and code modifications.

• GT Debugger Event Recorder – To record more fine-grained data about the usage of the
debugger we created a custom recorder. This recorder is based on GT Event Recorder from
the Glamorous Toolkit, the framework on which the Pharo debugger is constructed. GT
Debugger Event Recorder collects information about what debugging actions were executed
in which method and which extensions were used. This data is then used to reconstruct
the debugging session and analyze the usage of the debugger and its extensions.

3.3.1 Domain-specific extensions
The extensions available for participants in Group 2 include two extensions for the debugger. First
we added an extension for SUnit, the testing framework from Pharo, available while debugging
unit tests. This extension shows the returned and the expected result of the failed assertion
and the setUp and tearDown methods associated with a test. Second we introduced an extension
for debugging announcements that is available when the stack frame contains an announcement.
This extension shows all the subscribers of the current announcement and allows developers
to directly jump to the method that handles the announcement. We decided to introduce the
extensions related to announcement as they are often used in Rubric. Also to reach the method

4http://dflow.inf.usi.ch/

http://dflow.inf.usi.ch/
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Figure 3.4: The tab “All subscriptions” shows
all the subscriptions of the current announcer
for any announcement.

Figure 3.5: The tab “Active subscriptions”
shows only the subscriptions that are interested
in the announcement that is currently being de-
livered. It allows the user to directly jump to
the code that handles the announcement.

containing the bug developers have to navigate through the propagation of an announcement,
which is often considered a difficult task.

To solve this bug, developers also have to deal with Stream objects: after computing the
selection interval, Rubric creates a stream object that gives access to the selected text and passes
the stream to the compiler. A stream in Pharo holds a String object, and gives access to only a
portion of this string controlled using a starting position and a read limit. When inspecting a
stream object developers can see these three attributes, and need to know that the actual content
of the stream depends on its starting position and read limit.

Figure 3.6: The Raw view of a stream in the
inspector. It shows the complete stream in-
cluding attributes like position, readLimit and
writeLimit.

Figure 3.7: Our Contents extension addition-
ally displays the actual content of the stream.

For the selected bug we noticed that it is difficult to observe that the stream does not give
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Figure 3.8: Navigation through the code from the test to the buggy method
computeSelectionIntervalForCurrentLine

access to the entire string, as it is caused by a off-by-one error. Hence, for Group 2 we added a
custom view in the inspector (Figure 3.7) only showing the actual content of the stream.

When describing the experiment to the participants in Group 2 we did not mention the
extensions for Stream objects and announcements. We only described the SUnit extensions and
made them aware that during the task they may encounter other extensions within the debugger
and the inspector. We made this choice to not directly influence developer’s activity, and to see
what factors makes them decide to use other extensions.

3.3.2 Main navigation path
There are several navigation paths through the code that can lead to the source of the bug, i.e.,
the method computeSelectionIntervalForCurrentLine. Figure 3.8 shows the simplest one. We will
use it to analyze the navigation of participants through the code.

This path starts with a test method. After creating and opening the playground window
the test adds the code 40+2 "compute 42" to the playground’s text editor and calls the method
GLMRubricSmalltalkCodeRepresenation>>#evaluateSelectionAndDo:. In this method an announcement
of type GLMEvaluateSelection is raised. This announcement is then handled by the text editor’s ren-
derer GLMMorphicPharoCodeRenderer. The renderer tells then the text editor to select and evaluate the
code of the current line. The code is selected in the method #lineSelectAndEmptyCheck: of the class
RubTextEditor. This method checks if the code was already selected manually. If there is no selec-
tion it will calculate the selection interval using the method #computeSelectionIntervalForCurrentLine.
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3.4 Participants
We did the experiment with 7 PhD students from different universities and 3 software developers
who work with Pharo. The general programming experience of the 10 participants ranges from
5 to 14 years and the programming experience with Pharo ranges from 0.75 to 8 years.

Group Industry University Pharo
P1 1 8 2 4
P2 1 2 3 3
P3 2 4 7 0.75
P4 2 10 5
P5 2 7 5 5
P6 1 5 4 6
P7 1 10 8
P8 1 8 4
P9 2 14 5
P10 2 11 2 4
Average G1 8.4 5
Average G2 12 3.95
Average 10.2 4.48

Table 3.1: Participant’s group, their total programming experience (in years), and their pro-
gramming experience with Pharo. For the total programming experience we distinguish between
academic and industrial experience.

Additionally we asked participants about their experience with several libraries from Pharo
directly relevant for this experiment: Glamour, the announcement framework and the Pharo com-
piler. We used a Likert scale with five possible answers: “Not at all”, “ Slightly knowledgeable”,
“Somewhat knowledgeable”, “Moderately knowledgeable” and “Extremely knowledgeable”. We
observed that most participants had at least some knowledge of these libraries (Table 3.2).

Glamour Announcements Compiler
P1 Not at all Not at all Not at all
P2 Moderately knowledgeable Extremely knowledgeable Somewhat knowledgeable
P3 Slightly knowledgeable Slightly knowledgeable Slightly knowledgeable
P4 Somewhat knowledgeable Not at all Moderately knowledgeable
P5 Moderately knowledgeable Extremely knowledgeable Moderately knowledgeable
P6 Slightly knowledgeable Slightly knowledgeable Extremely knowledgeable
P7 Not at all Extremely knowledgeable Somewhat knowledgeable
P8 Somewhat knowledgeable Moderately knowledgeable Extremely knowledgeable
P9 Slightly knowledgeable Somewhat knowledgeable Slightly knowledgeable
P10 Slightly knowledgeable Somewhat knowledgeable Slightly knowledgeable

Table 3.2: Participant’s experience with different components in Pharo: Glamour, the announce-
ment framework and the Pharo compiler.

Last but not least, we asked participants about their experience with other programming
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languages and IDEs. All of them are familiar with Pharo. On average the participants have
worked with four programming languages and three IDEs. The most used programming language
is Java and the most used IDE was Eclipse. Table 3.3 summarizes these results.
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Programming Languages IDEs

P1 C/C++ (4y)
Java (5y)

Eclipse (6y)
NetBeans (1y)
Visual Studio (1y)

P2 Java (1y)
Ruby (1y)

Eclipse (0.5y)
IntelliJ (1.5y)
RubyMine (1.5y)

P3
Java
C
Eiffel

Eclipse
IntelliJ
Pharo

P4

Java
Pascal
Delphi
PHP

Eclipse
Pharo

P5

Gupta (2y)
Java (3y)
Python (1y)
C# (1y)
Bash (7y)
PHP (1y)
Lisp (2y)

Gupta (2y)
Eclipse (3y)
Emacs (7y)
VisualWorks (5y)
Pharo (5y)

P6 Java (3y)
C, Assembly (3y)

Eclipse (3y)
Pharo (6y)
Xcode (0.5y)

P7

Java (10y)
C# (10y)
Pascal (2y)
Delphi (2y)

Eclipse (10y)
Visual Studio (10y)
Dolphin Smalltalk (1y)
Visual Work (2y)
Delphi (2y)
Pharo

P8

Java
PHP (2y)
COBOL (3y)
C# (2y)

Visual Studio
Eclipse
Pharo

P9
Java
PHP
Python

Eclipse (6y)
Pharo

P10

VisualWorks Smalltalk (0.5y)
Python (1y)
Java (6y)
C++ (5y)
Javascript (6y)

Pharo (4y)
Eclipse (5y)
KDevelop (1y)

Table 3.3: Participant’s experience with programming languages and IDEs.



4
Study Results

In this chapter we present the results of our experiment. We discuss how participants used
the debugger, discuss their strategies, and look at how domain-specific information helped them
during the task.

4.1 Data analysis
During the actual experiments we used DFlow to collect data about the participant’s interaction
with the IDE. DFlow however only records basic events in the IDE. To analyze these events we
created the tool DevFlow Analyzer. This tool reconstructs the debugging session by grouping
events together based on the tool that was focused at the time the event was generated.

We also used GT Event Recorder to collect information during experiments. This is an
infrastructure for recording IDE interactions available in the Pharo IDE. For this experiment
we extended it with a recorder capturing fine-grained interactions in the debugger. We then
integrated this data into the debugging sessions obtained using DevFlow Analyzer.

4.2 Completion times and correctness
We observed sessions of different lengths, ranging from 20 minutes up to 53 minutes. On average
participants spent 38 minutes on the task. We analyzed each session and gave it a correctness
score (Table 4.1) using the following scores:

A. The participant found the cause of the bug and solved it correctly. She reached the method
computeSelectionIntervalForCurrentLine and changed it so that all provided tests passed;

B. The participant discovered that there was a problem in computing the selection. She
reached the method evaluateSelectionAndDo: that was accessing the selection but was unable
to determine why the selection was wrong;

C. The participant successfully navigated the propagation of the GLMEvaluateSelection announce-
ment, but made no other progress;

18
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F. The participant made no real progress towards solving the bug and was unable to nav-
igate the propagation of the GLMEvaluateSelection announcement and reach the method
actOnEvaluateSelection:.

After the experiment we also let participants rate both how realistic and how difficult the
given task was using a 5-point Likert scale. For indicating if the task was realistic the scale goes
from 1: “Strongly disagree” to 5: “Strongly agree”; for indicating difficulty it goes from 1: “Very
difficult” to 5: “Very easy”. All participants found the task realistic. Six participants found the
task difficult, with only two finding it easy. Even if participant P2 solved the task correctly she
did not find it easy.

Is the task realistic? Difficulty Duration Score
P1 agree difficult 40:00 C
P2 strongly agree neutral 23:20 A
P3 agree difficult 40:54 F
P4 agree difficult 45:18 B
P5 strongly agree easy 30:36 A
P6 agree easy 34:34 B
P7 agree difficult 39:41 B
P8 strongly agree difficult 48:30 B
P9 agree neutral 25:17 B
P10 strongly agree difficult 52:44 B

Table 4.1: Participant’s rating of how realistic and difficult the bug is including the time spent
on the task and the correctness scores for the debugging sessions.

4.3 Tool Usage
Apart from correctness and completeness, we further analyze the time spent by participants in
different tools and the navigation between tools. We exclude from this analysis participant P4,
as the participant broke the Pharo image several times without saving it; because of this we could
not collect reliable usage data. In this analysis we include the tools introduced in Section 3.1.
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Figure 4.1: Timeline of tool usage during the debugging sessions.
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Figure 4.2: Distribution of tool usage during the debugging sessions.

Figure 4.1 shows the tool usage over the whole debugging session for all the participants, while
Figure 4.2 shows the the percentage of time spend in each tool. We observe (Figure 4.2) that on
average participants spent 66% of the time in the debugger, with participant P3 spending the
least amount of time (44%). This indicates that the selected bug was relevant for investigating
how developers use the debugger. Regarding the remaining tools, 16% of the time is spent in the
code browser Nautilus. In the inspector and the playground participants spent 5% respectively
3% of the time. They spent 7% for browsing the senders and implementors of methods. And 3%
of the time is spent in other tools.
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Figure 4.3: Switches between the different tools during the debugging session

We also look into how participants switch between tools (Figure 4.3). We observe that a par-
ticipant who is currently in a debugger switches to another debugger window with a probability
of 34% and to an inspector window with a probability of 22%. When already in an inspector,
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with an 84% probability, a participant goes back to a debugger. This indicates a strong link
between the debugger and the inspector. Currently, however, when in a debugger or inspector
participants mainly opened a new debugger or inspector in a new window. While support ex-
ists in the debugger to open an inspector in the same window, participants were not aware of
this feature. Providing better integration between the debugger and the inspector, and further
allowing developers to spawn new debuggers in the same window using a pager-like interface (as
in the inspector) could reduce the window problem [13] often associated with systems using a
window based IDE.

When participants were in the Playground they navigated next to a Nautilus window with
a probability of 33%. Most of the times when doing this navigation participants first opened a
Playground, typed the name of a class and then used the ‘Browse’ shortcut to open Nautilus on
that class. They did this even if they can first open Nautilus and then search for the desired
class, or use Spotter, the main search tool from Pharo. A better integration of search features
into the code editor could further reduce the number of windows opened during a debugging
session.

Last but not least, we also wanted to get a clearer picture of the intensity with which partici-
pants interacted with the IDE. To achieve this we use as a proxy the number of clicks (Figure 4.4)
and windows opened in 5 minute intervals (Figure 4.5). We observe that there are significant dif-
ferences between participants. Participant P2 for example, who successfully solved the task had
a low numbered of interactions, not opening more than 10 windows in 5 minutes. Participant P7
on the other hand opened 20 windows in 5 minutes. This indicates very different styles between
participants in interacting with the IDE. Some participants really take their time in determining
their next move, while others go much quicker in the hope of gathering more insight. We did not
see a correlation between this and the successful completion of the task.
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Figure 4.4: Number of clicks measured at 5 minute intervals.
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Figure 4.5: Number of opened windows measured at 5 minute intervals.

4.4 Code navigation
In this section we analyze more closely how participants navigate through those parts of the code
relevant for the given task. To support this analysis we look at what methods developers visited
during the task and observe several relevant paths through the code, highlighted in Figure 4.6.

Figure 4.6: Relevant navigation paths through the code.

Initially participants start with Path 0 by running a test method and opening the debugger.
They then step into the method GLMRubricSmalltalkCodePresentation>>evaluateSelectionAndDo:
where a GLMEvaluateSelection announcement is raised. The next step is to find the method
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GLMMorphicPharoScriptRenderer>>#actOnEvaluateSelection: that handles this announcement. When
they reached that method (GLMMorphicPharoScriptRenderer>>#actOnEvaluateSelection:), either using
the debugger or static code searches, they put a breakpoint there and step into the method
RubSmalltalkEditor>>#evaluateSelectionAndDo:. At this point we observe three different ways of
continuing the exploration:

• Path 1: RubSmalltalkEditor>>#lineSelectAndEmptyCheck:

• Path 2: RubSmalltalkEditor>>#evaluate:andDo:

• Path 3: RubSmalltalkEditor>>#selectionForDoitAsStream

The method RubSmalltalkEditor>>#evaluateSelectionAndDo: where the exploration splits
into the 3 different paths contains the following code:

1 evaluateSelectionAndDo: aBlock
2 "Treat the current selection as an expression; evaluate it and invoke aBlock with the result.
3 If no selection is present select the current line."
4

5 self lineSelectAndEmptyCheck: [^ ''].
6 ^ self
7 evaluate: self selectionForDoitAsStream
8 andDo: aBlock

Line 5 does the selection of the code in the playground. Following this path will lead the
participant to the bug. For performance reasons, the method directly returns an empty string
if the line does not contain any code. In that case the execution can directly return an empty
string without invoking the compiler.

In line 7 we see the code self selectionForDoitAsStream. This method basically extracts the
text of the current line from the beginning to the end of the selection. This text is then stored
in a stream and passed to the method evaluate:andDo:.

Lines 6-8 contain the call to the method evaluate:andDo:. This method takes two arguments.
The first argument is a stream that contains the extracted code that we got from line 7. The
second argument is the code block that is executed after the result of the selected code is com-
puted.

All of the participants except the ones who solved the bug (P2 and P5) gave little importance
to line 5. P4 and P10 additionally checked the return value of the line but did not step further
into the method. P5 also skipped the line on the first time and visited the method in a later
iteration while P2 directly stepped into it on the first encounter and started to debug it. We
present in Appendix A the time spend by each participant on the three paths.

On line 7 the method selectionForDoitAsStream returns a Stream object representing the current
selection in the text editor. However the participants who are not familiar with how the Stream
object behaves did not know that they need to explicitly check the contents of the stream to get
the actual content. They just looked at the complete stream ignoring the read limit and thought
this selection stream is complete. The participants who checked the stream at this position are
P7 -P10. While P8 did not realize that the stream is not complete and the quote at the end
is missing the other three noticed it by checking the content either manually (P7) or by our
extension (P9 and P10). P1-P6 did not check the stream at this position. P2, P4, P5 and P6
checked it later in the method RubSmalltalkEditor>>#evaluate:andDo: while P1 and P3 did not check
the stream at all.

After they noticed that the content of the stream is wrong they went back to the call
self selectionForDoitAsStream on line 7 and tried to find the bug there. This method has the
following implementation:
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1 selectionForDoitAsStream
2 "Answer a ReadStream on the text in the paragraph that is currently
3 selected. "
4 ^ ReadWriteStream
5 on: self string
6 from: self startIndex
7 to: self stopIndex - 1

Here participants hypothesized that subtracting 1 from stopIndex is the root cause of the bug.
Hence, they removed the subtraction and run the tests again. This however had no effect on
the tests, as later on the compiler ignores the actual stream passed to evaluate:andDo:. Several
participants noticed this after having a closer look at the method OpalCompiler>>#evaluate on Path
3. There they realize that the content of the stream passed to evaluate:andDo: is actually never
used because the actual string to be evaluated is computed in the following way:

1 ...
2 selectedSource := ((self compilationContext requestor respondsTo: #selection)
3 and: [
4 (itsSelection := self compilationContext requestor selection) notNil
5 and: [ (itsSelectionString := itsSelection asString) isEmptyOrNil not ] ])
6 ifTrue: [ itsSelectionString ]
7 ifFalse: [ source ].
8 ...

This code checks if there is a selection set in the playground. And only if there is no
selection will it use the content of the stream that participants just tried to fix. However,
the line self lineSelectAndEmptyCheck: from method RubSmalltalkEditor>>#evaluateSelectionAndDo: al-
ways sets a non-empty selection in the playground. This means the stream that was passed to
this method is not used at all. So changing the stream does not fix the problem.

A similar confusion happens on line 4 in the above listing. The code itsSelection := self
compilationContext requestor selection calls the method RubTextEditor>>#selection which looks
like this:

1 selection
2 "Answer the text in the paragraph that is currently selected."
3 ^self text copyFrom: self startIndex to: self stopIndex - 1

This method returns the actual selection of the text editor. Here we have again the sub-
traction of 1 from the stopIndex of the stream. Because removing - 1 in the previous method
selectionForDoitAsStream did not fix the problem participants P2, P6, P7 and P9 tried to also
change it in this method. Since this method affects the actual selection in the text editor it made
the test pass but introduced a new problem; the character directly after the selection is now also
included in the returned text – breaking selections where not the complete line is selected. This
case was covered by another test which failed after this modification.
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Path 0 Path 1 Path 2 Path 3 Other
P1 16:12 00:00 08:09 00:00 01:52
P2 08:01 06:33 03:57 00:26 01:49
P3 17:21 00:00 00:00 00:00 00:00
P4 ~21:00 00:00 ~14:00 ~5:00 ~5:00
P5 16:39 04:58 03:30 01:49 01:40
P6 09:43 00:00 10:28 01:22 01:44
P7 08:32 00:00 23:24 00:51 01:09
P8 13:53 00:00 14:53 01:11 04:14
P9 07:09 00:00 06:44 02:24 01:51
P10 23:40 00:00 03:29 02:55 02:17
Average 13:28 05:45 09:19 01:34 02:04

Table 4.2: Participant’s time spent on the different paths. We excluded the estimated values for
P4’s broken Pharo image from the average.

Table 4.2 shows the time spent by each participant on the four paths. On average most time
was spent on Path 0 (~13 min). This is expected since participants need to visit those methods
regardless of what path they will look at next. We observe that only participants that solved
the bug correctly entered Path 1 containing the solution and spent on average 6 minutes on that
path. Figure A.1 to Figure A.9 show a visual representation of the time spent in the various
methods on the paths for each participant.

We further observe that the rest of the participants chose to explore in detail Path 2, and did
not discover Path 1 at all. One explanation is that because they were dealing with unfamiliar
code they did not know in advance which path is most relevant. Most participants started with
Path 2 and tried to understand why the quote at the end of the stream is missing. They then
went into Path 3 by trying a possible fix that they quickly discovered was not the right one.

4.5 Addressing the Research Questions
Next we used the aforementioned data to discuss the three research questions formulated in
Section 1.2.

4.5.1 Debugging Strategies (RQ1)
Through our first research question (RQ1: What debugging strategies are effective in solving the
given bug?) we want to investigate effective strategies used by developers to address the given
bug. By qualitatively analyzing the 10 recorded sessions and looking at what makes developers
change from one path to another we observe three main debugging styles

• S1: behavior driven exploration. Participants switched between paths by observing the live
behavior of the application;

• S2: in-depth path exploration. Participants focused on a single path attempting to fully
understand it before moving to other paths;

• S3: code driven exploration. Participants made decisions by looking mainly at static code
and relations between code entities.
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We first notice that only two participants, P2 and P5, successfully solved the bug. In doing
so these two participants explored all the paths presented in Figure 4.6: they started with Path
0 continued with Path 2 going into the compiler, Path 3 related to how an editor extracts the
selection and finally ended up in Path 1 containing the bug. They actual exploration through
these paths is highlighted in Figure A.2 and Figure A.4.

These two participants were the only ones that followed S1. They both made the switch to
Path 1 when observing the behavior of the application in the debugger. For example, participant
P5 noticed that the selection of the code in the Playground visually changes while stepping
over the method lineSelectAndEmptyCheck. Participant P2 manually changed the selection in the
Playground and observed that for those cases the selection was computed correctly when on Path
2; the participant then suspected that the selection was wrongly computed and investigated the
method lineSelectAndEmptyCheck.

Most of the remaining participants used strategy S2. After finding the announcement handler
they immersed themselves in a deep exploration of Path 2. When the fact that the wrong selection
was not the fault of the compiler became apparent they moved to Path 3, however, in the given
time they could not backtrack enough to reach Path 1.

Strategy S3 involves the use of tools like Senders and Implementors. Especially when finding
the handler for the announcement, most of the participants used this strategy. Participants P5,
P7 and P9 checked the references to the announcement’s class to find where it is used and what
method is called when an object receives the announcement. Using the Implementors tool they
found all the possible handlers and tried to guess the correct handler by looking at the class
name or setting a breakpoint in all of them.

4.5.2 Usage of domain-specific information (RQ2)
Our second research question was RQ2: Does domain-specific information improve program
comprehension during a debugging session?. To investigate it, we introduced in the experiment
several domain-specific extensions that were available only for Group 2. They consisted of an
extension showing the actual content of a stream object in the inspector and two extensions
showing the list of subscriptions for an announcer directly in the debugger. We analyze next
quantitative data related to how much time the two groups spent in tasks related to those
extensions, and also make qualitative observations.

Regarding the inspector extension for showing the content of a stream, we observe that
participants in Group 1 took on average 1 minute to realize that the content of the stream is
wrong, while participants in Group 2 saw it instantly by using the inspector extension. In Group
1 there were two participants more familiar with streams and they checked its contents manually.
P7 checked the contents directly after first encountering the stream and P2 checked it after ~1.5
minutes. Nonetheless, several participants in Group 1 (P6 and P8) had difficulties in obtaining
this information as they did not know that the actual content of the stream can be different
from the complete string stored in a stream. This led to the wrong assumption that the stream
was correct and they tried to find the bug at another location in the code. They finally realized
this when they inspected the stream again after it was converted to a String. In Group 2 no
participant had issues identifying that that stream has the wrong content. Table 4.3 shows, for
each participant, the time from the first encounter of the stream until it realized that it is not
complete.
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Group Time Method
P1 1 - not checked at all
P2 1 01:29 checked contents manually using method #contents
P3 2 - not checked at all
P4 2 00:00 extension
P5 2 00:00 extension
P6 1 01:10 after conversion to String
P7 1 00:13 checking contents manually using method #contents
P8 1 00:51 after conversion to String
P9 2 00:00 extension
P10 2 00:00 extension
Average G1 00:56
Average G2 00:00

Table 4.3: The time it took participants to notice that the content of the stream is not complete,
starting from the moment they first encountered the stream object. We also indicate what
method participants used to find out the actual content of the stream.

Regarding the second extension we noticed that participants in Group 1 found the method
that handles the announcement on average after 7 minutes while the participants in Group 2 took
about 7.5 minutes. Table 4.4 shows the time it took each participant to perform this part of the
task and reveals large time differences between participants. We observe that participants not
familiar with this framework took a significantly longer time than participants who encountered
the framework before.

Only one of the participants however (P4), noticed and used the extension for debugging
announcements. This participant found the method handling the announcement in ~2 minutes,
Additionally, he spent ~2.5 minutes more to check the action of the announcement manually to
ensure that he got the correct information since he was unfamiliar with the new extension; also
he added a breakpoint manually in the handler method.

Looking closer at how participants approached the task of finding the methods handling the
announcement, we observed three different strategies. The most common one (used by P1, P4,
P8 and P10) was to inspect the announcement and check its subscriptions. Each subscription of
an announcement contains information about the method that handles the announcement. P4
noticed our extension, however, since he was unfamiliar with this new extension he decided to
double check the action of the announcement manually. A second strategy was to check which
classes are interested in this type of announcement (where it is being registered) and what method
is executed when the announcement is received. This strategy was used by P5, P7 and P9. P2
found the method by stepping through the code manually using the debugger until he reached the
method handling the announcement. Additionally he also checked the announcement’s action.
The last strategy that we observed (used only by P6) was to skip the search for the handler by
searching for the error message showed in the Playground. This allowed him to directly jump
into the method evaluate:andDo: on Path 2.
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Group Time Method Experience with announcements
P1 1 16:58 Checking action of announce-

ment
Not at all

P2 1 03:03 Stepping through the code using
debugger

Extremely knowledgeable

P3 2 - Did not find the method Slightly knowledgeable
P4 2 04:35 Checking action of announce-

ment & extension
Not at all

P5 2 05:09 Checking event registration Extremely knowledgeable
P6 1 06:04 Skipped by searching for error

message
Slightly knowledgeable

P7 1 01:58 Checking event registration Extremely knowledgeable
P8 1 06:50 Checking action of announce-

ment
Moderately knowledgeable

P9 2 03:54 Checking event registration Somewhat knowledgeable
P10 2 16:12 Checking action of announce-

ment
Somewhat knowledgeable

Average G1 06:59
Average G2 07:28

Table 4.4: Duration until the participants found the method that handles the announcement
sent on path Path 0.

Regarding this research question, due to the small number of participants who used the
provided extensions we cannot draw any strong conclusions about the improvements brought by
domain-specific information. What we noticed nonetheless, is that when developers found and
used the provided extensions it helped them in the task.

4.5.3 Usage of debugging extensions (RQ3)
Our last research question (RQ3: How do participants notice and use domain-specific debugging
information?) looks at how developers discover domain-specific extension. To address it we rely
on qualitative observations made for the participants in Group 2.

We first noticed that there is a significant difference between the usage of extensions in the
inspector and debugger. All participants in Group 2 who inspected a Stream object observed
and used the ‘Contents’ view. However, just one participant noticed and used the views ‘All
subscriptions’ and ‘Active subscriptions’ from the debugger, although we showed them two other
debugger extensions – the ‘SetUp’ and ‘TearDown’ views used in unit tests – before the exper-
iment which works the same way as our extension. The main explanation for this is that when
inspecting a Stream object the ‘Contents’ view appears by default. However, in the debugger
participants have to know about those views and switch to them explicitly. The one participant
(P4) who discovered the views found them useful. All other participants from the experiment
(from both groups), however, remarked when reaching the propagation of an announcement that
they would like to have in the debugger support for seeing the actual subscriptions (P1: “I’m
looking for the subscribers to this announcement”; P6: “Now I need to look which guy receives
the announcement.”). Participants also mentioned that it would be helpful to have a feature to
automatically jump to the handling method of the announcement when it is delivered to the
receiver.
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Based on these results we conclude that developers need to be notified when a new extension
is available. We discuss in Chapter 5 a solution for visually highlighting new extensions.

4.6 Summary
In this chapter we analyzed the data that we got from the experiment focusing on the partici-
pants’ different debugging strategies and the tool usage. We observed that for the case of our
task the most successful debugging strategy was to observe the application live while stepping
through the debugger. We also noticed that when used extensions providing domain-specific
information helped participants be faster in solving the task. However, developers often missed
these extensions unless they were selected by default. Based on this analysis in the next chapter
we look at several concrete proposals for improving the debugger.



5
Improvement Opportunities

In this chapter we discuss possible improvements of the debugger to address problems that arose
during the experiment.

5.1 Highlight Extensions
When analyzing RQ3 we observed that developers did not notice new extensions added to the
debugger as they were using it. Hence, we propose to use visual clues to help indicate to
developers that a new extension that can be used in the current context has been added to the
debugger One way to achieve this and call the developer’s attention to these new extensions is to
highlight them, when they become available for the first time, with a color different than those
of existing extensions. We implemented this idea by creating an extension for the debugger that
can recognize new extensions. When this extension is active in the debugger, the very first time
a new extension is added the tab representing that extension is highlighted in red.

For example, Figure 5.1 shows how the debugger looks like the very first time the extension
for debugging announcements is shown in the debugger. As developers step through the debugger
the color highlighting the tab is made less intense (Figure 5.2). After the extension is shown five
times it is no longer highlighted. Currently, extensions are highlighted only once. As a future
work, after getting developer feedback on this solution, we consider that the mechanism could
be extended to also highlight extensions that were not used in a given period of time.

5.2 Graphical Components
During the experiment we noticed that most of the developers ran the test and then started to
debug the playground in the debugger. The playground itself was moved to the background and
they were focusing only on the debugger. So most of them did not notice that the selection in
the playground changed during their debugging actions in the debugger. The result was that the
developers missed important hints about which parts of the code were changing the selection.
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Figure 5.1: Highlighting of the extension on the
first appearance.

Figure 5.2: Highlighting of the extension after
three debugging sessions.

To reduce this problem we created an extension that when debugging a graphical element1

displays a visual representation of the Morph directly in the debugger (Figure 5.3). With this
feature the developer can see the graphical element that she is currently debugging even if the
actual window is in the background. Combined with the extension from Section 5.1 the tab
showing this extension will be highlighted the very first time the extension is displayed.

5.3 Domain-specific actions
Apart from visually observing that the selection has changed, a different problem faced by par-
ticipants from both groups was to find the instruction that changes the the selection in the text
editor. To address this problem we created an extension (Figure 5.3) for the debugger that when
debugging a text editor, displays a button allowing the user to resume execution until the selec-
tion in the text editor changes. This is done by installing a conditional breakpoint in the method
RubTextEditor>>#markIndex:pointIndex: – a low-level method responsible for changing the
interval of the selection. This particular extension is mainly useful when reasoning about the
text editor. However, this extension is a particular case of halting execution when the attribute
of an object changes. Improving the general support for adding these kinds of breakpoints could
further improve debugging for many other types of objects.

5.4 Repetitive actions
By analyzing the data recorder during the experiment we further observed that participants
repeated several debugger actions multiple times. A common reason for repetitive actions was
to reach the same point again. For example participants ran the given test, got a debugger and
used it to reach a certain point in the execution. Then they closed the debugger, made some
changes to the code, ran the test again, and redid the previous steps to reach the same point
again.

We observe many such repetitive actions especially when navigating the delivery of announce-
ment on Path 0. This happened as setting a breakpoint on this path is not possible given that the

1In Pharo they graphical elements are called Morphs
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Figure 5.3: When debugging a text editor the debugger displays a button to proceed the execution
until the selection in the text editor changes (1). Additionally graphical elements are directly
displayed in the debugger (2).

announcements library is used in many other parts in the system. This forced the participants
to set the breakpoints at the beginning of Path 0 and after the debugger hit the breakpoint step
through the code manually again until they reached the previous position in the code.

We noticed that P1 encountered this situation six times and lost around 4 minutes due to
these repetitive actions. Most of the other participants spent around 1 minute with repetitive
actions caused by opening a new debugger window or using the debugger’s restart option and
then stepping through the code to the position where they were before. The participants set
breakpoints to reduce these repetitive actions. To prevent image crashes by breakpoints in
system classes P2, P4 and P6 used conditional breakpoints. However, P3 did not use conditional
breakpoints which resulted in an image crash. Also P6 added a breakpoint in a system class
leading to a high number of error messages. He was able to repair the image using Pharo’s
“Emergency Evaluator” but lost around 3 minutes.

To address this issue we created an extension for the debugger that is able to detect this kind
of repetitive actions. Whenever the extension detects that the developer is at a position in the
code where she has already been before it offers her the possibility to repeat all the debugger
actions that she executed during this time. This feature also helps to restore an (accidentally)
closed debugger session. With one click the tool brings the developer back to the point in the
code where she closed the debugger. Figure 5.4 and Figure 5.5 show the extension that allows
the developer to redo repetitive actions or restore a previously closed debugging session. If as
the extension is redoing the navigation it detects that execution takes another path, for example
because the developers made some code changes, it stops at that point.

Another solution to this problem consists in allowing developers to insert conditional break-
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Figure 5.4: The extension allows the developer
to redo repetitive actions.

Figure 5.5: The extension allows the developer
to restore a previous debugging session.

points in previously visited methods. This would also insure that the execution stops at the same
point. For the given situation we chose to record and replay debugging actions, as most repetitive
actions were related to the announcement framework. This is a low level framework that is used
throughout the Pharo IDE and instrumenting it using conditional breakpoints slows down the
execution of the entire IDE. A third alternative that could address this issues that we did not
currently investigate consists in using object-centric breakpoints. For example, object-centric
breakpoints would allow us to only instrument the announcement objects that is responsible to
notify the Rubric editor that code needs to be executed.

5.5 Summary
In this chapter we have shown several concrete improvements that we can make to the debugger
based on our experiment. Future work is needed to see how to better generalize these extensions.



6
Conclusions and Future Work

In this section we summarize and conclude our findings and present possibilities for future re-
search and improvements to make debugging more efficient.

6.1 Conclusion
In an experiment with 10 participants we collected data about how software developers use
the tools in Pharo to find and solve a bug. Our focus was to answer three research questions
related to the debugger. We first observed three types of debugging strategies; behavior driven
exploration, in-depth path exploration and code driven exploration. We then introduced several
domain-specific extensions to the debugger to see if they help developers. Our analysis showed
that developers often only use familiar extensions and ignore new or unknown extensions. Hence,
only a few developers used the introduced extensions. However, those that used them benefited
from them during the task.

We further presented three opportunities to improve the efficiency in debugging based on
the problems and difficulties the participants reported during the experiment. The first one
is to highlight new extensions in the debugger to bring more focus to them and encourage
the developers to use and explore unfamiliar extensions. Second, graphical components can be
displayed directly in the debugger so that developers notice changes in the component even if
it’s currently in the background. The third improvement opportunity helps to reduce repetitive
actions by recording them and allowing the developer to repeat these actions.

6.2 Future work
Our analysis is based on the data collected from 10 participants. To get a more representative
view of the results the number of participants can be increased by using and analyzing the data
collected from the Pharo community. One way to do this is to use the data we are collecting
with GT Event Recorder.
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We presented different opportunities to improve the efficiency in debugging a program. The
effects of these extensions should be analyzed in detail to see how they affect the developer’s
behavior and efficiency in her debugging process.

One of these improvement opportunities is to collect and store repetitive actions. Our current
implementation allows the developer to redo the previous actions or restore the last debugging
session. A more advanced manager for these debugging sessions could allow the developer to also
restore older sessions. An additional feature would be to support sharing of the collected data
with other developers.

Another of our improvement opportunities is the ability to break the execution of the program
when the selection in a text editor changes. This is indeed, a very domain-specific extension. A
more general concept for installing breakpoints for interesting events could help the developer to
find relevant code more quickly. These interesting events could be defined by the original creator
of a framework and be dynamically loaded and displayed in the debugger allowing the developer
to install the breakpoints in an easy way.

Based on collected data about previous debugging sessions it would be interesting to see if and
to what degree the debugger can be trained to learn about interesting methods using machine
learning. This could reduce clicks and interaction with the debugger and improve the efficiency
of the debugging process.

One final direction for future work consists in experiments that leveraging existing taxonomies
of bug types would investigate differences or similarities in how developers deal with different
types of bugs. This could lead to opportunities for specialized tools and techniques, as well as
best practices for debugging adapted to the bug at hand.
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A
Navigation paths

The following figures show the navigation graphs for each participant. Due to the broken image of
participant P4 we excluded his navigation graph. The node color represents the time spent in the
corresponding method. The color ranges from green to red where green means the participant
spent only a few seconds in the method and red means that the participant spent at least 3
minutes in it. Methods that were not visited at all are left blank.

Figure A.1: P1’s navigation graph. Figure A.2: P2’s navigation graph.
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Figure A.3: P3’s navigation graph. Figure A.4: P5’s navigation graph.

Figure A.5: P6’s navigation graph. Figure A.6: P7 ’s navigation graph.
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Figure A.7: P8’s navigation graph. Figure A.8: P9’s navigation graph.

Figure A.9: P10’s navigation graph.
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