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Abstract

The use of internet communication channels in Android applications has become omnipresent;
mobile apps exchange various kinds of information and it is not always clear which data and
for what purpose. Privacy leaks are on the rise and unlock the door for even more severe
threats such as data spoofing and hijacking. To gather an understanding of the current web
API use in Android apps, we have investigated nine major web communication frameworks,
and searched for their design patterns in 413 open-source projects available on GitHub and
834 Android apps published in Google’s Play store. With this knowledge, we recovered JSON
data schemes understood by their public web API endpoints, considering type information
and used parameter values. Based on these data schemes we built and verified request URLs
that leverage potentially sensitive data, and moreover, we explored the differences in web
API use between open-source and closed-source apps. Finally, we reason about the collected
HTTP response header information received from the various API endpoints. We present a
static code analysis tool on top of the JADX DEX decompiler and the JavaParser framework,
which dissects and assesses the decompiled byte code of Android apps. With the help of this
tool we successfully analyzed web APIs in 36% of all tested apps, out of which we were
able to rebuild 2 154 API endpoint URLs. Furthermore, we manually validated the tool’s
results for 25 open-source and for 25 closed-source apps. More than 90% of the endpoints did
successfully reply to our requests. We found that many potential data leaks emerge from web
APIs that have been implemented exclusively for individual apps and thus are out of focus for
many security investigators due to their scarce deployment and the implementers’ reluctance
to provide any public documentation.
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1
Introduction

The changes introduced by recent advances in cellular network technology (3G/4G/5G) have heavily
influenced the architecture of mobile apps. Whereas ten years ago apps mainly focused on local operations
and rarely consumed any services from the internet, apps now shift major functionality to remote servers
due to the hosts’ always connected policy, ultimately leading to heavily increased wireless data traffic.1

Even more important, instead of processing information on in-house servers a trend has emerged that apps
offload information to external cloud services, which have benefitted across the board from massive growth
over the past years.2

However, this change of paradigm does not only save computational resources on mobile handsets, it
also introduces a never before seen complexity in implementing and maintaining such services due to the
large software stacks involved in client-server architectures. Such architectures generally are multi-tier,
geographically distributed, and thus collaboratively maintained by globally scattered teams in which
developers cooperate with other team members. Moreover, the use of sensitive sensory data is omnipresent
on smart mobile devices, and therefore, developers are in need of common secure programming practice
guidelines.

1https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/mobile-white-paper-c11-520862.html

2https://www.salesforce.com/content/dam/web/en_us/www/academic-alliance/datasheets/
IDC-salesforce-economy-study-2016.pdf
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CHAPTER 1. INTRODUCTION 2

The Android platform suffers in particular from security hazards due to the industry-lead proliferation
of, and the unrestricted access to apps. The Android APK file format not only provides access to each
app’s Java byte code offering deep insights into the inner workings of an app, the Android ecosystem
also dominates the smartphone operating systems with a market share of about 88% and just its official
app store contains more than 2.6 million apps.3,4 Low annual developer fees and the use of the Java
programming language further attract first time programmers with only little background in computer
science. As a result, these communication-oriented apps represent an irresistible target for attackers and
present a serious threat to their users, as revealed by recent reports of well-known publicly available
security incident databases.5

As history has shown, attackers prefer the path with least resistance and since web APIs are seldom
sufficiently protected they represent a severe threat to billions of mobile app users, paving the way for
many new problems related to data security, e.g., cloud data theft and leakage from public servers. This
threat gains even more importance by considering the fact that many mobile devices are taking over prior
desktop computer functionality, such as health care monitoring, e-banking, and social networking.

Researchers are aware of this major threat. In fact, Android security has been progressively studied from
various aspects over the previous years. Countless security tools [11], operating system changes [4, 12],
and guidelines have been proposed [9, 20]. Nevertheless, many entry-level developers seem to be less
concentrated on the programming task at hand while working in comprehensive IDEs, e.g., Android’s
official IDE called Android Studio, instead relying on the tool and framework support even for rather
simple tasks [10]. In addition, many developers do not feel personally responsible for the implementation
of software security, despite being aware of its importance and having a general understanding about the
topic [23]. As a result, user data-related incidents on web applications remain one of the major threats to
the security of mobile apps.6

We continue to promote the automated adoption of secure programming practices and show in this thesis
nine major web communication frameworks along with their characteristics. Moreover, we evaluate web
communication in open-source and closed-source apps, and we discuss the found issues.

We present a static source code analysis framework on top of the Android DEX decompiler JADX7 and the
Java source code parsing framework JavaParser8 to establish API specifications, i.e., data schemes, based
on the apps’ source code. With the help of this tool we were able to reconstruct 2 154 different request
URLs.

We address the following four research questions:

• RQ1: Which are the prevalent web communication frameworks used in mobile apps? We assessed
the communication facilities used in 160 open-source projects from F-Droid hosted on GitHub by

3https://www.statista.com/statistics/266136
4https://www.statista.com/statistics/266210
5https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=Android
6https://www.owasp.org/images/7/72/OWASP_Top_10-2017_(en).pdf.pdf
7https://github.com/skylot/jadx
8https://javaparser.org/



CHAPTER 1. INTRODUCTION 3

manually reviewing the code blocks responsible for web communication and found nine different
used web communication frameworks. Prioritized by their popularity we automated the detection of
sink methods for the major frameworks. The corresponding tool allowed us to analyze 413 open-
source projects from GitHub and 834 (partially) decompiled closed-source apps available on the
Google Play store. We found in our analysis that web communication channels are primarily built on
java.net standard library classes such as java.net.URLConnection, java.net.Socket,
and java.net.HttpURLConnection. Moreover, the most used third party libraries were
OkHttp and Retrofit.

• RQ2: What data do mobile apps transmit through web communication channels? In addition, our
tool extracts relevant code snippets, URLs, and JSON schemes from the applications’ source code.
We applied that tool to our repository of open/closed-source apps and found that the most used data
types in JSON schemes for both, open-source and closed-source applications, are the type STRING,
followed by NUMBER, BOOLEAN, and NULL. Furthermore, the most commonly transmitted JSON
and URL query keys were identifiers (e.g., for resources, sessions), categories, application settings,
and (list) boundaries. We found the data transmitted through web communication channels to be
very diverse, ranging from very specific (potentially sensitive) resource requests to commands and
selection criteria requesting database information from servers.

• RQ3: What are the differences between open-source and closed-source apps in regard to web
communication? We compared our findings from the analysis of open-source and closed-source
applications. We found only minor differences when comparing the choice of web communication
frameworks, however, we encountered substantially more advertisement services in closed-source
applications. More interestingly, we discovered that the use of the secure HTTPS protocol is much
more prevalent in open-source projects than closed-source applications, in which the majority still
relies on the insecure HTTP protocol. At the same time, the code responsible for web communication
functionality in closed-source applications is spread across more files and the endpoints tend to
have more complicated endpoint paths. Obvious security flaws such as hard-coded API keys, email
addresses, and outdated server configurations have been found in both open-source and closed-source
applications.

• RQ4: What configurations apply to API endpoint servers found in the wild? Finally, the tool
is able to validate the collected URL and JSON scheme data by issuing requests to web servers
using different HTTP methods. During a manual analysis of the results from our tool we found
multiple security issues concerning web server configurations including unnecessary disclosure of
server configurations, outdated web servers and programming language support with known security
vulnerabilities, leaking of the server’s internal error messages, issuing shell commands inside the
request body, and (private) APIs with no authentication/authorization mechanisms at all.

In summary, this work investigates the use of, and the potential risk caused by web APIs to sensitize API
developers for taking care of sensitive user data to reduce the corresponding attack vectors. We believe
that this study is a first step towards better tool support based on our found API use patterns, which will
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ultimately improve the state of information security9 for every mobile app user in the Android ecosystem.

1.1 Contributions

Most existing network communication analysis tools are technology-driven rather than data-driven which
inevitably leads to a subtle shift in the result’s expressiveness. In this work we want to leverage data-driven
approaches to aggregate an overview of the current state of web communication. These approaches
favorably support developers in fixing issues at the architectural level, rather than the app level, due to
the nature of the feedback, which is based on high-level API specifications. This thesis provides (i) an
overview of major web communication frameworks, (ii) insights into the use of web communication in
mobile apps, (iii) information regarding the communication preferences of open-source and closed-source
apps, (iv) configuration details and culprits of API endpoints, and, (v) access to the open-sourced tool that
we developed for the web API extraction of Android apps.

1.2 Outline

The remainder of this thesis is organized as follows. We provide a brief overview of the state-of-the-art in
web communication analysis in chapter 2, followed by the necessary background, including the Android
ecosystem and its communication facilities in chapter 3. We reveal our methodology and implementation
details in chapter 4 and chapter 5, accordingly. Our empirical study is presented in chapter 6, and the
corresponding threats to validity are shown in chapter 7. We provide an outlook in chapter 8, before
concluding the thesis in chapter 9.

9Information security covers all aspects of data confidentiality, integrity, and availability.



2
Related Work

In this chapter we shed light on the different aspects considered in prior work with respect to the use of
third party web services. We first present significant work targeting the field of web communication, i.e.,
covering different analysis techniques, and server response evaluations. Afterwards, we highlight some
publications investigating the use of hard-coded credentials in apps’ source code, before we briefly focus
on soft factors.

2.1 Web communication

Web communication analysis techniques can be roughly split into three different categories: code-based
analyses, network traffic-based analyses, and variations of both. Whereas code-based analysis techniques
are very often performed in a static manner, e.g., by statically resolving method and field names in the
source code, network traffic-based analysis mechanisms show rather a dynamic characteristic as researchers
generally try to analyse network requests initiated by the apps at run time. Ultimately, hybrid variations of
both exist that rely on static and dynamic analyses.

5
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2.1.1 Code-based analyses

One major interest in code-based analyses belongs to data flow reasoning, which assesses the prevalent
communication channels used in mobile apps. Data flow analysis tries to (re)construct data flows from
sensitive data sources to data sinks, e.g., from locally stored private information to network sockets, or
within inter-app communication in general. Various methods based on pre-processed source and sink lists
and deep (machine) learning have been proposed.

For instance, Arzt et al. achieved with FlowDroid remarkable analysis results by performing a reachability
analysis starting from sources marked in pre-defined lists [2]. Whenever the tool finds a valid source in
the code it conducts a reachability analysis based on the apps’ augmented inter-procedural control-flow
graph. If the reachability analysis can reach a sink from such a source it considers the combination of the
source/sink method pair as a potential data leak that is reported. Zhu et al. augmented FlowDroid by adding
deep learning algorithms to leverage a more precise classification of the reported data flows. According
to them their tool DeepFlow achieves a superior performance in distinguishing between data flows of
benign and malign apps [26]. Besides tools based on the Java optimization framework Soot1, Wei et al.
implemented Amandroid, which is able to discover data flows across Android apps’ components, and
which greatly increases the tool’s performance [22]. Unlike our work these tools do not focus specifically
on the actual data structures sent over network sinks, but only focus on specific low-level method call
traces that lack high-level context. Furthermore, they only consider data flows within apps on the device
but neglect the server at the end of the line. Other more efficient approaches are based on decompiled
byte code of Android apps where, amongst others, various security code smells have been discussed [8, 9].
In summary, while prior works on security code smells addressed only the Android app security, we are
going with this study one step further: we consider the transmitted data and the corresponding server
infrastructures that respond to mobile app requests.

Another major interest can be found in the static analysis of data transmission channel configurations.
Fahl et al. and Sounthiraraj et al. both verified the protection of Hypertext Transfer Protocol Secure
(HTTPS) data transmission channels by validating the correctness of the apps’ SSL implementations and
found that 6% and 8% of all tested apps were vulnerable, as described in their respective papers [7, 18].
Fahl et al., for instance, conducted a manual inspection of 100 apps and discovered that 41 of those apps
were vulnerable to man-in-the-middle attacks. These results underline the importance of our work as it is
important to be aware of the data sent to servers, as in many cases the data transmission could be easily
intercepted by attackers.

The final interest can be found in the static analysis of apps’ network libraries and their use in Android
apps. For example, Stevens et al. were especially interested in libraries providing ad services and found
excessive app permission requests as well as the use of identifiers and sensitive user data [19]. They also
discovered that this data can then be exploited to track users across ad providers by analyzing the network
traffic.

1https://github.com/Sable/soot
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2.1.2 Network traffic-based analyses

Analyses based on network traffic most frequently rely on observing the apps’ network communication
while it is being executed in a virtualized environment. This kind of dynamic analysis has been very
prominently used for malware detection. For instance, Arora et al. closely monitored several network
traffic properties, e.g., average packet size, time interval between packets sent, and relative amount of TCP
traffic to identify 13 different Android malware types running on mobile devices [1]. They could correctly
determine the malware based on the observed network traffic in more than 90% of their studies. One step
further was taken by Conti et al. who investigated the identifiability of user actions in apps running on
Android mobile devices, using encrypted network communication, by intercepting the network traffic
directly on the connected wireless routers [5]. Even though the traffic remained encrypted, they could still
identify most user actions with an accuracy of better than 95%. Following the trend of offloading code
to the cloud, Shen et al. implemented the malware detection service DroidDetector on top of a virtual
private network (VPN) service that closely monitors all connection requests made by Android apps and
classifies the traffic based on the Support-Vector Machine (SVM) machine learning algorithm [16]. As a
result of offloading the analysis to the cloud, the process is sparing the resources of the mobile devices
while conducting a comprehensive server-side analysis with a detection confidence of 95.68%. According
to such research fingerprinting of app traffic is not an issue at all, but the opposite is true for the reverse:
cloaking user actions is more of a challenge.

In contrast to the overwhelming number of papers proposing fingerprinting mechanisms we used dynamic
analysis techniques primarily for evaluating the server responses. We did not execute the app as such but
tested the apps’ reconstructed API URL calls and payloads in a distinct environment, which led to greater
control over the request and at the same time simplified our workflow. We further found for network
traffic-based analysis techniques a similar problem to code-based analysis methods: researchers heavily
focus on low-level app communication and carelessly neglect relevant server configurations.

2.1.3 Combined approaches

Malware detection using code- and network-level measures has been implemented in hybrid approaches in
order to maximize the individual gains achieved by static and dynamic analyses. One typical representative
of this category is the tool called MARVIN by Lindorfer et al., which utilizes machine learning techniques
combined with static and dynamic code analysis to classify apps into several categories ranging from
benign to malicious [13]. This tool not only relies on static features, e.g., method calls and manifest meta
information, it also leverages runtime network traffic monitoring. This combined approach performed
exceptionally well. They evaluated the classification capabilities of their tool on a large Android malware
dataset of over 135 000 Android apps and 15 000 malware samples with a success rate of 98.24% and less
than 0.04% false positives.

Another approach targeting specifically the communication between mobile apps and the web API servers
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has been investigated by Mendoza et al. [15]. They tried to reconstruct with their tool WARDroid the data
schemes used for web communication and generated web API URLs with random field values based on
the extracted type information. Their goal was to find inconsistencies in input validation logic between
apps and their respective web API services. The gathered results were intriguing. The evaluation of their
system uncovered problematic validation logic in APIs used by over 40% of the tested 10 000 popular
free apps from the Google Play store and also revealed unencrypted client-server communication over the
Hypertext Transfer Protocol (HTTP) in 1 743 apps. They validated their results by sending invalid requests
to selected APIs used in 1 000 apps potentially vulnerable to API hijacking and discovered that over 90%
of them were indeed affected.

In comparison to our work, we collect more thorough information such as provided value type samples to
generate more reasonable request strings, and the complete server response headers. Moreover, we augment
our dataset with Google Play store meta data, and perform analyses on open-source and closed-source
apps. This allows us to draw further and more in-depth conclusions regarding the use and prevalence of
web communication and its security in Android apps.

Besides these two use cases, hybrid approaches are commonly used to confine static analysis results,
because static analyses are prone to false-positives due to the high complexity of code analyses and their
indispensable need for simplified assumptions.

2.2 Credentials

Credentials extracted from source code are likewise of large interest for security researchers, because they
potentially allow adversaries to gain full control over the apps’ server-side infrastructure and its enclosed
data store.

Zhou et al. harvested cloud service credentials such as email and passwords of developers with their tool
CredMiner from more than 36 500 apps from various Android markets [25]. More specifically, they were
interested in the usage of free email services and Amazon AWS by Android app developers and alarmingly
found that more than every second app using such a service leaked the developers’ credentials in the apps’
source code. Making matters worse, they discovered that more than 77% of those collected credentials
could still be used to access the developers’ accounts. The work of Zhou et al. shows the massive threat
such security issues pose, as many of those credentials cannot be easily replaced without temporarily
abating the experience of millions of users, but in the meantime they can be easily exploited by attackers.

Consequently, researchers also focused on countermeasures against the leak of credentials. Cox et al.
proposed SpanDex, a secure password tracking runtime that allows the execution of untrusted code in
a secure sandbox where the initiated data flows can be analyzed in more detail [6]. Their tool provides
Android applications with password protection against attacks in which user passwords are compared to a
list of known passwords. They tested their tool using 50 popular applications and found that 84% of them
executed without issues while drastically improving their protection against password guessing attacks.
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In our work hard-coded developer or user credentials are extracted implicitly during the API endpoint and
data scheme extraction.

2.3 Soft factors

Some researchers investigated soft factors, e.g., the user’s understanding and perception of network
communication, rather than technical aspects.

Benton et al. conducted user studies on Amazon Mechanical Turk in which they asked people questions
related to the understanding of app permissions, including permissions regarding web communication [3].
They found permissions were ineffective, even with the addition of an additional text warning only 57.8%
correctly understood the threat. Conversely, they found that an app’s download count had a strong effect
on app installations. This work shows that people are highly influenced by popularity counters, i.e., users
trust the decisions of other people, rather than technical details.

In contrast to the understanding of permissions, Shklovski et al. evaluated the perceptions of privacy and
mobile app use [17]. They discuss studies focusing on the assessment of users’ reactions when confronted
with mobile apps accessing and sharing sensitive data. In their reported studies users described these privacy
intrusions as “creepy” and as a violation of their personal space. But despite the strong disapproval by
research participants of user data sharing such as sensory data and other personally identifiable information,
they continued to use the apps in question after being informed about them. The paper concluded that users
are starting to feel uncomfortable with excessive data collection by apps and they suspect consequences
for businesses that rely on such practices in the future.

It appears that the human perception of threats in the appified world is seldom reasonable and users are in
need of additional technical measures to protect themselves from bad decisions.

For that reason Wang et al. introduces more comprehensive permission popup windows containing detailed
information about specific permissions of the app and ad services as well as allowing the user granular
control over them before installing the app [21]. The findings of their study suggest that allowing such
granular control over app permissions and ads has a positive effect on users’ perceptions of the app as well
as app installations while leading users to disclose less information about themselves. Unfortunately, such
a comprehensive mechanism has not yet been provided by the Android operating system.



3
Background

In this chapter we introduce the terms and technologies relevant for this work. The focus lies on the network
communication aspect within the Android ecosystem. This includes the ways Android applications are able
to communicate with external web services, the architectural styles commonly used for such web interfaces
and the format in which data is transmitted. We also discuss the topic of code analysis for open-source and
compiled applications including the decompilation process, the Abstract Syntax Tree (AST) construction
and the symbol resolution. Finally, we will have a look at the tools used for the validation of collected data.

3.1 Android ecosystem

The Android ecosystem consists of the Android Operating System (OS), the devices capable of running
any version of the Android OS, the provided services, and the applications developed for Android.

Android was initially an OS designed for cameras that has later been acquired from Google who repurposed
the OS for (smart)phones. Since its introduction to the market back in 2008 it then quickly expanded into
other categories like tablets, smartwatches (Wear OS), televisions (Android TV) and even cars (Android
Auto). In addition to the services and applications developed by Google themselves, a core element of
Android is the corresponding application store called Google Play store. The Google Play store allows
third party developers to distribute their own apps on the Android platform. These applications are

10
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primarily programmed in Java or Kotlin and then compiled and packaged into Android PacKage (APK)
files. Packaged APK files are either distributed through the Google Play store after undergoing a screening
by Google for malicious code and other violations of Google’s programming guidelines, or through an
unofficial third party distribution platform.

3.2 Network-based communication facilities

A majority of Android applications require an internet connection to work correctly, e.g., to display web
content inside a web view, accessing resources from web servers, or saving data to back-end servers for
synchronization. In order to acquire system features such as internet access and location data access,
the application is required to request the relevant permissions from the user first. The user can then
review those specific requests and either grant or deny them individually. All of these permissions for
a specific Android project must be specified inside the app’s manifest file AndroidManifest.xml
which is located inside the root folder of the source set. The manifest file must follow a certain struc-
ture based on the eXtensible Markup Language (XML) as shown in Listing 1. For example, with the
android.permission.INTERNET permission set the application is then allowed to send and receive
data over the network, respectively the internet.

1 <?xml version="1.0" encoding="utf-8"?>

2 <manifest xmlns:android="http://schemas.android.com/apk/res/android"

3 package="your.package">

4

5 <uses-permission android:name="android.permission.INTERNET"></uses-permission>

6

7 <application ... >

8 <activity ... >

9 ...

10 </activity>

11 ...

12 </application>

13

14 </manifest>

Listing 1: Android manifest file structure shown with a declared “INTERNET” permission

To simplify the implementation of network features in apps, developers have the choice between network-
based communication facilities provided by Android or popular third party libraries.

3.2.1 Plain Java methods

Android contains the java.net network communication package, which provides developers network-
related classes and methods that are identical to the ones found in regular Java applications designed
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for desktop systems (e.g., Linux, Apple macOS, and Microsoft Windows). The package contains low-
level classes that provide the custom implementation of network sockets, and high-level classes, e.g.,
HttpURLConnection, which abstract from sockets to ease the connection handling. The code block in
Figure 3.1a provides a sample implementation of how an HTTP GET request could be made using low-level
sockets. To emphasize the differences between low- and high-level approaches, Figure 3.1b implements the
same functionality as before but using a high-level approach based on the class HttpURLConnection.

Ready-to-use Transport Layer Security (TLS) and Secure Sockets Layer (SSL) protocols are provided by
the classes SSLSocket and HttpsURLConnection.

3.2.2 REpresentational State Transfer

Most mobile applications communicating with a web Application Programming Interface (API) follow the
REpresentational State Transfer (REST) architectural style when making HTTP requests to a web service.
APIs respecting the REST architectural constraints are called RESTful web services (RWS). An alternative
to web services using REST are Simple Object Access Protocol (SOAP) web services. However, in mobile
apps RESTful APIs dominate over SOAP APIs, i.e., most popular apps rely on RESTful communication,
e.g., Twitter, YouTube, and Instagram.

The commonly agreed six constraints RESTful web services should comply with are [14]:

• Uniform interface: A resource on the server is always identified by a unique resource identifier
that can be used in requests to access that specific resource. A response to a request contains a
representation of the requested resource in a format that may differ from its internal representation
and includes all the necessary information to process, modify or delete the resource. A representation
of the resource can provide links to related resources if relevant.

• Client/server architecture: The client (mobile application) is independent of the server. To access
a resource on the server, the client only needs to know the identifier of a resource but nothing about
the implementation of the server.

• Statelessness: The server does not save any state information of prior requests; the client is respon-
sible for maintaining a state if required. As a result, any state information (e.g., user authentication
details) must be attached to each request.

• Cacheablility: To improve response times and to reduce the server load, responses include informa-
tion about their cacheability.

• Layered system: The client is unaware of the layers behind the API implementation it is talking to.

• Code-on-demand (optional): The server is able to supply the client with executable code to extend
the client’s functionality.

In RESTful web APIs the resources on the server are specified by a base URL and an API endpoint, e.g.,
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1 URL url = new URL("http://www.google.ch");

2 Socket socket = new Socket(url.getHost(), 80);

3 OutputStream outputStream = socket.getOutputStream();

4 PrintWriter printWriter = new PrintWriter(outputStream, false);

5 printWriter.print("GET / HTTP/1.1\r\n");

6 printWriter.print("Host: www.google.ch\r\n");

7 printWriter.print("Connection: Close\r\n");

8 printWriter.print("\r\n");

9 printWriter.flush();

10 InputStream inputStream = socket.getInputStream();

11 InputStreamReader inputStreamReader = new InputStreamReader(inputStream);

12 BufferedReader bufferedReader = new BufferedReader((inputStreamReader));

13 int in;

14 while ((in = bufferedReader.read()) != -1) {

15 System.out.print((char) in);

16 }

17 bufferedReader.close();

(a) Low-level Socket implementation

1 URL url = new URL("http://www.google.ch");

2 HttpURLConnection httpURLConnection = (HttpURLConnection) url.openConnection();

3 InputStream inputStream = httpURLConnection.getInputStream();

4 InputStreamReader inputStreamReader = new InputStreamReader(inputStream);

5 BufferedReader bufferedReader = new BufferedReader(inputStreamReader);

6 int in;

7 while ((in = bufferedReader.read()) != -1) {

8 System.out.print((char) in);

9 }

10 bufferedReader.close();

11 httpURLConnection.disconnect();

(b) High-level HttpURLConnection implementation

Figure 3.1: Identical HTTP connection examples implemented with low- and high-level Java features
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the URL https://example.com/api/user/bob uses the base URL https://example.com
and the endpoint /api/user/bob which identifies the resource bob on the server. The syntax of such
URLs is defined in RFC 3986.1 To indicate the retrieval, modification, or deletion of resources some
standardized HTTP methods are used in the request header:

• GET: Indicates that the client wants to retrieve a representation of a specified resource.

• POST: Indicates that the client wants to create a new entry on the server of the specified resource in
the resource representation sent with the request.

• PUT: Indicates that the client wants to replace an existing entry on the server with the resource
specified in the resource representation sent with the request.

• PATCH: Indicates that the client wants to modify an existing entry on the server according to the
information sent with the request.

• DELETE: Indicates that the client wants to delete the specified resource on the server.

Consequently, requests using the HTTP methods POST, PUT, and PATCH may include a request body that
includes information to create or modify the resource.

3.2.2.1 Data schemes

Resources on a web server can be represented in countless different data formats, e.g., plain text or
JavaScript Object Notation (JSON). Hence, the HTTP Content-Type header in requests to RESTful
web APIs is used to specify the format of the resource representation sent with the request. This header is
also included in the response and indicates similarly the format of the resource representation sent with the
response. In addition, the HTTP Accept header can be used to inform to the server in what format the
resource representation in the response to the client should be.

Listing 2 illustrates an example of a response header from an API using a JSON-formatted resource
representation. In more detail, the Content-Type header is specified as application/json;
charset=utf-8 and encompasses the media type application/json. The media type consists of
the generic application type and the json subtype. The optional parameter charset=utf-8 speci-
fies the character encoding as Unicode Transformation Format 8 (UTF-8). Common other generic types are
image (e.g., png, jpeg, gif), text (e.g., html, csv, css), audio (e.g., mpeg, ogg), and application
(e.g., javascript, xml, sql, pdf, zip). The most common media types used to represent resources when
communicating with RESTful APIs are application/json and application/xml.

JSON is based on a subset of the JavaScript programming language. The JSON protocol is very lightweight
and only supports the data types object, array, number, string, boolean, and null. A JSON object always
consists of key-value pairs where the key is of type string, and the value is of any valid JSON data
type. Moreover, a JSON array is basically a list of values of any valid JSON data type. Since JSON can

1https://tools.ietf.org/html/rfc3986
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be used in any programming language to easily format serializable data objects as text, it is generally a
straightforward choice for any client-server communication as clients and servers can remain completely
independent from a technical perspective. Figure 3.2a represents a typical object in the JSON format.
The example shows that JSON objects are always surrounded by curly brackets (e.g., the value of the
address key) and JSON arrays are surrounded by square brackets (e.g., the value of the badges key).

1 HTTP 200 No Error

2

3 Server: cloudflare

4 Content-Type: application/json; charset=utf-8

5 X-Powered-By: Express

6 Set-Cookie: __cfduid=de87d4e83743550470453249187c2f5a91550244627;

7 expires=Sat, 15-Feb-20 15:30:27 GMT; path=/; domain=.reqres.in; HttpOnly

8 Access-Control-Allow-Origin: *
9 CF-RAY: 4a98d0db4b4b3e86-ZRH

10 Date: Fri, 15 Feb 2019 15:30:28 GMT

11 Connection: keep-alive

12 Content-Length: 443

13 Expect-CT: max-age=604800,

14 report-uri="https://report-uri.cloudflare.com/cdn-cgi/beacon/expect-ct"

15 Etag: W/"1bb-D+c3sZ5g5u/nmLPQRl1uVo2heAo"

Listing 2: Response header example

XML on the other hand is based on a subset of the complex Standard Generalized Markup Language
(SGML). Identically to JSON it is also programming language agnostic and it is used to format serializable
data objects as text. Moreover, XML is widely used as a file format, e.g., for persisting designed application
user interfaces in Android app development, for configuration/property files, and as a foundation for other
document formats. XML is not as lightweight as JSON, which is presumably one of the main reasons that
JSON remains usually the preferred choice amongst the majority of web API developers. In XML data
is structured using nested tags. Figure 3.2b shows the same object as in Figure 3.2a, but now formatted
in XML. The example shows the XML declaration <?xml version="1.0" encoding="UTF-8"

?>, which entails the XML version and the character encoding. In XML every value is always surrounded
by tags. For example, the whole object is surrounded by the tags <root> and </root>, while a simple
element like id is surrounded by the tags <id> and </id>.

3.2.2.2 Libraries

Writing network-related code as described in subsection 3.2.1 introduces a lot of boilerplate code in
projects as it requires the application programmer to handle repetitive complex workflows using input and
output streams and asynchronous/concurrent requests. As a result, numerous third party network libraries
emerged that make the implementation of network-related code more efficient for Android developers. At
the same time libraries for the (de)serialization of JSON and XML data have also become available. We
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1 {

2 "id": 3948292,

3 "name": "Miller",

4 "first_name": "Bob",

5 "address": {

6 "street": "Sample Street 1",

7 "number": 10

8 },

9 "married": true,

10 "badges": [

11 "badge1",

12 "badge2"

13 ],

14 "social_media": null

15 }

(a) JSON object example

1 <?xml version="1.0" encoding="UTF-8" ?>

2 <root>

3 <id>3948292</id>

4 <name>Miller</name>

5 <first_name>Bob</first_name>

6 <address>

7 <street>Sample Street 1</street>

8 <number>10</number>

9 </address>

10 <married>true</married>

11 <badges>badge1</badges>

12 <badges>badge2</badges>

13 <social_media/>

14 </root>

(b) XML object example

Figure 3.2: Content-wise identical data structures implemented in JSON and XML
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found the following libraries in apps during the manual review of 160 random open-source projects and 10
closed-source apps:

• Apache HttpClient is a network library developed by the Apache Software Foundation.2 It is a
direct competitor to newer HTTP client libraries like OkHttp as its features include handling of
HTTP requests, encrypted communication using Transport Layer Security (TLS), and response
caching. Asynchronous requests are supported using HttpAsyncClient. The library is mainly
used by older projects.

• glide is an open-source library specifically designed to manage image downloads over a network.3

It handles caching of the downloaded images either in memory or on disk to prevent Android
applications from downloading the same images more than once. Furthermore, applications with a
need to download many remote images can use glide on top of other web API HTTP libraries.

• Gson is an open-source data conversion library developed by Google.4 It is commonly used
alongside an HTTP client library to handle the transformation of Java objects into JSON formatted
text and vice versa. The library uses annotations to provide developers more control over the data
stored in the JSON representations.

• ion is an open-source network library for Android applications.5 The library is less popular than
its alternatives, but it supports an extraordinary number of features: It not only handles the usual
suspects such as HTTP requests, asynchronous requests, caching, gzip compression, HTTP/2 support,
and encrypted communication using TLS, it also supports asynchronous file or image downloads
and JSON (de)serialization using the Gson library.

• Moshi is a data conversion library developed by Square.6 It has the same feature set as Gson and is
also used for the forward and backward transformation of Java objects into JSON formatted text.
For more control over how Java objects should be transformed, i.e., the amount of information
that should be preserved, Moshi uses custom annotations. Moshi supports data types like array,
collection, enum, string, and other primitive types. Moshi and Gson are equally popular and thus it
is often the result of a personal preference or the accompanying HTTP client which library will be
selected for a new Android project.

• OkHttp is a very popular open-source network library developed by Square.7 It allows the effortless
implementation of (a)synchronous HTTP requests for web APIs, including automated concurrent
request management (i.e., connection pooling). Its contributors regularly update the code against se-
curity threats. Security features like Application-Layer Protocol Negotiation (ALPN) and certificate
pinning are supported by the OkHttp library. Furthermore, responses are cached to achieve shorter

2https://hc.apache.org/httpcomponents-client-ga/
3https://github.com/bumptech/glide
4https://github.com/google/gson
5https://github.com/koush/ion
6https://github.com/square/moshi
7https://square.github.io/okhttp/
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response times and to eliminate unnecessary network traffic. It also supports the gzip algorithm for
(de)compression of request bodies to reduce network traffic. By supporting HTTP/2 it is possible to
send multiple requests over a single TCP connection, which further increases the efficiency in data
communication.

• org.json is the default JSON library of Android.8 It supports the construction of JSON objects and
the conversion of JSON formatted text into JSON objects and vice versa. However, this library does
not provide support for data conversion from and to Java objects unlike Gson and Moshi.

• Retrofit seems at the first glance very similar to OkHttp because is also marketed as an “HTTP
client for Android and Java” by its makers at Square.9 Nevertheless, Retrofit is neither a replacement
for nor a competitor to OkHttp, but rather an extension that builds on top of OkHttp. In fact,
Retrofit internally uses OkHttp and it is, like OkHttp, among the most popular HTTP clients in
Android development. Retrofit’s features include interfaces for API endpoint definition, handling of
synchronous and asynchronous HTTP requests and HTTP body transcoding using converters. API
endpoints and request headers are defined using Java interfaces, and annotations are used to indicate
the HTTP methods for a specific endpoint. For the deserialization of request bodies Retrofit provides
converters, which are used to (de)serialize JSON and XML text to and from Java objects. These
converters support other popular third party data conversion libraries, e.g., Gson, Moshi, and Simple.

• Simple is a framework explicitly designed for XML serialization.10 It is one of only few third
party options for XML serialization on the Android platform, and like most other XML frameworks
or libraries it is not actively maintained anymore, i.e., the last release dates back to 2013. The
serialization of Java objects works similarly to Gson and Moshi, using annotations for XML elements
and attributes.

• Volley is an open-source HTTP library officially supported by Google.11 It provides a similar feature
set to OkHttp and Retrofit, but it further includes support for image downloads. Volley’s primary use
cases are the eased use of HTTP requests to web APIs and the handling of image downloads and
JSON formatted text. Apparently because of the similar feature sets it is an ongoing debate if Volley
is better or worse than its alternatives and it ultimately comes down to personal preference. Retrofit
and OkHttp seem to have a more active community support and seem to be preferred by developers
over Volley.

3.3 Code analysis

A program can be analyzed using either dynamic or static program analysis. With dynamic program
analysis the analysis is performed during run time of the program, while static analysis does not need

8https://developer.android.com/reference/org/json/package-summary
9https://square.github.io/retrofit/

10http://simple.sourceforge.net/
11https://developer.android.com/training/volley/



CHAPTER 3. BACKGROUND 19

to execute the program. When, for example, analyzing the network code in an Android application,
the dynamic program analysis approach would include running the application and triggering certain
functionality in the application while monitoring the network traffic to test for functional or security issues.
On the other hand, static program analysis works directly on the source code. Examples are IDEs and
linting tools that are able to display syntax errors, unused functions, and undeclared variables before
compiling the program. Another popular use case for static analysis is code optimization, which is applied
by compilers during the compilation process. Popular tools which support static code analysis functionality
for Java include IntelliJ IDEA, Eclipse, Checkstyle, and Soot.

3.3.1 Decompilation

Decompilation is only required if the originating (byte code) files are not available as human readable
source code. Before we discuss the decompilation process it is important to have a quick look at the
compilation process as it is conceptually the reverse.

Android Java development is usually done using either Android Studio or another IDE/text editor to write
Java source code. To make this source code executable on any Android device it is necessary to compile
the Java source code and then to package it into an APK file that contains all the code and resources
required to run the application.

The APK compilation process is performed in multiple steps. First the standard Java programming
language compiler javac is used to compile the source files including any libraries into Java byte code
(i.e., Java .class files). Next, some developers use a tool named ProGuard to obfuscate class, field, and
method names to make it more difficult for outsiders to decompile and reason about the app. These Java
byte code files are then recompiled again into Dalvik byte code which outputs a single .dex file. Using
the “Android Asset Packaging Tool” the .dex file and the application resource files are then packaged
into one APK file. Finally, this generated APK file must be signed as the signing ensures that the contents
of the APK file cannot be tampered with without invalidating the checksum.

For decompilation, each compilation step has to be reversed which is a non-trivial problem as some
steps are irreversible and must be approximated, e.g., obfuscated variable names cannot be successfully
restored without informed decisions based on identical non-obfuscated code. Hence, decompiled source
code suffers often from flaws as it is very rare for decompilers to reconstruct everything accurately. This
is especially the case for code that has been obfuscated during the compilation process. For Android,
applications tools like JADX and Apktool can be used for decompilation and reverse engineering to turn
APK files back into Java source code.
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3.3.2 Lexing and parsing

When analyzing source code the first step is to read the characters in the source code file and to structure
them into tokens according to the lexical grammar of the corresponding programming language. This
process is called “lexing”. Examples of such tokens are the literal expression true and the plus operator
+.

The resulting token sequence can then be turned by a parser into a more abstract tree-like data structure
to enable syntax validation. In general, a parser outputs an AST which then can be traversed for further
analysis of the source code’s syntactic structure. This process is called “parsing”. For instance, the tokens
([3],[+],[3]) would then be contained by a BinaryExpression node to ease their evaluation.

Besides IDEs like IntelliJ and Eclipse that both expose their constructed ASTs there also exists a popular
open-source library called JavaParser which is able to build ASTs for Java code compliant with the Java
language specifications 1.0 to 12.0.12

Such ASTs mostly consist of nodes and their relationships as illustrated with the code snippet in Fig-
ure 3.3a that leads to the AST shown in Figure 3.3b. An AST node can have multiple children but only
one parent, and by traversing the tree the whole source code can be reconstructed. In JavaParser the
CompilationUnit is always the root node of a tree, and the whole tree represents one .java source
file. The CompilationUnit has children for the package information, imports if there are any (which is not
the case in Figure 3.3b), and types which contain the class declarations, i.e., represented by the class nodes.
Class nodes often have children for their own names and members, e.g., the method declaration nodes.
The method declaration nodes comprise children with information about their own names, the name of the
method return type, and a body node that is the root node of all the AST nodes representing the source
code inside the example() method. However, in Figure 3.3b the class node maintains only one method
declaration.

3.3.3 Symbol resolution

It is important to see that in Figure 3.3b the AST only provides type names for certain nodes, e.g., for the
variable helloWorld in the return statement no type information is provided at all. Moreover, there
is also no direct relation in the AST between the variable helloWorld in the return statement and its
declaration in the previous line. The reason for this intended behavior is that this information is irrelevant
for code syntax. In order to resolve this name expression to find its declaration or to find other relations
between nodes the JavaParser includes the SymbolSolver tool. SymbolSolver can be applied on
variables to find declaration nodes, but also on method calls to find method declarations, or on type nodes
to get their fully qualified names. This is conceptually similar to features found in popular Java IDEs. For
example, IntelliJ enables the programmer to jump to a specific symbol declaration by just clicking on it.

12https://github.com/javaparser/javaparser
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1 package SamplePackage;

2

3 public class ASTExample {

4

5 public String example() {

6 String helloWorld = "Hello World!";

7 return helloWorld;

8 }

9 }

(a) “Hello World” Java code snippet

root (CompilationUnit)

packageDeclaration (PackageDeclaration) types

name (Name)

identifier='SamplePackage'

type (ClassOrInterfaceDeclaration)

isInterface='false' name (SimpleName) members

identifier='ASTExample' member (MethodDeclaration)

body (BlockStmt) type (ClassOrInterfaceType) name (SimpleName)

statements

statement (ExpressionStmt) statement (ReturnStmt)

expression (VariableDeclarationExpr)

variables

variable (VariableDeclarator)

initializer (StringLiteralExpr) name (SimpleName) type (ClassOrInterfaceType)

value='Hello World!' identifier='helloWorld' name (SimpleName)

identifier='String'

expression (NameExpr)

name (SimpleName)

identifier='helloWorld'

name (SimpleName)

identifier='String'

identifier='example'

(b) Corresponding AST of the “Hello World” code snippet

Figure 3.3: Transformation of source code into an AST
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3.4 Validation

Code analysis can be used to extract web API related data from the source code of Android applications.
After the successful extraction of such data it is recommended to further evaluate the found API endpoints
by sending requests to them, because false positives are (almost) always a concern in static analyses.
The validation additionally leverages potential configuration and architectural data about web services.
Fortunately, tools like Postman and CocoaRestClient that originally were developed to aid the construction
of web APIs can be repurposed to test existing web services. More precisely, these tools can be used
out-of-the-box to send request messages by specifying, for example, the endpoint, the HTTP method, the
query parameters, the request headers, and the request body which yield a server response containing, for
instance, a response body and multiple headers including transmitted cookies.



4
Methodology

In this chapter we describe the methodology used to analyze the network-related functionality of open-
source and closed-source Android applications and their respective web endpoints. First, we discuss our
dataset on which our experiments are based on before we explain the preliminary manual analysis we
performed. Finally, we elaborate on the analyses, e.g., parametrization of the automated analyses, and
discuss how the preliminary results from the manual analyses have been validated.

4.1 Dataset

The open-source dataset for our analysis consists of 3 114 open-source projects from F-Droid with source
code available on public code sharing platforms like GitHub. The collection entails applications from
different categories, sizes, with or without third party libraries, and supports various Android API levels,
i.e., Android releases. The downloaded packaged projects of these open-source projects contain all the
necessary files, scripts and resources to build and compile the application. Different versions of the
same application are included in this collection, however, we always strived for the most recent release.
Furthermore, we rejected all apps that did not use any of Android’s internet communication facilities.
After that cleanup 413 apps were left for our analysis.

The closed-source dataset contains 2 500 random closed-source applications that originate from the Google

23
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Play store. The collection similarly entails applications from different categories, sizes, with or without
third party libraries, and supports various Android API levels. Every closed-source application contained
in this collection is represented by the APK file distributed by the Google Play store. We only considered
apps for the analysis where we could fetch the relevant meta information from the Google Play store web
page, and removed all the apps that were unavailable in the store. Furthermore, we rejected all apps that
did not use any of Android’s internet communication facilities. After that clean up 834 apps were left for
our analysis.

4.2 Preliminary work

In this section we discuss the feature detection and the file conversion strategies performed prior to the
comprehensive analysis. To determine and extract relevant features we gathered information on how
Android applications interact with web APIs and on how this process could be automated by manually
analyzing subsets of the dataset.

4.2.1 Open-source projects

For open-source projects the source code and build configuration files are available by definition. Most
of the applications can be built using Android’s default build automation system called Gradle, which
automatically resolves any third party library dependencies. The typical Android project structure and
build configuration is depicted in Figure 4.1. The relevant files for assessing network-related functionality
of open-source Android applications are the AndroidManifest.xml file, the gradle.build files,
and the source code files either written in the Java or Kotlin programming language.

The AndroidManifest.xml file must be stored within the main source code folder and contains
valuable information, amongst others because it specifies which permissions the application intends to use.
Hence, we automatically excluded all applications that did not explicitly include the manifest permission
android.permission.INTERNET, i.e., the capability to use network socket communication. The
required tool for this selection process has been open-sourced.1

The project depicted in Figure 4.1 specifies two different gradle.build files: One project-level (top-
level) Gradle file and one additional module-level (low-level) Gradle file for the module “app”. The
project-level Gradle file always applies to the whole project (e.g., specifying the required dependencies and
repositories), whereas each subordinate build configuration only applies to a single module within a project
(e.g.,specifying the required Android version, or requesting code obfuscation).2 Moreover, in Figure 4.1
the module-level build.gradle file includes a dependencies block that specifies the necessary
imports of multiple network and data conversion libraries, i.e., OkHttp, Retrofit and Moshi. If projects

1https://github.com/wozuo/aipchecker
2https://developer.android.com/studio/build/
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Figure 4.1: Typical Android project structure and build configuration

use third party libraries they generally can be found as declarations in the gradle.build files or in the
libs folder packaged as a .jar file. Consequently, we investigate all gradle.build files and the
jar folder to discover which third party network libraries are used in a specific open-source project.

4.2.2 Closed-source applications

Closed-source applications are always packaged as .apk files. An APK file includes the classes.dex
file which represents the compiled VM byte code. This classes.dex file must be decompiled before
any analysis based on Java source code can take place.

We used the JADX tool for decompilation, which can be used either from the command line or through a
graphical user interface. Figure 4.2 shows a screenshot of the JADX tool applied to a compiled Android
application that we developed for testing purposes. The resulting decompiled source code is syntactically
correct and names of classes, variables, and methods have been well preserved. We can further see
that JADX decompiles the source code of the referenced libraries and their dependencies. If code has
been obfuscated during the compilation phase, e.g., using the ProGuard tool, JADX would not be able
to recover most original names used for classes, variables, and methods, but the major logic would
remain the same. In other words, the decompiled obfuscated source code would still be syntactically
correct, but would have short nonsensical names instead of those chosen by developers. For instance,
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Figure 4.2: Screenshot of the JADX tool applied to a compiled Android application

someObject.someMethod() in the original source code would then become a.b(). During our
manual tests we encountered many commercial apps that either obfuscated the code only partially, or
even completely abandoned any obfuscation techniques, which immensely eased our reverse engineering
tasks. Nevertheless, for larger apps JADX is barely able to properly decompile the whole source code.
Every time it encounters such an incompatibility it includes the error message as a comment in the
decompiled source code, but still continues to decompile the remaining byte code. If JADX, for example,
would be unable to decompile the method hwDecodeImage(Image2D), this method would still be
included in the decompiled source code, however, it would only contain a comment containing a dump of
the irrecoverable byte code instructions supplemented with the parser’s error encountered error and an
UnsupportedOperationException exception throwing the message “Method not decompiled”.
After the successful (partial) decompilation we continued with the analyses as with the open-source
projects.

4.3 Analyses

During the initial manual analysis of 160 apps the feature extraction, lexing, and parsing were not
automated, but done by manual intervention. After we manually identified network and data conversion
sink method calls we started to manually reverse engineer the applications’ network functionality in
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depth. Information about API endpoints or payloads attached to requests, e.g., in the form of JSON or
XML strings, were of special interest. This information eventually led to the creation of the analysis tool
Jandrolyzer, which is based on JavaParser.

4.3.1 Manual analysis

We conducted a manual code review of the source code contained in all the .java files for a subset of the
open-source projects in our dataset. During this code review we compiled a list of different network-related
code snippets and the found libraries. We identified sink MCEs, e.g., calls to web APIs, and checked
for each if there is any additional hard-coded information available (e.g., URLs, JSON, XML data, etc.)
by manually resolving their variables, respectively their symbols, across different methods and classes.
Such an accurate symbol resolution was required to limit the search scope by type (e.g., “method call”),
instead of just by name. An example sink MCE openConnection() is presented in Listing 3. In this
example, if we resolve the url variable to its declaration it can be seen that a GET request to the endpoint
http://www.example.com/api/getUsers will be performed that could potentially lead to a
data leak of registered users. As a reminder, this is a rather trivial code example and in the wild such
method calls, e.g., the instantiation of the URL object and url.openConnection(), are often spread
across several different methods and classes.

1 URL url = new URL("http://www.example.com/api/getUsers");

2 HttpURLConnection httpURLConnection = (HttpURLConnection) url.openConnection();

3 InputStream inputStream = httpURLConnection.getInputStream();

Listing 3: Sink method call example

4.3.2 Automated analysis

Based on the manually collected data we then built another tool named Droidalyzer, which scans all
gradle.build files of a project for known network- or data conversion-related third party libraries
and conducts a keyword search over the source files with the aim to find even more network-related code
that supports us in finding relevant features.3 Ultimately, the automated analyses have been performed
by Droidalyzer’s successor Jandrolyzer in which we implemented rules according to our findings in the
manual analysis and Droidalyzer’s output. We executed Jandrolyzer on a dual octa-core processor setup
with 128 GBytes of memory. We restricted each analysis to 30 minutes of CPU time (one core) and to a
recursion depth of 15. We ran eight analysis jobs in parallel together with, if necessary, two decompilation
jobs.

3https://github.com/wozuo/droidalyzer
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4.4 Validation

To validate the results we found during our manual analysis we used the CocoaRestClient tool, which
simplifies the testing of HTTP/Restful endpoints.4 In some cases during the manual analysis of the source
code it was not always clear how the found data correlates. For instance, we found a base URL and an
endpoint for a specific web API, but lacked the used HTTP method. In such cases we had to try different
HTTP methods while validating the web server responses. Moreover, data could be incomplete due to
missing user input as illustrated by the API call http://example.com/api/search?keyword=.
We similarly observed incomplete data with JSON objects in which the keys of the key value pairs have
been hard coded but not their corresponding (user) values. We had to fill those blanks with values that have
a high probability of triggering a successful response from the server (e.g., number values to indicate the
start and end of a selection). Based on the HTTP status code, the HTTP headers, and the response message
it is then possible to (manually) validate whether the data found during the static code analysis is correct.

To validate the results we found during our automated analysis we implemented a validation facility in
Jandrolyzer that reassembles and executes the found API calls. The server responses of those calls are
logged for further analyses and for the tool improvement.

4https://github.com/mmattozzi/cocoa-rest-client



5
Implementation

In this chapter we introduce Jandrolyzer, the tool we developed to automate the analysis of network
communication functionality of Android applications.1 First, we discuss the concept of the tool, followed
by a close look at its decompilation and data extraction stages. In the end, we discuss how the tool verifies
the collected data.

Jandrolyzer is intended to automate the individual static analysis steps we performed during the manual
analysis. The tool can be used to analyze open-source Android projects or closed-source applications as
APK files. If it is applied to an open-source project, the tool searches the build.gradle files for known
network and data conversion libraries. The collected data is then used to improve the reverse engineering
of network and data conversion code using code parsing and symbol resolution techniques. Based on
the results of the Droidalyzer tool which emerged from the manual analysis’ needs, we added library
support for the two most common network libraries, i.e., OkHttp and Retrofit, and the three most prevalent
data conversion tools, i.e., org.json, Gson, and Moshi. On the other hand, if Jandrolyzer is applied to
a closed-source app it first attempts to decompile the APK file before it starts to analyze the (partially)
decompiled application in the same manner as with the open-source projects. After the data extraction
step is completed, the tool will fill in missing values based on the variables extracted from the source code
using the similarity distance, also known as Jaro-Winkler distance, between the extracted variable names
and the key name in question. Next, Jandrolyzer sends requests to the resulting API endpoints using the

1https://github.com/pgadient/jandrolyzer

29
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Figure 5.1: Internal structure of Jandrolyzer

extracted data structures as payload and saves the retrieved data from the web server responses. This data
can then be used to assess the presence of security issues, e.g., hard coded API keys, plain text sensitive
data transmissions, data leakages, or outdated server infrastructure with known security issues.

The purpose of Jandrolyzer is to provide Android application developers, security researchers, and
application reviewers a tool that facilitates the efficient identification network-related source code or
data, and that enables out-of-the-box the security auditing of apps and their API endpoints. Jandrolyzer
can not only be used to identify potential security issues, it can also help uncover malicious application
functionality.

5.1 Concept

The diagram in Figure 5.1 illustrates the internal structure of Jandrolyzer. The analysis process starts with
the classes in the top left “Input” box. The application has been designed with maximal flexibility in mind;
it allows one to independently run the decompilation, the app analysis, and the API evaluation. The results
of each step are saved to files inside the corresponding (decompiled) project folder. Moreover, Jandrolyzer
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is easily extendible with new strategies for future library or expression type support. Jandrolyzer can
be started with various arguments providing options to start the analysis of one or more closed-source
apps in the form of .apk files or of one or more open-source projects by providing the corresponding
project folders. In case the input is a closed-source application, Jandrolyzer will first decompile the
APK file and create a Gradle project folder. This newly created project folder or the open-source project
folder are then processed by the ProjectAnalyzer class. ProjectAnalyzer will first scan all the
build.gradle files included in the project to detect if any known third party network or data conversion
libraries are used. This information is then used to accurately initialize the type resolver with dependency
injections before starting the actual analysis. During the analysis, the JavaParser library creates an abstract
syntax tree for every .java file within the project.

After the ASTs have been built, Jandrolyzer traverses the nodes of the AST and identifies network code
snippets and other predefined expression types for which it triggers the appropriate extraction strategies.
Every “interesting” node will then be passed to either one of the endpoints or the request structure
extraction classes. The endpoint extraction classes in the “Endpoint Extraction” box include strategies
for how expressions must be handled that potentially contain base URLs or endpoint information. We
implemented such strategies for the OkHttp and the Retrofit libraries in the OkHttpStrategy and the
RetrofitStrategy classes, respectively, and also for java.net.URL objects, strings constructed
with StringBuilder, the concat() method, binary expressions, and any combination thereof. The
request structure extraction classes in the “Request Structure Extraction” box provide similar capabilities
for JSON formatted text constructed using strings, for JSON objects constructed or converted using the
Gson and the Moshi third party libraries, as well as for the org.json library which is built into the Android
system.

The found network snippet data, endpoints, and JSON structures are collected and forwarded to the
API analysis classes in the “API Analysis” box of the Jandrolyzer structure. The APIAnalysis

package contains classes like SampleGenerator, APIAnalyzer, and VariableCollector.
The SampleGenerator is invoked in the APIAnalyzer class and is used to prepare the endpoint
and JSON data by filling in missing values previously collected by the VariableCollector class.
APIAnalyzer will then send requests to all of the supplied endpoints using the specified HTTP methods
and request bodies. The server response messages are collected and saved to a file within the project folder
for later analysis.

5.2 Decompilation

Jandrolyzer first forwards the data to the Decompiler class if the input is a closed-source application.
The Decompiler class performs the decompilation by invoking the command line interface version of
JADX using the Java class java.lang.ProcessBuilder. Since JADX is used for decompilation, the
path to the JADX binary must be specified when launching Jandrolyzer for any decompilation tasks. The
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output of the decompilation process is an Android app project folder that includes Gradle build scripts and
information about the Android SDK version the application is targeting. Jandrolyzer uses this information
to accurately inject the code of specific library versions into the follow up symbol resolver.

During the decompilation process the console output of JADX is monitored using a BufferedReader.
If the JADX process terminates without any errors, a file with the name “noJadxErrors” is created inside
the newly created projects folder. On the contrary, if the JADX process finishes with errors, a file with the
name “hasJadxErrors” is created inside the newly created project’s folder. Errors are very common during
the decompilation process. However, the decompilation routines of JADX are very robust and continue
even if errors occur: The generated code still remains syntactically correct with comments in places where
the decompilation failed. Jandrolyzer contains logic to act accordingly when encountering incomplete
source code.

5.3 Detection and extraction

The main feature of Jandrolyzer is the automated detection and extraction of sink method calls and
network-related information like base URLs, API endpoints, and JSON data. Jandrolyzer is able to trace
variables and method calls back to their declarations across classes, and to check if they contain hard-coded
information by using recursive methods. Before any analysis, a path to the folder containing different
versions of third party network and data conversion libraries together with the Android core system library
has to be specified as a command line argument when starting Jandrolyzer. Furthermore, the project’s
class path and recursion depth argument is represented by an integer that is also required in the initial
command line argument; the recursion depth specifies the upper bound on the number of recursive symbol
resolution iterations that can be applied to one specific expression.

After successfully starting Jandrolyzer on a source code project, the ProjectAnalyzer object is created
and its run()method is invoked. During its initialization an object of the Projectmodel class is created
that represents the Android project and is used throughout the analysis process to collect any extracted
data. ProjectAnalyzer uses the JavaParser library for parsing and type resolution. In Jandrolyzer
a SymbolSolverCollectionStrategy class is used to add all the classes contained in .java

files to the type resolver. SymbolSolverCollectionStrategy also injects classes from the Java
system library, e.g., java.net.Socket, into the type resolver using a ReflectionTypeSolver.
Jandrolyzer will then scan all build.gradle files for the required Android SDK version and known
third party network or data conversion libraries. The resulting information is used to add the relevant source
code of the Android SDK and of the found third party libraries to the symbol resolver to let Jandrolyzer
successfully resolve their classes. For that purpose, we assembled an Android SDK source code and third
party library collection of all the releases we could find online. If the desired version is unavailable in the
collection, the most recent version of the source code is added instead. Fortunately, decompiled projects
do not suffer from this problem as they benefit from the comprehensive decompilation process: The third
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party libraries are decompiled as well which makes their sources available to the symbol resolver without
any additional effort.

After the symbol resolution has been set up, the JavaParser’s ParserCollectionStrategy is
used to create a SourceRoot collection, which is then parsed to transform all .java files into
CompilationUnit objects. As a result, the SourceRoot collection fosters transparent access to all
source code. Each CompilationUnit is also the root node of the AST created by JavaParser for the
corresponding .java file. Jandrolyzer first analyzes the import declarations of a CompilationUnit
and then starts to iterate through all of the nodes recursively. If the current node is an instance of
ObjectCreationExpr (OCE), CastExpr (CE), MethodCallExpr (MCE), StringLiteral-
Expr (SLE), BinaryExpr (BE), or VariableDeclarator (VD) it is further evaluated for sink
method, URL, or JSON data.

5.3.1 Sink methods

The detection of network code snippets is based on AST nodes of the types “object creation expression”
(OCE), “cast expression” (CE), or “method call expression” (MCE).

The code snippet extraction is currently implemented for the Java packages com.android.volley,
com.mcxiaoke.volley, com.squareup.okhttp, com.squareup.retrofit, java.net.-
Socket, javax.net.ssl.SSLSocket, java.net.URLConnection, java.net.HttpURL-
Connection, javax.net.ssl.HttpsURLConnection, org.apache.httpcomponents, an-
droid.net.http.AndroidHttpClient, com.loopj.android.http.AsyncHttpClient,
com.koushikdutta.ion, and com.github.bumptech.glide. This list can be extended with-
out much effort by implementing snippet detection strategies for more package names followed by the
registration of relevant source code files for the symbol resolver.

1 String url = "http://www.example.com";

2 StringRequest stringRequest = new StringRequest(Request.Method.GET, url,

3 new Response.Listener<String>() {

4 @Override

5 public void onResponse(String response) {

6 System.out.print("Response: " + response);

7 }

8 }, new Response.ErrorListener() {

9 @Override

10 public void onErrorResponse(VolleyError error) {

11 System.out.println("Error: " + error);

12 }

13 });

Listing 4: Extracted Volley StringRequest code snippet
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An extracted network code snippet based on an OCE node is shown in Listing 4. The example illus-
trates the code required for performing an HTTP GET request using the Volley network library and its
StringRequest class. For its detection Jandrolyzer must first visit each node of the corresponding AST
to check if it represents an instance of the class com.android.volley.toolbox.StringRequest.
Next, in order to successfully resolve the stringRequest’s OCE node in the AST, JavaParser needs
to resolve all of the OCE node’s arguments, i.e., the request method, the URL, and the response listener.
However, the symbol resolution process of JavaParser is not guaranteed to be successful, because the tool
is still in early development and some call chains might break the resolution as would be the case for this
example.

Hence, we developed a unique node fingerprinting technique which is able to circumvent these limitations
of JavaParser. The fingerprinting does not solely rely on the name of an expression; it additionally
takes into account the number of arguments, their names and their types. For example, in Listing 4 we
see the method’s three arguments Request.Method.Get, url, and Response.Listener. This
technique ensures that even if the original node cannot be resolved successfully, we are still able to detect
code snippets with a high accuracy. Besides the StringRequest class Jandrolyzer also detects and
extracts instances of Volley’s JsonArrayRequest, JsonObjectRequest, and ImageRequest
classes.

1 URL url = new URL("http://www.webservicename.com/api/getUsers");

2 HttpURLConnection httpURLConnection = (HttpURLConnection) url.openConnection();

3 httpURLConnection.setRequestMethod("GET");

4 InputStream inputStream = httpURLConnection.getInputStream();

Listing 5: HttpURLConnection code snippet

When analyzing CE nodes of ASTs an identification technique based on string matching is used. An
extracted network code snippet that emerges from a CE node is shown in Listing 5, where a java.-
net.HttpURLConnection instance is used to send a request to a web server using the HTTP GET

method. Jandrolyzer visits every CE node of the corresponding AST and if one is found with the name
“HttpURLConnection” the AST is consulted one more time to find the originating expression which is
being cast. In our case, if the originating expression is an MCE node with the name “openConnection” it
will be resolved one more time, and in case the final node is of type java.net.URLConnection the
snippet is saved to disk.

An extracted network code snippet based on an MCE node is shown in Listing 6, where an API call
to http://example.com is performed using the HTTP GET method to retrieve a JSON server re-
sponse. In this example, Jandrolyzer would traverse the AST for MCE nodes with the name “with”.
Because this is rather a common method name, i.e., even used more than once in our own library
dataset, symbol resolution is required to prevent false positives. In our example, if the type is equal to
com.koushikdutta.ion.builder.LoadBuilder the snippet is being saved.

1 Ion.with(this)

2 .load("http://example.com")
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3 .asJsonObject()

4 .setCallback(new FutureCallback<JsonObject>() {

5 @Override

6 public void onCompleted(Exception e, JsonObject result) {

7 System.out.print("Result: " + result);

8 }

9 });

Listing 6: ion code snippet

After the successful detection of any code snippet more snippet-specific information is collected before it
is saved to disk. Of particular interest are the name of the involved .java file, its path, the library name,
the start and end line numbers where the snippet has been found, the type information, and the relevant
source code of the class, method, and the snippet itself. An output generated by Jandrolyzer with omitted
class and method code is shown in Listing 7.

1 Name:

2 OkHttpTesting.java

3 Path:

4 .../OkHttpTesting.java

5 Library:

6 com.squareup.okhttp3

7 Networking code:

8 new Request.Builder()

9 Lines:

10 [210, 210]

11 Type:

12 okhttp3.Request.Builder

Listing 7: Jandrolyzer network snippet report

5.3.2 Unified Request Locators (URLs)

We explained the structure of RESTful URLs in subsection 3.2.2, nevertheless we briefly show the
components of an API URL on a more concrete example in Figure 5.2 to recall the key elements. In
this example, https is the scheme that ensures the network traffic between the client and the server is
protected using an SSL/TLS encryption. The scheme in combination with the authority represents the base
URL of the API. The path extends the base URL and both together represent the API endpoint. Queries and
fragments are used to request individual resources on a server. The query consists of key-value pairs that
are separated by a delimiter symbol (e.g., “&”), and at the end, the fragment identifier is used to further
select a specific section of a given resource, e.g., the second page of a document resource.

Jandrolyzer inspects AST nodes of the types OCE, MCE, SLE, BE, and VD, to detect URLs in the source
code. The package EndpointExtraction includes classes with strategies to analyze those AST nodes
and to extract URLs from them. Jandrolyzer supports the extraction of URLs from java.net.URL
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https://example.com/api/getUser?name=bob&id=29381#2

Figure 5.2: Key components of a RESTful API URL

objects, from third party libraries such as OkHttp and Retrofit, and from reassembled strings. Listing 8
shows a sample output from Jandrolyzer after successful URL extraction.

1 Path:

2 /Users/marc/...

3 Library:

4 com.squareup.retrofit

5 Scheme:

6 http://

7 Authority:

8 retrofiturl.com

9 Base URL:

10 http://retrofiturl.com

11 Endpoints:

12 Path: api/loadUsers

13 Queries:

14 Query key: position, query value: <String>

15 Query key: order, query value: <String>

16 Fragments:

17 HTTP Methods:

18 HTTP Method: GET

Listing 8: Jandrolyzer sample output of a collected URL

5.3.2.1 Strings

A source code snippet whose variable value will be parsed to a “string literal expression” (SLE) is shown
in Listing 9. Extracting a URL from an SLE node is straightforward: Whenever an SLE node is found in
the AST the value of the SLE is passed to an instance of the APIURLStrategy class which contains the
logic for verifying URLs. If this class reports a valid URL it is immediately saved for later use.

1 String baseURL = "https://example.com";

Listing 9: Example of a “string literal expression”
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However, it might occur that the URL we want to detect is composed of multiple other expressions
by using a BinaryExpression (BE) node, e.g., when developers use the “+” string concatenation
operator. A BE example is displayed in Listing 10, in which the base URL of the API is specified in
a variable and the endpoint to a specific resource is subsequently added to the base URL by using a
BE. In these cases the BE is first passed to an instance of StringValueExtraction which uses the
ExpressionValueExtraction class to reconstruct the contained string value. This class traverses
the subtree spanned by the BE and collects all its relevant nodes, e.g., containing variables, literal
expressions (integer, string, boolean, null), nested BEs, MCEs, and OCEs. Second, Jandrolyzer iteratively
resolves all collected nodes and searches for hard coded values associated with them. Finally, all the
resolved values are put together.

Back to Listing 10, Jandrolyzer would try to reconstruct all possible values that originate from the variable
baseURL (line 8). For that reason, Jandrolyzer would first resolve that variable in the AST and identify it
as a parameter. Second, it would look up the parameter’s associated method declaration in the AST (line 7)
and search for all MCEs that refer to the found method declaration (line 4), before it would analyze the
arguments that are passed to those MCEs to ensure the methods match and to extract potential hard coded
values. Next, the argument variable in the discovered method declaration would be resolved leading to
the base URL (line 3). Finally, the found values would be merged and lead to the fully functional API
endpoint https://example.com/path2.

The example used only one MCE, i.e., addPath(). If multiple MCEs exist Jandrolyzer creates a list with
all the collected nodes before it inspects them one by one. The MCE search works over class boundaries
thus it is not constrained to the AST of one specific class. In case Jandrolyzer is not able to find any
hard coded values associated with an expression, it tries to resolve its type and attaches the found type
information to the string in the format <typeinfo>, e.g., <STRING>. The value extraction process from
expressions is performed in a best effort manner and does not yet appropriately consider certain constructs
available in the Java programming language, e.g., conditional statements and collections.

1 public class TestClass {

2 public void createEndpoint() {

3 String baseURL = "https://example.com";

4 String completeURL = addPath(baseURL);

5 }

6

7 public String addPath(String baseURL) {

8 return baseURL + "/path2";

9 }

10 }

Listing 10: Example of a “binary expression”

Furthermore, Jandrolyzer not only extracts concatenated strings using BEs, but also using the java.lang.-
StringBuilder class, the java.lang.String.concat() method, and the java.net.URL
constructors.
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When searching for StringBuilder values, Jandrolyzer examines if any VD nodes initialize new
objects of the type java.lang.StringBuilder. The value of the StringBuilder object is then
extracted with the help of the ExpressionValueExtraction class: Jandrolyzer would first search
the AST for the method or class node containing the StringBuilder object in question and determine
if the object was created within a method or as a field of a class, i.e., by an instance variable. Depending on
where and how the objects are declared, Jandrolyzer would scan the AST subtrees of those nodes for MCEs
with a StringBuilder object as argument, or for their contained StringBuilder.append()

MCEs. Finally, Jandrolyzer would try to resolve and extract the argument expression value for each
matched node similar to the BE-based extraction before. Listing 11 shows a code snippet in which two
different StringBuilder instances are used to construct two different API URLs. Jandrolyzer is
able to extract both URLs correctly, i.e., https://exampleone.com/path1/path2 and https:
//exampletwo.com/path1/path2.

1 public class TestClass {

2 private StringBuilder stringBuilder = new StringBuilder();

3 private String baseURL = "https://exampleone.com";

4 public void createEndpoint() {

5 StringBuilder stringBuilder = new StringBuilder();

6 stringBuilder.append(baseURL);

7 stringBuilder.append("/path1").append("/path2");

8

9 this.stringBuilder.append("https://exampletwo.com");

10 this.stringBuilder.append("/path1");

11 addPath(this.stringBuilder);

12 }

13

14 public void addPath(StringBuilder stringBuilder) {

15 stringBuilder.append("/path2");

16 }

17 }

Listing 11: Code snippet using the StringBuilder class

1 String baseURL = "http://example.com";

2 String cp1 = baseURL.concat("/p1");

3 String cp2 = cp1.concat("/p2").concat("/p3");

Listing 12: Code snippet using string concatenation

Furthermore, Jandrolyzer supports the extraction of concatenated strings using the java.lang.Str-
ing.concat() method. The detection technique for the concat() method is very similar to the one
used for the StringBuilder method append(), except that the search is performed implicitly, i.e.,
whenever a node in an AST is traversed for any reason it will be scanned for the concat() method at
the same time. Listing 12 illustrates the use of the concat() method which would be correctly detected
as http://example.com/p1 for line 2 and http://example.com/p1/p2/p3 for line 3.
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Finally, Jandrolyzer can extract information from objects of the type java.net.URL whose constructors
require an URL string.2 In other words, Jandrolyzer is able to detect and extract java.net.URL objects
instantiated by the following constructors:

• URL(String spec)

• URL(String protocol, String host, int port, String file)

• URL(String protocol, String host, String file)

• URL(URL context, String spec)

The expression values used as arguments for the creation of java.net.URL objects are extracted as for
the previously mentioned concat(), StringBuilder, and BE-based approaches.

5.3.2.2 Retrofit library

In Retrofit implementations the Jandrolyzer tool is able to extract HTTP request body data for the Gson
and Moshi JSON converters. Retrofit enforces users to define API URLs with Java interfaces (as shown in
Listing 13) and the executable implementation of these interfaces is created using a Retrofit object as
illustrated in Listing 14.

1 public interface RetrofitAPIEndpointInterface {

2 @GET("http://example2.com/api/loadNews")

3 Call<Article> loadNews();

4

5 @GET("api/loadUser/{id}")

6 Call<User> loadUser(@Path("id") int userId);

7

8 @GET("api/loadUsers")

9 Call<List<User>> loadUsers(@Query("order") String order,

10 @Query("position") String position);

11

12 @POST("api/createUser")

13 Call<User> createUser(@Body User user);

14 }

Listing 13: Retrofit API interface example

The interface annotations are used to define and configure base URLs and their related endpoints. For
instance, the supported HTTP methods are defined using the annotations @GET, @POST, @PUT, @DELETE
@PATCH, etc. Moreover, the provided Java method protocols allow Retrofit to map Java objects to specific
server responses. The corresponding methods specify the content of the request bodies, specify key-value
query pairs, or dynamically rewrite URLs. On the other hand, when instantiating a new Retrofit

2https://docs.oracle.com/javase/7/docs/api/java/net/URL.html
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object the base URL and a converter factory must be specified. The converter factory decides about the
deserialization strategy applied to HTTP response bodies received from servers.

1 Retrofit retrofit = new Retrofit.Builder()

2 .baseUrl("http://example.com/")

3 .addConverterFactory(GsonConverterFactory.create())

4 .build();

5

6 RetrofitAPIEndpointInterface rApiInt

7 = retrofit.create(RetrofitAPIEndpointInterface.class);

Listing 14: Retrofit API implementation example

In our implementation, the RetrofitStrategy class performs the extraction of URLs from Retrofit
code snippets. If MCEs containing the name “create” exist in the AST, an instance of the Retrofit-
Strategy will start the extraction. As there might exist other MCEs with the same name it will first
try to resolve the scope of the found MCEs to assure they represent a valid Retrofit type. After
a successful resolution and evaluation the Retrofit object declaration node, its base URL, and the
referenced converter factory are extracted. Next, the interface where the API endpoints are defined is being
resolved which leads to the creation of an AST for that interface. The resulting AST is then used to extract
the individual endpoints. Jandrolyzer supports the extraction of HTTP methods, endpoints, base URL
replacements, partial dynamic URL replacements, key-value query pairs, and request bodies.

5.3.2.3 OkHttp library

The OkHttp library provides similar functionality to Retrofit, however, it uses a different approach. Instead
of using interfaces to define the various endpoints it relies on Builder methods.

Consequently, HTTP requests are constructed by calling the static method Builder() on the Request
instance. Numerous customization features are available; two major features are provided by the method
url(String url) which specifies the base URL, and MCEs for the available HTTP methods, e.g.,
post(RequestBody body) which attaches a body to a HTTP POST request as exemplified in List-
ing 15. The argument of the url() MCE may be of the type java.lang.String, java.net.URL,
or okhttp3.HttpUrl. While the first two types are processed as described in subsubsection 5.3.2.1
the extraction of okhttp3.HttpUrl objects is completed using the OkHttpStrategy class.

1 MediaType jsonMediaType = MediaType.parse("application/json; charset=utf-8");

2 RequestBody body = RequestBody.create(jsonMediaType, "{\"name\":\"test\"}");

3

4 Request request = new Request.Builder()

5 .url(httpUrl)

6 .post(body)

7 .build();

Listing 15: OkHttp HTTP POST request code snippet
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Similarly, assembling URLs with the HttpUrl class depends on the HttpUrl.Builder() method.
Unlike for the data in HTTP header fields, HTTP URLs must bear additional conversion steps to comply
with the American Standard Code for Information Interchange (ASCII) character set used in web communi-
cation, i.e., control, reserved, some special-, and all non-ASCII characters must be encoded by a preceding
“%” symbol followed by the corresponding numerical ASCII code represented as two hexadecimal digits.
OkHttp provides many different set up methods for configuring the scheme, the host, the port, single
path segments (for both, encoded and not encoded), multiple path segments (for both, encoded and not
encoded), key-value query pairs (for both, encoded and not encoded), fragments, etc. Listing 16 shows the
construction of a URL by separately adding the scheme, the host, the query pairs, and the path segments
denoting the endpoint. Developers using OkHttp can deliberately choose to encode only certain segments
of the URL, or even to not use any of its URL encoding capabilities. For example, if they would decide to
apply the URL encoding by OkHttp to the path segment path/1 containing the reserved character “/”,
the library would encode that path segment as path%2F1 containing only valid URL ASCII characters.

1 HttpUrl httpUrl = new HttpUrl.Builder()

2 .scheme("http")

3 .host("example.com")

4 .addPathSegment("api")

5 .addPathSegment("path1/1")

6 .addPathSegment("path2")

7 .addQueryParameter("queryname1", "queryvalue1")

8 .build();

Listing 16: OkHttp HttpUrl request code snippet

Jandrolyzer’s OkHttpStrategy extraction process is triggered when nodes of the type VD or MCEs
with the name “build” are detected. Every found build() MCE is resolved and verified if it is either one
of the types okhttp3.HttpUrl or okhttp3.Request. Jandrolyzer’s feature detection processes
the extraction of okhttp3.HttpUrl and okhttp3.Request snippets independently, because the
link between the request and the (URL) definition could be broken due to resolution errors or missing code
from incomplete decompilations. Hence, if a Request.Builder has been detected the HTTP method,
the request body, and the URL are extracted, and if on the other hand a HttpUrl.Builder has been
detected OkHttpStrategy will reconstruct the URL from the supplied nodes. Developers using OkHttp
further can use an HttpUrl.Builder object to create a URL using multiple statements. Jandrolyzer
detects this configuration by checking VD nodes if they declare OkHttp.Builder objects, and if such
an object is found it will be extracted using the OkHttpStrategy class. The expressions supplied
as arguments to the Builder MCEs are then extracted using the ExpressionValueExtraction
class as described in subsubsection 5.3.2.1. As a result, if the scheme is defined using an MCE of type
scheme(scheme) and the argument is a variable pointing towards a hard-coded string, it will still be
accurately extracted.

Jandrolyzer supports the extraction of the URLs, HTTP methods, and JSON bodies from OkHttp requests,
and it uses the OkHttp library to handle all necessary URL encodings. Moreover, Jandrolyzer supports the
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extraction of HttpUrl and HttpUrl.Builder objects including schemes, hosts, ports, any form of
one or more path segments, any form of query key-value pairs, and fragments.

5.3.3 Data scheme reasoning

For data scheme reasoning, i.e., reasoning about the actual values transmitted in JSON constructs, Jan-
drolyzer supports the most prevalent data conversion libraries based on our manual analysis outlined
in chapter 4, i.e., org.json, Gson, and Moshi. Nevertheless, some developers refrained from using any
libraries and developed data conversion algorithms themselves, i.e., they programmatically assemble
JSON-compliant strings for HTTP request bodies.

The extraction of JSON data requires the inspection of OCE, MCE, SLE, BE, and VD AST nodes;
the relevant Java classes are located in Jandrolyzer’s RequestStructureExtraction package.
Whenever Jandrolyzer finds a match the following information is collected: the involved library, the path of
the corresponding .java file, and the JSON data itself. The model classes, i.e., approximated JSON data
structure representations, are designed to provide hints for later verification: For every missing value in a
reconstructed JSON object, e.g., in a key-value pair, the value’s type hint is stored to foster later generation
of sound URLs. Listing 17 shows Jandrolyzer’s output after a successful JSON object extraction of a Java
model class converted to JSON using Moshi in line 6.

1 Path:

2 .../User.java

3 Library:

4 com.squareup.moshi

5 JSON Object:

6 {"address":{"street":"<STRING>","number":"<NUMBER_INT>"},"name":"Bob"}

Listing 17: Jandrolyzer’s output for a successful JSON object extraction

Frequently, complex expressions can be only partially traced back to the hard-coded values. Possible
reasons are that expressions depend on user input and therefore are unavailable in the source code, or
because expressions are declared in an external .jar file, respectively another unreachable location.
Besides that, one more possibility is that the source code is incomplete due to decompilation errors which
break Jandrolyzer’s algorithms.

In the next four subsections we explain in more detail the different extraction algorithms for each supported
method, i.e., org.json, Gson, Moshi, and Json strings.

5.3.3.1 org.json library

The org.json library is included in Android and is used to construct JSON objects, therefore the library
provides classes such as JSONArray and JSONObject. The org.json example shown in Listing 18
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creates a JSON object consisting of four key-value pairs. The put() MCE is used to add a key-value
pair to the JSON object. The first String argument defines the key, and the second argument defines
the corresponding value which can be of type String, a primitive number, a boolean, a JSONArray
object, JSONObject.NULL, or any JSONObject object. Furthermore, it is shown how multiple
put() MCEs can be chained.

1 JSONObject jsonObject = new JSONObject();

2 try {

3 jsonObject.put("ojk7", "ojv7");

4 jsonObject.put("ojk8", JSONObject.NULL);

5 jsonObject.put("ojk9", 9).put("ojk9_1", 91);

6 } catch (JSONException e) {

7 e.printStackTrace();

8 }

Listing 18: org.json code snippet

During the analysis of AST nodes in the ProjectAnalyzer class VD nodes will trigger the related
extraction strategy defined in the ORGJSONStrategy class, which starts the extraction if the declared
object is an org.json.JSONArray or org.json.JSONObject. The ORGJSONStrategy class
internally uses the org.json library to reconstruct the JSON objects found in the source code. After
extracting the initialization value of the JSON object or array Jandrolyzer starts with its reconstruction.
If a JSONObject was declared inside a method, Jandrolyzer will traverse the subtree of that method’s
AST node for any operations on that object, e.g., assignment operations, put() operations, return
statements, and object passings to other methods. On the other hand, if the object was declared in a field,
Jandrolyzer will search the AST of every reachable method for operations. With the found operations
ORGJSONStrategy creates for each a result string, e.g., {"oik7":"ojv7"}. The expression values
used in a put() MCE are extracted using the ExpressionValueExtraction class as described in
subsubsection 5.3.2.1. Jandrolyzer further supports the extraction of two implementation peculiarities:
i) nested JSON objects, i.e., when objects of the type JSONObject or JSONArray are set as a key-value
pair’s value, and ii) objects initialized using a JSON formatted string. After successfully parsing a method
a list of strings is returned containing the generated JSON strings. These strings are then one by one
validated using the JSONStringStrategy class as described in subsubsection 5.3.3.4.

The JSON extraction is performed using a best effort approach and thus neither guaranteed to be correct,
nor complete. In more detail, we introduced a threshold value which specifies how many look up iterations
are performed at most which reduces Jandrolyzer’s memory and CPU load at the expense of incomplete
results when analysing exceptionally complex structures. As a result, JSON objects created inside a
method have a higher chance of being extracted accurately than in fields.
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5.3.3.2 Gson library

The Gson library is more flexible to use than org.json and provides an additional approach for the JSON
object creation: Instead of only creating JSON objects from scratch it enables the conversion of Java
objects to JSON objects. The classes of such Java objects are called “model classes” which describe the
resources sent and received from and to the web APIs as shown in Listing 19. They are regular Java classes
(getters and setters have been omitted for improved readability) with fields for desired information such as
for name, id, isVip, address, and secretNote.

1 public class User {

2 private String nameGSON;

3 private int id;

4 @SerializedName("is_vip_GSON")

5 public boolean isVip;

6 private Address address;

7 private List<Address> otherAddresses;

8 public transient String password;

9 ...

10 }

11

12 public class Address {

13 @Expose

14 String name;

15 @Expose

16 int number;

17 String secretNote;

18 ...

19 }

Listing 19: Typical Gson model classes for a “User” and an “Address” resource

Converting a User object into JSON syntax using the Gson library is straightforward as shown in
Listing 20 where the three required steps are shown: First, a com.google.gson.Gson and a model
class object, e.g., a User object, must be created before the MCE toJson() can be called which converts
the User object to JSON syntax. During this conversion process Java types will be converted to valid
JSON types. Accordingly, in Listing 19 the value of nameGSON will be converted to a JSON string, the
value of id to a JSON number and the value of isVip to a JSON boolean. Moreover, nested model
classes will be converted to nested JSON objects, e.g., Address, and collection types to JSON arrays, e.g.,
otherAddresses. Transient fields such as password are not included in the JSON representation.
However, this can also be achieved with the @Expose annotation as seen in the Address model class,
which indicates fields that should be exposed to the JSON structure while omitting the fields without
that annotation. By default, Gson uses the variable names for the JSON key-value pair’s key names,
e.g., nameGSON. Nevertheless, to change a specific key name additional annotations can be used. For
example, the variable name isVip is changed to is vip GSON in the JSON representation using the
SerializedName annotation.
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1 Gson gson = new Gson();

2 User user = new User();

3 gson.toJson(user);

Listing 20: Gson object creation

Jandrolyzer scans the AST for MCEs with the name “toJson” to detect the use of Gson in the source
code, which are analyzed by the MoshiGSONStrategy class due to the many similarities between the
Gson and the Moshi library. First, the scope of such MCEs is resolved to verify whether it is a valid
com.google.gson.Gson type before the argument of the MCE itself is analyzed. After detecting the
corresponding model class its AST is used to recursively analyze the fields.

1 {

2 "address":{

3 "name":"<STRING>",

4 "number":"<NUMBER_INT>"

5 },

6 "id":"<NUMBER_INT>",

7 "otherAddresses":[

8 {

9 "name":"<STRING>"

10 },

11 {

12 "number":"<NUMBER_INT>"

13 }

14 ],

15 "is_vip_GSON":"<BOOLEAN>",

16 "nameGSON":"<STRING>"

17 }

Listing 21: JSON structure rebuilt from a Gson class

Jandrolyzer is able to extract Gson model classes by considering SerializedName annotations,
Expose annotations, transient fields, JSON arrays, and nested JSON objects. The successful JSON
reconstruction for the User object depicted in Listing 19 can be seen in Listing 21.

5.3.3.3 Moshi library

The Moshi and the Gson library are very similar in terms of features and use, i.e., both are data conversion
libraries with comparable syntax which are able to convert JSON formatted text to Java objects and
vice versa. Listing 22 shows two typical Moshi model classes: A User and an Address model class
representing a User resource with the corresponding address resource. The UserKind indicator used in
the model class Address is defined by a Java enum type.
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In Moshi, a JsonAdapter for each model class needs to be created to convert a Java model class object
to JSON syntax as shown in Listing 23. As for Gson, transient fields are omitted in the JSON representation.
Among the very few differences to Gson is the use of different annotations. The @Json annotation is used
to specify a custom JSON key name, e.g., the isVip field’s key name is changed from isVip to is vip

for the JSON representation of that object. Furthermore, the by Moshi supported enum type values are
ultimately transformed into JSON string values.

1 public class User {

2 public String name;

3 public int score;

4 @Json(name = "is_vip")

5 public boolean isVip;

6 public UserKind userKind;

7 public Address address;

8 public List<Address> altAddresses;

9 private transient String password;

10 }

11

12 public class Address {

13 public String street;

14 public int number;

15 }

16

17 public enum UserKind {

18 PROUSER,

19 NONPROUSER

20 }

Listing 22: Typical Moshi model classes for a “User” and an “Address” resource

During the AST scan Jandrolyzer will search for MCEs named “adapter” to extract the scheme of Moshi
model classes. The extraction of such model classes is achieved with the same MoshiGSONStrategy class
as for the Gson extraction due to the aforementioned analogies. After detecting such an MCE, its scope is
resolved to validate if it is a valid com.squareup.moshi.Moshi type. The argument of the MCE
directly leads to the model class for which an AST is created. This newly created AST is then traversed
to analyze the fields of the model class. Jandrolyzer supports the extraction of Moshi model classes by
considering @Json annotations, transient fields, JSON arrays, nested JSON objects, and enum types. The
successful JSON reconstruction for the User object depicted in Listing 22 can be seen in Listing 24.

1 Moshi moshi = new Moshi.Builder().build();

2 JsonAdapter<User> jsonAdapter = moshi.adapter(User.class);

3 User user = new User();

4 String json = jsonAdapter.toJson(user);

Listing 23: Moshi object creation
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1 {

2 "address":{

3 "number":"<NUMBER_INT>",

4 "street":"<STRING>"

5 },

6 "score":"<NUMBER_INT>",

7 "altAddresses":[

8 {

9 "street":"<STRING>"

10 },

11 {

12 "number":"<NUMBER_INT>"

13 }

14 ],

15 "name":"<STRING>",

16 "userKind":"<STRING>",

17 "is_vip":"<BOOLEAN>"

18 }

Listing 24: JSON structure rebuilt from a Moshi class

5.3.3.4 JSON strings

JSON encoded text can be created, manipulated, and stored with plain String expressions, i.e., an SLE
node in the AST. We mostly encountered this so called “primitive obsession” code smell for short HTTP
request bodies where developers were not eager enough to use a library.

During the analysis of AST nodes in the ProjectAnalyzer class SLEs are first searched for valid URL
data. If APIURLStrategy was unable to extract any URL data, the very same node is also checked
for potential JSON data using the JSONStringStrategy class which also removes the found string’s
escape sequences. Next, the JSONDeserializer class is used to deserialize the found strings into
JSONRoot objects. The process is aborted, if the strings do not contain any valid JSON data. On the
other hand, if JSONDeserializer is able to deserialize the string it creates a new JSONRoot object
which is assigned to the corresponding project.

For JSON formatted text composed of multiple expressions within a BE the extraction strategy it is the same
as for the extraction of URLs from BEs explained in subsubsection 5.3.2.1. In fact, the BE is only analyzed
once using the StringValueExtraction class. The extracted strings are first scanned for URLs
using the APIUrlStrategy class, and if no URLs are found the very same strings are processed by the
JSONStringStrategy class to search for valid JSON strings. Similarly, JSON strings constructed
with the StringBuilder class or the java.lang.String.concat() method are searched for
valid URLs, and if none is found they are searched for valid JSON data.
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1 http://example.com/api/registerDevice&api_key=<STRING>

(a) partially reconstructed URL

1 {

2 "accessKey":"<STRING>"

3 }

(b) partially reconstructed JSON scheme

Figure 5.3: Missing query values in reconstructed data

5.4 URL validation

After analyzing all the .java files of a project, the extracted URLs and JSON data are saved inside the
corresponding Project object. Jandrolyzer provides functionality to test URLs with different HTTP
method and request body combinations to validate the collected data. The code for the data preparation
and validation is located in the APIAnalysis package of the project.

5.4.1 Data preparation

Before conducting any validation, the collected data must be prepared first, because query pairs in URLs
and JSON data are often incomplete as illustrated in Figure 5.3a for partially extracted URLs and in
Figure 5.3b for partially extracted JSON objects.

With the help of the collected type information Jandrolyzer will fill in type-sensitive values, e.g., numbers
and boolean values are set to 0 and true, respectively. The processing of missing String values is
more complex; they are populated with actual String values found in the application. More precisely,
Jandrolyzer detects string variable declarations and collects the variable names and the assigned values
with the help of the VariableCollector class. Next, this class compares the key name of each
incomplete key-value pair to the collected variable names. The value of the variable name that is most
similar to the key name is used as source for the missing value. We used the Jaro-Winkler string similarity
distance metric to compute the distance between a key and a variable name which has been implemented
in the java-string-similarity library.3 This algorithm is intended for comparisons of human entered short
text strings such as variable names, because it is exceptionally robust against letter transpositions and it is
assigning more weight to the similarity at the beginning of the strings. The resulting similarity value is in
the range [0, 1]; 1 indicates the closest match of two strings, and 0 indicates that the two strings have
no similarities at all. For instance, the Jaro-Winkler similarity between the two string variable names
“apiKey” and “api key” is 0.8944444715976715. Consequently, Jandrolyzer would insert the value of the

3https://github.com/tdebatty/java-string-similarity
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“apiKey” variable into the JSON data if no better match has been found. Finally, the completed URL and
the JSON data will be saved to disk.

5.4.2 Queries

The code for the testing procedure is located in the APIAnalyzer class and supports besides the non-
altering GET the HTTP methods PUT, PATCH, and DELETE that per definition are supposed to alter or
delete remote resources located on web servers. Depending on how Jandrolyzer was configured only
specific HTTP methods are tested. Users must proceed with caution; they are advised to disable the altering
HTTP methods for tests with third party applications to avoid any potential harm to app developers.

First, the files containing the prepared data are parsed and the URLs and JSON data are collected. Next,
Jandrolyzer tests each endpoint based on the preset HTTP methods and includes the JSON data in the
HTTP request body. The requests are executed using the OkHttp library.

5.4.3 HTTP response headers

Jandrolyzer yields the HTTP server responses from the tests outlined in subsection 5.4.2. The collected
data is saved to a file for later analysis and includes information like the URL, the JSON string, the HTTP
method, the status code, a success indicator, the success or error message, the response headers, and the
response content.

More precisely, Jandrolyzer stores the following components: i) The used URL which describes the API
endpoint. It is stored for later replayability of the results. ii) The used JSON string which contains the
reconstructed JSON key-value data pairs. It is stored for later replayability of the results. iii) The used
HTTP method which states how the request was treated. It is of the type GET, PUT, POST, PATCH, or
DELETE. This method in combination with the request URL and the JSON string allows researchers to
resubmit the request for further analyses. iv) The received status code which informs the client about the
current server state. It is an integer, e.g., 200, and serves as an indicator whether the server understood
the request, i.e., the request has succeeded. v) The success indicator is represented by a boolean value
and shows if the corresponding request was successful. This value includes client-side errors (e.g., in
case of a malformed URL) as well as the response from the server. vi) The received success or error
message, e.g., “OK”, which relates to the status code. Based on this message Jandrolyzer decides if the
recreated URL is valid. For example, if the error message “Not Found” is replied or a time out occurs,
Jandrolyzer assumes that either the URL is invalid or the server offline. vii) The received response headers
which are a set of key-value pairs. They provide additional information regarding the server configuration.
A few standardized response headers exist, e.g., Allow, Cache-Control, Content-Type, Date,
Content-Length, and Server. However, the server is not required to send any of these headers.
Headers could be used for further security assessments, e.g., to check if the endpoint server software is
outdated and suffering from known exploitable security vulnerabilities. viii) The received response content
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which contains the requested (user) resource from the server. When sending a request to an API endpoint
it generally can be assumed that the response uses the same encoding (e.g., UTF-8) and language (e.g.,
JSON). The response content could disclose potential web API data leaks (i.e., by containing variables
with sensitive information), denial-of-service attack vectors (e.g., by containing range arguments for data
retrieval), and other security issues.



6
Analysis

In this chapter we present the findings from our analysis of 1 247 applications using the Jandrolyzer tool.
First, we characterize the two datasets we used, before we explain our findings regarding the apps’ use of
web communication and the differences in web communication between open-source and closed-source
apps. Finally, we deal with server responses received from our requests and highlight a few security risks
we have encountered. More concretely, section 6.2 responds to RQ1, section 6.3 to RQ2, subsection 6.3.3
to RQ3, and finally, section 6.4 to RQ4.

6.1 Datasets

In this section we characterize the two datasets we have used in our analysis, one containing open-source
projects from F-Droid, hosted on GitHub, and one containing closed-source applications from Google’s
Play store.

6.1.1 Open-source apps

Our open-source dataset relies on F-Droid software repository which hosts open-source Android projects
whose source code is available on code sharing platforms like GitHub. The corpus initially contained all

51
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the projects found in F-Droid’s index file,1 but we removed all duplicates (same package identifier, but
different version numbers) by striving for the most recent version, and by removing all projects that did
not specify the use of the android.permission.INTERNET permission in the manifest file which is
required for any web communication. In the end, we performed the analysis on a corpus of 413 open-source
projects. From these 413 apps 68.5% (283 apps) could be successfully analyzed by Jandrolyzer, whereas
the remaining apps either exceeded the time constraints or crashed the tool, thus yielded no results. Only
about 29.5% of the (deduplicated) apps require the android.permission.INTERNET permission.

6.1.2 Closed-source apps

Our closed-source dataset relies on random free apps, respectively free apps with in-app purchases,
from the Google Play store. The store only provides applications in the .apk file format which requires
decompilation to source code prior to the analysis. The corpus initially contained 889 apps, but we similarly
removed all applications that did not specify the use of the android.permission.INTERNET

permission in the manifest file. In the end, we performed the analysis on a corpus of 834 closed-source
apps. Out of these 834 apps 40.1% (335 apps) could be successfully decompiled, and from those 49.8%
(167 apps) could be successfully analyzed by Jandrolyzer. The remaining apps either exceeded the time
constraints or crashed the tool, thus yielded no results. Unlike open-source apps, an enormous 94% of
the applications require the android.permission.INTERNET permission. This result confirms
the sentiment that the majority of the Android closed-source applications utilize the internet to display
information and ads using web views or to synchronize data using (web) servers.

6.2 Manual analysis

First, we manually examined 160 random open-source apps for used libraries to gather information about
their prevalence. This information was then used to prioritize the implementation of Jandrolyzer’s library
support; the most prevalent libraries became implemented first. We encountered nine different HTTP
frameworks, i.e., Android Volley, AndroidHttpClient, AsyncHttpClient, glide, HTTP Components, ion,
java.net, OkHttp, and Retrofit. Jandrolyzer supports network snippet extraction for all of them and URL
extraction for the most prevalent ones, i.e., java.net, OkHttp, and Retrofit. Moreover, we found three
different JSON libraries, i.e., Gson, Moshi, and org.json. Since all three libraries have been frequently used
in the open-source projects we added support to Jandrolyzer for all of them. Besides these JSON libraries
we rarely encountered two different XML-based libraries, namely the Java built-in org.xml.sax.XMLReader
and the XML Pull Parser. However, only few projects relied on these, thus we neglected them in our tool.

1https://f-droid.org/repo/index.xml
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6.3 Automated analysis

In this section we present the findings from our automated analysis of 413 open-source and 834 closed-
source applications using the Jandrolyzer tool. We focus on the use of the libraries and the use of the
URLs and JSON schemes for open- and closed-source apps.

6.3.1 Open-source apps

All results presented in this subsection are based on the successful analysis of 283 open-source apps by
Jandrolyzer.

6.3.1.1 Use of libraries

Figure 6.1 shows the libraries used in open-source projects. The URLConnection (37.4%), Http-
URLConnection (24.3%), Socket (9.1%), and HttpURLConnection (6.0%) classes included in
java.net are the preferred choice of open-source developers, especially URLConnection and Http-
URLConnection are omnipresent in projects. When considering third party network libraries OkHttp
and Retrofit (each 5.6%) are used the most. It is interesting to see that libraries with specific support for
image downloads are similarly used, i.e., glide and Volley. The network library ion is the least used with
only three occurrences in total (1.0%). Jandrolyzer found neither any SSLSocket, nor any android.-
net.http.AndroidHttpClient instances. Additionally, we observed that open-source projects use
zero to four network libraries. While we did not expect the reluctant use of libraries, one explanation could
be that many developers just use boilerplate code for rather small tasks.

6.3.1.2 Use of URLs and JSON schemes

Across the open-source projects Jandrolyzer was able to extract 1 533 base URLs and 458 JSON schemes.
The vast majority of the endpoint URLs based on the extracted base URLs were requiring at least one type
of parameter(s), e.g., one or more path segments (1 182, 98.8%), queries (240, 20,0%), and fragments (11,
0,9%). Figure 6.2 illustrates the extracted endpoint data. The x-axis denotes the unique elements in an
endpoint, i.e., how many elements of a specific type (fragments, path segments, queries) the endpoints
require. For instance, the first column “1” represents the number of found endpoints that demand one
fragment, one path segment, or one query. The chart shows that the majority of endpoints have one or
two fragments, path segments, or key-value query pairs. We can further see that 209 endpoints exist with
paths consisting of four or five path segments to distinguish between resources. Nevertheless, endpoints
using more than five elements are rare. Additionally, we can identify up to 18 unique query pairs used in
one specific endpoint, and that URL fragments are seldom used in endpoints; we only found up to one
fragment per endpoint. Based on these findings it appears that most APIs are just built for one specific
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Figure 6.1: The use of different network libraries in open-source projects

purpose and thus not in need of many arguments. This is encouraging because the chances of generating a
valid request with only few parameters are rather high.

We also evaluated the most common base URLs. The most used single base URL was https://
github.com which has been observed 29 times (10.2%). Likewise Google services have been widely
used, e.g., https://play.google.com or https://plus.google.com; the tool could spot
42 instances (14.8%). Rather at the end of the ten most commonly used based URLs Jandrolyzer found the
OpenWeatherMap API http://openweathermap.org (7, 2.4%) and the Twitter social network API
https://twitter.com (6, 2.1%). We were surprised to see such a dominance of GitHub. However,
the use of Google APIs is not surprising at all; many of Google’s own services, e.g., Google Analytics
or Google Play in-app purchases, rely on them. Another interesting observation is that the open-source
community prefers Twitter over Facebook, which is one of the world’s largest social networks.

Figure 6.3 depicts the URL schemes and the JSON value types found by our tool. The plot reveals that
the https URL scheme (1 012 occurences, 66.0%) is much more commonly used than its insecure
counterpart http (521 occurences, 33.9%). We can further see that STRING is the most used JSON value
type with 1 197 occurrences, followed by NUMBER with only 234 occurences. It seems that the JSON
value types BOOLEAN and NULL are barely used with only 130 and 14 occurrences, respectively. We
conjecture that this is due to the nature of the requests: Most requests are not performing any calculations
on numbers, but work on user data which is mostly consisting of strings, e.g., addresses, names, locations,
etc.
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Figure 6.2: The components used in web requests of open-source apps
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Figure 6.3: The used JSON value types and schemes in open-source applications
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Figure 6.4: The file-spread of open-source apps’ web communication facilities

Besides the URL schemes and JSON value types, we also collected the most frequent query keys and
JSON key-value pairs. We found the three most used keys to be id, category, and setting, and
we found less common keys to be sel start, sel end, expression, precise, type, q, and
name. Depending on the server-side implementation the values corresponding to these keys could be
easily guessed client-side to access arbitrary resources on the web server, because many of them are
intentionally limited in scope (e.g., id, end). For example, if the web server does not authorize each
client appropriately it could mistakenly access a protected resource with a manipulated numeric id. In
addition, the query and JSON values could be used for code injection attacks (e.g., using expression)
with the same result. Obfuscation of such interface declarations could mitigate the trivial guessing of
parameters and should be integrated into the regular workflow of web developers.

Figure 6.4 illustrates the number of different files contributing to code snippets, URLs, and JSON schemes.
The x-axis denotes the number of unique files in an app on which the web communication relies, i.e., how
many files in an app have been used for the extraction of code snippets, URLs, and JSON schemes. For
instance, the first column “1” represents the number of found apps that rely on one code snippet, one
URL, or one JSON scheme for web communication. We can see that in most projects the network related
functionality is spread among one or two files. We observed in an app at most 21 files containing network
code snippets, 63 containing URLs, and 14 containing JSON schemes. We conclude that in most projects
only one or two classes are responsible for network communication. On the other hand, the further end
of our findings indicates bad software design practices due to duplicated network-related code used in
different components of an app.
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6.3.2 Closed-source apps

All results presented in this subsection are based on the successful analysis of 167 closed-source apps by
Jandrolyzer.

6.3.2.1 Use of libraries

Figure 6.5 shows the libraries used in closed-source apps. We can see that the classes included in java.net
such as java.net.URLConnection (42.3%), java.net.HttpURLConnection (35.0%), ja-
va.net.Socket (6.8%), and java.net.ssl.HttpsURLConnection (3.8%) are the preferred
choice. If we treat both OkHttp library releases as one item it would represent the most used third party
library even surpassing the well known glide and Retrofit libraries. org.apache.httpcomponents
and the asynchronous HTTP library com.loopj.android are the two least used network libraries with
a contribution of only 1.7% and 0.4%, respectively. During our analysis we observed that closed-source
apps use zero to seven different network libraries. It is interesting to see that two different releases of
the same library have been used, i.e., OkHttp releases <= 2 and 3. This indicates that many developers
do not populate code repositories with library updates which could greatly mitigate potential security
issues introduced by the use of outdated libraries. The heavy use of java.net code is surprising, however,
the result presumably has been biased due to the greedy decompilation process: While decompiling the
apps, the bundled libraries are decompiled in the same manner as the apps. For this reason, our analysis
considers not only the in-app code, but also the library code which eventually calls the system’s Java APIs.
This is not the case for the open-source analysis which is built on the Gradle build system to manage
dependencies. With this system, the actual library source code is not yet included at the time of our static
analysis.

6.3.2.2 Use of URLs and JSON schemes

Across the closed-source apps Jandrolyzer was able to extract 621 base URLs and 705 JSON schemes.
The vast majority of the endpoint URLs based on the extracted base URLs were requiring at least one type
of parameter(s), e.g., one or more path segments (1 110, 99.4%), queries (187, 16.7%), and fragments (4,
0.3%). Figure 6.6 illustrates the extracted endpoint data. The x-axis denotes the unique elements in an
endpoint, i.e., how many elements of a specific type (fragments, path segments, queries) the endpoints
require. For instance, the first column “1” represents the number of found endpoints that demand one
fragment, one path segment, or one query. The chart shows that the majority of endpoints have one or
two fragments, path segments, or key-value query pairs. On a second look, one can see that two path
segments are the most used configuration in request URLs, which is inverse to the trend for fragments
and queries. We can further see that 105 endpoints exist with paths consisting of four to eight path
segments to distinguish between resources. Nevertheless, endpoints using more than four elements are
rare. Additionally, we can identify up to 10 unique query pairs used in one specific endpoint, and that
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Figure 6.5: The use of different network libraries in closed-source apps

URL fragments are seldom used in endpoints; we only found up to one fragment per endpoint. Based
on these findings it appears that most APIs are just built for one specific purpose and thus not in need of
many arguments. This is encouraging because the chances of generating a valid request with only few
parameters are rather high.

We also evaluated the most common base URLs. The most used single base URL was http://
schemas.android.com hosted on Google’s servers which has been observed 75 times (33.0%). In
fact, all of the ten most used base URLs were pointing towards Google services, e.g., Google Analytics
and Google Play. Additionally, many of these Google services relate to the distribution of ads such
as http://media.admob.com (19, 8.3%), https://pagead2.googlesyndication.com
(16, 7.0%), and http://e.admob.com (12, 5.2%).2 We were surprised to see such a dominance of
Google, however, we expect that the “Freemium” price model, i.e., installation of apps is free but the user
must later watch ads or pay a fee, is a major enabler of this setting.

Figure 6.7 depicts the URL schemes and the JSON value types found by our tool. The plot reveals that the
http URL scheme (378 occurences, 60.8%) is much more prevalent than its secure counterpart https
(243 occurences, 39.1%). We can further see that STRING is the most used JSON value type with 1 654
occurrences, followed by BOOLEAN with only 297 occurences. NUMBER and NULL only represent a
minority with 163 and 72 occurrences, respectively. The prevalence of http URL schemes is devastating

2Google AdMob is a popular ad platform which provides developers SDKs for the eased integration of Google ads into their own
apps to increase their revenue.
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Figure 6.6: The components used in web requests of closed-source apps

and should be avoided at all cost. Insecure connections present a severe risk for data leakage, manipulation,
or Denial-of-Service (DoS) attacks. For instance, it is trivial to replace range values in plain text web
requests from server-side trusted and authorized users to not only retrieve more potentially sensitive
information from a user. This measure also causes much more server load which could lead in extreme
cases to major service outages.

Besides the URL schemes and JSON value types, we also collected the most frequent query keys and
JSON key-value pairs. We found the three most used keys to be id, event, and type, and we found
less common keys to be value, valueType, enumType, what, session id, and js. The threats
outlined in subsubsection 6.3.1.2 also apply here. In particular, the session id could be susceptible to
session hijacking attempts if not implemented properly on both sides, i.e., the client application and the
server. That is, an eavesdropper could intercept the session id and send further requests to the server who
would still believe that those are originating from the legitimate sender. Moreover, the js key very likely
further increases the attack surface. If the client adds malicious JavaScript code to the corresponding key
the server could be receiving and executing that code and thus be susceptible to various injection attacks.
In more technical terms, if the JavaScript code sent by the client is server-side passed to the eval()
function this would enable arbitrary code execution on the server itself.

Figure 6.8 illustrates the number of different files contributing to code snippets, URLs, and JSON schemes.
The x-axis denotes the number of unique source files in an app on which the web communication relies,
i.e., how many files in an app have been used for the extraction of code snippets, URLs, and JSON schemes.
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Figure 6.7: The used JSON value types and schemes in closed-source applications

For instance, the first column “1” represents the number of found apps that rely on one code snippet, one
URL, or one JSON scheme for web communication. We can see that in most apps the network related
functionality is spread among one to two files. We observed in an app at most 29 files containing URLs, 20
containing JSON schemes and 15 containing network code snippets. We conclude that in most apps only
one or two classes are responsible for network communication. On the other hand, the further end of our
findings indicates bad software design practices due to duplicated network-related code used in different
components of an app. Generally, in the closed-source dataset it seems that the network code snippets
are spread across more files. One possible reason could be that the closed-source apps suffer from worse
software design. Another reason could be that the analysis of closed-source apps frequently included
source code from decompiled bundled third party libraries which might have contained network-related
source code.

6.3.3 Differences

Libraries. We found more java.net libraries (i.e., java.net.URLConnection, java.net.Ht-
tpURLConnection, java.net.Socket and java.net.ssl.HttpsURLConnection) used
in closed-source apps compared to open-source projects. However, this might have been caused by the
more thorough analysis of closed-source apps where the source code of bundled libraries has been included
in the analysis due to the non-trivial separation of library code. Nevertheless, the java.net network libraries
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Figure 6.8: The file-spread of closed-source apps’ web communication facilities

found in open-source projects still appear to be the preferred choice even though the source code of the
libraries did not bias the results in these projects. Interestingly, closed-source apps use different releases of
OkHttp while open-source apps only use more recent releases. Furthermore, the libraries ion and Volley
have only been used in open-source apps, while HttpComponents and LoopJ have only been used in closed-
source apps. Surprisingly, we did not find any instances of the well-known AndroidHttpClient

and SSLSocket classes. Finally, we can see that the use of glide, which supports exhaustive image
downloading and caching features, is much more prevalent in closed-source apps.

Requests. Open-source apps relied on simpler request paths including only one or two path segments,
while closed-source apps mostly included two or three path segments. Unexpectedly, the opposite is true
for key-value pairs: Open-source apps frequently use one to three pairs, while closed-source apps majorly
use one pair. Fragments have only been used very sparsely in both datasets.

Base URLs. While the open-source apps contained no ad services in the ten most used base URLs, the
closed-source apps heavily used ad services to increase their revenue. Besides those advertisement items,
we only found one major difference: Open-source apps tend to use GitHub and OpenWeatherMap services,
but closed-source apps primarily use different Google services.

JSON value types and URL schemes. We could observe no major differences in the used JSON value
types; both show similar uses with closed-apps slightly prefering the boolean over the number type.
However, we found one major difference in the used URL schemes. Open-source apps principally rely on
secure https connections (66.0%), which is in stark contrast to the closed-source apps that largely use
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the insecure http protocol (60.8%).

6.4 Validation

Jandrolyzer is able to send requests based on the reconstructed URLs and JSON schemes in the message
body, if applicable, by using the HTTP methods GET, PUT, POST, PATCH, DELETE, or a subset thereof.
The data received from the server, e.g., the response message, response headers, and the status code is
saved to a file for later analysis. However, because there is no guarantee that the app developers respected
the REST architectural style guidelines, we instead decided to validate the results manually to prevent any
accidental damage on remote systems. For example, it is very likely that certain apps allow the deletion of
resources on the server by HTTP GET requests instead of HTTP DELETE requests which we cannot easily
foresee by any automation.

6.4.1 Manual endpoint validation

For our manual endpoint validation we randomly selected 25 open-source and 25 closed-source apps for
which we reviewed the analysis results generated by Jandrolyzer. We reviewed the collected snippets,
URL endpoints, JSON schemes, and variables. After we ensured that no harm could be done, we manually
sent requests to the collected endpoints using the Postman tool.3 We tried different HTTP methods and
message bodies using the collected JSON schemes.

The manual endpoint validation yielded very pleasing results: More than 90% of the endpoints successfully
replied to our requests. The few endpoints that were not responding suffered either from incomplete
URLs (i.e., https://example.com/api/<STRING>/users), or from IP addresses which were
presumably offline at the time of our investigation.

We collected several interesting findings while validating the endpoints.

One finding is that the use of the status code is not consistent across different endpoint servers which could
lead to severe confusion among developers using the API. For example, most web servers correctly send
the status code 200 to indicate a successful request, but some erroneously send this status code when an
error has occurred and then use the message body to specify the error message in JSON. This is against
any good practice of implementing a RESTful service and an indicator for misunderstood architectural
concepts. Furthermore, developers misunderstanding API architecture might also cause reliability and
safety issues due to their lack of knowledge.

A second finding is that most API endpoints reveal information about the server configuration in the
response headers, i.e., the frequently sent response header Server often reveals the server name, the
operating system of the server, and its version number. In our experiments we found the most prevalent

3https://www.getpostman.com/tools
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endpoint servers to be run on Apache and Nginx. Moreover, some servers also leaked information about the
API’s backend by returning the response header X-Powered-By. Server responses containing this prop-
erty disclose potential security vulnerabilities present in the backend, e.g., by returning X-Powered-By:
PHP/7.3.3 the interrogator knows that the server-side API implementation is based on PHP release
7.3.3.

Other findings include that many apps show web content inside a web view, i.e., a web browser component
within the application, and that many apps use the Server header as well as other non-standardized
HTTP headers. Finally, we can confirm that ad services are much more prevalent in closed-source than in
open-source apps.

6.4.2 Discovered security issues

Server-side disclosure of running applications. Information about the web server, its version number, the
used operating system and programming languages are detrimental to the security of the API endpoint.
During our validation we observed one server returning the X-Powered-By: PHP/5.5.23 response
header even though the current PHP release at that time was 7.3.3. By considering the Common
Vulnerabilities and Exposures (CVE) database we found that this application framework suffers from 57
known security vulnerabilities.4 The vulnerabilities range from simple DoS attacks, access control taming,
and cross-site scripting to arbitrary code execution on the server. Most of the web server daemons and API
implementation frameworks we validated were outdated with known security vulnerabilities.

Server-side disclosure of API code. We found multiple API endpoints leaking internal error messages. In
most cases the actual error message including the corresponding stack trace has been transmitted as plain
text in the server’s message response body. Consequently, the error messages included information about
method names, line numbers, and file paths revealing the internal file system structure of the server. By
applying trial and error techniques to search for security issues an intruder could gain further knowledge
about the endpoint’s inner workings to illegitimately access the system.

Server-side use of insecure HTTP. Loading web content in web views without securing the communication
with HTTPS makes the application vulnerable to Man-in-the-Middle (MITM) attacks which could be used
to steal information, or to allow client-side malicious code execution.

Server-side shell access. One application used the request message body to issue shell commands on the
server which directly leads to arbitrary code execution on the server. User input must never be trusted and
should be server-side validated to prevent potential code injection attacks.

Server-side lack of authentication and authorization. We found several intentionally private APIs that
were completely lacking any authorization mechanisms. These APIs were leaking information, e.g.,
location data, room occupancy, sensor readings, and even allowed the creation of new users on a server.

4https://www.cvedetails.com/vulnerability-list/vendor_id-74/product_id-128/version_
id-183021/PHP-PHP-5.5.23.html
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Client-side disclosure of credentials. We further found multiple hard coded API keys and other sensitive
information, e.g., email addresses. More specifically, we were able to extract API keys to access Google
Maps, Mapquest, OpenWeatherMap, the San Francisco transit API, and Telegram through a bot that allows
sending messages in its name. These services could allow impersonation, information leaks, or financial
infringements for the application developers due to API overuse or lockdowns.
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Threats to Validity

One major threat to validity is the completeness of the study, i.e., it is not guaranteed that we found all
major libraries used for web communication in Android applications. Furthermore, we only focused on
the Android platform. This may not be representative of the mobile application market in its entirety
since the use of web communication in other mobile operating systems, e.g., iOS, has not been adequately
considered.

Another major threat is the bias introduced with the selection of apps. We conducted the automated
analysis using our Jandrolyzer tool for all open-source apps and for random closed-source apps in our
dataset, however, not every app category has been equally represented in the analysis. The open-source
apps have been collected from F-Droid and the free closed-source apps from the Google Play store.
Some applications from F-Droid are also distributed through the Google Play store which could result
in applications appearing in both datasets. Other third party stores have been excluded from our study,
because some of them alter the apps’ source code which would further bias our results [24].

We developed Jandrolyzer to the best of our knowledge, but nevertheless, it suffers from the inherent
limitations that come with static source code analysis, e.g., the large demand for resources. Hence, we built
the tool with a focus on performance rather than on accuracy, because we intended to retrieve results from
as many apps as possible even though we risked broken or incomplete results. That is, we increased the
speed of the analysis process by oversimplifying some programming language constructs, e.g., conditions,
and by introducing constraints, e.g., a maximum resolving depth for variable values, and a maximum
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execution time for the decompilation process and one for the analysis process.

In the manual validation of the analysis results we only considered the output of our tool, however, we
neither investigated apps manually to confirm the results of Jandrolyzer, nor did we consider apps that
did not succeed the analysis. In addition, the authors were performing all the analyses and evaluations
themselves which is a threat to construct validity through potential bias in experimenter expectancy. Finally,
to avoid any damage on production servers we did not test the altering of resources on remote systems.



8
Future Work

In this thesis we present the prevalent Android web communication frameworks and the corresponding
analysis tool Jandrolyzer, which can extract and validate API endpoint data from open- and closed-source
apps. However, there exist many opportunities to improve the tool or to more thoroughly reason about the
results:

Tool: Dataset. We tested our analysis tool on a corpus of 413 open-source and 834 closed-source
applications. However, the current small-scale analysis could be transformed into a large-scale analysis to
increase the expressiveness of the results by virtue of the increased app diversity.

Tool: Analysis time. The decompilation and analysis processes consume much resources. Therefore, we
could increase the maximum decompilation and analysis time for each app. With this measure we would
gain more successful analyses especially for rather complex apps.

Tool: Library support. We implemented tool support for the most prevalent web communication libraries.
Nevertheless, support for more network and data conversion libraries would increase the quality of our
results. In addition, we could improve the analysis quality for the existing libraries to better model and
reconstruct their use of web communication, e.g., by accurately considering conditional statements.

Tool: Server configuration assessments. Jandrolyzer supports the automated validation of API endpoints
based on the collected and reconstructed data. Unfortunately, the software metrics available in response
headers are not yet automatically assessed for any security-critical information. For example, the tool
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could immediately determine the specific software releases used on API servers and automatically search
for vulnerabilities in relevant CVE databases. Moreover, the testing of the applications’ typical network
ports on web API servers using default credentials might also lead to interesting insights, nevertheless,
regulations must be obeyed.

Tool: Automated exploitation. The tool provides the necessary information to access API endpoints.
Whenever sensitive keywords appear in queries, e.g., startFrom, endWith, js, DoS vulnerabilities
could be disclosed in an automated manner, or parameters could be used to test for potential code injection
weaknesses.

Tool: Dynamic analyses. Static code analysis techniques can be combined with dynamic code analysis
methods to validate the correctness and the completeness of the reconstructed data for a specific application.
In particular, we could try to install and run applications through the command line interface of the Android
Debug Bridge (ADB).1 ADB allows one not only to install and start Android apps, it also enables one to
list all available activities, i.e., the different views, of an application, to grant permissions, and to launch
an app’s specific activities. Furthermore, a reverse proxy can be used to intercept the app’s network
communication. While we performed some initial tests, we did not investigate this area any further due to
three major open issues. The first open issue remains the certificate pinning of apps: Certain apps include
their own certificates stored inside of the app and reject any other certificates, and even otherwise trusted
certificates from the trusted store of the device. This security measure prevents more thorough analyses as
changes to the app’s code would be required to eavesdrop the app’s network communication. The second
open issue is the unavailability of a subset of the app’s functionality due to missing user input. For instance,
many views require additional user input to be fully functional, e.g., a user name and a password, a network
address, a paid subscription, etc. The automated insertion of such values is a non-trivial problem. The
third open issue remains the background communication of apps. Some apps cause spontaneous network
traffic throughout the day. While we can see and analyse this background communication it is hard to
trigger by any action as it is often bound to timers or specific user actions performed on the device itself.

Reasoning: Manual assessments. Our tool simplifies the manual investigation of privacy related issues
such as the synchronization of personal information with web services without the user’s knowledge or
consent. Consequently, more in-depth followup studies on the results are advised.

Reasoning: IDE support. The insights gained in this thesis could be used to create a plugin for Android
Studio to raise awareness of potential security issues related to web APIs among mobile application
developers by providing actionable feedback through code linting and quick fixes.

1https://developer.android.com/studio/command-line/adb



9
Conclusion

We conducted a manual static analysis of 160 open-source projects to compile a list of commonly used
network and data conversion libraries and to analyze their patterns of use. Subsequently, we developed
a first static analysis tool to assess the popularity of the collected network libraries and to establish an
automated process to find potential network code snippets based on regular expression matching techniques
to further increase our knowledge of the developers’ web communication use. Unfortunately, this tool
yielded countless false positives because of the missing context and type information. Nevertheless,
a further manual reverse engineering of these code snippets still provided additional insights into the
implementation of web communication facilities in Android applications, e.g., the use of XML and JSON,
hard-coded API endpoints, API keys, access tokens, and request body content such as JSON schemes.

Based on these findings we created the analysis tool Jandrolyzer. Jandrolyzer automates the decompilation,
the network code snippet detection, the reverse engineering, the extraction of API endpoints and JSON
schemes, and the validation thereof. The decompilation is performed by JADX and the reverse engineering
as well as the extraction is built on JavaParser which parses source code, creates ASTs, and provides
symbol resolution techniques to ensure accurate findings. Jandrolyzer provides API endpoint extraction
strategies tailored to the most prevalent web communication libraries such as OkHttp and Retrofit, and
custom fit JSON scheme extraction strategies for the most common data manipulation libraries such as
Gson, Moshi, and org.json. Lastly, Jandrolyzer is able to test API endpoints with various combinations of
HTTP methods and request bodies. The server responses are stored on disk for later analysis. Incomplete
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JSON or URL key-value query pairs are reconstructed with help of the source code by filling in missing
values with values found at variables using a similar name.

With the help of this tool we conducted an analysis on 413 open-source projects from F-Droid and 834
closed-source applications from the Google Play store. Out of these 1 247 apps our tool was able to
successfully process 450 apps (36.0%). We found that for both open-source and closed-source applications
the prevalent web communication channels are based on java.net classes, followed by third party libraries
such as OkHttp and Retrofit. By far the most used JSON value type in JSON schemes is STRING for
open- and closed-source apps. We further found in closed-source apps substantially more advertisement
services, network code that is spread across more files, and more complex endpoint paths consisting
of more path segments. Surprisingly, the secure HTTPS protocol is used in the majority of extracted
endpoints from open-source applications, but the opposite is true for closed-source apps: The majority of
endpoints extracted from closed-source applications use the insecure HTTP protocol instead.

During the manual validation of the results from Jandrolyzer we finally encountered numerous security
issues: The unnecessary disclosure of server configurations, outdated web servers and language interpreters
with known security vulnerabilities, insecure web content display in web views using the HTTP protocol,
leaks of internal error messages, hard coded API keys and other sensitive data in source code, shell
commands inside a request body, and ultimately, we found public private APIs lacking any kind of
authentication or authorization mechanisms.

This work represents a baseline for further research in this direction.
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